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Most paleo-episodes of ocean acidification (OA) were either too slow or too small
to be instructive in predicting near-future impacts. The end-Cretaceous event (66
Mya) is intriguing in this regard, both because of its rapid onset and also because
many pelagic calcifying species (including 100% of ammonites and more than
90% of calcareous nannoplankton and foraminifera) went extinct at this time.
Here we evaluate whether extinction-level OA could feasibly have been produced
by the asteroid impact. Carbon cycle box models were used to estimate OA
consequences of: (A) vaporisation of up to 60 x 10> moles of sulphur from
gypsum rocks at the point of impact; (B) generation of up to 5 x 10> moles of
NOx by the impact pressure wave and other sources; (C) release of up to 6500 Pg
C from vaporisation of carbonate rocks, wildfires and soil carbon decay; and (D)
ocean overturn bringing high CO2 water to the surface. We find that the
acidification produced by most processes is too weak to explain calcifier
extinctions. Sulphuric acid additions could have made the surface ocean
extremely undersaturated (Qcaicite less than 0.5), but only if they reached the
ocean very rapidly (over a few days) and if the quantity added was at top end of
literature estimates. We therefore conclude that severe ocean acidification might
have been, but most likely was not responsible for the great extinctions of

planktonic calcifiers and ammonites at the end of the Cretaceous.



46  Motivation
Significance
Ammonites went extinct at the time of the end-Cretaceous asteroid impact, as did
more than 90% of species of calcium carbonate-shelled plankton (coccolithophores
and foraminifera). Comparable groups not possessing calcium carbonate shells were
less severely impacted, raising the possibility that ocean acidification, as a side-effect
of the collision, might have been responsible for the apparent selectivity of the
extinctions. We investigated whether ocean acidification could have caused the
disappearance of the calcifying organisms. In a first detailed modelling study we
simulated several possible mechanisms from impact to seawater acidification. Our
results suggest that acidification was most probably not the cause of the extinctions.

47

48 Using Earth history to understand OA impacts.

49  From pre-industrial times up to the year 2008, ca. 530 Pg of carbon were added to the

50  atmosphere through burning of fossil fuels and deforestation (1). This has led to an

51  increase in atmospheric CO2 of 40% (from 280 ppm in pre-industrial times to 400

52 ppm in the year 2015). Simultaneously, about 160 Pg C has been taken up by the

53  ocean (2), where it causes ocean acidification (hereafter ‘OA”) (3).

54

55  OAis of particular concern for calcifying organisms (3), because it leads to lower

56  COs? concentrations and hence lower seawater saturation states with respect to

57  CaCOs (Q). In theory, lower Q should make it energetically more costly for

58  organisms to synthesise CaCOs shells and skeletons and, subsequently, if Q falls

59  below 1.0, to maintain them against dissolution. A large variety of short-term

60 experiments have been carried out to test for such consequences (4). It is widely

61  recognised, however, that one aspect which these experiments generally do not

62  address (although see refs. 5 and 6) is the degree to which organisms can evolve in

63  response to the changing carbonate chemistry and thereby become more tolerant of
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the new conditions. As a result, there is a need for approaches that reveal the long-

term response to OA with evolutionary adaptation factored in.

Events in the past could potentially shed more light on the evolutionary response to
OA. However, a recent review (7) highlighted a major difficulty: during most
suspected OA events, CO: levels rose so slowly that the carbonate compensation
process, i.e. the automatic stabilising mechanism that opposes changes in ocean
CaCOg saturation (8), must have interposed to alter the nature of the impacts (7,9,10),

making them less useful for understanding the future.

In contrast, at the end of the Cretaceous the asteroid impact induced very sudden
changes. Here we investigate the possibility that there was a sharp and sudden
acidification event concentrated in surface waters (deep waters experience delayed
and less severe acidification in response to an atmospheric source of acidity (11)).
Because there are no paleo records with which to constrain seawater chemistry
changes during the critical few years following the impact (the slow speed at which
most ocean sediments accumulate limits the resolution of sediment records to
thousands of years), we employ models to calculate how dramatic the surface OA

may have been at the end Cretaceous.

Extinctions of calcifiers at the end of the Cretaceous.
Another reason for being particularly interested in the Cretaceous/Paleogene (K/PQ)
boundary in the context of OA, is that many surface-dwelling calcifiers went extinct
at this time (12). Ammonites had existed on Earth for some 300 million years, and

had survived previous extinction events, including the one at the end of the Permian
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when more than 95% of all marine species were lost, but they succumbed at the K/Pg
(13). Within other groups of marine organisms there appears also to have been a
strong extinction bias towards calcifiers. Among autotrophs, for example, more than
90% of all calcareous nannoplankton (coccolithophore) species went extinct at this
time (14, 15). By contrast, there were much lower extinction rates for comparable
non-calcareous groups, such as siliceous diatoms of which at most 50% of species
went extinct (16, 17), organic-walled dinoflagellates which experienced no significant
extinction (18), and non-calcifying haptophyte phytoplankton of which many clades
survived the K/Pg (19). Similarly among heterotrophs, more than 95% of carbonate-
shelled planktic foraminifera were lost (14) while only a few planktic silica-shelled
radiolaria went extinct (16, 17). The particular severity of extinctions for calcifiers has
led to suggestions (e.g. 20, 21) that they were caused by OA. However, as described
later, upon a more detailed inspection of the paleontological evidence the selectivity

of extinctions seems less clear-cut.

