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YOUNG CHILDREN'S COGNITIVE REPRESENTATIONS OF NUMBER AND THEIR NUMBER LINE
ESTIMATIONS

By Joanna Williamson

This doctoral research examines children’s cognitive representations of number during their first
year of formal schooling (in England, from age five to six). Extensive previous research on this
topic has been carried out in education and also cognitive psychology, including an important
strand focusing on children's number line estimations. This doctoral research is theoretically
underpinned by an inclusive understanding of representation in mathematics, as set out by
Raymond Duval, and uses this theoretical perspective to provide an original analysis of number
line estimation tasks and to make original connections with children's imagistic representations of
number, as previously studied separately in education research.

In a longitudinal multiple case-study design, thirteen children took part in five video-
recorded interviews each, at 6-8 week intervals. In each interview children completed both
number line estimation tasks and imagistic representation tasks, thus providing longitudinal and
qualitative data not seen in previous research. The theoretical framework necessitated
multimodal analysis of representations, and quantitative analyses from existing research were
also carried out for comparability with previous work.

As found by previous research, children's number line estimations more closely
resembled linear distributions with time. Changes in children's estimations were convincingly
linked to the representations of number structure that they made during the estimations. This
connection provided a better explanation of the observed changes than either a proportional
reasoning or log-linear shift account of number line estimation. Children's strategies and
representations varied with the particular context of estimation trials, indicating adaptability and
further weakening the case for inferring from estimation trials a representation of entire number
ranges. The key educational implication of this research is that all children (not only the 'high-
attaining') represented structural aspects of number and developing connections, which should

be harnessed and encouraged in order to support their developing concepts of number.
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Chapter 1 Introduction

1.1 Overview

This chapter begins with a brief statement of the research problem and its situation relative to the
existing research literature. Next, it introduces the key theoretical concepts necessary for
situating and understanding the research. It then discusses the specific niche in the literature
which the research is designed to address, and argues for the value of addressing this particular

research problem. The chapter concludes with a full statement of the research questions.

1.2 Statement of the research problem

This research examines children’s cognitive representations of number during their first year of
formal schooling (in England, from age five to six). During this important time, children experience
significantly increased exposure to the norms, artefacts and strategies of the mathematics
classroom, and their mathematical knowledge typically increases considerably. An aspect of this
mathematical knowledge that is particularly relevant for this research is children’s conceptions of
natural number, which —in ways that will be discussed in the following sections — are still
developing during this period. The unique contribution aimed for by this research is to provide
depth of understanding of representations of number during this particularly significant year of
children’s education. This aim is to be achieved by combining methods of investigation from
rather different previous approaches to the research problem: the research will qualitatively
analyse children’s responses to the most commonly-used clinical-interview task, and will

complement the majority of existing studies by adopting a longitudinal approach.

Research into cognitive representations of number has origins in two important and well-
established fields of research. The first field is research into the development of children’s
conceptions of number. Significant research into this question has been carried out in education,
cognitive psychology, and cognitive neuroscience. The second major research area that this topic
is rooted in is research into the important role of representation in mathematical thinking and
development. Included within this is the specific research area of imagery in mathematical

thinking.
1.3 Key theoretical concepts

1.3.1 Representation
The lens of representations can be seen as a natural fit for mathematics education research.

Representations are themselves central to mathematics practice, mathematical communication,



and mathematics education (Duval, 1999; Vergnaud, 1987). A perspective that researches
mathematics education through examining representations thus takes as its starting point an
already existing and central construct, rather than imposing a construct from outside of the

domain of research.

1.3.1.1 Understanding representation

The fundamental meaning of representation is clear: “one thing’s ‘standing for’, ‘being about’,
‘referring to or denoting’ something else” (Schwartz, 2005, p. 536). Theoretical approaches to
representation commonly make a primary distinction between internal (or mental)
representations and external representations: mental images, for example, are classified as
internal representations, whilst inscriptions on paper are external representations (e.g. Goldin,

2008; Larkin and Simon, 1987).

The precise relation between a representation and that which it represents is a problematic point
for both mental and external representations (Schwartz, 2005, p. 536), but in the case of mental
representations, this difficulty is only one of many complications. The notion of mental
representation arises in an innocuous way from a common way of describing thoughts: “When we
think about the Eiffel Tower ... we can be said to possess a mental representation of the Eiffel
Tower” (Guttenplan, 2005, p. 441). However, “deep and vexing problems arise” when discussing
mental representations (p. 441). These include the question “Are thoughts somehow made up of
mental representations?” (Guttenplan, 2005, p. 441) and ontological concerns about what mental
representations really ‘are’ (Schwartz, 2005, p. 540). These problems are among the most difficult
and fundamental questions known, and in fact “set the agenda for a large part of contemporary

philosophy of mind” (Guttenplan, 2005, p. 441).

1.3.1.2 Key concept: cognitive representation

The concept of representation utilised in this research is an inclusive one, as expressed by
Raymond Duval (1999). Duval sets out a framework of all cognitive representations —i.e.
representations involved in cognitive processes. This theoretical framing of cognitive
representations acknowledges both intentional representations (deliberately constructed
semiotic representations, which can be internal or external) and automaticised representations
(including perceptual representations). It also acknowledges potential relations between these
categories. This framing is particularly necessary in the context of representations of number,
since empirical evidence suggests strong and as yet not fully understood connections between
intentional and automaticised representations. An important feature of Duval’s framework is that

“mental images” exist in both categories.



The distinction between intentional and automaticised representations in Duval’s framework is
taken as the primary distinction. In this respect, Duval’s framework differs significantly from
alternative theories, which, as noted, commonly prioritise the distinction between internal and

external representations.

The distinction between intentional and automaticised representations has explanatory power
with regard to the source of cognitive representations, and clarifies the extent of Duval’s
conception of cognitive representation. The distinction does not mean that representations must
be considered only within these categories; and this thesis does not set out to categorise
representations into intentional or automaticised. The aim is to recognise the relevance of both of

Duval’s types of cognitive representation, and adopt methods that are equipped to research both.

1.3.1.3 Relation of cognitive representation to internal/external representation

Whilst the term cognitive representation can appear in the literature as a synonym for mental or
internal representation, Duval explicitly includes external representations within the scheme of
cognitive representations. This has important implications. The terminological implication is that
cognitive is not to be used as a synonym for mental or internal. The word cognitive is reserved to
describe — precisely — phenomena involved in cognition, and these phenomena may or may not

be internal; what is relevant is not their ‘location’ but rather their relation to cognition.

Once cognitive is distinguished from internal, a wider range of phenomena than traditionally
considered may be admitted within the category of cognitive activity. As Duval’s examples and
comments indicate, cognitive representations in fact occur using a plurality of what are commonly
termed modes, for example speech, inscriptions on paper, and mental imagery. Since cognitive
representations may occur using any of these multiple modes, this theoretical perspective

necessitates a multimodal research approach.

1.3.2 Concepts and conceptions of number

As the literature review discusses, there are many difficulties associated with the philosophical
construct of concepts, and some further potential difficulties in the specific application concept of
number. However, the construct is retained and used since in both informal reflection and
philosophy of mind, the notion of concept plays a vital role. Concepts are essential to “the familiar
form of explanation (so-called ‘intentional explanation’) by which we explain the behaviour and

states of people” (Rey, 2005, p. 185).

Children’s conceptions or concepts of number are a vital aspect of mathematical knowledge. In
this thesis, | research children’s cognitive representations and the features of conceptions of

number that they express. The conceptions incorporate children’s differing and maturing ideas



about number. The thesis does not seek to judge the maturity of conceptions of number, but
instead is seeking evidence of connections into the number concept as evidenced in children’s
cognitive representations. In order to precisely analyse the aspects of number represented by
children, the thesis will make extensive use of Resnick's (1983) microstage theory of number

development.

Both concept and conception appear in the relevant literature, and in terms of their strict
definition, there is little difference. The Oxford English Dictionary offers “a concept” in defining
conception and offers “the product of the faculty of conception” in defining concept. Both are
used to describe ideas and notions, but concept is more often applied to a general or abstracted
idea, whereas conception emphasises that the idea has been conceived by an individual, and is
possibly more idiosyncratic and less general (especially as relates to “apprehension, imagination”

(Oxford English Dictionary online, 2012)).

This thesis chooses to discuss children’s conceptions of number, but it should be noted that in
much of the literature, authors may use concept of number with the identical intended meaning.
The important related phrases number understanding and number sense will be discussed fully in

later chapters.

Despite the ubiquity of the notion concept, there exists no single definition of what a concept is.
They are a form of thought capable of being shared, and the “Classical View” of concepts is that
they can be analysed into their components: the canonical example given is the concept

[bachelor], which is analysed into [eligible unmarried male] (Rey, 2005, p. 187).

This ‘Classical View’ does not apply easily to the case of concept of number. In fact “although the
whole edifice of modern mathematics is built upon the concept of the natural number, this
concept remains something of a mystery” (Lovell, 1965, p. 26), a paradox explored at length by

Badiou (2008).

A particular difficulty is the ambiguous construction ‘concept of X, seen frequently in research
literature on education and developmental psychology— for example ‘the child’s concept of
causality’ (Rey, 2005). The phrase ‘the concept of number’ is commonly used to refer to the
general shared notion of number, e.g. “Such people believe that the concept of the natural
numbers is the result of a primitive intuition” (Lovell, 1965, p. 27). In contrast, ‘a concept of
number’ is frequently used in developmental research: “difficulties in assessing the cardinality of
a set imply lack of a concept of natural numbers” (Rips, Bloomfield and Asmuth, 2008, p. 630). In
this example, “a” suggests that there is more than one concept of natural numbers; a child does

not simply have or not have “the” universal concept number but develops, individually, “a”



concept of number (which could then be expected to develop further still). In summary, concept
of number is used to refer to both ‘the’ concept of number — the general shared notion, whatever

that may be, and a person’s (individual) conception of number.

Research in recent years has found increasing evidence of cognitive activity in babies and young
children relating to quantities (see Mix, Huttenlocher and Levine, 2002). This has further
complicated the challenge of pinning down concept of number, although most researchers agree
that there exists a clear gap between the properties of the natural numbers, and the properties of
the numerical conceptions studied in very young children (Rips, Bloomfield, et al., 2008, p. 623).
The essence of concepts or conceptions of number, as opposed to numerical conceptions, is that
they integrate knowledge: knowledge of representations of quantity, together with a system of
counting. In this view, the concept of natural number is the integration of conceptions of
cardinality and seriation (Lovell, 1965, p. 51; Nunes and Bryant, 2009, p. 12; Piaget, 1969a, p. viii;
Resnick, 1983, pp. 146-147). The process of integrating these conceptions into a concept of
number takes years. This thesis will use Resnick's (1983) microstage theory of number concept
development to analyse at a finer level of detail the aspects of numerical and number conceptions
that children represent. Built upon empirical research into children's mathematical activity,
Resnick's theory identifies aspects of number structure that children typically represent as they
gradually develop a concept of number that fully integrates their knowledge of counting and of
quantities. The broad stages of number structure identified (within which the theory specifies
microstages) are sequence structure, the relative numerosity or magnitude of numbers, and

finally the part-whole structure of numbers.

This thesis accepts that concepts and conceptions are unavailable to research directly, and
chooses to seek evidence about them through the phenomenon of cognitive representations.
Cognitive representations are not taken to be concepts, nor proxies for concepts, but phenomena

in their own right.

1.4 Relation of research to existing literature
Since this thesis addresses a problem that relates to multiple areas of existing research, the
problem should be situated and understood in relation to the research literature in each of these

areas.

A great deal of recent work on the cognitive representation of number has been carried out
within cognitive psychology. A key conclusion has been that people commonly represent number
on a mental number line, a left-to-right oriented number line ‘in the mind’ which is variously
understood as a metaphor (Fias and Fischer, 2005), as mental imagery, or as synonymous with the

5



Analogue Magnitude System (Dehaene, 2001) - a cognitive system “in which the cardinal value of
a set is represented by an analog symbol that is a linear or logarithmic function of the number of

elements in the set” (Le Corre and Carey, 2008, p. 651).

A growing body of research concludes that there is a ‘shift’ in the structure of children’s mental
number lines, which occurs with age. This log-linear hypothesis holds that younger children
typically represent numbers on a mental number line with logarithmically positioned numbers,
whilst older children and adults represent numbers on a line with linearly positioned numbers
(see for example Berteletti, Lucangeli, Piazza, Dehaene and Zorzi, 2010; Dehaene, lzard, Spelke
and Pica, 2008; Opfer and DeVries, 2008). The logarithmic to linear shift has been observed to
occur “broadly and abruptly” (Opfer and Siegler, 2007, p. 189) but no work so far has examined

the process of this representational change longitudinally.

The existing research literature presents limitations and gaps to be addressed. First of these is a
reliance on number line estimation tasks; a specific problem type in which children are asked to
indicate the position of a given number on an empty number line (with only the endpoints
labelled). These tasks account for a very large proportion of research carried out into the
development of numerical magnitude representations (Siegler, Thompson and Schneider, 2011, p.

5) and the logarithmic to linear shift has not been conclusively documented in other contexts.

A second and well-documented limitation is the reliance on cross-sectional studies for
developmental hypotheses: differences have repeatedly been recorded between children of
different ages, and changes in task responses have been stimulated in short-term experimental
designs (Thompson and Opfer, 2010), but there is an absence of longitudinal research into the
developmental trajectories of individuals. A number of studies explicitly recommend longitudinal
work (Holloway and Ansari, 2009; Moeller, Pixner, Zuber, Kaufmann and Nuerk, 2011; Thomas,

Mulligan and Goldin, 2002).

A significant gap is the lack of qualitative analysis of children’s representations, particularly in
their interactions with number line estimation tasks. Recent research notes this “could greatly
increase the understanding of developing mental representations” (White and Szucs, 2012, p. 11).
Qualitative investigation may offer valuable insights, particularly into children’s strategic
application of arithmetical knowledge, which will impact on the inferences we draw from their
estimations. Previous research investigating children’s interactions with number line estimation

tasks — either qualitative or quantitative - has been limited (White and Szucs, 2012).



Another significant gap that this thesis aims to address is the potential connection between the
structure of children’s imagistic representations (Thomas et al., 2002) and their number line

estimations, a connection that has not so far been investigated.

This thesis aims to address these weaknesses using novel combinations of methods. The key

aspects of the current study which address the points outlined above are:

e Longitudinal and case study methodology that will contrast existing work by focusing on
the developmental trajectories of individuals in detail

e Collection and analysis of qualitative data in order to better capture the cognitive
representations demonstrated by children in all tasks

e Explicit analysis of children’s strategies in number line estimation tasks, and comparison
with measures of linear accuracy

e Comparison of cognitive representations in an imagistic task and in number line
estimation tasks, with particular focus on the structures of number that children
represent

e Not only contrasting number line estimation tasks with alternative tasks, but exploring
the possible variations within the task: examining multiple ranges, and both “number to

position” and “position to number” versions of the task

1.5 Justification of research topic

The study of cognitive representations of number, and specifically numerical magnitude, is
important to mathematics education research. Cognitive representations of number are
implicated in the understanding of some of the most fundamental concepts in mathematics:
representations of numerical magnitudes are “central to understanding the meaning of number
symbols (e.g., knowing that ‘6" denotes six objects), to comparing the magnitudes of numbers
(e.g., knowing that six is more than four), and to estimating quantities (e.g., knowing whether
there are 6, 60, or 600 candies in a jar)” (Siegler, Thompson and Opfer, 2009, p. 144). Whilst
children gain knowledge about quantities and the counting number words from an early age, the
development of an understanding of number — a concept of what number ‘is” and how it works —

requires that children form robust connections between these areas of knowledge.

4

The development of numerical magnitude representations is “an important educational problem’
(Siegler et al., 2009, p. 144) with “important educational consequences” (Thompson and Opfer,
2010, p. 6). Many students experience difficulty developing these representations, and there is
evidence that “immature numerical magnitude representations [in this case, with low levels of

linear accuracy] hinder these students’ learning of mathematics” (Siegler et al., 2009, p. 144). For

7



example, studies have found that the development of increasingly linear representations of
number is an important factor in how quickly children are able to compare magnitudes (Laski and

Siegler, 2007), and their ability to learn solutions to new problems (Booth and Siegler, 2008).

As a scientific problem, the study of cognitive representations of number is an “interesting” one
(Thompson and Opfer, 2010, p. 6). Despite a large number of studies in the field, there remain
disagreements over key characteristics of children’s cognitive representations, and the
interpretation of existing data (e.g. Cohen, 2009; Ebersbach, Luwel, Frick, Onghena and
Verschaffel, 2008; Rips, Asmuth and Bloomfield, 2006; Santens and Gevers, 2008). There also
remains a lack of consensus on how children’s cognitive representations of number develop and

change (Berteletti et al., 2010; White and Szucs, 2012).

It is widely agreed that humans develop a concept of number from either one or both of two
proto-number representational systems which are present from birth. There exist multiple views
on how these systems develop into a concept of number, but there is good evidence that they
influence numerical estimation even in adults, that is, even once a mature or conventional
concept of number has been formed. For this reason, research into cognitive representation in
estimation has high relevance for research into the origins of the number concept, a debate with
not only educational implications but strong epistemological implications for the foundations of

mathematics (Longo and Viarouge, 2010).

1.6 Research questions

The specific questions that the research addresses are the following:

1. In what ways do children appear to cognitively represent number during the different
tasks of the interviews used in this research?
a. What are the modes and component signs used in the representations?
b. What aspects of number structure are represented?
c. What are the notable between-task and within-task connections between
representations?
2. What strategies can be identified in children’s interactions with number line estimation
tasks?
a. What patterns can be detected in the way children use or do not use these
strategies?
b. How do the strategies used relate to children’s estimation results?
3. How do young children’s cognitive representations of number change during their first

year of formal schooling?



a. Inwhat ways does evidence support or not support the log-linear hypothesis?

b. What is the intra-child variability of children’s numerical magnitude
representations in estimation tasks at different times?

c. Cantrajectories or patterns of change be deduced, in terms of changes in how

children cognitively represent number?

This introductory chapter has given an overview of the research problem. The research questions
posed have been situated in relation to the existing literature and key theoretical concepts. The
next chapter reviews the relevant research literature in depth. This enables deeper understanding

of the research problem and the unique contribution which the current research aims to make.
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Chapter 2 Literature review

2.1 Overview
The literature view falls into two parts. This first part (sections 2.2 to 2.4) addresses literature
relating to the theoretical aspects of the research problem. The second part (sections 2.5 to 2.10)

goes on to review the relevant literature on empirical findings relating to the problem.

The theoretical aspects considered in this first section of the literature review are firstly

representation, and then concepts of number and their development.

Part 1: Theoretical aspects

2.2 Representation

2.2.1 Arguing for a representation viewpoint in mathematics education research
Many authors have argued that the perspective of representation is a ‘natural fit’ with
mathematics education due to the central role of representation in mathematics. Vergnaud

|II

(1987), for example, argues that the idea of representation is “crucial” to a theory of mathematics
education precisely because representation is ever-present in mathematics itself. Kaput notes
that “Most of the results that mathematicians regard as truly fundamental are easily classifiable
as representational” (Kaput, 1987, p. 25), and in fact goes further: “It should be apparent that the
idea of representation is continuous with mathematics itself’ (p. 25). Representation is also what
allows mathematical communication: it is the internal representations encoded “in the brains of

millions of people who have studied mathematics” that enable people to “interact coherently

with each other” about mathematical matters (Goldin, 2008, p. 179).

Shifting attention slightly from mathematical practice to mathematics education does not
diminish the centrality of representation. Goldin asserts that representation is essential to
accurately conceptualising the psychology of mathematics education: “In the context of the
psychology of mathematical learning and problem solving, we must be able to consider internal
configurations and structures, external configurations and structures, possible representing
relations, socially shared configurations and structures, and so forth” (Goldin, 2008, p. 197). This
echoes an earlier explanation from Vergnaud, who also connects the necessity of addressing
representation with the unique character of mathematical knowledge and concludes that “it is
impossible to do without a developmental approach to the concept of representation in

mathematics education” (Vergnaud, 1987, p. 232).

11



Kaput notes that if anything, there is a tendency to underestimate the role representation plays in
standard mathematics education practice. For example, it is usually assumed that “the
mathematics curriculum in the first 8 years of school is about numbers, whereas the actual school
work is mainly about a particular representation system for numbers — the base 10 placeholder
system — and jts properties” (Kaput, 1987, p. 20). In fact, Kaput notes, the curriculum “ignores”
the distinction between properties of number sensitive to the representation system and

properties that are relatively independent of it (p. 21).

Another way in which the concept of representation pervades mathematics education is in the
practice of teachers. Since it is mental or internal representations that “largely determine” the
usefulness of external representational systems “accordingly to how the individual understands
and interacts with them”, Goldin points out that in everyday practice, “effective teachers

continuously make inferences about students’ internal representations” (Goldin, 2008, p. 182).

Goldin asserts that existing literature on representation attests to “the demonstrated value of the
analysis of representation as contributing on many levels to mathematics education theory and
practice” (Goldin, 2008, p. 197). Working within a theoretical model in which “the mathematical
development of the individual takes place through the construction of internal representational
systems” (p. 184), vital work in the field of mathematics education has been done based on the
idea that “children’s mathematical ability can be developed through appropriate interactions with
well-designed, carefully structured task representations embodying the desired patterns” (Goldin,

2008, p. 183).

It should be noted that a representation perspective in mathematics education can be broad.
Although the position “is not a common one”, Goldin’s model of representation for example is
comprehensive enough to include affect as a system of internal representation (Goldin, 2008, p.

188).

2.2.2 Defining representation
Whereas good reasons for a representation viewpoint can be clearly delineated, defining

representation is less straightforward.

In the first place, representation is difficult to define in mathematics education because it inherits
the ambiguities of the term in general use. The term is technically abstract, yet used and
associated with a wide variety of particular meanings. Restricting the scope of the question to a
cognitive perspective makes things no simpler, since it is still the case that “Representation refers
to a large range of meaning activities: steady and holistic beliefs about something, various ways to

evoke and to denote objects, how information is coded” (Duval, 1999, p. 3).
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At the same time as being too broad in scope, the term representation manages to carry overly
specific associations with particular research approaches. Presmeg for example, refers to
inscriptions where other authors typically use external representations because of the fact that
the term “representations ... became imbued with various meanings and connotations in the

changing paradigms of the last two decades” (Presmeg, 2006, p. 207).

A more fundamental reason for the difficulties associated with representation is that it leads
directly to consideration of epistemological beliefs, and theories of mind: concepts, visualisation,
perception, mathematical intuition and more. These are not matters about which there exists
consensus and secure understanding; the difficulty of representation lies not just in terminology,

but in our limited knowledge of thought-objects.

2.2.2.1 Representation, epistemology and ontology

The position of “virtually all schools in the modern philosophy of science” is a weakly
constructivist epistemology coupled with belief in some external reality. The solution to the
potential tension is to “acknowledge that there is a pre-given world of persons, objects, and
conventional knowledge ... but to adopt an agnostic, tentative position about our knowledge of
this world” (Ernest, 1996, p. 340). Despite the contemporary dominance of this position, of
‘agnosticism’, it should not be denied that representation relates to fundamental epistemological

questions. Vociferous objections have been levelled at use of the construct of representation.

Radical constructivists, who reject “on a priori grounds all that is external to the worlds of
experience of human individuals” (Goldin, 2008, p. 194) cannot reconcile their position with the
construct of internal representations. This position is well explained by von Glaserfeld, who argues
that what are commonly termed internal representations are in fact “conceptions” (German:
vorstellungen). These are in no sense “replicas of external originals, simply because no cognitive
organism can have access to ‘things-in-themselves’ and thus there are no models to be copied”
(von Glaserfeld, 1987, p. 219). Since knowledge about the external world is a priori impossible,
internal conceptions can in no way be re-presentations of anything. The conception of
mathematical structures “as abstractions apart from individual knowers” is similarly incompatible

with the radical constructivist epistemology (Goldin, 2008, p. 194).

Aspects of representation are also rejected by other theoretical positions. Cognitive theorists
working within a strict mind-as-computer model insist on propositional representations of all
cognitive encodings, “thus rejecting any kind of internal imagistic representation” (Goldin, 2008, p.

195).
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Goldin terms positions such as the above ‘ideological’, and makes a powerful case for the

judgment that such ideologies cannot deal with all that we want to deal with in mathematics

education.
Extreme educational ideologies often draw, tacitly or overtly, on radical theoretical or
epistemological ‘paradigms’ whose exponents have achieved prominence in part by
dismissing — often on a priori grounds — the most important constructs of other frameworks.
To be clear, the frameworks | am terming ‘ideological’ or ‘dismissive’ are those where the
system is closed to falsification either by empirical evidence or by rational enquiry, and/or
where the fundamental tenets exclude by fiat consideration of the theoretical or empirical
constructs of nonadherents.

(Goldin, 2008, p. 192)

Such ideological frameworks have value, for what they highlight, “focusing attention and study on
particular domains of empirical phenomena, or particular sets of theoretical constructs” (Goldin,
2008, p. 196). The history of science, however, suggests strongly that “denial on first principles of
the admissibility of one or other kind of construct is rarely fruitful” (p. 196). An exclusive paradigm
in the end fails not because falsified but because it “leads to built-in, unnecessary limitations”

(Goldin, 2008, p. 196).

Von Glaserfeld for one claims that “there can be no viable theory of representation without an
explicit theory of knowledge” (von Glaserfeld, 1987, p. 215), and it cannot be denied that to use
the construct of a representation entails that something is represented. However, it is a fallacy to
deduce from this that we must come to a final and explicit agreement about ‘what is really real’. A
solution is found in pragmatic realism, as developed by Putnam (1987). What matters is that the
mathematical objects being represented are real to those representing them. As Vergnaud points
out, mathematical concepts, “once fully recognized and expressed, are just as real as a staircase:

A function and a vector space are real objects for a mathematician!” (Vergnaud, 1987, p. 232)

2.2.3 Approaches to representation
It is vital to clarify assumptions that are made, and to distinguish between metaphor, scientific

construct, and proposed accounts of ‘reality’.

2.2.3.1 Goldin and Kaput

Goldin and Kaput (1996) acknowledge at the outset of their comprehensive account of
representation that there is a cost in committing to any theoretical approach and that in this
particular case “even the use of a term such as representation ... may presuppose a perspective

and set of commitments that some researchers are not willing to make” (Goldin and Kaput, 1996,
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p. 398). For this reason, care is taken to emphasise the utility of thinking in terms of

representation, and the compatibility of this theoretical approach with constructivism.

Goldin and Kaput’s theory begins from a definition of representation in the most general sense.
Goldin, expanding his position later, writes that a representation is simply “a configuration that
can represent something else” (Goldin, 2008, p. 178). The nature of the configuration and its

relation to that which it represents — which is often “bidirectional” (p. 179) — are left open.

A separation is immediately made between “internal representation” (or “mental configuration”)
and “external representation” (or “physically embodied configuration”). However, the authors are
keen to downplay the philosophical significance of this, and state that they intend “no ‘profound

12

dualism’” between mind and matter (Goldin and Kaput, 1996, p. 402), with Goldin later describing
the idea of internal representations as “an explanatory theory framed at a certain level of
description” (Goldin, 2008, p. 181). The division is justified from a pragmatic viewpoint: external
configurations are those accessible to direct observation; whilst internal configurations are “those
characteristics of the reasoning individual that are encoded in the human brain and nervous
system” (p. 402). Internal representations are available to neither direct observation nor
introspection, at least not reliably, and observers “infer such representation from what individuals
do, or are able to do, under varying conditions —i.e., from their observable behaviour, which may

include interactions with observable external representations in their environments” (Goldin,

2008, p. 181)

The internal representation is presented as a valid theoretical element because it is not the
“direct object of introspective activity” (Goldin and Kaput, 1996, p. 399). Instead, in Goldin and
Kaput’s theory an “internal representation” is a scientific construct, akin to ‘intelligence’ for
example, arrived at by observations of behaviour such as verbal and gestural descriptions. The
internal representations are held to be “possible mental configurations” of individuals (p. 398) but
they are by definition “inferred from observations” in order to explain observable behaviour. In
this way, the authors claim to have circumvented “ontological assumptions about ‘the mind’” and

the problems associated with this (p. 399).

Goldin and Kaput distinguish five kinds of mature, internal cognitive representational systems
(Goldin and Kaput, 1996, p. 417). These, together with their most important characteristics, are
summarised below:
1. Verbal/syntactic system of representation: this describes a person’s capabilities for
processing natural language. The system can represent configurations in other

representational systems, and also has self-referential capability. The verbal/syntactic
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system is partially formal, rather than imagistic or analogic. It is dynamic, and it is
culturally provided (though Chomsky (1965), for example, would say built on an innate
universal ‘deep language structure’).

Imagistic: there are several varieties of imagistic representation system. Important for
mathematics are: visual/spatial, auditory/rhythmic, and tactile/kinaesthetic. Imagistic
capabilities are necessary for meaningful interpretation of verbal statements, and encode
students’ nonverbal, non-quantitative (mis)conceptions. Characters from verbal and
formal systems can also be treated as “objects” and processed imagistically. Internal
imagistic representations are generally highly non-formal, action representations (418).
They are highly individualistic, although with some apparently universal elements of
structure (e.g. ‘objects’).

Formal notational: may be static or dynamic, and may have imagistic features to them.

A system of planning, monitoring and executive control: represents acts. In a sense this
system operates metacognitively relative to the other kinds of representational system,
but since all systems can represent each other and themselves, so no one system is taken
to be uniquely metacognitive. It is neither imagistic nor formal. It is dynamic; partly
cultural and partly individually generated.

System of affective representation: this system is neither formal nor imagistic. It seems

to occur universally, and is highly dynamic.

All the above kinds of system are psychologically ‘fundamental’. With the possible exception of

formal notational systems, they occur universally, not only in mathematical problem solvers but in

all humans (Goldin and Kaput, 1996, p. 417).

Goldin and Kaput’s theory also covers representational development. Every kind of

representational system develops through three stages (p. 424):

1.

The inventive-semiotic stage (as in Piaget, 1969b): new characters are created or learned,
and used to symbolise aspects of a prior representational system. A common problem in
mathematics learning at this stage is that new characters are taken to “be” rather than
symbolise the aspects of the previous system — leading to cognitive obstacles (confusion),
a problem discussed at length by Duval (2006).

The structural-developmental stage: development or construction is driven principally by
structural features of the earlier system.

The autonomous stage: the new system of representation, now mature, separates from

the old.
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The development of internal representational systems through such stages requires interaction
with external representational structures (e.g. spoken language and mathematical constructions)

(Goldin and Kaput, 1996, p. 424).

2.2.3.2 Contrasting account by Duval
Duval offers a definition by examples, stating that the term representation “refers to a large range
of meaning activities: steady and holistic beliefs about something, various ways to evoke and
denote objects, how information is coded” (Duval, 1999, p. 3). The term “mental representation”
is used where necessary to distinguish from material or external signs. However, Duval argues
that the customary distinction between mental and external representations is a “misleading
division” (Duval, 1999, p. 5), since this distinction addresses only the “mode of production” of
representations and not their “nature” or “form”. For Duval, the more meaningful categorisation
is based on precisely nature and form; he classifies cognitive representations as follows:
There are two kinds of cognitive representation. Those that are intentionally produced by
using any semiotic system: sentences, graphs, diagrams, drawings ... Their production can
be either mental or external. And there are those which are causally and automatically
produced either by an organic system (dream or memory visual images) or by a physical
device (reflections, photographs).

(Duval, 1999, p. 5)

In summary, Duval’s theory of representations holds that “the basic division is not the one
between mental representation and external representation, which is often used in cognitive
sciences as though it was evident and primary, but the one between semiotic representation and

physical/organic representation” (Duval, 1999, p. 5).

Presmeg (2008) similarly rejects the idea that the internal/external distinction is an important
dichotomy. Although key works that Presmeg draws upon make central use of this distinction (e.g.
Goldin, 1992; Marcou and Gagatsis, 2003), Presmeg does not develop it in the construction of her
overarching theory of visualisation. Explaining this decision, she states: “The reason for omitting
this distinction is that | prefer to follow Piaget and Inhelder’s (1971) claim that visual imagery
(internal representation) underlies the creation of a drawing or spatial arrangement (external
representation). Thus it does not seem fruitful to separate these modes of representation”
(Presmeg, 2008, p. 2). This claim does not mean that we should prioritise the internal visual
imagery nor see the external as merely a window onto it; it means that we should acknowledge
that internal representation is involved in the process of creating the external representation, and

thus that to insist on an internal/external dichotomy in cognitive representations is nonsensical.
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2.2.4 Relation of representations to images

Imagery is a subject with an independent history of investigation and theorisation, with many
researchers supporting the idea that mathematical reasoning is “at all levels firmly grounded in
imagery” (Thompson, 1996, p. 267). For researchers such as Thompson, ‘image’ means “much
more than a mental picture”, instead something “constituted by experiential fragments from
kinesthesis, proprioception, smell, touch, taste, vision, or hearing ... [and] past affective

experiences” (Thompson, 1996, pp. 267-268).

Thompson (1996, pp. 269-270) discusses several important theorisations of imagery, ranging from
Piaget’s conception of the image and its relation to mental operations (a dynamic understanding)
(Piaget and Inhelder, 1967) to Kosslyn’s (1980) conception of image as a representation of
objective reality and eventually fixed “data structure”. From Vinner comes the idea of a concept
image (e.g. Vinner and Dreyfus, 1989), which “comprises the visual representations, mental
pictures, experiences and impressions evoked by the concept name” (Thompson, 1996, p. 271).

Each one of these is a broad and powerful conception of ‘image’.

Galton, in the earliest known modern study concerned with imagistic representation of number in
the mind, stated that he was investigating participants’ capabilities for “seeing images in their
mind’s eye”, describing his research topic as the “various ways numerals are visualised” (Galton,
1880, p. 252). Galton’s language — “powers of mental imagery” and “capability” —aligns seamlessly
with modern constructivist accounts of imagery, framing the participant as active generator of
image, and his collected data bear clear resemblances to data collected by current researchers

investigating “mental representation”.

One such modern study on the imagistic representation of numbers is that carried out by Thomas,
Mulligan and Goldin (2002). The study is titled “Children’s representation ...” and the focus is
described to be “internal imagistic representations” (p. 117). The study is theoretically framed by
Goldin’s model of representation, in which, as described in the previous section, imagistic
representation includes the sub-systems of visual/spatial, auditory/rhythmic and
tactile/kinaesthetic representation. The sub-system focused upon by Thomas et al., and the sub-
system that corresponds most closely to the commonly understood meaning of the term imagery,

is the visual/spatial system.

While interpreting results within the overall framework of Goldin’s theory, the study is informed
by literature specifically upon imagery, primarily the work of Presmeg. The contribution of this to
Thomas et al. (2002) is the categorisation of the components or sub-units of visual images, as

pictorial, iconic or symbolic. In terms of types of visual imagery, Presmeg’s work has identified five
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forms or categories: concrete imagery (like a picture); pattern imagery (relationships without
concrete detail); memory images of formulas; kinaesthetic imagery (involving physical movement);

and dynamic imagery (the image itself is moved or transformed) (Presmeg, 2006, 2008).

According to Duval there exist within the overall scheme of cognitive representations “several
registers for discursive representation and several systems for visualization” entailing “a complex
cognitive interplay underlying any mathematical activity” (Duval, 1999, p. 6). For Duval, ‘images’
are certainly included within conscious cognitive representations (see section 3.2.2.3 for
discussion of Duval's use of 'conscious'). There exist “two heterogeneous kinds of ‘mental images’:
the ‘quasi-percepts’ which are an extension of perception ... [belonging to the automatic/organic
system of cognitive representations] ... and the internalized semiotic visualizations [belonging to

the intentional/semiotic system]” (Duval, 1999, p. 6).

2.2.5 Representation in cognitive psychology and cognitive neuroscience

A large body of work on the cognitive representation of number lies outside the field of education.
Much research has been carried out in cognitive psychology and cognitive neuroscience, and
makes claims about the origins, development and structure of cognitive representations of
number. These claims have consequences for education, and there is a potentially fruitful
interaction between the fields of education and cognitive neuroscience (De Smedt and
Verschaffel, 2009). Care must be taken, however, over the meaning of representation, and

particularly mental representation.

The concept of representation is the organising concept in modern cognitive psychology: indeed
“The central hypothesis of cognitive science is that thinking can best be understood in terms of
representational structures in the mind” (Thagard, 2011, online). In terms of what the
representational structures are however, and what their nature is, there remains “much
disagreement” (Thagard, 2011, online). Most work “assumes that the mind has mental
representations analogous to computer data structures” and cognitive theorists have “proposed
that the mind contains such mental representations as logical propositions, rules, concepts,

images and analogies” (Thagard, 2011, online).

Cognitive neuroscience, as its name implies, attempts to explain cognitive processes at the level
of neuron activity. The experimental methodologies adopted often involve fMRI brain scanning to
identify active regions of the brain during specified tasks. Theoretical neuroscientists attempt to
model the behaviour of “large numbers of realistic neurons” (Thagard, 2011, online). The relation
between accounts at the level of neuron models and accounts at other levels is important to

stress: Thagard points out the models are “not strictly an alternative to computational accounts in
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terms of logic, rules, concepts, analogies, images and connections, but should mesh with them

and show how mental functioning can be performed at the neural level” (Thagard, 2011, online).

Cohen Kadosh and Walsh, in reviewing the literature upon numerical representation, give an
explicit definition of representation in their field. They state that “we define representation only
in the general sense that is most common in psychology and cognitive neuroscience. Here
representation refers to patterns of activation within the brain that correspond to aspects of the
external environment” (Cohen Kadosh and Walsh, 2009, p. 314). The narrowness of this definition

contrasts markedly with, say, that of Goldin and Kaput.

The constructivist accounts of Goldin and Kaput describe an active individual — constructing their

|”

knowledge and using their representations. The language of “system” and “powerful” suggests
something that an individual has access to for use as a tool, whether fully consciously (using their
system of planning, monitoring and executive control) or less consciously — perhaps semi-
automatically using a well-rehearsed representation. This perspective of the active individual
contrasts strongly with that of research focused upon the automatic, “processing” sense of

internal numerical representation.

2.3 Conceptions of number

Research into young children’s representation of number overwhelmingly addresses
representation of the positive integers, or natural numbers, and there are clear reasons for this.
The natural numbers are a very basic aspect of human life in numerate societies. It is not only the
case that difficulties with number “can lead to serious impairments in everyday life” (Cohen
Kadosh and Walsh, 2009, p. 313); for the majority who have access to meaningful number words
(at the minimum, the ability to count in order to quantify), life otherwise is almost unimaginable.
In terms of evolutionary development, the ability to count pre-dates speech as well as writing
(Box and Scott, 2004). In terms of individual children, conceptions of the natural numbers are
developmentally prior to, and developmentally necessary for, conceptions of other kinds of

number in mathematics.

In this section | will begin with a discussion of the complications surrounding conceptions of
number, and then look at how researchers have characterised ‘mature’ concepts of number. This
is in many cases difficult to separate from theoretical accounts of how number concepts develop,
so | examine conceptions of number within accounts of the development of quantitative
competencies more generally. | overview key theories and give particular attention to the theme

of integrating earlier conceptions.
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Beyond being some kind of notion or idea, concepts are characterised by the fact that they can be
shared: “concepts as constituents of thought are shareable, both by different people, and by the
same person at different times” (Rey, 2005, p. 186). As such, “they need to be distinguished from
the particular ideas, images, sensations that, consciously or unconsciously, pass through our
minds at a particular time” (p. 186). Rey summarises the three main philosophical approaches to
answering the question of ‘what’ a concept consists of: “an extension in this world, possibly an
intension that determines an extension in all possible worlds, and possibly a property that all

objects in all such extensions have in common” (p. 192).

Concepts are often understood as a form of mental representation. For Carey and Sarnecka, for
example, “Concepts are mental representations with conceptual content, as opposed to
perceptual or sensory content. Mental representations are characterised by their extensions (the
entities in the world they pick out) and by their computational role (the inferences they support,
the rules of combination that yield new combinations, and so on)” (Carey and Sarnecka, 2006, p.

473).

2.3.1 Why is concept of number difficult?

Philosophically, there is a lack of an agreed concept of what number actually is, which also
complicates efforts to form a clear definition of what it means to understand number. Alain
Badiou argues compellingly that our thinking on what number is remains no clearer than in the
late nineteenth century, making our modern relationship with number almost paradoxical: “we
live in the era of number's despotism; thought yields to the law of denumerable multiplicities; and
yet ... we have at our disposal no recent, active idea of what number is" (Badiou, 2008, p. 1).
Lovell makes a similar point: “It is not generally realized, however, that although the whole edifice
of modern mathematics is built upon the concept of the natural number, this concept remains
something of a mystery” (Lovell, 1965, p. 26). In turning to thinkers of the past, moreover, we still
do not find answers. Nineteenth century thinkers were motivated to address the question of a
concept of number due to the inability of the ancient Greek conceptualisation to encompass
modern uses and types of number. However, speaking of attempts by Dedekind, Frege, Cantor
and Peano to define a concept of number, Badiou writes unequivocally that they “failed”, since
none was able to produce a unifying concept: “It is as if, challenged to propose a concept of
number ... thinkers reserve the concept for one of its 'incarnations' (ordinal, cardinal, whole,

real ...), without being able to account for the fact that the idea and the word 'number' are used

for all of these cases” (Badiou, 2008, p. 12).

A second consideration is that the phrase concept of number is a case of the particular

construction ‘concept of X’. Rey notes that this usage presents particular difficulties to attend to
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(Rey, 2005, p. 187), since the meaning of such a construction is ambiguous. There are four
immediate possibilities:
This could mean the concept [causality], which the child has (as do most adults); or it could
mean the child’s ability to deploy the concept in reasoning and discrimination; or it could
mean any of the extension, intension, or rule that children associate with the English word
‘causality’ and its related forms; or it could mean (as in fact it very often does mean) the
representation and/or standard beliefs (what | prefer to call the conception) that children

associate with the extension, intension, rule or ability [causality]. (Rey, 2005, p. 187)

The general shared notion of number, corresponding to the first possibility listed by Rey, is most
often indicated by the phrase ‘the concept of number’. For example: “Such people believe that
the concept of the natural numbers is the result of a primitive intuition” (Lovell, 1965, p. 27). In
contrast, ‘a concept of number’ is frequently used in developmental research: “difficulties in
assessing the cardinality of a set imply lack of a concept of natural numbers” (Rips, Bloomfield, et
al., 2008, p. 630). In this example, “a” suggests that there is more than one concept of natural
numbers; a child does not simply (not) have “the” universal concept number but develops,
individually, “a” concept of number (which could then be expected to develop further still). The
meaning in this case seems to best correspond to the fourth possibility listed by Rey. A final
example highlights the potential of this construction for ambiguity: “for Piaget the concept of
number is not based on images or on mere ability to use symbols verbally” (Lovell, 1965, p. 51). In
this case, it seems the author could be discussing the general shared concept, the concept in
individuals, or both. An important point of difficulty which the above discussion hints at is

disagreement over the extent to which a concept includes understanding, or the extent to which

understanding a concept is somehow considered a separate accompaniment to the concept itself.

As noted, the concept of X construction is commonly used because researchers want to write
about concept development. Whilst it may sometimes be possible to say that a person ‘has’ or
does not have a particular concept, this is not clearly true for the case of concept of number. It
would be expected, for example, that a secondary school student, numerate working adult,
mathematics teacher, and mathematician would have differing conceptions of number, even

though each would be said to ‘have’ a concept of number.

2.3.1.1.1 Challenge: early conceptions with numerical content

Mix et al. (2002) argue that “In many ways, the question of whether infants possess ‘true number
concepts’ is more philosophical than empirical because it is not clear how one would define a true
number concept” (p. 21). This difficulty has already been noted. The authors continue: “In fact, it

is not obvious that such a point in development ever comes because humans’ concepts are
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continually evolving” (p. 21). Whilst it is true that humans’ concepts continually evolve, a practical

solution to identifying children’s development of conceptions of number does still seem possible.

A solution, used by many authors if not with the same terminology, is to situate conceptions with
numerical content within what Mix et al. (2002, p. 5) term an individual’s overall development of
“quantitative competence”. In this overall development, whilst they may not have become a
‘finished’ concept of number, some conceptions seem to exhibit all the features necessary to be

called a conception of number, whilst others do not seem to do so.

The task here is to decide upon the point at which developing numerical conceptions qualify as
conceptions of number. Some nativist theories insist that representations of quantity in infancy
are concepts of number, and differentiate later conceptions of number from these using
adjectives like “fully formed” (Gelman and Gallistel, 2004). However, many researchers, like Rips
et al., specifically use numerical rather than number to describe the earlier conceptions with

numerical content, a usage that is followed in this thesis.

The essence of conceptions of number as opposed to numerical conceptions is the integration of
knowledge: knowledge and representations of quantity, together with a system of counting. The
early numerical conceptions, for example infants’ discrimination between sets based on their
relative numerosity, are integrated with a system of counting. The system of counting need not be
a conventional one, but it must follow certain principles. These have been identified as:

1. One-to-one principle: every item should be tagged exactly once

2. Stable order principle: counting tags should maintain a consistent order

3. Cardinality principle: the final tag in a counting sequence is the numerosity of the set

4. Abstraction principle: any combination of discrete items can be counted

5. Orderirrelevance principle: the order in which items are counted is not significant

(from Gelman and Gallistel, 1978; cited by Mix et al., 2002, pp. 101-102)

As Mix et al. explain, “As long as one follows these five principles, any counting system will work,

no matter how unconventional it may seem on the surface” (Mix et al., 2002, p. 102).

This integration is a view of the concept of number which has been expressed by Piaget and many
mathematics education researchers since. Lovell summarises Piaget’s view as follows: “the
concept of number is not based on images or on mere ability to use symbols verbally, but on the
formation and systemization in the mind of two operations; classification and seriation. For the
concept to form in the mind these two operations must blend ...” (Lovell, 1965, p. 51). Resnick's
(1983) account of number development (see Representation of number structure, section 4.4.2,

p.114), developed on the basis of independent empirical data, similarly supports this precise view:
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"ordinal (counting) and cardinal (class inclusion or part-whole) relationships must be combined in
the course of constructing the concept of number" (pp. 146-147). In Piaget’s own words: “the
fusion of inclusion and seriation of the elements into a single operational totality takes place, and
this totality constitutes the sequence of whole numbers, which are indissociably cardinal and

ordinal” (Piaget, 1969a, p. viii).

Nunes and Bryant (2009) argue that of all current theories of the development of the concept of
number, the Piagetian approach remains the most satisfactory. They argue that most alternative
accounts of the concept of number in fact restrict themselves by focusing heavily on either
counting or reasoning about quantities. For Nunes and Bryant, it is clear that “it is only when
children establish a connection between what they know about relations between quantities and
counting that they can be said to know the meaning of natural numbers” (Nunes and Bryant, 2009,
p. 12). The authors emphasise heavily that “Quantities and numbers are not the same thing” (p. 4)
and that consequently, “the most important task for a child who is learning about natural
numbers is to connect these numbers to a good understanding of quantities and relations” (p. 7).
More specifically, the connection must exist in three particular ways: firstly, as cardinal number;
secondly, as ordinal number; and thirdly, as cardinality understood in relation to addition and
subtraction (Nunes and Bryant, 2009, p. 8). When children have begun these connections — at first
only on the range of numbers with which they are familiar, they can be said to have a concept of

number.
2.4 Theories of number development

2.4.1 Early numerical representations

It is widely agreed that conceptions of natural number are connected to earlier systems of
representation with numerical content, present even in infants. The two commonly investigated
systems are the Analogue Magnitude System (AMS), also referred to as the Approximate Number
System (ANS); and the small exact number representation system (SENS), or parallel individuation
system (Le Corre and Carey, 2008). | will begin by giving an overview of each system, before in the

next section discussing their hypothesised roles in number concept development.

2.4.1.1 Analogue Magnitude System

The AMS is defined succinctly as a cognitive system “in which the cardinal value of a set is
represented by an analog symbol that is a linear or logarithmic function of the number of
elements in the set” (Le Corre and Carey, 2008, p. 651). The AMS “handles relatively large
numerosities” and produces “approximate rather than exact quantity representations” (Slaughter,

Kamppi and Paynter, 2006, p. 33).
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Since the representation is not precise, numbers are not always easily distinguished. In
experimental data, the AMS demonstrates a “numerical distance effect, in which the speed and
accuracy of judgment increase with the difference between numerical values” and a “numerical
magnitude effect, wherein speed and accuracy decrease with number” (Cantlon, Safford and
Brannon, 2010, p. 289). The result of these effects is that the discriminability of any two values
represented by the AMS is a function of their ratio, as described by Weber’s law (Cantlon et al.,

2010, p. 289; Carey and Sarnecka, 2006, p. 477).

In terms of its representation, the AMS is considered to “operate like a mental number line, with
numerical magnitudes represented by distance travelled along the line” (Slaughter et al., 2006, p.
33). For some researchers, the AMS and mental number line are synonymous. It is described by
Dehaene for example as “this core analogical representation (the ‘number line’)” (Dehaene, 2001,
p. 16) and similarly “analogue magnitude system (or mental number line)” (Krajcsi and Palatinus,

2004).

In summary, the key features of the AMS are that the representative symbol is proportional to the
represented magnitude, that the representation is approximate, that it can handle large

numerosities, and that it is limited by the ratio limit on discriminability (Condry and Spelke, 2008).

There exists both confusion and disagreement over the extent to which the AMS is a conception
of natural number. In Gelman and Gallistel’s 2004 viewpoint piece, “Language and the Origin of

IM

Numerical Concepts” for example (with the title referring to “numerical” rather than “number”
concepts), the authors discuss both “a concept of number” and “a fully formed conception of
number” and use these phrases to signify different phenomena. Gelman and Gallistel are forced
to make this strong distinction between “a concept of number” and “a fully formed conception of
number” precisely because they give the status of “a concept of number” to the AMS. They do

this despite agreeing with other researchers that the AMS is an “imprecise nonverbal

representation of number” which consists of “imprecise mental magnitudes” (2004, p. 441).

To what extent is it valid or helpful to classify the AMS as “a concept of number”? If “a concept of
number”, it is a limited one: “/ninety’ does not mean ‘approximately ninety’ any more than ‘eight’

"y

could mean ‘approximately eight’” (Nunes and Bryant, 2009, p. 14). Nunes and Bryant, like Carey
and Sarnecka, highlight the fact that “representations can have numerical content and still fall

short of being representations of the integers” (Carey and Sarnecka, 2006, p. 476).

2.4.1.2 Small exact number system
Whilst the existence and features of AMS are well established by research, less agreement exists

regarding the second system of early numerical representation, the small exact number system
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(SENS). The system is strongly supported by Carey and researchers supporting the ‘bootstrapping’
theory of number concept development. The SENS is also referred to as an object-file system
(Feigenson and Carey, 2003), “object-based attention” (Barner, Thalwitz, Wood, Yang and Carey,

2007), and the “parallel individuation of small sets” (Carey and Sarnecka, 2006).

The SENS produces exact representations of quantities, but can only represent quantities up to
three, a limit established by experimental data (e.g. Feigenson and Carey, 2003, 2005; Le Corre
and Carey, 2007). Representations in this system use a representational token for each individual,
and number is only implicitly represented — there is no summary symbol for the cardinal value of
the set (Carey and Sarnecka, 2006, p. 478). The system is limited by set size, rather than ratio

discrimination.

Two bodies of experimental evidence support the existence of the SENS. One set is box-reach
tasks, in which infants are shown objects being placed into a box, and then allowed to reach in to
retrieve them one at a time. The child shows by their pattern of reaching how many they expect
to find there, and whilst infants “succeed at ratios of 2:1 and 3:2” they fail at ratios of “4:2 and

even 4:1” (Carey and Sarnecka, 2006, p. 479).

The second body of evidence for the SENS consists of experiments in which infants watch crackers
being placed, one at a time, into two tall opaque boxes, and are then allowed to crawl towards a
box of their choice. Carey and Sarnecka report that “when the choicesare 1 vs. 2 or2vs. 3
crackers, infants overwhelmingly approach the box with more crackers. But when the choices are
3vs. 6,2 vs. 4 oreven 1vs. 4, performance falls to chance” (Carey and Sarnecka, 2006, p. 479).
These authors note that 2 vs. 3 and 1 vs. 4 are particularly interesting cases: both involve the
placement of five crackers overall, and “In terms of Weber ratios 1 vs. 4 is clearly easier to
discriminate than 2 vs. 3” (p. 480). However, infants fail the task as soon as either set exceeds

three items (Carey and Sarnecka, 2006).

Intervention studies in which participants have been given training on either exact or approximate
number representation (Kucian et al., 2011; Obersteiner, Reiss and Ufer, 2013) support the theory
that number processing involves these two kinds of numerical representation. Finding “no
crossover effect” between improvement in exact and approximate number processing gives
weight to the theory that approximate and exact number processing “rely on distinct cognitive

systems” (Obersteiner et al., 2013, p. 132).

2.4.2 From early numerical representations to conceptions of number
The exact relationship between the early systems of numerical representations (AMS and SENS)

and later conceptions of natural number is not clear.
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A necessary component of a conception of natural number is a system of representation able to
represent the natural numbers. Carey and Sarnecka (2006) state that a system of representation
can express the integers if it represents (a) the cardinal value of sets; and (b) the successor

relation among adjacent cardinal values.

Condry and Spelke give an excellent summary of the two main theoretical sides in the debate
surrounding natural number concept acquisition (Condry and Spelke, 2008, p. 23). According to
researchers including Condry and Spelke, and notably Carey, children initially have no
understanding of the logic of the natural numbers. They must construct this understanding, by
building upon the two core systems of AMS and SENS. Broadly speaking, Condry and Spelke argue
that the concept of a ‘numerically distinct individual’ arises from the small exact number system,
and that the concept of ‘set’ arises from the analog magnitude system, which supports the
guantificational system of natural language. Their experimental evidence supports the idea that

the natural number concept is acquired with or after language.

The principal opposing view to this position, held by Gelman and Gallistel (1978), Dehaene (1997),
and Wynn (1992), is that children have innate understanding of the natural numbers, which is
embodied within the AMS. According to this view, the AMS shows all the logical features of the
natural numbers, and it is ‘noise’ within the AMS which prevents children using exact larger
numbers. Whilst children are demonstrably not able to use larger numbers at an early age, they
do nonetheless understand that each large set of objects has some unknown but determinate
cardinal value. Specifically, they understand that that cardinal value will change if a single

individual is added or removed.

2.4.2.1 Enriched parallel-individuation hypothesis

For researchers supporting this hypothesis, it is clear that, since natural numbers show neither of
the limits of the two core numerical systems (AMS and SENS), something additional is required for
children to reach an understanding of the natural numbers (Condry and Spelke, 2008). This
echoes the point made by Carey and Sarnecka (2006, p. 482): “none of the three systems alone

has the power to represent the positive integers”.

A very basic concept that infants lack is the singular/plural distinction. Carey and Sarnecka (2006)
observe that in order to successfully discriminate between one and four, “infants need not
represent exactly 4 or even approximately 4; they need only represent the set of 4 as a plurality
and hence as more than 1. In other words, all they need is a singular/plural distinction” — which
they appear not to have (p. 480). The researchers describe this finding as intuitively “surprising”

but no longer so when the AMS and SENS systems are considered: “Neither of the core systems

27



with numerical content includes a computationally relevant break between single individuals, on

the one hand, and sets of more than one individual, on the other” (p. 481).

Condry and Spelke (2008) are confident that language is the catalyst for number concept
acquisition. In their experiments with 3-year-old children, every child in the sample had mastered
the meaning of at least “one”, in a reasonably abstract way. The children also appreciated that a
single array of toy animals that undergoes no change cannot be both five sheep and ten sheep,
and that this is specific to number words (five sheep and hungry sheep is acceptable). Condry and
Spelke argue that if children also possessed a full set of natural number concepts, then the two
capabilities just described should be sufficient to induce that each word in the count list indicates
a specific unique number. Contrary to this prediction, the experimental results find that children
who have learned the meaning of the first few words in the count list still fail to appreciate that
later words in the list refer to cardinal numbers. For Condry and Spelke, “children’s failure to
make these inferences would truly be puzzling if children possessed the system of natural number
concepts” (Condry and Spelke, 2008, p. 35). These results accord with recent findings from

Sarnecka and Gelman (2004) and also Le Corre and Carey (2007).

The theory above has been criticised in a number of ways. Gelman and Butterworth (2005) for
example, observe that groups with restricted language, such as particular indigenous
communities, still understand quantity and are able to understand number. The ‘bootstrapping’
role of language that Carey’s theory proposes has been criticised for pre-supposing the

knowledge it is supposed to develop (Rips et al., 2006; Rips, Asmuth and Bloomfield, 2008).

2.4.2.2 The alternative view: AMS is privileged

The principal alternative view, which asserts that the AMS is privileged and forms the number
concept, has been endorsed by Dehaene, Wynn, and Gelman and Gallistel (1992). A key source of
evidence for these theorists is that the AMS alone can support several types of numerical
computation, for example the ordering magnitudes, and to some extent addition and subtraction

(Barth, Baron, Spelke and Carey, 2009; Slaughter et al., 2006).

Another source of evidence, cited by Gelman and Gallistel (2004) for example, is that the AMS
underpins even numerate adults’ intuitive mental representation of number, a claim based largely
on response times in numerical tasks. Whether the AMS is used by adults or not in numerical
tasks, the participating adults already possessed a concept of natural number. Hence with regard

to how the concept of number formed, this evidence is not compelling.

The main criticism of a nativist AMS-centred theory is expressed nicely by Nunes and Bryant:
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However important this basic system may be as a neurological basis for number processing,
it is not clear how the link between an analog and imprecise system and a precise system
based on counting can be forged: ‘ninety’ does not mean ‘approximately ninety’ any more
than ‘eight’ could mean ‘approximately eight’. In fact, as reported in the previous section,
three- and four-year-olds know that if a set has 6 items and you add one item to it, it no
longer has 5 [sic] objects: they know that ‘six’ is not the same as ‘approximately six’.

(Nunes and Bryant, 2009, p. 14)

2.4.3 When is a numerical conception a concept of number?
Nunes and Bryant do not define concept of number, but consider only the question of
understanding natural number , a decision which refers back to the debate over what should be

considered part of a concept, and what merely accompanies it (Rey, 2005, p. 187).

To be said to understand number, a child must connect the ideas of quantity and (counting)
number in three specific ways: as cardinal number, as ordinal number, and as cardinality
understood with relation to addition and subtraction (Nunes and Bryant, 2009, p. 8). Most
accounts of children’s conceptions of number, according to these authors, are too restricted; they
either “leave out the number system altogether and concentrate instead on children’s ability to
reason about quantities, or they are strictly confined to how well children count sets of objects”

(Nunes and Bryant, 2009, p. 7).

Nunes and Bryant suggest there is no simple answer to the question of how children develop
understanding of cardinal numbers (2009, p. 15). Their summaries of the three leading theories
are as follows:

1. The Piagetian approach: Piaget argued that understanding numbers entailed making a
connection “between numbers and the relations between quantities that are implied by
numbers” (Nunes and Bryant, 2009, p. 13)

2. The AMS approach: theory privileging the role of the AMS

3. The ‘bootstrapping’ approach: theory based upon Carey’s work on ‘enriched parallel

individuation’ (Carey, 2004, p. 65)

Nunes and Bryant argue that, of these theories, the Piagetian approach remains the most
satisfactory. Piaget argued that the connection between numbers and relations between
guantities was “established by children as they reflected about the effect of their actions on
quantities” (Nunes and Bryant, 2009, p. 13), with the additional help of counting and other social
interactions. Their criticism of the other two theories centres on their incompleteness: “Both

Gelman’s and Carey’s theory only address the question of how children give meaning to number
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words: neither entertains the idea that numbers represent quantities and relations between
quantities, and that it is necessary for children to understand this system of relations as well as
the fact that the word ‘five’ represents a set with 5 items in order to learn mathematics” (Nunes
and Bryant, 2009, p. 15). For Nunes and Bryant then, to consider how children develop
conception of number without consideration of their understanding of number is to miss the

point.

2.4.4 Integration of earlier concepts
In all accounts of the development of the number concept a common theme is the integration of
earlier number-related concepts. In many examples, the implicit or explicit target is a more

abstract understanding of number.

Some researchers specify particular aspects that must be integrated before understanding of
number can be said to have been reached. For Nunes and Bryant, following the Piagetian account,
these aspects are counting numbers and relations between quantities. They emphasise heavily
that “Quantities and numbers are not the same thing” (Nunes and Bryant, 2009, p. 4) and that
consequently, “the most important task for a child who is learning about natural numbers is to

connect these numbers to a good understanding of quantities and relations” (p. 7).

Siegler et al. (2011) present an alternative and AMS-centred model concerned with the

integration of numerical magnitude representations. The authors describe the developmental
trajectory of numerical understanding in terms of a single arc, whose unifying element is
numerical magnitude: “numerical development is at its core a process of progressively broadening
the class of numbers that are understood to possess magnitudes and of learning the functions

that connect that increasingly broad and varied set of numbers to their magnitudes” (Siegler et al.,
2011, p. 2). Siegler et al. relate their integrated model to a proposal from Case and Okamoto
(1996) that “the central conceptual structure for whole numbers, a mental number line, is

eventually extended to other types of numbers, including rational numbers” (Siegler et al., 2011,

p. 2).

2.4.4.1 Integration- towards abstraction?

A further relation is to the integration of types of number, in the sense studied by Sophian and
Wood (1996), that is, number as written numeral, spoken numeral, or quantity in a set. Their
findings suggest that if ‘'number’ is a single ontological concept, it would have to integrate the
above-mentioned types, which both children and adults seemed to quite reliably view as
ontological categories of number, and through which participants appeared to consider instances

of number.
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Badiou (2008) expresses the important emerging question as follows: “is there a concept of
number capable of subsuming, under a single type of being answering to a uniform procedure, at
least natural whole numbers, rational numbers, real numbers and ordinal numbers, whether finite
or infinite?” (p. 13). This echoes Sophian and Wood, whose results with children and adults led
them to ask “whether ‘number’ is a single ontological concept or several” (Sophian and Wood,
1996, p. 355). For some, including Badiou, the answer is yes: 'number’ is a single ontological

category. Overall, there remains uncertainty.

Kucian and Kaufmann (2009) propose a model in which children’s mental representations of
whole number magnitudes undergo, with age, schooling and development, a shift from distinct
(non-abstract) to shared (abstract). This proposes that a more ‘mature’ representation of number
is one in which “three”, “3” and three objects have come to share in some abstracted

representation of three-ness (Kucian and Kaufmann, 2009, p. 341).

Cohen Kadosh and Walsh (2009) suggest that the development of a truly abstract representation
of number, if it happens at all in some circumstances, perhaps “occurs as a consequence of the
intentional processing of numbers, which leads to explicit creation of connections between
different notation-specific representations” (p. 326). This appears to tie in with Kucian and
Kaufmann’s model, and addresses ‘integrated knowledge of number’ from the same perspective

of uniting representations of whole number magnitude from different inputs/forms.

2.4.5 Number sense and cognitive representation
The phrase number sense is seen throughout both education and cognitive science literature in
discussions on the origin of number concepts and mathematical understanding. For this reason, it

is important to gain a sense of the phrase and what motivates its use.

There is no single definition of number sense; according to some authors “no two researchers
have defined number sense in precisely the same fashion” (Gersten, Jordan and Flojo, 2005, p.
296). Laski and Siegler summarise number sense as “an ill-defined construct that nonetheless is
widely viewed as crucial to success in mathematics” (Laski and Siegler, 2007, p. 1723). It is not
only the construct itself, but also the way in which it relates to mathematical success, that is “not
well understood” (Jordan, Kaplan, Olah and Locuniak, 2006, p. 154). Indicating the complexity of
the construct and its use, James Greeno argues that, in fact, “number sense is a term that requires

theoretical analysis, rather than a definition” (Greeno, 1991, p. 170).

2.4.5.1 Education literature on number sense
Howell and Kemp (2010) identify two differing uses of number sense within education literature,

firstly to describe “the intuitive understanding of number that is prerequisite for success in
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school-based mathematics” and secondly “the informal understanding of number displayed by
children prior to formal instruction in mathematics” (p. 412). This points to two important usages,
but the boundary between the two is far from definite —number sense is also used as a term
intended to include both of these meanings at once, for the very reason that the difference
between intuitive understanding of number and informal pre-school understanding of number,

and where these understandings come from, is a point of difficulty.

