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Abstract: The concentration dependence of energy transfer upconversion in Nd:YAG is 

investigated via the z-scan technique. The ETU coefficient is determined to increase from 

35×10
-18

 cm
3
/s to 90×10

-18
 cm

3
/s when the concentration  increases from 0.3 at.% to 1.1 at.%.  

OCIS codes: (190.7220) Upconversion; (140.3530) Lasers, neodymium; (300.6460) Spectroscopy, saturation. 

 

1. Introduction  

Since the inception of solid-state lasers, the neodymium doped crystals have been widely used to generate lasers in 

near-infrared region. Due to its excellent spectroscopic and thermo-optic properties, Nd:YAG, is one of the prime 

active crystals for many industrial, medical and scientific laser systems. Primarily it is employed in lasers operating 

on the dominant emission line around 1.06 m, however, the lower gain 0.9 m transition potentially could be more 

efficient due to a lower quantum defect between pump and output wavelengths. Unfortunately this latter transition is 

weak and susceptible to detrimental thermal effects associated with waste heat during the excitation process. Many 

approaches have been employed to dissipate the heat-load efficiently and mitigate the ensuing thermal effects via the 

laser architecture, essentially the geometry of the gain medium, with the output powers at 946 nm now exceeding 

100 W [1]. However, despite the maturity of this gain material further improvement in its laser performance may be 

possible if key fundamental contributors to the thermal input are well characterized. For this purpose we have 

configured a simple experimental setup to characterize one such parameter, namely energy transfer upconverion 

(ETU) and its dependence upon the neodymium concentration.  

During the ETU process, two neighboring ions in their meta-stable (
4
F3/2) energy state interact, one of which relaxes 

to a lower level while the other one is excited it to a higher energy level.  Therefore ETU depopulates the upper laser 

level, generating additional heat via the non-radiative relaxation paths taken by both ions, the first arriving in its 

ground state, while for the majority of these pairs the second returns back to the meta-stable manifold that both were 

in originally. The influence of ETU can be quite significant for the laser design and optimization, especially for low 

gain lasers that typically require high-irradiance pumping, such as the quasi-four-level Nd
3+

 system. It is relatively 

well known that the magnitude of ETU coefficient is dependent on the concentration of the rare earth ion, and is an 

important parameter that is currently not well covered in the literature for Nd:YAG.  

In this work, we investigated the concentration dependence of the ETU coefficient in Nd:YAG with a sensitive z-

scan technique, comparing measured transmission as a function of incident pump irradiance with simulation based 

upon a two-level spatially (and temporally) dependent rate equation system, with the only variable being the ETU 

coefficient (once a cross relaxation parameter is fixed for the concentration in question).  The ETU coefficient was 

found to increase from 35±5×10
-18

 cm
3
/s to to 90±10×10

-18
 cm

3
/s when the doping concentration increased from 

0.3 at% to 1.1 at%.  

2.  Methodology  

   The z-scan technique is a simple method, in which the change in the transmission of a pump laser through the 

sample is measured as the crystal is moved through a focus, which is then correlated to the saturation irradiance. 

ETU weakens the ground state bleaching, effectively reducing the expected amplitude of the transmission at the 

point of highest pump irradiance. This process provides a surprisingly sensitive measure of the magnitude of the 

ETU coefficient. The detail of our theoretical model can be found in our previous paper [2]. 

    A schematic of the z scan experiment setup is shown in Fig 1. The output beam of continuous wave Ti:Sapphire 

laser was expanded 4 times with a telescope system and modulated mechanically with a chopper. The pulse duration 

of ~2.4 ms is long enough to reach steady state, while the duty cycle of 10% is small enough to eliminate the 

influence of additional heat generated in sample.  A focusing lens of f = 200 mm was mounted to an electronically-

controlled translation stage (Stackshot, Cognisys Inc.) to change the beam size in the laser crystal, which can 

provide a precise control the irradiance in the sample. The transmitted power was collimated and split with a wedge, 

of which ~92 % passes directly to a power meter (Up19K, Gentec-EO), while one surface reflection (~4 %) was 



redirected to a silicon photodiode. With a concave mirror (L5) and a focusing lens (L6), the fluorescence was 

collected and delivered to an InGaAs photodiode. A digital oscilloscope (MSO6104A, Agilent Technology Inc.) 

could be used to record the amplitude of transmitted signal and measure the fluorescence lifetime. Using a beam 

profiler (Nanoscan II, OPHIR Inc.) placed at the position of sample, the laser beam size along z-axis was measured. 
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Fig 1. Experimental setup: M1, M2, M3, M4: broad band reflecting mirror; L1: f= 75 mm lens, L2: f=300 mm lens, L3: f= 200 mm lens, L4: f= 

100 mm lens, L5: f = -50 mm concave mirror, L6: f = 50 mm lens, PD1: high speed Si photodiode (Thorlabs, DET210), PD2: high speed InGaAs 

photodiode (Thorlabs, DET410). 