We used biogeochemical box models of the global carbon cycle (which simulate the
organic and inorganic carbon pumps, ocean mixing, exchange of CO> between the
ocean and atmosphere, and other processes) to assess whether severe OA might have
occurred. Because of the absence of accompanying paleo data at this timescale, our
aim is not to pin down the exact pattern of carbon chemistry changes that took place
at the K/Pg. Instead we focus our attention on delineating the upper bound of OA
severity. Our aim is to calculate the maximum degree of OA that might plausibly have

occurred, not the most likely.

Comparison to previous studies of carbon chemistry at the K/Pg
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A few other studies (21-25) have previously addressed carbon cycle and OA changes
at the K/Pg. Beerling et al. (23) used data (the stomatal index of land plant leaves) and
a box model; their data suggested that atmospheric pCO. increased from 350-500
ppmv to 2300 ppmv across the K/Pg boundary (although such a rise is not seen in
other proxy data (24)), from which they inferred an instantaneous transfer of ca. 4,600

Pg C from rocks to the atmosphere.

D'Hondt et al. (25) used calculations rather than models to investigate the severity of
surface OA at the K/Pg boundary. They calculated the consequences of acid creation
(between 1x10%® and 1.3x10%" mol H.SO4) from vaporisation of gypsum rocks at the
site of impact, and, secondarily, from nitric acid. The lower amounts do not
significantly affect surface ocean pH, according to their calculations, but the highest
amounts would be large enough (>1.2 x10'7) to destroy entirely the carbonate buffer
capacity of the upper 100 m of the modern global ocean and drive pH transiently to
values as low as 3. However, such extreme pH changes are by no means necessary in
order to make seawater strongly corrosive to CaCOs (Q«1), which can be achieved by

a pH drop of less than 1 unit from its modern value of just over 8.

We revisit the OA estimates of D’Hondt et al. (25), carrying out the first evaluation
using an established dynamic ocean carbon cycle model (see Methods section and
detailed methods in supplementary information). While D’Hondst et al. (25) focussed
on how much acid is needed to overwhelm the entire buffering capacity of seawater,
we focus instead on the consequences for Qcarcite (the saturation state of seawater with

respect to the calcite form of CaCO3). We explicitly calculate and compare the
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potential of different hypothesized sources of acidity to lower surface (0-100m) ocean

pH and Qcarcite at the end Cretaceous.

Results

(1) Sulphate aerosols due to impact on gypsum-rich rocks.
An asteroid estimated at ~10km in diameter (26,27) hit the Earth at a point on the
Yucatan peninsula in Mexico, producing the Chicxulub crater (diameter ~200 km).
The target rocks (carbonate- and gypsum- or anhydrite-rich sediments underlain by
granite crust) were partly ejected and partly volatilised by the impact. In addition to
sulphur from the impact rocks, between 1 and 5 x 10%° Mol S could have come from
the asteroid itself (28). Thermal decomposition of gypsum or anhydrite (we refer only
to gypsum henceforth) is presumed (on the basis of laboratory volatilisation
experiments; e.g. ref. 29) to have led to the near-instantaneous release of SOz (21) to
the atmosphere according to the reaction:
CaS0O4 — Ca0 + SOs3 1)
According to this equation there is also a simultaneous equimolar production of base
(in the form of lime, CaO), some of which could have counteracted the effects of the
acid (30). However, consistent with our goal of estimating maximum possible
impacts, lime effects are not included in any of the simulations in this study. Some of
the SOz and CaO may have recombined within the plume back to solid CaSO4

(30,31).

After being injected into the atmosphere, SO3 would have been transformed to

sulphuric acid (H2SQOa4). There is some debate about how rapidly the H2SO4 arrived at
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the ocean. Some understanding has been obtained from studies (32-34) of sulphur
dynamics following volcanic eruptions such as Mount Pinatubo in 1991. Where S is
injected into the stratosphere, its return to the Earth’s surface is delayed, due in part to
the lack of water vapour and rainfall there, typically taking a few years (34). Earlier
modelling studies (35,31) suggested residence times of S in the atmosphere of several
months to a few years. An alternative and very different scenario has recently been
proposed for the K/Pg (21), in which sulphuric acid was transported much more
rapidly to the ocean. It is suggested that, immediately after the impact, most of the
sulphuric acid aerosols were scavenged by large silicate particles falling rapidly back

to Earth, thereby delivering the H2SO4 to the ocean within only one or a few days.

D'Hondt et al. (25) estimated total sulphuric acid production to have been in the range
10 to 130 x 10 mol H2S04 (320 to 4160 Pg S), based on several earlier studies (36-
38). Later studies suggested ~10-fold smaller total production of only 0.9 to 9 x 10%°
mol H2S04 (30 to 300 Pg S, ref. 31) and 2.4 to 11 x 10'®> mol H2SO4 (78 to 364 Pg S,
ref. 39). A recent review put the total sulphuric acid input at between 3 and 16 x 10%°

mol or possibly higher (27).