Definitions of number sense in education literature commonly take a componential form; authors
specify a list of attributes an individual must possess, and accordingly, assessment of number
sense usually involves a composite measure. In terms of components, “most agree that the ability
to subitize small quantities, to discern number patterns, to compare numerical magnitudes and
estimate quantities, to count, and to perform simple number transformations are key elements of
number sense in young children” (Jordan et al., 2006, p. 154). Berch (2005) demonstrates a list of
thirty “Alleged components of number sense” that have been claimed for the construct at some
point or other (p. 334). Drawing upon factor analysis of children’s kindergarten mathematics
performance, Gersten et al. (2005) judge number sense to be structured on two basic
components, “counting/simple computation” and “sense of quantity/use of mental number lines”
(p. 297). These coincide with Nunes and Bryant’s characterisation of “the meaning of natural
numbers”, that is to say the integration of counting with knowledge about quantities (Nunes and

Bryant, 2009, p. 12).

Laski and Siegler offer a new perspective, with the suggestion that cognitive science findings on
the linearity of numerical representations could be used to provide an “operational definition” of
number sense (Laski and Siegler, 2007, p. 1740). The authors observe that one interpretation of
number sense is “the ability to discriminate among numerical magnitudes ... and use the
discriminations to constrain and judge the plausibility of outcomes of mathematical operations”.
Linearity of numerical representations could be used as the operational definition of this
interpretation of number sense since “... it allows differentiation among numerical magnitudes
throughout the range” whereas reliance on logarithmic representations “results in numbers at the
high end of the range being lumped together as ‘all those big numbers’” (Laski and Siegler, 2007,
p. 1740). A consequence of this definition of number sense is that “people may have good
number sense within one range of numbers but not within other ranges” (p. 1740). This relates to
the idea that individuals do not simply have or not have understanding of number in Nunes and

Bryant’s definition; the development of the number concept is an on-going process.

Less precise than the above views of number sense are characterisations which openly appeal to

intuition or metaphor, for example “good intuition about numbers and their relationships”
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(Howden, 1989, p. 11); “a way of thinking rather than a body of knowledge and skills” (Van de
Walle and Watkins, 1993, p. 142); “a well-integrated mental map of a portion of the world of
numbers and operations ...” (Trafton, 1992, p. 79). Kaminski notes that characterisations such as
these, though vague, successfully capture “an implied comfortability, a friendliness with numbers”
(Kaminski, 1997, p. 225). Research into number sense has sought to add more specific details of
one child’s fluency in the realm of number compared to another’s discomfort, but there is value in

retaining characterisations which capture the affective aspect.

2.4.5.2 Cognitive psychology definitions of number sense

Berch (2005) describes the existence of a “major disparity” between understandings of number
sense, on the one hand as a “biologically based ‘perceptual’ sense of quantity” and on the other a
“’higher order’ depiction as an acquired ‘conceptual sense-making’ of mathematics” (p. 334).
Differences in understandings of number sense are overstated by imprecise language, and | argue
that in practice the biologically based ‘perceptual’ sense of quantity is infrequently taken to be

actually equivalent to number sense.

Within cognitive science, the number sense construct has been primarily used and popularised by
Stanislas Dehaene, for example in the seminal The Number Sense (Dehaene, 1997). There can
often be an unclear relation between Dehaene’s number sense, and the early representation
system known as the Approximate Number System (ANS — also known as the Analog Magnitude
System (AMS)). Halberda and Feigenson, for example, write a paper entitled “Developmental
change in the acuity of the "number sense": The approximate number system in 3-, 4-, 5-, and 6-
year-olds and adults” (Halberda and Feigenson, 2008). Though this title implies an equivalence
between number sense and the ANS, the relationship is never made clear — the title and closing

sentence are the only two mentions of the number sense in the whole paper.

An online news report by The Telegraph further illustrates the confusion with a misleading

"

simplification. The news article states that number sense and the ANS are equivalent: “'number
sense', also known as Approximate Number System ...”(Telegraph, 2011). The research paper
referred to, however, clearly states that ANS is a component rather than equivalent: “One central
component of the number sense is the Approximate Number System (ANS)” (Libertus, Feigenson

and Halberda, 2011, pp. 1292-1293).

With this in mind, it is worth examining closely exactly what Dehaene himself writes about
number sense. Dehaene writes: ““Number sense’ is a short-hand for our ability to quickly
understand, approximate, and manipulate numerical quantities” (Dehaene, 2001, p. 16) and later,

on the same page, “I collectively refer to those fundamental elementary abilities or intuitions
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about numbers as ‘the number sense’”. In terms of its character, or outcomes, Dehaene’s number
sense as characterised here does not differ at all from the education research definitions, even
down to the association with “intuition” about number. A similar view again, in passing, “ ...
knowledge of numbers and their relations (‘number sense’)” (Dehaene, Dehaene-Lambertz and

Cohen, 1998, p. 355) also fits comfortably with education definitions.

Where Dehaene and education definitions do differ, is in their explanation for the origins of
number sense. Berch (2005) summarises the two positions, and here highlights a real and
significant disparity: “With respect to its origins, some consider number sense to be part of our
genetic endowment, whereas others regard it as an acquired skill set that develops with
experience” (p. 334). The education research definitions in general see outcomes — the ‘sense’ —
as emerging from a set of acquired components, which together make a ‘sense’ of number.
Dehaene and others, in contrast, see the ‘sense’ as rooted almost exclusively in our biological or

perceptual capability to recognise magnitude.

Dehaene writes, for example, that “number sense rests on cerebral circuits” (Dehaene, 2001, p.
16, emphasis added). Contrary to common readings, it is not claimed that number sense is itself
the cerebral circuit. However, it is the case that specific cerebral networks underpin it: “number
sense constitutes a domain-specific, biologically-determined ability” (Dehaene, 2001, p. 16). This
suggests a strongly unified, non-componential understanding of number sense, which contrasts

with education definitions.
2.4.6 Representational change

2.4.6.1 Conceptual and procedural knowledge

The classification of conceptual and procedural knowledge, and the relationship between the two
forms of knowledge, has been a subject of various theoretical approaches. Resnick (1983) is
unequivocal on the importance of this lens for number concept development: "We do not yet
have a full theory to propose about exactly how practice in counting and other arithmetic
procedures interacts with existing schematic knowledge to produce new levels of understanding ...
[but there is nevertheless clear] active interplay between schematic and procedural knowledge"

(p. 149).

Here | will look particularly at competence theories, as a background to the development of
overlapping waves theory, which is the framework for much recent research on numerical

magnitude representation.
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Competence approaches maintain a Piagetian assumption that, at each given age, there is an
underlying essence to children’s thinking and that the task of developmental research is to
discover this essence. In contrast to Piagetian ideas, competence approaches hold that the
essences to be domain-specific rather than domain-general, and emphasise early capabilities,

rather than what children lack (Siegler, 1997).

When construed as the logical knowledge needed to solve a task, competence may or may not be
revealed in behaviour on a particular task. As well as this ‘false negative’ situation, a ‘false positive’
is also possible; a child may succeed in a particular experimental situation, whilst not actually
possessing the logical knowledge being investigated. Consequently, a fundamental outcome of
the competence/performance distinction is that in order to accurately characterise children’s
knowledge, it is necessary to consider not only the answers they generate but also how they

arrived at those answers (Sophian, 1997, p. 282).

Competence consists of the individual steps required to complete a task, together with the
knowledge which allows a child to select those steps and not other, inappropriate steps. This fact
is incorporated into competence models such as Greeno’s through the separation of conceptual
knowledge from processes which generate a specific cognitive act (Sophian, 1997). In Sophian’s
presentation, competence models focus on characterising the conceptual principles that
determine how cognitive processes are put together. These principles then facilitate the
acquisition of task-specific procedures; developmentally, competence models suggest first
conceptual principles, then later problem-solving procedures. Within a competence model of
knowledge, failure to succeed at a task can have many causes, and does not necessarily imply a
lack of necessary conceptual knowledge. This, as Sophian notes, insulates claims of conceptual

competence from empirical verification or refutation (Sophian, 1997).

One positive outcome of this includes a great deal of experimental data from different tasks, since
one remedy for this situation is to carry out detailed systematic variation, in order to try to
definitively isolate the cause of task failure. Another outcome, according to Sophian (1997), is that
competence models are strongly biased in favour of nativist conclusions, in effect because they
cannot be disproven within the competence model. Sophian asserts that the extent to which
difficulties are conceptual or task-specific ought to be an empirical question; although
competence models tend to dissociate the variability in performance across tasks from the
underlying conceptual knowledge, the possibility that children’s susceptibility to task factors itself
reflects limitations of their knowledge should not be ignored. The variations can be a crucial
source of information about how children are generating responses, and hence what implications

their performance has for conclusions about their conceptual knowledge (Sophian, 1997).
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The important “Beyond Competence” paper (Sophian, 1997) proposes a significantly more
interactive relationship between conceptual principles and problem-solving. Sophian (1997)
hypothesises a bi-directional relationship between competence and performance, so that
cognitive competencies both guide and are shaped by performance. She proposes that an aim
should be to integrate varying findings, and that where studies conflict, it is likely that neither
alone provides a full account. In particular, it is not possible to gain a full developmental picture

by considering only those tasks in which children perform well.

Once it is granted that conceptual knowledge does develop significantly over time, its change
mechanisms have to be inferred — since they can rarely be observed. A strategy change model

proposes that children typically possess a collection of strategies for thinking about a problem

situation, rather than just one, and that developmental change consists as much in changes in the

choices of strategy as in the acquisition of new strategies (Sophian, 1997). Characterisation of the

strategies used does not provide a characterisation of conceptual knowledge, since a strategy

may be known and evaluated but not seen in use.

A competence model’s structure of first conceptual knowledge, then procedural knowledge,

contrasts strongly with the theoretical accounts of Piaget and Vygotsky, and other developmental

research, which all posit a more dynamic system in which change is a natural consequence of

interaction with the world (whether primarily action — Piaget, or social interaction — Vygotsky)

(Sophian, 1997). If interaction with the world is not held to influence developmental change, then

it is unclear how to begin understanding development.

One idea is that key conceptual knowledge is present from birth, and needs only to become
explicit and available (Sophian, 1997). An alternative, more recent, theory is that conceptual
principles themselves change with development. Sophian (1997) notes that this is a
fundamentally new idea to competence model theory. An idea from Chomsky (1959, cited by
Sophian, 1997) is that internal biases and restraints focus children’s minds on some possibilities
over and above other possibilities. In this account, older and younger children learn different
things from the same experience, which supports the idea that constraints on learning change
with development. Sophian suggests that the key may be to identify these dynamic constraints,
those which are both outcomes of and determinants of further development. Siegler (1997)
describes Sophian’s work here as an “important insight”, writing that “constraints cannot, in
general, act as prime movers” but “must soon be supplemented by other constraints that

themselves reflect the individual’s experience” (p. 327).
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Sophian proposes ‘goals’ for the role of these constraints. In general, performance is a form of
intentional action, carried out because the actor believes it will help fulfil some desire. Beliefs
have been well researched and feature in competence models as conceptual principles. Desires
should be interpreted as the goal or purpose of the action, and the criterion against which success
or failure is measured. There is evidence that children’s goals, when viewing a set of materials,
affect what they remember from the materials (Sophian, 1997). Furthermore, there appears to be
a dynamic relation between children’s conceptual knowledge about numbers and their goal-
based numerical activities; conceptual advances facilitate new goals and corresponding activities,
which in turn provide the input for further conceptual advances. Sophian (1997) writes that this
account needs further work, but the advantage it presents is a route out of the impasses to which

innate competencies theories lead.

2.4.6.2 Overlapping waves theory

Supporting Sophian, Siegler (1997) first identifies positive contributions of competence theories.
First of these is appreciating that children know more than previously believed. Second is
awareness of great variation between tasks that ostensibly measure the same conceptual
knowledge. Third is the realisation that age-related differences can arise from procedural as well
as conceptual difficulties. The fourth and final type of contribution is constructs such as principles

and constraints, which can explain why children learn some concepts more easily than others.

Siegler (1997) also identifies the weaknesses of competence approaches, which again overlap
with Sophian’s assessment. Five particular problems are: ambiguity about what children know of a
concept; selective focus on successful performance (dismissal of significance of failures);
inattention to within-task variability; failing to see the bidirectional relationship between

performance and conceptual understanding; failing to specify the mechanisms of change.

Like Sophian, Siegler asserts that the bidirectional influences between performance and
conceptual understanding, variability (within and between tasks), and the role of children’s goals
as constraints on learning, are key to gaining better understanding of development. It is pointed
out that variability within children’s performance on a single task is seen in all areas of cognitive
development, not merely in logical tasks. Changes in thinking, when measured, appear typically to
involve “ebbing and flowing” of multiple way of thinking (Siegler, 1997, p. 326). Within a
framework that takes variability seriously, the extent of variability is vital, both to accurately
describe cognitive change, and to understand how the change is actually occurring. Recent
research supports Piaget’s view that greater variability (or disequilibrium) is positively correlated

with the rate of cognitive change — in other words, a high level of variability is seen when new
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things are being learned. The proposed explanation for this is that variability of approach allows

children the opportunity to observe the consequences of using them (and hence learn).

Like Sophian, Siegler (1997) proposes that goals are a particularly important form of learning
restraint. Not only do a child’s own goals influence what is learned, but additionally the child’s
understanding of which goals a ‘good’ strategy for a particular problem must achieve (known as
their ‘goal sketch’) allows unsuitable strategies to be rejected, in some cases without even trying
them out. Siegler supports Sophian’s view that the social world, for example parental feedback on

attempts, is particularly important in shaping goal sketches.

Overlapping waves theory differs from traditional developmental theories such as stage theories
and early competence theories by claiming that individuals generally know and use multiple, co-
existing representations (Opfer and Siegler, 2007). The representational changes that occur within
this theory are usually incremental: “children gradually increase their reliance on more advanced
representations, as well as occasionally adding new representations to the mix” (Opfer and Siegler,
2007, p. 189). However, “broad and abrupt” change can also occur, due to “situations in which
children are exposed to novel information that suggests that a representation that they use in
other contexts yields much more accurate performance in a new, relatively similar, context”

(Opfer and Siegler, 2007, p. 189).

Thompson and Siegler (2010) state that overlapping waves theory demonstrates good

explanatory and predictive power with regard to numerical magnitude representation:
Our predictions and findings regarding heightened reliance on logarithmic
representations for small numbers among children whose overall representation is linear
suggest that the development of numerical representations involves trial-by trial
variability, adaptive choice among representations, and knowledge-driven change like
that described in overlapping waves theory. Within this theory, representations and
strategies that are generally less effective continue to be used in specific situations in
which they are effective.

(p. 1280)

This first section of the Literature Review has reviewed the literature relating to the research
problem in terms of theoretical aspects. The research area is theoretically complex, and this
section has looked at the ways in which the key ideas of representation, concepts, and the
development of concepts of number have been theoretically approached, defined and researched.

The different theoretical perspectives are vital contexts for the empirical research conducted into
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representation of number. It is only with the theoretical landscape thus reviewed that the review

of empirical findings, following in the next section of the Literature Review, is able to take place.

Part 2: Empirical aspects

In this second section of the literature review, empirical findings relating to the research problem
are reviewed. This involves considering findings from a range of fields of research, and the
theoretical material covered in the previous section provides the necessary framework within

which their varying approaches and findings can be understood.

2.5 Whatis represented by a representation of number?

As the theoretical section of the literature review showed, defining what is meant by concept of
number is not trivial. The extent to which individuals’ concepts of number become fully abstract
and unify context-specific conceptions is still a matter of theoretical debate, and to complicate

matters further, a given cognitive representation of number may represent only selected aspects.

The concept of number can be plausibly subdivided many ways, for example mathematically, into
natural numbers, integers, rationals, etc., or by usage, as representations of ordinality, and
representations of cardinality. Empirical results confirm that number may often not be fully
abstract. Sophian and Wood (1996) found that both children and adults adopted different
interpretations of “number” in answering different questions, for example as “written numeral”,
“spoken word” or “counting tag” separately, leading these authors to question “whether ‘number’

is a single ontological concept or several” (p. 355).

Strongly related to this are findings in the cognitive science literature which imply differences in
how differing numerical inputs (for example symbolic or non-symbolic visual representations) are
processed. Unless we can be certain that all inputs relate immediately and similarly to one
abstract concept of number, the mode of numerical input in research studies remains highly
important (Cohen Kadosh and Walsh, 2009). Evidence of input-sensitive results can be found in
research by De Smedt and Gilmore (2011), Hubbard et al. (2009) and Mundy and Gilmore (2009),
besides the examples discussed in depth by Cohen Kadosh and Walsh. An important point is that
even where different notations/modalities “yield similar behavioural effects”, they may not

necessarily share the same representation (Cohen Kadosh and Walsh, 2009, p. 315).

2.5.1 Isolating aspects of number for research
For theoretical reasons, research may deliberately choose to investigate only isolated aspects of
number. This is not a trivial task; cognitive representations can often be investigated only

indirectly, and may encode aspects of number in indirect or unexpected ways (spatial, temporal,
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dynamic or chromatic for example). Fias and Fischer (2005) raise the interesting possibility that
different aspects of number may be conveyed by different systems altogether, further
complicating investigation. A hazard that arises is ambiguity regarding the relation between the
isolated aspect and number itself. Fias and Fischer, for example, state that “the meaning of
numbers is indeed spatially coded” (p. 52). However, the more precise statement of this assertion
is actually that “semantic representations of number magnitude are indeed spatially defined” (p.

44, emphasis added).

A great deal of research has been carried out into the representation of numerical magnitude,
and with good reason. Magnitude is a highly privileged aspect of number and, for some authors, it
uniquely captures the meaning of number (Fias, Brysbaert, Geypens and d'Ydewalle, 1996). The
representation of magnitude should consequently be vital for a wide range of mathematical and
numerical activities, and empirical studies have verified this in children (see section 2.10:

Numerical representations and mathematics).

Cohen Kadosh and Walsh (2009) give an explicit delineation of numerical representation in
cognitive science; they state that “numerical representation relates to patterns of activation that
are modulated by the numerical magnitude conveyed by the number” (p. 314). This directly
addresses something often implicit in cognitive science literature, i.e. that representation of
number consists primarily or even exclusively of representation of numerical magnitude.
Researchers in both education and cognitive science agree that magnitude is a privileged and
essential aspect of number, but it is easy to lose sight of distinctions. Where the hypothesised
relationship is not clearly stated, it can be unclear what assumptions have been made about the
relationship between magnitude and number itself. In the case of Cohen Kadosh and Walsh's
review, it is implied that representation of number consists largely of representation of
magnitude. It is not explicitly said that nothing else influences the representation of number, but

nothing beyond magnitude is openly considered.

2.6 Number and space

The spontaneous association of numbers and space is seen across cultures (De Cruz, 2012). This
association may manifest itself in a wide variety of ways, with mappings to everything from
abacuses to parts of the body, and “space-number association appears to be a human universal”
(De Cruz, 2012, p. 138). Furthermore, the association occurs in both intentional and

automaticised representations.

Research in the past twenty years has found strong links between spatial coding areas of the brain

and the representation of number (Fias and Fischer, 2005). This confirms a connection between
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visuo-spatial and numerical thought that has been long been present in self-report and anecdotal
evidence, for example Galton’s (1880) investigation of participants’ mental images of number.
Like the images reported by Galton (1880), Fias and Fischer (2005) report that the spatially coded
representations of number in their study were “mostly automatically activated, were stable in
time and had emerged in childhood” (p. 43). A great deal of research attention has subsequently
been paid to the exact spatial associations of number representations. According to some, the
spatial aspect is in fact dominant: “The non-verbal representations of quantity appear to be
largely spatial ... though other sensory modalities also seem to be included” (Siegler et al., 2011, p.

4).

With regard to the specific details of the representations, Fias and Fischer (2005) report that
adults’ visuo-spatial representations of numbers are “predominantly oriented from left to right”
(p. 43). However, these authors also find that “numerical information can be dynamically
allocated to different representationally defined reference frames” (p. 49), with the “left-right
line-like spatial coding being merely a default” (p. 49). The key finding is that “spatial cognitive
representation of numbers should not be considered as fixed and unchangeable ... the
characteristics of spatial number coding are largely determined by numerical and spatial

parameters specific to the task at hand” (p. 44).

Since the left-right or right-left orientation of spatial-numerical association is culture specific
(Dehaene, Bossini and Giraux, 1993), it has often been supposed that the association is linked to
children’s beginning reading. Opfer, Thompson and Furlong (2010) however found evidence of
spatial-numerical association “long before children begin formal reading instruction” (p. 769).
Interestingly, the results supported neither the idea that spatial-numeric associations arose as
late as reading acquisition, nor the idea that they arose as early as numeric symbol acquisition,
but instead suggested that the spatial association is formed at some time in between these two
stages. With regard to the value of the spatial-numeric associations, it was found that found that
“pre-schoolers showing spatial-numeric associations ... displayed more mature, linear
representations of symbolic value” compared to preschoolers of the same age lacking spatial-
numeric associations (p. 769). Furthermore, the children showing robust spatial associations
performed markedly better than others on those tasks where accessing representations of

numerical magnitude (as opposed to merely reciting the number list) was required (p. 769).

2.6.1 Mental Number Line
The left-to-right spatial representation associated with numbers is generally known as the mental

number line. Precise interpretations of the mental number line vary; they include the line as
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metaphor (Fias and Fischer, 2005), as mental imagery, or as synonymous with the AMS (Dehaene,

2001).

For Siegler et al. (2011), a mental number line is where “number symbols (e.g., “7”’) are
connected to non-verbal representations of quantity in an ordered, horizontally-oriented array”
(p. 4). According to Fias and Fischer (2005), the mental number line is a “useful metaphor” (p. 44),
but there exist numerous questions about its nature and utility. The usual orientation - the “left-
right line-like spatial coding” - is “merely a default” (p. 49), and indeed, the evidence of the
flexible nature of spatial associations with numbers “challenges the appropriateness of the
number line metaphor” (p. 52). In addition, it remains uncertain “whether the mental number line
is a single, analogue continuum” or whether instead, there exist separate mental representations

for the single- and multi-digit numbers (p. 46).

Dehaene et al. (2008) state very confidently that “the mapping of numbers onto space is a
universal intuition” and that “this initial intuition of number is logarithmic” (p. 1217). In contrast,
the “concept of a linear number line” appears to be “a cultural invention that fails to develop in

the absence of formal education” (p. 1217).

Thomas, Mulligan and Goldin (2002), investigating children’s imagistic mental representations of
number with a focus on structural elements, do not infer anything so specific as a ‘mental number
line’ from their results. Where a number line is externally represented by a participant, it is
considered one of a larger set of “numerals drawn in various formations” (p. 121). The authors
infer structural aspects of the participant’s cognitive representation and conceptions of number
from the external line, from its particular structural features (for example, markings at decade

intervals).

2.7 Representational changes

A substantial body of research concludes that children’s cognitive representations change from a
logarithmic placement of numbers on a mental number line, to a linear placement (see for
example Berteletti et al., 2010; Dehaene et al., 2008; Opfer and DeVries, 2008). Not all authors
agree with these conclusions; some assert that there is still room for debate as to whether the
mind inherently maps numbers onto space at all, as well as with what placing (Cantlon, Cordes,
Libertus and Brannon, 2009). Another alternative proposition retains the mental number line, but
in segmented form — composed of differently scaled sections. Ebersbach et al. (2008) propose a
model in which the section break occurs at the end of an individual child’s familiarity range, as
measured by a counting exercise. Another suggestion is that the section break is located at 10,
linking to children’s difficulty or different processing of two-digit numbers and their magnitudes
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(Moeller, Pixner, Kaufmann and Nuerk, 2009). Both segmented models are rejected by Thompson
and Opfer (2010) on the basis that, for individual children, any inferred “change point” between
linear sections of the mental number line varied wildly across different tasks; the same child
placed numbers differently and showed differently scaled representations depending on the

boundary conditions of the task.

2.7.1.1 Logarithmic to linear placement

Siegler et al. (2009) put together a convincing argument for the logarithmic to linear change,
citing studies that appear to deduce the representational change occurring from multiple task
contexts and upon multiple numerical ranges. The primary source of evidence is a large body of
cross-sectional studies using number line estimation tasks (e.g. Booth and Siegler, 2006; Geary,
Hoard, Nugent and Byrd-Craven, 2008; Laski and Siegler, 2007; Opfer and Siegler, 2007; Siegler et
al., 2009; Thompson and Opfer, 2010).

Particularly strong evidence is provided by a study in which both adults and children were asked
to estimate the position of salaries on a number line, where the salaries were expressed as fixed-
numerator fractions (Opfer and DeVries, 2008). In this task, children outperformed adults in
accuracy; both adults and children focused on their attention on the fraction denominators, but
children’s tendency to use a logarithmic representation of number provided them with a task
advantage, since the relation of denominator size to the fraction’s magnitude resembles a
logarithmic function much more closely than a linear one (as used by the adults in the study). The
study thus provided evidence of logarithmic to linear representational change independent of any
general ‘improvement with age’, a common criticism of developmental studies’ significance

(Opfer and DeVries, 2008).

Evidence from tasks other than number line estimation tasks has also been found. Booth and
Siegler (2006) identified the log-linear shift across four kinds of pure numerical estimation
problem, and suggestive evidence for the same shift occurring in number categorization tasks has

also been found (Laski and Siegler, 2007).

Whilst logarithmic representations of quantities are “widespread among species and age groups”
since useful “in a great many situations”, the shift towards a linear representation of numerical
magnitude is considered desirable since “In the formal numerical system ... magnitudes increase
linearly rather than logarithmically” (Opfer and Siegler, 2007, p. 172). Opfer and Siegler conclude
that children’s logarithmic representations of numerical magnitude are “understandable” but that

in school and modern life can “interfere with accurate estimation” (p. 172).
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The log-linear model is seen as preferable to a segmented linear model for both theoretical and
empirical reasons. Amongst other things, the segmented model comes purely from number-line
estimation task data, whereas a logarithmic placement is implicated by multiple situations: “many
tasks indicate that the function translating objective numeric quantities into a subjective number
is logarithmic” (Young and Opfer, 2011, p. 59). These tasks include choosing the more numerous
of two sets of dots, and comparisons of Arabic numerals — in both cases, results follow Fechner’s
law (y = k*In x) (Young and Opfer, 2011, p. 58). The segmented model may have appeared to
accurately describe experimental results, due to the particular effect of a mixed population of
logarithmic and linear-placing participants: “in a hypothetical mixed population made entirely out
of linear and logarithmic subjects, averaged together, the logarithmic model does not provide a
better account until the population is over 70% logarithmic, whereas the segmented linear model
retains a strong fit across all mixtures even though no responses were generated by a segmented

linear function” (p. 60).

2.7.1.1.1 Whatis the change that happens?

The hypothesised log-linear change is most commonly referred to as a “shift”, in which an
individual moves from primarily using a logarithmic representation of magnitude to primarily
using a linear one, on a given range of numbers. The shift has only been deduced with respect to
specific ranges of numbers, and an individual commonly continues to use a logarithmic
representation on a larger range (e.g. 0-10,000) long after ‘shifting’ to a linear representation on a
smaller range (e.g. 0-100). Overlapping Waves theory frames the logarithmic to linear change as a

change in choice of representation.

To better understand the change, it is worth surveying the language used to describe it, for
example in Thompson and Opfer’s (2010) lengthy and in-depth investigation of the change
process. Their choice of language corresponds to the language used by other authors writing
about the logarithmic-linear change in the framework of overlapping waves theory. They describe
the change between logarithmic and linear representations using words from five main categories,
shown here with their frequency:

1. Apply, use [7 times]. E.g. “children’s application of linear representations to large
numerical scales” (Thompson and Opfer, 2010, p. 16); “children’s use of logarithmic
representations appeared unchanged” (p. 25)

2. Generate, produce [3 times]. E.g. “children immediately generated a linear series of
estimates for all other numbers in the 0-1,000 numeric scale” (p. 9); “produced

logarithmic estimates” (p. 25).
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3. Generalise [7 times]. E.g. “generalizing a linear representation of numbers to much larger
orders of magnitude” (p. 11).

4. Scale up, extend [6 times] “scale up their linear representations” (p. 10); “extending
linear representations of number to ever-larger numerical scales” (p. 25).

5. Shift, switch, abandon [9 times], e.g. “abandon use of a logarithmic representation” (p.

25), “a logarithmic-to-linear shift” (p. 12).

In addition, there were single instances of other terms to describe the change in representation:
“adopt” (Thompson and Opfer, 2010, p. 4), “change” (p. 16), “bootstrap” (p. 17) and “transferred”
(p. 24). A similar survey of the language used by Opfer and Siegler (2007) reveals the four most
commonly used terms to be the following:

“shift” [7 times]

“transition” in use of representation [3 times]

“apply” [twice]

“extend” a representation [8 times]

These terms carry a wide variety of implications, which perhaps suggests that more research is

needed to accurately describe the change.

2.7.1.1.2 Mechanisms

The change from logarithmic to linear representation can occur rapidly — between tasks in a single
experimental session, for example. In studies such as Opfer and Siegler (2007), this change
occurred in response to feedback from the researchers designed to highlight the discrepancies
between logarithmic positioning and the desired linear positioning. Opfer and Siegler conclude

that the logarithmic to linear change can be “strikingly abrupt” (Opfer and Siegler, 2007, p. 169).

Thompson and Opfer’s (2010) investigation into the mechanisms of the logarithmic-linear change
indicates an important role for analogy. Analogy is investigated by these authors because it has
the potential to “reconcile two sets of seemingly contradictory findings” (p. 4). These are, on the
one hand, the “slow rate of representational changes observed in cross-sectional studies” such as
Siegler and Opfer (2003), who recorded the “logarithmic-to-linear switch in numeric
representations between second and fourth grade [ages 7-10] on 0-1,000 number line problems”,
and on the other hand “one-trial representational changes” evidenced in microgenetic studies
such as Opfer and Siegler’s 2007 study, noted above, which demonstrated children’s adoption of
linear representation after being presented with “maximally discrepant feedback” (Thompson and

Opfer, 2010, p. 4).
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The analogy functions through aligning contexts, so that children are invited to make a
generalization and extend their representations. Thompson and Opfer (2010) “aligned contexts in
which children were familiar (e.g., 0-100) with larger, less familiar numeric contexts (e.g., 0-1,000
to 0-100,000)” and this “apparently prompted second graders [ages 7-8] to scale up their linear
representation of numbers” (p. 26). It did this by “highlighting the underlying structure of the
decimal system” thereby prompting children to “bootstrap the linear representation they already

possessed in a familiar numeric context (0-100) to less familiar numeric contexts” (p. 26).

The theoretical underpinning of the analogy explanation is structure mapping theory, according to
which “children form analogies by aligning representational elements between a base and target
domain. This alignment process facilitates transfer of information from base to target through
children’s comparison of surface-level features. This comparison process leads to subsequent
highlighting of common underlying relational structure shared by base and target” (Thompson
and Opfer, 2010, p. 7). In a more general context, there is evidence that an increase in the
linearity of mental representations of numerical magnitude can be stimulated by increased
interaction with external linear representations of number, for example board games (Ramani

and Siegler, 2008).

The idea that the non-linear placement is incorrect is presented as central to the proposed
account of how and why the logarithmic to linear change occurs. The driving force behind the
“age-related trend” is posited to be “the inaccuracies produced by the logarithmic representation,
together with extensive experience that children have with some estimation tasks and numerical
ranges” (Opfer and Siegler, 2007, p. 172). Or, in other words, “discrepancies between children’s
estimates and the linear function ... provoke the realisations that the underlying representation is
wrong and that a new way of thinking about the task is needed” (Opfer and Siegler, 2007, p. 173).
In a more sceptical reading, the proposed change mechanism requires only that children learn the

number line estimation task response hoped for by researchers and other adults.

Both Thompson and Opfer (2010) and Opfer and Siegler (2007) stimulate representational change
through the use of feedback between trials. The feedback consists of showing participants where
number line marks ‘should’ be — according to a linear representation. This feedback consists of
the researcher signalling to participants that the task is actually about the ability to produce a
linear representation of number, and in response to this additional task knowledge, children do
respond by switching to and extending their linear representations. The conclusions to be drawn
from this finding are not clear cut; the studies do show how representational change can be
triggered, but the social factor is an important factor that needs greater attention. From the

perspective of this thesis, the most accurate wording is the reference to “Children’s learned
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expectations that numerical magnitudes increase linearly” (Thompson and Opfer, 2010, p. 6). This
highlights accurately the nature of the new knowledge (“learned expectation”) and leaves open

the question of ‘correct’ and ‘incorrect’ representations.

2.8 Strategy in estimation and its relation to cognitive representation
Siegler et al. (2011) draw attention to a number of assumptions made in the empirical
investigation of cognitive representations of number, particularly that representation is an
automatic process and separate from conscious control. This is often revealed implicitly in the
design of studies: “The implicit assumption is that people invariably use a particular
representation of numerical magnitudes and that the research task is to determine the

characteristics of that representation” (p. 7).

The assumption of automatic activation is sometimes explicit, with Dehaene (1997) for example
describing logarithmic representations of number magnitudes as occurring “‘like a reflex’ that
cannot be inhibited” (cited by Siegler et al., 2011, p. 7), and Fias and Fischer’s (2005) assertion
that “the spatial coding of numbers ... occurs automatically” (p. 44). This language contrasts
strongly with Goldin and Kaput’s (1996) account of representation, which uses the language of a

tool, with capabilities, which the individual accesses.

As Siegler and colleagues (2011) note, “reviews of the literature on whole number magnitude
representation ... typically do not even mention strategies or strategy choices” (p. 7). Two
suggested reasons for this absence are firstly that strategies may be actually unimportant in
processing numerical magnitudes (if, for example, they are processed purely automatically by the
ANS); and secondly that more research attention is given to strategies where they are more
obviously in use, for example for fraction processing. There is evidence that fraction processing is
“slower and under greater voluntary control” and thus “characteristic of tasks on which people
can accurately report strategy use” (p. 7). Research on the representation of fractional
magnitudes has tended to confirm that strategy is an important variable (see for example Sophian

and Madrid, 2003).

An important source of evidence for the automaticity of magnitude representation is that
estimation accuracy appears to be unaffected by the length of time permitted. For example,
Siegler et al. (2011) cite results showing that “number line estimation with whole numbers is no
less accurate under time pressure than without time pressure” (p. 7). Another source of evidence
is the so-called distance effect in comparison tasks, in which numbers closer together elicit a

slower response time (Dehaene and Akhavein, 1995).
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Despite this evidence for automaticity, a number of results suggest that aspects of strategy could
be involved in magnitude representation. Geary et al. (2008) found “greater variation in children’s
use of one representational system or the other” than predicted from the literature (p. 293).
Specifically, “for some trials children made placements that implicated use of a linear
representation and for other trials they made placements that implicated use of the natural

number-magnitude representation” (p. 293).

Siegler and Opfer (2003) adopt the language of ‘choice’ in their paper showing evidence for
multiple representations. They conclude that “over a wide age range, people possess multiple
numerical representations, with choices among representations changing with age and
experience” (p. 242). Whilst the awareness of the individual regarding their choices is not
discussed, the idea does run firmly against the idea that individuals possess exactly one
automatically activated representation of number magnitude at any given time. Individual

strategy is similarly referred to by Siegler and Booth (2004)

Cohen Kadosh and Walsh discuss a slightly different perspective on individual capabilities and
strategic choice in representation of number. They hypothesise that an abstract sense of number,
if it develops, could be a “consequence of the intentional processing of numbers, which leads to
explicit creation of connections between different notation-specific representations” (Cohen
Kadosh and Walsh, 2009, p. 326, emphasis added). They argue that “humans do not, as a default,
represent numbers abstractly, but can adopt strategies that, in response to task configuration and
demands, can create real or apparent abstraction” (p. 326). The positioning here of the individual
as actor makes this perspective much easier to reconcile with constructivist-informed accounts of

representation in education literature.

Whilst strategy use and conscious control may appear to be very closely related, it is important to
acknowledge that strategy may also occur within automatic level processes. Thompson and
Siegler (2010), for example, conclude that the development of numerical representations involves
“trial-by trial variability” and “adaptive choice among representations”, as hypothesised in
overlapping waves theory. Crucially for this discussion, “The mechanism that produces these
adaptive choices is viewed as unconscious, and its workings have been illustrated in computer
simulations that generate strategy choices highly similar to children’s” (p. 1280), see also Opfer

and Siegler (2007).

The dichotomy between representation as tool or as automatic reflex finds an echo in the two

primary views of number sense, described by Berch (2005) as the “’lower order’ characterisation
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of number sense as a biologically based ‘perceptual’ sense of quantity” and “a ‘higher order’

depiction as an acquired ‘conceptual sense-making’ of mathematics” (p. 334).

2.8.1.1 Strategy in estimation tasks specifically

Number line estimation tasks form a very large part of research into cognitive representations of
number (see Methodology chapter). In brief, this is because estimation tasks require the
translation of numbers or quantities between different representations. As the previous section
describes, the dominant interpretation of results from these tasks has been that they reflect an
automaticised mental representation of magnitude; however, recent research has begun to
identify aspects of strategy. Children’s use of reference points, evidenced in a variety of ways, is

an important example.

One account of number line estimation that includes children’s use of reference points is the
proportion judgement account. Barth and Paladino (2011) argued for a model of number line
estimation in which children estimated by making proportion judgements using reference points
such as midpoints and the line endpoints. This interpretation of number line estimation removes
the need to account for a qualitative log-linear shift in how children estimate, and also has a
convincing psychological basis in more general psychophysical models of proportion judgement.
These general models are derived from Steven’s power law, and the inclusion of one or more
reference points changes the mathematical model to a one- or two-cycle power curve. Barth and
Paladino fitted children’s estimations to power curve models incorporating fixed reference points
(e.g. midpoint 10, on a line from 0 to 20), and concluded that their proportion judgment account
offered “at least five advantages over previous accounts of number-line estimation” (Barth and
Paladino, 2011, p. 134). The advantages are firstly that the account “is motivated by the structure
of the task”, secondly “has been modelled and validated in other domains, with many tasks, in
children and adults”, thirdly “makes specific, testable predictions” which found support in their
data and were not explained by previous accounts, fourthly that the account was able to explain
both the linear estimations of older children and the “roughly logarithmic-appearing” estimations
of younger children, and finally that it explains why the log-linear shift is not observed in many

other estimation tasks (Barth and Paladino, 2011, p. 134).

Power-curve modelling has been questioned, with Opfer, Siegler and Young (2011) for example
offering a convincing response to Barth and Paladino (2011) which argues that the success of
power curve models in the proportion judgement account is owed to noise-fitting. A further
weakness from the point of view of this study is that Barth and Paladino’s study included

feedback on the location of the midpoint during children’s introduction to the number line
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estimation task, thus introducing one of the reference points later examined. However, further

options also point towards children’s use of reference points.

Ashcraft and Moore (2012) carried out an unusual number line estimation study designed to
compare the log-linear and proportion judgement accounts, and found clear support for the
hypothesis that children begin to use an inferred midpoint when carrying out their estimations.
The study was unusual in that it tested only position-to-number estimation, as opposed to the
much more commonly investigated number-to-position estimation. Ashcraft and Moore
concluded that their results were “largely consistent” with the logarithmic-to-linear shift reported
by Siegler and colleagues (Booth and Siegler, 2006; Siegler and Opfer, 2003), whilst there was only
some support, and indeed some “problematic” aspects, with regard to the proportion judgment
account. The specific findings about the accuracy of children’s estimations were that estimates
near the origin of the line were “always” highly accurate, and that “This point is then joined by
accurate estimates at the endpoint of the line and, with increasing knowledge of arithmetic, by
the midpoint of the line.” (Ashcraft and Moore, 2012, p. 265) The authors deduced from these
findings that “first graders [aged 6-7] perform their estimates in an ‘origin up’ fashion, beginning
at the origin of the line and working forward to the hatch mark, with increasing errors and
latencies as the location to be estimated gets farther from the origin.” (p. 266). Second graders,
on the other hand, aged 7-8, “seem to be working from the end of the line closest to the hatch
mark ... in a strategically economical and accurate fashion”. The final stage occurs with
arithmetical knowledge of the midpoint, at which point “nearby points can be estimated from
that landmark as well”. It is worth emphasising that no qualitative data to investigate these

hypothesised strategies were collected.

An important source of evidence for children’s use of reference points has been developed by
Schneider et al. (2008) and their work analysing gaze patterns using eye-tracking. For children
aged 7-9 years (but not older and younger children), recorded eye movements were correlated
with manual estimation results and supported Petitto’s (1990) finding that children used count-up
from left endpoint and reference to an inferred midpoint. Eye-tracking was also used by Heine et
al. (2010), who investigated the connection between eye-movement and the position of children’s
estimations. They found, in line with other research into implicit knowledge (for example gesture
in the work of Goldin-Meadow and Alibali, see Garber and Goldin-Meadow (2002); Perry, Church
and Goldin-Meadow (1992)) that eye-movements revealed “ a qualitative change in children’s
implicit knowledge about numerical magnitudes in this age group that precedes the overt, that is,
behavioural, demonstration of explicit numerical knowledge” (Heine et al., 2010, p. 175). A

particularly interesting aspect of the study from the point of view of this thesis is that Heine et al.
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excluded children’s first fixations from the data analyses, since children fixed their eyes on the left
endpoint, midpoint or right endpoint “significantly more often ... than could be predicted from
the set of stimuli” (p. 180). The authors interpreted this as evidence of children’s initial
orientation, and excluded the eye movements in question from further analysis, but in the terms

of this thesis children’s initial orientations and their specific details are highly interesting.

Further eye-tracking research has been carried out by Sullivan et al. (2011) to investigate the
number-line estimation processes of adults. Although this does not shed direct light on the
processes employed by children learning about number, the findings, which strongly support
Barth and Paladino’s proportion judgement model, are of note. Sullivan et al. (2011) found that
adults’ estimations demonstrated “patterns of error predicted by psychophysical models of
proportion estimation” (p. 562) consistent with Barth and Paladino’s work with children. Their
results were not however predictable using the alternative proportional-reasoning strategy
mentioned by Siegler and Opfer (2003) which predicts reduced variability of estimations around
anchor points but does not predict the particular direction of errors. Sullivan et al. also found
evidence suggesting that adults’ estimation processes are “dynamic”, a finding consistent with
previous studies in which participants “adjusted estimation strategies to incorporate information
about numbers to be estimated” (Sullivan et al. (2011, p. 561), see also Izard and Dehaene (2008)
and Sullivan and Barner (2010)).

Important recent work on representational change and strategy has been carried out by White
and Szucs (2012). The purpose of their contribution is to go beyond investigation of the potential
log-linear shift, and develop further insight into children’s estimation strategies. White and Szucs
find that children in Year 1 (aged 5-6 years) “did not demonstrate any clear anchor point
application” and it is suggested this is “because they were limited to counting strategies and were
unable to link the numerical value to the spatial cues provided by the number line” (p. 9). Children
in years 2 and 3, however, did provide evidence of “more flexible strategies, and use of anchor
points, that utilize decomposition and part-whole relations” (p. 9). White and Szucs’ results lead
them to conclude that “specific numbers could exhibit unique behaviours as a function of the
familiarity with the number range, proximity to either external or mental anchor points, as well as
knowledge of arithmetic strategy” (p. 9). Importantly, the authors reflect that this flexibility
should give cause to question the validity of the usual modelling methods: “given the flexibility of
strategy application, is it in fact meaningful to try and model the mental representation of
numbers using a fixed linear/logarithmic model?” (p. 9). The potential for unique behaviours, as

described above, “represents a limitation of the linear/logarithmic modelling approach” (p. 9).
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With regard to the log-linear hypothesis investigated as part of the study, White and Szucs (2012)
find that a linear model “dominates from Year 2” onwards, but neither a logarithmic nor linear
model is compelling for younger children (p. 9). The authors suggest that children in years 2 and 3
were “probably” using the above-mentioned strategies, and that further research should make
this a focus for investigation (p. 10). Such scrutiny of estimation strategies themselves, in
combination with statistical modelling, “could greatly increase the understanding of developing

mental representations” (p. 11).

The explanations hypothesised by White and Szucs have been hinted at by much earlier work,
namely Petitto (1990) and Newman and Berger (1984), as acknowledged by Schneider et al.
(2008). Specifically, both studies identify a change from inflexible counting-on strategies used by
younger children, to more sophisticated use of counting and incorporation of midpoints by older
children. Neither study is fully comprehensive. Newman and Berger carried out only 21 trials per
child, and investigated strategy use for only three trials. More importantly still, strategy use was
investigated only using self-report data, a serious limitation, especially considering the nature of

the estimation process as evidenced by more recent studies.

Petitto’s (1990) results revealed “qualitative changes in children's strategies over the four grade
levels tested”, and these changes “indicate a shift from simple unidirectional counting by 1s in the
earliest grades to the use of midpoint values and alternative counting intervals by the end of third
grade [age 9]” (p. 70). Petitto concluded that the changes were related to “incremental
acquisition of component skills” and that later strategies incorporated elements of proportional
reasoning not seen in younger children’s estimations. In terms of the process of strategy change,
the results suggest two phases in strategy change; firstly, “a drop in the use of inappropriate and
ineffective modes of counting” followed somewhat later by “an increase in the use of new

strategy components (i.e. counting by 5s and 10s) and using the value of the midpoint” (p. 70).

The principal limitation of Petitto’s study is that findings on strategy were based only on in-the-
moment observations of children’s behaviour. For this reason, rapid changes in strategy, and
aspects only represented in gaze or gesture for example, are unlikely to have been captured. The
study also shares the limitation of using very few trials per child — only six. In terms of
investigating changes in strategy, it also finally shares the limitation — along with many numerical

representation studies - of a cross-sectional design (see Methodology chapter).

2.9 Imagistic representations of number
As the previous section describes, cognitive representations of numerical magnitude in particular
have received a good deal of attention from researchers in cognitive science and development. A
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separate body of relatively recent work has considered the imagistic representation of number
more holistically, using methodologies from Education research. Findings from this body of
research share important themes with findings from the cognitive science research, but in

addition add new dimensions of understanding.

The methodologies of this research share the use of tasks designed to stimulate children’s visual
imagery relating to number, and qualitative analysis of this imagery. This clearly complements
research previously described. In common with experimental studies in the cognitive science
tradition, education research into children’s representation of number has put particular
emphasis on the structure of children’s representations and what this reveals. A principal aim has

been the inference of children’s internal representations from their external representations.

Vivid imagery relating to natural number is a common phenomenon, reported in a range of
empirical studies (Galton, 1880; Thomas, 1992) as well as many anecdotal accounts. Thomas,
Mulligan and Goldin (1994) carried out a large cross-sectional study of children in Grades K to 6
(ages 4-12 years), and concluded that children’s internal representations of number were very
highly imagistic. The extent to which children represented aspects of number structure was
variable, as were the ways in which they did so. Interestingly, whilst only 3% of children in a
general sample (n=166) demonstrated dynamic images of the number sequence, in a separate

sample of children assessed as high-attaining (n=79), 29.9% demonstrated dynamic imagery.

An exploratory study by Thomas and Mulligan (1995) focused on structural aspects of number and
number representations, particularly motivated by the low understanding of base-10 structure
shown by many children. Children aged 10-12 took part in structured task-based interviews,
which allowed the researchers to makes inferences about children’s cognitive processes during
the construction phase of representations. On the basis of this study, the authors conjecture that
children’s cognitive representations of number do “give clues about their structural development
of the numeration system” (p. 21). They found a wider diversity of imagistic representations than
expected, and a higher percentage of dynamic imagery in middle/lower attaining children than
expected from the results of Thomas et al. (1994). Children who demonstrated dynamic imagery
of number did however achieve higher results on a numeration test than those not demonstrating
dynamic elements. The study is limited by necessarily capturing only a “partial description” of
children’s representational capabilities; other prompts, activities, or follow-up questions for
example could potentially have led to different results. The authors conclude that further
research is needed “to shed light on how children construct their personal numeration systems,
and how they structure them over time” (Thomas and Mulligan, 1995, p. 21). On the basis of the

1995 results, it was concluded that more structurally developed internal representation of
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counting numbers correspond to more coherent external representations and a wider range of
numerical understandings (p. 22). An hypothesis to be tested by further, longitudinal work, is
whether children “who have access to several forms of imagery with which to represent their
internal structures, will be more capable of developing a relational understanding of the

numeration system” (p. 22).

A follow up study that aimed to partially address the question of the development of children’s
representations was carried out by Thomas, Mulligan and Goldin (2002). As in their 1994 study,
two samples were used, a general sample and a separate sample of children assessed as high-
attaining. A limitation shared with the majority of number representation studies in both
cognitive science and education is the use of a cross sectional design to investigate development
trajectories. The authors stress that “Data taken in just one or two interviews per child do not
permit us to trace the process of construction of internal representational system longitudinally in
individual children” (Thomas et al., 2002, p. 129). In addition, “Our methods of inferring aspects of
children’s internal representation from their externally produced representations are still
exploratory, and not yet subject to tests of validity or inter-researcher reliability” (p. 130).
However, the study nevertheless provides interesting additional evidence of children’s dynamic
imagery and initial identification of stages of imagistic representation. The stages include the
following:
... inventive-semiotic acts, of initially assigning imagistic meanings to or identifying
imagery with mathematical words and symbol configurations; structural development
acts, associated with sequences of numbers, groupings by tens, recursive grouping, and
other mathematical structures; and autonomous acts, in which insightful, mathematical
meanings for numerals are freely and flexibly found in new contexts, distinct from those
used initially in constructing the numerations system.

(Thomas et al., 2002, p. 130)

These stages quite clearly identify ways in which children’s increasing arithmetical knowledge and

number understanding are connected with changes in their representations of number.

2.10 Numerical representations and mathematics

As previously noted, cognitive representations of number are assumed to reveal aspects of
conceptions of number, and to play a vital role in mathematical activities: “From understanding
the meaning of number symbols (e.g., knowing that “6” or “six”’ denotes six objects), to
comparing the magnitudes of numerals (e.g., knowing that “six’’ is more than “four”’), to

estimating quantities (e.g., knowing whether there are closer to 6, 60, or 600 candies in a jar),
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children must map between alternative quantitative representations” (Young and Opfer, 2011, p.

59).

The involvement of cognitive representations of number in learning and doing mathematics is one
of the key reasons for interest in researching them. In this section, | review recent empirical
evidence on the ways in which cognitive representations of number are connected with

performance in mathematics.

2.10.1.1 Base-10 structure

An important area of early mathematics which can be investigated via cognitive representations
of number is the conception of the base-10 structure of the Arabic number system. This is
certainly the conclusion of Thomas et al. (2002), as noted in the previous section. Moeller et al.
(2009) suggest that increasingly linear responses to number line estimation tasks could be
interpreted as improvement in integrating the single digits’ magnitudes of tens and units in
compliance with place value structure. Linearity of responses could thus be a valuable indicator,
since longitudinal work has found first graders’ (6-8 year olds) understanding of place-value to be
a statistically reliable predictor for specific aspects of arithmetic performance in third grade (9-11

year olds) (Moeller et al., 2011).

Fias and Fischer (2005) also make connections between cognitive representations and base-10
structure in number. The key finding of interest is that the SNARC effect (observed correlation
between the spatial orientation of numerical stimuli and response time for comparison tasks)
does not clearly extend to two-digit numbers. This raises the prospect that numbers of more than
one digit are not processed holistically, as “27”, but rather in some sense as “2” and “7”
separately. Fias and Fischer judge that “evidence is accumulating for a separate representation of
decade and unit magnitudes” (p. 47). This conclusion supports earlier results also suggesting
separate processing of units and decades in two-digit numbers (Nuerk, Kaufmann, Zoppoth and

Willmes, 2004).

These findings link clearly to education research results which show children’s difficulty with
multiple digit numbers and the additive composition structure underlying them. Nunes and
Bryant (2009) point out that children have difficulty with the additive composition of number in
general, as well as specifically for the purposes of the base-10 system, and that during the first
two years of schooling children appear to be learning about both simultaneously. Thomas (2004)
notes that even in later elementary school grades, children show poor understanding of the base-
10 structure of the number system. A number of studies have linked understanding to number

words in natural language, finding that children speaking languages which more transparently
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reflect number structure (e.g. Chinese) are quicker than others (for example English and French
speaking children) to demonstrate understanding of teen quantities as cardinal tens and ones (e.g.

Ho and Fuson, 1998).

2.10.1.2 Mathematical performance generally

An association between small exact number representation (also referred to as subitising) and
performance in mathematics has been recorded by both Landerl et al. (2004) and Mulligan et al.
(2006). However, there exists “an even larger body of evidence” connecting the analogue
magnitude system (AMS) with mathematical performance, in particular, with arithmetical

competence in young children (Obersteiner et al., 2013, p. 126).

Many studies have found correlations between approximate number representation and current
or subsequent mathematics achievement in children (Aunio and Niemivirta, 2010; De Smedt,
Verschaffel and Ghesquiere, 2009; Halberda, Mazzocco and Feigenson, 2008; Siegler and Booth,
2004). As Inglis, Attridge, Batchelor and Gilmore (2011) explain, several researchers have
therefore speculated that differences in this form of numerical representation “provide the basis
for individual differences in symbolic mathematical competence” (p. 2). The results of Inglis et al.,
however, present a more complex relationship, with the authors concluding that “the association
between non-verbal number acuity and mathematics achievement changes with age, and that
non-verbal number representations do not hold the key to explaining the wide variety of

mathematical performance levels in adults” (p. 2).

One problem with understanding the relationship between early numerical representation
systems and mathematics is that work has been based largely on correlation or regression
analysis. This is not of course the only area of mathematical development so afflicted; Obersteiner
et al. (2013) acknowledge that the same holds true for other basic number processing tasks,
including counting. A rare intervention study used a game in which participating children landed
rockets onto a number line, in order to promote approximate number representation on a mental
number line (Kucian et al., 2011). The intervention lasted for five weeks, with daily training
sessions of fifteen minutes, and participants both with and without development dyscalculia
demonstrated improved arithmetical ability. Patterns of brain activation also changed after
training, which can be interpreted as “a qualitative change of mental processing” (Obersteiner et

al., 2013, p. 126).

Whereas Inglis et al. (2011) and Halberda et al. (2008) used AMS acuity as measured from
numerical comparison tasks (participants choose which of two arrays of dots is more numerous),

Booth and Siegler (2008) carried out an experimental study using a different methodology. In this
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study, a computerised number line estimation task was used to assess “knowledge of numerical
magnitudes” (p. 1020) and the knowledge was measured by calculating the linearity of children’s
estimates, the R?,;, of each child’s answers to the number line estimation task (p. 1024). Children’s
knowledge of addition was also assessed pre- and post-test. The study yielded three important
results; firstly, “linearity of children’s number line estimates correlated positively with their
existing knowledge of addition”; secondly, “degree of linearity of children’s pretest estimates was
predictive of their learning of answers to novel addition problems”; and thirdly “providing
accurate visual representations of the magnitudes of addends and sums increased children’s
learning of the novel addition problems beyond the level produced by simply presenting problems
and answers” (p. 1027). Surprisingly, children’s learning was not enhanced by being prompted to
generate their own representations. In summary, the study indicates that “numerical magnitude
representations are not only positively related to a variety of types of numerical knowledge but

also predictive of success in acquiring new numerical information” (p. 1027)

The first dual intervention involved two groups of children undergoing a three week intervention,
with one group experiencing AMS training and the other group SENS training (Rasanen, Salminen,
Wilson, Aunio and Dehaene, 2009). The study found that SENS training led to improvements in
small number comparison, and AMS training led to improvements in large number comparison,
but a weakness of the study was the difference in learning environments used for the two groups,

making comparisons difficult.

The first study to compare the effects of exact or approximate training within a “rigorously
controlled learning environment” and directly compare their effects on arithmetic performance
was carried out by Obersteiner et al. (2013, p. 127). The authors found “no crossover effect”
between improvement in exact and approximate number processing, supporting the theory that
approximate and exact number processing indeed “rely on distinct cognitive systems” and that

training in both is required to enhance the complete range of numerical skills (p. 132).

In terms of improvement in arithmetic performance, “both approximate and exact training led to
equal performance in arithmetic” (Obersteiner et al., 2013, p. 133). As Rasanen et al. (2009) found,
the effect of both numerical processing training programmes was, though significant, small. This
corroborates accounts of the development of the number concept, number understanding and
number sense by again revealing that “though basic number processing is certainly an important
prerequisite, arithmetical achievement is a complex construct involving other important facets”
(Obersteiner et al., 2013, p. 133). The authors point out that the precise relation of basic
numerical processing systems to arithmetical ability is still a matter for research, and cite

Schneider et al.’s (2009) study as illustration of the complexity, since this study found “use of the
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internal mental number line was virtually unrelated to mathematical achievement in 5" and 6™
grades [ages 10-12]” (Obersteiner et al., 2013, p. 133). This study in fact demonstrates yet
another reason for caution about “interpreting performance on single tasks as a measure of the
related mental representation” (p. 133); in contrast to the summary given by Obersteiner et al.,
Schneider et al. (2009) specify that they assess only two aspects of the approximate number
system: the distance effect and SNARC effect. They state that: “Individual differences in the use of
the internal number line, as assessed by these 2 effects, seem to be of little importance when it
comes to the acquisition of the content of 5th- and 6th-grade mathematics lessons” (p. 359,
emphasis added). They conclude, as do Obersteiner et al. and the majority of researchers in this
area, that the relation between the AMS and mathematical performance is not yet well
understood. Specifically, there appears to be “no simplistic relationship between the ANS and

symbolic mathematics achievement” (Inglis et al., 2011, p. 13).

2.11 Literature review postscript

Relevant empirical studies of children's number line estimations have continued to be published
during and since data collection for this thesis. Whilst these studies clearly could not influence the
shaping of the research questions, methodology or data collection of this thesis, they have
informed the focus of the quantitative analysis and the interpretation of findings. This section of
the literature review addresses the most recent research on number line estimation, and explains

the impact for this thesis.

2.11.1 Recent number line estimation studies

Two recent papers, Rouder and Geary (2014) and Slusser, Santiago and Barth (2013), report
number line research particularly relevant to this thesis. Both studies examined young children’s
number-to-position number line estimations, and sought to shed light on developmental changes
in number line estimation, and the cognitive processes underlying number line estimations. The
two studies share a number of important elements with the research design of this thesis: they
investigated children in the first grade of school (in the US, children aged 6-7, compared to 5-6 for
Year 1 in the UK, but both are the first year of main schooling), imposed no time constraints on
children’s estimations, and used target numbers in the range 0-100. Unusually for this field,
Rouder and Geary (2014) used a longitudinal research design. The key differences between these
two studies and this thesis research are, firstly, that they collected no qualitative data on
children’s estimations; secondly, that both studies gave feedback on the position of the midpoint
in children’s initial trials; and thirdly, that neither study investigated estimations in the inverse,
position-to-number, task. As in this thesis, Slusser et al. (2013) investigated estimations on more
than one range.
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Using distinct methods of analysis, both Rouder and Geary (2014) and Slusser et al. (2013)
conclude that a proportional reasoning account of number line estimation is better supported by
the observed data than the logarithmic-to-linear shift account. The precise versions of the
proportional reasoning account that each set of authors advocates, and the mathematical models

that they argue describe the proportional reasoning, differ slightly.

In addition to adding new data and analysis to the debate on number line estimation, both
Rouder and Geary (2014) and Slusser et al. (2013) substantially reinforce criticisms of the
logarithmic-to-linear account: its psychological basis, the methods of analysis used in its
investigation, and the validity of conclusions drawn from these. Importantly, both papers prompt
a re-examination of several studies previously dismissed or overlooked by the field: the most
notable of these are Barth and Paladino (2011) and Ashcraft and Moore (2012). Although neither
Rouder and Geary (2014) nor Slusser et al. (2013) refer to it, their findings also relate strongly to

hypotheses on number line estimation strategies put forward by White and Szucs (2012).

2.11.1.1 “Developmental Change in Numerical Estimation”

The research reported by Slusser et al. (2013) is a cross-sectional study of first graders’ [aged 5-6]
estimation accuracy in number-to-position estimation in the ranges 0-20 and 0-100, using Percent
Absolute Error as the measure of estimation accuracy. The authors compared the log-linear shift
account to a proportion-judgment account by fitting the models implied by each account and
comparing their success using Akaike information criterion (AIC), a method of comparison that
takes account of model complexity as well as goodness of fit (unlike the commonly-used R®
measure). The models comprising the log-linear shift account were logarithmic and linear
functions, and the models comprising the proportion-judgment account were firstly an
unbounded power function, and then the one- and two-cycle versions of the proportional power
model, as developed by Hollands and Dyre (2000) and first used in a number-line estimation
context by Barth and Paladino (2011) (Slusser et al., 2013, p. 198). The study tested children’s
estimations in different ranges in order to investigate “the claim that different estimation
patterns for different ranges within children indicate the presence of multiple types of mental

number representations”, as suggested by Siegler and Opfer (2003) (Slusser et al., 2013, p. 197).

Slusser and colleagues conclude that their proportion-judgment account describes a more
accurate understanding of children’s number line estimations than the log-linear shift account.
Their data constitute “strong evidence” against the idea that number line estimations directly
reflect a mental representation of number, and against the idea of a discontinuous shift from
logarithmic to linear mental representation of number (Slusser et al., 2013, p. 205). In contrast to

the log-linear shift account, the proportion-judgment account was able to explain observed
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patterns in children’s estimates well. The authors argue that this account also provides evidence
for "at least one gradual component” in the developmental changes seen in children's number

line estimations (p. 205).

211.1.11 Explaining developmental change in number line estimation

The models of proportion judgment considered by Barth and Paladino (2011) and Slusser et al.
(2013) are originally derived from Stevens’ power law, which “expresses the relationship between
the estimated magnitude of a stimulus and its actual magnitude” using y=ax’. In this formulation,
B represents “a quantification of bias associated with estimating a particular type of stimulus
magnitude (such as brightness, area, or length)” and “a is a scaling parameter” (Slusser et al.,

2013, p. 195).

A proportion-judgment account of number line estimation based on these models explains
developmental change in children's estimations in two ways. The first aspect is change in the
value of B, which reflects the degree of bias in a child’s estimations. With age and experience, the
parameter approaches the value B=1, which results in estimations equivalent to y=x (i.e. perfectly
linear, with gradient 1). The second aspect of developmental change is the sequential
incorporation of anchor or reference points, principally the two line endpoints and an inferred
midpoint. As Slusser et al. explain, “Our theoretical account predicts that increased accuracy is
linked to the number of reference points utilized by a participant and offers a quantitative
explanation of this link." (p. 196) The example given is that of a participant with poor
understanding of either the task or the number range in question, who might therefore only take
into account the left endpoint of a number line, hence "treating the task as an open-ended
magnitude judgment rather than a proportion judgment.” (p. 196) In this case, the estimates
produced should be well fit by an unbounded power function, the first model of three in Slusser
and colleague’s proportion judgement account. This explicit consideration of how task responses
may be associated with patterns of estimation error is something that previous research had
suggested in only vague terms, and makes Slusser et al.’s (2013) work highly relevant to the aims
of this thesis. As in the vast majority of studies, the limitation of Slusser et al.'s research is that no
data on children’s task responses was actually collected, meaning that the connection remains

hypothetical.

211.1.1.2 Contribution to critical appreciation of earlier work

Slusser et al. argue strongly that deducing internal representations of number from number line
estimation tasks is problematic, and argue against some of the specific conclusions made on this
basis in other research. Their first argument against deducing internal or mental representations

is that multiple task responses can result in estimates well fit by the same function. For example,
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estimates well fit by an unbounded power function could result from counting-on from the left
endpoint with inappropriately sized units, from incorrect referencing of the right endpoint (e.g.
not understanding the magnitude of 100), or from ignoring the right endpoint altogether. Slusser
et al. emphasise that “For these and other reasons, the applicability of a particular type of
function to number-line estimation patterns should not be taken as evidence for a corresponding
mental representation of number.” (2013, p. 196) This conclusion forms an argument against the
logarithmic-to-linear account of number line estimation, since in this account the logic of the
developmental sequence depends on number line estimations revealing children’s mental
representations. Without assuming this direct connection, the theory is unable to account for the

observed pattern of changes in children’s estimations.

Slusser et al. (2013) helpfully situate the logarithmic-to-linear shift account in the history of
research into the internal representation of number. The argument that internal representations
of numerical magnitude are logarithmically arranged stems from the Weber-Fechner law stating
that “the magnitude of sensation is logarithmically related to objective stimulus intensity” (p. 194).
In other words, the internal representation of numerical magnitude follows a pattern identified in
a much broader area of psychology, the conclusion of Dehaene (e.g. 1997). The principal opposing
viewpoint is that internal representations of numerical magnitude are linearly spaced, and that
logarithmic patterns appear due to estimation variability which increases in proportion to the

magnitude of the target. Notable proponents of this view include Gelman and Gallistel (e.g. 1992).