3.  Experimental results and discussion 

  

Table 1. The parameters of Nd:YAG sample  
Sample  1 2 3 4 

Doping Concentration (at.%) 1.1 1.0 0.6 0.3 

Length (mm) 1.1 3.2 1.1 5.1 

ETU (x10-18cm3/s) 90 65 35 35 

The beam quality of the pump laser beam was measured to be M
2
=1 in both directions, providing beam waist 

radii of x=20.7 ± 0.2 µm and y=19.7 ± 0.2 µm after the focusing lens of f=200 mm. The “on axis” available pump 

irradiance reached 67 kWcm
-2

, nearly five times higher than the saturation irradiance, when the wavelength was 

tuned to the absorption peak of Nd:YAG around 808.5 nm. The ETU parameter measured at weaker irradiance 

levels was found to be almost identical, if the irradiance was higher than the crystal’s saturation irradiance. Higher 

irradiance was required to verify the curve fit between measured and simulated transmission. Four Nd:YAG samples 

have been tested, as shown in Table 1, to determine the variation of the ETU coefficient as a function of the 

neodymium concentration. The fluorescence lifetime of Nd:YAG of the 1.0 at.% crystal was also measured and in 

the small signal regime the major component was found to be 235 +/- 5 µs as is typical for this concentraion. In the 

high irradiance regime, this value reduced to 220 +/- 5 µs, and we will discuss the comparison of the ETU 

coefficient derived from this value in comparison to that obtained from measurement of the transmitted power. For 

the 1.1% doped crystal, a longer crystal was also measured to compare it with a shorter crystal to ensure there was 

no dependence on the crystal length, for which we measured an ETU coefficient within error range for each. 

Table 2. The fluorescence lifetime for different doping concentrations 
Doping Concentration (at.%) 1.1 1.0 0.6 0.3 

Fluorescence lifetime with weak excitation(µs)  232 235 250 252  

Wcr( x10-18cm3/s) 3.06  2.96 1.85 2.94 

We used Wcr values determined from the fluorescence lifetime taken with weak excitation, assuming that the 

intrinsic lifetime of Nd
3+

 in YAG is 260 s [3], and under very low pump excitation this is the only decay 

mechanism apart from spontaneous emission, giving a value of 2.96 x10
-18

cm
3
/s for 1% doped crystal. Using the 



data of cross relaxation coefficients, the dependence of ETU coefficient on different doping concentrations is 

obtained from fitting of the transmission as a function of the crystal position (z-scan position) and the final values 

shown in Fig. 2. The ETU coefficients are 35±5×10
-18

 cm
3
/s for 0.3 at.% doped Nd:YAG increasing to 

90±10×10
-18

 cm
3
/s at the doping concentration of 1.1at.%. It can be seen that the ETU coefficient increases with 

doping concentration rising, consistent with previous results in neodymium doped materials [4]. This is expected as 

ETU is strongly dependent upon the distance between neighbouring ions, which is reducing at higher doping levels. 

For some of the samples investigated there appeared to be a strong transverse variation in the transmission, assumed 

to be a non-uniform distribution of the Nd
3+

, and which was found to reduce the accuracy of the experimental results.  

 

Fig. 2 The concentration dependence of ETU coefficients for Nd:YAG and fluorescence lifetime 

4.  Conclusions  

In conclusion, we have determined the variation of ETU coefficient for different doping concentration in 

Nd:YAG crystal via the z-scan technique. This method gives us a precise measurement of transmission change with 

pump irradiance when the sample is moved along the beam path. Using a two-level rate equation, the experiment 

data is well matched by fitting only the ETU coefficient. We obtained values of 35±5×10
-18

 cm
3
/s to 

90±10×10
-18 

 cm
3
/s when the doping concentration increases from 0.3 at% to 1.1 at%. Further investigation is 

currently underway to measure the ETU coeffcient in other materials, mainly neodymium doped vanadates. 
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