We implemented this hypothesis in the model through a family of runs of different
total sulphur addition (15, 30 and 60 x 10* mol, corresponding to 480, 960 and 1920
Pg). We carried out a main set of runs using longer e-folding times of H.SO4 addition
(0.5, 1, 5 and 10 years) and also additional runs with a shorter e-folding time of 10
hours, following ref. 21. H>SO4 addition reduces surface water total alkalinity (TA) in

the molar ratio H.SO4:TA = 1:-2 (ref. 40).
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Results of the main sulphuric acid addition runs are shown in the first (left-most)
column in figure 1 (with sensitivity to rate of addition shown in Fig S1). The results
of the additional runs with T = 10 hours are shown in figure 2. There are very large
impacts on pH and Qcarcite for large sulphur inputs, which are exacerbated by rapid
addition. The greatest effects are in the immediate aftermath and are of short duration

(a few years).

<FIGURE 1 TO GO HERE>

(2) Carbon dioxide from carbonate rocks and organic carbon.
We consider all CO> sources together. In the same way that the impact released
sulphur compounds from gypsum rocks as they were vaporised, vaporisation of
carbonate rocks yielded COo. It has been estimated that an asteroid of diameter ~10
km hitting the 3 or 4 km thick layer of sedimentary carbonates of the Yucatan
peninsula (27) would have released between about 5000 and 9000 Pg CO- (41), or in
other words 1300 to 2500 Pg carbon. This may however be an overestimate, because
the total amount released was most likely greatly reduced by rapid back-reactions
(42,43) in which 40-80% of volatilised CaO and CO2 immediately recombined within
the plume to re-form CaCOs (30). As for sulphur, we do not include in the model

calculations any consequences of lime produced alongside the CO-.

A global heat-shock (44) following the impact may have ignited woody biomass,

leading to wildfires (45), and thence CO: release to the atmosphere. In the Late
Cretaceous the total biomass of living vegetation was possibly larger than it is today
(~600 Pg C), because forests extended closer to the poles at that time (46). Although

there are much larger estimates of the amount of vegetation burnt (up to 2700 Pg C,
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ref. 47, based on the amount of soot produced and assuming it all came from
wildfires), it seems to us unlikely that burning of terrestrial vegetation carbon could
have contributed much more than 1500 Pg C, both because of mid-continent aridity in

warmer climates (48) and because of finite habitat space.

An additional potential carbon source comes from soils. The throwing up of large
amounts of soot, aerosols and dust to the atmosphere probably led to an extended
period of darkness on Earth, during which photosynthesis was strongly inhibited by
low light levels (49). During this period, decay of soil organic carbon (turnover time
today of about 50 years, ref. 50), would not have been balanced by replenishment
from new production of leaf litter and other sources associated with living plants. We
assumed a maximum total for the Late Cretaceous of 2500 Pg C (compared to 1600
Pg C today), taking into account that soil carbon stocks on Earth today are much
higher towards the poles, particularly in permafrost regions. Although the planet was
warmer on the whole in the Late Cretaceous, the lack of ice-sheets on Antarctica at

that time could have allowed large soil carbon stocks to accumulate there (51).

We modelled the effect on ocean carbonate chemistry from all of these sources
combined, through a family of model runs with carbon additions (to the atmosphere
rather than the surface ocean) of 2000, 4000 and 6500 Pg C. The sources most likely
released carbon both rapidly (volatilisation of carbonate rocks at the point of impact,

wildfires) and slowly (decay of soil carbon). We therefore carried out runs in which

CO was added to the atmosphere both more slowly (e-folding times of between 0.5

and 10 years) and more rapidly (e-folding time of 10 hours). Results of these

10
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carbonate rock runs are shown in figures 1, 2 and S1. Large impacts are produced,
although not as severe as from the largest sulphuric acid additions. In contrast to the
response to SO, there is little difference between the responses to CO added with e-

folding times of 6 months and 10 hours, because of slow air-sea gas exchange of CO..

<FIGURE 2 TO GO HERE>

(3) Nitrogen oxides due to atmospheric shock wave.
As the asteroid (and subsequent ejecta) travelled at high speed through the
atmosphere, the associated intense pressure wave would have led to conversion of N2
and O in the atmosphere to NOx. Upon conversion to nitric acid (HNO3) and
incorporation into rain, this would have induced acidification of the ocean as it rained
out over the following months or years (or possibly days if also scavenged by large
silicate particles). Although the total amount of HNO3 produced directly by the initial
pressure wave (~1 x 10 mol, ref. 52) is relatively small, it could have been doubled
by HNO; from ejecta pressure waves (53), and supplemented by ~3 x 10* mol HNO3
from wildfires (47), giving rise to maximum total additions of up to 5 x 10*> mol
HNO:s. Nitric acid addition reduces surface water total alkalinity (TA) in the molar
ratio HNOs: TA = 1:-1 (40). We implemented this hypothesis with a set of runs of
different NOx additions (1, 3 and 5 x 10'® mol) over a range of e-folding times (0.5, 1,
5 and 10 years). The results are shown in figures 1 and 2 (and figure S1). The impact
on ocean carbonate chemistry is similar in nature to that from sulphuric acid, but
considerably smaller (5 x 10> mol HNOs has the same impact on TA as 2.5 x 10%°

mol H2SOs, or in other words less impact than the minimum sulphur run).