Number line estimation tasks have been used extensively to try to settle this debate. Siegler and
Opfer (2003), for example, failed to observe scalar variability in children’s number line estimations
and on this basis argued against a linear internal representation of numerical magnitude. Slusser
et al. (2013) query the validity of this argument due to the fact that the vast majority of number
line estimation tasks (including those used by Siegler and Opfer (2003)) present number lines with
both upper and lower endpoints. Slusser and colleagues argue that this upper bound necessarily
affects the variability of responses, and hence “the absence of scalar variability in number-line
estimates does not imply a lack of scalar variability in mental representations of numerical

magnitude” (2013, p. 195).

This conclusion — that lack of scalar variability in estimates does not imply lack of scalar variability
in mental representations — is convincing. However, the extent to which and way in which an
upper endpoint affects estimates has to be stated carefully, and to acknowledge the potentially
wide gap between an ideal task response and actual task responses. In their discussion of scalar
variability in number line estimations, Slusser et al. at one point claim that “typical number-line

tasks elicit estimates relative to marked endpoints, prompting participants to make judgments
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about relative numerical magnitude within a restricted range.” (2013, p. 195) This claim is in fact
one of the aspects of number line estimation under investigation. Making judgments about
relative magnitude within a restricted range is an ideal way to mathematically solve the task, but
there exists a variety of potential task responses — in participants of all ages — that do not involve
making a judgment of relative magnitude within a restricted range. Elsewhere in the article, the
authors acknowledge this gap clearly, and do correspondingly include models that only take

account of a left (lower) endpoint (see Slusser et al., 2013, p. 196).

Considering the question of "how (and whether) to draw conclusions about internal scales of
magnitude" from estimation tasks at all, Slusser et al. summarise the difficulties involved (p. 194).
The difficulties are firstly, the questionable way in which most studies only consider the two
possibilities of logarithmic or linear; secondly, the fact that in modelling number line estimations
with logarithmic and linear functions, researchers systematically fail to take into account salient
task features; and thirdly that “typical analyses of these tasks attribute variations in number-line
estimation solely to numerical processing and numerical representations, assuming that the
spatial components of the task do not introduce their own variations.” (p. 195) As Slusser et al.
observe, “This assumption is deeply problematic given a wealth of research on the estimation of
spatial position in children and adults” (p. 195). Qualitative evidence can illustrate these
difficulties with episodes in which intentions (for example a verbalised comment that “I'll just put
it halfway”, or an attempt to appropriately scale counting on a particular number line) do not

match spatial actions.

Two previous studies (Barth and Paladino, 2011; Sullivan et al., 2011) had already looked outside
the traditional account of number line estimation and interpreted data using psychophysical
models of proportion judgment. These studies found success in terms of model fit and in
providing a psychologically convincing theoretical underpinning for the models, but the impact of
the work was slight. Slusser et al. (2013) identify two key reasons for this lack of impact. First is
that the vast majority of research designs focused on the smaller numbers within a given range,
since this is the point of maximum discrepancy between linear and log models, and this “yields
little data to reveal the details of underestimation patterns for larger numbers” (Slusser et al.,
2013, p. 196). Secondly, “contingent on the value of the exponent (B) and on the participant’s use
of reference points, unbounded and cyclical power models may closely resemble logarithmic or
linear” (p. 196), in other words, the models genuinely appear very similar, and this effect is

exacerbated when there are few target numbers chosen in the upper part of a range.
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2.11.1.2 “Children’s cognitive representation of the mathematical number line”

Whereas Slusser et al. (2013) conclude that it is inappropriate to deduce internal representations
of number from number line estimations, Rouder and Geary (2014) set out with this precise aim.
Although the authors do not give attention to arguing why their deduction of internal
representation is valid, their modelling of number line estimation in fact addresses most of the
problems identified by Slusser et al. (2013) (see above). Rouder and Geary (2014) do not assume
that the internal representation follows either a logarithmic or linear placement, and their
modelling of number line estimation is highly focused on task features and the variation

introduced by spatial representation.

The central point that Rouder and Geary (2014) emphasise is the issue of estimation variance. Like
Slusser et al. (2013), Rouder and Geary (2014) test competing models, but they make a persuasive
case that “the distribution is often more diagnostic for adjudicating between theories than the
mean alone” (p. 2). In the case of number line estimations, this means not only deciding which
model of mean estimation placement to test, but whether or not to assume equal variance for
each target within the range covered. Rouder and Geary (2014) argue that the assumption of

equal variance is problematic.

Rouder and Geary (2014) test a hierarchy of models, the first of which is a compression model of
the form log yi= a +B*log x; + €, where €; is a zero-centred, normally distributed noise term with
standard deviation sigma. The authors describe this model as “an amalgam of elements from
Dehaene (1997, 2003) and Gallistel and Gelman (1992)” (p. 4). The mean placement of
estimations in this model follow a power law, as in Dehaene’s theory, but variance of estimations
increases with target size, as in Gelman and Gallistel’s work. The two following models in the
hierarchy tested by Rouder and Geary are models for proportional reasoning responses, the first
for participants incorporating the right endpoint (in addition to the always-assumed left endpoint)
and the second for participants incorporating both endpoints and also a midpoint. The models
consist of S-shaped curves, as in Slusser et al. (2013), the first a one-cycle curve and the second a
two-cycle curve. The authors explain that “predictions for the proportional reasoning theory are
based on a single principle — variation should be greater the further the number is from the
nearest anchor” (p. 4). They note that this principle is “taken as axiomatic, perhaps almost self-
evident” (p. 4) and point out that “The minimal requirement is that the variability in this physical
distance is a function of the physical distance itself, which strikes us as reasonable.” (p. 4) Most
convincingly, the authors point out that the assumption is highly plausible independent of internal

represenation of number: “The notion that the noise in placement is increasing with the distance
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to the nearest physical anchor is realistic even if it describes only the translation between precise

mental distances and realized physical ones.” (p. 4)

The precise predictions about the variance for different target numbers offer Rouder and Geary a
“diagnostic” for evaluating models, and a distinct advantage, since “Previous researchers who
used regression with its equal variances assumptions are unable to capitalize on the differential
predictions about variance ...” (2014, p. 6). Rouder and Geary (2014, p. 10) conclude that when
analysed with conventional models that seek to explain mean estimations, “our data are
consistent with many other developmental studies” including Ashcraft and Moore (2012) and the
work of Siegler and colleagues. However, from the analysis using their own models, Rouder and
Geary draw both more significant and more specific conclusions. Firstly, they conclude that “The
compression model can be unified with the proportional reasoning models, and all of them
understood in terms of placements guided by one, two, or three anchor points.” (p. 10) This is a
significant unification of models, and helps to dismantle a dichotomy between the log-linear shift
and proportional reasoning accounts that is not only unhelpful, but perhaps unnecessary. The
second conclusion regards developmental change in estimation accuracy. Here, Rouder and Geary
conclude that it “results from incorporation of additional anchors, one at a time, that partition the
line into segments. Placements are made within these segments, with numerals close to an
anchor placed with greater accuracy than those farthest from an anchor.” (Rouder and Geary,
2014, pp. 10-11) This conclusion firmly supports that of Ashcraft and Moore (2012) and Slusser et

al. (2013), despite other differences between these groups of authors.

2.11.2 Summary and conclusions

Recent research continues to investigate number line estimation on the basis that it is an
important element, or at the very least indicator, of early mathematical development.
Performance patterns on number line estimation tasks are “correlated with performance on
standardized math tests and other measures of mathematical ability” (Slusser et al., 2013, p. 193).
The two measures are not only correlated; in fact, “children’s ability to accurately place numerals
on the line is predictive of their later mathematics achievement, controlling for other factors”
(Rouder and Geary, 2014, p. 1). An even stronger claim comes from Fazio, Bailey, Thompson and
Siegler (2014): “Precise representations of numerical magnitudes are foundational for learning
mathematics. Both correlational and causal evidence link the precision of individual children’s
numerical magnitude representations to their whole number and fraction arithmetic skill,
memory for numbers, and other aspects of mathematical knowledge.” (pp. 53-54) In short, the

interest of number line estimation tasks is agreed upon.
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It is also an agreed, observed fact that children’s number line estimations change with age and
experience. The underlying characteristics and mechanisms are the aspects of developmental
change under dispute. Many previous number line estimation studies provide evidence of a
numerical spatial association, but even now “the exact nature of the connection remains
controversial” (Siegler and Thompson, 2014, p. 40). In their review of spatial-numerical
association research, Patro, Nuerk, Cress and Haman (2014) similarly conclude that “The mental
processes and strategies underlying the number-space associations in this task [number line

estimation] are thus still controversial." (p. 4)

The major debates in the field of number line estimation and numerical magnitude representation

remain unanswered. These debates include:

e  Whether numerical magnitude is internally represented with a compressed-scale function
(e.g. logarithmically) with uniform variability, or linearly with scalar variability (increasing
with increasing numerical magnitude)

e The relationship between internal representations of numerical magnitude and number
line estimation tasks

e  Whether number line estimation tasks are more appropriately interpreted as proportion
judgment tasks, and hence modelled using cyclical power functions

e What causes the apparent increase in linearity of number line estimations

In terms of the efforts of research to answer the above questions, recent studies have
acknowledged the need to focus more on the estimates of individuals (as opposed to the median
estimates of cohorts). However, there remains a lack of longitudinal research, and an absence of
qualitative evidence to support hypotheses about children’s task behaviour; the most recent
known study to collect qualitative evidence on children’s number line estimations remains Petitto
(1990), as discussed in the main literature review. The absence of qualitative evidence is
particularly pressing given the increase in hypotheses connecting changes in children’s number
line estimations with progressive use of specific mathematical reference points (Ashcraft and
Moore, 2012; Rouder and Geary, 2014; Slusser et al., 2013; White and Szucs, 2012). Plausible and
specific hypotheses have been proposed, but recent research has not yet collected evidence on

children’s actual estimation processes.

With regard to developmental changes in number line estimation, although researchers have
devoted a great deal of energy to debating the precise form of the mental representation
underlying estimations, or alternatively the psychological model of proportion judgment most

appropriate, it is important to remain focused on the documented changes in children’s
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estimation. Fazio et al. (2014, p. 54) summarise the repeatedly-observed change as follows: “As
children gain experience with increasing ranges of numbers, their number line estimates become
more accurate and more closely approximate a linear function.” The tone of Fazio et al. differs
remarkably from earlier work, in which Siegler and colleagues fairly vociferously argued for the
logarithmic-to-linear account of children’s number line estimations. The most recent claims about
number line estimation are more moderate: firstly that with age and experience, children’s
estimates more closely resemble a linear function, and secondly that linear accuracy of number
line estimations for symbolically represented numbers is closely related to mathematics
attainment (Fazio et al., 2014, p. 54). One logical outcome of this simplified attitude is to compare
children’s estimations over time simply in terms of their linearity, rather than by fitting and

comparing multiple competing models for each child, condition and cohort.

This chapter has reviewed the literature in order to situate the current research problem and
guestions amongst existing research. The review of theoretical material demonstrated the
theoretically complex approaches that have accompanied the various strands of relevant research.
The latter sections, focusing on empirical studies, have shown that relevant empirical findings
have been reached in a variety of research areas. In the next chapter, the theoretical framework
which supports the thesis is explained. The theoretical framework provides a vital scaffold to the

research problem, and enables a theoretically coherent interpretation of the literature reviewed.
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Chapter 3 Theoretical Framework

3.1 Overview

In this chapter | explain the theoretical framework supporting this thesis. This framework
supports every stage of the research; it articulates and clarifies the particular perspective that led
to the identification of the research problem and the formation of the research questions; it
guides the literature review; it informs and supports the chosen research methodology; and it
directs the purpose of the analysis and interpretation of results. The theoretical framework has
already been presented at the Young European Researchers in Mathematics Education summer

school (YESS-6) held in Faro, Portugal in 2012.

The key theory of the framework is Duval’s theory of cognitive representation, vision and
visualisation (Duval, 1999, 2002). This theory sits within a cognitive tradition and aims to provide a
framework for analysing the cognitive functioning of mathematical thinking and conditions of
mathematical learning. The two fundamental aspects of Duval’s theoretical perspective are the
ideas that representation and visualisation are central to mathematical understanding, and that
the particular character of mathematical knowledge necessitates a more detailed analysis of
representation and visualisation than domain-general theories have provided. Studies of vision,
visualisation and representation which do not pay sufficient attention to the uniqueness of
mathematical knowledge are “deceitful” and unable to illuminate the processes of mathematical

learning, and students’ difficulties with that learning (Duval, 2002, p. 311).

In addition to Duval’s theory of cognitive representation, the theoretical framework of this thesis
incorporates aspects of Presmeg’s theory of imagistic representation, as adapted for the context

of the cognitive representation of natural numbers by Thomas, Mulligan and Goldin (2002).

The important remaining theoretical aspect of this thesis is Resnick's (1983) account of number
development. The crucial role played by this theoretical work is not in the overall theoretical
framework supporting the thesis, but in the analysis stage. Resnick's (1983) work is therefore not
included in this chapter, but addressed separately in the theory for analysis section (4.4.2) of

Chapter 4.

This chapter begins with a detailed discussion of Duval’s framework of cognitive representations
and the distinctions and classifications that can be made. It then moves onto discussion of the
ideas of vision and visualisation, with respect to representations, and the consequences for
mathematical learning. Attention is given to how this particular theoretical approach is

appropriate to enable and support the current research. The chapter then goes on to introduce
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and explain the need for Thomas et al.’s adaptation of Presmeg’s theory of imagistic

representations.

3.2 Duval’s theory of cognitive representations and visualisation

Duval’s theory of cognitive representation and visualisation was laid out in a comprehensive form
in a plenary address at the 21st Annual PME-NA meeting in Mexico (Duval, 1999) and
subsequently republished by Fernando Hitt in a volume representing the progress of the PME-NA
‘Working Group on Representation and Mathematics Visualization’ over the period 1998-2002
(Duval, 2002; Hitt, 2002). The theoretical ideas from the 1999 paper were further developed in a
theoretical analysis of cognitive difficulties in mathematics learning published in Educational

Studies in Mathematics (Duval, 2006).

The 2002 volume published by Hitt contains strong theoretical analyses of representation and
visualisation in mathematics education from researchers including Norma Presmeg, James Kaput,
Patrick W. Thompson, Luis Radford and Sylvette Maury in addition to Duval and Hitt. Presmeg, in
her preface to the book, describes it as “an uneven collection of papers, as individual as their
individual authors” but singles out Duval’s contribution for expressing well the “collective
apprehension” reflected by the various papers taken as a collection (Presmeg, 2002, p. ix).
Presmeg frames the introduction of the whole collection in terms of Duval’s contribution, and
describes Duval’s chapter itself as “amazingly dense and authoritative”, in fact “quite startling”. In
contrast to the précis and brief evaluation she offers for the other chapters, with respect to
Duval’s chapter, Presmeg (2002, p. xiv) states “l cannot do justice to Duval’s work here: in fact |

cannot even introduce it adequately.”

3.2.1 Starting point: the unique character of mathematical knowledge
Duval’s starting point is that mathematical knowledge differs in fundamental ways from
knowledge in other fields, and until this is taken into account, deep understanding of

mathematical thinking and learning will not be forthcoming.

Duval characterises the nature of mathematical knowledge as “paradoxical” (Duval, 1999, p. 4). It
differs most obviously from other fields of knowledge in respect of the fact that mathematical
objects, unlike the objects of study in other domains, are not available to perceptual senses and
can only ever be accessed via the production of semiotic representations. At the same time,
mathematical understanding requires absolutely “not confusing the mathematical objects with
the used representations” (p. 4). Because of this paradoxical character of mathematical
knowledge, Duval holds that “Representation and visualization are at the core of understanding

in mathematics” (p. 3).
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Duval observes that “explanations of the deep processes of understanding and learning in
mathematics” have progressed less in recent years than innovations in curriculum and teaching.
For Duval, this is directly linked to the unique character of mathematical knowledge and the
consequent centrality of representation and visualisation. The concepts of mathematics are not
what sets it apart — after all, “there is no domain of knowledge that does not develop a set of
more or less complex concepts” (Duval, 2006, p. 106). The difference arises from the “very
specific epistemological situation of mathematics” which means students have to face a “radically”
different cognitive use of signs than that of other disciplines (p. 107). Deep understanding of
mathematical learning therefore necessitates going beyond “local studies of concept acquiring at
each level of the curriculum”, “mere reference to very general theories of learning” and “global
description of student’s activity in classroom” (Duval, 1999, p. 3). The research here alluded to by

Duval has not been, is not, and can never be sufficient to further illuminate the deep processes of

mathematics learning.
3.2.2 A framework of cognitive representations

3.2.2.1 The internal/external distinction

Duval’s framework encompasses all cognitive representations, that is to say, representations
involved in the act of cognition. As discussed briefly in the Introduction, the framework rejects a
primary distinction between internal and external representations. This sets Duval’s theoretical
perspective apart from many accounts of representation (e.g. Goldin, 2002) but is a key point in
common with Presmeg’s theoretical work on visualisation. Presmeg’s decision not to develop the
internal/external distinction in her theoretical work follows from a key assumption of Piaget and
Inhelder (1971), that whenever a person creates an external spatial arrangement, they are guided

by an internal image (Presmeg, 2006).

Emphasis on a distinction between internal and external representation both arises from and
leads to confusion. From a cognitive perspective, the opposition or distinction rests upon
“confusion between the phenomenological mode of production and the kind of system mobilized
for producing” (Duval, 2006, p. 105). The internal/external distinction is commonly treated “as
though it was evident and primary”, but in Duval’s analysis the division is in fact “a misleading

division ... which brings about two very damaging confusions” (Duval, 1999, p. 5).

The first confusion the division produces is to focus undue attention on an aspect of
representations that is not key to understanding their significance. When characterising cognitive
representations, “the distinction mental/ external refers to their mode of production and not to

their nature or to their form” (Duval, 1999, p. 5). Duval emphasises that the signs themselves “are
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neither mental nor physical or external entities” (p. 5). In particular, the internal/external
distinction can lead towards mistakenly seeking or assuming a correspondence “between the
distinction mental/material and the distinction signified/significant”. This correspondence is
erroneous, following a Saussurian explanation, because the significance of a sign is not

determined by its “material realization” — it is determined only by its relation to other signs (p. 5).

3.2.2.2 The intentional/automatic distinction

The internal/external distinction is also misleading because it obscures a distinction which is
significant. This is the distinction between intentional/semiotic representations and
physical/organic representations (Duval, 1999, p. 5). Semiotic representations are here defined as
cognitive representations “intentionally produced by using any semiotic system”. In contrast,
physical/organic representations are those “causally and automatically produced either by an
organic system (dream or memory visual images) or by a physical device (reflections [physical],
photographs)” (Duval, 1999, p. 5). The diagram below shows Duval’s classification of cognitive
representations. It is an updated version of the same classification diagram found in the 1999
paper (Duval, 1999); the structure and substance of the classification does not change, but Duval’s
labelling and examples mean that the newer diagram provides greater clarity on a number of
points (see Appendix 2 for 1999 diagram and brief discussion of the differences). The diagram

classifies cognitive representations as follows:

INTENTIONAL I AUTOMATIC
bringing into play a semiotic system through activation of organic systems
[mentally or materially) I
The representation DENOTES the represented The representation 1S THE OUTCOME of a direct
objectin a: I access to object
N N
’ > I / ‘ \\
”, 7 s N I 7’ ~ [from vision to memaory)
4 N ¥ N
discursive registers non-discursive registers I reproduction of internal availability of
(expression) (visualization) I perceived gestalts what has been SEEN
natural symbolic non-iconic iconic I imitation mental images
i i 4
language or formal I simulation I
statements formulae graphs drawings I
figures {man, house...) I
schema sketch

<<internalization>>

Figure 1. Diagram classifying cognitive representations (Duval, 2000, p. 66)
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Three aspects of the classification of cognitive representations should be emphasised. The first
aspect is that semiotic representations can be produced internally or externally. Duval’s
framework uses cognitive to describe representations involved in cognition; this, rather than their
‘location’, is the pertinent characteristic. Cognitive does not have the privileged association with

mental or internal that it carries in many other situations.

The second particularly relevant aspect of the intentional/automatic distinction is that mental
images are found within both categories. Explaining the existence of these mental images with
reference to the diagram, Duval (1999, p. 6) writes: “We can notice the existence of two
heterogeneous kinds of “mental images”: the “quasi-percepts” which are an extension of

perception (on the right) and the internalized semiotic visualizations (on the left).”

The third important aspect to note is that the intentional or semiotic representations (the left of
the diagram) are further divided into discursive and non-discursive representations. The class of
non-discursive semiotic representations consists of visualisations (showing “relations, or better,
organization of relations between representational units” (Duval, 1999, p. 13) —see 3.2.3.2),
which stand in analogical relation to the objects they represent. The class of discursive

representations, on the other hand, are non-analogical in nature (Duval, 1999, p. 6).

3.2.2.3 Note: conscious representations

In the 1999 version of Duval’s classifying diagram (see Appendix 2), the caption states that the
diagram classifies “conscious representations” (Duval, 1999, p. 6). Duval’s meaning is here unclear,
since the term conscious, let alone conscious representation, is nowhere defined in the key
English-language works presenting and discussing Duval’s theoretical perspective (Duval, 1999,
2000, 2002, 2006). Since conscious representation is nowhere else mentioned in these works, it
seems difficult to conclude that Duval considers the conscious specification a key point.
Furthermore, the 1999 diagram caption states that the depicted classification “can be expanded
more and includes all kinds of representations” (Duval, 1999, p. 6) — including, presumably, non-
conscious representations, whatever these may be, making it valid to take the classification as
applying to all cognitive representations. This interpretation is supported by the updated diagram
(Duval, 2000, p. 66), in which Duval refers simply to cognitive representations as in the rest of his

theoretical writing, without any reference to conscious.

The above argument notwithstanding, the word conscious is a highly significant term within
theory of mind research, and it is interesting to ask what Duval intends by it in the 1999
classification diagram. It seems clear that conscious is not to be understood to mean intentional,

since the classification diagram (Duval, 1999, p. 6) includes both intentional and automatic as
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contrasting subcategories within the overall scheme of “conscious representations”. From Duval’s
(1999) comments on the multiple meanings of the term representation a tentative conclusion is
that, by specifying conscious representations, he seeks only to exclude representations in the
sense of ‘information-coding in the brain’, as studied in cognitive neuroscience. These
representations are notably absent from consideration in all Duval’s classifications of cognitive
representations, and it is a plausible understanding of conscious that it should exclude this kind of

representation.

As noted, no further mention of conscious representation is found in Duval’s English-language
theoretical works, but the term conscious is discussed at some length in the earlier Sémiosis et
pensée humaine (Duval, 1995). This book neither presents nor uses the theoretical framework
adopted by this thesis (as presented in Duval’s works from 1999 onwards) but instead works with
a more traditional theoretical framework based on the two classical dichotomies of

internal/external and conscious/non-conscious (Duval, 1995).

Duval explains that the opposition conscious/non-conscious is the opposition between that which
appears to an individual and that (s)he notices, on one hand, and that which completely escapes
an individual and that (s)he cannot notice on the other hand (“L'opposition conscient/non-
conscient est I'opposition entre ce qui apparait a un sujet et qu'il remarque d'une part, et, ce qui
lui échappe complétement et qu'il ne peut pas remarquer d'autre part" (Duval, 1995, p. 24)). An
individual becoming conscious of something ‘sees’ the something, which then takes the status of
an object for that individual. This clarification of conscious is compatible with the usage in Duval
(1999); all cognitive representations incorporated into the classification diagram are capable of
being noticed by the individual involved, and capable of objectifying for the individual that which

they represent.

3.2.2.4 Registers of representations

Duval’s concept of registers of representation is introduced in terms of the different semiotic
systems developed and adopted throughout history. Duval writes that “Each new semiotic system
provided specific means of representation and processing for mathematical thinking. For that
reason, we have called them ‘registers of representation’ (Duval, 1999, p. 6). It should be
emphasised that a register of representation includes both the means of representation and the
specific ways of processing (defined by Duval (1999) as the transformation of a representation
within a register) associated with those means. Using this definition, the conclusion is that within
the class of semiotic representations, “we have several registers for discursive representation and
several systems for visualization” (p. 6). Examples of registers of representation are natural

language, 2D shape representations and symbolic notation.
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Thompson expresses uncertainty about how Duval’s registers of representations do or do not
differ from existing constructs. Thompson notes, for example, a strong similarity with Post, Behr,

o

Lesh and Harel’s “modes of representation” and Kaput’'s “representation systems” (Thompson,
1999, p. 2). Thompson also asks whether a register of representation is to be considered an ad
hoc construct, “suggested to us by observing” (pp. 2-3) or whether it is “defined operationally by
specifying cognitive operations that cohere into schemes” (p. 3). In Thompson’s view, a register of
representations must either be a “scheme of operations” or solely “determined by social

convention” (Thompson, 1999, p. 3).

Duval expands on the notion of registers in the article A Cognitive Analysis of Problems of
Comprehension in a Learning of Mathematics (Duval, 2006), and provides a more detailed analysis
of the types that exist. It is argued that the common classification of representation systems,
based upon contrasting language with image, is an insufficient characterisation. Instead, Duval
proceeds on the basis of the cognitive functions that a system of cognitive representation is able
to perform. Such functions include mathematical processing, communication, information
processing, awareness and imagination. Some representation systems are able to perform only

one of these (monofunctional) whilst others are able to perform many (multifunctional).

The following simplified diagram (Duval, 2006, p. 110) demonstrates how the above classification
of semiotic representations into monofunctional and multifunctional, combined with the existing
classification of semiotic representation systems into analogical and non-analogical (in the 2006

paper, labelled discursive and non-discursive), leads to the identification of four distinct types of

register:
Discursive or non-analogical Non-discursive or analogical
representation (denotations, representation
statement or inferences)
Multifunctional registers Natural language: oral and Iconic: drawing, sketch,
written (visual) pattern
Non-iconic: geometrical
figures
Monofunctional registers Symbolic systems Combination of shapes;
diagrams; graphs

Figure 2 The four types of representation register (Duval, 2006, p. 110)

An additional category of “transitional auxiliary representations” encompasses those intentional

representations which do not belong to a particular semiotic system, and have no particular rules
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for formation or transformation. The example given by Duval is that of matchsticks standing for
small integers. This kind of representation is a sign to the user, but not part of a semiotic system

(Duval, 2006).

3.2.3 Representations, vision and visualisation

Having introduced Duval’s framework and classification of cognitive representations, the chapter
now moves on to explore Duval’s theoretical explanation of the processes by which
representations are apprehended. The key concepts discussed are vision and visualisation, both

theoretically defined in relation to representations and the idea of ‘seeing’.

3.2.3.1 Vision

Vision, according to Duval, refers to visual perception and by extension to visual imagery. Like
perception, vision performs two cognitive functions: the epistemological function and the
synoptic function (Duval, 1999). The epistemological function of vision is to give “direct access” to
any physical object. Vision is taken to give uniquely direct access to objects, and for this reason
has historically been taken as the epistemological model for the idea of intuition — “Nothing is

more convincing than what is seen” (p. 12).

The synoptic function of vision differs significantly from the epistemological function. The
synoptic function apprehends multiple objects simultaneously, seeming to immediately provide
“a complete apprehension of any object or situation” (Duval, 1999, p. 12). For this reason, Duval
characterises the synoptic function of vision as “the opposite of discourse, of deduction, which
requires a sequence of focusing acts on a string of statements” (p. 12). In actual fact, practical
considerations mean that the synoptic function of visual perception is carried out very imperfectly
(p. 12). The limitations are firstly that humans are only able to see one side at a time of objects in
the three-dimensional world, reaching at best a “juxtaposition of successive sights”, and secondly
that even within one view, visual perception always focuses on one small part at a time and must
“jump from one part to another”. This is a necessary, not optional, facet of vision: “There is no

visual perception without such an exploration” (Duval, 1999, p. 12).

Vision can perform both the above functions for physical objects. Duval raises the question for
mathematical objects: “are there cognitive structures that can perform both the epistemological
and the synoptic function for the mathematical knowledge?” (Duval, 1999, pp. 12-13). The
particular nature of mathematical objects means that the answer is “no”. However, in exploring
what kind of ‘seeing’ of mathematical objects is possible, a clear characterisation of visualisation

is achieved.
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3.2.3.2 Visualisation

Whereas visual perception could represent an object in its 3D environment, or a 2D view of it,
visualisation is based on the production of a semiotic representation which “shows relations, or
better, organization of relations between representational units” (Duval, 1999, p. 13). Examples of
such units are 2D shapes, coordinates, and words. As a cognitive activity, visualisation is

|II

“intrinsically semiotic, that is, neither mental nor physical” (p. 13). As the cognitive representation
classification diagram (Figure 1) indicates, visualisations make up the class of analogical semiotic
representations. Visualisation is contrasted repeatedly with discursive, non-analogical semiotic
representation, particularly in geometry, where Duval argues geometrical figures always require

the coordination of discursive and visualisation registers (Duval, 2006).

Visualisation is not primitive, and not mere visual perception (Duval, 1999). The paradoxical
nature of mathematical knowledge means that “mental representation as direct grasping of
mathematical objects” (p. 15) can never happen and visualisation is thus unable to perform the
epistemological function (as vision does for physical objects). In summary, visualisation “performs

only the synoptic function, is not intuition but representation” (pp. 14-15).

Duval emphasises that visualisation, by this definition, is necessary for mathematical
understanding, since it is only through visualisation that mathematical structure can be
apprehended. In a “string of discrete units” such as words, symbols, or propositions, only certain
formations or organizations can be displayed, and since “understanding involves grasping their
whole structure, there is no understanding without visualization” (Duval, 1999, p. 13). It is this
which makes it so vital not to reduce visualisation to a kind of vision; vision sees the layout of the
units as they are for example on the page, and visualisation ‘sees’ the structure represented by
the units. Visualisation should not and cannot truly be reduced to vision, because “visualization

makes visible all that is not accessible to vision” (p. 13).

Whereas vision requires physical movement to gain “a complete apprehension of the object”,
visualisation has the potential to “get at once a complete apprehension of any organization of
relations” (Duval, 1999, p. 13). In practice, however, this may not happen, since visualisation

requires a great deal of register-specific training.

3.2.3.3 Seeing

The ‘seeing’ of vision is not the same as the ‘seeing’ that occurs in visualisation. There are two
potential points for confusion, however. Firstly, graphical productions of semiotic representations
are in fact apprehended through visual perception, and so visualisation is consequently “always

displayed within visual perception or within its mental extension” (Duval, 1999, p. 14).
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In the second place, confusion can arise because of iconic representations, such as some drawings.
These representations are semiotic in nature, but because of the “relating likeness” between
representation content and represented object, it is often possible to recognise the represented
object (e.g. tree) “at once, without further information” (Duval, 1999, p. 14). This possibility arises
because iconic representations refer to “a previous perception of the represented object” and
from that to the concrete object (p. 14). In mathematical visualisation however, this mechanism
of seeing cannot happen — the nature of mathematical objects means that “to look at them
[visualizations] is not enough to see, that is, to notice and understand what is really represented”
(p. 15). It is not easy to deal with these confusions. Duval notes that when looking at visualisation
there is a strong tension and discrepancy between the ways of seeing, “between the common
way to see the figures, generally in an iconic way, and the mathematical way they are expected to
be looked at” (Duval, 2006, p. 116). This is an example of how multifunctional registers can —
deceptively — appear “common and directly accessible to every student”, when in fact the
mathematical way of using the multifunctional register “runs against the common practice”

(Duval, 2006, p. 116).

The meanings of visualisations (which are semiotic representations) lie in the organization or
structure that they represent. In technical terms, Duval characterises visualisation as the “bi-
dimensional organization of relations between some kinds of units” (Duval, 1999, p. 15). Seeing
what is represented by visualisation is not as simple as in the case of iconic representations. Duval
emphasises that the significance of visualisations is in the organization of units:
The intricacy of mathematical visualization does not consist in its visual units — they are
fewer and more homogeneous than for the images — but in the implicit selection of
which visual contrast values within the configurations of units are relevant and which are
not.

(Duval, 1999, p. 17)

Seeing the meaning of a visualisation involves therefore both the seeing of vision and the ‘seeing’

of mathematical structure that others might describe as ‘understanding’.

3.2.3.4 Mental image
Duval describes the expressions “mental image, “mental representation” and “mental imagery” as
“equivocal” terms (Duval, 1999, p. 13). They are commonly used to mean only an extension of
visual perception. Duval quotes an insightful description of the scope of visual images in this sense,
as an extension of visual perception, by Neisser (1967):

“[V]isual image” is a partly undefined term for something seen somewhat in the way real

objects are seen when little or nothing in the immediate or very sensory input appears to
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justify it. Imagery ranges from the extremely vivid and externally localized images of the
eidetiker to the relatively hazy and unlocalized images of visual memory.

(Neisser, 1967, p. 146, cited by Duval, 1999, p. 14)

The phrase “mental imagery” can also however refer to the mental form of visualisation, as
indicated by Duval’s classification diagram (Figure 1). This is a separate meaning of the term, and
here mental imagery is “the mental production of semiotic representations as in mental
calculation” (Duval, 1999, p. 14). Most interestingly for the current research, both quasi-
perceptual mental images and the visualisations can be operated upon: “Actions like the physical
ones (rotation, displacement, separation) can still be performed on some quasi-percepts” (Duval,

1999, p. 6).

3.2.4 Contributions to understanding mathematical cognition

According to Presmeg, Duval offers a “cogent argument... for the distinction between vision or
perception and visualisation in mathematical cognition and learning, and for the power of
coordination of different registers of representation in these activities” (Presmeg, 2002, p. ix).
Duval’s 1999 paper was especially important for English-speaking researchers because Duval’s
extensive research had been previously published largely in French. Presmeg notes that Duval’s
framework has been used extensively by other researchers, such as Acufia (Presmeg, 2006).
Specific implications for the understanding of mathematical learning are offered by Duval’s

theoretical work. The two most significant of these are outlined below.

3.2.4.1 Vitality of focusing on representations and not concepts

The first point contributed by Duval’s theoretical work is the need to focus on representations

and not subordinate these to concepts. By emphasising the paradoxical nature of mathematical

knowledge, and illuminating the complex cognitive processes involved in mathematically

understanding representations that follow from this nature, Duval makes a powerful case for

researching mathematics education from a representation viewpoint. In Duval’s (1999, p. 8)

words, the work shows that
... semiotic representations constitute an irreducible aspect of mathematical knowledge and
that wanting to subordinate them to concepts leads to false issues in learning. That
amounts to forget the paradox of mathematical knowledge: mathematics objects, even the
more elementary objects in arithmetic and geometry, are not directly accessible like the
physical objects. Each semiotic register of representation has a specific way of working, of
which students must become aware.

Each semiotic register not only affects the way of working with representations, but affects what

aspects of the represented object are made explicit. Duval, following Frege, stresses the
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difference between the content of a representation and that to which the representation refers.
The relation between the two is simply that the represented object is denoted by the

representation; there need not necessarily exist any ‘intuitive’ relation at all (Duval, 2006, p. 114).

For the case of semiotic representations, Duval goes as far as to state that “the content of a
representation depends more on the register of the representation than on the object
represented” (Duval, 1999, pp. 40-46; 2006, p. 114). This differs from the case of automatic (non-
semiotic) representations, those “produced by physical devices (mirror, camera, microscope, etc.)
or by sensory and brain organizations”, where there exists “something like a causality relation”
(Duval, 2006, p. 114). This implies a further — third — consideration of the importance of registers
of representation. The register not only affects the way of working, and the content, but also the

relation between the content and the represented object (p. 115).

This emphasis of Duval’s work influenced the research of this thesis by providing further
theoretical justification for the representation viewpoint on mathematical learning. Specifically, it
articulates the good reasons to research representations themselves, not just research learning

‘through’ representations.

3.2.4.2 Processing and conversion

The second key contribution of Duval’s theory is to illuminate in greater depth the mathematical
actions that are carried out with representations. Duval argues that mathematical processes
consist of two kinds of transformation of representation: processing, and conversion. The term
processing is used for transformations that stay within the same register of representation, for
example algebraic computation that transforms between symbolic algebraic expressions (Duval,
1999, p. 8). In contrast, conversion is used to describe transformations between different registers

of representation, for example the transformation of equations into Cartesian graphs (p. 9).

Linking the conversion of representations directly back to the paradoxical nature of mathematical
knowledge, Duval states that “only students who can perform register changes do not confuse a
mathematical object with its representation” (Duval, 1999, p. 10). In this light, the conversion of
representations is the crux of mathematical understanding, and it is neither easily nor frequently
achieved by students (Duval, 1999, 2006). Research that focuses on finding the “right” or “most
accessible” register will advance nothing more than “surface understanding”, since understanding
proceeds from conversion. This is true for all representations; Duval holds that “Even auxiliary and
individual representations, the most iconic or concrete ones, need to be articulated with the

semiotic representations” (Duval, 2006, p. 128).
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In the context of this research, Duval’s theory offers theoretical motivation for the further
investigation of number line estimation tasks. From the perspective of Duval’s framework, such
tasks are a conversion between representations of number in different registers, between a

spatial representation on the one hand, and a symbolic and verbal representation on the other

hand.
' I ’\

5 , “five”

Figure 3. Conversion in a number line estimation task

Conversion of representations is often mistakenly considered as translation or encoding (Duval,
2006). Conversions can in fact be congruent or non-congruent. Congruent conversions, which
seem significantly easier to carry out, are those in which “the representation of the starting
register is transparent to the representation of the target register” and here conversion does feel
like a simple translation from unit to unit (Duval, 1999, p. 10). A detailed analysis of the idea of

congruence of conversion shows that it consists of three aspects (Duval, 2006, p. 122):

1. Whether a 1-1 mapping between meaningful component parts (symbols, words, or visual
features) is possible or not

2. Whether there is a univocal choice for each meaningful component of the target
representation

3. Whether the organizational structure of map-able components in the source

representation is maintained in the target representation or not

The difficulty of conversion between representations is additionally affected by the direction of
conversion. It frequently occurs that conversion can be “obvious” in one direction, “while in the

|H

inverted task, most students systematically fail” (Duval, 2006). The complexity of a conversion
between representations is therefore a function of two phenomena: the congruence and the non-
reversibility of the conversion. These phenomena are determined by the registers involved — the

source register and the target register.

3.3 Cognitive integration
Duval’s theory of representation and visualisation sits clearly within a cognitive tradition; it
focuses upon and aims to illuminate the cognitive processes of mathematical thinking and

learning (Duval, 2002). In relation to philosophical perspectives on how cognitive processing is
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related to ‘actions performed in the world’, the perspective of Duval’s theory fits well with the
perspective identified by De Cruz as cognitive integration. This perspective rejects the accounts of

both internalism and active externalism, and proposes an alternative (De Cruz, 2012).

The perspective of internalism is that cognitive processes take place “only in the skull” (De Cruz,
2012, p. 137). Whilst actions performed in the external world “can enhance and improve cognitive
performance”, they are not themselves included in the act called cognition. De Cruz illustrates
with the example of calculation on an abacus: from an internalist perspective “the only action
that is cognitive is the retrieval from memory of abacus techniques and interpreting the result by
converting the observed configuration of beads into an internal representation of mental

magnitude” (De Cruz, 2012, p. 137).

The perspective of active externalism argues that in fact external tools are often part of the act of
cognition itself. There is an obvious problem in that “if one simply grants cognitive status to every
object that is somehow causally involved in cognitive processes, we end up with sentient pencils
and notepads” (De Cruz, 2012, p. 137). A solution proposed by Clark and Chambers (1998) is the
so-called parity principle, according to which if a certain brain process is characterised as cognitive,
then a structurally similar process that takes place outside the brain ought to also be

characterised as cognitive.

Cognitive integration similarly argues that external actions can be part of cognitive activity.
However, it proposes that these external actions need not structurally resemble internal cognitive
processes. Duval’s theoretical perspective on representation fits well into this cognitive
integration view. Cognitive activity is certainly not confined to the ‘skull’: Duval’s framework of
cognitive representations explicitly states that acts of cognitive representation may produce
internal or external representations, and that transformations (processing and conversion) occur
between and within both internal and external registers of representations. Duval’s framework
does not, however, support an active externalist viewpoint, since the parity principle does not
hold for all external activities qualifying as cognitive within Duval’s framework. In fact, Duval
explicitly notes that the structure of cognitive activity with representations may differ, for
example “mental arithmetic uses the same decimal system like written calculation but not the

same strategies because of the cognitive cost” (Duval, 1999, p. 5).

De Cruz offers a critical comparison of cognitive integration, internalism and active externalism in
the specific context of spatial representations involved in numerical processing, and concludes
that cognitive integration is the only justified philosophical conclusion. Empirical findings, such as

the development of a linear mental representation of number in Western children, and the effect
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of playing linear numerical board games (Ramani and Siegler, 2008), strongly support the theory
that the internal and external aspects of numerical cognition are “complementary” and relate

with dynamic interaction (De Cruz, 2012).

3.4 Duval’s theory and the research problem

Duval’s theory of cognitive representations shapes the research of this thesis at all levels, from
the identification of the research problem to data analysis. Whilst the contribution of Duval’s
theory to the present research has been noted in various places, in this section | summarise the

key ways in which Duval’s theoretical perspective shapes the research.

In the first place, at a broad level, Duval’s framework provides further theoretical justification for
studying mathematics education from a representation viewpoint. This not only supports
research into children’s cognitive representations of number, but supports researching these
representations as objects of interest in their own right, rather than as secondary to concepts.
Duval’s theory of representations stands apart from others in this sense, holding representations

themselves to be the crux of mathematical learning.

A second feature of Duval’s theoretical perspective that sets it apart from others in terms of its
appropriateness for the current research is the way in which Duval’s framework encompasses
both intentional/semiotic and automatic representations. As is clear from the literature review,
the status and nature of responses to number line estimation tasks is not clear. Whether they are
quasi-perceptual responses (from evolutionarily developed systems), intentional visualisations,
automatic learned responses or some combination of these categories is not yet certain. For this
reason, it is absolutely necessary for this research to work within a framework of representation
that encompasses both intentional and automatic representations, and acknowledges that

relations exist between them (even though they may be unknown).

Beyond supporting of research into number line estimations, Duval’s broad and comprehensive
framework of cognitive representations motivates research questions into the different cognitive
representations produced by children. Duval’s theoretical work indicates that heterogeneous
kinds of representation of mathematical ideas are to be expected, leading this thesis towards
serious consideration of representations in multiple modes and registers. The theoretical
framework indicates that 1-1 correspondence between internal and external representations, or
any two different registers, should not be expected. It is for this reason that this thesis considers
the external cognitive representations produced by children in their own right, and does not seek

to infer internal representations underlying them. This aspect of the framework also motivates

81



the research questions asking which modes of representation children use in particular tasks, and

what aspects of number are made explicit in each case.

At the same time, the framework emphasises that the representations of number produced are
all still cognitive representations, and that investigating the connection between them is a
worthwhile task. The heterogeneous types of mental image identified by Duval’s work may both
be involved in children’s representation of numbers, and it is a valid question to ask what aspects

of number are cognitively represented in each kind, and how they compare.

Duval’s work helps to emphasise that conversion between representations happens frequently in
mathematical talk and tasks in the classroom, and at numerous points in the task-based
interviews used in this thesis, not only in number line estimation tasks. In addition to helping to
identify conversions of representations, Duval’s work theoretically explains the mathematical
significance of these processes. As explained, the process of conversion of representations is held
to be the crux of mathematical understanding, and hence children’s conversion of number
representations is of high educational interest. Duval’s theoretical perspective, together with the
literature reviewed, makes examination of the process rather than just result of estimation and

conversion a priority, and the research questions reflect this interest.

Finally, Duval’s analysis of conversions contributes an additional motivation for the longitudinal
aspect of the current research. It is to be expected that children’s knowledge of number
representations deepens and changes during the year of school studied, and their experience of
representations of number increases. For this reason, children’s conversions between

representations, and hence their estimations, are expected to change throughout the school year.

3.5 The analysis of imagistic representations

Within its overall focus on cognitive representations, this thesis has particular interest in
children’s cognitive representations with visual, spatial or graphical characters. As shown in the
literature review, such images are of high interest in investigating children’s representation of the
natural numbers. In this section, | discuss how Duval’s framework of cognitive representation
requires coordination with additional theory in order to analyse this kind of representation in

detail.

No single term in Duval’s theoretical framework of representations captures representations with
visual, spatial or graphical characters as a particular class of representation, nor does his analysis
of representations focus upon the details of this kind of representation. In Duval’s classification,

representations with visual, spatial or graphical characters are best encompassed by the category
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of mental images combined with the category of visualisations (i.e. analogical semiotic
representations). To recap briefly, the category of mental images includes two heterogeneous
types of representation: the “internalized semiotic visualizations” (on the left of Figure 1) and the
“quasi-percepts” (on the right of Figure 1) (Duval, 1999, p. 6). By combining these two categories
from Duval, both internal and external representations with visual, spatial or graphical aspects are
included. This thesis will refer to such representations as imagistic representations, to avoid
confusion with terminology already defined by Duval in his framework, and for consonance with
the work of Goldin and Kaput (1996) and Thomas et al. (2002), whose theoretical work is

incorporated into this section of the theoretical framework.

The finer detail required by this thesis in the area of representations with a visual, spatial or
graphical nature is provided by the imagistic framework of Thomas et al. (2002). This combines
Goldin’s model of internal representations (Goldin and Kaput, 1996) with a model of imagery
based upon ideas from Presmeg (1986, 1998). The study adapts these ideas specifically for the
analysis of children’s imagery of the counting sequence, so has very good applicability to the

representations studied in this thesis.
3.5.1 Thomas, Mulligan and Goldin’s theoretical framework

3.5.1.1 Note: using a framework developed for internal representations

Thomas, Mulligan and Goldin’s study is titled “Children’s representation ...” and the focus is
described to be “internal imagistic representations” (Thomas et al., 2002, p. 117). The aim of
Thomas, Mulligan and Goldin’s study, unlike this thesis, is to use children’s external

representations to draw inferences about their internal representations.

In this thesis, cognitive representations that are produced using external means are analysed as
representations in their own right rather than as ‘windows’ onto internal representations. It is
assumed, following Presmeg, Piaget and Inhelder, that external productions are guided by
internal cognition, but the external productions are analysed as they are. There are both empirical
and theoretical reasons for this. Empirically, cognitive representations in different modes (e.g.
speech and gesture) have been found to represent differing, and even apparently contradictory,
information about participants’” mathematical problem-solving (Garber and Goldin-Meadow,
2002), making the processing of inferring one underlying internal representation problematic.
Theoretically, Duval’s work emphasises the specific nature of the register of representation (e.g.
Duval, 1999, 2006) as noted in previous sections. It is not to be assumed that children will, or can,

represent ‘the same’ information in different registers.
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Whilst the analytic framework of Thomas, Mulligan and Goldin is designed to investigate internal
representations, this of course necessitates analysing external representations, since as with any
study of internal representation, direct access is impossible. The authors apply their framework to
all external representations produced during the task-based interviews held: interview transcripts,
and external pictorial and notational representations (Thomas et al., 2002). This thesis therefore
adopts the framework of analysis of Thomas, Mulligan and Goldin, and differs only in not
proceeding to inferences about the internal representation underlying children’s external

productions. It extends the use of the framework by including children’s gestures.

3.5.1.2 Goldin and Kaput’s theory of representation

Thomas, Mulligan and Goldin’s study is theoretically framed by Goldin’s model of representation,
in which internal imagistic representation includes the sub-systems of visual/spatial,
auditory/rhythmic and tactile/kinaesthetic representation. The sub-system focused upon by

Thomas et al. is the visual/spatial system.

Goldin and Kaput (1996) define imagistic representation as follows:
Imagistic or analogic representational systems refer to systems in which the
fundamental characters, signs, and configurations are neither verbal nor formal in
nature, but bear some interpreted sensory resemblance to what is represented.

(Goldin and Kaput, 1996, p. 414)

Imagistic representations therefore include a broad range of representations: “internal imagery
and image-schematic representation—that which is ‘imagined’, visualised, represented
kinesthetically and /or auditorily”, and also “external enactive and pictorial representations,
concrete embodiments and manipulatives” (Goldin and Kaput, 1996, pp. 414-415). Like Duval’s
visualisations, internal imagistic systems in Goldin and Kaput’s framework “incorporate nonverbal
configurations at the level of objects, attributes, relations, and transformations” (p. 418). Again
like Duval’s visualisations, it is students’ imagistic capabilities which are necessary for “meaningful

III

or insightful” mathematical understanding (p. 418).

The major contribution of Goldin and Kaput’s theory to the framework of Thomas, Mulligan and
Goldin is the idea that imagistic representations develop through three particular stages (Goldin
and Kaput, 1996, p. 424). The first stage, following Piaget (1969a), is the inventive-semiotic stage
in which new characters are created or learned, and crucially, in relation to an existing
representation system. This stage is often problematic in learning mathematics, because the new
characters are taken to “be” rather than symbolise the aspects of the previous system — leading to

cognitive obstacles. The second stage of development is the structural-developmental stage, in
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which development is driven principally by structural features of the earlier representation
system. The third and final stage is the autonomous stage, in which the new system of

representation is considered mature, and separates from the old representation system.

3.5.1.3 Presmeg'’s theory of visualisation and images

While interpreting results within the overall framework of Goldin’s theory, Thomas, Mulligan and
Goldin’s study is informed by literature specifically upon imagery, primarily the work of Presmeg.
Presmeg’s research considers imagery in general, as well as visual images and visualisation

specifically.

Presmeg notes that imagery may occur in “one or more of five modalities ... visual, auditory,
tactile, gustatory, and olfactory” (Presmeg, 1992, p. 596). The majority of Presmeg’s work has
focused on visual imagery, and the functions within mathematical thinking that it can perform, for

example how “visual imagery may serve the purpose of abstraction” (Presmeg, 1992, p. 596).

Presmeg defines a visual image to be “a mental construct depicting visual or spatial information”
(Presmeg, 2006). This corresponds with internal imagistic representations in the visual/spatial
sub-system of Goldin’s framework: in each case the image is internal (or mental), and either visual
or spatial in character. Presmeg explains that the definition is deliberately broad, including “kinds
of imagery which depict shape, pattern or form without conforming to the ‘picture in the mind’
notion” in addition to ‘pictures in the mind’ themselves (Presmeg, 1986, p. 42). The definition
allows for visual imagery to include spatial arrangements of “verbal, numerical or mathematical

symbols” (Presmeg, 1986, p. 42).

Within the mode of visual imagery, Presmeg’s work has identified five forms or categories:
concrete imagery (like a picture); pattern imagery (relationships without concrete detail); memory
images of formulas; kinaesthetic imagery (involving physical movement); and dynamic imagery
(the image itself is moved or transformed) (Presmeg, 1986, 2006, 2008). Of these five categories,
the first three refer to the type of component sign of the representation, and the latter two refer
to properties which may be present in representations of various types, within various modes. In
the framework of analysis constructed by Thomas et al. (2002), representations are first classified
according to their component sign, and then later classified according to their dynamic/static
nature. Kinaesthetic imagery, whilst acknowledged and present, is not a basis for classification or
analysis in Thomas et al. (2002); whether images include or do not include kinaesthetic aspects is

not the focus of the work.

Concrete images include the archetypal “pictures in the mind” associated with the word ‘imagery’

(Presmeg, 1992, p. 596) and also “memory images” (p. 599). They are associated with imagery as
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prototype: in this function, individuals use their concrete images “to represent wider categories,
concepts, or principles” in the course of mathematical problem-solving (p. 599). Prototypical
images may also be used as metaphors (p. 599). Pattern imagery, by contrast, describes the
imagery in which “concrete details are disregarded” (Presmeg, 1992, p. 602). In pattern imagery,
what remains is a visual-spatial scheme depicting “pure relationships”, a type of imagery
“strikingly illustrated in the memory images of chess masters” (p. 602). In the category of memory
images of formulae, fairly clearly, the component signs are mathematical symbols remembered as

images.

In terms of the mathematical roles that imagery is able to perform, Presmeg identifies two ways
in which imagery can depict mathematical abstraction. The first is “by concretizing the referent -
that is, by making a concrete visual image the bearer of abstract information” (Presmeg, 1992, p.
603). Examples of this include the memory image of a formula, or the concrete image of a see-
saw to metaphorically depict equality. The second way in which imagery depicts mathematical
abstraction is by “by using pattern imagery which embodies the essence of structure without
detail” (Presmeg, 1992, p. 603). Both functions of imagistic representation are of course clearly
present in Duval’s theoretical work. From Duval’s perspective, all conscious cognitive
representations, and so certainly the subset of imagistic representations, perform the function of
objectification ("En ce sens, la conscience se caractérise par la visée de ‘quelque chose’ qui prend
ipso facto le statut d'objet pour le sujet effectuant cette visée" (Duval, 1995, p. 24)). The second
function, embodying “essence of structure without detail” (Presmeg, 1992, p. 603) in turn could
be encompassed by Duval’s generalised description of mathematical visualisation (Duval, 1999, p.

13).

Although visual imagery is defined to be a mental construct, in terms of imagery, generally
Presmeg, like Duval, asserts that the internal/external dichotomy “does not seem fruitful”
(Presmeg, 2008, p. 2). In An Overarching Theory for Research in Visualization in Mathematics
Education therefore, although the examples Presmeg (2008) examines “concern almost
exclusively the external mode, called inscriptions”, the taxonomy of inscriptions developed in the

paper “might well be applied to the corresponding forms of visual imagery as well” (p. 2).

Presmeg’s definition of visualisation reflects the fact that the internal/external dichotomy is not
key: “visualization is taken to include processes of constructing and transforming both visual
mental imagery and all of the inscriptions of a spatial nature that may be implicated in doing
mathematics” (Presmeg, 2006, p. 206). This definition corresponds well to Duval’s, in terms of
not restricting visualisation to either mental or external representation. The examples of

visualisation identified by Duval (drawings, sketches, graphs, figures, schema, (Duval, 2000))
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remain visualisations by Presmeg’s definition. Presmeg’s definition is however more explicit in

stating that visualisations represent by visual or spatial means.

This chapter has set out the theoretical ideas providing the framework for this thesis, namely
Duval’s theory of cognitive representations, and the theoretical approaches to imagistic
representation brought together by Thomas et al. (2002) in their work on children’s imagistic
representation of natural number. The chapter has explained how these theories support the
current research, and critically examined the ideas within them. The following chapter explains

the research methodology and methods adopted, and why they are the appropriate choices for

this theoretical framework and research questions. This methodology chapter will also lay out the

theory for analysis, including most importantly Resnick's (1983) account of number development,

and the plan of analysis that implements this theory.
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Chapter 4 Methodology

This chapter presents the methodological reasoning that led to the chosen research design. The
methodological choices made were influenced by three main considerations. First of all,
methodological choices were shaped by the implications of the underlying theoretical perspective,
which includes the research focus on cognitive representations. Against this background, choices
were then made to meet the particular demands of the research problem identified and research
questions posed. A final and significant influence on the methodological choices was the wish to
contribute new knowledge to the research area by adopting a methodology and methods which

deliberately complemented the approaches of prior research.

4.1 Overview of research design

The methodological approach used for this research can be summarised as an exploratory
longitudinal multiple case-study approach, within which video-recorded task-based interviews are
used. The research project consists of twelve case studies, where each case is an individual child
within a Year 1 classroom at a local primary school. The children worked with the researcher over

the course of one school year.

4.1.1 An exploratory design

Yin argues that all research strategies can be used for three purposes: exploratory, descriptive or
explanatory, and that it is a misconception to consider certain strategies appropriate only for
certain purposes. Strategies should instead be distinguished by the three following conditions: “(a)
the type of research question posed, (b) the extent of control an investigator has over actual
events, and (c) the degree of focus on contemporary as opposed to historical events” (Yin, 1994, p.

4).

In the case of this research project, the research questions and their relation to the literature
determine that an exploratory study is appropriate. The questions are about how previous
findings relate to each other and about looking at the research topic from a new viewpoint:
focusing on the developmental trajectory of individuals, in contrast to changes observed between
cohorts; and looking in depth at the process of children’s number line estimations, in contrast to
focusing only upon the result of estimations. The questions are formed in terms of “how” and “in
what ways”, and lead naturally to an exploratory study. Exploratory research is one of the
situations in which “all research strategies might be relevant” (Yin, 1994, p. 9), so the following
section explains the methodological considerations that led to the choice of a longitudinal

multiple case study.
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4.1.2 Alongitudinal design
The decision to pursue a longitudinal study stemmed primarily from the developmental aspect of
the research questions, and the wish to complement previous, largely cross-sectional, research in

the field.

The developmental focus of the research questions was directed by both the existing literature,
and the theoretical framework of the thesis. Several parts of this framework suggest a
longitudinal approach, because they hypothesise qualitative changes in how children cognitively
represent numbers. The principal theory, Duval’s theory of cognitive representations, identifies
children’s number line estimations (amongst other events) as conversions of representations,
which can be expected to change as children’s knowledge of particular representations of
numbers increases during the school year. Fuson’s account of children’s developing number
knowledge (see Analysis section) indicates the order in which children typically grasp particular
aspects of natural number; together with Duval’s theory, this leads to the hypothesis that as
children begin to ‘see’ different aspects of number in particular representations, their ability to

convert representations of number into a different representational system will change.

Goldin and Kaput’s (1996) theory of representations as adapted by Thomas et al. (2002) suggests
that children’s new representations can be expected to pass through three stages: inventive
semiotic construction, structural development, and finally autonomous use. Thomas et al.’s study,
like the majority in this field, was cross-sectional in design, and the authors called for further

longitudinal investigation.

Longitudinal or cohort studies are in many ways the obvious choice for researchers studying
aspects of human development. By investigating the same sample over an extended period of
time, they enable within-individual comparison over time and hence change to be analysed at the
individual or fine-grain level. Longitudinal studies with statistically representative samples are
“uniquely able to identify typical patterns of development and to reveal factors operating on
those samples which elude other research designs” (Cohen, Manion and Morrison, 2011, p. 269).
Even without a statistically representative sample, longitudinal studies “permit researchers to
examine individual variations in characteristics or traits, and to produce individual growth curves”

(p. 269).

This ability to capture individual variations is precisely what the research questions of this project
seek to explore, and what previous cross-sectional studies have not been able to illuminate.
Particularly relevant for this research project is that longitudinal studies enable not only change,

but the nature of change to be captured; they permit “the dynamics of change to be caught, the
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flows into and out of particular states and the transitions between states” (Cohen et al., 2011, p.
272). In the context of the current research, this is highly relevant. Duval’s theory of
representations, framing individual estimations as conversions of representations, focuses the
attention of this thesis on a far more detailed view of children’s cognition than previous studies in
number line estimation, which typically examine change by aggregating the estimations of

multiple children, and identifying change in the sense of cohort differences only.

A particular example of how the longitudinal advantage will be used in this thesis is in the
exploration of Siegler’s theory of overlapping waves (e.g. Opfer and Siegler, 2007), which holds
that children have access to multiple cognitive representations of number in a given situation at
any one time, and that children’s preference for a new representation may appear as ‘waves’ of
usage that overlap with usage of the older representation. This theory was developed from
Siegler and colleagues’ work on number representation, i.e. specific to the context of this thesis,
but has not been investigated with respect of the representations of individual children — it
remains an hypothesised account from cross-sectional data. The theory is one of several
predictions informing the data analysis of the current research, and it is only through a
longitudinal design that the theory’s ability to describe developmental change in individuals can

be further investigated.

For researchers studying change more generally, Cohen et al. (2011) additionally note that
“Individual level data are more accurate than macro-level, cross-sectional data” (p. 272) and that
sampling error is lower than in other research designs due to the fact that the same sample is
used throughout the study. In researching school-age children, longitudinal studies also provide

valuable records deriving from “the known fallibility of any single test or assessment” (p. 269).

Despite these advantages, there are few examples of longitudinal studies in the literature on
children’s changing representations of number (DeWindt-King and Goldin, 2003). Instead, the
majority of studies so far carried out in this area have been cross-sectional in design. Thompson
and Opfer (2010) describe a typical research approach in explaining that they “investigated long-
term changes in children’s estimates of large numerical magnitudes... by examining estimates of
second graders, third graders, sixth graders and adults” (p. 12). In this and the majority of studies
in the field (e.g. Berteletti et al., 2010; Booth and Siegler, 2006; Ebersbach et al., 2008; Halberda
and Feigenson, 2008; Laski and Siegler, 2007; Mundy and Gilmore, 2009), researchers have

investigated long-term changes using purely cross-sectional methodology.

The situation is similar in development research more generally, and Cohen et al. (2011, p. 270)

ask the obvious question: given that longitudinal studies are “particularly appropriate in research
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on human growth and development”, why is it that so many studies in this area are cross-
sectional? There are five principal reasons: cross-sectional designs are less expensive; they are
usually able to include more subjects than a longitudinal design; findings are available more
quickly; researchers find it easier to recruit participants for a ‘one-off’ occasion; and cross-
sectional designs are less likely to suffer from the ‘measurement effect’ since measurements are

carried out only once.

The specific weaknesses of cross-sectional designs correspond to the advantages of longitudinal
work. Cohen et al. (2011) note that cross-sectional designs are “Unable to chart individual
variations in development or changes, and their significance” (p. 273), and furthermore that
“Sampling in the cross-sectional study is complicated because different subjects are involved at
each age level and may not be comparable” (p. 270). These and other objections weigh strongly
against cross-sectional studies “so much that one observer dismisses the method as a highly

unsatisfactory way of obtaining developmental data except for the crudest purposes” (p. 270).

4.1.2.1 Disadvantages of a longitudinal design

A commonly cited problem with the use of longitudinal studies is the problem of ‘sample
mortality’, that is the inevitable fact that during the course of a long-term study, some subjects
are likely to leave the study. This causes a problem for the research in making it “unlikely that
those who remain in the study are as representative of the population as the sample that was
originally drawn” (Cohen et al., 2011, p. 270). In the case of this research, there are specific
reasons why this objection should not outweigh the advantages of the longitudinal approach. In
the first place, the research design consists of a small number (12-15) of case studies, rather than
a sample which is intended to be statistically representative of any single cohort. The second
point is that at 10 months long, this longitudinal project is relatively short in length, and is being
conducted within one classroom at one school, in which the rate of pupil turnover is low and in
which the researcher has good relationships with participants. For these reasons, although it is to
be expected that some participating children will not take part in the full study, the proportion of

participants leaving the study should be small.

A more worrying objection to a longitudinal design is what has been referred to as the
‘measurement effect’. This is the effect whereby repeated interviewing itself influences the
behaviour of participants, for example by “sensitizing them to matters that have hitherto passed
unnoticed” (Cohen et al., 2011, p. 270). In the case of this project, participating children take part
in similar or identical task-based interviews five times within one school year, and so the
‘measurement effect’ is a threat to be taken seriously. Specific steps were taken to minimise the

disruption to results posed by the ‘measurement effect’:
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1. The task-based interviews are held only once per half term, ensuring a gap of between 6-
10 weeks between measurements. At an age at which children change rapidly, this gap
represents a fairly significant period of time in which to forget about the previous
interview.

2. Participating children are given no feedback on the ‘correctness’ of their interview
answers. The interviewing researcher encourages their efforts with neutral comments
and thanks, ensuring that children are not ‘trained’ at the tasks (although some
familiarisation will still take place).

3. Where specific details of tasks (for example, target numbers) can be changed between
interviews, they are changed, to ensure variety.

There are also specific aspects to the research and research context which limit the impact that a
‘measurement effect’ could have upon results. Firstly, participating children are carrying out tasks
in classroom mathematics lessons throughout the study which deliberately ‘sensitise’ them to
precisely the concepts being investigated: the relationship between numbers, and
representations of the counting numbers — external and internal, in visual, spatial, symbolic,
verbal, imagistic and enactive forms. Secondly, the research is concerned with the nature of
change, rather than only whether change does or does not occur. It is entirely expected that
participants become more sensitised to aspects investigated in the task-based interviews (for
example, the relation between counting numbers up to ten), because this is an explicit goal of the
teaching they receive during the school year. In comparison to this everyday teaching, the

sensitisation caused by the ‘measurement effect’ itself seems likely to be minimal.

A practical objection to longitudinal studies is that their data “being rich at an individual level, are
typically complex to analyse” (Cohen et al., 2011, p. 272). However, the advantages afforded by
the longitudinal design for this particular research problem are so significant that the
inconvenience or ‘price’ of complex data is willingly accepted. Another common objection to
longitudinal research is that it is time-consuming and expensive. In the case of this research, the
length of study is already constrained by the timescale of the PhD programme, but within this
constraint it is perfectly possible to dedicate the necessary time and resources to the longitudinal

study.