11
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(4) Breakdown of ocean stratification.
Large tsunamis occurred within 1000 km of Chicxulub (27) and other effects (the
shock wave, and secondary tsunamis following impact-induced earthquakes and the
return of ejecta) would have led to more widespread consequences for ocean
stratification. If the overall disturbance was sufficient to bring about a global mixing
between surface and intermediate depth (lower pH) waters, then surface ocean pH
would have dropped. This scenario was implemented in model runs by increasing the
amount of mixing (initially by a factor (o) of 2, 5, 10 or 100-fold above normal), with
the mixing rate (K) over time (t) subsequently decaying back to the baseline value

(K") over e-folding timescales (t) of between 6 months and 10 years, according to the

equation:

K(t) = K'.[1+ (a _1).6[;)}
©)

Results are shown in figures 1 and S1.

(5) Combined scenarios.
Additional runs (t = 6 months or T = 10 hours) were carried out in which all

acidifying factors were set to their maximum amounts, except for the input of SO4
from sulphate aerosols which was the only factor varied between runs. The input of
nitric acid was thus set to 5 x 10 mol and the input of CO, to 6500 Gt C (exceeding
an estimate of 4600 Pg C for the total CO> input, ref. 23). Changes to ocean
stratification were not simultaneously modelled because they weaken the combined

impact. The results from these runs are shown in Table 1 and figure 3.
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Discussion

Sulphate aerosols were most likely the dominant acidifying factor.
It is clear that some processes have much greater potential than others to drive
extinction-level OA. Considering firstly inputs of CO> (from wildfires, decay, and
release from rocks), it appears that the potential for mass extinction-scale OA impacts
in this case is limited. Even for the largest total amount (6500 Pg C) over the shortest
timescale (10 hours), the model produces a minimum Qcacite Of 2.2. Such an impact
would not have been sufficiently severe to produce complete global extinction of most
calcifying species via shell dissolution. This maximum amount of 6500 Pg C at the
K/Pg compares to ~600 Pg C of anthropogenic carbon released to date (2015) in the
Anthropocene (1) and estimated total available fossil fuel reserves of about 4000 Pg
C. It can be seen (table 1), however, that the addition of the same amount of carbon to

the modern system would reduce Qecarcite to @ much lower average value (0.7).

Breakdown of ocean stratification is seen to have only a relatively small potential to
lower seawater pH and Qcarcite . This is not surprising, because the pH of intermediate
waters in most oceans is about 7.7 and this sets a limit to the decrease in pH that can
be achieved by a sudden stirring of the oceans. Although very deep waters are
undersaturated with respect to calcium carbonate, this is primarily due to the effect of
pressure. For instance, if water from 3.5 km deep in the North Atlantic (dissolved
inorganic carbon (DIC) = 2180 pumol kg, total alkalinity (TA) = 2340 pmol kg™)
were to be raised to the surface and the pressure effect removed, its Qcaicite Would be
~2.8. In the North Pacific, where deep water has accumulated more products of
decomposition, Qcarcite after removal of the pressure effect would be ~1.8. In neither

case would the water be at all undersaturated (Qcaicite Would not be < 1). Although

13



310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

long-term sustained changes in mixing can have a great impact over hundreds of
thousands of years on the depth of the CCD and the §**C of CaCOs3 (54), short term
effects on surface ocean Qcarcite are modest and this mechanism can also be ruled out

as a cause of severe OA at the K/Pg.

Of the two processes in which acid is directly added to the surface ocean (sulphuric
and nitric acid additions), the former far outweighs the latter in terms of maximum
possible OA impacts. The nitric acid additions do not cause severe OA (table 1) even
for the highest estimate of the amount added (5 x 10'°> mol N). Therefore, this too can

be discounted as a sole cause of severe OA.

The only process capable by itself of producing severe undersaturation (here defined
as Q-calcite < 0.5; the choice of this threshold is discussed below) is the deposition of
sulphuric acid. In fact, even when all other acidifying factors are set to their maximum
values and combined, in the absence of sulphate aerosols then the total effect is not
sufficient to induce undersaturation (row 7 “All except SO4” in table 1). In the rest of

this paper we thus focus on impacts relating to sulphuric acid additions to the ocean.

How much sulphur was released?
A key uncertainty in the assessment of OA at the K/Pg is therefore the magnitude of
sulphur release, which depends on several factors. An important uncertainty is the size
of the impactor, with early calculations made for bodies of diameter 10, 15 or 20 km,
whereas later calculations were based on smaller sizes such as 10 km, in line with
downwards revision of the size of the impactor (27). There is disagreement about the

pressure required to vaporise gypsum and release sulphur oxides. Earlier papers such
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as that by Sigurdsson et al. (36) assumed that 20 to 40 GPa are required, leading to
higher estimates of the amounts vaporised. Later studies (e.g. 31) assumed a
requirement of 100 GPa. There is also uncertainty about the angle at which the
impactor hit the Earth. It may have been a vertical, full-on impact (angle of incidence
=90°, ref. 56) or alternatively may have hit at a shallower angle (20 to 30°, ref. 27).
Additional uncertainty comes from lack of complete knowledge about the nature of
the impact site geology and more specifically the amount of gypsum in the impacted
rocks. Another source of uncertainty is that most estimates assume that 100% of the
volatilised sulphur ends up as sulphuric acid, whereas it has been suggested (30,31)
that about 50% was reincorporated almost immediately into solid CaSOs as it

reformed due to back-reactions within the plume.