4.1.3 A multiple case study design

The decision to adopt a multiple case study design followed naturally from the reasons behind the
choice of longitudinal approach. In summary, the motivation was to choose the approach which
best afforded in-depth analysis of individual developmental trajectories. Such an approach would

best allow new understanding of the nature of the representational changes previously
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hypothesised, and complement the majority of existing studies in the field, which had focused on
cohorts of children rather than individuals. The fine grain detail afforded by case studies makes
them ideal for this purpose; “to complement other, more coarsely grained — often large scale —

kinds of research” (Cohen et al., 2011, p. 291).

In terms of the theoretical framework of research, Duval’s theory of cognitive representations
focuses firmly upon fine-level detail and fits well with the in-depth perspective afforded by case
studies. The identification of individual number line estimation trials as conversions of
representations demands that the researcher examine the processes involved in estimation tasks
rather than only the results. The hypothesis of White and Szucs (2012), that individual numbers
may be estimated differently according to a whole set of variables, similarly provides strong
motivation to examine the processes of estimations; there is very significant potential for patterns
and differences to be obscured when only results are considered, and this is hypothesised to have

occurred in many previous studies.

The primary justification for the use of case study designs is that case studies can capture some
aspect — particularly of people — which is missed by other approaches. As Cohen et al. (2011)
point out, “human systems have a wholeness or integrity to them rather than being a loose
connection of traits, necessitating in-depth investigation” (p. 289). The intensity of observation
and analysis required for in-depth investigation leads the researcher to focus on a small number
of cases. A potential criticism of case study research is that the findings are too particular to cases,
cannot achieve statistical significance, and have low generalizability. The response to this is that
case study research sacrifices quantity of cases for the intensity of analysis of each case.
Additionally, the case study researcher has fewer restrictions on the type and depth of data that
can be collected, allowing them to “penetrate situations in ways that are not always susceptible

to numerical analysis” (p. 289).

Underlying case study research is the belief that by researching and capturing the complexities of
one instance, insights will be reached which in fact are likely to be generalizable. In studying
representational development through case study, trajectories of change can be understood that
would not have been captured through less fine-grained examination, and these trajectories of
change are not limited to the specific individuals within whom they are studied (Cohen et al.,
2011). An appealing characterisation is that a case study is “the study of an instance in action”

(Adelman, Kemmis and Jenkins, 1980).

A case study design “is particularly valuable when the researcher has little control over events”

(Cohen et al., 2011, p. 290). This is a consideration that (Yin, 1994) argues should be influential in
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deciding research design, and is certainly applicable to the case of children’s cognitive
representations of number. It is assumed that these cognitive representations will change, and
that the researcher cannot control what affects them; they will be affected by explicit and implicit

influences both inside and outside the classroom throughout the whole year.

Some “what”-type research questions suggest the use of a survey methodology (Yin, 1994) but
there are clear objections to a survey strategy in this case, stemming from the complexity of the
phenomena under investigation. There do not exist established ‘normal science’ methods for
investigating the phenomena involved in the research problem, and the literature so far suggests
that in order to gain further insight into the research problem, richness and depth of data are

required, something a case study strategy is better fit to provide.

A further methodology that could be used is an experimental design. There is good evidence that
children’s cognitive representations of number can be strongly influenced — see for example
studies in which alignment tasks were used to encourage the use of linear representations (e.g.
Thompson and Opfer, 2010). However, this thesis aims to study children as they develop — it does
not want to control changes in children’s representation. The perspective of this thesis is that
children’s cognitive representation of number is a part of their growing understanding of number,
and that it is affected by many factors: child development, formal teaching, and everyday
experiences. From this perspective, the degree of available control is very low. Whilst previous
researchers have carried out experimental work with cognitive representations, the research

goals of this thesis would not be well-served by an experimental design.

4.2 Task-based interviews

Although case study research is commonly associated with qualitative research, the fine grain
detail it collects can be quantitative or qualitative (Cohen et al., 2011). In the case of this research,
| will collect and analyse both detailed quantitative and detailed qualitative data about each

participant or case.

This section addresses the choice of task-based interviews as the main data collection tool. The
description task-based interview is used following usage of previous researchers in representation
(DeWindt-King and Goldin, 2003; Thomas et al., 2002). One advantage of this is to avoid falling
into the strict definition of clinical interview or the talk-aloud procedure as defined by Ginsburg et
al. (1983). As will be explained, the task-based interview developed for this thesis uses elements

of each, chosen with extreme care, for reasons based on theoretical assumptions.
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The data collection tool for this thesis needed to permit observation of children using and
creating cognitive representations of number. Since the research questions require the
investigation of number line estimation tasks, these tasks in particular needed to be incorporated.
Since the thesis is concerned with the close analysis of individual responses, it was determined
that a class or group class situation was not appropriate for the main data collection, a common

conclusion in cognition research (Ginsburg, 1981).

Two particularly relevant studies in mathematics education demonstrate the potential of the task-
based interview (DeWindt-King and Goldin, 2003; Thomas et al., 2002). In both cases, children
were interviewed individually and the researchers carried out fine-grain analysis of children’s
cognitive representations. The task-based interviews enabled close analysis of children’s overt
behaviour, within which representations were identified and analysed. The task-based interview
clearly permits observation, and in addition video-recording of the interview, to further enable

detailed analysis.

A task-based interview incorporating number line estimation tasks was therefore chosen as the
data collection tool. The following sections specify the exact features of the task-based interviews

developed, and the reasons for this specification.

4.2.1.1 Clinical interviews and talk-aloud procedures

As briefly mentioned, the task-based interview is related to two established data collection tools:
the clinical interview and the talk-aloud procedure. The original, verbal clinical interview method
consist of “flexible questioning of individual children on a totally verbal level” (Ginsburg et al.,
1983, p. 10). This method does, clearly, only provide verbal data, and according to Ginsburg the
revised clinical interview method was developed by Piaget after he concluded that the verbal-only
method was in certain situations inadequate. In the revised clinical interview method, concrete
objects/tasks are incorporated, and the data collected are “both verbalizations and aspects of
nonverbal behaviour” (Ginsburg et al., 1983, pp. 10-11). In terms of contributing to the
understanding of cognitive development, the rationale of the clinical method is that it offers
children “the opportunity to engage in various intellectual activities” whilst the researcher

observes all aspects of their behaviour (Ginsburg et al., 1983, p. 11).

The talk-aloud method similarly sets an individual a task, but instead of being questioned, “the
subject is instructed to say everything that comes into his or her head whilst solving a challenging
problem” (Ginsburg et al., 1983, p. 8). The aims are to “elicit and describe the integrated activities

constituting complex problem solving” with a minimum of researcher intervention.
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Reflecting on the features and comparative advantages of these two protocol methods was
important in order to develop the most appropriate data collection tool for this thesis.
Questioning, in line with the revised clinical interview method, presents numerous advantages.
There is explicit mention by Thomas et al. (2002) that by only recording spontaneous first
attempts at a drawing task, the researchers accessed only a partial view of children’s
representational capabilities — “Other responses would very likely have occurred had the children

had been prompted” (Thomas et al., 2002, p. 130).

On the other hand, there are good arguments against questioning in this research area, since it is
not only researchers who are unable to directly access participants’ internal representations.
Goldin emphasises that the extent to which individuals can introspectively describe their own
internal representation is also highly “questionable” (Goldin, 2008, p. 181). To this must be added
the limitations of young children’s verbal articulation. Furthermore, by asking children “how did
you do that?” a researcher may easily bias results, by implying to children that an explicit,
communicable strategy is expected and recommended. This is a particular danger in the context
of this thesis, since both intentional and automatic cognitive representations are hypothesised to

be involved.

The solution adopted was to limit direct questioning, and to invite but not require children to
comment on their task solving. This attempted to combine some of the benefits of the talk-aloud
method with the clinical interview method, whilst not obliging children to report or invent
accounts of their actions to satisfy researcher interest. Children were reminded several times
during the interview, “If you want to, tell me about what you’re doing as you go along”. Where
children began an explanation and did not finish (e.g. “I know this one, because ...”), or made
specific comments about their attempts at a trial (“This is a really easy one!”), the researcher
followed these up, as in the revised clinical interview method, but with questions deliberately
conversational in tone. The examples given above could typically be followed up by “Because ...?”
or “Oh really? Why’s that?”, or simply facial communication between the researcher and
participating child. Strong relationships between the researcher and participating children were

established before the pilot study, and this seemed to make little prompting necessary.

The aims of the compromise were as follows:
e To minimise researcher influence where possible
e To leave open as many possibilities for the participants as possible, and imply as few
expectations as possible (although by repeatedly asking children to complete certain tasks,

the researcher will implicitly communicate an interest in children’s estimations)
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e To minimise the pressure on children to ‘invent’ accounts to satisfy researcher interest

e To maintain a relaxed interview atmosphere, in which children felt able to work at their
own pace

e To encourage a rapport with research participants that encourages free talking

e To retain children’s confidence (established in classroom interaction) that the researcher

was interested in ‘how we do maths’ rather than in ‘getting the right answers’

The downside of cautious questioning is that participants will not be pushed for a demonstration
of full representational capability. This is, however, countered by specific steps: multimodal data
collection, multiple tasks, repeated multiple times in an interview, and carried out on multiple

occasions throughout the year. These steps are detailed in the following section.

4.2.2 Shaping the task-based interviews
The specific requirements of the research questions, and clear recommendations from the
literature, determined the necessary features of the data collection tool. In summary, it needed to:
1. Include data from more than one task, situation or question
2. Examine cognitive representations involving more than one mode
3. Include data on children’s responses to number line estimation tasks
4. Include data from sufficient tasks, situations, questions and times to gain insight into the
variability of children’s representations
These requirements, and the reasoning behind them, are explained more fully in the following

sections.

4.2.3 The need for multiple tasks/situations

In viewing the individual as possessing representational capabilities, it is necessary to use more
than one tool in order to more accurately describe and assess capabilities. DeWindt-King and
Goldin (2003) recommend proving varied external representation opportunities, and there are

both empirical and theoretical reasons for doing so.

Fuson and Hall (1983) emphasise that children demonstrate and successfully use wildly varying
levels of knowledge when task designs prompt the use of particular knowledge, e.g. counting. This
idea is evidenced in the field of number representations by findings such as those of Thompson
and Opfer (2010); even within the strictly defined number line estimation, individuals appear to
employ different numerical-magnitude representations depending on the particular numerical
context, in this case, the scale indicated by the endpoints of the number line. The idea of different
tasks eliciting different cognitive representations in the same individual is further supported by
Siegler and Opfer (2003), Hubbard et al. (2009), and Geary et al. (2008).
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From a more theoretical standpoint, Vergnaud (1987) concludes that “it is a good theoretical and
methodological choice to study a set of situations” since “a concept refers to more than one kind
situation and as the analysis of a situation requires usually more than one concept” (p. 231). Ata
more specific level, Duval also offers theoretical reasons to vary task situations. Research
involving the conversion of representations, as in this thesis, "requires that students be given
tasks that are varied systematically not only as a function of the original register but also as a
function of internal variations within each register" (Duval, 2006, p. 121). In this case, this means
that both the target number and register of the starting register are varied, and the endpoints of
the number line target register are also varied. Additionally, the interviews developed for this
thesis use two different formulations of number line estimation task: both the ‘number to
position’ task and the ‘position to number’ task, requiring opposite conversions of
representations. According to Duval, this methodology of variation then permits the observation
of “a systematic variation of performances" (Duval, 2006, pp. 121-122). The thesis also
incorporates two entirely separate task situations: an imagistic drawing task and the estimation of

quantities of items (see detail on tasks in later section).

A further motive for using multiple tasks is the questionable validity and reliability of single
hypothesised measures (Schneider and Stern, 2010). The question of reliability is particularly
relevant considering the inherent variability and idiosyncratic meaning of children’s
communications. This thesis takes the perspective that children’s variability should not be seen as
a failing, but does strengthen the case for multiple data collection tools, and should be

incorporated into the research conclusions.

Schoenfeld (2008) discusses the particular issue of construct validity in clinical interviews. The
example of Piaget’s clinical interviews is discussed, where further research revealed that
“although performance on certain tasks might be robust, the robustness was in part a function of
the research design; other tasks aimed at the same mental constructs did not necessarily produce
the same results ...” (p. 486). Schoenfeld stresses that the analysis within the task situation was
correct; it was “the mapping back to the conceptual framework (the attribution of certain logico-
deductive structures on the basis of the analyses)” that had questionable validity (p. 486). This
problem is one that further motivates this thesis to not map data back to the construct of
concepts, but to focus upon cognitive representations, as Duval’s theoretical work strongly

recommends.

By using multiple tasks, varied task details, multiple trials, multiple interviews, and acknowledging
children’s variability, the research design of this thesis aims to provide insight into children’s

cognitive representations that is both valid and reliable. The issue is a problematic one for
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research into the cognitive representation of number; as the literature review demonstrates,
there is at present reliance on a too-narrow range of data, and a lack of consensus about the

validity of competing accounts.

4.2.4 Examining in multiple modes

The primary motivation for considering multiple modes when examining cognitive
representations is theoretical; Duval’s framework explicitly notes that cognitive representations
may appear in many different modes (e.g. Duval, 1999, pp. 5-7), and there is no theoretical reason
to privilege one above another. Focusing on only a limited subset would limit the cognitive
representations of number that this thesis is able to detect. In addition to this, Duval’s theoretical
perspective identifies the conversion between registers, and often consequently between modes,
as the critical aspect of mathematical understanding. This gives further motivation to detect
representations of number in as many modes as possible, in order that conversions are properly

noted.

From many theoretical standpoints, examining multiple modes performs the methodological
function of triangulation, but precision must be used in specifying how. In studies which infer an
underlying internal representation from children’s external representations (e.g. DeWindt-King
and Goldin, 2003), data from multiple modes fulfils a triangulating function in terms of increasing
the validity of claims made about a child’s underlying internal representation of number. This is
not the case in this thesis, where observed cognitive representations are considered in their own
right, not used for the inference of internal representations (see Theoretical Framework chapter).
Empirical evidence indicates that cognitive representations in different modes may represent
different information about a mathematical problem altogether; in some circumstances, even
apparently conflicting information (e.g. Alibali and Goldin-Meadow, 1993). Despite this,
representations observed in multiple modes are still able to fulfil a function of triangulation for
this thesis, in terms of validating claims about what aspects of number a particular child is able to
cognitively represent. For example, a child may repeatedly appear to spatially represent the
number sequence 10, 9, 8, 7, 6, 5 in gestures pointing at the page. The claim that the child is able
to cognitively represent this number sequence is supported by the observation of the
representation of the same number sequence in other modes, such as natural language or

inscription.

4.2.4.1 Gesture
Chu and Kita (2011) observe that the majority of research into gesture focuses on co-speech
gesture only. In the influential Hand and Mind for example, there exists an “obligatory presence

of speech” in the definition of gesture (McNeill, 1992, p. 37); movement that is not accompanying
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speech is not gesture. McNeill acknowledges that “Many authors refer to all forms of nonverbal

”n”m

behavior as ‘gesture’” but views this as a failure to differentiate between behaviours that “differ

fundamentally” (McNeill, 1992, p. 37).

For the purposes of this thesis, a broader understanding of gesture is required, specifically one
that is able to encompass co-thought as well as co-speech gesture. Considering the observed
behaviour of children working on tasks, where there is a continuum of loud talking, quiet talking,
mumbling, whispering, and mouthing silently, it is difficult to accept that the audibility of the
words turns the accompanying gesture into a behaviour that “differs fundamentally”. A more
inclusive definition of gesture is the continuum conception of gesture by Kendon (1988), which

includes the following forms of movement:
Gesticulation -> Language-like gestures -> Pantomimes -> Emblems -> Sign Languages

The movements farther to the right on the spectrum are less likely to be accompanied by speech,
and more likely to resemble language in the way used (e.g. replacing a word in a spoken sentence).
McNeill’s definition of gesture as “idiosyncratic spontaneous movements of the hands and arms

accompanying speech” (1992, p. 37) corresponds to gesticulation in Kendon’s continuum.

4.2.4.2 Why analyse gesture?

The principal reason to include gesture within the data collection of this thesis is that Duval’s
(1999) theoretical framework, as noted, emphasises always that the important aspects of
cognitive representations are their nature and form, rather than mode of production. There is no
theoretical justification for excluding a mode such as gesture, which is as likely as others to be

used in cognitive representation.

Additionally, however, there are reasons for particular interest in gesture. Although it is very
commonly analysed, speech is likely to be influenced by the wording of problems or interviewer
questions, and to systematically omit any information that is difficult to verbalise. Since
spontaneous gestures are not subject to these same limitations (though they may be subject to
others), their analysis may provide a window onto knowledge that is not readily expressed in
speech (Alibali, Bassok, Solomon, Syc and Goldin-Meadow, 1999, p. 327). This is a particularly

relevant consideration when researching the knowledge of young children.

Empirical research suggests that gestures not only reveal important information about people’s
representation of problem situations, but that speech and gesture together provide a more
complete view of solution strategies than speech alone (Alibali et al., 1999). A phenomenon of

particular interest is that gesture-speech mismatches in children may reveal transitional states of
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knowledge (Alibali and Goldin-Meadow, 1993; Perry, Breckinridge Church and Goldin-Meadow,
1988; Perry et al., 1992). Alibali and Goldin-Meadow (1993) for example found that
mathematically accurate representations of a problem were found in gesture before speech for

every child sampled, making gesture an exciting place to look for emerging conceptual knowledge.

Particularly relevant for this thesis and the conversion of representations is the demonstration by
Garber, Alibali and Goldin-Meadow (1998) that the knowledge represented with gesture is not
“tied” to the hands. In their study, Garber et al. (1998) showed that the knowledge children
conveyed in gesture was also represented using other means, and used by children in solving

other tasks.

The use of video assists in the capture of multimodal data, and enables more detailed analysis
than permitted by in-the-moment observation. It is used to capture speech and sound, eye
movement and gestures. It also captures body language and other action, though the literature

does not suggest that these will be frequently involved in the representation of number.

4.2.5 Number line estimation tasks

There are clear reasons why the task-based interviews for this thesis need to incorporate number
line estimation tasks: they are of high theoretical interest, consequently extremely common in
number representation research, and a specific focus of the research questions of this thesis. This
thesis uses number line estimation tasks for the data they are able to provide on children’s
cognitive representations of number, but additionally seeks to investigate the tasks themselves in

order to engage with existing literature and hypotheses.

A ‘number line estimation task’ is a specific problem type in which participants are asked to
indicate the position of a given number on an empty number line (a blank line on the page or
screen, with the endpoints labelled, often with the values 0 and 100, or some other power of ten).
The method described here by Opfer and Siegler (2007) is typical:
Each problem consisted of a 25 cm line, with the left end labeled “0” and the right end
labeled “1000.” The number to be estimated—2, 5, 18, 34, 56, 78, 100, 122, 147, 150,
163, 179, 246, 366, 486, 606, 722, 725, 738, 754, 818, and 938 —appeared 2 cm above

the center of the line. [...]

The experimenter began by saying, “Today we’re going to play a game with number lines.
What I’'m going to ask you to do is to show me where on the number line some numbers
are. When you decide where the number goes, | want you to make a line through the

number line like this (making a vertical hatch mark).” Before each item, the experimenter
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said, “This number line goes from 0 at this end to 1000 at this end. If this is 0 and this is
1000, where would you put N?”
(Opfer and Siegler, 2007, p. 175)

Number line estimation tasks such as this are very widely used by researchers in cognitive
psychology for studying the development of whole number magnitude representations (Siegler et
al., 2011). A specific gap in the literature is detailed knowledge about what this task reveals about
children’s cognitive representations. It has been very frequently used, but insufficiently queried,
so presents a key target for further investigation. The impact of children’s strategy on responses is

one obvious aspect for examination (White and Szucs, 2012).

Numerical estimation is of interest to researchers being not only pervasive in everyday life and
education, but central to “a wide range of mathematical activities” (Opfer and Siegler, 2007, p.
170). Research over the past 25 years has found attainment at numerical estimation tasks to
correlate well with specific mathematical skills (arithmetic, numerical comparison) as well as
standardised mathematics test scores (Opfer and Siegler, 2007, p. 170). Clements and Sarama
argue that “Improving children’s number line estimation may have a broad beneficial effect on

their representation, and therefore knowledge, of numbers (2009, p. 45).

Number line estimation tasks are considered revealing because they require genuine numerical
estimation (not solvable through external, non-numerical clues). Specifically, solving a number
line estimation task “requires translating a number into a spatial position on a number line or
translating a spatial position on a number line into a number” (Young and Opfer, 2011, p. 59). It is
this translation, or in Duval’s terms conversion, which makes number line estimation tasks
valuable to this thesis. The interest in representation translation or conversion differs according
to theoretical framework. Working within Duval’s framework, the number line estimation task is
seen to involve a conversion between on one hand simultaneous representations of number in
spoken natural language and written numerals, and on the other hand a spatial representation on
paper. In contrast, the theoretical frameworks of many studies using this task type (e.g. Barth and
Paladino, 2011; Berteletti et al., 2010; Thompson and Opfer, 2010) focus upon an underlying (and
privileged) internal representation, to which to the external number line estimation is held to
correspond. From this perspective, the conversion is a translation between “external symbolic
representations of numbers (e.g., numerals) and internal, analog magnitude representations”
(Young and Opfer, 2011, p. 59). In both cases, the translation or conversion is “highly revealing

about how a cognitive system encodes number” (Young and Opfer, 2011, p. 59).
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A concern with the validity of the use of number line estimation tasks is that the presentation of
the task “forces’ participants into an external representation of a very specific and limited type,
and that this is inadequately discussed in reports of its experimental use. There is strong evidence
for associations between spatial and numerical representation in the brain (e.g. Fias and Fischer,
2005), but the exact nature of the association remains ambiguous. Furthermore, were it a known
fact that the mental representation of number consisted exactly of a mental number line, for all
participants, it would remain methodologically unjustified to assume a direct and transparent
relationship between the mental number line and the task’s (external) number line. In this thesis,
the use of number line estimation is justified because there is no assumption that a number line
representation corresponds to children’s preferred, natural or otherwise privileged internal
cognitive representation. Instead, the research is concerned with the process of children’s
conversion to the number line representation, and the aspects of natural number represented

when children use the number line estimation.

A second concern regarding number line estimation tasks is that in a majority of studies, the
positioning of target numbers with anything other than linear placement is classified as incorrect.
A typical justification explains that “Just as 80 is twice as large as 40, so the estimated location of
80 should be twice as far from 0 as the estimated location of 40” (Siegler et al., 2011, p. 5). This
claim, however, can only be true when the only possible mapping of natural numbers onto space
is linear. It is a concern that a particular external representation must be produced for ‘successful’
task completion, despite the fact that no task instruction requests the production of this
particular external representation. This thesis does not seek to judge the ‘correctness’ of

children’s number line estimations.

There are, nevertheless, reasons for a linear placement to be considered a more mature, and
useful, representation, and so the linearity of children’s representations does form part of the
research questions of the thesis. For theoretical reasons, however, this thesis’ interpretation of
number line estimation responses will differ to those in the literature. For example, based on
children’s (approximately) logarithmically distributed number line estimations, Thompson and
Opfer (2010) refer to “Children’s initial expectations that numerical magnitudes increase
logarithmically” (p. 6). From the theoretical perspective of this thesis, such a conclusion is not
justified. In addition to the inference from number line task to mental representation, the
assumed relation between representation and conceptual understanding is not discussed, and
neither is the selective nature of representation — not every representation will represent every
aspect of the represented. It is not obvious that children (before learning) know that the

researcher in this task seeks an accurate representation of the ‘spacing’ of discrete numerical
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magnitudes. It is also conceivable that a child could possess the ‘conceptual knowledge’ that 80 is
in some sense twice as ‘far’ from zero as 40, whilst not yet possessing the procedural knowledge
that facilitates representing this understanding on paper, in the form specified by the task

framework.

4.2.6 Data to assess variability

Three elements of the research design attempt to enable the observation of the variability of
children’s responses. Firstly, the longitudinal design allows children’s performance on a highly
specified set of tasks to be compared at five time points within one school year. Secondly,
multiple tasks are used within an interview, inviting children to make similar estimations in
different settings. Within each task, the variables of target number and number range are varied
to give children multiple opportunities with each combination. Thirdly, if each task is considered
as one task type (e.g. number to position estimation task) then the multiple trials (37 per
estimation task) give children multiple opportunities to engage with that task type in each

interview.

4.3 Research design: specific description
The chosen research design consisted of multiple longitudinal case studies, exploratory and
qualitative in approach, which used video-recorded task-based interviews to collect data at

intervals over one school year.

4.3.1 Sample and choice of age group

This thesis is concerned with children’s changing cognitive representations of natural number as
their mathematical understanding of natural number is still rapidly developing. The particular
research interest in number line estimation tasks focused attention on the early years of

schooling, where children’s responses to these estimation tasks have been observed to change.

Experimental evidence so far suggests that the logarithmic-to-linear shift on number lines marked
0-100 occurs between ages 5 and 8 for US school students (Siegler and Booth, 2004), with similar
shifts on larger number ranges occurring at later ages (Opfer and Siegler, 2007; Siegler and Opfer,
2003; Siegler et al., 2009). Data from studies with English school students is lacking, but it would
not be surprising for these students to demonstrate linear representations of number on average
somewhat earlier than American students, given the younger age at which they begin school (age
5-6 in the US compared to age 4 in the UK). Logarithmic-to-linear shifts have already been
observed on smaller number ranges (e.g. 0-10) for Italian children aged 3% to 6 (Berteletti et al.,

2010).
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An additional reason encouraging interest in the younger end of the 5-8 age range was the wish
to study children during a year in which their exposure to standardised school representations
increases most significantly. After the first years of school, children already will have experienced
a great deal of systematic encouragement to use particular standardised representations of
number such as illustrated 0-30 number lines. For these reasons, children in Year 1 (aged 5-6)

were chosen as the population of most interest for a year-long study.

4.3.1.1 Sample

The sample invited to participate in the research consisted of 15 children selected from one Year
1 class at a local South of England primary school. Each participating child formed one case of the
multiple case study. The sample was chosen with the expectation that not all participating

children would remain in the study until the end.

Selection for inclusion in the study was carried out in consultation with the children’s class
teacher, after the researcher had spent one month in classroom mathematics lessons with the
children. The criteria for selection were:
e children likely to want to participate, so in particular, no children with strong anxiety
attached to doing mathematics

e an approximately equal number of boys and girls (8 boys and 7 girls invited to participate)

Within the above restrictions, a stratified sample was then taken based on the four teacher-
assessed attainment groups within the class. In this way, the sample was constructed to be as far
as possible representative of the class and the differing mathematical attainment levels. The
sample is not fully representative due to the ethically necessary exclusion of children with
mathematics anxiety or unwillingness, and the self-selection of actual participants from within the
invited group. Since thirteen out of fifteen invited children did participate, the latter was not
considered a significant concern. The research design does not involve a sample intended to be
statistically representative of any single cohort. That said, the cases are intended and expected to

be a fair representation of the typically-performing children within this particular school.

Of the fifteen children and their parents invited to participate in the research, parental consent
for participation was received for thirteen children (6 boys, 7 girls), and all thirteen of these

children themselves consented to take part in the study.

4.3.2 Ethical considerations
The significant ethical considerations of the study relate to researching with young children, and

particularly video-recording them. To address this, the research was designed with the input of a
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classroom teacher to consider the impact on children, and both children and parents were asked
permission. Parents were asked in writing, with the researcher available in person at the
beginning and end of the school day to answer any queries and meet parents. The purpose and
methods of the study were fully explained, in particular the process for ensuring the

confidentiality of video data. No reservations or concerns were expressed by parents.

Children were asked for permission for each interview, and reminded that they were free to stop
participation at any point. This was considered particularly important in order to ensure children
did not confuse the interviews with the compulsory nature of the normal school day. Children
were invited to view the recorded footage of their interviews after each interview; the majority
were keen to see a few minutes of each recording. To protect children’s anonymity, pseudonyms

were used in all research reporting.

4.3.3 Data collection

Each child participating in the research was interviewed five times, once in each half term
excluding the first half term of the school year. The intervals between interviews were therefore
between six and eight weeks. This interval was chosen for several reasons: it was expected that
children would make significant progress in mathematics between interviews, and have sufficient
time to forget the precise details of the interview. Many practical considerations also made half-
termly interviews a good choice; they fit well with the rhythm of the school year, avoided clashes
with school holidays, and minimised disruption to class routines. Each interview lasted between

25 and 40 minutes, with children free to take as much time as they wanted for tasks.

Interviews were carried out by the researcher with individual children in an open-plan quiet study
area of the children’s school. Each interview involved the completion of four specifically designed
tasks, and interviews were video-recorded for later analysis. Children were aware of the video
recording, and invited to look at and test the camera themselves before interviews, and view the
footage of their own participation afterwards. It was found during the pilot study that children

were neither concerned nor overly interested in the video camera.

The tasks developed for the task-based interviews were:
T1. “Imagine the numbers 1-100 ...” task, adapted from Thomas et al. (2002).
T2. Number-to-position estimation task, adapted from Thompson and Opfer (2010).
T3. Estimation of quantities (Clements and Sarama, 2009, p. 53; Siegler et al., 2009).

T4. Position-to-number estimation task, from Clements and Sarama (2009, p. 54).
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The interview tasks were carried out in this same order for each child, in each interview. The
drawing task, T1, was carried out first in order to capture children’s cognitive representations
before the potentially strong influence of the number line estimation tasks. The number placing
task (T2) was carried out next, being the longest task in duration and so placed when children
were likely to be feeling mentally ‘fresh’. The quantity estimation task (T3) followed this, for
children to refresh themselves with a break from the number line estimations. In the pre-pilot
testing of Task 3, children did not seem to find the task taxing or tiring, and as a break from paper-
based work this task seemed to function well. The final task was T4, in which children estimated

the number represented by positions.

During each task, the researcher provided encouragement, and thanked children for any
explanations and demonstrations given, but avoided giving feedback on the ‘correctness’ of any

responses.

4.3.3.1 T1 -Imagine the numbers 1-100 ...

This task invited children to give an external drawing and/or verbal description of their imagistic
representations of the natural numbers from 1 to 100. The imagistic representation of number
may occur spontaneously, and was expected to occur during the estimation tasks detailed above.
However, the imagistic task used by Thomas et al. (2002) was incorporated into the interview in
order to provide a deliberate opportunity for this kind of representation. The task has been
successfully used by other researchers to elicit imagistic representations of number from children,

and its inclusion allows a comparison of findings between Thomas et al. (2002) and this thesis.

The researcher introduced the task to each child in the following way: “This task is a bit different
to normal maths, because there is no right or wrong answer. It’s about the different ways people
imagine or think about numbers. | want you to close your eyes ... and imagine the counting
numbers, from 1, 2, 3 ... up to 10, and all the way up to 100 if you can. | want you to think about
the way the numbers look in your mind, what picture you see when you think about those
numbers, 1 up to 100. When you’re ready, | want you to try to draw the picture that’s in your

head on this paper, and tell me about it, if you can.”

Several questions and comments arose from participating children during classroom trials:
e “Canluse the colours?”
e “ldon’t know what to do.”
e “Canldraw them in rows?”
e “Canldraw 200?”
e “Is this right?”
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Responses to these questions and comments were therefore planned before the pilot study. The
planned responses were as follows:

e Offer supportive encouragement whilst emphasising that there is “no right or wrong
answer”. The researcher can repeat that “this task is a bit different to usual activities in
maths, isn’t it?” Children in classroom trials were also interested to hear that a researcher
in Victorian times (Francis Galton) used to ask his friends this question, so this can be used
as encouragement.

e Children may use any of the drawing materials provided, and draw “whatever picture of
the numbers you see in your mind”.

e If children are hesitant or seem self-conscious, the researcher can also draw (with the
image hidden from the child) so that the child feels more at ease.

e The researcher should repeat that “there is no right or wrong answer”.

Children were invited to draw on plain A4 paper. The impact of this, and how it might constrain
responses, was considered; alternative possibilities included using larger paper, offering children a
‘blank wall’, or asking them to interact with numbers in a physical space larger than themselves.
Whilst A4 page boundaries might constrain a child’s drawing, it is a paper size they are used to
encountering and scaling their ideas to. Furthermore, its ‘ordinariness’ within school gives
children confidence — it is not a precious ‘special’ art class resource, but one to be used however
they wish to achieve their ends. It was felt that choosing something other than everyday class
resources would have more impact on task responses, because children would notice it more, and

feel pressure to invent something more ‘special’ than normal.

4.3.3.2 T2 - landing ‘number rockets’ (number-to-position estimation)

This task asked children to estimate the position of given target numbers on a blank number line,
and stick the ‘number rocket’ in that position. As in number-to-position estimation tasks in the
literature, the number lines presented were 25cm long, in the centre of a plain white sheet of A4
paper (e.g. Berteletti et al., 2010, p. 546; Siegler and Opfer, 2003, p. 238). The task differed from
examples in the literature by presenting children with the target number on a sticker. Berteletti et
al. (2010, p. 546) showed the numbers to be estimated “in the upper left corner of the sheet”,
and in the task by Siegler and Opfer (2003, p. 238) “the number to be estimated appeared 2 cm
above the center of the line”. The decision to present the target number on a sticker instead was
taken for three important reasons. Firstly, it was felt that if the target number appeared anywhere
on the number line page, it would be possible for its position relative to the line to influence
children’s estimated position for the number, however subliminally, and however small the effect.
Secondly, handing children the target number on a sticker emphasised the physical and spatial act

of taking a number in verbal and symbolic form, and assigning it to a position on the line, and
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emphasised that the child was in charge of this act. Thirdly, children were pleased by the context
(rockets) and novelty of the materials, showing high levels of engagement when the task was

trialled.

The task was introduced to children in the following way: “This task is about landing number
rockets on number lines. Have a look at this number line — what’s different about it, compared to
the number lines in your classroom?” If children did not comment that “it is missing all the
numbers in the middle” or “it only has numbers at the ends” or similar, the researcher pointed to
the endpoints and said: “Look, there are numbers here [point] and here [point], but we can’t see
any of the numbers in between”. The researcher then explained: “I’'m going to give you a number
rocket, like this one [points], and | want you to put it on the number line where you think it should
land. Don’t worry if you’re not certain, | just want you to have a think and put it in the most
sensible place you can. It's about estimating where the rocket should go — making a sensible
maths guess.” The term estimate was included since it is part of the mathematics vocabulary

taught during Year 1 and the children were beginning to apply it in mathematics lessons.

Children landed 37 number rockets in total, split over four different number lines. The four blank
number lines used were marked with one of the following sets of endpoints: 0-10, 0-20, 5-15, or
0-100. The number lines consisted of 25-cm long lines in the centre of white, landscape, A4 sheets

(see Appendix 3), as used by Berteletti et al. (2010). The target numbers to be positioned for each

range were:
Range Target numbers

0-10 1,2,3,4,56,7,8,9

0-20 2,4,6,7,9, 11,15, 16, 18, 19
5-15 6,7,9,10,11,13, 14

0-100 2,3,4,6,18,25,49,50,67,71,92
Total trials 37

Figure 4 Target numbers by range

Unlike Berteletti et al. (2010), on the range 0-10, every possible target number was tested, in line
with the recommendations of White and Szucs (2012, p. 11). Saturation of target numbers would
also have been desirable on the range 0-20, but as part of efforts to keep the overall interview
length down only ten were selected. The selection included targets around each endpoint and the

midpoint, as these were hypothesised to be points of particular interest.

The 0-100 target numbers were based on those used by Berteletti et al. (2010, p. 546), in turn

following Siegler and Opfer (2003). Siegler and Opfer chose these target numbers in order to
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“maximize discriminability of logarithmic and linear functions and to minimize the influence of
specific knowledge, such as that 50 is halfway between 0 and 100” (Siegler and Opfer, 2003, p.
238). Since this research did not want to minimise the influence of specific knowledge, target

numbers close to 50 and 100 were added.

The range 5-15 was not tested by previous research. It was chosen for this research as an
exploratory part of data collection, to investigate what would occur when endpoints were varied
from zero and multiples of ten. In particular, it sought to further explore children’s use of
endpoint and midpoints to carry out their estimations. The range 5-15 was chosen for this non-
standard range since it falls within the 0-20 range with which Year 1 children are familiar, and the
number sequence 5 — 10 (midpoint) — 15 is one encountered during classroom practice counting

in fives.

The order of the target numbers within each range was separately randomised for each child,
again following Berteletti et al. (2010). The order of the ranges however was the same for each
interview: 0-10, 0-20, 5-15, 0-100. A booklet was prepared for each child, with pre-prepared blank
number lines in the correct order. Each child was then handed number rocket stickers by the

researcher, one rocket at a time, to ‘land’.

At the start of the task, the researcher completed a trial with the child to check task
comprehension and build confidence. The researcher took a rocket labelled with an endpoint (e.g.
10) and asked “Where does this number rocket belong?” If the child did not answer by pointing to
the correct endpoint, the task was re-explained. In pre-pilot testing of the task, all children
confidently pointed to the correct endpoint. Most found the question funny, and made comments

17

like “that’s far too easy!” Rockets labelled with the endpoints were used so that the researcher
avoided influencing children’s estimations of rocket positions on the line itself (between

endpoints).

4.3.3.3 T3 - estimation of quantities

This pure quantity estimation task was adapted from a task of Booth and Siegler (2006), in which
children aged 5 to 9 years estimated the number of sweets in containers. In each trial, children
chose between two possible answers: the correct answer and a different answer, either 0.5, 1.5
or 2 times the actual quantity. The quantities used by Booth and Siegler (2006) were 22, 34, 46
and 58. To gain additional data on estimations of small quantities, target number 14 was added

for this thesis.

Sugar-coated chocolate sweets were used (diameter approx. 10mm), and an identical transparent

container was used for each target number. The order of quantities and the choice of incorrect
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answer option were randomly chosen for each child. For each target number, the researcher
asked “Have a look at this container. Do you think there are n or m sweets?” In case children
recalled the answer options from the previous interview, alternate interviews used a slightly

different set of target numbers: 18, 24, 32, 48, and 60.

4.3.3.4 T4 - naming number rockets’ (position-to-number estimation)

In this task, children were shown an un-numbered rocket already positioned on a blank number
line, and asked to estimate which number rocket they thought it was. The task was explained to
each child in the following words: “Here are some number lines, like the ones you saw before. You
can see I've already stuck a number rocket on, but I’'ve covered up the number. Which number do
you think this rocket should be?” The number lines and target numbers used in this task were the

same as in Task 2, with the target numbers once again in a random order.

4.4 Theory for analysis

As the theoretical framework and methodology chapters have demonstrated, this thesis is
primarily framed and supported by Duval’s theory of cognitive representations. This theory
clarified the emerging research problem by encompassing within one framework children’s
disparate cognitive representations of number. The framework explains the centrality of the
representations to mathematical thought, explains why connections between representations can
and cannot be expected, explains the significance of children’s conversions between
representations, and explains why we can expect children’s conversions between representations

of number to change.

What Duval’s theory does not provide for this thesis is the means to analyse the detailed features
of representations and changes pinpointed by the research questions. This theoretical material,
the theory for analysis, is presented now. The theory for analysis consists of three parts: firstly,
imagistic representations; secondly, number structure represented by children; and thirdly,

hypotheses in the literature with which the thesis engages.

4.4.1 Imagistic representation

Imagistic representations (representations with visual, spatial or graphical characters, as defined
in the Theoretical Framework chapter) of number from any task, using any mode, are analysed
using a framework adapted from Thomas and Mulligan (1995) and Thomas et al. (2002). Their
framework uses Goldin’s model of internal representations with a model of imagery combining

ideas from Presmeg (1986, 1998), Mason (1992) and again Goldin and Kaput (1996).
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The basic framework first distinguishes three types of sign or character which constitute the
fundamental elements of the external representation. The three categories are:
1. Pictorial: “pictures of objects, possibly together with oral descriptions of objects”
(Thomas et al., 2002, p. 121). Pictorial elements in internal representations can also
be inferred from verbal descriptions alone, for example if a child describes a
collection of ten objects on the table.
2. lconic: “drawings of tally marks, squares, circles, or dots” (Thomas et al., 2002, p. 121).
3. Notational: “the predominant use of numerals drawn in various formations such as

number line, array, a 100cm ruler, or a vertical column” (Thomas et al., 2002, p. 121).

These three types of component may be combined in one drawing. The definition of the Pictorial
category (above) contrasts with the Concrete/Pictorial category of Thomas and Mulligan (1995),
which explicitly only includes “objects which do not have any quantitative relationship to the
numbers” (p. 12). Correspondingly, the definition of the Iconic category also differs; in the 1995
paper, it is defined as “pictorial imagery which relates to a quantity” (p. 12) whereas the 2002
definition (used in the framework adopted for this thesis) specifies examples in which the
elements of the image are to an extent abstracted; they play a role of signing the quantity as

opposed to being depictions of concrete instances.

In general, it is reasonable to assume that the later paper (Thomas et al., 2002) reflects the
authors’ deepened knowledge and insight into the research area. Additionally, the later
definitions are preferred for use in this thesis since they provide greater clarity on an important
distinction. The phrase “relates to a quantity” (Thomas and Mulligan, 1995, p. 12) is problematic;
it does not specify the nature of the relation, and as such could include imagery better described
as concrete pictorial, for example the depiction of a younger sibling “because she is two years

old”.

The imagistic representation framework next examines the type of structure evident in the
representation. The classifications developed by Thomas and Mulligan (1995, p. 12) are:
1. No structure: elements show no apparent relationship to equal groupings or
sequence.
2. Linear structure: elements in linear formation (straight or curved), numbers in
sequence.
3. Emerging structure: “one hundred represented by equal groups of objects, or linear

sequence broken into equal segments” (Thomas and Mulligan, 1995, p. 12).
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4. Emerging structure (m): representation shows some aspect of multiplication, such as
multiple count and multiplication grid.
5. Partial array structure: elements are in rows and columns, but not a ten-by-ten array.

6. Array structure: elements in a ten-by-ten pattern.

Finally, imagistic representations are classified according to what Thomas and Mulligan (1995)
refer to as “Nature of the Image” (p. 12). This categorisation refers to the movement in the
imagistic representation, with the two classifications being:

1. Static: the representation is presented or described as fixed.

2. Dynamic: the representation involves changing or moving elements.

4.4.2 Representation of number structure

The above framework includes analysis of number structure, but the framework was specifically
developed for the particular drawing task used by Thomas and Mulligan (1995). This section now
presents theoretical material for the analysis of number structure, more generally, in children’s

cognitive representations across all tasks.

The principal theory used for this analysis is a microstage theory of number development in the
early years of school, from Resnick (1983). It is congruent with the Piagetian account of number
development, and consequently with the theoretical positions of Nunes and Bryant (2009) and
other researchers favouring the Piagetian account. Resnick (1983) notes the key parallels with
Piaget’s account as “(a) emphasis on part-whole (class inclusion, for Piaget) relationships as a
defining characteristic of number understanding, and (b) the proposal that ordinal (counting) and
cardinal (class inclusion or part-whole) relationships must be combined in the course of

constructing the concept of number” (pp. 146-147).

The convergence with the Piagetian account as “especially pleasing” since Resnick’s analysis was
carried out “quite independently of Piaget’s work”. The analysis set out neither to support or
criticise Piaget’s number understanding account; its aim was rather “to build a plausible account,
from a current cognitive science point of view, or what number knowledge must underlie the
various arithmetic performances observed in young children” (Resnick, 1983, p. 147). Resnick
describes the methods used as “more bottom-up than those of Piaget” (p. 147), proceeding from

children’s behaviour in various tasks to the necessary number understanding.

The advantage that Resnick’s theoretical account offers over others is the level of detail — the
smaller ‘grain size’. As a result of the ‘bottom-up’ methods, “we are able to detect — indeed, are

forced to recognize — relatively small changes” (Resnick, 1983, p. 147). This leads to a microstage
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theory, “a theory that specifies many small changes in number representation and schematic
interpretation of number in a period of development for which the Piagetian analysis recognised

only the macrostages of preoperativity and concrete operativity” (p. 147).

4.4.2.1 Aspects of the number structure

The first aspect of number structure expected in children’s cognitive representations of number is
sequence structure. Sequence structure is expected because it is incorporated into children’s
number knowledge from the very earliest stages; when the numbers are known only as a string of
words the sequence structure is already present (Fuson and Hall, 1983, p. 94). Resnick (1983)
describes the number sequence as “a string, with the individual positions linked by a ‘successor’
or ‘next’ relationship and a directional marker on the string specifying that later positions on the

string are larger” (p. 111).

An aspect of number structure identified as very difficult for children in the early stages of
learning is relative numerosity (Fuson and Hall, 1983). Children in Year 1, like younger children,
still demonstrate signs of difficulty with this concept. The words to describe relations are
particularly difficult, with children confusing both the dimension of comparison (bigger, more,
longer) and the direction of the relation (more than, less than) (Fuson and Hall, 1983).
Determining the order relation on two cardinal words (e.g. the target number given and one

endpoint) is “a very complex issue” (p. 75).

Children in the early years of school have been observed to use the sequence structure to solve
relation questions on both number words and cardinal number contexts, for instance running
through the sequence words for pairs of numbers to decide which is larger (Fuson and Hall, 1983).
Children are able to use the order relation on sequence words to determine the order relation on
two quantities. Fuson and Hall report research with children aged 4-6 years indicating that
children appear to determine order relations on sequence words in the same way for all numbers
up to twenty. Furthermore, “this same sequence process is used for the cardinal relations for
words between ten and twenty” whereas for cardinal relations below ten, a different process —

perhaps magnitude comparison — seems to be used (p. 98).

Even once the number sequence or ‘string’ is learned, children continue for some time to have
difficulty beginning sequences from numbers other than one. In Resnick’s (1983) terms, this
indicates “that the individual successor links are not fully established for some part of the string”
(p. 112). A further specific stage of structural development is decreasing number sequences,
involving the addition of ‘back’ markers to the number string, corresponding to the ‘successor’ or

‘next’ markers originally indicating the increasing sequence structure (Resnick, 1983). Fuson et al.
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emphasise that these stages of development may take several years, and that it is to be expected
that different ranges of the number sequence will be in different phases of development; typically,
relations between numbers at the beginning of the sequence may be established whilst later

parts of the number sequence are still in a very basic phase of development (Fuson, Richards and

Briars, 1982).

The above sequence knowledge of number words “becomes a representational tool that is used
for solving operations (addition, subtraction, multiplication, division) in cardinal contexts” (Fuson
and Hall, 1983, p. 98). From it, skills such as the counting-on and counting-back procedures
develop. Fuson and Hall suggest that the use of counting-on and counting-back helps children to
see that addition and subtraction are inverse operations, allowing children in time to start
choosing procedures for convenience or efficiency rather than because they directly model the
problem context (p. 99). Resnick (1983), in turn, holds that counting-on and counting-back
procedures “produce a quantitative interpretation” of the part-whole schema, which children

appear to possess in primitive form before schooling (p. 146).

Resnick notes that so long as the number sequence remains the only number structure, “no
precision” is possible in determining the relation of two numbers. The only way to compare the
relative size of two quantities is “as a specification of the number of numerlogs that must be
traversed between positions in the line” (Resnick, 1983, p. 114). The progression to interpreting
numbers as compositions of other numbers, in terms of part and whole relations, is “the major
conceptual achievement of the early school years” (p. 114). Children beginning to understand the
compositional structure of numbers start to “partition and recombine quantities with some
flexibility” (p. 122, emphasis added). Solutions to problems that incorporate knowledge of
number bonds to ten are a particular application, one that signals the early stages of appreciation

of the base ten number system (p. 121).

The special part-whole understanding that is knowledge of base ten number structure is a highly
significant stage of development. With each number represented in terms of composition of tens
and units, “in effect, that two-digit numbers are interpreted in terms of the Part-Whole schema,
with the special restriction that one of the parts be a multiple of 10” (Resnick, 1983, p. 127). There
exists some evidence of the base ten compositional structure of numbers early on in children’s
learning. Resnick cites evidence from Fuson et al. (1982) and Siegler and Robinson (1982), who
found that “many 4- and 5-year-olds could count orally well into the decades above 20” and that
their counting showed signs of being organised around decades: counting typically stopped at
numbers ending in 9 or 0, and omissions and repetitions tended to be of entire decades (Resnick,

1983, pp. 127-128).
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Whilst this primitive sense of part-whole structure exists before schooling starts, the early years
of school are about “its systematic application to quantity” (Resnick, 1983, p. 146). Attaching the
part-whole schema to counting-on and counting-back enables “a quantitative interpretation of
Part-Whole” as noted, and the part-whole schema “in turn allows numbers to be interpreted both
as positions on the mental number line and, simultaneously, as compositions of other numbers”

(p. 146).

The basic procedures of counting on and counting back next develop to represent compositional
and multiplicative structure by counting-on and counting-back by tens as well as by ones (Fuson
et al., 1982). The stage developing from this is ‘skip counting’, in which children count-on or
count-back by any given number appropriate to the problem context. In the context of number
line estimations, employing the number sequence “five-ten-fifteen” for the number line 5-15 is an

example of this appropriate skip counting.

These latter multiplicative stages are not trivial for children. Fuson and Hall (1983) explicitly link
the difficulty of understanding the base ten structure of number with difficulty understanding the
concept of numbers in measure contexts generally. The base ten system of numeration is a
measure system, but comprehension of this is “very difficult” for children, and “At least through
second grade [ages 7-8] and often later, words up to one hundred seem to elicit primarily

counting, sequence, or cardinal meanings, rather than base ten measure meanings” (p. 85).

4.4.3 Specific predictions

In addition to the above theoretical material, specific predictions made by the literature
influenced the research questions, data collection choices and data analysis of the thesis. These
predictions do not form part of the theoretical framework, but are ideas with which the data

analysis is designed to engage.

The first and main such hypothesis from the literature is the log-linear hypothesis. As discussed in
the literature review, this hypothesis holds that both children and adults, at least in societies with
highly developed writing and counting traditions, typically mentally represent number on a
mental number line. In countries where text is written left to right, the mental number line is
ordered left to right, and children’s positioning of the numbers on this mental number line
changes with age and development. Younger children represent numbers on the line with
logarithmic placement, whilst older children and adults ‘shift’ towards linearly distributed
representations (Siegler et al., 2009). The ‘shift’ occurs first on mental representations of small

number ranges (0-10, 0-20) (Berteletti et al., 2010) and at later ages for larger ranges (0-100, O-
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1000) (Siegler et al., 2009). In terms of specific predictions for this thesis, the log-linear hypothesis
predicts that:

1. Children’s early number line estimations are likely to be best fit by a logarithmic curve in
the case of T2 (number to position) and an exponential curve in the case of T4 (position-
to-number)

2. Children’s estimations in both T2 and T4 may ‘shift’ to a linear representation in later
interviews

3. The shiftis likely to occur first for smaller, familiar ranges (i.e. 0-10), and last for larger,
less familiar ranges (i.e. 0-100)

4. The shift is likely to occur quite suddenly

The next sets of hypotheses presented suggest specific and even observable reasons why
children’s estimations over a given range come to resemble certain statistical distributions.
Ashcraft and Moore (2012), who concluded that their data overall supported Siegler and
colleagues’ log-linear shift account of magnitude representation, concluded in addition that
children’s number line estimation was influenced by both the underlying representation and
specific aspects of arithmetic knowledge (p. 265), due to evidence for the gradual inclusion of
reference or anchor points. Their predictions for children’s number line estimations are the
following:

1. There will “always” be high accuracy for estimates of targets near the left endpoint, then
accurate estimates for targets close to the right endpoint appear next, and finally
accurate estimates for targets close to the midpoint (p. 265).

2. Over time, the graph of estimation error against target number will therefore increasingly
resemble an “M” shape.

3. InT4, an early strategy is likely to be to be counting up from the left endpoint to the blank
target (p. 266).

4. A more sophisticated strategy, likely to appear after this, is count from whichever line
endpoint is closest to the blank target.

5. The further a target is from an endpoint, the higher the estimation error is likely to be.

The hypothesis of Barth and Paladino (2011) is that children’s number line estimations depend on
neither logarithmic nor linear positioning of numbers on a mental number line. Instead, the
distribution of number line estimation results follows from the fact that each number line
estimation is a proportion judgement, since for target number 30 on the range 0-100, for example,
a child “cannot simply estimate the numerical magnitude of ‘30’ in isolation; rather, they must

estimate the size of a part (the numerical magnitude of ‘30’) relative to the size of the whole (the
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magnitude of ‘100’)” (Barth and Paladino, 2011, p. 126). The variables involved in such a
proportion judgement mean that systematic over- and under-estimations can be expected,
depending on the relative distance of target numbers to endpoints and whether or not children
mentally subdivide the whole range (for example with a midpoint). The predictions of this account
of number line estimation are:

e T2 estimates in early interviews will be best fit by an S-shaped power curve, with
overestimation of targets near the left endpoint, followed by accuracy around the
midpoint, and then underestimation for targets near the right endpoint.

e There will be increasing use of a midpoint anchor, and estimates will then be best fit by a
two-cycle S-shaped curve, with the cycle of over-estimation followed by under-estimation
occurring twice within the given range, with accuracy at the midpoint (as before) but also

around the 25% and 75% points of the range.

More recent studies have expanded on the work of Barth and Paladino (2011), as described in the
postscript to the literature review. The research of Slusser et al. (2013) and Rouder and Geary
(2014) broadly supports Barth and Paladino’s hypotheses, and also puts forward additional
specific hypotheses. These are:

e Children may initially only use the anchor at zero, meaning that their estimations are
“conceptually unbounded” (Rouder and Geary, 2014, p. 2).

e All models of number line estimation “can be understood in terms of placements guided
by one, two, or three anchor points” (p. 10). Additional anchor points (from one to two,
and from two to three) can be expected to be included progressively, one at a time.

e Targets close to anchor points will be “placed with greater accuracy than those farthest
from an anchor.” (p. 11).

e Additional anchors (at 25% and 75%) are not expected: “We suspect there may be a

general limit of one virtual anchor due to working memory constraints.” (p. 11).

A closely related hypothesis that the data analysis of this thesis is concerned with is the

suggestion of White and Szucs (2012) that children may display unique behaviour for each target
number in a number line estimation task. The representation of the number and the estimation of
the number’s position are hypothesised to be a function of “the familiarity with the number range,
proximity to either external or mental anchor points, as well as knowledge of arithmetic strategy”
(p. 9). The data analysis of this thesis will look for evidence that children’s estimations vary in
these specific ways. This hypothesis differs from others in explicit consideration of familiarity and

arithmetic strategy.
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Overlapping waves theory is the final theoretical hypothesis with which this thesis is concerned.
Again, as discussed in the literature review, the theory holds that children are able to access or
use more than one representation of numbers at any given stage of development (Siegler, 1996).
Children’s use of particular representations occurs with the pattern of ‘overlapping waves’, that is
to say, the introduction of a new representation of number occurs whilst the old is still active, and
children may use either. In the context of the current research, the aim is to examine whether
interpretation through the overlapping waves theory provides a plausible and coherent

explanation of the data collected.

4.5 Plan of analysis
This section details the plan of analysis used. It first explains the initial stages required, for
example, transcription and identification of cognitive representations, and then demonstrates

how the different stages are brought together to answer the research questions.

4.5.1 Transcription and identification of representations

The first stage of data analysis for this study is the transcription of the video-recorded interviews.

The audio parts of the video-recordings are transcribed first, noting speech, exclamations, pauses

or hesitations, and any distinguishing features of speech (e.g. particular loud/soft, high/low pitch).
Next, eye gaze is transcribed: the child’s point of focus (e.g. left endpoint of number line, or the

interviewer) is recorded, along with the timings of each transfer of gaze.

In common with previous studies, gesture is transcribed and coded separately from speech
(Alibali et al., 1999; Garber et al., 1998). Gesture is analysed like other imagistic representations:
for the nature of its component signs (pictorial or iconic — notational not likely in gestural
representations), and any number structure represented. However, before this stage it is
necessary to use gesture-specific codes to identify the fundamental components of the gesture

and transcribe it.

A common route in the transcription of gesture is to use speech to identify the units of analysis
(Garber and Goldin-Meadow, 2002), but this was not chosen for the present research given the
importance of co-thought as well as co-speech gesture. Instead, units of gesture are identified
using McNeill’s definitions of gesture phrase (G-phrase) and gesture unit (G-unit) (McNeill, 1992).
A gesture phrase consists of one or more phrases of movement beginning with preparation,
various holds and strokes, and ending with retraction. A gesture unit is composed of one or more
gesture phrases, and is defined as the period of time between successive rests of the limbs. A G-
unit begins the moment the limb begins to move and ends when it has reached a rest position
again (McNeill, 1992).

120



The basic elements of gestures in this thesis are identified using the iterative process set out by
Perry et al. (1988). In the first stage, gestures are analysed at a fine level of detail and without
interpretation, according to:

1. their form (e.g. pointing finger, grabbing motion, hand sweep left to right)

2. their placement (e.g. in ‘neutral space’ in front of the gesturer’s face, or on paper)

A list of individual codes within these dimensions is found by inspection of the video data, with

codes added until all basic forms and placements witnessed in the data had been exhausted.

After the transcription of speech, gaze and gesture, the transcripts, along with children’s
inscriptions, are examined for representations of number. Particular attention is paid to moments
at which cognitive representations of number are most expected: during task explanations by the
interviewer, during trials of a task, and after a question from the interviewer. Duval’s theoretical
framework identifies these as moments when children are likely to be performing one or more
conversions between, say, representation of number in natural language and representation of

number using another register.

4.5.2 Analysis of imagistic representations

Thomas et al. (2002) analyse the external representations produced by children with respect to
three dimensions. The first stage is the categorisation of the components or sub-units of imagistic
representations, as pictorial, iconic or symbolic, all of which Presmeg includes within visual
imagery. Secondly the level of structural development (following Goldin) is identified, and thirdly
the representation is examined for evidence of involving primarily dynamic or static imagery.
Children’s verbal explanations are used to help code the imagistic representations. When a
representation has aspects of more than one representation type — e.g. a representation whose
component signs are (discursive) algebraic symbols, arranged in an idiosyncratic spatial layout
with the child’s own scheme of colours — the representation is included within the analysis of
imagistic representations, whilst not excluding it from further analysis as a discursive

representation.

4.5.3 Strategy

Children’s strategy cannot be directly observed; what can be observed is behaviour, and from this
inferences about task strategy are made. In gesture analysis studies, a common method following
Perry et al. (1988) for inferring the ‘meaning’ of gestures, after transcription, is to consider speech
and gesture together in order to generate a task-specific lexicon of gestures, for example referring
to the procedures within a task used by a participant. In this thesis, the different modes

considered are brought together for the purposes of inferring the strategy a child appeared to use
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in a given estimation trial. An example is the gesture consisting of ‘hopping motion with pointed
finger [gesture form], left-to-right from left endpoint along blank number line on paper [gesture
placement]’. In the pilot study, this gesture was frequently accompanied by whispered or
mouthed numbers: “one-two-three-four-...”. In such cases, this behaviour was interpreted as the

child using a counting-on strategy to estimate the position on the number line.

4.5.4 Quantitative analysis of T2, T3 and T4
Several statistical analyses are carried out on children’s responses to T2, T3 and T4 in order to
address the research questions concerned with quantitative hypotheses in the literature, and to

cross-reference with the qualitative analysis of children’s task responses.

In order to work with children’s estimations from Task 2, children’s target number estimates are
calculated for each rocket placed on the line (Booth and Siegler, 2006; Laski and Siegler, 2007;
Siegler and Booth, 2004; Siegler and Opfer, 2003; White and Szucs, 2012). For each trial of each
child, the target number estimate is the number that is ‘hit’ in each trial assuming a linear scale to

the blank line:

Distance from left endpoint of line to rocket (mm) x numerical range of number line
Total length of line (mm)

For example, a rocket positioned 10mm from the left endpoint of a 250mm line marked with the

range “0-100” equates to the target number estimate (10 x 100) + 250, which is 4.

For all estimation tasks, the percentage absolute error (PAE) is then calculated, again following
methods of analysis in the literature (Berteletti et al., 2010; Siegler and Booth, 2004). The

following equation is used to calculate PAE:

| Estimate — Target Number| x 100
Scale of number line

Descriptive statistics are then calculated to provide overviews of children’s responses on each
task and each range, at each interview round. The PAE is commonly described as a measure of

accuracy, but it should be noted that it measures the accuracy of linear estimation only.

For the purposes of investigating the log-linear hypothesis, analysis again follows the established
methods in the literature. In order to describe the best fitting model for estimates at group level,
logarithmic and linear models are fitted to the group’s median estimates (Berteletti et al., 2010;
Siegler and Booth, 2004; Siegler and Opfer, 2003; White and Szucs, 2012). The best fitting curves
for each model type are then compared by calculating the residuals of the median estimates to

each model, and comparing the R’ (variance explained) figure for each model. The significances of
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differences in model fit are tested using paired-sample t-tests comparing the residuals of each
target number to each model (Berteletti et al., 2010). To investigate changes over time in the
linearity of estimations at group level, one-way ANOVA tests on the PAE of estimates for

particular ranges are carried out (Booth and Siegler, 2006).

The log-linear hypothesis, as previously discussed, has primarily used number-to-position
estimation tasks for research. Task 4 however is a position-to-number estimation task, also used
but less frequently. For number-to-position tasks, the models of theoretical interest are linear and
exponential since “Consistent reliance on a logarithmic-ruler representation implies that mean
estimates should increase logarithmically with numerical magnitude on the NP task and
exponentially with numerical magnitude on the PN task” (Siegler and Opfer, 2003, p. 238).
Consequently, the analysis will compare linear and exponential models rather than linear and

logarithmic for Task 4.

To examine whether the group level analysis reflects model fit for individuals’ estimates, a more
interesting analysis for the purposes of this thesis, individual children’s estimations on each range
are also statistically compared to possible underlying models by curve fitting (e.g. model fitted to
estimations for “Child A, Task 3, Round 1, Range n;-n,”). Following the method of Siegler and
Opfer (2003) and Berteletti et al. (2010), the best fitting model for each child on each range is
decided by comparing R” figures. In cases where neither model reaches significance, the child is
classified as ‘no model’ for that range, following Berteletti et al. (2010). The best fitting model for
a particular child on a particular task and range can then be compared over time, between
interview rounds, and compared to the cases of other participants. To test for changes in the
proportion of children for whom the linear or logarithmic/exponential model best fits for a given

range, chi-square tests are used (Siegler and Opfer, 2003).

At a group level, the variation of estimation for particular target numbers and particular ranges is
compared by calculating the mean and standard deviation of PAE. To compare how particular
numbers are estimated within different ranges (for example target numbers 2, 4, and 6 are tested
on ranges 0-10, 0-20 and 0-100) the PAE can be compared, but also the residuals to the
individual’s best fitting linear and logarithmic/exponential (as appropriate) model. Comparison of
residuals of individual target estimates of each participant is the method used by White and Szucs

(2012), using a target number x time (interview round) x model (linear/logarithmic) ANOVA test.

The quantitative analysis of Task 3 carried out is principally calculating the percentage of correct
estimations by individual children, and comparing the proportions of under- and over-estimation

(Booth and Siegler, 2006).
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The above-described stages of analysis are brought together in specific ways to answer the research questions. The following table shows how this is done:

. Research question

Relevant analysis

1. In what ways do children cognitively represent number during the different tasks of the interviews used in this research?

a. What are the modes and component
signs used in the representations?

In each task, examine: speech, inscriptions on paper, gesture and body movement, and gaze. For each
child, note the modes with which cognitive representations of number occur. Using Presmeg’s
classification as developed by Thomas et al. (2002), identify the primary component sign or signs in
each representation: pictorial, iconic, or symbolic.

b. What aspects of number structure are
represented?

In each representation, ask which aspects of the structure of number are evident. E.g., sequential
structure, relative proximity, midpoints, quarter points.

c. What are the notable between-task and
within-task connections between
representations?

Within each child’s interviews, compare the representations demonstrated in each task on the basis of

all variables examined in Q1 [mode, component sign, number structure].

e Whatis the same and what differs?

e Do representations appear simultaneously using different modes?

If representations occur sequentially, what is significant about the order?

Compare the representations demonstrated within each task within each interview, on the basis of all

variables examined in Q1.

e What is the same and what differs? In particular, do characteristics occur consistently, or vary with
a detectable pattern?

e Do variations in task detail (i.e. target number, target order, and range) correspond to variations in
representations detected?

e Do representations appear simultaneously using different modes?

o If sequentially, what is significant about the order?

Do different representations appear to perform different task functions?
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2. What strategies can be identified in children’s interactions with number line estimation tasks?

a. What patterns can be detected in the
way children use or do not use these
strategies?

Look for the occurrence of the different strategies and patterns that occur across the variables of

round (time in year), task, target number, range, child in tasks 2 and 4.

e Foragiven range, do individuals’ strategy uses change?

e Do particular combinations of target number and range witness particular strategies more often?
E.g., does target 9 on range 0-10 see more children more often using a ‘count back’ strategy?

e How does the order of target numbers affect use of strategies? E.g. using previous estimations to
guide or check current task part.

b. How do the strategies used relate to
children’s estimation results?

At range-within-task level: compare estimated positions, especially linear accuracy, with the strategies
used for that range in that task in that interview.

3. How do young children’s cognitive representations of number change during their first year of formal schooling?

a. In what ways does evidence support or
not support the log-linear hypothesis?

Do (any) individuals, and on which ranges of which tasks, show the log-linear progression as
hypothesised by Siegler et al. (2009)? i.e. early in the year, best fit by log model, becoming increasingly
linear.

b. What is the intra-child variability of
children’s numerical magnitude
representations in estimation tasks at
different times?

Variation in residuals calculated for best fitting model is the measure of variability to compare with
variation in the literature. Additionally, cross reference to variation in observed cognitive
representations and strategies. Q 3b should begin this work.

Link statistical variation figures to the strategies: does high variability occur when a particular strategy
is used/not used, or within same strategy?

¢. Can trajectories or patterns of change be
deduced, in terms of changes in how
children cognitively represent number?

e Map the changes in cognitive representations, strategies and quantitative estimations for each
child.

e Look for patterns of change based on ranges [e.g. for child X, trajectory seen on multiple ranges,
either simultaneously or at different times].

e Check for inter-child similarities in their changes over the year.

Figure 5 Research questions mapped to analysis
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This chapter has set out the research design, along with the theoretical and methodological
justifications for it. In the process of drawing up the research design, potential tasks were trialled
with children and a small scale pilot study was carried out. The next chapter presents a
description and findings of the pilot study, highlighting the alterations that were made due to its

findings, and the results of interest that it presents for investigation in the main study.
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Chapter 5 Pilot study

In order to trial aspects of the task-based interviews, a small-scale pilot study was carried out
prior to finalising the research design. This chapter discusses the pilot study design and findings,
with a focus upon the ways in which the pilot study informed the main research design. The pilot
study and its findings were presented in a research report at PME-37 in July 2013 (Williamson,

2013).

5.1 Setting and sample
Eight children from a Year 1 class at a local South of England infant school participated in the pilot
study. The researcher had been observing and participating in classroom mathematics lessons for
the previous three weeks, and individual tasks of the task-based interviews had been trialled with
groups of children in the class. Children were chosen for participation in the pilot study based on
the following criteria, as assessed by observation and teacher recommendation:

e willingness to participate

e had not already taken part in classroom trials of individual tasks

e equal numbers of boys and girls

e teacher-assessed to be middle or high attainment in mathematics, since it was

not known precisely how challenging children would find the interviews

5.2 Study design
The pilot study consisted of small-scale case studies of eight children. The task-based interviews
were largely structured as described in the Methodology chapter. Children completed the four

tasks used in the main study, and the individual interviews were video-recorded for analysis.

Four tasks were completed, designed to stimulate and require translation of cognitive
representations of number. The first task (T1) required children to close their eyes and imagine
the numbers 1 to 100, then to draw and describe the picture in their mind. Following this,
children completed an estimation task (T2) in which they were asked to position number rocket
stickers onto blank number lines. A third task (T3) asked children to estimate the quantity of
sweets in clear plastic boxes. Finally, children were asked to estimate the number represented by

already-positioned rockets on blank number lines (T4).

Data analysis followed the plan set out in the Methodology chapter. The analyses possible on this
small-scale, non-longitudinal pilot study were limited, but it was nevertheless interesting to begin

exploratory work and get a sense of results that might be fruitfully followed up in the main study.
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In addition to the planned data collection, observation notes were taken relating to children’s

reactions to tasks and materials in order to consider refinements needed before the main study.

This chapter reports and explains quantitative findings from all eight children’s participation, and
then presents one interview in detail in order to illustrate the qualitative analysis carried out, the

conclusions drawn, and the implications for the main study.

5.3 Task 2: quantitative analysis
Task 2, the number-to-position estimation task, was presented as described in the Methodology
chapter, with a few differences described here. The target numbers used during the pilot study

were the following:

Range Target numbers Trials
0-10 2,3,4,6,7,8,9 7

0-100 2,3,4,6,18,25,48,67,71, 86 10

0-20 2,4,6,7,13,15,16,18 8

5-15 6,7,8,9,11,13,14 7

Total 32 trials

Figure 6 Target numbers and trials by range

The 0-20 target numbers were taken from Berteletti et al. (2010), as were the target numbers for
0-10. The 0-100 target numbers were also taken from Berteletti et al. (2010), in turn following
Siegler and Opfer (2003). The 5-15 number line was an original task, not seen in the literature, so
these target numbers were chosen specifically for this study, using the same reasoning as other

researchers’ target number choices for the 0-10 range.

Unlike in the main study, the order of ranges tested was randomised for each child, following
Berteletti et al. (2010), and the rocket stickers used were larger (see Appendix 5). The discussion

explains why these aspects were changed in the final research design.

5.3.1 Modelling target number estimates
Firstly, children’s median estimates were compared to possible linear and logarithmic models,
with the following results:
e Forthe range 0-10, the fit of the linear model was significantly better than that of the
logarithmic model (R%,= 93%, p<.001 vs. R* ;= 83%, p<.01, t[6]=-3.10, p<.05).
e For the range 0-20, the linear model provided a very good fit (R%;,= 99%, p<.001) but not
significantly better than the best-fitting logarithmic curve (R2.0g= 98%, p<.001, t[6]=-1.75,
p>.05).

128




On the range 5-15, the linear model again provided a better fit, but not significantly

better than the logarithmic model (R%;,= 95%, p<.001 vs. szg: 90%, p<.01, t[7]=-0.84,

p>.05).

For the range 0-100, a logarithmic model provided a better fit, but the difference was only

significant at 10% level (R2|Og: 97%, p<.001 vs. R%in= 85%, p<.01, t[9]=2.05, p=.07).

These results are as expected for children aged 5-6; on the lower ranges, children’s estimates are

largely linear, whereas on the range 0-100 estimates are still better fit by a logarithmic model.

These findings are in line with those of (Berteletti et al., 2010), whose research with 4-6 year olds

on lower number ranges most closely matches the conditions of the pilot study.

The above modelling was carried out in order to get an overview of children’s responses and

allow comparability with previous key studies. The following table now shows the results of fitting

linear and logarithmic models to the estimates of individuals. For each child on each range, the

better-fitting model (with higher R* value) is highlighted green. In cases where no model achieved

a significant fit, this is noted ‘None’.

Range | Child Code R%in R%0g

0-10 B 15 0.7694 0.6319
0-10 ED 11 0.9826 0.9555
0-10 EW 12 0.8792 0.7482
0-10 Imogen 14 0.9789 0.9176
0-10 |JS 16 0.9016 0.8433
0-10 |JB 17 0.8478 0.7392
0-10 0] 13 0.9192 0.8582
0-10 T 18 0.6050 None sig.
5-15 25 0.9368 0.9507
5-15 ED 21 0.8858 0.9073
5-15 EW 22 0.8020 0.8528
5-15 Imogen 24 0.9852 0.9687
5-15 | JS 26 0.6777 0.6592
5-15 JB 27 None sig None sig
5-15 0 23 0.7743 0.8218
5-15 | T 28 0.9900 0.9711
0-20 35 0.6533 0.6160
0-20 ED 31 0.9712 0.9476
0-20 EW 32 None sig 0.6521
0-20 Imogen 34 0.7157 0.7587
0-20 |JS 36 0.9115 0.8715
0-20 |JB 37 0.7908 0.6925
0-20 0] 33 0.8046 0.8399
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0-20 |T 38 0.9134 0.7231
0-100 | B 45 0.9289 0.9012
0-100 | ED 41 0.8232 0.8896
0-100 | EW 42 None sig. 0.6785
0-100 | Imogen 44 None sig. 0.6872
0-100 |JS 46 0.8233 0.7519
0-100 | JB 47 None sig. 0.5602
0-100 | O 43 0.6542 0.8833
0-100 | T 48 0.8669 0.6558

Figure 7 Model fits by child and range

For all children, estimates on the 0-10 range were indeed better fit by linear models, supporting
the group level result. For ranges 5-15 and 0-20, the picture is mixed, with children’s estimates
best fit by both kinds of model. For 0-100, the majority (5/8) of children’s estimates were best fit
by a logarithmic model, but the three exceptions help explain why the group’s difference in R?
figures was only just significant. These findings are again in line with those of Berteletti et al.

(2010).

5.4 Task3

In this task, children estimated five different quantities of sweets in a clear plastic jar. Each time,
they were presented with two answer options: the correct quantity, and an incorrect option
either half, one and a half, or twice the correct quantity. The main role of this task is to track
children’s ability to estimate quantities of different sizes, and to examine whether children’s
patterns of over- and under-estimation change over the school year. The analysis to be carried

out after the non-longitudinal pilot study was, therefore, not extensive.

The task on estimation of quantities was adapted from the research in Booth and Siegler (2006).
Unsurprisingly, Booth and Siegler found that kindergartners (aged 5-6, the same as the pilot study
participants) were less accurate than older children, selecting the more accurate response on
average 53% of trials (SE = .03, and chance score 50%, as in this task). The participants in this pilot
study were more accurate, selecting the more accurate response on average 60% of the time

(s.d..174). Individuals’ accuracy in one set of estimations (five trials) ranged from 20% to 80%.

Children were twice as likely to overestimate the quantity shown than to underestimate. The

estimates were classified as follows:
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Estimate Percent

Underestimate

Perfect
Overestimate 26.3
Total 100.0

Figure 8 T3 estimation results

5.5 Task 4: quantitative analysis

5.5.1 Modelling target number estimates at group level

Once again, the median estimate of all the children was selected, and linear and exponential
curves fitted (Siegler and Opfer, 2003; White and Szucs, 2012). Exponential curves were chosen
because, as discussed in the Methodology chapter, if the logarithmic model is correct for
children’s positioning of numbers onto the number line, then the position-to-number task, as the
inverse of the number-to-position task, ought to be best modelled by an exponential curve. The R?
figures of the exponential model were in fact very low, so logarithmic curves were also fitted in
order to compare logarithmic, linear and exponential models. The table showing the R? figures for
the best fitting model of each type on each range is shown below. All models shown reached

significance at p<.05 or better. The highest R” score is highlighted green for each range.

Range R’ (linear model) R%og (logarithmic R’ (exponential
model) model)

0-10 91% 96% 83%

5-15 74% 80% 48%

0-20 98% 95% 86%

0-100 95% 75% 95%

Figure 9 Table of model fits to median estimates

These results differ from those anticipated, since the exponential model is the best-fitting for
none of the ranges, only equally the linear model in the case of the range 0-100. This clearly
differs from Siegler and Opfer’s (2003) findings with 7-8 year olds on position-to-number tasks,

whose estimations were well fit by exponential models.

To examine whether the group median results reflect the models fitting individuals’ results, linear,

logarithmic and exponential curves were also fit to individuals’ estimates. The following table
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shows the R figures of the best fitting model in each case; once again, where no model reached

significance, this is noted.

Range | Child Code Rz"n RZ.Og RZexp
0-10 EW 12 | .615 .758 None sig.
0-10 B 15| .938 .983 .849
0-10 IS 16 | .781 .838 .591
0-10 JB 17 | .672 .650 .708
5-15 EW 22| 924 918 .875
5-15 B 25| 974 .985 .924
5-15 IS 26 | .895 .888 .862
5-15 JB 27 | None sig. None sig. None sig.
0-20 ED 31| .976 .895 .941
0-20 o 33| .802 .849 731
0-20 Imogen 34| 971 924 .864
0-20 T 38 | .989 .949 .884
0-100 | ED 41 | .951 .707 .946
0-100 |O 43 | .836 .574 .899
0-100 | Imogen 44 | 911 .743 .902
0-100 | T 48 | .973 .759 912

Figure 10 Table of model fits, individuals
Supporting the picture given by the group level results, there are few cases in which an

exponential curve was the best fitting model for children’s estimates. In fact, the linear model

provides the better fit in a majority of cases.

To better see differences between Task 2 and Task 4 estimations, a scatter plot was produced to
show children’s median estimates in both tasks for each range. For the range 5-15, this reveals

the highly linear estimates in both tasks; differences are minor.
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Range: 5-15

15.007

13.007

11.00 o

MedianEstimate

9.00

7.00

5.00 T T T T
B 7 9 11

Target number

Figure 11 Median T2 and T4 estimates in range 5-15

For the range 0-100 (Figure 12, below), and to a certain extent 0-20, different patterns of

15

Task
0200
400

estimation are clearly visible. Specifically, the 0-100 plot follows two s-curves, each a reflection of

the other, and centred on the midpoint 50.

Range: 0-100
Task
200
100.00 400
50.00-
3
£
= 0
T 60.00
‘e
] o e
-
@
= oo 2
o]
20.00 =
0o T — T T T T T
0 20 40 0 80 100

Target number

Figure 12 Median T2 and T4 estimates in range 0-100
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This picture strongly suggests that the investigation of children’s uses of midpoints is worthwhile,
and could also suggest re-visiting the proportion judgement models of (Barth and Paladino, 2011).
Though good arguments have been made against this type of model (Opfer et al., 2011; White
and Szucs, 2012), it should not be ruled out that children’s estimations do follow the proportion
judgement model. However, it is also possible that the distribution of estimations shown above
may be well explained by the observed estimation strategies children apply, for example the
particular methods of counting on and counting back. The following section presents one

interview analysed in detail, which supports this hypothesis.

5.6 Case study: Imogen
Imogen, whose case is discussed here, was assessed by the teacher as high-attaining in
mathematics. Interviews were carried out at the end of the school year, so at the time of

interviewing, Imogen was 6 years old.

5.6.1 Task1
Imogen’s initial response to T1 was to ask for clarification. During the exchange that followed, she

gesticulated in reference to the number sequence:

Interviewer: I'd like you to try to draw ... the picture you see in your imagination of all

those counting numbers.

Imogen: So like one two ... and three four [right hand hovers over paper and traces

stair-shaped path from left of page: right-down-right, twirling pencil]

This same stair-shape appears in the drawing then produced by Imogen (Figure 13). The drawing
is composed of notational signs with an idiosyncratic and pictorial aspect, evidenced in both the
drawing and Imogen’s unprompted explanations: “When | saw it all it was bubble writing”.
Though the interviewer did not comment or enquire, Imogen explained that the particular form
was also the reason for drawing a limited range: “I'll just do it up to ten ... Cos | don’t want to

waste all my time counting up to a hundred in bubble writing”. The interviewer then pursued this:
Interviewer: If you did have time, where would one hundred go on that page?

Imogen: [silently mouths the numbers one to ten, as right index finger jumps one by

one along the number sequence already drawn] Twelve [finger jumps onto

empty space to right of “11”] ... thirteen fourteen fifteen ... [finger jumps

three steps to lower right, see Figure 13 right] ... | have no idea!
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Figure 13 Imogen (T1) Imogen (T1) with gesture

The sequence structure of number is clearly represented in all modes, and the numbers as far as
shown are evenly spaced. Numbers are also grouped, relatively consistently though

unconventionally. Imogen’s comments and re-drawing indicate clearly that the “9” was originally
intended to be positioned beneath the 8, consistent with her earlier grouping (changing direction

on each multiple of two).

5.6.2 Tasks 2 and 4

Representation of structural elements of number occurred in all modes examined during these
tasks: speech, gaze, and gesture. Representations occurred during trials both before and after
giving an initial solution, and also in spontaneous comments and justifications. Clearly
distinguishable strategies were identified in Imogen’s interactions with T2 and T4. The strategies,

and the target numbers of the trials in which they were observed, were as follows:
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Strategy

Task 2

Task 4

0-10 | 5-15

0-20

0-100

020 | 0-100

Counting on
from L endpoint
inl’s
Counting on
from L endpoint
in5’s
Counting on
from midpoint
inl’s
Counting on
from other
point
Counting back
from midpoint
inl’s
Counting back
from other
point

Referral to a
previous trial
Ref. to L
endpoint
Ref.to R
endpoint

Ref. to
midpoint

Ref. to other
point
Ambiguous

4,6

11,13

13

11

7,14

8,2,7,3 6

938,73 13

8

4,13,18

16, 18

15

48
2,48, 4,
67,25,6
2,48,4
71,67, 18,
3,25

86

2 3

25

15 18

16,4,7 71,6,86

7 71, 86, 48

6,18,13 67,5,3

“Ref. to R endpoint

Interviewer:

Imogen:

” o

Figure 14 Strategies identified in use in Task 2 and Task 4

In the following example from T2 (range 5-15, target number 13), the strategies identified were

Counting on from midpoint in 1’s”, and “Counting on from other point”:

It’s thirteen. Where do you think thirteen belongs? [Imogen’s gaze goes

quickly to right endpoint (15) then to interviewer proffering rocket sticker]

[takes rocket with right hand, transfers to left hand, pauses]

‘Cause ten is here [right hand points onto midpoint and holds]

[right hand ‘hops’ to right; both hands stick rocket to right of the ‘hop’]

Fourteen fifteen [right hand thumps line between rocket and right

endpoint, then thumps right endpoint itself]

Representation of aspects of number structure is apparent in these strategies. In the example
above, the number sequence is represented in the two counting on strategies, and with a

confidence that allows Imogen to start counting midway through the sequence. The units




represented by gesture during the counting on represent a further aspect of structure: the spatial
extent of each unit is approximately equally sized, and scaled so that Imogen’s sequence from ten
to fifteen covers the spatial extent from indicated midpoint to endpoint. Structure of number is
also apparent in Imogen’s use of the right endpoint (fifteen) as an appropriate ‘landmark’ for the
target number thirteen. The midpoint structure of ten within the range 5-15 is clearly represented

in speech and gesture.

Throughout Task 2 and Task 4, the sequence structure of number, with left to right orientation,
was most frequently represented. Representations of number that Imogen spontaneously
demonstrated on the ranges 5-15 and 0-20 encompassed further structure in the form of evenly
spaced multiples of five. An example of this was Imogen’s exclamation on seeing the first page of

5-15 trials: “Shouldn’t it be five TEN ...?” [Right hand points onto midpoint of line and holds].

As expected from previous research, Imogen’s estimates were more linearly accurate on low
ranges (0-10, mean PAE 4.17%; 5-15, mean PAE 2.86%) and higher on the range 0-100 (mean PAE
24.23% and 14.38% for T2 and T4 respectively). Interestingly, linear accuracy in Task 4 was higher
than in Task 2 on both ranges tested; a paired samples t-test was conducted to compare the
absolute percentage error found a significant difference between the error in Task 4 (mean=11.94,

SD=10.00) and Task 2 (mean=21.59, SD=8.78); t(16)=2.89, p<.05.

In terms of model fit, on the range 0-10, Imogen’s T2 estimates were best described by a linear
model (R%;,=.980, compared to R2.0g=.918). On the range 5-15, the linear model again provided the
best fit (R%;,=.985 compared to R2.0g=.969). On the ranges 0-20 and 0-100, Imogen’s estimates
were more consistent with a logarithmic model (0-20: R%;,=.716 and R2|0g=.759; 0-100: no linear
model reached significance, and R2|og=.687). Imogen’s T4 estimates were, in contrast, better fit by
linear models for both ranges 0-20 (R2|in:.971 compared to Rzexp:.864 and R2|og:.924) and 0-100
(R%,=.911 compared to R%,,=.902 and R*;=.743).

The linear accuracy of Imogen’s Task 2 estimates is in line with previous research, which expects
that by the end of Year 1, estimates on the range 0-10 will demonstrate a good level of linearity,
whilst those on larger number ranges do not. Overall, Imogen’s linear accuracy was highest on the
Task 2 trials on the range 5-15. Almost every strategy identified was in evidence during these
trials; and, furthermore, during this part of the interview cognitive representations with more
structural detail and greater accuracy were inferred from Imogen’s spontaneous behaviour, for
example with regard to visualising the subdivision of the 5-15 line into equally sized fives. The

following scatter plot shows the linear accuracy of Imogen’s estimates on the range 5-15 in Task 2:
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Range: 5-13
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Figure 15 Imogen's range 0-20 estimates
As with the group median estimates, Imogen’s Task 2 and Task 4 estimates differed most

interestingly on the range 0-100. The following scatter plot demonstrates a pattern with

similarities to that of the group level plot:
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Figure 16 Imogen's 0-100 estimates

138



Comparing this to the observed representations of number during the task (see Figure 14), the
most obvious difference is the explicit representation of the midpoint 50 in Task 2, absent in Task
4. A tentative conclusion, to be followed up, is that this is a factor in the ‘clustering’ of estimates

around 50 shown in the Task 2 estimates (green marks) in the plot above.

Another final interesting contrast to be followed up concerns the estimation of the same target
numbers within different ranges. Targets 4 and 6 were estimated in multiple ranges each, and the

following chart indicates the estimates within different ranges (for Task 2 only).

Task: T2
Range
Wo-10
50.00- Ho-100
Co-z0
Ws-15
40.00-
30.004

Mean Estimate

Target discrete

Figure 17 Differences in estimation of same target in different ranges

As hypothesised from previous studies, the same target is estimated very differently in the

different ranges, and the main study will investigate how this occurs.

5.6.3 Conclusions and further directions

The findings give good reason to infer that Imogen cognitively represents number in ways which
encode significant structural elements, many of which are evident in her interactions with number
line estimations. Particularly of note is that she successfully applied counting strategies,
commonly regarded as a less sophisticated approach (e.g. White and Szucs, 2012). What is clear
from this case study is that the detail of children’s interactions must be attended to; whilst
Imogen indicated appropriately sized unit jumps, consistent with the evenly spaced numbers in
her imagistic representations and her adjustment of unit size depending on scale, this may not be

the case among other children. Aspects that may vary are the size of ‘jump’, whether the child
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attempts to scale the ‘jump’, and whether the size of ‘jump’ is consistent within a trial. Conversely,
the inclusion of apparently more sophisticated structure (for example midpoints) may still result
in estimation with low linear accuracy, depending on the sophistication and accurate execution of

other parts of the strategy.

In terms of the relationship between imagistic representations and number line estimations,
structures seen in Imogen’s imagistic representation task were clearly demonstrated in the
processes of translating representations during estimation tasks. Structures in common were the
sequencing of natural numbers, regularity of number spacing, and the grouping of number based

on multiplicative relations.

Particular findings from this case will be interesting to follow up in the longitudinal study. An
example is the difference between strategies and estimation results in Task 4 (position to number)
compared to Task 2 (humber to position) that was evident in this case. The full study will also
indicate the extent to which other children with comparatively well-developed imagistic
representations of number incorporate structures of the number system into their estimations

with the frequency that Imogen demonstrates.

5.7 Changes to research design based on the pilot study

This final section outlines the changes made to the research design in light of the pilot study. The
main differences between the pilot study interviews and main study interviews were in the
phrasing of task questions, the physical design of task materials, and in the detail of variables such

as target numbers used.

5.7.1 Task 1 introduction

During the pilot task, children were not explicitly invited to explain their drawings in Task 1, for
reasons explained in the Methodology chapter; it is very unclear to what extent children (or
indeed adults) are able to accurately account for the representations that they associate with
numbers. Nevertheless, during the pilot study many children spontaneously commented on their
drawing to the researcher. This enriched the data, so the decision was made to alter the task
introduction in the following way: “When you’re ready, | want you to try to draw the picture
that’s in your head on this paper, and tell me about it, if you can.” The option not to explain was
included to avoid overburdening children; it was thus left up to individual children to decide the

combination of drawing and explaining according to their preference.
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5.7.2 Materials in Tasks 2 and 4

The number lines used in the estimation tasks were printed one per page. In the pilot study, the
sheets were fastened as a booklet along the top edge of each landscape page. The thinking
behind this was that children might more easily refer back to previous estimations if they chose.
However, during the study, over half the participants commented upon the booklet feeling the
‘wrong’ way round, and commented that it should be ‘like a book next time’ or similar. A trial
booklet with pages joined on the left, as in a picture book, was brought in to show participants
(after the pilot study) and children agreed that it was an improvement. This design was therefore
used in the main study, since the most important thing was for the materials not to become a

hindrance or source of annoyance to participants.

The stickers used in the pilot study were large rockets (see Appendix 5), chosen for ease of
handling by the children. Children were asked to ‘use the point of the flame’ to point to where the
target number belonged on the line (Task 2) and correspondingly to ‘look at where the flame is
pointing’ in Task 4. However, only two participants followed this instruction. The majority, as
illustrated by the scanned example in Appendix 5, stuck the rocket body itself onto the line, and
showed signs that the target number was perceived to ‘take up’ the width of the entire sticker on
the number line. This was clearly problematic in terms of the spatial positioning of numbers. For
the main study, the stickers were therefore re-designed (see Appendix 3). In the first place, the
rockets themselves were made substantially narrower, and printed onto the narrowest stickers
possible (15mm wide). Additionally, to emphasise that the rocket should point to a location on the
line, rather than ‘occupy’ or ‘take up’ a portion of the line, a long thin arrow was added from the

rocket flame.

5.7.3 Range order in Task 2 and Task 4

Initially, the order of the number ranges were separately randomised for each child, following the
method of Berteletti et al. (2010). However, during the pilot study it was apparent that children
had very different levels of confidence with the larger numbers (regardless of their knowledge of
larger numbers) and that the randomised order of number ranges therefore led to overly

different interview experiences for different children. Those who began on smaller number

ranges demonstrated a great deal more confidence and were able to build up to the ranges
considered more difficult. For the main study, it was therefore decided to maintain the order 0-10,

0-20, 5-15, 0-100 for all children.

In the pilot study, for reasons of time, children only completed Task 4 for two number line ranges
each, rather than all four. Half of the children completed the task on 0-10 and 0-100 only, and half

of the children completed the task on 0-20 and 5-15 only. The selection of children for each group
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was random. The findings from this task were sufficiently interesting that it was decided to

expand the task to include all four number ranges.

5.7.4 Target numbers
Target numbers were altered to the final lists described in the Methodology chapter. These
changes were minor, and mainly focused on how to maximise saturation of target numbers

without making the overall interview too long.
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Chapter 6 Findings from the group

This chapter presents the first stage of the research findings. It begins with introductory
comments about the sample, and brief explanation of some choices and conventions in what
follows. It then presents the findings relating to the whole sample of children. The analysis in this
chapter focuses mainly on quantitative analysis of children’s estimation data, and asks what can
be said in response to the research questions from this perspective. This chapter is particularly
important for linking the current research to the main body of existing research on number line
estimation, given the extent to which this area of research has been dominated by quantitative
studies. The second and more important section of the findings consists of three in-depth case
studies, which are presented in the following chapters. It is in this second section that the
research questions are explored to their full depth, by balancing both qualitative and quantitative

analyses of three contrasting cases in fine-grained detail.

6.1 Abbreviations
Throughout the findings, the following abbreviations are used:
e T1,T2,T3and T4 =Task 1, 2, 3 and 4 respectively, where:
o T1 asked children to imagine the counting numbers to 100 and invited them to
draw and describe what came to mind
o T2 consisted of number-to-position estimations on ranges 0-10, 0-20, 5-15 and O-
100 in that order
o T3 asked children to estimate the quantity of small sweets in transparent tubs
o T4 consisted of position-to-number estimations on the same ranges as T2
e R1,R2,R3,R4, R5=Rounds 1,2, 3, 4 and 5 of the task-based interviews, carried out
between October 2012 and July 2013.

6.2 Participants

The children who participated in the five rounds of task-based interviews were thirteen Year One
pupils from a single class at a local South of England primary school, as described in Chapter 4.
Their pseudonyms, and the mathematical attainment groups that the teacher placed them in at
the start of the year, are shown in Figure 18. During the school year, children including those in
the sample moved between these groups, and the teacher-assessed mathematical attainment
groups at the end of the year are shown on the right. For each group of students, the proportion
of the group included in the sample is shown. For example, the three sampled children in “blue”

group at the start of the year constituted 3/8 of the total blue group.
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A

Amy, Ellen, Patrick, Zoe [4/8]

Amy, Ellen, Jonah, Patrick, Zoe [5/8]

Beatrice, Chris, Harry, Jonah, Lewis [5/9]

Beatrice, Matthew, Lewis [3/8]

Catharina, Chris, Harry, Marta [4/7]

Catharina, Harry, Marta, Matthew [4/7]

September 2012 July 2013

Teacher-assessed mathematical attainment

Figure 18 Teacher-assessed mathematical attainment groups

After careful consideration, Gianna’s data were excluded from the main data analysis. Gianna’s
number line estimations were uncorrelated with the presented target number, for all ranges
(Spearman’s rank correlation, p>.05), and her other interview responses also proved impossible to
analyse in mathematical terms. Following the practice of Slusser et al. (2013, p. 197), Gianna's
data were therefore excluded from further analysis. Matthew’s T4, range 0-10 estimations from
R3 were also excluded from analysis. The estimations were uncorrelated with the target numbers,

and Matthew’s comments to the researcher strongly suggested that he was joking.

6.3 Task3

Before beginning the main presentation of findings, this final preliminary section gives a brief
treatment of interview task 3 (T3). As this section aims to show, the findings from this task were
limited, and do not form an integral part of this study's findings. For this reason, T3 is briefly

discussed here, and not in the following sections or chapters.

As explained in the methodology chapter, T3 was included for multiple reasons: to look for
connections between children’s estimation accuracy in different tasks, to provide a different kind
of task to interest children, to provide a break between the two substantial number-line
estimation tasks, and to examine whether different representations of number occurred during
this different type of estimation task. Children were presented with sweets or beads in a
transparent container, and asked to choose between two possible answers. Children were
randomly assigned one of two sets of target quantities for their first interview: either Set A —[14,
22,34, 46, 58], or Set B —[18, 24, 32, 48, 60]. In each subsequent round, children were given the
alternate target set. For each target number, the alternative answer option was randomly chosen
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to be either half, one and a half, or double the value of the target number. An example set of

answer options using Set A would be [7, 14], [22, 33], [34, 68], [23, 46], and [58, 87].

Children completed five T3 estimations per interview, so a score of 80% indicates that a child
chose the correct answer option for four out of five quantities in that interview. Children’s
accuracy of estimation in T3 did not vary a great deal either between participants or over time, as

the following boxplots of mean scores demonstrate.

In almost all interviews,

1.00—
children estimated
20 between three and five

of the quantities

80 correctly.

Score_mean

407

123 124
122

152 154
00 T T T T T
1 2 3 4 =

Round

Figure 19 T3 estimation accuracy by round

The changes in mean T3 score between rounds are shown more clearly here:

Score A one-way repeated-
M incorrect
100.0%7 (M Correct measures ANOVA tested
children’s T3 scores and
B0.0% found no significant change
in T3 estimation accuracy
£ soour with interview round,
(+]
a F(4,44)=1.279, p=.293.
40.0%
20.0%
0.0%=
1 2 3 4 5
Round

Figure 20 T3 estimations by round, all children
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Although there was no significant change in children’s T3 scores over time, there was a significant
association between the ratio of presented answers (ratio of additional answer option to correct
answer option) and children’s success in estimation, x(2)=22.8, p<.001. There was a strong
expectation that children would find trials most difficult, and experience least success, when the
ratio of additional answer to correct answer was one and a half, i.e. when the ratio of the two
answers was closest to one. The highly surprising finding was that children in fact chose the
correct answer least frequently when the ratio of the additional answer to the correct answer was
half (see central bar in Figure 21). The order of answer options was random, and clearly for both
the “double” and “half” categories the resulting ratio of answer options was two, so this finding is

currently very puzzling.

Score

B incorrect

100.0% Il Correct

80.0%7

60.0%

Percent

40.0%

20.0%"

0.0%—

clouble Half One and a half
Ratio

Figure 21 T3 estimations according to ratio of additional answer option to correct answer option

Somewhat disappointingly, children did not tend to represent number during T3 except for stating
their chosen answer. A few children offered spontaneous justifications for their choices, and
these were all verbal statements indicating that one answer option was too big or small. A typical

example of this is Catharina’s comment in T3 R4:

J: And ... this one here: do you think there are twenty-four or twelve?

C: Twelve. .... Cos there’s less.

Since this was the extent of children’s representations of number during T3, the decision was
made to focus analysis on the other three tasks. For this reason, T3 is not addressed in the main

findings or case studies.

The following section presents the first stage of the research findings, containing analysis of the

whole sample organised in response to the relevant research questions.
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6.4 RQ1:In what ways do children appear to cognitively represent
number during the different tasks of the interviews used in this

research?

6.4.1 What are the modes and component signs used in the representations?
Children represented aspects of number using speech, inscriptions, eye gaze and gesture, and

these representations occurred throughout the task-based interviews.

As expected from eye-tracking research literature, the component signs identified in eye gaze
were periods of fixed or lingering gaze (on a point) and saccades (brief, rapid, “jerky” movements
from one resting position to the next). Counterpart signs to these were also found in gesture:
pointing to fixed locations, and saccadic movements of a pointing hand respectively. More
generally, gestures are described in terms of the framework outlined in the methodology: in
terms of their physical position in space, speed, and hand shape. Many of children’s gestures, like

their eye movements, were focused on the number lines printed on the page.

In response to T1, most children produced inscriptions with some verbal description. The
component signs children used in their T1 representations ranged from pictorial elements to
extensive use of notational signs. An example of pictorial component signs can be seen in

Beatrice’s T1 response from R4:

Py

j/

Figure 22 Beatrice R4: "My fishes"

Beatrice’s sole comment was the following:

B: My fishes.
J: Yes?
B: [smiling]

147



Beatrice appeared to associate the number one hundred with the image of a familiar numerous

set (her fishes). The same image was drawn in R5.

A typical example of notational component signs in T1 can be seen in Harry’s R4 response:

“'\.‘ z
i“o¥ig7

&0

Figure 23 Harry R4
Harry did not make any verbal comment during this task. He wrote energetically — almost
hurriedly — except for significant pauses at some changes of decade. The inscription above records

some evidence of these pauses in the gaps seen between 60 and 61, and between 69 and 70.
6.4.2 What aspects of number structure are represented?

6.4.2.1 T1 representations

The representations produced in T1 were analysed in terms of the framework developed by
Thomas and Mulligan (1995) specifically to describe the structure of children’s inscriptions during
this task (see section 4.4.1). Their framework identifies the following aspects of number structure

in responses to this task:

1. No structure: elements show no apparent relationship to equal groupings or
sequence.

2. Linear structure: elements in linear formation (straight or curved), numbers in

sequence.
3. Emerging structure: “one hundred represented by equal groups of objects, or linear

sequence broken into equal segments” (Thomas and Mulligan, 1995, p. 12).
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4. Emerging structure (m): representation shows some aspect of multiplication, such as
multiple count and multiplication grid.
5. Partial array structure: elements are in rows and columns, but not a ten-by-ten array.

6. Array structure: elements in a ten-by-ten pattern.
In this study, T1 representations at each of the above levels were observed. The following chart
displays the number structure represented by each child in each interview round, with darker

shading to indicate representation of number structure considered more sophisticated:

Beatrice C11

R1 R2 R3 R4 R5
Patrick CO1 Emerging structure
Amy Cc02 No structure Linear No structure No structure
Ellen CO4 Linear No structure No structure Linear
Jonah C13 Emerging
Zoe CO5 Linear Linear Linear Linear

No structure

No structure

Matthew

No structure

No structure

No structure

No structure

Linear

Lewis CO9

No structure

Catharina C08

No structure

No structure

No structure

No structure

No structure

Chris C12 . Linear o Linear Linear
Harry C0o6 Linear Linear Linear Linear Linear
Marta C10 No structure No structure Linear No structure No structure

Figure 24 Number structure represented in T1 responses

Repeating this task in five different interview rounds was revealing. The most noticeable finding
was the variety of responses that individual children offered, which provides direct evidence for
comments in earlier research about how a single instance of the task provides only “partial
description” of representational capabilities (Thomas et al., 2002, p. 130). Amy, for example,
represented numbers in array structure in the first round, but represented no number structure
at all in three of the following rounds. The number structure represented by children in the task
did align well with teacher-assessed mathematical attainment. The five children who represented
number structure more complex than linear structure in at least one interview (shown in the first
five rows of the above table) were also the five children in the highest teacher-assessed

mathematical attainment group at the start of the year.

Because this task is open to different interpretations and offers such a partial view of children’s
representations, clear developmental trends were not expected. The repetition of T1 in each

interview was viewed more just as multiple opportunities for children to produce representations
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of the numbers one to one hundred. In this sense it functioned well, allowing some children to

create widely varying representations of number structure.

The frequency of responses best-described by each level of number structure did not change

markedly between R1 and R5:

Array structure
Partial array structure
Emerging structure (m)

Emerging structure HR5

Linear structure mR1

No structure

[No representation]

0 1 2 3 4 5

Number of responses

Figure 25 Frequencies of number structure representations in T1 responses

6.4.2.2 T2 and T4

Moving beyond T1 to consider the interviews overall, children’s representations during all tasks
were analysed according to Resnick’s microstage theory of number understanding development
(Resnick, 1983). As described in the theory for analysis (see section 4.4.2), Resnick’s theory
includes mathematical procedures and behaviours that exemplify the particular aspects of
number structure at each stage. This aided the identification of number structure in children’s
task responses. However, the present research was not restricted to analysis of mathematical
procedures and behaviours; all cognitive representations were examined for evidence that they
represented aspects of number structure. Episodes identified as containing cognitive
representation of number sequence, for example, include both episodes featuring task strategies
that represent this structure, such as counting-on from the left endpoint, and also episodes where
children verbally, gesturally or otherwise represented number sequence outside of particular
procedures, for example verbally describing to the researcher why the estimation of target 6 in

range 5-15 was “easy”.

The following table shows the stages of number structure in Resnick’s theory (first column),
followed by the elements that make up that stage (second column). The third column provides
examples of children’s procedures and strategies that include representation of this particular

aspect of structure.
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Number structure Detailed stages Procedures or strategies in which this number
structure may be represented

S Sequence Count sequence Count-on from LE.
fromOor1l
Count sequence Count-on from non-zero LE.
from other start Count-on from estimate to RE for confirmation.
point
DS Decreasing Count sequence Count-back from RE.
sequence reversed
RN Relative Ability to represent | Applying efficient count strategy, using RN to
numerosity (quantity | (esp visualise) choose shorter available count.
comparison) number’s Checking judgements, querying whether an
magnitude without | estimate is likely.
counting up to it Use of endpoints as “anchor” points.
PW Part-whole Partition and Use of “anchor” points based on partitioning
recombine the range.
numbers (<20)
Use of number Checking estimations using number bonds to
bonds to ten ten.

Using own midpoint anchor on 0-10 range.
Multiple partitions | Using own midpoint anchors on 0-20 and 5-15

of multi-digit ranges.

numbers
PW10 Part-whole Numbers as Using own midpoint anchor on 0-100 range.
understanding of compositions of Count-on and count-back by tens.
base ten structure tens and units 10x10 array structure of 0-100

Multiple partitions | Count-on or count-back by any given number.
of larger multi-digit | Partitioning into quarters, thirds, other.

numbers
Figure 26 Aspects of number structure represented according to Resnick's (1983) theory

It is of course not always possible to determine number structure represented, and some
strategies can be interpreted as representing different levels of number structure. For example,
using the endpoint ten as an anchor for estimating target nine shows, at a minimum, knowledge
of the counting sequence and relative numerosity (to choose the efficient use of ten, instead of
counting until the count sequence reached nine). However, the same strategy could also arise
from a part-whole understanding of ten in which the number bond 9+1 was used to position nine
near ten. What Resnick’s development account emphasises is that once part-whole relations for a
given range begin to be understood by a child, it is not a question of ‘either/or’: the part-whole
schema “allows numbers to be interpreted both as positions on the mental number line and,

simultaneously, as compositions of other numbers” (Resnick, 1983, p. 146).

In terms of coding task responses, attending to representations in all modes provided as much
evidence as possible about the number structure involved in the particular task response. Aside
from this, coding was carried out conservatively, identifying the minimum level of number
structure necessary for a representation to be created or strategy to be applied, rather than the
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number structure potentially involved. In terms of interpreting task interactions, the balance
between considering single trials and the interview context became critical. The current research
specifically set out to examine the estimation of individual targets, hypothesising that features
unique to the target might be influencing estimations (see White and Szucs, 2012, p. 9). However,
knowledge of the number structure a child represented in preceding trials, or moments, and
comments made subsequent to the trial, provided an extremely valuable second layer of evidence

for interpreting the estimation process.

6.4.2.3 Numbers-space fit’: the number line and the idea of scale

In addition to the aspects of number structure addressed in the frameworks already mentioned,
children in this study represented another type of structure, which was the structure of how
numbers ‘fit’ into a given space. The representations in this category include many where children
express opinions about how many numbers ‘should’ be represented by a given physical space,
and also more mathematically sophisticated statements which begin to express the idea of scaling

a linear representation depending on the range and space provided.

This category is not included in either of the theoretical frameworks used to discuss number
structure so far (Resnick, 1983; Thomas and Mulligan, 1995). A working hypothesis to explain this
is that the explicit number-space association forced by number-line estimation tasks caused
children to represent their ideas about number and space more frequently than would be

expected.

Representations of number-space ‘fit’ occurred in interviews with children in each of the teacher-
assessed mathematical attainment groups. Not all children made representations in this category,
but those who did include both the most and least linearly accurate children in terms of number

line estimation.

A distinctive feature of children’s number-space ‘fit’ representations is that they were made at
the point of introduction of new number ranges, i.e. when the page turn revealed a number line
with a new range, but before the researcher had actually presented a target number to estimate.
The representations did not tend to occur within estimations trials themselves, and on the few
occasions where they did, the focus was on the relation of the number range to space, and the

target number tended to be excluded.

Children’s number-space ‘fit’ representations fell into three distinct sub-categories:
e Not enough space to represent a given range
o Difficult or unnatural to represent range in given space

e Too much space to represent a given range
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o Difficult or unnatural to represent range in given space

e The need to adjust representation given the range and allocated space for representation

The following examples provide typical examples of these sub-categories.

Not enough space for given range

Patrick, R4, T2, range 0-100:
P: It is very hard because a hundred [RH makes chopping motion at RE] ... can’t fit like a hundred

[RH traces LE to RE] of those ... so have to squeeze them all in ...

Zoe, R2, T2, range 0-100:
Z: | wish the zero was there [points left page edge] and then the hundred was there [right page

edge].

Jonah, R5, T2, range 0-10:

J: It - was if it was 100 it should be longer!

Too much space for given range

Catharina, R5, T2, range 0-10:
C: They’re quite big for putting all the numbers in! [chopping motion with both hands, LH at LE

and RH at RE, simultaneously. RH palm down then sweeps to and fro between LE and RE.]

Matthew, R5, T4, range 0-20, target 6:
M: ... [writes answer] twelve again... It’s actually twelve and cos, | know that’s there [points to
previous rocket with pencil] and it’s there [points to equivalent location on current line]. Cos

they’ve got loads of space [LH moves quickly to and fro between LE and rocket].

In this episode, Matthew appears to explain why both the previous and current blank rockets

represent the number 12, despite being at different positions on the number line 0-20.

Adjusting representation given the range and allocated space

Patrick, R1, T4, target 6:
P: ... seven. .... Because even though it’s a bit low, we’re going up to twenty ...
J: Yes

P: Got to remember the total line.

Matthew, R4, T2, range 0-100:

J: where could 92 go?
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M: One hundred ... [LE ¢/0 x3 slowing down and stopping... suddenly points to RE] - back from one
hundred! [mimes count-back which turns into a wiggly line leftward]

J: Oh?

M: [looking at RE] 100, 99, 98, [looking at J] 97, 96, 95, 94, 93 [looks at own hand again, almost at
LE] -No! That is too big, because look - [demonstrates RE count-back with exaggeratedly large
unevenly-sized jumps, reaching LE]

J: Ah, yes.

M: [picks up pencil, hesitates]

J: It's OK to draw it on the line if you want.

M: 100, [points RE, looking at own hand] ... 99 98 97 96 95 94 92. [counts-back from RE x8 small,

careful jumps with pencil point] Ninety three? [marks line with pencil then sticks rocket at mark]

Representations of number-space ‘fit’ often coincided with representation of relative numerosity
and part-whole structure. The following sequence of episodes from Zoe’s R4 interview

demonstrates some of this overlap. The task is T2, and the range is 0-100:

J: What about three, where does three go?
Z: Here. [emphatic, sticks rocket near LE] Cos otherwise there won’t be space for every other

number [LH sweeps line from rocket rightwards to RE]

J: Number six.

Z: [straight to LE, glides small distance rightwards, sticks rocket]

J: Good.

Z: Oaah [points just right of rocket], there needs to be ninety about, hmmm, there [points about
2/3 of the way along the line]

[J presents 71 rocket]

Z: Hmmm. [takes rocket 71 near RE, slowly glides leftward towards MP] Need to leave QUITE a big
space [sticks rocket]

J: Yes

Z: Otherwise there won't be space for eighty [points to right of rocket] and ninety [hand jumps

further to the right and points again] and —

In the above episodes, Zoe represents emerging part-whole structure — both vague (“every other
number”) and more precise (the decades following 71 that must be represented between 71 and

the right endpoint) — and this appears to guide her judgment about number-space ‘fit’.
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Number-space ‘fit’ representations are particularly interesting because of their strong link to the
precise details of task context, and children’s representations in this category introduce new
possibilities for understanding number line estimations. One such possibility is an explanation for
the high estimation accuracy that children showed for the range 0-20 (see RQ1c for further detail).
Contrary to expectations based on previous research, children in this study estimated more
accurately in the range 0-20 than in ranges 0-10 or 0-100. Since children expressed both the idea
that there was too much space to represent 0-10 and not enough space to represent 0-100, one
thought is that the classroom resources in this Year 1 classroom, which overwhelmingly used the
length of a piece of A4 paper to represent ranges 0-20 or 0-30 (range 0-10, 0-50 and 0-100 were
represented in other formats and shapes within the classroom) had accustomed children to

perceiving this scale as ‘natural’ and to using it as their default scale.

Children’s number-space ‘fit’ representations offer the potential for deeper insight into
estimation processes than is provided from identification of strategies. In the final episode of the
above examples, observation establishes that Zoe was likely using the right endpoint (one
hundred) as a reference or ‘anchor’ point, and that her estimation was based on judging the
target 71 relative to one hundred. Zoe’s subsequent representation of how the numbers between
the target and right endpoint need to ‘fit’ provides another level of insight into how the relative
judgment was made, and in this case helps to understand why Zoe’s eventual placement of the

target 71 underestimates its position relative to a linear representation of this range.

6.4.3 What are the notable between-task and within-task connections between
representations?
This section of the findings, considering children’s results as a group, focuses on between-task and
within-task differences in terms of the linearity of children’s representations. As explained in the
postscript to the literature review, the debate over whether a log-linear or proportional judgment
model better describes change in estimation accuracy shows no sign of being resolved. In recent
research, some high-profile authors seem to have acknowledged that a more fruitful path is to
accept as an observed phenomenon that with age and experience children’s number line
estimations “more closely approximate a linear function” (Fazio et al., 2014, p. 54) and focus
attention on this alone. A good way to do so is through analysis of the percent absolute error (PAE)
of individual estimations. Although this is commonly presented as a measure of estimation
accuracy, it is more precisely a measure of an estimate’s linear accuracy, since the “error” is

calculated from an assumed linear distribution.

The following two graphs show children’s mean PAE in each range, over the five interview rounds,

firstly T2 then T4. Although the data points indicate mean PAE in different rounds, the points
155



were joined to form a multiple line graph, as shown.. This practice was adopted following the

similar usage of Rouder and Geary (2014) and Ashcraft and Moore (2012). Although it is

mathematically incorrect to join the data points in this way, it allows the eye to distinguish

changes of PAE in each range, to an extent that was not possible without joining data points.

Task: T2
Range
i —0-10
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Figure 27 Mean PAE of T2 estimates
Task: T4
Range
: —0-10
40.00 0-100
0-20
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20.004
=
10.00=
0.00

Figure 28 Mean PAE of T4 estimates

Children’s estimations were
most accurate in the range
0-20, and PAE decreased
with interview round for

estimations in all ranges.

The largest increase in
linear accuracy (decrease in
PAE) was for estimations in

the range 5-15.

In T4 as for T2, PAE
decreased with interview
round for estimations in all
ranges. Again, children’s
estimations were most

accurate in the range 0-20.

The largest increase in
linear accuracy (decrease in
PAE) was for estimations in
the range 0-10, particularly
between R1 and R2.
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Individual children’s mean PAE for each task condition was calculated, and a three way mixed
ANOVA was carried out to further investigate how mean PAE varied with range, task and

interview round.

Mauchly’s test was used to check the assumption of sphericity (the equality of variances of
differences between all pairings of repeated-measures groups), which if violated is often a source
of Type | error. Mauchly's test indicated that the assumption of sphericity was violated for both
interview round (x°(9)=81.73, p<.05) and the interaction of interview round and task (x*(9)=103.48,
p<.05), i.e. that the variances of differences between groups were unequal. The degrees of
freedom for both were therefore corrected using Greenhouse-Geisser estimates of sphericity
(e=.442 and €=.358 respectively). Levene’s test of homogeneity of variance between groups
(number ranges) was significant at 5%, but not 1%, for two of the ten task x interview round
conditions. The significance of results relating to differences between range groups should

therefore be treated with some caution. All effects are reported as significant (or not) at 5%.

As the graphs of PAE strongly suggest, there was a significant main effect of interview round on
the mean PAE of children’s number line estimations, F(1.77, 54.82)=7.74. Planned contrasts
revealed that this reflected a significant linear trend, F(1, 31)=14.21, with mean PAE overall

decreasing (linear accuracy of estimation increasing) proportionally with interview round.

There was also a significant main effect of task, F(1, 31)=8.13, with the mean PAE of T4 estimates
significantly higher than the mean PAE of T2 estimates. Testing also identified a significant main
effect of range, F(3, 31)=7.91, p<.001, although this needs to be regarded with some caution for
the reasons noted already. Post-hoc tests indicated that estimations in the range 0-20 were
significantly more accurate (had significantly lower mean PAE) than estimations in ranges 0-10

and 0-100.

Testing identified no interaction effects. Neither interview round and range, F(5.31, 54.82)=.751,
task and range, F(3, 31)=.932, interview round and task, F(1.43, 44.33)=3.36, nor the interaction

of round, task and range simultaneously, F(4.29, 44.33)=.768, were significant.

6.5 RQ2: What strategies can be identified in children’s interactions

with number line estimation tasks?
Strategies in response to estimation trials were inferred from children’s representations during T2
and T4 trials. The list of strategies identified was the following:
e Reference to potential anchor point

o Those included in the task environment (left and right endpoints)
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o Those created or visualised by child
=  Midpoint
= Quarter-point
=  Three-quarter point
o Previous trials of the task
= Within the same range
= Within a different range
e Counting strategies
o Count-on from LE to estimate
o Count-on from estimate to anchor point (e.g. RE)
o Count-back from RE
o Count-back from midpoint
e Judgment using relative numerosities: particularly clear when estimate, or further
strategies, appeared to be influenced by initial use of relative numerosity of target and

task environment.

Task responses that did not themselves constitute strategies were also observed. Those which
were recognised in multiple children, or in multiple trials of the same child, with a recognisable
pattern of behaviour, were coded in a separate set of “task responses” (i.e. not task responses
that did not become strategies). The list of such task responses codes is the following:

e Change of mind

e |Immediacy

e Hazard —initial response led child to a recognised mathematical contradiction

e “Easy” — explicit indication that a trial was found easy

Appendix 6 demonstrates a typical example of the behaviours relating to each of the above

strategies and codes.

Count-on strategies were each further coded to indicate whether the rocket sticker had been
placed at the end of the count (in the case of T2 trials) or the target number written in agreement
with and after the count (in the case of T4). There were many cases in which this was not the case,
for example where count strategies appeared to be being used as confirmation or checking of
estimates, or where children rejected the result of their count strategy and decided to move on to

a different tactic.

The sub-questions of this research question concern a detailed view of individual estimation trials,

and so are addressed only in the case studies.
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6.6 RQ3: How do young children’s cognitive representations of number

change during their first year of formal schooling?

6.6.1 In what ways does evidence support or not support the log-linear hypothesis?
The first step in answering this question was to carry out the typical analyses of number-line
estimation data found in previous research into the log-linear hypothesis, for example Siegler and
Opfer (2003, p. 239). This involved fitting linear, logarithmic and exponential models to the
median estimates of the sample. This procedure was carried out once for each of 40 task
conditions (4 number ranges x 5 interview rounds x 2 tasks). Models that did not reach
significance were excluded from further analysis, and the proportion of variance explained
(measured by R?) was calculated for each remaining model. The series of graphs on the following
pages shows the calculated R> model fits for each model in each task condition. It is followed by a
table which summarises the best-fitting model for the participating children’s median estimates in

each task condition.

Task: T2, Range: 0-10
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Task: T4, Range: 0-10
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Task: T4, Range: 0-20
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Task: T4, Range: 3-13
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Task: T4, Range: 0-100
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Compatibility with log-
Range | Task | R1 R2 R3 R4 R5 linear shift account?
0-10 T2 Exp Exp Exp Exp Exp Against
T4 Log Log Log Log Log Against
0-20 T2 Linear Linear Linear Linear Linear Neutral/ Compatible
T4 Linear Linear Linear Linear Linear Neutral/ Compatible

5-15 T2 Exp/Lin | Exp/Lin | Exp/Lin | Exp/Lin | Exp/Lin | Against

T4 Log --- Exp/Lin | --- --- Against
0-100 | T2 Log Log Log Log Log Compatible
T4 Exp Exp Exp Linear Linear Compatible

Figure 37 Best-fitting model for median estimates

As this table shows, estimations in the range 0-100 were best fit by the models predicted by the
log-linear shift account: in early rounds, T2 estimations were best fit by logarithmic models and T4
estimations best fit by exponential models. In later rounds, T2 estimations remained best fit by
logarithmic models, but T4 estimations were now best fit by linear models. If a ‘shift’ from
logarithmic to linear distribution in children’s internal representations of number had occurred,

which is the mechanism of developmental change that the log-linear account specifies, then it is
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unexpected that estimations in T4 should have reflected such a ‘shift’ (between R3 and R4) whilst
estimations in T2 did not. Aside from this point, however, children’s estimations in the range 0-

100 were compatible with a log-linear shift account.

Children’s estimations in the range 0-20 were also compatible with a log-linear shift account of
number line estimation. No ‘shift’ is suggested — children’s median estimates were best fit by a
linear model in each round — but a log-linear shift account of course allows that the ‘shift’ for

these children, and this number range, could have occurred before this research was carried out.

For estimations in the range 0-10, the median estimates followed the opposite pattern to that
predicted, with T2 estimations (see Figure 29) well described by exponential models and T4
estimations well described by logarithmic models (see Figure 30). Children’s estimations in the

range 5-15 did not reflect the predictions of a log-linear shift account either.

The above exploration of children’s median estimates is interesting from the point of view of
comparison to previous studies. However, it is also interesting to investigate how the changes
apparent in the median estimates relate to changes in individuals’ estimates. The model-fitting
procedure described above was therefore repeated for individual children. Children’s estimations
in the range 0-100 were of particular interest, since it was for this range that children’s median
estimates best supported a log-linear shift account. The tables below therefore summarise the
results of the model-fitting analysis for range 0-100 only, indicating the best-fitting model for each

child’s 0-100 estimates in each round and task.

T2
Patrick

Amy

Ellen

Zoe

Harry — Log Log

Matthew Log Log Log

Catharina | | og Log Log Log Log
Lewis Log Log Log Log
Marta Log Log Log Log Log
Beatrice Log Log Log Log Log
Chris Log Log Log Log Log
Jonah Log Lin | log Q Log

Figure 38 Children's best-fitting model for range 0-100, T2
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Patrick

Matthew

Catharina

Figure 39 Children's best-fitting model for range 0-100, T4

These tables provide limited support for the idea of log-linear shifts in individuals’ estimations.
For T2, seven children’s estimations were compatible with a log-linear shift in that they were best
fit by either a logarithmic or linear model (with no change) throughout the research, but other
children made estimations well fit by linear models and then, in a later round, estimations more
closely resembling a logarithmic distribution. For T4, four children’s estimations either remained
best fit by exponential or linear models, or demonstrated an exponential-to-linear shift, but again
other children’s estimations did not themselves reflect the expectations of the log-linear shift

account.

6.6.2 What is the variability of children’s numerical magnitude representations in
estimation tasks at different times?

There are several ways to approach assessing the variability of children’s numerical magnitude

representations. One simple measure is the standard deviation of estimation error (PAE) in

different task conditions at different times. The two following graphs, one for T2 and one for T4,

show the standard deviation of PAE for all children’s estimates in each task condition and round.
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Figure 40 Standard deviation of PAE for T2 estimates by round
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Figure 41 Standard deviation of PAE for T4 estimates by round

For both T2 and T4, the standard deviation of PAE decreased with each interview round. The
standard deviation of estimates was overall higher in T2, but decreased more for T4 and by R5
was similar for both tasks. In both tasks, estimates in the range 0-20 showed the lowest standard
deviation of PAE, meaning that estimates in the ranges 0-20 were both the most linearly accurate

and most consistent.
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6.6.3 Can trajectories or patterns of change be deduced, in terms of changes in how
children cognitively represent number?
At the level of the group findings, the main pattern of change, noted in RQlc and RQ3, is that
children’s number-line estimates more closely resembled a linear distribution and showed less
variability with time. The median estimates of the group, explored in RQ3a, did not point towards
a sudden ‘shift’ from logarithmic to linear representation of numbers on the number line, and
overall the evidence for the log-linear shift account is limited. Discussion of how individual
children’s estimates became more linear, and what possible factors might be in the change,
involves a much closer examination of children’s responses and so is considered in the three case

studies which follow this chapter.

Children’s representations in T1 did not evidence an overall trend, though the nature of the task
as a ‘snapshot’ of representational ability means that this is not surprising. The representations
that children made in each interview overall are summarised in a series of charts following, with
representations grouped according to the five main stages of Resnick (1983)’s developmental
theory of number understanding: sequence (S), decreasing sequence (DS), relative numerosity
(RN), part-whole (PW), and part-whole base-ten (PW10). Throughout all five interviews, by far the
most common structure represented was the target number in relation to one of the number
line’s endpoints, a representation categorised within relative numerosity (RN). In order to focus
on changes within each category of number structure, the following graphical depictions of
representation frequency compare the frequencies only within categories, not between. Within
each chart, the circles are coloured and sized to represent frequencies relative to the other data

points within that chart.

Code Systemn 'R1/ RZ/ R3 R4 R3| Increasing sequence structure
JG S was represented in every
(=g Sequence R L
(=g cfofromLE @ & @# @# = | interview.Children’s
g‘ EJ{D :Dm E:tmite | " " | representation of count-on
=a Cfo from targe ..
=1 cfo from MP T + | from the left endpoint
Ea o
*-[5a cfo-query * * * * " | decreased in frequency with
Il\'_r_'. SCE - - - - -
(=3 WCE w + '« + .| eachround, whereas count
(Za cfoin twos * sequences in twos or in fives
(=g cfoin fives . )
appeared only in later rounds.

Figure 42 Frequency of representation of increasing sequence structure (S) by round
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Figure 44 Frequency of representation of relative

numerosity (RN) by round
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Figure 45 Frequency of representation of part-whole structure (PW) by round
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=] guarters N I i — . .
quarters was infrequent in all rounds.

Figure 46 Frequency of representation of part-whole (including base-10) structure (PW-10) by round

Two trends are demonstrated by the above observations. Firstly, representations within each
category of Resnick’s framework of number structure were observed in each interview round.
Secondly, representations considered less sophisticated (increasing sequence structure,
particularly in the form of count-on from left endpoint) decreased in frequency, whilst
representations of the more sophisticated number structure (part-whole structure, including

base-ten structure) increased in frequency.

This short chapter has presented the first stage of research findings, and drawn out those findings
from the group level that have contributed to answering the research questions. As noted at the

start of this chapter, the comprehensive treatment of the research questions is enabled by
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examining children’s interview responses at a much smaller grain size. The following chapters

present this second stage of the findings, in the form of three contrasting case studies.
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Chapter 7 Case study: Patrick

Patrick was selected as one of three case studies because, in the terms of this research, his
responses to the task-based interviews were the most mathematically sophisticated: he
represented comparatively sophisticated aspects of number structure with greater frequency
than other children, and his number line estimations (both number to position and position to

number) were highly linearly accurate.

7.1 What does this case say in response to important ideas in the

literature?
This case provides strong qualitative evidence for the use of lower and upper endpoints,
midpoints, and quarter-points as “anchors” during number line estimations. This supports the
broad hypothesis that children use anchors or landmarks — both given (endpoints) and inferred —
in some way during their estimations. Such a hypothesis has been advanced in various forms by
Siegler and Opfer (2003), Barth and Paladino (2011), White and Szucs (2012), Slusser et al. (2013)
and Rouder and Geary (2014). Such a result is not surprising, but with the exception of Sullivan et
al. (2011) (who studied only adults’ number line estimations) no recent studies have examined

whether behaviour actually supports the hypothesis.

Patrick’s case furthers the debate on whether this estimation behaviour can be inferred from
guantitative estimation data. In the studies noted above, the use of anchor points was inferred
from patterns of estimation error. In Patrick’s case, highly linear estimates were achieved using a
variety of strategies, and frequent cognitive representations of number structure including part-
whole structure (a more sophisticated structure). Where estimation data strongly suggested use
of a particular anchor point, there was sometimes no qualitative data to support this. Conversely,
estimations did not always have the linear accuracy that could be expected from examination of

the strategies used.

The linear accuracy of Patrick’s estimations increased somewhat over the school year; however,
his estimations were highly linear on all ranges tested even at the start of the year, so the overall
increase in linearity was not statistically significant. In the range 5-15, a ‘difficult’ range due to the
non-zero starting point, there was a significant increase in the linearity of estimations over the

year.

Patrick’s case provides some support for a proportional reasoning account of number line
estimation. The best evidence in support of this would be the pattern of over-estimation and
under-estimation demonstrated on power-cycle models, and there is some suggestion that this

pattern occurred (particularly for the range 0-100). However, important methodological
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limitations mean that this research is not optimally designed to test the plausibility of the
proportional reasoning model: the methods were designed to investigate the log-linear account
(see RQ3a and Slusser et al., 2013). The deviation from linearity of Patrick’s estimates did not

always (or even frequently) follow the distribution predicted by existing accounts.

The data are strongly compatible with the idea found in multiple accounts (Ashcraft and Moore,
2012; Slusser et al., 2013) that increased linear accuracy in number line estimation arises from the
incorporation of increasing numbers of anchor points: “The origin of the line is always a region of
highly accurate estimates regardless of age and underlying representation (i.e., linear or
logarithmic). This point is then joined by accurate estimates at the endpoint of the line and, with
increasing knowledge of arithmetic, by the midpoint of the line.” (Ashcraft and Moore, 2012, p.
265). | agree with Ashcraft and Moore’s further assertion that “this strategy involves not just the
perceptual salience of the midpoint of the number line but also the arithmetic knowledge that a
hatch mark near the perceptual midpoint must equal a value near 50 given that 50 is
arithmetically half the length of the 0-100 number line.” (Ashcraft and Moore, 2012, p. 260)
However, | do not think that Patrick’s case alone is able to offer evidence in support or refutation

of this claim, and indeed | struggle to imagine the evidence that would be suitable.

The stage-by-stage inclusion of anchor points is found in overall conflicting accounts, with
Ashcraft and Moore (2012) concluding that their data overall better support Siegler et al’s view of
number line estimation as reflecting the mental representation of number (with stage-by-stage
incorporation of anchor points), whilst Slusser et al. (2013) conclude that their data support the
view of number line estimation as proportional reasoning. In this second account, the stage-by-
stage incorporation of anchor points is one of two factors leading to improved estimation
accuracy: the inclusion of further anchor points changes the mathematical model from
unbounded, to one-cycle, to two-cycle power function, and a parameter  present in each of
these models (see Slusser et al., 2013) indexes an overall bias, which with age and experience
approaches 1 (“perfect” estimation). Patrick’s case study does not address which of these

overarching accounts is the more plausible.

The data strongly support the suggestion of White and Szucs (2012) that “specific numbers could
exhibit unique behaviours as a function of the familiarity with the number range, proximity to
either external or mental anchor points, as well as knowledge of arithmetic strategy” (White and
Szucs, 2012, p. 9). Patrick’s case suggests strong links between a target’s position within the

estimation range, the size of the estimation range, and the strategies used.
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Finally, this data supports Slusser et al. (2013) in drawing attention to the spatial components of
the task itself: “typical analyses of these tasks attribute variations in number-line estimation solely
to numerical processing and numerical representations, assuming that the spatial components of
the task do not introduce their own variations. This assumption is deeply problematic given a
wealth of research on the estimation of spatial position in children and adults” (Slusser et al.,
2013, p. 195). Qualitative evidence from Patrick illustrates these difficulties with episodes in
which intentions (for example a verbalised comment that “I'll just put it halfway”, or an attempt

to appropriately scale counting on a particular number line) do not match spatial actions.