These uncertainties lead to a greater than 10-fold range in the predictions of sulphuric
acid delivered to the surface ocean, as discussed earlier, which translates into
considerable uncertainty about OA impacts. Additional model runs (figures 3 and S4;
table S1) show that the critical amount of SO4 needed to reduce Q-calcite to a value of
0.5 is between 8 and 43 x 10'® mol, depending on the rapidity of addition and on the

intensity of other acidifying processes. Between 30 and 43 x 10% mol is required if

SO, is added relatively slowly (t = 6 months), whereas between 8 and 10 x 10'° mol

is required if SO4 is added very rapidly (t = 10 hours). These required amounts of

S04 need to be compared to estimates of how much sulphur was actually released, up
to 60 x 10'° mol according to the studies used by D’Hondt et al. (25), or between 0.9
and 9 x 10 mol according to the most recent analysis (31). Our model runs therefore
suggest that Qcarcite could have fallen below the threshold of 0.5 for many of the SO4

emissions used by D’Hondt et al (25), but only for the upper end of the range
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proposed by the most recent study (31). The very high estimate used by D’Hondt et
al. (25) came from only one of the three studies they cited, which was 5- to 20-fold
higher than the maximum estimate from the other two studies cited and nearly an
order of magnitude higher than the top end of the range from the most recent analysis
(table 2). The difference has been ascribed (56) primarily to Sigurdsson et al’s

assumption that gypsum vaporisation can occur at lower pressures.

Could OA at the K/Pg have been severe enough to cause calcifier

extinctions?

In order to answer this question, it is necessary to estimate a lower limit value of Q
below which calcifiers could not have survived. Despite large amounts of ongoing
research into the impacts of OA on the marine biota, a precise value for such a Q
threshold is not yet available, and in any case differs between calcifier species (57).
We use a critical threshold value of Qcaicite OF 0.5 in the surface ocean. This criterion
of Qcaicite < 0.5 corresponds to those waters becoming strongly undersaturated for
calcite, the less soluble form of CaCOg accreted by coccolithophores (calcareous
nannoplankton) and foraminifera to form shells. Because high latitudes and low
latitudes are not distinguished in this simple model, there is only one surface box and
hence only one value of Qcaicite. In Nature, on the other hand, there is a latitudinal
gradient in Q in surface waters, with highest values (at low latitudes) on average
about 20% higher than the global average (58). A global average value of Qcacite = 0.5
therefore corresponds to surface oceans being quite strongly undersaturated for both
calcite and aragonite at all latitudes. However, some calcifying species continue to

calcify quite well (in the laboratory at least) even at Qcaicite=0.5 (e.g. refs. 57 and 59).
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This threshold should therefore be considered as the minimum degree of corrosivity to
CaCOg that is required to account for widespread calcifer extinctions, and it is
possible that even lower average values would actually be required. As discussed
above, the only scenarios making surface seawater so corrosive are those in which

large amounts of sulphur are released rapidly from gypsum rocks.

Overall, our model results do not point to extremely severe OA at the K/Pg, although
they do not completely rule it out. We conclude that it is possible but not likely that
the numerous calcifier extinctions were due to OA. Some reasons for this conclusion
are as follows: (A) out of several factors considered in the simulated scenarios, only
one (sulphuric acid) made the surface ocean strongly corrosive to calcite (Qcarcite <
0.5); (B) even for sulphuric acid, the amount required to produce severe OA (previous
section, table S1) is above the upper ends of most (including the most recent)
estimates of ranges of possible emissions (table 2); (C) the amounts of H2SO4
reaching the surface ocean were probably at least 2-fold less than the early estimates
of the amounts of S released, because they ignored rapid back-reactions consuming
sulphur in the plume (30); and (D) the release of S to the atmosphere may have been
accompanied by a production of lime (CaO) (30) and/or other basic compounds (39),
which if subsequently falling into the surface ocean may have dissolved there, raising
Qcarcite and pH. Other explanations for selective extinctions should therefore continue
to be explored, such as the suggestion (60) that groups with resting stages (e.g.
dinoflagellates cysts or diatom spores) were able to survive better than those without
(including calcareous nannoplankton). Further progress on this question would be
assisted by a better understanding of both the magnitude and rapidity of sulphuric acid

additions.
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Although a preliminary inspection of the K/Pg paleontological record strongly
supports an OA-driven calcifier extinction, when considered in greater detail the
evidence appears less compelling. For instance, in contrast to calcareous
nannoplankton, another group of calcifying plankton, the calcareous dinoflagellates,
experienced no major extinction at the K/Pg (18). All calcareous rudist bivalve
species were lost (61), but out of bivalves as a whole ~35% of ‘sub-genera’ survived
(62). In contrast to planktics, benthic foraminifera with calcareous shells survived the
event relatively intact, whether inhabiting shallow or deep waters (63). Inoceramid
clams underwent 100% extinction but up to 13% of bryozoans and only rather few

marine gastropods went extinct (16).

Zooxanthellate scleractinian corals (those which host photosynthetic algal symbionts,
and which are therefore restricted to living in shallow waters where peak OA impacts
would have been greatest) suffered much greater species extinction rates than
azooxanthellate scleractinian corals inhabiting a much larger depth range (64). In fact
deep water corals, far from being preferentially killed off, instead preferentially
survived the end-Cretaceous mass extinction (64). This is compatible with much more
severe OA in surface than in deeper waters, as is seen in our models (plots not
shown). However, among scleractinian corals as a whole (zooxanthellate and
azooxanthellate combined) only ~50% of all species were lost, which would seem
surprising if OA was the cause for other calcifier extinctions, given the experimental
and field evidence showing coral sensitivity to OA (65). According to Kiessling &

Simpson (66): “During the major mass extinctions at the end of the Ordovician,
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Permian and Cretaceous periods [the calcifying groups] corals and coralline sponges

have indistinguishable extinction rates from other taxa.”