In the remainder of this chapter, | present the findings from Patrick’s case study in relation to

each of the research questions.

7.2 RQ1:In what ways do children appear to cognitively represent
number during the different tasks of the interviews used in this

research?

7.2.1 What are the modes and component signs used in the representations?

During Task 1 of each round, Patrick produced a drawing on paper, to which he added spoken and
gestural explanation supported by gaze direction. During Tasks 2 and 4, Patrick’s only written
representations were the numerals written into the rockets to answer Task 4 trials. Unlike some
other children, Patrick made no additional inscriptions — neither in solving the task for himself,
nor seeking to explain to the researcher. Representations of numbers verbally (aloud), in gesture
and with gaze were however very frequent during T2 and T4, occurring during almost every trial.
During Task 3, Patrick demonstrated few cognitive representations of number, and those that

occurred were verbal only.

The component signs of Patrick’s drawn T1 representations of number, shown in the following
section, were primarily notational. The numerals Patrick used were consistently boxed in each
drawing, and in R4 and R5 the squares feature alone, as iconic components. Patrick’s verbal and
gestural representations indicated that these squares functioned as placeholders for other

symbolically-written numbers.

Patrick’s representations of number very occasionally included pictorial components, as when he
described the possible lengths of number lines in terms of being able to reach to the sky and back.

This particular example occurred during R4, a spontaneous comment during T4:

Patrick: ... draw a straight line ... lines can be any size you want [RH pencil traces short vertical line

mid-air in front of body].
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Researcher, J: Yes, it’s true.
P: Cos they’re just straight lines. Lines they can be ... up to the sky and back again! [RH reaches full

extent to the ceiling, waves].

7.2.1.1 Structure of T1 representations
In R1, Patrick’s drawn representation of the counting numbers featured strong linear structure,

but no other structure. The number structure represented (in Resnick’s terms) was sequence only.

Figure 47 Patrick R1 T1

After drawing, Patrick made a spontaneous comment that was followed up by the researcher:

P: | haven’t got space for the rest. [resting]

J: So can you tell me about where they’d go if you had all the paper in the world?

P: Well it'd just keep on going in a line. [RH, holding pencil, sweeps L->R across drawn boxes,
continues sweep off the page rightwards, until R arm extended mid-air full stretch to R]

J: Mmhmm?

P: Until | get to a hundred in boxes. [resting]
In R2, Patrick began with a verbal and gestural representation:

P: Sort of like squares... going across. [right hand sweeps pencil across page L->R, twice. Second

time, continues sweep rightward to mid-air, arm reaching to R]
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The researcher then asked if he could show how this might look using pencil and paper, and

Patrick drew a very similar sequence of boxed numerals to that in R1, but this time stopped at 13.

P: Written like that.
J: Mmhmm?
P: To... a hundred, like in a line. [RH sweeps line and continues rightward to mid-air again, arm

reaching R]

Figure 48 Patrick R2 T1

As in R1, this imagistic representation is classified as having linear structure only.

In R3, Patrick drew and verbally described at the same time. He then continued the verbal

description and accompanied it with gesture.

P: Sort of like ... got squares. Now it’s a bit different, it's going down. [drawing squares in first
column]

J: Right.

P: Cos it’s got bigger number. [drawing still, then pushes drawing towards J, for her to see]

P: And it’s from like that going down and down and down in lines. [RH pencil sweeps down first
column of drawing, then in further downward sweeps parallel — indicating columns 2, 3, 4 on each

“down //]
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P: So if the ones are on that line, all of the twos are on that line, all of the threes are on that line,
the fours are on that line... All the fives are on that line, and all of the sixes are on that line. [RH
pencil sweeps L->R rows, beginning with 1, 11 row and then making parallel rows beneath] ...

P: Adding ... just like ... all of the ones on that side [RH pencil sweeps L->R from the “1”, for 10cm]
J: Yes

P: And then it goes down to 21, 31 ...

J: Ah, right.

P: And so on.

Figure 49 Patrick R3 T1

This drawing, together with its verbal and gestural description, demonstrates array structure,
specifically with elements in a 10x10 array, the highest level of structure identified by Thomas and
Mulligan (1995). The structure was not simply apparent in Patrick’s representation; Patrick chose
to describe the representation to the researcher in these terms, foregrounding the structural
features; first in terms of the columns (though Patrick did not name them “columns”) and then in
terms of rows. Thomas and Mulligan (1995) include examples of array structures that seem to
have been reproduced holistically, as remembered images, or in Duval’s terms mental images), by
children from their classroom experience of conventional number grids. This does not seem to be
the case for Patrick; he has some difficulty articulating the number patterns within the array, but
does manage to convey its structure and the fact that that structure is the key feature of this

representation. It is not clear from this episode the extent to which Patrick associates with the
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representation a structure of related numerical magnitudes, in addition to the structure of the

pattern in the numerals.
In R4, Patrick began T1 with verbal and gestural description alone:

P: Well ... it’s like, starting from one in the top corner [LH points to upper-left corner of room] -2,
3,4,5,6,7, 8 [pointing jabs in mid-air, descending in diagonal to lower-right corner of room]

P: and it goes to about ... 25 down there [body turned to R, emphatic point to floor on the right on
“there”] ...

P: and another 25 to 50 [rapid RH point to room upper-right corner, then arm sweeps diagonally
down leftward to lower-left corner] then another 25 to 75 [L arm reaches forward and left, hand
flat, body leans leftward], and another 25 equals a hundred [R arm reaches forward and right,
hand flat, body leans rightward]. So it’s quite strange.

J: Yes! Could you draw that at all on paper? Roughly —to show me where it goes?

At this point, Patrick drew the following image:

@D on o
Yo,
L Sy]
-

Figure 50 Patrick R4 T1

Patrick continued to verbally explain:

P: From the rest of that it just sails down there like thaaaat [RH pencil traces page upper-left
corner to lower-right corner, then repeats the path faster] ... and then comes back over there [RH
pencil sweeps rapidly from page upper-right corner to lower-left corner] and then down that bit
[pencil placed vertically at page left edge] forms two crosses ... [waves RH mid-air briefly, then

pencil placed vertically at page left edge again] then it’s just go the numbers. The numbers that
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are left from the others [RH pencil mid-air sweeps page upper-left to page lower-right — the path

of the drawn boxes]. And that’s like, because the high numbers that were left out of the others.

In the classification of structure by Thomas and Mulligan (1995), this imagistic representation is
considered to have emerging multiplicative structure: although the structure visualised by Patrick
is not entirely clear, the sequence of numbers is grouped into four equal sections of twenty-five

that Patrick explicitly notes add up to one hundred.

In R5, Patrick verbally and gesturally described his imagistic representation at the same time as

drawing:

P: Right... it’s a bit like ... going in order on screen [drawing boxes from upper-left], when it gets to
there [traces from drawing to page lower-right corner] there’s a ... [draws box in lower-right
corner], then it goes ... goes up there [RH pencil traces lower-right corner of page to upper-right
corner]

P: then down there [traces upper-right corner of page to lower-left corner], then back to where it
was [RH pencil points to page upper-left corner, where drawing began], and that would be
number a hundred there [points again to page upper-left corner] ...

P: Down, up, to there, down to there, back up to there [traces above page: upper-left corner to
lower-right corner, to upper-right corner, diagonally to lower-left corner, back to upper-left].

J: OK. Is that always how it looks to you?

P: Yep. Sometimes, sometimes not. Sometimes it looks like that, sometimes [shrugs] still don’t

really know which one | have the most.

,

Figure 51 Patrick R5 T1
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This representation, like that in R4, is classified as showing emerging structure; the linear
sequence is broken into approximately equal segments, although this time the numerical

structure to the groups is not clear.

For all five rounds, Patrick’s gestures and speech contained dynamic elements such as sweeping
movements and phrases like “it’s going down”. However, in each round, the overall impression
was that the imagistic representation of numbers Patrick had in mind was itself static, and that
the dynamic element came from his care in communication. Patrick appeared to want to guide
the researcher through the features of the number representation, and this process took the form

of a dynamic journey through his representation.

7.2.2 What aspects of number structure are represented?

In Patrick’s case, all stages of number structure understanding in Resnick’s developmental theory
were represented at some point during the five rounds of interviews. The following table shows
the stages of number structure in Resnick’s theory (first column), followed by the elements that
make up that stage (second column). The third column provides examples of Patrick’s procedures

and strategies that include representation of this particular aspect of structure.

Number structure | Detailed stages Procedures or strategies in which this number
structure may be represented
S Sequence Count sequence Count-on from LE.
fromQOor1l
Count sequence e Count-on from non-zero LE.
from other start e Count-on from estimate to RE for confirmation.
point
DS Decreasing Count sequence Count-back from RE.
sequence reversed
RN Relative Ability to represent | e Applying efficient count strategy, using RN to
numerosity (esp visualise) choose shorter available count.
(quantity number’s e Checking judgements, querying whether an
comparison) magnitude without estimate is likely.
counting up to it e Use of endpoints as “anchor” points.
PW Part-whole Partition and Use of “anchor” points based on partitioning the
recombine range.
numbers (<20)
Use of number o Checking estimations using number bonds to
bonds to ten ten.

e Using own midpoint anchor on 0-10 range.

Multiple partitions | Using own midpoint anchors on 0-20 and 5-15
of multi-digit ranges.

numbers
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PW10 Part-whole Numbers as e Using own midpoint anchor on 0-100 range.
understanding of compositions of e Count-on and count-back by tens.
base ten structure | tens and units e 10x10 array structure of 0-100

Multiple partitions | e Count-on or count-back by any given number.

of larger multi-digit | e Partitioning into quarters, thirds, other.
numbers

Figure 52 Aspects of number structure represented by Patrick

Three examples here are used to show the kinds of episodes from Patrick’s interviews that were
inferred to represent different aspects of number structure from Resnick’s theory. The first
episode, taken from Patrick’s R1 interview, provides examples of representations of increasing
sequence, decreasing sequence, and relative numerosity. The episode occurred during Task 2,

range 0-20, for target number 19.

J: A nineteen. [holding out a “19” rocket sticker]

P: [eyes to RE; both hands take rocket to RE, then inch left-wards a little]

P: | think ... it goes there ... [sticks rocket]

J: Yes?

P: Because it's really close to the twenty. [right hand traces from rocket-> to RE; left hand then
points to rocket)

J: Good reason.

P: [quietly] nineteen twenty. [looking at J; left hand remains on rocket]

The interpretation of this episode is that Patrick focused upon the proximity of 19 and 20 in the
count sequence to position the rocket immediately, using the anchor of the right endpoint (20).
From there, he moved the rocket a small amount leftwards, corresponding to a small decrease in
numerosity from 20. Patrick then explained or justified the response to the researcher, both
verbally and with gesture highlighting the spatial proximity of 19 and 20 in this line representation,

and for good measure speaking aloud the relevant short segment of the count sequence.

The two following examples are taken from T2, range 0-100. The first episode occurred during
Patrick’s R3 interview. It illustrates Patrick’s representation of part-whole (partition and combine)

structure, as well as a second example of relative numerosity.

J: Where would the number four rocket go?

P: [eyes immediately to LE] Very a lot down here. [eyes remain LE; sticks rocket near LE
immediately]

J: Right.

P: [eyes on rocket, then jump to RE, then to J] Cos there’s ninety-six separating them.
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In this episode, Patrick’s initial response (in gaze and verbally) is to use the relative numerosities
of zero, four and one-hundred to focus attention upon the left endpoint of the range. Patrick
makes clear that four is not merely close to zero in the count sequence, but relative to right
endpoint one hundred, which the total line represents, four must in fact be “very a lot down
here”. After sticking, a glance to the right endpoint appears to check and confirm for Patrick that
his response made good sense, and he explains to the researcher with more detail why four must

be far from the right endpoint.

The final example presented in this section is from Patrick’s R2 interview. This episode

demonstrates Patrick’s representation of part-whole (base ten) structure.

J: And twenty five.

P: [eyes immediately to LE, then to mid-line area; takes rocket to left half of line] .... Quarter.
[sticking rocket on left half of line]

J: Ah?

P: It's a quarter. I'm putting it there because it’s a quarter. Because half would be fifty, and then
half, and then half of a hundred is 50, and then ... you need four of those. [points right hand to
stuck rocket. Both hands make chopping motion at midpoint on each “half”; right hand points to
stuck rocket again on “those”)

P: Because one’s twenty-five, two’s fifty, three’s seventy-five and four’s a hundred. [right hand
points ~25%, glides (wobbly) to midpoint, glides (wobbly) to ~90%, then taps RE; eyes follow

pointing finger throughout]

7.2.3 What are the notable between-task and within-task connections between
representations?
In this section, Patrick’s representations are compared between tasks and within tasks, asking

what varied and what was consistent.

7.2.3.1 Task1
Patricks’ T1 representations were presented in RQla above. In order to facilitate direct
comparison, the following table summarises Patrick’s representations of number during T1,

according to the framework of analysis developed by Thomas and Mulligan (1995) for this task.
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Interview round
R1 R2 R3 R4 R5

No structure
Linear X X
structure only

Emerging X
structure

Emerging X
structure
(multiplicative)

Partial array

Structure, classification from
Thomas and Mulligan (1995)

Array: 10x10 X

Component Notational | Notational | Notational | Iconicand | Iconicand
signs notational | notational
Static/dynamic | Static Static Static Static static

Figure 53 Structure of Patrick’s representations of number during Task 1 (Thomas & Mulligan, 1995)

In terms of the stages of number structure understanding in Resnick’s (1983) account, the
representations in R1 and R2 incorporated sequence structure only; the representation in R3
incorporated sequence structure and part-whole structure including base 10; and the
representations in R4 and R5 incorporated sequence structure, and initial part-whole structure
(partitioning and recombining, but not base 10 structure explicitly). A more general categorisation
would maintain these groupings: the representations of R1 and R2 are extremely similar, the
representations of R4 and R5 form another closely related pair, and the representation from R3

stands somewhat alone.

7.2.3.2 Task 2 and Task 4

In this section, representations in different task conditions of the number line estimation task are
compared. The series of charts following summarise Patrick’s representations in gaze, gesture and
speech, and the task conditions in which the representations occurred, in each round of
interviews. The representations and strategies coded for structure are grouped according to
Resnick’s microstage account of number structure understanding (see 4.4.2.1). The size of each
circle, together with its colour, reflects the number of episodes in which a particular structure was
coded: a large red circle indicates a high frequency relative to the other frequencies in the chart,

and a small blue circle indicates a low frequency relative to the rest of the chart.
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Code System [0-10T2 0-10T410-20T21 0-20T415-15T21 5-15 T4/ 0-100 T2 | 0-100 T4

= 5
(Za sequence
(= cjo from LE . .
(=3 cjo from estimate .
(= cjo from target .

(= cjo from MP
(=g C - suspicious

(=a c/b from RE .
(=a c/b from MP

fi)

RE
LE L ] - L]
Proximity exp ]
Previous

prevE. - *
Relative numerasity

Anchor (mis)

middle

) ) ) ) 0 60 0 )

—-[En PW
(=3 MP-5 "
(=& Emerging structure
(=a part-whole
—-(=] PW10
(=] MP-10,50
=] Emerging structure {m)
(=] Array
(=] guarters
(=g SNA
(=a Scaling
(= Measure
(Za L-R orientation

Figure 54 Round 1

In this first round, the representation of number sequence in count-on strategies was seen across

all conditions except T4 0-20 and 0-100. References to both endpoints were frequent in all

conditions, although less in 0-100 tasks compared to the lower ranges. Few examples of part-

whole structure were represented in this round, although midpoint structure in T2 0-10, T4 0-20

and T2 0-100 were exceptions.
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Code System I0-10T210-10T41 0-20 T2 1 0-20 T4 1 5-15T21 5-15 T4 1 0-100 T2 | 0-100 T4 |
= 5
(=a SEQUENCE
(=a cfo from LE . . . .
(=a cfo from estimate
(=a cfo from target .
(=a cfo from MP .
(a4 C - sUSspicious
- DS
=a c/b fram RE . . . .
=a cfb fram MP

(i)

RE
LE [ ] B . .
Proximity exp

Previous

prevR . . .
Relative numerosity

Anchar (mis)

middle

= ) @) 6 ) 6 60 60 60

SR
=% MP-5 .
(=a Emerging structure
(=a part-whole .
—-{=] PW10
(= MP-10,50 . . .
(=] Emerging structure (m) .
(=] Array
(=] quarters .
o-(Z3 SMA
(=a Scaling . .
(=a Measure
(=a L-R orientation .

Figure 55 Round 2

This chart shows a decrease in counting strategies in R2 compared to R1. References to both
endpoints occur in every task condition once again, and with higher frequency than in R1. Part-
whole structure is represented more frequently, particularly the midpoint during T2 0-100

estimations.
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Code System (0-10T2 1 0-10 T4 1 0-20 T2 | 0-20 T4 1 5-15T2 1 5-15T4 1 0-100 T2 | 0-100 T4 |
(=g S

(=4 Seguence

(=a cfo from LE

(=a cfo from estimate

(=a cfo from target

(= cfo from MP

(Za C - suUspicious

--{Z3 DS
(=a c/b from RE
(=a c/b from MP
—-{=} RN
(=! RE . . . . ™ . ™
= LE . . . . . . .
(= Proximity exp . . . . .
(=) Previous .
(=} prevR . .
(=) Relative numerosity
(=2 Anchor(mis)
(=2 middle
—1-(=a PW
(s MP-5 .
(=2 Emerging structure
(=4 part-whole . .
-1-(=] PW10 .
= MP-10,50 . . . . .
(=] Emerging structure {m) .
(=] Array
(=] quarters . .
—l[Eg SMA
(=a Scaling . .
(=a Measure

(=a L-R orientation

Figure 56 Round 3

In R3, references to both endpoints are again frequent in all task conditions. Compared to R2,
there is more representation of part-whole structure, which occurs mainly during T2 estimates on

0-100, but also with increasing frequency in T2 5-15.

What is particularly noticeable here in R3 is that representation of sequence structure (including

all count-on strategies) has stopped entirely.
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Code System (0-10T2/0-10T4 1 0-20 T2 1 0-20 T4/ 5-15T21 5-15T4 1 0-100 T2 1 0-100 T4 |
(= 5

(=m Sequence

(=a cfo fromLE

(=x cfo from estimate

(=a cfo from target

(=% cfo from MP

(=g C -suspicious

--(Z3 D5
(=a c/b from RE .
(= cfb from MP .
== RN
(=2 RE - . . . . - ] -
(= LE . . . . . . ™ .
(=2 Proximity exp . . . . . .
(=) Previous . . .
(=) prevR . . . .
(=} Relative numerosity .
=2 Anchor{mis)
=2 middle . . .
(= PW
(= MP-5 . T
(=a Emerging structure
(=x part-whale . . . . .
—l-(=] PW10
(=] MP-10,50 ] . . .
(=] Emerging structure (m) . . .
(=] Array
(=] guarters . . . .
=[x SMA
(=a Scaling .
(g Measure . .

(=g L-R orientation

Figure 57 Round 4

In R4, references to both endpoints are again frequent in all task conditions. As in R3, there is no
representation of increasing sequence, though decreasing sequence structure is represented.
Compared to R3, there is again more representation of part-whole structure, and across a wider

range of task conditions. Fewer representations occur during T4 compared to T2.

Representations in R5 (Figure 58, following chart) were very similar to those of R4. A difference is
the lack of decreasing sequence representations, and the re-occurrence of several instances of
increasing sequence. References to both endpoints are still frequent throughout. The highest

frequency of part-whole representation occurs during T2 range 0-100 once again.
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Code Systemn 10-10T210-10 T4 1 0-20 T2 0-20 T41 5-15T215-15 T4 0-100 T2 | 0-100 T4 |
—-{= S

(=a sequence

= cfo fram LE

=a cfo from estimate

(=a cfo from target

=a cfo fram MP

(=a © - suspidous
-1-(Z) DS

=a c/b fram RE

=a c/b fram MP

RE . s - - . . - -
LE L ] . - * -

Proximity exp = * - B -

Previous

previ

Relative numerosity

Anchor{mis)

middle

2 06 6) 6 6) ) B )

SR E
= MP-5
(=a Emerging structure
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Figure 58 Round 5

One further connection between representations of number not captured by the data above is a

III

particular representation of number sequence starting from “small” and becoming “large”, seen
in many children’s interviews with strikingly similar features in each case. In the interview
transcripts, this particular representation was named “Sweep to large N”, and it consisted of
children making a sweeping gesture from the space in front of them (often on a page) to the right,
ending with their arm fully extended to the right. Very typical examples of Patrick using this

“Sweep to large N” occurred in both R1 T1 and R2 T1 (see RQ1a).

7.2.3.3 Linear accuracy of representations

Patrick’s representations of number during T2 and T4 also include, of course, his estimations
themselves - the representation of target numbers within ranges that each trial requested. In
each trial, the range and target were pre-chosen, but Patrick’s estimation choice or decision led to
a representation of number-within-range that varied in the extent to which it coincided with a

linear representation of number for that range.

In order to compare the extent to which Patrick’s representations of targets coincided with the

linear representation for a given range, the percent absolute error (PAE) was calculated.
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Inspection of estimation patterns revealed differences in the variability of PAE for estimations
within each range. Levene’s test confirmed that significant differences existed in the variability of
PAE in different range conditions (F(3,181)=4.763, p=.003). The following boxplots show the

distribution of PAE scores in each range, for T2 and T4 separately.
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Figure 60 Percent Absolute Error of estimations by range

Significant differences between the variance in the different ranges remained after multiple data

transformations, so further analysis of PAE scores was carried out treating the four range groups
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separately. For each range, a two way repeated measures ANOVA was carried out to investigate
the PAE of estimates carried out in each of the round x task conditions. All effects are reported as

significant (or non-significant) at p<.05.

7.2.3.3.1 Range 0-10

Mauchly’s test revealed that the assumption of sphericity was not met for the main effect of
round, )(2(9)=21.94, p<.05, and the interaction effect between round and task, )(2(9):35.79, p<.001.
Degrees of freedom were therefore corrected using Greenhouse-Geisser estimates of sphericity

(e=.31 for both the main effect of round and the interaction effect between round and task).

For the range 0-10, there was no significant main effect of round on PAE. There was however a
significant main effect of task type on PAE, F(1,6)=35.64. Contrasts revealed that T4 estimates
were significantly more accurate (significantly lower PAE) than T2 estimates on this range. There

was no significant interaction effect between round and task for estimates in the range 0-10.

Estimated Marginal Means of PAE
Range number: 0-10

25 00 Task

20.007

15.007

10.007

Estimated Marginal Means

5.00

00

Figure 61 Mean PAE in range 0-10, R1-5

Looking at the plot of estimates by round and task for the range 0-10, for both tasks there was a
general trend of increased linear accuracy (decreasing PAE) over the five rounds, but this change

did not amount to a significant main effect.

What is particularly noticeable on this plot is the sudden increase in PAE for T2 estimates in R2.

The mean PAE for T2 R2 estimates was skewed by unusually inaccurate (for Patrick) estimates of
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the targets 8 and 9: PAEs of 55.2% (target 8) and 60.8% (target 9). These estimates did not

constitute statistical outliers, and both were apparently genuine estimates. The qualitative data

gives clear support to particular hypotheses about how these very inaccurate estimates came

about. With regard to target 9 for example, Patrick decided to estimate by counting on from the

left endpoint using the width of his finger to guide the unit size. This was an unusual strategy for

Patrick, and it resulted in a large underestimation of the target’s position on the line.

7.2.3.3.2 Range 0-20

For the range 0-20, the assumption of sphericity was met for all effects: round, task and the

interaction between round and task. None of these effects reached significance at p<.05. The plot

of mean PAE by round and task in the range 0-20 is shown below.
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Figure 62 Mean PAE in range 0-20, R1-5

7.2.3.3.3 Range 5-15

The mean PAE for both T2
and T4 increased between
rounds 1 and 2, and then fell

sharply at round 3.

For T2, PAE then fell again at
round 4 before increasing in

the final round.

For T4, PAE increased at both

rounds 4 and 5.

For the range 5-15, the assumption of sphericity was once again met for all effects, and effects

were judged significant (or non-significant) at p<.05.
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Estimated Marginal Means of PAE
Range number: 5-15
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Figure 63 Mean PAE in range 5-15, R1-5

7.2.3.3.4 Range 0-100

Task
—2

The only effect to reach
significance in range 5-15 was
the main effect of round on PAE,
F(4,24)=7.91. Contrasts revealed
significant variation in PAE
between rounds 2 and 3,
F(1,6)=9.63, and between round
3 and 4, F(1,6)=17.39.

The plot shows that this variation
consisted of a significant increase

in mean PAE at round 3.

Mauchly’s test revealed that the assumption of sphericity was not met for the main effect of

round, x*(9)=19.83, p<.05. The degrees of freedom were therefore corrected using the

Greenhouse-Geisser estimate of sphericity (e=.42 ). For the range 0-100, as for the range 0-20,

none of the effects (round, task or round and task interaction) reached significance at p<.05.

The plot below shows that for T2, PAE increased between the first and second interview rounds.

Estimates then became more linearly accurate in the third and fourth round, before a small

increase in PAE in round 5. Unlike other ranges, the T4 estimation accuracy on 0-100 followed a

different path to that of T2: PAE decreased between the first and second, and second and third

rounds, before increasing in both the fourth and fifth rounds.
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Figure 64 Mean PAE in range 0-100, R1-5

This section has highlighted different patterns in the linearity of Patrick’s estimates in different
task conditions: decreases or increases in PAE did not occur at the same time in different task
conditions. The linearity of Patrick’s estimates overall decreased very slightly, but this effect was
only significant in range 5-15. Patrick’s T4 estimations were overall slightly more linearly accurate
than his T2 estimations, but there was only a significant difference for estimates in the range 0-10.
Examining the graph of mean PAE in this range (Figure 61), it becomes clear that a large part of
this difference between tasks is due to the ‘spike’ in PAE for Patrick’s T2 range 0-10 estimates in
R2. The following research question (specifically section 7.3.2.1) uses observations of Patrick’s
representations and strategies to offer a clear explanation for why PAE increased so significantly

here.

7.3 RQ2: What strategies can be identified in children’s interactions

with number line estimation tasks?
This section discusses the strategies identified in Patrick’s interactions with T2 and T4. It should be
emphasised that in many cases the observed strategies were combined: it was frequent, for
example, for Patrick to represent some anchor point and then reason aloud about the relative

magnitudes of the target and anchor point.

The strategies identified in Patrick’s T2 and T4 responses were the following:
e Reference to anchor point

o Those included in the task environment (endpoints)
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o Those created or visualised by child
=  Midpoint
= Quarter-point
= Three-quarter point
o Previous trials of the task
=  Within the same range
=  Within a different range
e Counting strategies
o Count-on from LE to estimate
o Count-on from estimate to anchor point (e.g. RE)
o Count-back from RE
e Judgment using relative numerosities: particularly clear when estimate, or further
strategies, appeared to be influenced by initial use of relative numerosity of target and

task environment.

7.3.1 What patterns can be detected in the way children use or do not use these
strategies?

Several patterns are evident from Patrick’s case. The first is that the less mathematically

sophisticated strategy of counting on from the left endpoint until the target number was reached,

and then placing the number rocket, was used most frequently in the first round of interviews

(when Patrick was at the beginning of the school year, and also unaccustomed to the interview

tasks) and for targets close to zero (see RQlc). Even in the first round of interviews, Patrick did

not try to apply this strategy to larger targets in the range 0-100 for example.

To explore the hypothesis that reference points were selected as anchor points, target numbers
were coded according to whether they fell nearest to a potential left-endpoint anchor (e.g. target
6 in range 5-15), to a right-endpoint anchor (e.g. target 19 in range 0-20), or to an midpoint or
quarter point that a child could infer using part-whole number structure knowledge. Figure 65

plots the frequency of representations and strategies according to target type:

193



Code System I TZLEIT2ZMPI TZRE ( TALE TAMPI TARE  T2Q | T4 Q!
- 5

(=a seguence

(=a cfo from LE

(= cfo from estimate

(=a cfo from target

(=a cfo from MP

(Ea C - suspicious

(=a c/b fromRE
(=a c/b from MP
—-(Z) RN
RE
LE L ] L]
Proximity exp
Previous
prevR
Relative numerosity
Anchor(mis)
middle

-
e
L]

2 0 ) 6) ) 6) &) @) &)

-=a
= MP-5
(=% Emerging structure
(= part-whole
—-(Z] PW10
=] MP-10,50 . ™
(=] Emerging structure {m)
(=] Array
(=] quarters

Figure 65 Strategies and representations by target type

For T2 estimates, the frequency of strategies and representations is clearly correlated with target
type. Targets close to the left endpoint coincided with more frequent representations involving
the left endpoint, and target close to the right endpoint coincided with more frequent
representations involving the right endpoint. For targets close to a potential midpoint anchor,
there was equal use of left and right endpoints, but a much higher frequency of representations

involving the midpoint.

For T4 estimates, the connection is weaker. Targets close to the right endpoint do coincide with
more right endpoint representations than left endpoint representations, and the only midpoint
representations coincided with targets close to the midpoint. Target close to the right endpoint or

midpoint in T4 estimations also recorded no count-on from left endpoint strategies.

The green circle identifies the only strategies and representations to involve quarter structure
(including both one quarter and three quarter representations). Overall, these occurred rarely,
but as this chart demonstrates, when they did occur it was always during an estimation of a target

close to a potential quarter or three-quarter anchor.

7.3.2 How do the strategies used relate to children’s estimation results?
In this section, visual plots of estimation accuracy are used to identify trials or rounds in which
changes in children’s estimation results are evident. After identifying points of investigation, the

plots are then compared to charts showing the strategies and representations that occurred
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during the relevant estimation, to see whether connections can be drawn that may explain some

of the estimation results. Three task conditions have been chosen for close examination: T2 0-10,

T2 0-100, and T4 0-100.

7.3.2.1 T2, range 0-10
The following chart shows Patrick’s estimates for T2 range 0-10, with the estimates for each

round colour-coded.
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Figure 66 PAE of target estimates, T2 0-10
The initial observations for T2 estimates on 0-10 are that estimations were, with one exception,

highly linearly accurate for targets 1 and 9, near each endpoint, and target 5, at the midpoint. The

questions arising to be answered by the qualitative data are:
What strategies were used for the highly accurate 1, 5, and 9 estimates?

[ ]
What is different in R2 for target 4?

What is different in R1 for target 6?

What is different for targets 8 and 9 in R2?
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Figure 67 T2 0-10 estimates

The accurately-estimated target 1 coincided with frequent representations of the LE, the closest
anchor point, and similarly the accurately-estimated target 9 coincided with frequent
representations of the RE, its closest anchor point. Target 5 coincided with frequent references to

an inferred midpoint, as the graph of estimation accuracy suggested.

Targets 3, 8 and 6 also coincided with frequent references to their nearest endpoints (LE, RE and
midpoint respectively). However, the estimation of these targets was less accurate, pointing to
the difficulty when estimating targets even slightly farther from the same anchor points. Target 6
was particularly inaccurately estimated in R1 (the blue peak on the graph), and examination of the
transcript reveals here that this was the first trial of the first interview, and that Patrick counted

up from the left endpoint (with no representation of the midpoint) — this instance is circled in red.

The R2 transcript was examined for targets 4, 8 and 9 (the green PAE peaks on the graph). For all
three of these targets (circled green above), Patrick counted from the LE, and made no reference
to any other anchor than the LE. In the context of the rest of Patrick’s interview, and other round
interviews, this was unusual, and it seems reasonable to believe it contributed strongly to
unusually inaccurate estimations. Patrick in fact explained his strategy verbally on the first of

these trials (target 9):
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P: Cos | was like counting, | put my fingers to — to see how long it was, it was two fingers ... along,
so | counted that nine. [puts left hand two fingers together to make a unit, and demonstrates

measuring along the line rightwards using this unit]

The gesture of counting along the line in this precise manner was repeated for target 8 and for

target 4, although the verbal explanation was not.

7.3.2.2 T2, range 0-100

This chart shows the estimations made in T2 range 0-100, once again for all five rounds.
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Figure 68 PAE of target estimates, T2 0-100

This chart demonstrates that T2 estimates for the range 0-100 were for the most part highly
correlated between rounds. Considering all rounds together, accurate estimations occur for the
very lowest targets near the left endpoint, for targets 18 and 25, and target 50. Looking at the
following chart (Figure 69) which plots the strategies and representations for individual targets,
the lowest targets featured mainly references to the left endpoint (circled orange), although
several count-on strategies and representations of part-whole were also used. These strategies
proved accurate for target 2, but increasingly less accurate by targets 4 and 6. No representations
are recorded for target 18 other than references to the endpoints, but for target 25 part-whole
structure is represented (circled blue) including the quarter structure, as the low PAE shown

above might suggest. The low PAE at target 50 does indeed coincide with representations of the
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midpoint (circled green). However, midpoint structure was also represented frequently for target
49, and as the graph above clearly illustrates, these estimates showed high PAE. This is an
interesting example of Patrick consistently representing relevant numerical structure for a target

close to the endpoint, yet still recording high PAE.

For target 92, Patrick referred only to the right endpoint, showing use of relative numerosity. His

linear accuracy for this target was however not high, with the exception of in round 4.

Once again, points of disparity between rounds are interesting. The questions that arise are:
e Why was the estimation of 67 so much less accurate in R2 than R1 and R3?
e What changed in Patrick’s estimations of 67 and 72 in R4 and R5, where the estimates
become suddenly much more accurate?
e How did Patrick estimate target 92 in R4, with significantly higher accuracy than in all

other rounds?
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Figure 69 0-100 estimates, T2, all rounds

Looking at the transcript for the estimation in R2 of target 67, Patrick referred only to the
midpoint and placed the rocket sticker very quickly. It is not clear why he did so (the chart above
shows the estimation of 67 coinciding with representation of other structure in other rounds), but

this strategy (or lack of) seems a likely contribution to the low accuracy of the estimation.

In R4, the transcript shows Patrick giving a good deal of attention to the estimation of 67, one

potential reason for high accuracy:

P: Let’s see ... 67 ... that goes there ... so probably about therrre. [takes rocket towards MP, hovers,

then glides further rightwards. Left hand chops at midpoint, and rocket is stuck ~ 60%]
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J: lovely

P: I’'m using the arrow to see where the rocket’s going ... tiny bit far from ...

However, the estimation of target 71 occurred several trials later, and here Patrick made no
comments or representations, sticking the rocket almost immediately. Target 92 (estimated most
accurately of all rounds in R4) was similarly positioned without pausing, commenting or gesturing
in any way. These trials do not provide any evidence in themselves as to how Patrick achieved
accurate estimation. In R5, target 92 was estimated with the comment “ ... 8 off, so it’s why it
should be ...” — indicating accurate part-whole knowledge of the relation between 92 and 100.
However, this number structure was not enough to enable an accurate positioning of 92 —in fact
this round’s estimation underestimated the position of 92 more than any other round. A potential
cause of this could be that Patrick’s focus was solely upon the difference of 8 between 92 and 100,
rather than the relative numerosities of 0, 92 and 100 as a set, and so over-estimated the 8

(causing underestimation of 92).

Target 67 in R5 was estimated very rapidly. Patrick’s only comment was “Sixty seven ... | think it
could go there”, taking the rocket immediately to its final position and sticking. Target 72 was
similarly rapidly estimated, with Patrick commenting “Seventy one ... there, cos it's a bit close, but
not really close”. This comment seems to refer to a judgment of relative magnitudes, although it
is not clear to which other magnitudes Patrick was referring (no representation of endpoint or

midpoint occurred in gaze or gesture).

The following graph (Figure 70) shows PE (percentage error), instead of PAE, to allow examination

of over- and under-estimation patterns for T2 estimates on 0-100.
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Figure 70 PE of target estimates, T2 0-100

In all rounds, there is over-estimation for targets under 25, followed by high accuracy around
target 25. Estimations in all rounds then under-estimate targets before becoming more accurate
again at target 50 (though the estimates for 50 still err on the side of underestimation). Estimates
then increasingly underestimate, even for target 92, the closest target to the right endpoint.
Although Patrick used the right endpoint as an anchor in estimating 92 (see Figure 69), it seems
that the proximity of 92 to 100 was not close enough for Patrick to use the anchor to gain

accuracy of estimation.

The patterns described above are somewhat consistent with the patterns of over- and under-
estimation predicted by the psychological models of proportion judgment that are modelled using
power functions (e.g. Slusser et al., 2013). These would predict S-shaped curves of over- followed
by under-estimation with accuracy at anchor points (so a 1-cycle S-shaped curve for estimations
using the two endpoints, plus midpoint). Patrick’s estimates do not quite follow this distribution,
but there is indeed a pattern of over-estimation followed by return to accuracy (at 25), then
under-estimation, then a move back towards accuracy (target 50). After target 50, there is not

over-estimation as the model predicts, but there is reduced under-estimation.
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7.3.2.3 T4 range 0-100
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Figure 71 PAE of target estimates, T4 0-100

This plot of PAE for T4 estimates on 0-100 shows high accuracy for targets very close to the left
endpoint, and very close to the midpoint. For selected rounds, there is also high accuracy at target
25 and 71. The questions arising for the qualitative data are:

e What was different about the estimation of 25 in R1? Is there any sign of quarter point

representation?

e Is there qualitative evidence for the midpoint anchor?

As in T2, targets 67 and 71 are interesting. In R1 and R2, both 67 and 71 are noticeably less
accurate than in all three later rounds. More specifically, in R4 and R5, accuracy suddenly

increases. In R3, estimation accuracy is very high throughout.
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Figure 72 T4 0-100 estimates, R1 and R2
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Figure 73 T4 0-100 estimates, R3 R4 and R5

These two charts show visually the differences between number structure represented in R1 and
R2, compared to in R3, R4 and R5 (for T4 0-100 estimates). The obvious difference (circled orange)
is the representation of part-whole structure including base ten structure in R3, R4 and R5, which

is entirely absent in R1 and R2.

The graph of linear estimation accuracy highlighted a fairly sudden decrease of PAE for estimates
of 67 and 71 in the later rounds (compared to R1 and R2), and this coincides with representation
of the quarters of 100 (circled green) that did not occur in R1 and R2. Looking to the interview
transcripts, Patrick’s application of the structure in answering the task seems clear. In R4, for

example:
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P: See to here... it’s ... just over three-quarters so I’'m going to go for 27 — 77! [writes answer 77]

Whilst target 67 shows a sizable decrease in PAE for later rounds, the estimation accuracy is not in
fact as low as for target 71, which also shows a decrease in PAE to an even more accurate level. As
discussed elsewhere, the context of the individual target estimations provides an important
second layer of evidence. Thus, although quarters of 100 were not explicitly represented for
target 71, since this structure was represented by Patrick for a close target in the same set of
estimations within the interview, it is a reasonable hypothesis that knowledge of this structure

could have helped the linear accuracy of his estimation of 71 as well as of 67.

The two charts of number structure representation also show representation of the midpoint of
100 (circled blue) for targets 49 and 50 in R3, R4 and R5, not present in R1 and R2. Going back to
the graph of PAE, these targets were already accurately estimated in R1 and R2, but in later

rounds they are indeed even more accurately estimated.

A final point in the consideration of T4 0-100 estimates, which underlines again the importance of
considering the interview context and not only representations made in the moment of each
individual trial, is notable absence of representation of quarter structure during estimation of
target 25 (circled purple). This target was very accurately estimated during all rounds except R1,
and in no round was the quarter structure of 100 represented during its estimation. From the
representation of number structure seen in the rest of the interviews, it would be reasonable to
infer that Patrick knew that 25 was a quarter of 100 (and indeed comments during T2 say this
explicitly), but there is no direct evidence of the target being represented with this structure. This
is an example of the limitations of the methods used in this research (and other research): despite
efforts to capture as much data as possible about Patrick’s interaction with the task, these
methods are unable to provide evidence as to whether Patrick was using one quarter as an

anchor point in this situation.

Looking at the graph of percentage error (PE) as opposed to PAE, an additional trend can be seen:
of underestimation on the lower half of the range, accuracy at the midpoint, and overestimation
on the upper half of the range. This is as expected from the literature on proportion judgment (e.g.
Rouder and Geary, 2014). As in T2, the patterns of over- and under-estimation do not follow very
precisely what would be predicted by a one- or two-cycle power function model. However,
particularly in R4 and R5, a pattern of under-estimation, followed by increased accuracy, followed

by over-estimation can to a certain extent be seen.
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Range: 0-100, Task: T4
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Figure 74 PE of target estimates, T4 0-100

This section has demonstrated that many patterns in Patrick’s estimation results can be
connected to observations of the representations and strategies during individual estimation
trials. There are numerous examples of trials with particularly high PAE which can be plausibly
explained by specific observations of representations and strategies, for example count-on from
left endpoint with an inappropriately scaled unit size. Accuracy of estimation near the left
endpoint is well supported by qualitative evidence for the use of a left endpoint anchor, and
where targets close to the right endpoint were accurately estimated, there is good evidence for

the use of a right endpoint anchor.

In comparison to left and right endpoint anchors, midpoint anchors appeared to be used less
frequently, as expected. There are consequently fewer trials to examine, but where the
estimation error of targets close to the midpoint was low, representation of the midpoint was
often observed. The reverse relationship was less clear, with representation of the midpoint
certainly not always associated with more linearly accurate estimation. The representation of

guarter and three-quarter points was associated with more accurate estimates.

Although there are many examples where difference in PAE was associated with different
observed representations and strategies, the relationship is not simple, and the representation of

more sophisticated number structure did not always result in a more accurate estimation.
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The findings in this section provide limited support for a proportion judgement account of
number line estimation, but only really for estimates in the range 0-100. Estimates in this range,
for both T2 and T4, display several of the patterns of over- and under-estimation predicted by

proportion judgement accounts.

7.4 RQ3: How do young children’s cognitive representations of number

change during their first year of formal schooling?
This question involves examining the changes evidenced by both the qualitative and quantitative
estimation data collected from Patrick’s interviews. Before considering changes in estimation
results, and the bearing they have on rival accounts of number line estimation in the research
literature, Figure 75 summarises the aspects of number structure that Patrick represented in each
round of interviews. As in previous sections, the representations and strategies coded have been
grouped according to the five main stages of Resnick’s (1983) developmental theory of number
understanding: sequence (S), decreasing sequence (DS), relative numerosity (RN), part-whole
(PW), and part-whole base-ten (PW10). As before, the size and colour of circles indicates relative
frequency. However, whilst in previous charts frequencies were compared to all other frequencies
in the same chart, in this case they are compared only to the frequencies of the same category of
representation in other rounds. The advantage of this is to better highlight trends within
individual categories of representation, which were partially obscured when frequencies were
compared throughout the whole chart (due to the overall dominance of certain categories). The
disadvantage is that comparisons cannot be made between categories. A large red circle indicates
a high frequency of a representation (compared to its frequency in other interview rounds), and a

small blue circle indicates a relatively low frequency.
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Figure 75 Number structure represented by round

There are two main points to be drawn out of this summary data. Firstly, that Patrick represented
all five main stages of number structure in almost every round. The only exceptions to this are
that sequence structure was not directly represented in R3 or R4, and decreasing sequence
structure was not represented in R3 or R5. It must be emphasised that this does not mean that
Patrick did not use his knowledge of the number sequence or decreasing number sequence in
these interviews. The current research did not set out to answer this question — to examine
qualitative data for evidence that particular number knowledge was used or implied. Rather, it
only means that in these rounds Patrick did not directly represent that structure or a
mathematical strategy (e.g. count procedure) that directly involved that structure. What is more
interesting than the absences is the positive presence of representations of the more

sophisticated structures in each round.

The second main point is that the diagram illustrates a general trend towards more
representation of part-whole structure with time, and less representation of sequence structure.
In terms of Resnick’s account of number understanding development, the trend is one of
representing increasingly sophisticated number structure throughout the school year, as we
might expect. The fact that the less sophisticated aspects of number structure were represented
less and less frequently does not follow necessarily; one could represent increasingly
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sophisticated number structure whilst retaining the representation of less sophisticated elements.
However, Patrick did not do this - consciously or unconsciously he increasingly chose not to
represent number sequences. A reasonable hypothesis to explain this could be that as he gained
confidence and fluency with more sophisticated number structure, he no longer found it efficient
to represent number sequence as frequently as he did at the start of the year. Tied in with this
hypothesis is the fact that the children in this research gained repeated experience with the
interview tasks used ; this stability afforded plenty of opportunities for children such as Patrick to

develop their task responses over time.

7.4.1 In what ways does evidence support or not support the log-linear hypothesis?
Patrick’s number line estimations were highly linearly accurate during both T2 and T4 (number to

position estimation, and position to number estimation) and across all five interview rounds.

For the majority of task conditions (a given range and given task) in each round, Patrick’s
estimates were better fitted by a linear model than by a logarithmic model or exponential model.
The following sequence of charts shows the R* model fits of the three models fitted: linear,

exponential and logarithmic, for each task condition, across the five interviews rounds.
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Range: 0-100, Task: T4
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These charts reveal good model fits for linear models compared to logarithmic and exponential

models. In some conditions the advantage of the linear model (green) is clear; in other conditions

(range 5-15) the difference is marginal. Importantly, on only two occasions do the fits of non-

linear models ‘overtake’ the linear fit: for Task 2, range 0-10, the linear model performs worse

than either alternative model in R2 (only), and in Task 2, range 5-15, the linear model performs

worse than the logarithmic model in R3 (only). The suddenly lower linear accuracy of estimations

in T2, 0-10 R 2 has already been discussed (see RQlc, Range 0-10).

To see more clearly how well the linear models fit, the following table indicates the R? figures of

the best fitting linear model for each task condition, with shading to show where the linear model

explained over 89% of variance.

Range Task R1 R2 R3 R4 RS

0-10 T2 0.89 0.32 0.97 0.98 0.98
0-10 T4 0.92 0.98 0.98 0.95 0.97
0-20 T2 0.96 0.97 0.97 0.98 0.98
0-20 T4 0.97 0.92 0.99 0.97 0.97
5-15 T2 0.96 0.90 0.80 0.95 0.98
5-15 T4 0.67 0.99 0.79 0.94 0.89
0-100 T2 0.99 0.93 0.99 0.96 0.95
0-100 T4 0.95 0.98 0.99 1.00 0.99

Figure 86 Table showing R’lin values for each task condition, by interview round
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The ANOVA analysis of linear accuracy (PAE) reported in RQ1 revealed that overall, the accuracy
of Patrick’s estimations were very stable. The only estimation range for which there was a
significant effect of round, or round and task interaction, was the range 5-15, for which there was

a main effect of round (see RQ1c).

Patrick’s case does not therefore provide direct evidence with regard to an observed logarithmic-

to-linear shift of estimates on any given range, since such a shift did not appear to occur.

7.4.1.1 Alternative accounts

Patrick’s case is additionally relevant to the debate surrounding the log-linear shift account and its
rivals, since it provides qualitative data on the estimation of individual target numbers. These can

be compared against specific hypotheses proposed in the literature, particularly as alternatives to

the log-linear shift account, as outlined in the Plan of Analysis section (4.5.4).

Plotting PAE by target number is a powerful way to visually assess the hypotheses of proportional
judgment account that estimation accuracy should be highest near to anchor points and lowest at
the farthest point from anchor points. This can be seen in RQ2b; which looked at changes in
estimation accuracy to see whether qualitative evidence supported the idea that the changes

were linked to developmental change in task response.

A very important limitation when considering the plausibility of the proportion judgment account
(modelled with cyclical power functions) is that target numbers in this research were not sampled
evenly in all ranges. In ranges 0-10, 0-20 and 5-15, targets were evenly sampled from across the
range. However, for range 0-100, in common with much previous number line estimation
research, targets were sampled specifically to compare the fits of logarithmic and linear models,
i.e. sampling more heavily from the lower part of the range (e.g. Ashcraft and Moore, 2012;
Siegler and Opfer, 2003; Thompson and Opfer, 2010). The impact of this is well explained by
Slusser and colleagues: “This practice focuses on participants’ propensity to overestimate small
numbers, but yields little data to reveal the details of underestimation patterns for larger

numbers.” (Slusser et al., 2013, p. 196)

7.4.2 Whatis the intra-child variability of children’s numerical magnitude
representations in estimation tasks at different times?

There are several ways to approach assessing the variability of children’s numerical magnitude

representations. One simple measure is the variance of estimation error (PAE) in different task

conditions at different times.
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Figure 87 Variance in PAE for T2 and T4 by round

This chart shows overall small differences between the variability of T2 and T4 estimation
accuracy, except in R2, where the standard deviation of estimation accuracy in T2 is considerably
larger than in T4, and considerably larger than in either task in other rounds. Over the course of

the five interview rounds, variability of estimation in both tasks overall decreased.

As described in RQlc, the variability of estimates within different ranges was not the same, but no
strong overall trend emerged. In R1, the standard deviation of PAE was comparable for ranges 0-
10, 5-15 and 0-100 (between 4% and 10% for both T2 and T4) and lowest for estimates in range O-
20: 3.4% (T2) and 4.7% (T4). In R2, the standard deviation of PAE lay between 4.8% and 8.1% for
all task conditions except for 0-10 T2 estimates, where the standard deviation was 23.3%, due to
Patrick’s unusual estimations for targets 8 and 9. In R3, the standard deviation of PAE fell to
between 2.3% and 5.7% for T2 and T4 on 0-10, 0-20 and 0-100, but was noticeably higher in range
5-15:11.5% (T2) and 10.7% (T4). In R4, variability was comparable across ranges with the highest
standard deviation of PAE occurring in T2 0-10 estimates (8.3%) and the lowest in 0-20 T4
estimates (2.0%). Finally, in R5, standard deviation of PAE was between 3.1% and 5.2% for all

conditions except T2 estimates on 0-100 (6.6%) and T4 estimates on 5-15 (7.9%).

7.4.3 Can trajectories or patterns of change be deduced, in terms of changes in how
children cognitively represent number?

Patrick’s case illustrates two expected overall trends. Firstly, that over the course of the school

year, he represented more sophisticated aspects of number structure more frequently and

represented less complex aspects of number structure less frequently (see Figure 75). From the
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data collected, there is no evidence that this change occurred suddenly; it appeared gradually
between each round of interviews. Task 1, in which Patrick drew a representation of numbers to
100 in each round, provides a salutary reminder that this task captures only a partial glimpse of
children’s representation of numbers. The array structure represented in R3 appeared “suddenly”
after R2, and then “disappeared” in R4 and R5, but within the context of the rest of the interviews
— coded for number structure representation throughout — that it can be seen as just one example
of Patrick’s increasingly frequent representation of part-whole number structure, including base
ten structure. Seen in this light, the array representation did not appear ‘suddenly’ and did not
disappear afterwards. The factors influencing the choice of a particular drawn representation on
each interview day are of course numerous, and including not least which representations of
number children have been working with in classroom maths lessons that week, but that is not to
diminish the point that Patrick’s option to represent number on paper in a particular way

occurred as part of a larger trend in his representations of number.

The second main trend illustrated by Patrick’s case is a small overall increase in the linear
accuracy of number line estimations, a result clearly predicted by previous studies. Patrick was
unusual in producing highly linear estimates from the very first round (on all ranges), and so no
statistically significant increase in linearity was measured overall. It did however amount to a
significant main effect for estimations in the range 5-15, which the majority of children found to

be a ‘difficult’ range because of the non-zero start point.
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Chapter 8 Case study: Marta

Marta was selected as the second of the three in-depth case studies because, in the terms of this
research, her responses to the task-based interviews were among the least mathematically
sophisticated: she represented few aspects of number structure compared with other children,
and her number line estimations (both number to position and position to number) were the least

linearly accurate of all the children interviewed.

8.1 What does this case say in response to important ideas in the

literature?
Marta’s case provides an in-depth look at the number representations of a child who showed less
mathematical sophistication than her peers. The number structure Marta represented confirmed
the developmental trajectory outlined by Resnick (1983): Marta’s representations did not change
dramatically over the course of the research interviews, but with time she represented more
number structures identified by Resnick as more mathematically advanced, and decreased her

reliance on the less sophisticated number representations.

Marta’s case provides good qualitative evidence for the use of lower and upper endpoints, and
occasionally midpoints, as ‘anchors’ during number line estimations, as hypothesised by many

previous researchers from non-qualitative data.

The case provides little support for the logarithmic-linear shift hypothesis. Although Marta’s
number line estimations had initially low linear accuracy, they were not well fit by logarithmic
models (or exponential for the inverse task T4) either, and in no task condition was there a ‘shift’
to a linear model. Instead, as for Patrick, Marta’s case more convincingly illustrates simply an
increase in the linearity of estimation over the course of the school year. The increase in linearity
was not the same in all task conditions, and the largest change occurred between R1 (the first

interview) and subsequent interviews.

A particularly useful contribution of Marta’s case is good evidence for the hypothesis that younger
children’s linearly inaccurate number line estimations may often be attributed to a basic strategy
that only takes account of the left endpoint of number lines. Marta’s initial representations and
strategies were dominated by references to the left endpoint and by ‘count-on from left endpoint’
strategies. Marta’s case provides clear examples of trials in which, as Slusser et al. (2013) for

example suggest, the number line task as completed by the child is effectively open-ended, since

the right endpoint is either noted and dismissed, or not considered at all.
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With respect to the connection between increasing linear accuracy and strategy, Marta’s case,
like others, provides evidence for the importance of anchor points. In many task conditions,
striking increases in linear accuracy occurred between rounds for key target numbers: those very
close to the right endpoint or to the midpoint. This kind of evidence has been interpreted by
previous authors (e.g. Ashcraft and Moore, 2012) as evidence for the stepwise inclusion of
additional ‘anchor’ points in children’s estimations. Matching Marta’s estimations to observed
representations and strategies provided some clear examples of representation of new
(compared to the same trial in previous rounds) number structure that coincided with
substantially increased estimation accuracy, for example, a new reference to the midpoint

accompanied by far higher accuracy for target 49 than in previous rounds.

In other episodes, however, new representation of more sophisticated number structure did not
coincide with increased estimation accuracy, and vice versa. This reinforces two important points.
First is the importance of considering the rest of the trials on a given range in a given interview,
since the number structure that a child is able to represent for a given number range may not be
represented in each trial, even whilst that structural knowledge still informs other trials. This
study was of course not able to directly assess the knowledge that was used in a particular
estimation. The best understanding of a single estimation trial in this study was gained from
combining estimation patterns (such as suddenly increased accuracy for a key target), number
representation during the single trial, and number representation during other trials of the same
task condition. The second important point is that increased estimation accuracy may derive from
other changes in addition to the representation of more number structure. This could relate to
the parameter indexing bias (B) in proportional reasoning models, although as for Patrick’s case,

Marta’s case was not designed to test this theory specifically.

In the remainder of this chapter, | present the findings from Marta’s case study in relation to each

of the research questions.

8.2 RQ1: In what ways do children appear to cognitively represent
number during the different tasks of the interviews used in this

research?

8.2.1 What are the modes and component signs used in the representations?

In four of the five interview rounds, Marta produced a drawing on paper during Task 1. In R3,
Marta gestured and verbally described but produced no inscriptions. The drawings Marta
produced in T1 are shown in Figure 88, and in order to facilitate side-by-side comparison of the

drawings, the white space surrounding each drawing has been removed. Each drawing originally
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occupied an approximately 40mm x 40mm square in the centre of the A4 page provided, with the

paper in landscape orientation.
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Figure 88 Marta’s T1 inscriptions. Left to right: R1, R2, R4 and R5.
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The component signs of Marta’s T1 inscriptions are notational (featured in each drawing),

pictorial (R1, R2 and R5) and iconic (R4).

During R3, Marta did not make any inscription on paper for T1. The exchange with the interviewer
went as follows:

J: What do you see when you imagine the counting numbers?

M: Mm.... all of the the numbers going... [right hand held behind head]

J: Yes? Do they go in a particular way?

M: [nodding]

J: Can you show me with your hands, or tell me how?

M: [Holds up LH mid-air in a fist, fingers away from body. Raises up thumb first, then index, then
middle finger, then retracts hand.]

J: Yes?

M: [nodding]

J: Can you draw it, or is it too difficult to draw?

M: Too difficult.

In this episode, Marta used her fingers to demonstrate an increasing count sequence. It is possible
that the invitation to “show me with your hands or tell me” prompted the use of fingers, however,
Marta’s initial response (“all of the the numbers going...”) contains already some dynamic
element. This could already be progression through the count sequence (with any mode of
representation), although Marta could also mean a sense of watching notational numbers move

in another way.

During Tasks 2 and 4, Marta’s only written representations were the numerals written into the

rockets to answer T4 trials. Gestural representation was common, and almost always within some
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form of task strategy such as count-on. Other gestural representation and verbal representation

occurred infrequently.
8.2.2 What aspects of number structure are represented?

8.2.2.1 TI1 representations

According to the framework of Thomas and Mulligan (1995), none of Marta’s inscriptions in T1
could be identified as representing number structure. Her purely verbal and gestural response to
T1 in R3, however, represented number sequence. In terms of Resnick’s microstage theory of
number understanding development (Resnick, 1983), the inscriptions included no representation

of number structure, whereas the R3 response represented (increasing) sequence structure.

Marta’s representations during all tasks were analysed according to Resnick’s microstage theory.
The following table contains the aspects of number structure in Resnick’s theory matched to
procedures and strategies. The aspects that Marta represented are shown in normal text, and

grey text is used for the aspects that she did not represent.

Number structure Detailed stages Procedures or strategies in which this number

structure may be represented

Count-on from LE.

S Sequence

Count sequence
fromOor1l

Count sequence
from other start
point

e Count-on from non-zero LE.

DS Decreasing

Count sequence

Count-back from RE.

comparison)

magnitude without
counting up to it

sequence reversed

RN Relative Ability to represent | o

numerosity (esp visualise)

(quantity number’s e Checking judgements, querying whether an

estimate is likely.
e Use of endpoints as “anchor” points.

PW Part-whole

Partition and
recombine
numbers (<20)

Use of “anchor” points based on partitioning the
range.
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PW10 Part-whole
understanding of
base ten structure

Numbers as
compositions of
tens and units

e Using own midpoint anchor on 0-100 range.

Figure 89 Aspects of number structure in Resnick’s theory represented by Marta

Although Marta represented aspects of each category of number structure at least once during
the five interviews overall, her representations were overwhelmingly focused on the left endpoint
of the number lines, and on increasing number sequence. This is illustrated in Figure 90, which
shows the relative frequencies with which Marta represented each category of number structure
across the five interviews. The circles are coloured and sized to represent the varying frequencies

with which representations occurred, relative to all the other frequencies in the chart.
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Figure 90 Frequency of number structure representations by Marta
The dominance of references to the left endpoint and increasing number sequence is clear, and in
fact the points indicating representation of part-whole structure of any kind (circled together in

green) each represent less than five occurrences (across all five interview rounds).

An example here is used to show the kind of episodes from Marta’s interviews that were inferred
to represent different aspects of number structure. The extract is taken from Marta’s R1 interview,
and demonstrates representation of increasing number sequence, reference to both left and right
endpoints, and reference to an inferred midpoint (part-whole structure of 100). The episode
occurred during T2, and Marta was asked to estimate the position of the target 49 on the line O-
100.

J: Forty nine. [offers rocket sticker to M)

M: [grins. Looks at rocket then LE. Takes rocket and counts on from LE; reaches RE with 20 unit

hops. Stops and takes hand away from line, leans on elbow and sighs, looking at J.]

M: [looks at J, then rocket in hand. Smiles and takes rocket to midpoint of line, sticks it down]
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The interpretation of this episode is that Marta initially turned to the left endpoint and a count-on
strategy in order to represent the target 49 as ‘49 units on from zero’. When her count sequence
reached the right endpoint after only 20 units, Marta was forced to conclude that she would not
be able to complete the procedure. Furthermore, she rejected the option of sticking the rocket
down where the aborted count ended (adjacent to the right endpoint), suggesting representation
of the relative numerosities of 49 and 100 — which would make such placement impossible.
Marta’s querying look to the researcher and sigh suggested disappointment at the failure of the
first strategy. In contrast, the smile and direct movement to the midpoint, after a pause resting on

her elbow, are interpreted as Marta’s use of a new representation of 49, as near to half of 100.

8.2.3 What are the notable between-task and within-task connections between

representations?

8.2.3.1 Task1

Marta’s T1 representations were presented in RQla, and the following table summarises them

according to Thomas and Mulligan (1995)’s framework in order to facilitate comparison.

Interview round
R1 R2 R3 R4 R5
- No structure X X X X
ST -
e Linear X
ey
S = structure only
= é Emerging
e = structure
a2 .
ke = Emerging
S 2 structure
o © T .
E @ (multiplicative)
§ g Partial array
= Array: 10x10
Component Pictorial Pictorial Iconic Iconicand | Pictorial
signs and and notational | and
notational | notational notational
Static/dynamic | Static Static Dynamic Static Static

Figure 91 Structure of Marta’s representations of number during Task 1 (Thomas & Mulligan, 1995)

In terms of the number structure represented, Marta’s T1 representations were highly consistent:
the inscriptions represent no number structure in any round, and the verbal and gestural
representation of R3 represents sequence structure, which is represented very frequently indeed

in the other interview tasks of every round.

Marta’s representations in T1 were also very consistent in component signs. For each of R1, R2
and R5 (interviews spread over 9 months) the inscription Marta produced showed striking

similarity to the inscriptions of other rounds. In each there is pictorial representation of one or
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two people, with notational representation of “100” on the torso. In the R4 inscription, there is no
pictorial representation of a person, but the notational representation of 100 (only) is again in

common with the other inscriptions.

The principal connection evident between the T1 representations and T2 and T4 representations
is the low level of representation of number structure (compared with the representations
produced by all children interviewed). In T1, the only number structure represented was
increasing sequence, and in T2 and T4 this structure predominates, along with reference to the

left endpoint (see Figure 90).

8.2.3.2 Task 2 and Task 4

The previous sections considered connections within T1, and between T1 and the number line
estimation tasks (T2 and T4 together). In this section, T2 and T4 are explored in more depth.
Comparison between representations in different task conditions reveals the within-task
connections that occurred during number line estimations. In R2, Marta did not want to complete
T4, so for the purposes of analysing the linear accuracy of target estimations, T2 and T4 were

considered separately to allow for consideration of this missing data.

Firstly, Figure 92 summarises the representations in each task condition for all five interview
rounds considered together, including Marta's representations whether in gaze, gesture or
speech. The representations and strategies coded for structure are once again grouped according

to Resnick’s microstage account of number structure understanding (see 4.4.2.1).

Code System (0-10T210-10T4/ 0-20T21 0-20 T4 5-15T21 5-15 T4 0-100 T2 1 0-100 T4 |
+H-[Eg 5 . . ] . . . e ™
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= Anchor{mis)
= middle
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Figure 92 Number structure by task part, all five rounds

Overall, this diagram re-emphasises the finding already discussed in RQ1b: Marta’s
representations of number structure were predominantly of the left endpoint and increasing
number sequence. These number structures, together with references to the previous trial, and

to the right endpoint, were represented in all task conditions. The main difference between task
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conditions that this chart highlights is that for each number range, representations of number
structure were more frequent overall during T2 estimations than during T4 estimations. The only

task conditions featuring representation of part-whole structure were 0-20 T2 and 0-100 T2.

The charts below summarise Marta’s representations by task condition for each round separately.
This was done in order to investigate whether the same within-task and between-task
connections were apparent in each interview. As in all three case studies, and noted above, the

chart includes Marta's representations from gaze, gesture and speech.

Code System (0-10T210-10T410-20T210-20T41 5-15T2 1 5-15 T4 0-100 T2 1 0-100 T4 |
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Figure 93 Round 1

In this first round, reference to the left endpoint occurred frequently in every task condition, with
no overall difference between T2 and T4 conditions. Reference to the right endpoint occurred less
frequently, and more commonly during T2 estimations than T4 estimations. Reference to the
previous trial did not occur at all in 0-10 estimations, but at least once in both T2 and T4 for
ranges 5-15 and 0-100. Representation of increasing sequence structure occurred in every task
condition, but least frequently in T2 0-10, and most frequently in T4 0-100. Representation of

part-whole structure occurred only infrequently, and only in T2 0-100.

For R2 (below), the chart omits T4 since Marta completed only four (of 37) T4 trials in this round.
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Figure 94 Round 2
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Once again, increasing sequence structure is represented in each condition. The only other
structure represented is the left endpoint, which is represented with high frequency in each range,
and the right endpoint, which is represented with considerably lower frequency. The number

structures are represented with almost identical frequency across the four ranges in R2.

[0-10T2/0-10T4/0-20T210-20T415-15T215-15T41 0-100 T2 | 0-100 T4 |
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Figure 95 Round 3

In R3, once again representations of right and left endpoints, and increasing number structure,
are demonstrated in each task condition. References to the left endpoint are again the most
common number structure represented. For T2 estimations in ranges 0-10 and 0-20 (orange), the
endpoints are referenced more frequently in T2 than in T4, and representation of previous trials
and relative numerosity also occurs in T2 and not T4. For range 5-15, this pattern is somewhat
reversed: T4 (blue) features more frequent representations of the endpoints, and representation

of more types of number structure, than T2.

Round 3 is the first round in which decreasing number sequence is represented, and the

representations occur in T2 0-20, and T4 5-15 and 0-100.

Code System (0-10T2/0-10T410-20T2 1 0-20T415-15T2 1 5-15 T4 0-100 T2 | 0-100 T4 |
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Figure 96 Round 4

Again, in R4 representations of both endpoints and increasing number structure occur in each

task condition. References to the left endpoint are again the most common number structure
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represented. There is no striking difference between task conditions in this round. Representation
of the line’s endpoints occurs slightly more frequently in T2 estimations compared to T4

estimations, as in R1 and R3.

Code Systern I0-10T21 0-10T4 1 0-20 T2 1 0-20 T4 1 5-15 T2 1 5-15 T4 0-100 T2 | 0-100 T4
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Figure 97 Round 5

In R5, exactly as before, representations of both endpoints and increasing number structure occur
in each task condition, are the most frequently represented, and the left endpoint is by far the

most frequently represented structure.

As in all previous rounds where T2 and T4 were compared, both endpoints are represented more
frequently during T2 estimations than T4 estimations. The task condition featuring the most

representation of number structure in R5 was T2 0-100 (circled green).

In summary, these charts show that the distribution of number structure representations

between task conditions in Marta’s interviews considered all together (Figure 92) was replicated

in the individual rounds. Left endpoint and increasing number sequence representations were
dominant in each task condition of each round. In rounds where Marta completed both T2 and T4,
a slightly higher frequency of number structure representations was observed in T2 compared to

T4.

8.2.3.3 Linear accuracy of representations

Marta’s representations of number during T2 and T4 include the estimations themselves - the

representation of target numbers within ranges that each trial requested. The extent to which

Marta’s representations of targets coincided with the linear representation of number on each

given range was measured using the percent absolute error (PAE).

8.2.3.3.1 Task?2
To explore the within-task variation of Marta’s T2 estimates, a two way mixed ANOVA was carried

out. This compared the PAE of T2 estimates carried out in each of the round x range (5x4)
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conditions. Levene’s test for homogeneity of variances revealed significant differences between
the PAE of estimates in different ranges. In order to proceed, data were therefore transformed
using a square-root transformation, after which the condition of homogeneity of variances
between groups (ranges) was met. All effects in the following analysis are reported as significant

or non-significant at p<.05.

There was a significant main effect of the interview round on the linear accuracy of Marta’s T2
estimates, F(4,132)=7.14. Planned contrasts revealed a significant linear trend, F(1,33)=25.08,
p<.001, indicating that the linear accuracy of Marta’s T2 estimates increased (PAE decreased)

proportionately with each round, as illustrated in Figure 98.

Estimated Marginal Means of PAE

4.20

4007

3807

3609

3.407

Estimated Marginal Means

3.207

3.007

Figure 98 PAE of Marta's T2 estimates

Bonferroni-corrected post-hoc tests showed that the PAE of estimates in each of R1 and R2
differed significantly from the PAE of estimates in R4 (p=.03 and p=.04 respectively) and from PAE
in R5 (p<.005 for both). Connecting this finding briefly to the chart of number structure
representation by round (Figure 90), there are no striking differences at the level of categories of
number structure representation to explain the significant improvement in linear accuracy. More

detailed qualitative data, on the estimation strategies used, will be explored in RQ2b.

There was also a significant main effect of range on the linear accuracy of estimates, F(3,33)=3.26.
Bonferroni-corrected post-hoc tests showed a significant overall difference between the PAE of

estimates in the range 0-20 compared to the range 5-15 (p<.05), as shown in Figure 99 below.
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Figure 99 Estimated marginal means of PAE by range

It is interesting at this point to briefly compare the above chart with the chart of number structure
representations by task condition (Figure 92). Figure 92 does reveal more representation of
number structure in T2 0-20 than in T2 5-15, which the higher linear accuracy for range 0-20
suggests, but the difference is slight. Comparison between the above chart and differences in

estimation strategy will be discussed in RQ2b.

There was a significant interaction effect between interview round and range, F(12,132)=3.18.
This effect confirms the statistical significance of the pattern visible in the interaction graph below,

which is that PAE changed by round differently for estimates in different ranges.

Estimated Marginal Means of PAE

Range
number
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—3-15
0-20
—0-100
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5.00=
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Figure 100 Estimated marginal means of PAE in each round
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Most notably, estimates in rounds 0-10 and 5-15 showed negligible change between R1 and R2,
before subsequently improving in linear accuracy with each round. For estimates in ranges 0-20
and 0-100 however, no such overall trend is apparent. Current hypotheses on children’s number

line estimation do not offer insight into why this effect should occur.

The series of charts indicating Marta’s representation of number structure (Figure 93-Figure 97)
show T2 estimates for range 0-10 and 0-20 featured some representation of relative numerosity
in R3, R4 and R5 that was not present in R1 and R2, but the frequency of representation was still
low. There was no change in number structure representation between R1 and R2 to give insight
into why range 0-20 estimations became suddenly more linearly accurate, and why range 0-100

estimates became less accurate.

As for the main effect of round, investigation of the connection between estimation strategy and

estimation result will be discussed in RQ2.

8.2.3.3.2 Task4
To explore the within-task variation of T4, another two-way mixed ANOVA test was used. As
noted before, Marta only attempted four trials of T4 in R2, after becoming tired, so R2 was

excluded from the analysis.

Initial testing attempted to compare the PAE of T4 estimates across rounds 1, 3, 4 and 5, and the
four ranges. However, Levene’s test for homogeneity of variance between groups identified
significant differences between ranges in R1. This result reflected a higher variance of PAE in

range 0-10 estimations, correlated with a far higher mean PAE as well, as illustrated here:

200.007

150.004

100.009

PAE.14.00

50.009

vy

T
0-10 0-100 0-20 515

Range
Figure 101 Boxplots showing PAE by range, T4 R1
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Examining the graphs of Marta’s T4 estimates for each target gives an important insight into this
significant difference. In R1 (and only R1) Marta’s 0-10 range estimates were such

overestimations that they all but one fell outside of the given range, and for 6 out of 9 trials, by

more than 50%:
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Figure 102 T4 0-10 estimations by round

In contrast, Marta’s 0-10 range estimations for later rounds all fell within range.
In all other ranges in R1, Marta’s T4 estimates were also within or close to the given range:

Task: T4, Range: 0.20 Task: T4, Range: 5-15
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Figure 103 T4 0-20 estimations (above) and 5-15 estimations (above right)
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Task: T4, Range: 0-100
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Figure 104 T4 0-100 estimations

This significant difference between the PAE on different ranges in R1 unsurprisingly remained
under various transformations of the data, confirming that comparison between the PAE of T4
estimations including R1 was not appropriate. Marta’s R3, R4 and R5 estimates in T4 were
however suitable for comparison, and so a two-way mixed ANOVA was carried out to explore the

between-task and within-task variation for these rounds.

As for Marta’s T2 estimates, Levene’s test for homogeneity of variance between groups was
violated for the untransformed PAE scores (even once R1 was excluded) so the square-root

transformation was used again. Mauchly’s test was non-significant, indicating that sphericity

could be assumed.

The ANOVA testing found no significant main effect of round for the PAE of T4 estimates in R3, R4
and R5. There was also no significant main effect of range, and no interaction effect between

round and range.

The plot below shows the mean PAE for each range (T4 only), in each round. As the above testing
confirms, the trend revealed is a significant change in estimation PAE for range 0-10 between R1

and later rounds, but little difference between ranges for R3, R4 and R5:
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Figure 105 Mean PAE of T4 estimates by range and round

To summarise the between-task and within-task connections in terms of linear accuracy, for both
T2 and T4 significant differences existed between ranges. In both tasks, estimations for the range
0-20 were the most linearly accurate, but the linear accuracy of other ranges varied between task
and round. In all but one task condition (T2 0-100), estimations were more linearly accurate at the
end of the year (R5) than at the beginning of the year (R1), but the trend of change was different
for the two different tasks and for different ranges. In T4, linear accuracy did not change

significantly between R3, R4 and R5 for any number range.

8.3 RQ2: What strategies can be identified in children’s interactions

with number line estimation tasks?
The strategies identified in Marta’s T2 and T4 responses were the following:
e Reference to anchor point
o Those included in the task environment (left and right endpoints)
o Those created or visualised by child (midpoint only)
o Previous trials of the task (immediately preceding trials only)
e Counting strategies
o Count-on from LE to estimate
o Count-back from RE
o “Count-on queried” (see discussion below)
e Judgment using relative numerosities
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o Estimate and/or further strategies apparently influenced by relative numerosity
of target and task environment
o Mathematical contradiction spotted using knowledge of relative numerosities,

leading to change of estimate or change of strategy

A response seen frequently in Marta’s interaction with the number line tasks, and not in other
children’s interactions, was the apparent use of a counting strategy, combined with evidence
strongly suggesting that the count was not the main influence on Marta’s actual estimate. This
task response forms the category above named “count-on queried”. It was a frequent task
response from Marta and combined representation of the count sequence with other behaviour

undermining the interpretation of the response as a genuine count strategy.

Several factors were involved in the inference of “count-on queried” examples. In most cases, it
was a combination of the factors listed below that led count-on representations to be coded as
“count-on queried”. The factors were:
1. Number of units counted-on having no mathematical relationship to target or estimated
value
2. Long pause and further task response between count-on and giving the estimate
3. Representation of other number structure during count-on coinciding with change in the

speed/unit size/direction/continuation of the count

An example combining factors (1) and (3) above is the following extract from Marta’s R3 interview.

The target to be estimated is number nine, in the range 0-10:

M: [eyes to right endpoint, then left endpoint)

J: Number nine [holds out number nine rocket sticker towards M]|

M: [takes sticker, looks at it; with sticker in hand, counts-on from LE x9 small hops, mouthing
numbers 1-9 silently. Pauses. Eyes look to rocket in hand, then LE, then glance to RE. Counts-on x4

further hops to reach ~90% along line, sticks rocket.]

The interpretation of this extract is that Marta began, as she did in many estimation trials, by
counting-on from the left endpoint of the line with the rocket sticker in her hand. After counting-
on the appropriate number of units (nine) Marta paused, itself a suggestion that she was not
satisfied with the result. Marta then checked the target in hand, and the two endpoints of the line.
After looking at the right endpoint (ten), Marta was reminded of the relative numerosity (or
position in count sequence) of nine and ten, and thus extended the count-on by a further four

units in order that the count’s end would be in a position to reflect the proximity of nine and ten.
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The above example is just one of many in which the apparent use of a count-on strategy, when
examined closely, is revealed to be more complex. Note especially that Marta did not abandon
the count-on strategy — for example by stopping and jumping in one go to the right endpoint — but
made a change to the number sequence representation (here, extending the sequence by four
units for no mathematical reason) which allowed the estimate to still appear the result of a count-

on from left endpoint.

8.3.1 What patterns can be detected in the way children use or do not use these
strategies?

Several patterns in estimation strategy are evident from Marta’s case. The chart below shows the

representations and strategies which Marta demonstrated in estimation trials, compared by

target type: whether the target was close to a left endpoint, midpoint, right endpoint, or

quarter/three-quarter point of the number line.
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Figure 106 Marta’s strategies and representations by target type

One important pattern in Marta’s use of representations and strategies which is evident in the
above chart and the series of charts showing representations by round (Figure 93-Figure 97) is the
unusual dominance of number sequence representation in the form of count-on from left

endpoint, and references to the left endpoint (blue arrows). These appear consistently and with
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high frequency in Marta’s estimations, for both T2 and T4, for all ranges, and whether the target

in question is close to the left endpoint, right endpoint, or middle of a given range.

A second important pattern in Marta’s case is the consistency with which most of the
representations and strategies she demonstrated appeared. The consistent frequency of left
endpoint references and count-on from left endpoint strategies has already been noted, but
references to the right endpoint, “count-on queried” strategies, and references to the previous

trial also occurred very consistently between the target types shown in the chart.

The conclusion drawn from the above data is that Marta made relatively few adaptations to
strategy based on the target and task conditions. One adaptation that is evident is the higher
frequency of references to the right endpoint, accompanied by fewer references to the left
endpoint, seen in targets which belong closer to the right endpoint (circled green). Another
adaptation is the use of part-whole representation during T2 for targets close to the midpoint and
quarter point only (circled blue). Similarly, count-back strategies (orange) occurred only for
targets close to the midpoint or right endpoint. Whilst these examples do suggest adaptation
informed by number structure, these categories represent only a small proportion of Marta’s

overall representations and strategies.

Another important pattern in the qualitative data, which is hinted at by the consistent
appearance of count-on strategies but not directly shown, was Marta’s propensity to use count-
on and left endpoint strategies even in cases where she initially represented an alternative. Marta
did achieve increasing linear accuracy over the five interview rounds, including in trials using
these basic strategies of left endpoint and count-on, but in multiple cases these strategies led
Marta to override what was a more linearly accurate initial response. The following extract
illustrates such a situation. The extract is taken from T2, range 5-15, and Marta is asked to

estimate the position of target 14:

J: Number ... 14.

M: [taps line near RE, then jumps to LE. Count-on from LE x9 small jumps, to middle of line. Sticks
rocket. Looks to right endpoint.]

The interpretation of this episode is that Marta initially represented 14 in terms of proximity to 15
(the right endpoint). However, for some reason she did not estimate the target based on this first
response, and instead went on to use the count-on from left endpoint strategy. This resulted in a
final estimation position near the midpoint of the line, i.e. a less linearly accurate estimate than
the original response. Marta’s final glance to the right endpoint suggests that the relation of 14

and 15 had not been entirely forgotten, but she did not alter the final estimation position.
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8.3.1.1 Differences between task conditions

Differences between number structure representations in each task condition were explored in
RQ1c. However, within representations of a particular aspect of number structure can occur in
multiple strategies. The following chart shows the estimation strategies used in T2 estimations in

each range, for all five interview rounds.
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Figure 107 Structure represented during T2 trials

Differences are apparent between ranges. Firstly, for range 5-15, no count-on strategies were
identified as "count-on query” or “mismatch” (circled red). In all other rounds, some of Marta’s
count-on strategies were identified as representations of increasing number sequence, yet not
the primary means by which Marta actually determined the position of her estimate. For range 5-
15 however, the count-on strategies were straightforward count-on strategies. Secondly, for
range 5-15 again, the frequency of references to both right and left endpoints (circled gold) is
lower than for all other rounds. Thirdly, estimates in range 0-20 featured the only representation
of decreasing sequence (green), and also representation of part-whole structure (green).

Estimates for range 0-100 also featured part-whole representation (blue).

8.3.2 How do the strategies used relate to children’s estimation results, if at all?

One connection is between the chart above (Figure 107) and the significant difference in linear
accuracy between T2 0-20 estimations and T2 5-15 estimations, as reported in RQ1c (see Figure
99). There is a correlation between strategies incorporating representation of more aspects of
number structure (T2 0-20, compared to T2 5-15 trials) and more frequent references to the line’s

endpoints (T2 0-20 compared to T2 5-15), with higher linear accuracy of estimation. Most
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importantly of all, the absence of “count-on queried” strategies for range 5-15 was associated
with lower linear accuracy. In other words, where Marta’s count-on strategies were “count-on
queried” and not in fact the primary means of estimation (ranges 0-10, 0-20 and 0-100), the

resulting estimations were more linearly accurate.

Another finding from the analysis of linear estimation accuracy carried out in RQlc was the main
effect of interview round: Marta’s T2 estimations in later interview rounds were significantly more

linearly accurate than in earlier rounds.

The following chart plots Marta’s T2 representations and strategies by interview round, to see

what connection between strategies and estimation accuracy are suggested.
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Figure 108 Marta's estimation strategies and representations by round

The chart highlights three changes between earlier and later rounds that might be involved in
changing estimation accuracy. Firstly, the frequency of representation of increasing sequence and
count-on from left endpoint strategies is slightly lower in later rounds than in the first two rounds
(see red box), although this difference is small. The proportion of count-on strategies that are
“count-on queried” remains even across rounds. A second more interesting difference is that
more structurally complex aspects of number sequence — counting in twos and in fives, and

counting-back — are only represented in later rounds (see green box). The third and final
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difference is that more part-whole structure is represented in later rounds (circled blue) than in
earlier rounds. Overall, Marta’s more linear estimations in later rounds are associated with

representation of more complex number structures.

In the remainder of this section, visual plots of estimation accuracy by target are used to identify
interesting patterns in estimation accuracy, especially large disparities between rounds and
between targets in the same range. After identifying points of investigation, the plots are then
compared to charts showing the strategies and representations that occurred during the relevant
estimation, to see whether connections can be drawn that may explain some of the estimation

results.

8.3.2.1 T2, range 0-10

The following chart shows Marta’s estimates for T2 in range 0-10.
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Figure 109 PAE of target estimates, T2 0-10

This graph reveals interesting between-rounds variation in the pattern of PAE by target. The graph
shows that T2 estimates on 0-10 were accurate for target 1, and then in the first four interview
rounds, that PAE increased linearly with target until target 8 or 9. In R1, R2 and R3, the PAE
pattern suggests that the right endpoint was used as an anchor point for target 9, and in R4, PAE

suggests an anchor point was used for both targets 8 and 9. In R5, PAE is low for targets near the
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left endpoint, midpoint and right endpoint, suggesting that all three of these were used as anchor

points to aid estimation. The questions arising to be answered by the qualitative data are:

e |sthere evidence for use of RE as an anchor for estimates of 9 (all rounds) and 8 (R4 and
R5)?

e Is there qualitative evidence of a left endpoint and midpoint strategy being used in R5?

The charts below show the representations and strategies used in T2 0-10 estimations, firstly for
R1-R4 inclusive, and then separately for R5. In answer to the first question, there is good evidence
for use of the right endpoint as anchor point in all rounds. This can be seen from the references to
right endpoint which are found for target 9 (circled green), but not at all, or infrequently, for all
other targets on this range. In addition, although there are count-on from left endpoint strategies
recorded for target 9 in R1-R4, they are identified as “count-on queried” in actual fact (circled
orange). There is however no direct evidence for use of a right endpoint anchor for target 8 in R5:
the only representations and strategies observed were count-on from the left endpoint, with the

rocket stuck at the count’s end.
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Figure 110 T2 0-10 estimates R1-R4
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Figure 111 T2 0-10 estimates R5

In answer to the second question, the absence of count-on for target 1 in R5 (circled purple) does
suggest the use of a left endpoint anchor for this target. However, there is no direct evidence for
a midpoint anchor. As for the majority of targets in this task condition, the representations and
strategies observed for target 5 are only reference to left endpoint, and count-on from left

endpoint.

The PE graph of the same task condition reveals that for the first four rounds, Marta’s T2
estimations for range 0-10 were all underestimations, which follows logically from her physical
strategy of counting on from the left endpoint with small ‘hops’, smaller than one tenth of the line
length. In R5, the PE of estimates resembles an S-shaped pattern of under- followed by over-
estimation. A one-cycle proportion judgement model (e.g. Rouder and Geary, 2014; Slusser et al.,
2013) also predicts an S-shaped curve of PE. However, for T2, a number-to-position task, a
proportion judgement model would predict over- followed by under-estimation centred around
an anchor point (here, the midpoint — the point after the endpoints with the lowest estimation

error), rather than the under- followed by over-estimation seen here.
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Figure 112 PE of T2 estimates, range 0-10

The conclusion from the above findings is that the S-shaped pattern of under- then over-

estimation seen in Marta’s T2 0-10 estimations in R5 is better explained by appeal to the observed

representations and strategies than by a proportion judgment model.
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8.3.2.2 T4 range0-10

The graph below shows the PE of estimates for T4 range 0-10.

Range: 0-10, Task: T4
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Figure 113 PE of T4 estimates, range 0-10

The most notable feature of this graph is the extremely high PE of estimates in R1 compared to

later rounds. The lowest estimation error in this task condition occurred for targets 8 and 9. The

two charts below display the representations and strategies for T4 range 0-10, firstly for R1, and

secondly for R2-R5 inclusive. The most striking changes for individual targets between rounds are

the changes in PAE for target 8 and 9, between R1 and all later rounds.

The following charts plot Marta’s representations and strategies for R1 separately, and then R2-

R5 inclusive, in order to investigate the above points.
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Looking at what changed between R1 and later rounds for targets 8 and 9, the first key difference

is that in later rounds there are no instances of count-on from left endpoint for target 9 (blue

circle). There are also fewer references to each endpoint for target 9 in later rounds, and some

signs of answering immediately (orange). Together, these findings suggest good evidence that a

right endpoint anchor was being used to estimate target 9 for R2-R5. For targets 4, 5, 6, 7 and 8,

later rounds show more references to the endpoints, and crucially, the right endpoint as well as
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the left endpoint (see red box). These later rounds also reveal some representations of relative

numerosity (green box) and occasions on which Marta encountered mathematical contradictions
(“hazard” code) and changed her mind from a count-on strategy (circled purple). The targets 4, 5,
6 7 and 8 where these differences apply were all markedly more accurately estimated in the later

rounds than in R1.

8.3.2.3 T4, range 0-20

The graph below plots the PAE of Marta’s T4 estimations for range 0-20. The first point to note is
that there is no data for R2, since in this round Marta became tired and stopped T4 before
reaching range 0-20. For most rounds, the estimations are most accurate close to the left
endpoint and close to the right endpoint. The most interesting disparity between rounds is for
target 18: in R3 and R5, the estimation of both 18 and 19 is very accurate (0% error), but in R1 and

R4, there is a spike in PAE for target 18, before a comparatively accurate estimate for target 19.
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Figure 116 PAE of target estimates, T4 0-20

The charts below therefore plot Marta’s representations and strategies for R1 and R4 together,

and then for R3 and R5 together, to compare observations for targets 18 and 19.

The first difference to note is that in R1 and R4 (low estimation accuracy) but not in R3 and R5
(high accuracy), Marta used count-on from left endpoint strategies for targets 18 and 19 (circled

red on both charts). Despite also changing her mind about some aspects, and at least one
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observed count being “count-on queried”, for both targets Marta wrote her estimations at the

count end (circled yellow). In the estimation of 18 and 19 in R3 and R5, there are fewer references

to the line’s endpoints (blue) although both right and left are referenced, and it was also observed

that Marta made her estimations with immediacy (circled green). This evidence strongly suggests

that a right endpoint anchor was being used in R3 and R5, whereas in R1 and R4, Marta relied

heavily upon counting-on from the left endpoint.
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Figure 118 T4 estimations, range 0-20, R3 and R5

8.3.2.4 T2, range5-15

>

This graph of linear estimation error for T2 estimates on 5-15 shows low PAE (high accuracy) for

target 6, close to the left endpoint, followed by linearly increasing PAE for each subsequent target.

In R3 (gold line) there is some evidence to suggest that the right endpoint was used as an anchor

point for estimations of targets 13 and 14. In R2, there is also a drop in PAE for target 14. In R5,

lower PAE at targets 10 and 14 suggests that a midpoint anchor and right endpoint anchor may

have been used.
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Figure 119 PAE of target estimates, T2 5-15

The questions to be answered by the qualitative data are the following:

e |Isthere any evidence for use of a right endpoint anchor for target 14 in R2, and targets 13
and 14 in R3?

e Is there evidence for the use of midpoint anchor in R5?

e Is there evidence for the use of a right endpoint anchor for target 14 in R5?

Since the R1 and R4 estimations for this range show similar patterns of PAE (both linearly

increasing with target number), Marta’s representations and strategies for these two rounds

together are plotted first.
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Figure 120 T2 estimation, range 5-15, R1 and R4

O

For estimations of target 14 in R1 and R4, Marta referenced only the right endpoint (green), and

with immediacy (blue). This combination suggests a right endpoint anchor. The observations for

target 13 are also suggestive of a right endpoint anchor. The target 13 and 14 estimations in these

two rounds were however highly linearly inaccurate. If Marta did indeed use a right endpoint

anchor for targets 13 and 14 in these rounds, it did not help her generate linearly accurate

estimations.
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Figure 121 T2 estimation, range 5-15, R2

This chart plots Marta’s representations and strategies for the same task condition in R2. There is

no change for target 14 compared to R1 and R4: once again, only reference to the right endpoint

and immediacy of estimation are observed. As in R1 and R4, above, the observations for both

targets 13 and 14 suggest a right endpoint anchor. However, whilst Marta’s target 14 estimate in

this round is more accurate than in R1 and R4, her target 13 estimate is less accurate than in R1

and R4.
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Figure 122 T2 5-15 estimates, R3

The next chart plots Marta’s representations and strategies for R3, revealing differences from R1
and R4, and R2. For target 14 this time, there are references to both left and right endpoints, and
a much higher frequency of references to the right endpoint than previously. These changes are

associated with a much lower PAE for the estimation of 14.

Marta’s estimation of 13 in this round is the most accurate of all rounds, and it differs from all

other rounds by not being estimated with immediacy.

Finally, the following chart shows Marta’s representations and strategies for R5. For target 14 in
this round, Marta refers only to the right endpoint (as in R1 and R4, and R2) but with higher
frequency than in these rounds. Target 14 is also again estimated with immediacy, suggesting a

right endpoint anchor.
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Figure 123 T2 5-15 estimates, R5

For target 10 in R5, which was estimated with lower PAE than in other rounds and neighbouring
targets, the only observed feature of Marta’s estimation was the immediacy with which she made
it. This suggests the use of some inferred anchor point, to make such a rapid decision, but no firm
conclusion can be drawn. It contrasts strongly with the observations for target 10 in all other
rounds, where Marta represented more number structure but estimated with lower linear

accuracy.

This task condition presented some interesting estimation differences to analyse. In conclusion,
Marta’s representations suggest that target 13 was estimated relative to the right endpoint in
every round. It was estimated most accurately when not immediately placed (R3). Target 14 was
estimated most accurately in R4 and R5, which are the rounds with strongest evidence for use of a
right endpoint anchor. However, the same representations were observed (to lesser extent)
during the less accurate estimations of target 14 in other rounds too. The evidence for a midpoint
anchor in R5 is inconclusive; the immediacy of Marta’s target 10 estimation suggests some anchor

point was used, but there is no further evidence.

Looking at the following graph of PE (percent error, as opposed to percent absolute error), it
becomes clear that all of Marta’s estimation error on this range for T2 was underestimation.
Unlike in other task conditions, this cannot be attributed to small unit ‘hops’ in Marta’s count-on
strategies, since as the preceding series of charts demonstrates, Marta employed count-on

strategies very seldom in this task condition.
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8.3.2.5 T2, range 0-100
The graph below plots Marta’s estimates for T2 range 0-100.
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Figure 125 PAE of target estimates, T2 0-100

For this task condition, there are few striking disparities in PAE between rounds. Instead, PAE is
largely correlated between rounds. The questions that arise are the following:
e Is there evidence of midpoint anchor being used in R3, R4 and R5?
e Is there evidence that could explain the estimation accuracy for 67 and 71 in all rounds?
e |sthere evidence about Marta’s estimation of target 92 that could help explain the poor
linear accuracy in almost all rounds?
e What was different about the estimation of target 25 in R3 (circled green)?

e What was different about the estimation of target 18 in R4 (circled orange)?

Marta’s representations and strategies for T2 estimates in range 0-100, for each round in turn, are
shown in the sequence of charts following. With regard to the first question, about the use of
midpoint anchors, evidence suggesting use of midpoint anchors is circled in dark blue, and
absence of midpoint evidence where it could reasonably be expected (targets 49 and 50) is circled
in red. Evidence suggesting use of a midpoint anchor includes reference to a midpoint, immediacy
of estimation, lack of count-on sequence, or count-on but “count-on queried”. Multiple
references to the left endpoint and straightforward count-on strategies are evidence against a

midpoint anchor.
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Figure 130 T2 estimates, range 0-100, R5

The charts above show that there was good evidence for midpoint strategies for targets 49 and 50
in R1, R4 and particularly R5, but not in R2 or R3. This coincides with the estimation accuracy for

targets 49 and 50 in the PAE graph.

With regard to the second question, on the accuracy of estimations for 67 and 71, the above
charts do not give much insight. For the most part, the strategies and representations observed
during estimation of 67 and 71 are the same as those observed for other targets in the same
round, except with far fewer midpoint references than targets 49 and 50. In particular, there is no

striking difference between the strategies and representations observed for 67 and 71 (estimated
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very accurately) compared with target 92 (estimated with high PAE). An hypothesis about Marta’s
estimation of target 92 is that it was not close enough to 100 for Marta to consider proximity to
100 an important feature of its representation. Whereas Marta made changes to her estimation
strategies to represent the proximity of 14 to 15 (during range 5-15 estimations) and the
proximity of 8 and 9 to 10 (during range 0-10 estimations), target 92 was not, for Marta,

represented as ‘close to one hundred’.

The final two questions posed by the PAE graph relate to two occasions in which Marta estimated
a target with notably lower PAE than in all other rounds. The first of these was target 25 in R3,
and the charts of representations and strategies suggest no plausible reason for Marta’s suddenly
more accurate estimation; the strategies and representations observed are similar or identical to
those observed for target 25 in all other rounds. The second example was target 18 in R4. Here,
the representations and strategies are the same as observed in other rounds except for the
addition of count-on in twos. There is of course no direct link between this representation and
higher estimation accuracy, but it is an example of more sophisticated number structure than
represented in most of Marta’s estimations. It is possible, therefore, that it reflects that Marta

had in mind a higher level of number structure thinking than her usual during this estimation.

The following graph of PE (percentage error) demonstrates initial over-estimation, followed by
high accuracy around targets 67 and 71 (and in some rounds also targets 49 and 50), and then
under-estimation of target 92 in all rounds. This is to a reasonable extent in accordance with a
proportional judgement explanation of the task, with an inferred midpoint of fifty. However, as
noted elsewhere, the current task design provides insufficient evidence with regard to estimation
of targets close to the right endpoint to properly assess the fit of the proportional judgment

account.
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Range: 0-100, Task: T2
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Figure 131 PE of target estimates, T2 0-100

8.3.2.6 T4, range 0-100

The following graph plots the PAE of Marta’s T4 estimates for range 0-100. There is very high
correlation between rounds for all targets except 92, which features a very dramatic difference
between the PAE of the R1 estimate and all PAE of all later estimates. For targets except 92 (and

even including 92 in R1), PAE increases linearly with the target’s magnitude.
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Figure 132 PAE of target estimates, T4 0-100

The question arising from this graph of Marta’s T4 0-100 estimates is: what changed between R1,

and R3, R4, and R5, in the estimation of target 927 Figure 133 plots Marta’s representations and

strategies for the T4 estimation of 92 in each round.

Code System
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This chart reveals nothing in

common between R3, R4 and R5 to

explain why target 92 was

estimated in these rounds with

such strikingly lower PAE than in

R1. In both R3 and R5, there is

good evidence for a right endpoint

anchor being used, but there is no

such evidence for R4.

Figure 133 T4 estimates of target 92, range 0-100. Left to right: R1, R3, R4, R5
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The next chart plots Marta’s representations and strategies for all targets in range 0-100, for T4
estimations in R3, R4 and R5. Although the graph of PAE for T4 0-100 estimations shows much
lower PAE for target 92 compared with other targets (for which PAE increases linearly with
distance from the left endpoint), the Figure 134 shows no striking differences between target 92
(green) and other target numbers. In fact, the representations and strategies observed for target
92 are identical to those observed for target 49 (orange), which was estimated with much higher
PAE in all three rounds considered here. A possible reason for this finding returns to the argument
that error is highest farthest away from anchor points, and in R3, R4 and R5 a right endpoint
anchor was used. Although Marta did not significantly alter her strategies or representations for
target 92, the mere fact of its proximity to the numbered right endpoint meant that the same
strategies could lead to lower PAE. The proximity to right endpoint was a key factor in T4 in a way
that findings suggest it was not in T2 (see previous section) because in T4 the spatial
representation of target and endpoint is given. In T2, a notion of the “proximity” of 92 and 100
was something that participants could either represent or not, whereas in T4 it was represented

spatially in the task itself.

Code System 1 T4 (0-100) 2/ T4 (0-100) 3| T4 (0-100) 4. T4 (0-100) 6/ T2 (0-100) 101 T4 (0-100) 18 T4 (0-100) 25 T4 (0-100) 49| T4 (0-100) 501 T4 (0-100) 67 T4 (0-100) 71/ T4 (0-100) 92|
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Figure 134 T4 0-100 estimates, R3 R4 and R5

To summarise this section on the connection between strategy and estimation accuracy, increases
in Marta’s estimation accuracy were in some cases concurrent with observed changes in the
representation of relevant number structure, for example the right endpoint of number ranges. In
these cases, a fairly firm conclusion can be drawn that the number structure represented was an
important factor in the increased linear accuracy of estimation. In other cases however, relevant
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number structure was represented in trials which had very different levels of linear accuracy. It is
certainly not the case that strategy and estimation accuracy can be linked in all trials. At a more
general level, tasks in later rounds in which estimation accuracy was higher were associated with

fewer instances of count-on from left endpoint and reference to left endpoint only.

8.4 RQ3: How do young children’s cognitive representations of number

change during their first year of formal schooling?
This question involves examining the changes evidenced by both the qualitative and quantitative
estimation data collected from Marta’s interviews. Before considering changes in estimation
results, the diagram below summarises Marta’s representations and strategies in each round of
interviews. The chart used at this point, as in the previous case study, compares each frequency
only to the frequencies of the same category of representation in other rounds, in order to better
highlight trends within individual categories of representation. In Marta’s case, these trends were
not visible when frequencies were compared across the whole chart, due to the dominance of left
endpoint and count-on representations. The following chart is not suitable for making any

comparisons between categories.
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Figure 135 Marta’s representations and strategies by round
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A number of trends are apparent from the above data. Firstly, the frequency of count-on from left
endpoint strategies decreases over the course of the five interviews. The frequency of “count-on
queried” observations also decreases between the first and final interviews. Next, there is an
increase in representation of more mathematically advanced types of sequence, namely
decreasing sequences and counting by twos or fives, which do not appear at all in the first two
interview rounds. There is considerably more representation of relative numerosity and reference
to previous targets in later interviews compared with the first two interviews. There is also more
representation of part-whole structure in R4 and R5 compared with the first interviews. In the
final interview, there is a substantial increase in the frequency of representations and estimations

made with immediacy.

Overall, these changes could be summarised as small but noticeable increases in the
representation of increasingly sophisticated number structure, and a steady decrease of the most
basic estimation strategies. For several categories of number structure shown above, the change

is most striking between R1 and R2 (grouped) compared with R3, R4 and R5 (grouped).

In terms of the linear accuracy of number line representations, Marta’s representations became
more linearly accurate over the course of the year (see RQlc). However, Marta’s number-to-
position estimations (T2) showed a different trend to her position-to-number (T4) estimations.
For T2 estimations, ANOVA testing revealed a significant main effect of interview round on the
linear accuracy of representations. For T4 estimations, there was a striking reduction in the PAE of
range 0-10 estimates between R1 and later rounds, but for other ranges much less change.

Between R3 and R5, there was no statistically significant increase in linear accuracy for any range.

8.4.1 In what ways does evidence support or not support the log-linear hypothesis?
Marta’s case provides only limited support for the logarithmic-to-linear shift hypothesis. The main
piece of evidence it provides in support is an increase in the linearity of number line estimations.
However, the increases in linearity of estimations tended to occur to specific target numbers
rather than to ranges (which would be the case if a mental representation of a range made a

logarithmic-to-linear ‘shift’).

Linear, logarithmic and exponential models were fitted to each range of Marta’s T2 and T4
estimates for each round, to compare model fit and assess how well the logarithmic-to-linear shift
hypothesis seemed to apply in Marta’s case. The following table lists the R?> model fits for each
model in each task condition. Where the best fitting model is the one predicted by the log-linear

hypothesis (i.e. logarithmic for T2, and exponential for T4), the R” figure is highlighted yellow.
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R Square
Range | Task | Round | Linear | Logarithmic | Exponential
0-10 T2 1 .581 .842
2 796 611 .949
3 167 .545 979
4 .803 595 945
5 .939 .885 871
T4 1 721 877 .653
2 .987 .989 979
3 .888 .949 .808
4 469
5 .845 .793 .830
0-20 T2 1 .943 .830 918
2 1959 867 910
3 .946 .809 .953
4 928 855 843
5 840 879 769
T4 1 .869 774 .885
2
3 .904 .910 .808
4 .692 .706 .691
5 902 918 727
5-15 T2 1 .897 .844 914
2 769 715 831
3 881 798 927
4 774 862 760
5 715 659 805
T4 1 .647 .570
2
3 817 .819 .820
4 .788 .807 735
5 614
0-100 | T2 1 435 .705 .500
2 430 768 471
3 707 .897 651
4 .551 726 .570
5 .530 793 .536
T4 1 .939 .879 713
2
3 577 .902
4 .585 448 .814
5 587 942

Figure 136 Model fits for log-linear hypothesis

The above table reveals that it was only for range 0-100 that the models predicted by the log-

linear hypothesis were consistently best-fitting. Even for this range, however, the R? figures show
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that model fits were not particularly good (for example, not as good as for the exponential models
in T2 range 0-10, even though the log-linear hypothesis gives no reason why these estimates
should follow an exponential distribution). There is no task condition which revealed a shift from
logarithmic (or exponential) to linear distribution over the course of the five interviews, even
though increases in linearity (as measured by PAE) occurred. Range 0-10 in T2 also shows this
increase in linearity in the increasing R* figures for the linear models, but even in the earliest
interviews, the logarithmic model described Marta’s estimates less well than the linear model

anyway.

8.4.1.1 Alternative accounts

Marta’s case provides qualitative data on the estimation of individual target numbers. In addition,
plotting PAE by target number, as in RQ2b, allows assessment of the hypothesis of proportional
judgment accounts that estimation accuracy should be highest near to anchor points and lowest
at the farthest point from anchor points. For ranges 0-10, 5-15 and 0-100, the graphs of PAE by

target number (see RQ2b) strongly support this hypothesis, though range 0-20 does not.

The observation that changes in the linearity of estimation tended to occur to individual targets
numbers rather than to ranges is also more in accordance with a proportional reasoning account
than a log-linear shift account. The target numbers where striking changes between rounds were
observed were most often those pre-identified as likely candidates for the use of anchor points:
targets close to each endpoint, and to the midpoint of ranges. These changes (as explored in
RQ2b) are in accordance with the idea that children’s increasing linearity of estimation stems
from the gradual incorporation of more anchor points as well as a general reduction in estimation

bias.

8.4.2 What s the intra-child variability of children’s numerical magnitude
representations in estimation tasks at different times?
There are two aspects to consider in answering this question. First is the variability in observed
representations and strategies, which can be seen most clearly in the analysis of RQ2. In Marta’s
case, one overall finding was high consistency between trials within a given task condition — the
representations and strategies did not typically vary very much at all between different target
numbers. Where variations of representation and strategy (from Marta’s ‘default’ representations
of left endpoint and count-on) did occur, it was often for targets at the midpoint and close to the
right endpoint, and these variations occurred more frequently in later interview rounds than in
early interview rounds. The charts showing representations and strategies in T4 range 0-10
illustrate this, with R1 (Figure 114) showing very similar observations for all targets, in contrast to

all later rounds (Figure 115).
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The second important aspect to this question is the variation of estimation error (PAE) in different

task conditions at different times. The graph below shows the standard deviation for T2 and T4, in

each round.
Task
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Figure 137 Standard deviation of PAE for T2 and T4 by round

The graph demonstrates a slightly lower variation in PAE in R5 compared to R1, but no strong
downward trend. Variability of PAE was in most rounds higher in T4 than in T2. The most
noticeable feature of this graph is of course the far higher standard deviation in PAE for T4 in R1.
However, previous analysis (see RQlc) identified significant differences between PAE variance in
different ranges in R1, indicating that the above graph might not accurately represent a trend in
variability for all ranges. The series of graphs on the following split the data according to range, to

allow examination of variability over time for each range separately.
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For ranges 0-10 and 0-20, variability of estimation PAE was lowest in R5. For ranges 5-15 and 0-

100 on the other hand, variability of PAE was lowest in R3, although for T4 range 0-100, it did not

change between R3, R4 and R5. The biggest differences in variability of PAE were between R1 and

later rounds.

8.4.3 Can trajectories or patterns of change be deduced, in terms of changes in how

children cognitively represent number?

Marta’s case illustrates both increased linear accuracy of representation over time, and

representation of increasingly advanced mathematical structure. Importantly however, the

representation of more advanced structure was not always accompanied by increased estimation

accuracy on a target-by-target basis, and vice versa. For some targets, it proved possible to
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identify Marta’s increased accuracy with changes in representation, but this was not the case for

all targets.

Marta’s case also illustrates an interesting trend of reluctance to change strategy. The basic
strategy of count-on from left endpoint continued to be used and imitated even when Marta
demonstrated more mathematically advanced representations of the same target numbers, for
example representations involving the relative numerosity of targets and endpoints, and part-
whole structure. This finding was somewhat unexpected, and the present methodology was not

designed to investigate it, but two possible explanations are proposed.

One suggestion is that since the task-based interviews involved no feedback other than
encouragement, the initial unfamiliarity of the tasks followed by repetition throughout the year
encouraged Marta to continue the strategy with which she had felt comfortable and successful in
the first experience — R1. The pattern of holding on to initial strategies was not seen to the same
extent in other children, but this does not rule out the possibility that the research design

encouraged this response in Marta.

The second suggestion focuses on the familiarity and reliability of the increasing-sequence
representation of numbers. For any given target number in this study, the representation of that
target as “n units on from zero” (or the adaptation for range 5-15) is a correct mathematical
representation, and one that children in Year One are, and have been, exposed to very regularly
indeed. It is plausible that even when Marta saw an alternative way to represent the target
number for the purposes of the estimation task, she remained keen to use, or appear to use, the
increasing-sequence representation of the target due to its high familiarity and perceived

reliability.
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Chapter 9 Case study: Catharina

Catharina was selected as the final in-depth case study because her responses to the task-based
interviews had neither particularly high nor particularly low levels of mathematical sophistication.
When the children were approximately ordered according to the amount and level of number
structure they represented in their task responses, Catharina fell in the middle of the group. Her

number line estimations were close to the median levels of linear accuracy.

9.1 What does this case say in response to important ideas in the
literature?
This case provides further strong qualitative evidence for the use of lower and upper endpoints
and midpoints as ‘anchor’ points during number line estimations. Such a hypothesis has been
advanced in various forms by Siegler and Opfer (2003), Barth and Paladino (2011), White and
Szucs (2012), Slusser et al. (2013) and Rouder and Geary (2014), and Catharina’s case provides
qualitative support for it. The order in which Catharina included anchor points is in line with the
specific predictions of Ashcraft and Moore (2012): the left endpoint is always included as an
anchor point, then the right endpoint (for Catharina, the only occasions on which it was not
included were in R1 and R2), and then a midpoint (for Catharina, the clearest evidence occurs in

R5).

To a greater extent than in Patrick’s case, the qualitative data in Catharina’s case generally
coincided with the suggestions from the quantitative data alone. In other words, lower estimation
error around potential anchor points, the observation that led many of the above researchers to
hypothesise use of anchor points, did coincide with qualitative evidence for their use, and vice
versa. The examination of estimations on a trial-by-trial basis in RQ2b demonstrates this most
fully. To a greater extent than other cases therefore, Catharina’s case provides some support for

deducing estimation strategies from quantitative estimation results.

Catharina’s case does not provide good support for the log-linear shift account of number line
estimation. As explained in RQ3a, Catharina’s data only convincingly agree with the log-linear
account in showing an overall increase in linearity of number line estimation, and this prediction
is not unique to the log-linear shift account. In terms of the other specific predictions of the
account, namely initial estimations being well fit by logarithmic models, and changes in
representations for a given range occurring rapidly, Catharina’s case refutes rather than supports

the theory.

Catharina’s case does not provide good support for a proportional reasoning account of number

line estimation either. Graphing linear estimation error by target did not reveal the patterns of
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over- and under-estimation predicted by proportional reasoning models, and in fact the observed
patterns were much better explained by appeal to the observed representations and strategies
during estimation trials. Catharina’s case provides particularly clear evidence for how the
estimation strategies a child deploys can impact on the specific estimation errors recorded, for
example the unit size of a consistently applied count strategy leading to consistent under-

estimation.

The evidence of this case provides good support for the prediction of White and Szucs that
“specific numbers could exhibit unique behaviors as a function of the familiarity with the number
range, proximity to either external or mental anchor points, as well as knowledge of arithmetic
strategy” (2012, p. 9). Charts displaying Catharina’s representations and strategies according to
target type (proximity to various potential anchor points) shows very clear variation in line with
expectations, for example the dominance of right-endpoint references, coupled with reduced use

of count-on from left endpoint strategies, for targets close to the right endpoint.

In this remainder of this chapter, | present the findings from Catharina’s case study in relation to

each of the research questions.

9.2 RQ1: In what ways do children appear to cognitively represent
number during the different tasks of the interviews used in this

research?

9.2.1 What are the modes and component signs used in the representations?
Catharina produced inscriptions on paper during T1 of each interview, and the component signs

of these inscriptions were notational (only).

In R1, T1 was the only task in which Catharina made inscriptions on paper. In R2, Catharina quite
frequently drew on or annotated the page in T2 and T4, as well as T1. She marked points or dots

for the units in counting, as in this example from T2, R2:

4l GO
=

T2_21

Figure 140 T2 R2, estimation of target 14, range 5-15
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This form of annotation also appeared in R3, though infrequently, but not at all in R4 or R5.
Catharina produced verbal, gaze and gesture representations throughout all five interviews. The
discussions of Catharina's representations in the following sections therefore include verbal,

gesture and gaze representations throughout, as in the previous two case studies.

9.2.2 What aspects of number structure are represented?

9.2.2.1 T1 representations

In terms of Thomas and Mulligan’s (1995) framework of analysis, Catharina’s T1 representations
represent no number structure. The inscriptions, together with any accompanying
representations in speech and gesture, are nevertheless included here and very briefly discussed
in order to show the aspects of number that Catharina did consistently represent in her T1

responses.

Other children interviewed also responded to T1 with inscriptions made up of notational
components, but the majority of these inscriptions were numbers up to and including one
hundred. Catharina, in contrast, made notational representations of numbers no smaller than one

hundred.

Catharina’s drawing in T1 R1,

left, was not accompanied by

any representation in gesture.
Verbally, Catharina confirmed
that the drawing showed

“one hundred”.

Figure 141 Catharina T1 R1
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Figure 142 Catharina T1 R2

Catharina announced

“One ... aten!” after
producing this drawing in
R2, pointing to the final
“10”. The researcher
checked “Is that what comes
into your head?” and

Catharina nodded.

Figure 143 Catharina T1 R3

Catharina’s R3 response was
identical to that of R1. There
was no representation in
gesture, and verbally
Catharina confirmed to the
researcher that the drawing

showed “one hundred”.

Figure 144 Catharina T1 R4
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After producing this drawing in R4, Catharina made a spontaneous comment:

C: Twelve ... hundred! [pointing to numerals]

J: What does that say?

C: Twelve hundred! [points again to numerals)

The researcher’s question double-checked that Catharina was equating “120” and “twelve

hundred”.

0]

©

Figure 145 Catharina T1 R5

The above drawing, Catharina’s response to T1 in R5, was drawn in stages, as indicated by the red
circled numbers. Follow-up questions or probes, which had not been used in earlier rounds on the
basis that they would influence T1 responses in future interviews, were included here since it was
the final interview. For this reason, only Catharina’s initial (stage 1) T1 response in R5 should be
considered directly comparable to that of R1-R4. The further representations invited by the
follow-up questions do however provide interesting supplementary evidence for the T1 responses

in all rounds.

J: ... One three zero zero? [reading Catharina’s drawing — only “1300” at this stage]

C: [nods vigorously]

J: So, can you explain that to me a bit?

C: [smiles] Thirty [NB: not thirteen] ... hundred! [reading the numerals, then smiling at J]

J: OK... what about other numbers?
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C: What other numbers? [shaking head]

J: Well ... | asked you to think about all the numbers from one all the way to one hundred...
C: I've got another numbers ...

J: How do they look in your head?

C: [leans over and writes “3100”] ... Thirty one! ... [eyes wide open, grinning at J]
J: That's a high number, isn't it? [sounding impressed]

C: [nods vigorously] And I've got another one ... | know ... [slowly writes “4000”]
J: Yes, that's high as well. [sounding impressed]

C: Forty hundred!

J: So are those the numbers that come into your head?

C: [nods vigorously] Mmhmm.

J: Yes? OK.

C: Forty hundred and another ... [writes “6000”] and sixty hundred.

This episode shows Catharina representing increasingly large numbers. There is no obvious
mathematical connection between the numbers represented and the task itself other than the

fact that all are ‘large’ by the standards of a Year One classroom.

The follow-up questions to Catharina’s initial response invited further representation of some sort,
and may have influenced more specifically what Catharina decided to represent. However, there
is evidence that the response ‘represent large numbers’ occurred before any influence of follow-
up questions. Firstly, the inscriptions made in R1-R4 and stage one of R5 all show numbers greater
than or equal to one hundred. Secondly, and no less importantly, Catharina presented each of
these numbers to the researcher with a flourish: her body language was triumphant, her tone of
voice was exclamatory, and she looked immediately to the researcher apparently for
acknowledgment. Catharina was highly engaged with the researcher throughout all parts of the
interviews, but this precise set of behaviours was only observed when Catharina presented the
researcher with large numbers, for example when estimating “ninety nine” for target 92 in T4,
range 0-100. For these reasons, it seems plausible to say that Catharina was responding to T1 by

representing numbers that she considered large and impressive.

Although in T1 Catharina represented no aspects of number structure according to the
frameworks of Thomas and Mulligan (1995) and Resnick (1983), her responses consistently
represent an association between the task request (“think about the counting numbers from one

up to one hundred”) and numbers that are ‘large’ in the context of a Year One classroom.
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9.2.2.2 All tasks

Catharina’s representations during all tasks were analysed according to Resnick’s microstage

theory. The following table contains the aspects of number structure in Resnick’s theory, and

Catharina represented all categories of number structure in this table. Grey text shows the few

specific procedures and strategies that Catharina did not represent.

Number structure

Detailed stages

Procedures or strategies in which this number
structure may be represented

S Sequence

Count sequence
fromOor1l

Count-on from LE.

Count sequence
from other start

e Count-on from non-zero LE.
e Count-on from estimate to RE for confirmation.

comparison)

magnitude without
counting up to it

point
DS Decreasing Count sequence Count-back from RE.
sequence reversed
RN Relative Ability to represent | e Applying efficient count strategy, using RN to
numerosity (esp visualise) choose shorter available count.
(quantity number’s e Checking judgements, querying whether an

estimate is likely.
e Use of endpoints as “anchor” points.

PW Part-whole

Partition and
recombine
numbers (<20)

Use of “anchor” points based on partitioning the
range.

Use of number
bonds to ten

e Checking estimations using number bonds to
ten.
e Using own midpoint anchor on 0-10 range.

Multiple partitions

Using own midpoint anchors on 0-20 and 5-15

understanding of
base ten structure

compositions of
tens and units

of multi-digit ranges.
numbers
PW10 Part-whole Numbers as e Using own midpoint anchor on 0-100 range.

Multiple partitions
of larger multi-digit
numbers

e Partitioning into quarters, thirds, other.

Figure 146 Aspects of number structure in Resnick’s theory represented by Catharina

The following chart shows the relative frequencies with which Catharina represented each

category of number structure across the five interviews. The circles are coloured and sized to

represent the varying frequencies with which representations occurred, relative to all the other

frequencies in the chart. As for other children interviewed, the most common representations

were of the left and right endpoints of the number lines in estimation tasks. Catharina

represented most categories of number structure in each interview.
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Code System | CO8R1 | COBRZ | COBR3 | CO8R4 | COBR5

+(Eg 5 . . 1 Il I

+-(=a DS . . .

—-(Z} RN
=% RE

LE L ] L ] ] L

Proximity exp

Previous

prevR

Relative numerasity

Anchor(mis)

middle

i) ) (2 i 60 60 G0 6

-5 PW
+-(=) PW10

Figure 147 Frequency of number structure representations by Catharina

Three examples are used here to show the kind of episodes from Catharina’s interviews that were
inferred to show representation of different aspects of number structure. The first extract is taken
from Catharina’s R4 interview, and shows representation of relative numerosity, reference to the
right endpoint, and increasing number sequence. The task is T2, and Catharina is asked to

estimate the position of target 18 on a 0-20 number line.

J: Where does 18 go?
C: [takes rocket to midpoint mid-air, adjusts leftwards a little, then suddenly jumps to RE. Sticks

rocket next to RE.] There. And then 19 would go there [points to gap between rocket and RE].

The next episode is taken from Catharina’s R2 interview, and demonstrates representation of
decreasing number sequence, and again reference to the right endpoint. The task is T4, the range

is 0-20, and Catharina is estimating the number of a blank rocket that represents target 18:

C: [eyes trace line from left endpoint to rocket and right endpoint, slowly] Twenty, nineteen

[counts back from right endpoint with small unit ‘hops’, writes “18”] ... | put eighteen!

The final example, taken from Catharina’s R1 interview, shows some representation of part-whole

number structure. The task is T2, the target is 50 and the range is 0-100:

J: And ... the last one is fifty.

C: Fifty ... [pauses, points to RE, then looks to J] .... There?

J: Wherever you think best.

C: [looks to midpoint, moves suddenly to midpoint] I’'m going to stick it IN the MIDDLE [sticking
rocket at midpoint]

J: Oh - why?

C: Because ... it belongs in the middle!
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9.2.3 What are the notable between-task and within-task connections between
representations?

In this section, Catharina’s representations are compared between tasks and within tasks, asking

what varied and what was consistent.

9.2.3.1 Task1

Catharina’s T1 representations were presented in RQla above, and the following table
summarises them according to the framework of Thomas and Mulligan (1995). In terms of the
component signs used and absence of number structure representation, Catharina’s T1

representations were highly consistent.

Interview round
R1 R2 R3 R4 R5
— No structure X X X X X
ST -
<N Linear
G
S = structure only
= C .
§ o Emerging
= 3 structure
[%2] .
2 = Emerging
© _(% structure
g o (multiplicative)
g £ Partial array
= Array: 10x10
Component Notational | Notational | Notational | Notational | Notational
signs
Static/dynamic | Static Static Static Static Static

Figure 148 Structure of Catharina’s representations of number during Task 1 (Thomas & Mulligan, 1995)

The connections between Catharina’s T1 representations and T2 and T4 representations are
limited. A particular disparity is the representation of number structure, with none represented at
allin T1, in contrast to quite frequent representation of multiple aspects of number structure in
T2 and T4. The clearest connection between T1 representations and other tasks’ representations

is Catharina’s enthusiasm for large numbers, as discussed in RQ1b.

9.2.3.2 Task 2 and Task 4

In this section, representations in different task conditions are compared to look at the between-
task and within-task connections for representations during number line estimations. As in the

previous case studies, this analysis includes representations in gaze, in gesture and in speech.

The following chart reveals highly consistent representation of number structure in different task
conditions. Sequence structure, decreasing sequence structure, and relative numerosity are
represented in all task conditions, and part-whole structure is represented in all but one condition
(T4, range 0-100 is the only one).
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Code System 10-10T210-10T410-20T210-20 T4 5-15T21 5-15 T4/ 0-100 T2 0-100 T4
= C.\ 5
(=a sequence . . .
(=a cjfo from LE . . 1 1 1 1 i - %
(=a cfo from estimate .
(=a cjfo from target
(= cfo from MP

--(=% DS
=a c/b fromRE . . . . . 4 i i <&
(=a c/b from MP
—-(=% RN
= RE L] L] L] - . L] . -
& LE L ] ] . - - .
(=! Proximity exp
(=1 Previous B
= prevR i i | | | | i 4 <
(=! Relative numerosity . . . . i .
(= Anchor(mis)
(=) middle . . . . . . . %
—l-(=m PW
Ea MP-5

(= Emerging structure
(=a part-whole

—-(=] PW10
(=] MP-10,50
(=] Emerging structure (m)
= Array
(=] quarters

Figure 149 Structure represented by range and task

Furthermore, for many of the sub-categories of number structure, representations were observed
more or less equally across task conditions, as indicated by the blue arrows. References to right
and left endpoints were not equally prevalent in all conditions; more were observed some

conditions (green box) compared with others (orange box).

9.2.3.3 Linear accuracy of representations

Between-task and within-task connections between representations also occur in the linearity of
number line estimations. The extent to which Catharina’s representations of targets coincided
with the linear representation of number for each given range was measured using the percent
absolute error (PAE). A three way mixed ANOVA was carried out to investigate the variation of

PAE with round, task and range. As in the previous case studies, PAE scores were transformed
using the square-root transformation, and all results are reported as significant (or non-significant)
at p<.05. The assumption of sphericity was met for interview round, but not for the interaction of
interview round and task, x*(9)=27.15, p=.001. For the interaction of interview round and task,
degrees of freedom were therefore corrected using the Greenhouse-Geisser estimate of

sphericity (e=.738).

There was a significant main effect of interview round on PAE scores, F(4,132)=7.25. Planned
contrasts revealed a significant linear trend for PAE scores overall, F(1,33)=20.57, reflecting that
the linear accuracy of estimation overall increased (PAE decreased) proportionately with

interview round.
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Estimated Marginal Means of PAE

4.20

4.00

3.50

3,60

3.40-

Estimated Marginal Means

3.20

3.00-

T T T T T
Round
Figure 150 Catharina, mean PAE by round
Bonferroni-corrected post-hoc tests confirmed that estimation PAE in R4 and R5 was significantly

lower than in R2.

There was no significant main effect of task, but there was a significant interaction effect of
interview round and task, F(2.95,97.39)=3.54. The graph below of estimated mean PAE by round
and task reveals that PAE increased for both tasks between R1 and R2. However, after this point
PAE decreased with interview round at a much faster rate for T4 than for T2, so that by R4 and R5,

the mean PAE of T4 estimates was actually lower than for T2.

Estimated Marginal Means of PAE

Task
-2
4

500
450 S \
4.00

3.50

Estimated Marginal Means

3.00-

2.505

T T T T T
1 2 3 4 3

Round

Figure 151 Mean PAE by round and task
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No significant main effect of range was found. An interaction of interview round and range was
found, F(12,132)=4.38; however this finding is of limited reliability since for several (three of ten)
round-by-task conditions, Levene’s test for homogeneity of variance between groups was
significant at 5%. Violating the assumption of between-groups homogeneity of variance in these
instances makes the significance of the interaction effect involving range groups less reliable. The
finding is nevertheless reported, with the graphs of estimated mean PAE displayed, since
Catharina’s estimates in the different ranges display different trends over the five interview
rounds (see Figure 152) and it is interesting to investigate this. Whether the variation adds up to a

statistically significant interaction effect is not proven.

Estimated Marginal Means of PAE

6,00 Range
—0-10
—0-100
0-20
— 5415
v 5.00-
| =
[
Q
=
=
E
=]
.
@ 4.00
=
-
a2
[
E
gt
(1]
W 300+
2.00
T T T | I
1 2 3 4 g
Round

Figure 152 Mean PAE for each range, by round

This graph shows little correlation in between-rounds change for the different ranges. In
particular, compared to R1, R2 estimations in ranges 0-10 and 5-15 became much /ess linearly

accurate, whilst estimations in ranges 0-20 and 0-100 became much more linearly accurate.

The fact that there was no task and range interaction strengthens the argument that different
number ranges themselves had a strong impact on estimations. In fact, for each range, there is
striking similarity between estimation accuracy in T2 and T4. For example, whilst it is not clear
from the quantitative data alone why Catharina’s estimation in range 5-15 should have become
suddenly less accurate in R2, the change occurred equally in T2 and T4 estimates, as shown in the

graph below.
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Estimated Marginal Means of PAE
at Range =5-15

Task
-2
— 4

6.004

5004

4,009

Estimated Marginal Means

3.0049

2100

Round

Figure 153 Mean PAE by round for T2 and T4 separately, range 5-15

9.3 RQ2: What strategies can be identified in children’s interactions
with number line estimation tasks?

The strategies identified in Catharina’s T2 and T4 responses were the following:

e Reference to anchor point
o Those included in the task environment (endpoints)
o Those created or visualised by child
=  Midpoint
= Quarter-point
o Previous trials of the task
= Within the same range
= Within a different range
e Counting strategies
o Count-on from LE to estimate
o Count-on from estimate to anchor point (e.g. RE)
o Count-back from RE
e Judgment using relative numerosities: particularly clear when estimate, or further
strategies, appeared to be influenced by initial use of relative numerosity of target and

task environment.
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9.3.1 What patterns can be detected in the way children use or do not use these
strategies?

Several patterns are evident from Catharina’s case. Figure 154 shows the representations and

strategies which Catharina demonstrated in estimation trials, compared by target type: whether

the target was close to a left endpoint, midpoint, right endpoint, or quarter/three-quarter point

of the number line. As in previous charts, representations and strategies are grouped according to

Resnick’s microstage account, and circles are coloured and sized to represent frequencies relative

to all the other frequencies in the chart.

Code Systemn I T2ZLEITZMPI TZRE TALE/TAMPI TARE 1 T2Q 1 T4 Q)
= (__.! 5
(=% seguence . .
(=4 cfo from LE . . “ . . . . . <&

(=& cfo from estimate
(=a cfo from target
(=% cfo from MP
--(Za cfo - guery
(Za4 Uunit issues
(=% C-mismatch
(=2 cfoin twos
(= cfoin fives

_C‘(?.? c/b from RE O . - O

(=% o/b from MP

=8 RN
= RE . ® .
Proximity exp . B - L
Previous .

prevR . . . . . . . i <&
Relative numerosity . . . . . “

middle

(i) ) ) ) ) 4] )

=

-G P
= MP-5
(=% part-whole
=-{(Z] PW10
(=] MP-10,50
(=] Emerging structure {m)
(=] Array
(=] quarters
=g SMA
(= Scaling
(=% Measure
—|- (=g Maths - other
(=4 hazard
(=& "Easy!”
(=% Forgets LE
(= immediacy ® . [ ] . . . -
(=g Change mind

Figure 154 Catharina’s strategies and representations by target type

@

This diagram shows four key representations that were observed for every category of target
number (blue arrows), but also highlights some important variations between target type that

appear to reflect flexibility in response to the mathematical features of trials.

The four types of representation that appeared for every target type are count-on from the left
endpoint, references to left and right endpoints, and references to previous trials. There is no
notable variation in frequency for references to previous trials, and there is no mathematical
reason for this representation to be more or less prevalent for any particular target type. The

frequency of references to the left and right endpoints, however, varied considerably. References
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to the left endpoint were more frequent for targets close to the left endpoint or midpoint (green)
than for targets close to the right endpoint. References to the left endpoint were also more
numerous than references to the right endpoint for targets close to the left endpoint or midpoint.
Conversely, references to the right endpoint outnumbered left endpoint references for targets
close to the right endpoint. Right endpoint references were also more frequent for targets near
the right endpoint than for targets near the left endpoint or midpoint. These variations are in line
with expectations based on the conditions of individual trials: it would be expected that

references to the nearest endpoint would be dominant.

Other variations in representations and strategies are also in line with expectations based on the
target type. Counting back from the right endpoint occurred for all target types except for targets
close to the left endpoint (circled blue), for which count-back from right endpoint would have

been a counter-intuitive choice. References to the midpoint were more common for targets close

to the midpoint (purple) than for targets close to the left or right endpoints.

9.3.2 How do the strategies used relate to children’s estimation results, if at all?

In the remainder of this section, graphs of linear estimation accuracy are used to identify trials or
rounds in which changes in children’s estimation results are evident. After identifying points of
investigation, the graphs are then compared to charts showing the strategies and representations
that occurred during the relevant estimation, to see whether connections can be drawn that may

explain changes in estimation results.

9.3.2.1 T2, range0-10

The following chart shows Catharina’s estimates for T2 in range 0-10.
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40.00

30.004

PAE

20.00+

10.00

Range: 0-10, Task: T2

.00

The graph demonstrates that T2 estimates on 0-10 were highly correlated between rounds,

particularly for targets near the left endpoint (1, 2 and 3) and right endpoint (8 and 9). The

Target
Figure 155 PAE of target estimates, T2 0-10

guestions arising for the qualitative data are:

e What was different about the estimation of target 4 in R3?

interviews?

e What was different about the estimation of target 6 in R5?