Comparison to previous calculations
Some of these acidifying processes were considered in earlier work by D’Hondt et al.
(25). Although D’Hondt et al calculated the effects of adding acids to the ocean
without the aid of a dynamical model such as that used here, their earlier predictions
are broadly consistent with our model results. We have considered a much wider
range of possible acidifying processes, but concur that the process of gypsum
vaporisation is likely to be quantitatively the most important. Our estimate of the
amount of sulphur required to explain extinctions, in the absence of other processes, is
however much less: 43 x 10%° mol SO4 (or 10 x 10% mol SO if added very rapidly,
but see table S1 for sensitivity of these numbers to assumptions) compared to their
estimate of 61 x 10* mol SO.. In agreement with Ohno et al. (21), our model results
show lower Qcacite Values when SO4 is added more rapidly than when it is added more
slowly. However, contrary to their calculations, in our model we find that 1 x 10'* kg
H2S04 (= 1 x 10'° mol SO.) is not nearly enough to produce strong undersaturation
(panel B of figure S4). Our model results therefore support an earlier assessment (53)
that nitric acid could only have caused minor acidification and that sulphuric acid was

unlikely to have led to significant acidification.

Conclusions
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Results have been presented from our carbon cycle modelling study of ocean
acidification (OA) at the end of the Cretaceous. The effects of several acidifying
mechanisms were simulated, including wildfires emitting CO2 to the atmosphere and
vaporisation of gypsum rocks leading to deposition of sulphuric acid on the ocean
surface. Our assessment of the potential for OA from these mechanisms finds that
most produce too small an impact on the CaCOg saturation of the surface ocean to be
able to explain the simultaneous extinctions of calcifiers. Only sulphuric acid
deposition is capable of making the surface oceans strongly corrosive to calcite.
However, in order to produce severe CaCOs undersaturation (Qcaicite < 0.5), very large
quantities (greater than between 8 and 43 x 10%° moles, depending on assumptions
about the rate of addition and the intensities of other acidifying processes) of sulphur
must have been volatilised from gypsum and anhydrite in sedimentary rocks. 8 x 10*°
moles is right at the top of recent estimates (0.8 to 8 x 10*®> moles). Hence we think it
rather unlikely, although not completely impossible, that biologically catastrophic OA
occurred at the Cretaceous-Paleogene (K/Pg) boundary. The great extinctions of
calcifiers at this time (100% of ammonites and rudist bivalves, more than 90% of
calcareous nannoplankton and planktic foraminifera species) were most likely due to

some other cause.

Methods summary

The global biogeochemical box model.
The main biogeochemical box model (JModel) used here is a variant of one used

previously to study a number of different carbon cycle and OA problems (54, 67-69).
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The model (for more details see supplementary information) represents the coupled
global ocean and atmosphere. It includes phytoplankton, phosphorus, dissolved
inorganic carbon (DIC) and alkalinity as state variables. The model fully resolves the
carbonate system; ocean carbon chemistry is linked, through air-sea gas exchange, with
atmospheric CO». Although long-term feedbacks are not relevant for this study, the

model includes a dynamic calcite compensation depth (CCD).

Simulations.

We started the model in steady state with geochemical conditions appropriate for the
late Cretaceous (66 Myr ago). The atmospheric CO> concentration was 1,000 ppmyv,
the calcium ion concentration was 20 mmol kg™ (e.g. ref. 7) and the magnesium ion
concentration was 30 mmol kg? (pre-industrial values are 280 ppmv, 10.3 mmol kg
and 53 mmol kg* respectively). The effects of altered [Ca?*] and [Mg?®*] on K1, K
(the carbonate system equilibrium constants) and Ksp (the CaCOs solubility product)
were calculated following ref. 70, with additional runs (see table S1) to investigate
sensitivity to alternative values of atmospheric CO2 and Ksp. The starting state of the
model was obtained by holding the atmospheric CO> fixed at its target value (1000
ppmv) before running the model out to equilibrium. For each hypothesis we carried
out a set of model runs with different magnitudes and timescales of perturbation. The

rate of addition (R) over time (t) of a total amount (A) of a substance was calculated

from the e-folding timescale (’C) according to:

Ry~ Aol 7
T (1)

21



505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

In order to assess the robustness of the results obtained, we carried out sensitivity
analyses (to different surface layer depths, Ksp values, and initial atmospheric CO>
value; table S1) and repeated the tests in different model setups: (1) the same model
(JModel) as just described, but in its pre-industrial configuration, i.e. with
atmospheric CO> and seawater Ca and Mg concentrations set to Holocene levels
rather than adjusted to resemble the Late Cretaceous ocean (results shown in table 1
and figures S2 and S3); and (2) the independent LOSCAR model, which is a box
model with more boxes than the JModel and with explicit sediments (71). LOSCAR
was configured to resemble the late Paleocene ocean. Results of these alternative

model setups are shown in table 1.
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714  Table 1: Severity of impacts in different models.

Alkalinity removal Carbon Minimum surface Qcalcite” Duration
from surf. ocean addition to of peak
atm. impact *
JModel LOSCART JModel
Scenario (PMol) (Pg) (Cretaceous) (Paleocene) (Pre-industrial)
Gypsum vaporisation (SOg) 120 - 0.0 0.0 0.0 <5y
NOx generation 5 - 6.1 3.6 3.8 <5y
Carbon dioxide (CO,) - 6500 2.2 14 0.7 ky
Stirring - - 5.4 - 3.8 <5y
All 125 6500 0.0 0.0 0.0 <S5y
All except SO4 5 6500 2.1 1.0 0.6 <5y
Rapid addition of SO4 120 - 0.0 0.0 - <ly
Rapid addition of NOy 5 - 3.4 - - <ly
Rapid addition of CO, - 6500 2.2

715 * For each scenario the lowest minimum Qcarcite is taken from the run in which the largest amount of substance (for instance 60x10* Mol, for
716  SO4) is added over an e-folding time of 6 months, except for rapid additions where the e-folding time was 10 hours. Initial values of surface
717  Qcarcite Were 7.5 (JModel-Cretaceous), 4.9 (LOSCAR-Paleocene, ref. 71) and 4.9 (JModel-pre-industrial)

718 T Average across all ocean basins. A run with increased stirring was not implemented for this model.

719  *Time for which Qcaicite Was at least 80% as far from the initial value as when at its maximum distance.



720

721

722

Table 2: Estimates of sulphur release associated with the impact.

Estimated sulphur input to the atmosphere

Source PMol (= 10% mol) S Pg S
Sigurdsson et al., 1992 0.2t0 132 6 to 4200
Brett, 1992 6 200
Pope et al., 1993 810 26 270 to 820
Chenetal., 1994 1to9 32 t0 290
Ivanov et al., 1996 1to3 3210 96
Pierazzo et al., 1998 2t017 54 to 560
Maruoka & Koeberl, 2to 11 78 to 364
2003

Pierazzo et al., 2003 09t09 30 to 300
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Figure Captions

Figure 1: Impacts of different scenarios of environmental change on surface ocean
chemistry: (top row) pH; (bottom row) saturation state for calcite (Qcalcite). Each
column shows the acidification impacts for a different type of forcing (same vertical
axis scale for each) when the forcing is applied with an e-folding time of 6 months.
Minimum Qcaicite Values for each model run are shown in the boxes. The colour of
each line indicates the magnitude of the forcing for that run.

Figure 2: Impacts of very rapid additions (e-folding time of 10 hours, ref. 21) of
H2SO4 (column 1), CO2 (column 2), and HNO3z (column 3) on saturation state for
calcite. Minimum Qcaicite Values for each model run are shown in the boxes. The

colour of each line indicates the magnitude of the forcing for that run.

Figure 3: Impacts on Qcarcite OF different quantities of sulphate aerosols acting in
combination with maximum quantities of other processes (5 PMol NOx and 6500 Pg
C in the form of COy). Left column shows results for additions using an e-folding
time of 6 months; right column shows results for additions using an e-folding time of
10 hours (21). Minimum Qcarcite Values for each model run are shown in square
brackets in the boxes. The colour of each line indicates the magnitude of the forcing

for that run.
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Figure 1: Impacts of different scenarios of environmental change on surface ocean chemistry: (top
row) pH; (bottom row) saturation state for calcite (Qcarcite). Each column shows the acidification
impacts for a different type of forcing (same vertical axis scale for each) when the forcing is applied
with an e-folding time of 6 months. Minimum Qcarcite Values for each model run are shown in the boxes.

The colour of each line indicates the magnitude of the forcing for that run.
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Figure 2: Impacts of very rapid additions (e-folding time of 10 hours, ref. 21) of H,SO4 (column 1),
CO; (column 2), and HNO3 (column 3) on saturation state for calcite. Minimum Qcacite Values for each
model run are shown in the boxes. The colour of each line indicates the magnitude of the forcing for

that run.
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Figure 3: Impacts on Qcacite O different quantities of sulphate aerosols acting in combination with
maximum quantities of other processes (5 PMol NOx and 6500 Pg C in the form of CO,). Panel A
shows results for additions using an e-folding time of 6 months; Panel B shows results for additions
using an e-folding time of 10 hours (21). Minimum Qcacite Values for each model run are shown in

square brackets in the boxes. The colour of each line indicates the magnitude of the forcing for that run.
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Figure S1: Impacts of different scenarios of environmental change on surface ocean chemistry: (top
row) pH; (bottom row) saturation state for calcite (Qcaicite). Each column shows the acidification
impacts for a different type of forcing (same vertical axis scale for each) with the magnitude of the
forcing shown at the top of the column. The colour of each line indicates the rapidity (e-folding time)

of the forcing.
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Figure S2: Impacts of different scenarios of environmental change on surface ocean chemistry in the
pre-industrial model setup: (top) pH; and (bottom) Qcaicite. Each column shows the acidification impacts
for a different type of forcing (same vertical axis scale for each) with the magnitude of the forcing
shown at the top of the column. Minimum Qcacite Values for each run are shown in the box. The colour

of each line indicates the rapidity (e-folding time) of the forcing.
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Figure S3: Impacts of different scenarios of environmental change on surface ocean chemistry in the
pre-industrial model setup: (top) pH; and (bottom) Qcaicite. Each column shows the acidification impacts
for a different type of forcing (same vertical axis scale for each) when the forcing is applied using an e-

folding timescale of 6 months. The colour of each line indicates the magnitude of the forcing.
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Figure S4: Impacts on Qcaicite O different quantities of sulphate aerosols acting alone (all other

2.0

processes omitted) on saturation state for calcite in the surface box. Panel A shows results for additions

using an e-folding time of 6 months; Panel B shows results for additions using an e-folding time of 10

hours (20). This plot shows similar results to those for SO4 in figures 1 and 2, but here the effects of a

much narrower range of sulphur emissions are plotted, to show the amount required to cause severe

CaCOs undersaturation (Q-calcite < 0.5). Minimum Qcaicite Values for each model run are shown in

square brackets in the boxes. The colour of each line indicates the magnitude of the forcing for that run.
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Table S1: Results of sensitivity analyses calculating the sensitivity of the critical amount of SO to

some key model assumptions. Default values are Ksyc(end Cretaceous) / Kspe(modern) = 0.7, a surface

mixed layer depth of 100 m, and an initial (spin-up) atmospheric CO, concentration of 1000 ppm.

Amount of SO. (PMol S) required to produce Q-calcite < 0.5

e-folding time of 6 months

e-folding time of 10 hours

pump) after the impact

acting alone acting in acting acting in

Sensitivity Analysis combination alone combination
standard run (for comparison) 43 30 10 8
ratio of Kspc(end Cret) 0.8 44 30 11 8
to 0.9 45 31 11 8
Kspc(modern) 1.0 45 31 11 8
mixed layer depth (m) 75 35 23 8 6
50 26 17 6 3
30 18 11 4 1
initial atm CO; (ppm) 500 31 17 8 6
2000 55 43 14 12
No primary production (biological 43 30 11 8
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Methods details

As illustrated in figure S5, the model ocean is structured as three vertically stacked
boxes: the surface (0-100 m) which represents the euphotic zone, a middle box (100-
500 m) which represents the mixed surface layer above the annual thermocline, and a
deep box (500-3730 m) representing the deep layer below the annual thermocline. The
assumed depth of the surface box is an important parameter for this study because it
determines the volume of water into which acidifying substances are initially diluted.
We used the same mixed layer depth as D’Hondt et al. (23), i.e. 100 m. The surface
mixed layer is shallower than 100 m across most of the ocean and so we also carried
out sensitivity analyses (table S1) for alternative choices of 50 m and 30 m, although
we note that any process causing global extinctions has to exterminate species across
all of their ranges, including where deeper mixed layer depths prevail. The model
represents an average water column down to the seabed, has a spatially and temporally
averaged input of nutrients, DIC (dissolved inorganic carbon) and alkalinity, and does

not take into account any latitudinal or horizontal variations.

The rate of growth of phytoplankton is a function of their intrinsic maximum growth
rate and modulation by nutrient (in this case phosphate) scarcity according to a
Michaelis-Menten relationship. After being produced, phytoplankton biomass either
decays within the surface ocean box (returning nutrient and carbon back to solution) or
else, following export, decays within a lower box, or else is lost to the system through
permanent burial. There is only one variable for phytoplankton; separate types are not
distinguished in the model. Calcification is calculated in a fixed ratio to new organic

matter (see below) and the resulting CaCOzg is then either dissolved in the deep ocean
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following export or else is buried, with the relative proportions calculated according to
a complex relationship between the carbonate saturation of the deep ocean (determining

the depth of the CCD) and the average hypsometry of the seafloor.

As in other models, carbonate chemistry is modeled by including DIC and alkalinity as
state variables. The distribution of DIC within the ocean is governed by physical,
chemical and biological processes: the exchange of CO> between the atmosphere and
the ocean, riverine input of DIC, biological uptake of carbon into phytoplankton
biomass, remineralisation and burial of that biomass, precipitation and dissolution of
CaCOg, and mixing processes between the three layers. The distribution of alkalinity in
the ocean is governed by riverine input of bicarbonate, precipitation of CaCOs by
calcifying organisms, dissolution of CaCOs deeper in the ocean, burial of CaCOs and
mixing processes between the three layers. As and when necessary, other carbonate
system parameters are calculated from DIC and alkalinity with the program csys (68)
using the constants of Mehrbach et al (69) as refit by Lueker et al. (70). These constants
are unlikely to be realistic under the most extreme conditions modelled here; however,
this deficiency is likely to be most serious at Q-calcite below 0.5, and so will not affect
our ability to detect whether such a state occurs. Since the model uses phosphorus as
the only limiting nutrient, the impact of riverine nitrate input, biological uptake of
nitrate, and remineralisation of nitrate on alkalinity is accounted for via the Redfield

ratio.
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Figure S5: Schematic of the model. A three-box ocean (surface box thickness = 100m, middle box
thickness = 400m, deep box thickness = 3230m) and an atmosphere exchange carbon dioxide, with
implicit carbon loss to the sediment layer. In the biogeochemistry scheme, the dashed black arrows
represent export from the surface ocean. PIC indicates particulate inorganic carbon while POC
indicates particulate organic carbon. The arrows in the oceanic boxes and sediments represent the

various remineralization and sedimentation fluxes.

The production of CaCOz in the surface ocean is linked to the production of organic
matter through the “rain ratio” (RR), which is the molar ratio of CaCO3-C export from
the surface layer to particulate organic carbon (POC) export. The influence of sediments
on the cycling of carbon is not considered in our model and is not important in this

study because we focus only on short-term impacts (up to a few centuries).
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