Round
—1
'

—4
1

Were similar representations and strategies observed for 1, 2, 3, 8 and 9 in the different
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Code System | T2 (0-10) 11 T2 (0-10) 21 T2 (0-10) 3/ T2 (0-10) 4/ T2 (0-10) 5/ T2 (0-10) &/ T2 (0-10) 7 T2 (0-10) 8/ T2 (0-10) 9|
----- (=x sequence —
----- (= cfo from LE .
----- (=a cfo from estimate
----- (=a cfo from target
(=g cfo from MP

(=g cfo - query

(=% unitissues

& C-mismatch
----- (= cfoin twos

----- (= cfoin fives
E-E DS

= ¢/b fromRE . . .
a /b from MP

(=" Proximity exp A
(=} Previous

(=1 prevR .

{=! Relative numerosity . i

=1 middle . i

PW

=4 MP-5 . .

(=3 part-whole

(= PW10

SMA

(=g Scaling

(=g Measure

Maths - other

(=g hazard .

(=a "Easy!” . N . I
(=a ForgetsLE

(=g immediacy . [ ] . . . . . . o
= Change mind .

Figlire 156 T2 0-10, R1, R2, R4 and R5

Code System | T2(0-10) 1/ T2(0-10) 21 T2 (0-10) 3/ T2 (0-10) 41 T2 (0-10) 5/ T2 (0-10) 6 T2 (0-10) 7| T2 (0-10) 8/ T2 (0-10} 9/

sequence
cjo from LE

/o from estimate
cjo from target
cjo from MP

cfo - query

cfoin twos

cjfoin fives

c/b from RE .
= c/b from MP

Proximity exp

Previous

previ

Relative numerosity . .
middle .

L(Z3 MP-5 .
(=3 part-whole
H-(E] PW10
[#-(Ea SNA
[=]-(=4 Maths - other
- hazard
"Easy!” '
Forgets LE
immediacy ' ' . ' ' '
Change mind

Figure 157 T2 0-10, R3

The above two charts reveal an answer to the first question, which is that the estimation of target
4 in R3 differed in its use of strategies focused on the right endpoint. In R1, R2, R4 and R5 (Figure
156), target 4 is estimated using count-on from left endpoint and reference to left endpoint
(green box). In R3 however (Figure 157), target 4 is estimated using count-back from right

endpoint (blue box).
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The following series of charts plots Catharina’s representations and strategies for T2 range 0-10

by individual round:

Code System | T2 (0-10) 11 T2 (0-10) 21 T2 (0-10) 3| T2 (0-10) 4 T2 (0-10) 5/ T2 (0-10) 61 T2 (0-10) 7 T2 (0-10) & T2 (0-10) 9|
=G S

(= seguence

(=g cfo from LE |

& Cjo from estimate
% cfo from target

= cfo from MP

cfo - query

=a unitissues .
B c - mismatch
% cloin twos

% cloin fives
El-(E DS

-(Za c/b from RE
~(=Za c/b from MP

- RN

LE

Proximity exp
Previous

previ

Relative numerosity
middle

PW

PW10

SMA

Maths - other

hazard .
"Easy!” .

Forgets LE

=a Change mind

- BB
Ono

[1]

Figure 158 T2 0-10, R1

_CodeSyslem (T2(0-10) 1/ T2(0-10) 21 T2 (0-10) 31 T2 (0-10) 4/ T2 (0-10) 5/ T2 (0-10) 61 T2 (0-10) 71 T2 (0-10) 81 T2 (0-10) 9/

=4 sequence
cfo from LE

cfo from estimate
cfo from target
cfo from MP

cfo - query

= Cfoin twos

= Cfoin fives

== D5

- - - - L]
Proximity exp
Previous
prevR -
Relative numerosity .
L]
immediacy . . - .
Change mind

Figure 159 T2 0-10, R2
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Code System

| T2 (0-10) 1/ T2 (0-10) 21 T2 (0-10) 3| T2 (0-10) 4/ T2 (0-10) 5! T2 (0-10) 6 T2 (0-10} 7| T2 (0-10) 81 T2 (0-10} 9/

_C.‘S
=
&)

=

G
=
=
G
&)

sequence
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cfo from target
cjo from MP
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LE
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hazard
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Change mind

Figure 160 T2 0-10, R4

Code System
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RE

LE

Proximity exp
Previous
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Relative numerosity
middle

MP-5
part-whole
10

-I-(Za SNA

Scaling
Measure
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hazard
"Easy!”
Forgets LE
immediacy
Change mind

Figure 161 T2 0-10, R5

In answer to the second question raised by the estimation accuracy data, similar representations

were indeed used for the estimations of targets 1, 2 and 3, and 8 and 9, in the different interviews.

In every interview, targets 1, 2 and 3 were estimated using reference to the left endpoint and

estimations were made with immediacy, strongly suggesting the use of a left endpoint anchor

(see yellow boxing). In one instance (target 3 in R3), count-on from left endpoint was used.

Targets 8 and 9, on the other hand, were estimated using reference to the right endpoint in every
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interview, and again with immediacy, suggesting the use of a right endpoint anchor (see red

boxing). Again, count strategies were used only once (target 8 in R2).

The data presented here does not offer a clear answer to the final question, asking what was
different about the estimation of target 6 in R5. The target was estimated using count-on from

left endpoint, a strategy which was also seen in R1 and R3.

The next graph shows the percentage error (as opposed to absolute percentage error) of the

same estimates:

Range: 0-10, Task: T2

Round

20.00

10.00-

005

PE

-10.00-

-20.00

-30.00

-40.00 T T T T T T

Figure 162 PE of T2 estimates, range 0-10

The graph of PE shows a clear pattern of underestimation for lower targets, followed by over-
estimation for targets closer to the right endpoint. This is the reverse of the pattern predicted by
proportional judgment models for a number-to-position estimation task. Furthermore, there are

no targets in the middle of the range for which estimations became more accurate.

Instead, the estimation strategies that Catharina employed for each target, and their physical
properties, provide a convincing explanation for the pattern shown above. The previous series of
charts demonstrated that lower targets were estimated relative to the left endpoint, and higher

targets relative to the right endpoint. This is compatible with error that increases with distance
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from either endpoint (which the above graph shows). The correlation between estimates and
linear trends in the error indicate that Catharina’s estimates implicitly represented a regular unit
size, and the underestimation and overestimation indicate that this unit size was smaller than that
required for a linear representation for this range. Examples of count strategies — e.g. target 3 in

R3 — provide direct representation of unit size, and units were indeed smaller than required for

linear representation.

9.3.2.2 T4, range 0-10
The graph below shows the PAE of T4 estimates for range 0-10.

Range: 0-10, Task: T4

Round
—1

[\ —1
60.00 A s

40,00 ! Ny

PAE

20.00-

o] T

Target

Figure 163 PAE of T4 estimates, range 0-10
The questions raised are the following:
e What was different in R2 compared to all other rounds?

e What could account for the highly accurate estimates of 7, 8 and 9 in R5?
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Figure 164 shows the representations and strategies observed for T4 range 0-10 in R2.

Code System | T4 (0-10) 1/ T4 (0-10) 2 T4 (0-10) 3 | T4 (0-10) 4 T4 (0-10) 51 T4 (0-10) & T4 (0-10) 71 T4 (0-10) 81 T4 (0-10) 9/
(=% 5
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(=a Change mind

Figure 164 T4 0-10, R2

Code System | T4(0-10) 1/ T4 (0-10) 2/ T4 (0-10) 31 T4 (0-10) 4 T4 (0-10) 5/ T4 (0-10) 6 T4 (0-10) 7/ T4 (0-10) 8 T4 (0-10) 9|
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Figure 165 T4 0-10, R1, R3, R4 and R5

The above two charts do not provide any strong evidence for why estimates in R2 should have
differed so markedly from estimates in other ranges. Estimates of lower target numbers were
made using count-on from left endpoint (yellow) and left endpoint references, and estimates of
higher target numbers were made using count-back from right endpoint (red) and right endpoint

references, but this same pattern was observed in other rounds too. For this question, the most
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helpful data are the inscriptions Catharina made during T4 estimates in R2. In six out of the nine
trials for T4 range 0-10 in R2, Catharina drew a sequence of dots as part of her count-on or count-

back strategy, and these reveal a very small unit size. An example is shown below:

0 10

Figure 166 Catharina's T4 estimate of target 2, range 0-10, R2

The conclusion from this data is that whilst Catharina used count strategies in all rounds, in R2 she
for some reason chose a very small unit size and used it consistently. In this way, the same type of
strategy led to less linearly accurate estimations than in other rounds, where higher linear
accuracy arising from count strategies (and this includes only trials in which the estimate was
actually made according to the result of the count) indicates that unit size was necessarily more

appropriately scaled.

The following chart, which shows representations and strategies for R5 only, was produced in

order to investigate the second question — on the accuracy of estimation for targets 7-9 in R5:

Code System | T4(0-10) 1/ T4 (0-10) 21 T4 (0-10) 31 T4 (0-10) 41 T4 (0-10) 51 T4 (0-10) 6 T4 (0-10) 7/ T4(0-10) 81 T4 (0-10) 9/
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Figure 167 T4 0-10, R5

This data suggests that a right endpoint anchor was used to estimate target 9, and probably target
8, but it does not itself explain why the estimates should have been more linearly accurate than

those in other rounds.
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The following graph shows the estimation PE (as opposed to PAE) for this task:

Range: 0-10, Task: T4
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Figure 168 PE of T4 estimates, range 0-10

This graph indicates over-estimation for lower target numbers, followed by underestimation for
higher target numbers. Once again, this is the reverse of the pattern predicted by a proportional

judgment model. The pattern of over- followed by under-estimation occurs in R2 estimates just as

in other rounds, except with larger magnitudes of estimation error.

This finding is consistent with the explanation suggested in the previous section for T2 range 0-10,
namely that the over- and under-estimation pattern witnessed results from Catharina’s choice of
strategies and their physical properties. As in T2, the strategies depend upon the left endpoint
(lower target numbers) or right endpoint (higher target numbers), and explicitly or implicitly
represent a small unit size — in R2, particularly tiny.

9.3.2.3 T2, range 0-20

The following graph shows Catharina’s T2 estimates for the range 0-20.
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Figure 169 PAE of target estimates, T2 0-20
The questions that this poses for the qualitative data are:
e Is there evidence for use of a left endpoint anchor for targets 2 and 4?

e Isthere evidence for use of a right endpoint anchor for targets 18 and 19?

e What was different about the estimation of target 15 in R4?

To explore these questions, the following charts show Catharina’s representations and strategies

for T2 0-20 estimates for R1-R3 and R5 together, and then for R4 separately.
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Figure 170 T2 0-20, R1-R3 and R5
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Figure 171 T2 0-20, R4

The evidence for use of endpoint anchors is strong: for targets 2 and 4, Catharina referred to the
left endpoint almost exclusively, and with immediacy and comments that it was “easy”. For
targets 18 and 19, Catharina only made reference to the right endpoint, and there were again

observations of immediacy and comments that the trials were “easy”.

For target 15 in R4, Catharina referred only to the right endpoint (circled green). This

representation was also observed in other rounds, but other rounds also included a wide variety
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of other number structure. This data does not provide a clear answer for why the estimation in R4

should have been markedly less accurate than in other rounds.

Looking at the PE graph of the same task condition, it becomes clear that all but one of
Catharina’s estimations in the range 0-20 were underestimations. This finding differs from both T2

and T4 for range 0-10, in which there was both under- and over-estimation.
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Figure 172 PE of T2 estimates, range 0-20
The conclusion is that this under-representation followed from Catharina’s use of left endpoint
oriented strategies, with an implicit unit size too small to result in linear representation of the
range 0-20. The charts of representations and strategies indicate that left endpoint oriented
strategies were predominant except for at targets 18 and 19, and this corresponds to the

underestimation followed by accuracy at targets 18 and 19 demonstrated by the graph above.
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9.3.2.4 T2, range 5-15

The following graph shows Catharina’s T2 estimates for range 5-15

Range: 5-15, Task: T2
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Figure 173 PAE of target estimates, T2 5-15

Two main questions arise from this graph:

What evidence is there for the use of left and right endpoint anchors, for targets 6, 7 and
147

e What was different about the estimations in R2?

To investigate these questions, the following charts display the observed strategies and

representations for T2 range 5-15 for R1 and R3-R5 together, and then R2 separately.
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Figure 174 T2 5-15, R1 and R3-R5
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Figure 175 T2 5-15, R2

The evidence (yellow) for the use of a left endpoint anchor for targets 6 and 7 is good: references
to the left endpoint predominate in all rounds, and there are observations of immediacy in the
estimations. For target 14, there is good evidence (red) for use of a right endpoint anchor in all
rounds except R2: there are frequent references to the right endpoint and observations of

immediacy, although other representations are also observed to a lesser extent. For R1, R3, R4
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and R5 (but not R2) there is also good evidence for use of a right endpoint for target 13, even

though the graph reveals that this did not lead to particularly accurate estimates.

The chart showing R2 estimations reveals that count-on from left endpoint was used for all
targets except target 6 (see purple box). The graph below of percentage error shows that this led
to underestimation for all targets in R2, and that this underestimation increased proportionally

with distance from the left endpoint.
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Figure 176 PE of target estimates, T2 5-15
In this instance, the qualitative data provides a convincing explanation for the pattern of
estimation error recorded. As in other task conditions in R2, Catharina marked dots showing the
unit size for the count-on strategies used in T2 5-15, and these confirm what the resulting
underestimation already indicates, that the unit size chosen was too small to result in a linear
representation for the range. As an example, the following shows Catharina’s estimation of target

13 for T2 range 5-15in R2:

T2.22
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9.3.2.5 T2, range 0-100

This graph shows the PAE of Catharina’s T2 estimates in the range 0-100:
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Figure 177 PAE of target estimates, T2 0-100

Once again, points of disparity between rounds are interesting. The questions that arise are:
e Is there evidence of midpoint anchor use for target 50 (and to a lesser extent 49)?

e Can qualitative data account for the less accurate estimates that occurred for targets 18,

67 and 92 in R3?

To investigate these questions, the following charts show Catharina’s representations and

strategies for T2 range 0-100, for R1, R2, R4 and R5, and then R3 separately.

With respect to the first question, there is evidence for the use of a midpoint anchor for targets
49 and 50, although this evidence is not as conclusive as for endpoint anchors in other rounds.
During estimation of targets 49 and 50, there were references to the midpoint accompanied by

observations of immediacy (green), and an absence of count-on or count-back strategies from

either endpoint (orange boxes).
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Figure 178 T2 0-100, R1, R2, R4 and R5
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Figure 179 T2 0-100, R3

alafolalalaio)
T T T T ST T =<
S R Sy s g |
(U A s e

With respect to the second question, there are two observations that could help explain the
particular inaccuracy of estimation for targets 18, 67 and 92 in R3. Firstly, target 92 appears to
have been estimated using a midpoint anchor (red), and the likelihood of accurately estimating 92
from such an anchor point is low. Secondly, for targets 18 and 67 (see blue boxes) there were no
representations of number structure at all, even references to the endpoints of the given line,

only an immediate estimate of each.

The following graph of PE (percentage error) allows examination of over- and under-estimation

patterns. The initial over-estimation followed by accuracy around the midpoint, and then under-
estimation near the right endpoint, is as predicted by a proportion-judgment account of number
line estimation. This pattern is in contrast to the patterns of over- and under-estimation in other

number ranges.
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Figure 180 PE of target estimates, T2 0-100
9.3.2.6 T4, range 0-100

The following graph shows the PAE of Catharina’s T4 estimates for range 0-100:
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Figure 181 PAE of target estimates, T4 0-100
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The questions arising are:
e What was different about estimates in R1 compared to R2-R5?

e Is there qualitative evidence for the use of a right endpoint anchor for R2-R5?

Code System | T4 (0-100) 2| T4 (0-100) 3| T4 (0-100) 4| T4 (0-100) 6 T4 (0-100) 181 T4 (0-100) 25| T4 (0-100) 49| T4 (0-100) 50 T4 (0-100) 67 | T4 (0-100) 71 T4 (0-100) 92/
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Figure 182 T4 0-100, R1
The chart above reveals that in R1, Catharina used count-on from the left endpoint for every trial,
and referred to the right endpoint only once (for target 92). This offers a likely explanation for

estimation error proportionally increasing with target magnitude.

In R2, R3, R4 and R5, Catharina again made frequent use of count-on from left endpoint strategies,
and made frequent references to the left endpoint. However, she also referred to the right
endpoint in all but two trials, and additionally included count-back from right endpoint strategies
for the three highest targets (orange), suggesting some flexibility in response to the individual

trial’s conditions.
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Figure 183 T4 0-100, R2 - R5

The graph below shows the PE of Catharina’s estimates in this task. It reveals that the error in R1

estimations was entirely underestimation, and this follows from Catharina’s use of count-on from

left endpoint. The error increases linearly with target magnitude, which reflects that Catharina

used a regular unit size, that was too large to achieve a linear representation for the range 0-100;

with these large units, Catharina reached each target rocket with fewer unit steps from the left

endpoint than the linear representation would have revealed.
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Figure 184 PE of target estimates, T4 0-100
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This research question has drawn out several important findings. In this case study, there are

numerous points at which there is a very plausible link between Catharina’s estimation results
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and the observed representations and strategies for that estimation. This is particularly true of
targets close to the right and left endpoints: there is good evidence that Catharina made frequent
use of the endpoints as ‘anchor’ points in her estimation of nearby targets, and on these
occasions her estimations were usually markedly more accurate than for other targets in the

same range.

Catharina’s case also provides particularly interesting evidence on the use of count strategies.
Since Catharina varied the unit size of count strategies between interview rounds, but tended to
use a very consistent unit size within rounds and often applied count strategies to an entire set of

trials, Catharina’s case provides especially rich evidence.

Patterns of over- and under-estimation can be convincingly linked to the count strategies that
Catharina used. Her results emphasise again how the same strategy (count from left endpoint)
can have notably more or less accurate outcomes depending on the precise details, in this case,
unit size. Her use of count strategies also revealed a particular loyalty or attachment to them,
which was also a very notable finding in Marta’s case. The example below shows Catharina’s T4

estimation of target 7, in range 0-10 during R2:

Figure 185 Catharina T4 R2

The interpretation of the above is that Catharina chose the right endpoint as point of reference
for the target, since it was the closest anchor point to the blank rocket. However, by counting
back with inappropriately scaled unit ‘hops’, Catharina reached an estimate that was implausible
by her earlier reasoning (namely “this target is somewhat close to ten”). She nevertheless abided

by this answer.

9.4 RQ3: How do young children’s cognitive representations of number
change during their first year of formal schooling?

This question involves examining the changes evidenced by both the qualitative and quantitative

estimation data collected from Catharina’s interviews.
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The diagram below summarises the aspects of number structure that Catharina represented in
each round of interviews. As in previous sections, the representations and strategies are grouped
according to Resnick (1983)’s developmental theory of number understanding. The size and
colour of the circles represents frequencies relative to the same category in other rounds, not to
frequencies in other categories. The data are presented in this form in order to best examine the

changes over time within categories.
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Figure 186 Number structure represented by round

The first point to be noted from this chart is that Catharina represented most categories of
number structure in every interview round. The exception was decreasing sequence structure,
which was not represented at all in R4 or R5. The second important point to be noted is that the
chart reveals an overall trend of decreasing direct representation of the least sophisticated
number structure (increasing sequence structure) at the same time as increasing direct
representation of the most sophisticated number structure (part-whole structure, including base-
ten). Representation of relative numerosity also decreased overall across the five interview
rounds, but the change was less marked than for increasing sequence structure. The remaining
two categories of number structure show mixed patterns of increasing and decreasing frequency
over time. This overall trend is the same as that observed in Patrick’s case, and as in Patrick’s case,
the hypothesis put forward to explain the trend is that as Catharina gained confidence and
fluency with more sophisticated number structure, it was no longer necessary or efficient to

directly represent the more basic aspects of number structure as frequently as she did initially.

9.4.1 In what ways does evidence support or not support the log-linear hypothesis?
To recap the predictions of the logarithmic-linear shift account of number line estimation, it
expects earlier estimations to be best fit by a logarithmic model in the case of number-to-position
estimations (T2) and an exponential model in the case of position-to-number estimations (T4).
Later estimations are expected to be increasingly better fit by linear models in both types of task.
Furthermore, the shift from a logarithmic (or exponential) to linear model for a given number
range may be expected to occur suddenly. The shift is expected to occur earlier for smaller, more

familiar number ranges (i.e. 0-10) than larger, less familiar number ranges (i.e. 0-100).

Catharina’s case provides very limited support for the logarithmic-linear shift account of number

line estimation. The ANOVA analysis of linear accuracy (PAE) reported in RQlc revealed that
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Catharina’s number line estimations did become overall more linearly accurate with each

interview round. However, in terms of more detailed view, Catharina’s estimations did not tend to

fit the patterns predicted by the log-linear shift account.

The following series of graphs plots the model fits (in the form of R> measure for each model) for

linear, logarithmic and exponential models for each task condition in each round. For each task

condition, a short comment explains whether the model fits are in line with the predictions of the

log-linear account. Models that did not reach significance (at 5%) are excluded.
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These model fits are not in
line with the log-linear
shift account: the
logarithmic and linear
models both provided a
poorer fit to the data than
the exponential model,
and later estimations are
in fact fit less well by a
linear model than earlier

ones.

These model fits are again
not in line with the log-
linear shift account, which
would expect an
exponential initially, and
later on linear model, to
provide the best fit for this

task condition.
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These model fits are not in
line with the log-linear
shift account, which
expects a logarithmic and
then linear model to

provide the best fit.

These model fits are not in
line with the log-linear
shift account, and in this
case, there is very little
difference between model

fits at all.
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A logarithmic model
provides the best fit for
this data, which is in line
with log-linear predictions
for T2 estimations. There
is also increasingly good
fit from the linear model,
though it does not occur
suddenly and does not
overtake the logarithmic

model in terms of fit.

The overall dominance of
the exponential model,
especially compared to
the logarithmic model, is
as the log-linear shift
account predicts for T4
estimations. However, the
decrease in model fit for
the linear model does not
fit into the explanations of

the log-linear account.

In summary, Catharina’s case does not provide good support for the log-linear hypothesis. The

extent of the convincing agreement between the two is the significant increase in linearity of

number line estimations, but this is a widely documented phenomenon and is not uniquely

predicted by the log-linear shift account.
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9.4.1.1 Alternative accounts

In RQ2b, plotting PAE by target number demonstrated that Catharina’s estimations were in
general most accurate for targets near to anchor points, and least accurate furthest away from
anchor points, as predicted by proportional judgment accounts of number line estimation. This
question also showed that the anchor points used by Catharina varied. In some cases (e.g. T2,
range 5-15, R2) there is good evidence that Catharina only took account of the left endpoint. In
the majority of cases (e.g. T2, range 0-10, all rounds) Catharina took account of both left and right
endpoints in her estimations. In some task conditions (e.g. T2, range 0-100, R5), Catharina also
appeared to use a midpoint as an anchor point, and achieved good linear accuracy for estimates
close to this. The order in which Catharina included anchor points is in line with the specific
predictions of Ashcraft and Moore (2012): the left endpoint is included as an anchor point always,

then the right endpoint, and then a midpoint.

9.4.2 Whatis the intra-child variability of children’s numerical magnitude
representations in estimation tasks at different times?
A key measure of the variability of children’s number representations is variance of estimation

error (PAE) in different task conditions at different times.

Task
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Round
Figure 195 Standard deviation in PAE for T2 and T4 by round

This graph above shows that in each interview round, the standard deviation of PAE was higher
for T4 estimates compared to T2 estimates. The variability of estimation accuracy decreased over
the course of the five interviews, apart from a small increase in R2, and this mirrors the pattern of

linear estimation error (see Figure 151).
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9.4.3 Can trajectories or patterns of change be deduced, in terms of changes in how
children cognitively represent number?

Catharina’s case illustrates two overall trends across the course of the five interviews, both of

which were broadly expected and also seen in Patrick’s case study. The first, as discussed in RQ3a,

is that Catharina represented more sophisticated aspects of number structure more frequently,

and represented less sophisticated aspects of number structure less frequently (see Figure 186).

As in Patrick’s case, there is no evidence that this change occurred suddenly; it appeared gradually

between each round of interviews.

The second trend, as explained in RQlg, is that the linear accuracy of number line estimations
increased significantly. As for other children however, Catharina’s estimates did not become more
linearly accurate at the same rate for all task conditions. There was a significant difference
between the trend for T2 compared to T4, and even starker differences between the different

number ranges (see Figure 152 for a visual representation of the different patterns observed).

This case study concludes the four chapters presenting the findings of this study. The findings at
both the group and individual case levels have been presented and discussed in relation to the
research questions and relevant literature. The next chapter will draw together the emerging
conclusions contributed by the group findings and each of the case studies, to present the overall

conclusions of the research.
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Chapter 10 Summary and conclusions

10.1 Overview

This study set out to develop new depth of understanding of children’s representations of number
during their first year of formal schooling, through a longitudinal and multimodal research design
not seen in previous research. The research examined children’s cognitive representations of
number, above all of number structure, as they engaged with key interview tasks taken from
existing research. The study aimed to complement previous research by using a theoretical
framework and research design led by Duval’s inclusive theory of representation. This enabled the
study to focus upon an existing mathematical phenomenon (representation), and to understand
children’s responses to different tasks, expressed using different modes of communication, all in
terms of representations of children’s developing conceptions of number. With this original
design, the study was able to compare children’s responses to tasks from both imagistic
representation and cognitive science traditions, in contrast to previous research which
investigated these areas separately. In the case of the number line estimation tasks taken from
the cognitive science tradition, the theoretical framework and research design of this study
offered an original perspective. As in previous studies, quantitative data on children’s number line
estimations was still collected, but so too was qualitative data on the representations children
made whilst carrying out estimations: both data types concern children’s cognitive
representations of number. The study therefore brought new forms of evidence to bear on

existing hypotheses about children’s responses to number line estimation tasks.

This study sought to illuminate two particular aspects of children’s representations of number.
First was the connection between the aspects of number structure children represented in
different tasks at different times. This was an original research question arising from previously
separate research strands. Secondly and perhaps most importantly was the connection between
the results of children’s number line estimations, and the number structure they represented
during the estimation. This was considered a particularly important original contribution of the
present research, since previous studies had repeatedly hypothesised about children’s estimation

strategies without in fact examining children’s task responses.

The previous chapters presented and discussed the research findings in two stages, firstly the
group-level findings, and secondly the findings of three in-depth case studies. In each case, the
findings were presented and discussed in relation to specific research questions and the relevant
existing literature. This chapter draws together the overall conclusions of the study in relation to

the research questions and research aims, showing the original contributions of the study and

311



how they relate to previous research. This chapter also summarises the significance of the
conclusions, methodological and theoretical reflections on the study, and the implications for

educational practice and future research.

10.2 Conclusions

10.2.1 In what ways do children appear to cognitively represent number during the
different interview tasks used in this research?

The findings of this study showed that children represented number in all the modes for which

data was collected: speech/sound, gesture, gaze, and inscriptions. The children represented

number structure from increasing sequence structure (considered the simplest structure) up to

and including part-whole structure, including aspects of base-ten structure (considered the most

mathematically sophisticated aspect of number structure examined).

The imagistic representations children produced in T1 were diverse. Just as found by Thomas et al.
(2002), the responses to T1 included representations composed of pictorial components that
represented no number structure, but association with quantity, such as Beatrice’s “fishes”
response (Figure 22), but also representations composed of numerals in array form, with
commentary to explain the internal structure, such as Patrick’s R3 response (Figure 49). This
finding is firmly in line with Nunes and Bryant's (2009) theory of number concept development,
which holds that children aged five are in the midst of a long process of making connections
between counting knowledge, knowledge of quantities and knowledge of relations, a process that

lasts well into the primary school years.

Representations during the number line estimation tasks of this study were dominated by those
which connected the target number of the trial to features of the printed number line. A typical
example was a point to the left endpoint followed by unit ‘hops’ of the pointing finger, forming a
count-on procedure along the line. No previous research had investigated children's number line
estimations in terms of representations. However, this finding is evidence in support of the
diverse quantitative studies (Ashcraft and Moore, 2012; Barth and Paladino, 2011; White and
Szucs, 2012) and eye-tracking studies (Heine et al., 2010; Schneider et al., 2008) hypothesising
frequent use of endpoint anchors and count-on strategies, as captured at a broad level by the
categorisation of strategies by Petitto (1990). Pictorial aspects were uncommon outside of T1, but
children’s spontaneous representations did occasionally include them, for example Patrick’s
relation of line lengths to the sky, or multiple children’s relation of target numbers to the ages of
family members. The finding that responses to number line estimation tasks included such

spontaneous representations is an original one not prefigured by existing research.
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The findings of this study show that the main connection between number representations in
different tasks was the level of complexity of number structure, according to Resnick’s (1983)
framework, that each child represented. The specific number representations of T1 were not
frequently repeated during later tasks. However, children whose T1 representations had included
little structure or solely increasing sequence structure also showed fewer representations of more
complex number structure during T2 and T4. Conversely, children who represented more
sophisticated number structure in their T1 representations also tended to represent more
sophisticated number structure in later tasks. These broad groupings also coincided with
children’s teacher-assessed mathematical attainment groups. Connection between the structure
of T1 representations and more advanced mathematical experience was documented by Thomas
et al. (2002). However, since no previous research had investigated the representations made
during number line estimations, the connection to these is necessarily an original contribution of

this study.

In terms of differences between T2 and T4, both the group level results and case studies
demonstrate that children tended to produce more representations of number structure in T2
than in T4. One hypothesis to explain this finding is that in T4, the blank rocket functioned as an
‘answer box’, leading children to focus (perhaps too quickly) on ‘writing the answer’ rather than
on the process of conversion (in T4, from a spatial representation to a numeral or number word).
This is in contrast to T2, where the conversion of representation required a physical action from
children, and specifically an action (sticking the rocket sticker somewhere on the line) that was

more unusual than ‘writing a number in a blank space’.

The group-level findings showed that T4 estimations were overall significantly less linearly
accurate than T2 estimations. This is compatible with the above interpretation of differences
between children’s behaviour during the two tasks, but it is not clear whether it is in line with the
only previous research to have investigated number-to-position and position-to-number
estimations in the same study, namely Siegler and Opfer (2003) . Siegler and Opfer (2003) do not
report direct comparisons of number-to-position and position-to-number estimates; they report
only the results of fitting linear, logarithmic and exponential models to the median estimates of
each age group investigated, meaning that this task difference is nowhere directly discussed in
the literature. Their results for 2™ graders (aged 7-8), the youngest participants in the study and
thus closest in age to the participants of this study, showed no overall difference in linear model
fit between the cohort's median estimates in position-to-number and number-to-position
estimations. In addition to difference in action required by the two tasks, another factor very

likely to have contributed to systematically lower PAE in T2 is that the task provides both
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numbered endpoints, and a numbered target to be placed in between, which places an upper
bound on the PAE for each trial (the trial cannot possibly have greater than 100% PAE). In contrast,
in T4, a participant is free to write any estimate, and so if for example only acknowledging the left
endpoint as a bound, may in theory produce an estimate with any value PAE. If T4 estimation

trials were carried out as the estimation of a target within a range as intended (which evidence
suggests was the case for the majority of trials) then PAE is limited as in T2, but there were clear

examples (see Marta’s case) where the task as completed by the child was effectively open-ended.

A finding to emphasise is that although the frequency and proportion of representations of
different categories of number structure varied between children, all categories of number
structure were represented by all children during the study. The case studies of Patrick and Marta
illustrate the two extremes of the group, and the observations of their strategies and
representations across the interview rounds (e.g. Figure 75 and Figure 135) reveal that, for both
children, the whole range of number structures were indeed represented. This means, firstly, that
even with no specific direction from the researcher, the numerical-spatial features of number line
estimation tasks allowed or encouraged children to represent multiple aspects of number
structure during conversion of representations of number. This is an original contribution to the
literature on number line estimation. Secondly, the finding emphasises that all children, including
those less highly-attaining in classroom mathematics, incorporated these aspects of number

structure into their conception of some of the study’s target numbers.

10.2.2 What strategies can be identified in children’s interactions with number line
estimation tasks?

All the strategies hypothesised in previous research were documented in this study. These include

count-on strategies, and use of the line endpoints and partitions of the range as ‘anchor’ points.

Using extensive video data, this study was able to categorise children’s strategies more precisely

than earlier research (e.g. Petitto, 1990), resulting in the following list of observed strategies:

e Reference to potential anchor point
o Those included in the task environment (left and right endpoints)
o Those created or visualised by child
*  Midpoint
= Quarter-point
= Three-quarter point
o Previous trials of the task
= Within the same range

=  Within a different range
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e Counting strategies
o Count-on from LE to estimate
o Count-on from estimate to anchor point (e.g. RE)
o Count-back from RE
o Count-back from midpoint
e Judgment using relative numerosities: particularly clear when estimate, or further
strategies, appeared to be influenced the relative numerosity of target and task

environment.

The three case studies contributed very strong evidence of connection between children’s
representations and the resulting estimation value or position. Investigation of this connection
had not been attempted by previous research, so the findings relating to this research question
form a set of original contributions. Each case study offers numerous examples where striking
changes in linear estimation accuracy can be connected to specific changes in number structure
represented: both for different targets within a range (e.g. target 8 estimated with high PAE,
whereas target 9 estimated with very low PAE) and for the same target in different rounds (e.g.

target 50 estimated with high PAE in R1 and R2, followed by low PAE in R3-R5).

Furthermore, findings demonstrate that the connection extended beyond individual target
examples, in two ways. The first extension is where the distribution of estimates for a whole set of
trials can be convincingly explained by the observed representations and strategies. A typical
example of this is Catharina’s T2 estimations in range 5-15 during R2 (Figure 173 - Figure 176). The
second extension is in terms of a correlation between representation of more complex number
structure and higher linear accuracy at the level of whole interviews. This was documented in the
findings both within children’s own interviews (for example Patrick, Marta and Catharina’s

changes over the five interview rounds) and between different children.

There was good evidence that children’s representations and use of estimation strategies varied
according to both the mathematical features of the trial (the number range, and the relation
between the target number and the range given) and the child’s own mathematical experience
and confidence. This finding strongly supports White and Szucs' (2012, p. 9) proposal that
“specific numbers could exhibit unique behaviours as a function of the familiarity with the
number range, proximity to either external or mental anchor points, as well as knowledge of
arithmetic strategy”, a suggestion not previously supported by evidence of children's task

interactions.
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In terms of variation according to mathematical features of trials, the findings repeatedly
demonstrated representations and strategies oriented towards the nearest anchor point to a
target. It is particularly important to note that this was true even in Marta’s case, albeit to a lesser
extent than for Patrick and Catharina. Charts displaying observed representations and strategies
according to the nearest anchor point of the target (see Figure 154) showed variation in line with

mathematical expectation.

This finding is in broad agreement with all previous studies hypothesising the use of anchor points
(Ashcraft and Moore, 2012; Barth and Paladino, 2011; Ebersbach et al., 2008; Heine et al., 2010;
Schneider et al., 2008; White and Szucs, 2012). However, the findings of this study differ from
those of previous research in terms of the extent of anchor point use in children aged only 5-6
(Year 1). Though White and Szucs (2012) found good overall evidence for the use of anchor points,
they did not find clear evidence for anchor-point use in their Year 1 participants. Similarly,
Ashcraft and Moore (2012) hypothesised that their youngest participants (1 grade, ages 6-7)
oriented their estimates using the left endpoint of the line only, with other anchor points only
later introduced. It seems plausible to conclude that this difference in findings largely reflects a
key methodological difference between the present study and these two quantitative examples.
The present study examined children's representations of anchor points separately from the
results of estimation trials. In the two cited studies, anchor point use was inferred from estimates
with lower linear residuals and lower variance, a method which can only detect children's use of
anchor points on the occasions when it leads to more linearly accurate estimates. The only
previous study to collect qualitative data on children's strategies again did not find evidence of
midpoint [the only anchor point beyond the left endpoint investigated] use in the youngest
participants (1* grade, ages 6-7) (Petitto, 1990, p. 70). In this case, methodological differences
again offer plausible reasons for substantial differences — the limitations of Petitto's study,
explored in the literature review, mean that many representations captured in the present study

could not be expected to have been recorded using Petitto's methods.

In terms of variation between children, children assessed by the teacher as lower-attaining in
mathematics represented more complex number structure less frequently, and employed the
estimation strategy of counting-on from the left endpoint more frequently. Once again, this
corresponds to hypotheses in the literature, which suggest this as a ‘basic’ strategy (Ashcraft and
Moore, 2012; Petitto, 1990; White and Szucs, 2012). Marta’s case provides clear examples of trials
in which, as Slusser et al. (2013) for example suggest, the number line task as completed by the
child is effectively open-ended, since the right endpoint is either noted and dismissed, or not

considered at all. The findings show that the count-on from left endpoint strategy did frequently
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correspond to lower estimation accuracy. However, there were also examples of linearly accurate

results, and it is important not to categorise the strategy itself as fundamentally inaccurate.

The context of use of count strategies was important. Some children, for example Patrick and Zoe,
represented aspects of number-space ‘fit’ that showed adaptation of unit size depending on the
number range, a finding not identified or suggested by previous research with this task. For all
children however, whether or not number-space ‘fit’ ideas were represented, count-on strategies
were not equally successful in all number ranges. Children consistently achieved more linearly
accurate representations in the range 0-20, including when count-on strategies were used, and
this study concludes that this is likely connected to children considering the required unit size for
a linear representation of 0-20 on an A4 page to be a ‘natural’ unit size. As the findings discuss,
since children expressed both the idea that there was too much space to represent 0-10 and not
enough space to represent 0-100, it seems possible that the classroom resources in the children's
classroom, which overwhelmingly used the length of a piece of A4 paper to represent ranges 0-20
or 0-30, (ranges 0-10 and 0-100 were represented in other formats within the classroom) had
accustomed children to perceiving this scale as ‘natural’ and to using it as their default scale. The
finding that children in this study estimated more accurately in the range 0-20 than in ranges 0-10
or 0-100 is contrary to expectations based on previous literature (e.g. Berteletti et al., 2010;

Slusser et al., 2013).

This study found that children were more attached to count-on strategies than their knowledge of
number structure could explain. In all three case studies, but particularly Marta’s, there was
evidence of children employing count-on from the left endpoint even after an initial response
based on other aspects of number structure. A very typical example would be an initial response
where the child moved the target rocket towards the right endpoint or midpoint based on the
relative numerosity of target and endpoints. In most cases, the subsequent count strategy then
led to a less linearly accurate response than the initial response. This finding was not anticipated
from existing research, but seems to point towards children regarding the count-sequence
structure as fundamentally reliable, which is plausible given the children’s educational

experiences with number.

The study was not designed to investigate proportional-reasoning accounts of number line
estimation (see Ashcraft and Moore, 2012; Barth and Paladino, 2011; Rouder and Geary, 2014),
but examination of linear estimation error by individual target allowed many of the predictions of
these accounts to be examined. The findings show that only estimations in the range 0-100
followed the patterns of over- and under-estimation (following S-shaped curves) predicted by

proportional reasoning models (see Patrick, Figure 70, Marta, Figure 131, and Catharina, Figure
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180). In addition, estimation patterns on lower ranges frequently followed the opposite pattern to

that predicted (see Catharina, Figure 162 and Figure 168).

Overall, the patterns of over- and under-estimation error observed were more successfully
explained by appeal to children’s representations of number structure and estimation strategies
than by proportional reasoning models in the literature. The comparison of children's
representations of number structure with their number line estimations is an original contribution
of this study, and this finding was not anticipated by previous studies in the literature. The
explanation of observed estimation errors takes the following form: firstly, children tended to use
strategies oriented towards the left endpoint for lower target numbers, and strategies oriented
towards the right endpoint for higher target numbers. Secondly, the study found that children
were most accurate at estimating in the range 0-20; that the implicit unit size of their strategies in
the range 0-10 was too small; and that the implicit unit size of their strategies in the range 0-100
was too large. The combination of these findings explains over- followed by under-estimation for
T2 range 0-100, and under- followed by over-estimation for T4 range 0-100 (the two findings
which are compatible with a proportional reasoning account) but al/so explains under-followed by
over-estimation for T2 range 0-10, and over-followed by under-estimation for T2 range 0-10 (two

patterns directly opposite to that predicted by a proportional reasoning account).

10.2.3 How do young children’s cognitive representations of number change during
their first year of formal schooling?
Children represented increasingly sophisticated aspects of number structure with increasing
frequency, as predicted by accounts of number concept development (Nunes and Bryant, 2009;
Resnick, 1983). In addition, they represented the more basic aspects of number structure with
decreasing frequency. As previously discussed, this second finding does not follow necessarily
from the first; children could represent increasingly sophisticated number structure whilst
retaining the representation of less sophisticated structure, but they did not. The hypothesis of
this study is that as children gained confidence with more sophisticated number structure, they
no longer found it efficient to represent number sequence as frequently as at the start of the year.
It is important to remember that in addition to increasing general mathematical experience, the
children in this research gained repeated experience with the interview tasks, allowing plenty of

opportunities for them to develop their task responses over time.

Children’s number line estimations more closely resembled linear representations over time, a
finding directly in line with the literature in this field. The median estimates of the group became
significantly more linear, proportionally with interview round (see group RQlc). The individual

case studies also document increases in linear estimation accuracy with interview round.
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The findings show particularly strong evidence for the step-wise inclusion of anchor points as an
important factor in increasing linear accuracy of estimation. This has been proposed multiple
times (Ashcraft and Moore, 2012; Slusser et al., 2013) from quantitative analysis of estimation
variation, and the present study now contributes original qualitative evidence from children's task
interactions. The findings support the idea that the left endpoint of the line is always a site of high
linear accuracy, and is then joined by accurate estimates close to the right endpoint, and then the
midpoint. In the case of Patrick, there is also evidence for the subsequent inclusion of quarter and

three-quarter points as anchor points.

The stage-by-stage inclusion of anchor points is found in overall conflicting accounts, with
Ashcraft and Moore (2012) concluding that their data overall support the interpretation of
number line estimation as reflecting the mental representation of number (with stage-by-stage
incorporation of anchor points), whilst Slusser et al. (2013) conclude that their data support the
view of number line estimation as proportional reasoning (with stage-by-stage incorporation of
anchor points). In this second account, the stage-by-stage incorporation of anchor points is one of
two factors leading to improved estimation accuracy: the inclusion of further anchor points
changes the mathematical model from unbounded, to one-cycle, to two-cycle power function,
whilst a parameter B present in each of these models (see Slusser et al., 2013) indexes an overall

bias, which with age and experience approaches 1 (“perfect” linear estimation ).

The present study was not designed to compare the above two accounts, but the findings do
present ideas that pertain to both. Firstly, this study was designed to investigate the log-linear
shift account, in which number-line estimation reflects children’s mental representation of
number (Siegler et al., 2009), and concludes that the log-linear shift does not describe the present
findings well. Secondly, the current findings do suggest that another factor in addition to anchor
points is involved in the increasing linearity of children’s estimations. An original suggestion from
these findings would be that the parameter B, indexing bias, could be involved in reflecting the
degree to which children both appreciate a need to scale unit size, helping to make error relative
to the anchor point lower, and are able to carry out the spatial representation that they intend

(with both perceptual and motor error expected to decrease with age).

The findings document only weak support for the log-linear shift account. The group’s median
estimates were best fit by models predicted by this account only for ranges 0-20 and 0-100, and
even for these ranges, the change in estimations observed was not well-described by a log-linear
shift in children’s estimations. The case studies again show only weak support for the theory. The
only aspect clearly supported by the findings is that children’s estimations progressively resemble

a linear distribution, and this, as previously noted, is not unique to the log-linear shift account.
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The findings of this study support the central premise of Siegler's overlapping waves theory,

which is that at any given age, children know and use "a variety of approaches (i.e., strategies,
rules, or representations) that compete with one another for use, with each approach being more
or less adaptive depending on the problem and situation" (Opfer and Siegler, 2007, p. 170; Siegler,
1996). However, the findings do not support the theory as applied to number line estimation in
Siegler's own work (see Opfer and Siegler, 2007). This application of overlapping waves theory
functions within the interpretation of number line estimation as revealing individuals' internal or
mental representation of a number range. Within this interpretation, overlapping waves theory
then describes the mechanism of change from a logarithmic to linear representation of each

range considered. The findings of this study fail to support the idea that number line estimation
reflects an internal or mental representation of number ranges in this transparent way. Instead,
the findings strongly support the idea that individual estimation trials vary with trial-specific
factors. In this understanding of number line estimation, the "variety of approaches (i.e. strategies,
rules, or representations)" posited by overlapping waves theory are certainly present, but at the
level of children's representations of individual numbers which they bring to bear on estimation
trials with trial-specific factors. The multiple representations are not a logarithmic or linear
distribution of numbers on the range 0-10, for example, but instead the multiple representations
children have of target numbers, for example "nine is nine steps on from the left of the number

line", "nine is one hop back from ten", and "nine is about halfway between 0 and 20".

10.3 Significance of findings

The study provides important qualitative evidence of children responding to number line
estimation tasks in the ways hypothesised, but not actually investigated, by many previous studies
in the field. The study provides a new form of evidence in support of conclusions from eye-
tracking and novel statistical analyses about the strategies that children adopt in number-line
estimation tasks, which hold that children incorporate progressively more ‘anchor points’ into
their estimations and adapt their strategies based on not only their age and mathematical

experience, but the mathematical features of the estimation trial.

The study provides a unique longitudinal data set, which has allowed the examination of
individual children’s estimations — both qualitatively and quantitatively — not seen in previous
studies. Close examination of number line estimations in this longitudinal data set does not reveal
abrupt changes of representations of number ranges. Instead, the data shows how children's
interactions with number line estimation tasks corroborate accounts of number concept

development that emphasise connection-forming (Nunes and Bryant, 2009).
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The study agrees with findings from the vast body of literature showing that children’s
estimations more closely resemble linear distribution with age and experience. The original
research design of this study provided a newly in-depth view of the estimation processes that go
along with this, and a close-grained look at how estimation trials themselves change. The
evidence more strongly supports this description (“more closely resemble”) than a log-linear
hypothesis for children’s number-line representations changing based on a ‘shift’ in their internal
representation of number (e.g. Siegler and Booth, 2004). The significance of this study in this
respect is that the depth of evidence on children’s number line representations has afforded a
more critical comparison of these two descriptions of increasing linearity. The conclusion of this
study is that describing the change in terms of resembling or approximating a linear function (see
Siegler and Thompson, 2014) does not merely avoid the incorrect assumption of the log-linear
account (that the estimation results transparently reflect children’s ‘mental number line’) but in
fact has more (positive) scientific accuracy. The conclusion of this study is that multiple factors
contribute to changes in children’s estimations, and that increasingly linear estimations result

from these changes together.

The research design provides a significantly new and original layer of evidence even within
strategies already hypothesised or identified. Because of the multimodal data collected, the
analysis not only, for example, identifies children using relative numerosity and a right endpoint
anchor, but also observes how they do this. In an example from Zoe’s R4 interview (see section
6.4.2.3) the study is able to show that Zoe left a (too large) space between 71 and 100 because of
reckoning on the decades that needed to fit in between these two points. In previous studies in
the literature, this level of detail was not possible: the qualitative data collected by Petitto (1990)
comes closest, but was restricted to a much coarser level of detail (categorising children's

responses to each trial into one of just four categories).

The study further challenges the idea that interpreting children’s number line representations as
components of their representation of a whole range of numbers is meaningful. White and Szucs
(2012) concluded that their findings, suggesting trial-specific variation in estimation, shed
reasonable doubt on this idea and highlighted it as a priority for investigation. The findings of this
study clearly demonstrate the estimation of individual target numbers to be influenced by trial-
specific factors, and thus support White and Szucs' position that it is not meaningful to think of
individual estimation trials as outputs or results of an underlying 'representation of the range n to
m'. This study is therefore in agreement with recent quantitative studies which have also directed

their focus to individual estimation trials (e.g. Ashcraft and Moore, 2012) and found statistical
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evidence of trial-specific variation. As with other findings, the significance of this study remains

that it is unique in offering the longitudinal and qualitative evidence on this point.

Although the findings in this study emerged from focus upon individual cases, there are good
reasons to believe that they are not unique to these children studied. The sample was taken from
a typical South of England primary school with mixed intake, and the sample of children included
the full range of mathematical attainment in the class as assessed by the classroom teacher. For
other year one pupils following the National Curriculum in England, it is believed that similar
responses to the interview tasks, and similar changes throughout the school year, would be found.
This study does not of course offer data on responses to number line estimation tasks in older
children and adults, or on children of the same age (5-6 years) experiencing significantly different

education.

10.4 Theoretical and methodological reflections

Duval’s theory of representation provided a foundation for viewing children’s responses to
diverse research tasks as representations of their emerging conceptions of number. This was
particularly valuable for number-line estimation tasks; this theoretical framework allowed the
study to focus upon the mathematical process of converting between representations and to
consider with an open mind all of children’s representations during each trials. Instead of
beginning with the categorisation of responses as correct/incorrect, or with the counting of pre-
identified strategies, the theoretical framework led towards a methodology that captured a far

more rounded view of children’s mathematical activity.

Recording children’s estimation processes over one school year provided a unique set of
qualitative data that allowed changes in their representation of number structure and estimation
strategies to be compared with changes in the linear accuracy of their estimations. The

longitudinal aspect of the research design was crucial for the analysis and findings of this study.

The methodology, very strongly shaped by the demands of the theoretical framework, allowed
the study to provide new forms of evidence on children’s representations of number, and for this
reason was a key part of the study’s overall value and contribution. Whilst it was a highly time-
consuming approach, it provided extremely interesting findings in response to the research
questions, and | believe the application of the methodology to other samples — particularly older
children at a different point in their mathematical education — would reveal similarly interesting

aspects of their representation of number.
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The theoretical framework and methodology were particularly valuable for allowing an in-depth
exploration of children’s representations of number in light of the highly complex ‘unknowns’ in
this field. As the literature review explored in depth, the themes to which this research relates are
problematic: definitions of number and concepts of number; and how the mind grasps, visualises
or processes number, are complex and contentious topics. Furthermore, the contributions of

different research traditions are frequently not reconciled.

The methodology does not allow the explanatory power of log-linear, proportional reasoning and
strategy-based explanations of number line estimation data to be compared, but it was not
designed to do so. It is possible that the current qualitative aspect of the methodology could be
adapted into a categorisation scheme and its power to statistically explain results tested. The
current study has provided groundwork that could enable this however, converting a qualitative
analysis into a scheme that could successfully categorise children’s behaviour would be difficult.
Furthermore, the very numerous existing quantitative studies comparing (simpler) number-line

estimation accounts have shown strictly limited success over the years.

10.5 Implications for practice

The conclusions of this study suggest several implications for educational practice. Firstly and

most importantly, this study emphasised that young children represented emerging

understanding of number structure and even measure. Evidence showed that children
represented structure even when their resulting number line estimations were linearly inaccurate,
and this was the case for all children in the study, not only the children considered ‘high attaining’.
Some children explicitly drew on knowledge of halves and quarters, but all children represented
developing aspects of number structure that went beyond increasing and decreasing number
sequences. The question implied for educational practice is whether these early and developing
ideas about number structure are sufficiently appreciated and encouraged. Given the existing
research on children’s development of what is termed ‘number sense’, it is clear that connection
between early number concepts is central to ‘understanding’ number, and this study emphasises
that it would be false to delay mathematical discussion of relative numerosity and emerging ideas
of proportion (in favour of the important early sequence structure) because children of this age
group already represent such ideas in their interaction with a task that asked them to engage with

spatial representation of numbers.

A second implication is that use of number line estimation tasks to investigate or assess children’s
emerging understanding of number would require extremely detailed (research-level) observation

or mathematical dialogue with the child before the task could provide meaningful feedback. This
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study concludes that there are multiple ways for children to achieve linearly accurate
representation on a number line, and multiple ways in which number line estimations can end up
linearly inaccurate, and hence in order to connect the task to children’s emerging number

understanding requires significant effort.

A further implication is that for the same reason that number line estimation tasks are complex as
tools of assessment, they are rich in terms of mathematical possibility, specifically in terms of
emerging understanding of number structure. Particularly in light of the first point in this section —
the representation of emerging number structure that the young children in this study showed —a
question for educational practice is whether sufficient use of this simple task concept is made in
classrooms for younger children. Even without direction from the researcher, the task context led
or enabled children to represent number structure. In particular, the moments of triumph — using
the ‘shortcut’ of relative numerosity to accurately position target 18 in the range 0-20 — and
contradiction — particularly when count strategies contradicted relative numerosity and ‘what was

possible’ — suggest obvious opportunities for mathematical discussion in the classroom.

A final implication of the study is to ask about the impact of two very different usages of the
number line in current year one classrooms. The first is the frequent appearance of ordering tasks,
where the linear spacing of numbers is already provided (either with blank boxes or numbers on
equally sized pieces of card). This task reinforces sequence order, but no other number structure,
and may indeed contribute to difficulties progressing beyond understanding numbers as discrete
items in a sequence. The difficulties posed to later learning by the “whole number bias” (see for
example Siegler et al., 2011) make this a serious concern. The current research relates to this
strand of research by demonstrating the more structurally interesting mathematical ideas brought
into play by the number line representation task, as well as points at which children encountered

contradictions after reliance on sequence structure representation.

The second number line usage that the current study relates to is the use of the empty number
line in addition and subtraction problems. In the light of the number structure and relationships
brought to the foreground by the tasks in this study, the question is to what extent the empty
number line method encourages an unhelpfully abstract sense of decades and units. The method
encourages children to decompose numbers using part-whole structure, but then uses the
number line to represent the parts in a way that divorces the spatial representation from the
relative size of the components. To take a concrete example, although children are encouraged to
use a ‘big’ jump to represent ten and a ‘little’ jump to represent one unit, a set of four wobbly
‘jJumps’ along an empty number line could be used to represent 31 (3 tens + 1 unit), but also 13 (1

ten + 3 units), or indeed 40 (4 tens). Whilst acknowledging the excellent potential for encouraging
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children to decompose numbers using part-whole structure, the method as modelled in the
classroom seems to have high potential for reducing meaning to ‘hopping along the number line’.
The findings of this study show that even in the range 0-10, children’s sense of the relative
numerosity of numbers is not yet robust. The present study has not examined the influence of
empty number line usage on young children, but the conclusions of the study point strongly
towards encouraging spatial representation of number in the classroom to respect relative

numerosity.

10.6 Considerations for future research

Directions in which the present study could be strengthened or extended have been noted at
various points. The study has confirmed strong hypotheses about ways in which young children
respond to number line estimation tasks, but there are important areas which remain for further

research.

One highly important area would be to apply the in-depth analysis of the present methodology to
an adaption of the task-based interview that included an intervention by a teacher-researcher.
Whilst previous research (Thompson and Opfer, 2010) has examined the impact of feedback
(specifically, relating estimations to a ‘correct’ linear representation), the data collected focused
only on children’s quantitative estimation results. | believe that applying the mixed-methods
analysis used in the current study would reveal the changes (if any) in children’s representation of
number at a far richer level. It would be particularly interesting to stop short of the ‘correcting’
feedback in Thompson and Opfer’s study, and first examine the effect of designed questioning
that engaged children in mathematical dialogue about where numbers ‘belonged’ on the number
line representation. On one hand it is a strength of the current study that focused entirely on
what children did, alone, with only the prompts of the task context and the very general support
and encouragement of the researcher. On the other hand, it is likely that children’s incorporation
of number structure into the task could have increased given targeted encouragement, and

research into this as an educational process is what this research did not do.

Related to the above point and to the well-documented connection between linear accuracy of
estimation and mathematical attainment, an obvious route for future research would be to use
the qualitative findings of the present study to design a teacher-researcher intervention for
children, particularly those with currently low mathematical attainment. The aim of this would be
to examine the short and long term effects of an intervention focused on linear representation
based on the current findings about children’s existing representation of number structure whilst

carrying out estimation tasks. Parallel research into the existing task responses of older children,
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particularly after teaching on measure and proportionality, and then the potential of number line

intervention, would also be illuminating.
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Appendix 1

The following table has been my working document for keeping track of theoretical ideas in the

thesis.
Theoretical idea Says what Impact/role Thoughts
Cognitive “internal and external One of several Have to contrast
integration (De parts of numerical philosophical theories | with the internalist
Cruz, 2012) cognition are attempting to explain | views (Dehaene, de
g complementary, and “how actions in the Cruz suggests).
ueo need not be isomorphic” | world enhance
g Expect “a causal, cognitive processing”
dynamic interaction
between both types of
processes”
Duval’s theory of Complex. Discussed at Research problem, Need to make clear
cognitive length in Theoretical RQs, lit review, design | the theory
~ representation F/W chapter. and analysis. influences the
2 project at all these
% levels.
i Presmeg’s theory of | 5 types of visual RQs, design, analysis. | A way to interpret,
visualisation imagery. As adapted, 3 classify and compare
types of component sign. imagistic rep”s.
No name — “specific numbers could | A way to interpret Try interpreting

Being tested/explored in analysis

hypothesis from
results (White and
Szucs, 2012)

exhibit unique behaviors
as a function of the
familiarity with the
number range, proximity
to either external or
mental anchor points, as
well as knowledge of
arithmetic strategy”

number line
estimation task
results

using this: does it
seem plausible and
constructive?

Proportion Hypothesis about how A way to interpret To be

judgement estimation task done number line tested/considered
estimations

Log-linear See lit review. A way to interpret To be tested

hypothesis number line

estimations

Overlapping waves
theory (Siegler and
Opfer, 2003)

Individuals have multiple
rep”s at a time, and their
use comes and goes in
waves

A way to interpret
changes in uses of
representations.

Try interpreting
using this: does it
seem plausible and

constructive?
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Appendix 2

The following is the diagram of Duval’s classification of cognitive representations as it appears in
(Duval, 1999). It is an earlier version of the same classification diagram cited in the Theoretical
Framework, from Duval (2000). In substance, the two diagrams are very similar, but certain
changes in Duval’s labelling and examples mean that the 2000 diagram clarifies some earlier

ambiguities.

Diagram of cognitive representation classification (Duval, 1999, p. 6; republished Duval, 2002, p.

315)

INTENTIONAL AUTOMATIC

bringing into play a semiotic system through activation of organic

(mentally or externally) systems

The representations DENOTE the The representation IS THE

objectina ... experience of the ...
- \ / \
e \ ’ \
- / N
P \‘ P \‘
« ¥
non-analogical form analogical form reproduction of internal of what has
discursive representation perceived been
representations: providing a imitation, mental images
statement, formulas visualization: simulation A
\fﬁhs, geometrical
transformations
The acquisition of the systems and <<internalization>>

their use requires a long training

Figure 1. “Cognitive classification of conscious representations. This classification can be expanded more

and includes all kinds of representations.”

The key differences between the 1999 and 2000 diagrams are the following:
e Inthe 2000 diagram, Duval no longer labels the two classes of intentional representations

I”

(left hand side) “non-analogical” and “analogical”. Instead, representations are divided

into “discursive” and “non-discursive (visualization)”, then further subdivided into
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“natural language” and “formulae” (discursive) and “non-iconic” and “iconic”
(visualization). Duval provided examples for each category.

e The 1999 diagram caption explains that the diagram classifies “conscious
representations”, but this is not defined anywhere in the paper.

e The classification can be extended to “all kinds of representations” in the 1999 diagram:
unclear what this means.

e The 2000 diagram explicitly includes among the intentional representations (left hand
side) representations that do not belong to any particular formal semiotic system:
“drawings (man, house)” and “sketch”.

e The 2000 diagram omits the comment that “The acquisition of the systems and their use
requires a long training” (Duval, 1999, p. 6). Elsewhere, Duval explains how formal
semiotic systems do require extensive training, but by omitting the comment from the
diagram confusion is avoided over the nature of training required or possible for non-

formal representations such as iconic drawings and sketches.

2000 diagram, for comparison (Duval, 2000)

INTENTIONAL I AUTOMATIC
bringing into play a semiotic system through activation of organic systems
(mentally or materially) I
The representation DENOTES the represented The representation 1S THE OUTCOME of a direct
objectin a: I access to object
N P
7 AN I , s by N
P ’ > 5 I 7 + (from vision to memory)
¥ N ¥ b
discursive registers non-discursive registers I reproduction of internal availability of
(expression) (visualization) I perceived gestalts what has been SEEN
natural symbolic nen-iconic iconic I imitation mental images
i T 4
language or formal I simulation i
statements formulae graphs drawings I
figures {man, house...) I
schema sketch

<<internalization>>
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Appendix 3

Example of Task 2: number-to-position rocket estimation (final research design).
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Appendix 4

Example of Task 4: position-to-number rocket estimation (final research design).
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Appendix 5

Example of Task 2: number-to-position rocket estimation (as used in pilot study).
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Appendix 6

In the following list of inferred strategies and task responses, an example of typical behaviour is
provided for each item. As in the rest of the transcripts, the majority of these episodes show more
than one strategy in operation. The examples have been chosen in order to demonstrate typical
behaviour, and in typical cases strategies were combined, for example reference count-back from

right endpoint was almost always combined with evidence for use of a right endpoint anchor.
The following abbreviations are used:

RE: right endpoint

LE: left endpoint

MP: midpoint

RH: right hand

LH: left hand

RHI: right hand index finger
LHI: left hand index finger
J: the researcher

P, A, etc. the participating children

Strategies

Reference to left endpoint anchor

Child 2, R3. T4, range 0-100, target to estimate is 2.

Researcher, J: What about that one over there?

A: [RE, LE. RE, LE.] Easy! One. [Measures LE to rocket with one small jump of LH pencil point.
Writes.]

J: Oh, very good

Reference to right endpoint anchor

Child 1, R1. T2, range 0-20, target to estimate is 19.

P: | think ... it goes there ... [Sticking rocket sticker on line next to RE]
J: Yes?
P: Because it's really close to the twenty. [RH traces rocket->RE, LHI points at rocket.]
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Reference to midpoint anchor

Child 11, R4. T4, range 0-10, target to be estimated is 4. Chris estimates the answer to be 5.

C: [looks at rocket, then MP] It's nearly in the middle. [looks at J ... points towards MP with pencil.]
J: Yes.

Reference to quarter-point anchor

Child 1, R4. T2, range 0-20, target to estimate is 4.

J: Number 4
P: [Looks briefly to MP, then takes rocket quickly to left part of line. Sticks.] Just under a quarter.

Reference to three-quarter-point anchor

Child 1, R5. T4, range 0-100, target to estimate is 67.

P: [Turns the page to first 0-100 trial] ... up to a hundred ... | think that's 75 cos | — looks like three
quarters. [Looks from rocket, to RE, to rocket. Hands rest at page edges, pause. RH pencil to
rocket ... writes "75".]

Reference to previous trial within the same range

Child 4, R1. T2, range 5-15, target to estimate is 9.

J: Nine.

E: [looks from proffered rocket to MP ... takes immediately to MP, sticks.]

J: Very nice.

E: Cos the ten went there. [RHI makes a sweeping gesture through the line, to the right of the 9
rocket, marking “there”, the rocket space for 10.]

Reference to previous trial in a different range

Child 8, R1. T2, range 0-20, target to estimate is 6.

C: But didn't you give me six a minute ago? [turning back to look]
J: Yes, it could be the same rocket again, that's alright.
C: Ah | put it a bit closer [to the LE on this 20 line, compared to 10 line]

Count-on from left endpoint to target
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Child 9, R1. T4, range 0-100, target to estimate is 18.

L: [Eyes sweep line from LE to rocket ... LHI makes 4 evenly-sized jumps rightward from LE to blank
rocket. Writes estimate.]

Count-on from target to right endpoint

Child 12, R4. T2, range 5-15, target to estimate is 14.

J: Fourteen is the first one, where does that go?
C: [whispering] next to 15... [Sticks quickly next to RE.] 14 15! [Taps just-stuck rocket, then RE.]

Count-on from midpoint

Child 4, R3. T2, range 0-10, target to estimate is 5.

J: Number 5.

E: ... [glances to LE, then rocket in hand, looks to right half of line, pauses] ... ... [takes rocket to
middle area of line ... RHI sweeps from near RE to right of MP, and holds ... LH takes rocket to MP
and holds there whilst RHI makes 5 emphatic jumps rightward from MP to RE. Both hands stick
rocket at MP.] [whispered] dah. [glances to LE]

Count-back from right endpoint

Child 12, R5. T2, range 5-15, target to estimate is 13.

J: Thirteen...

L: [smacks lips like a fish]...um....hmmm [looking around the room] ... [RHI with sticker makes 2
evenly-sized ‘hops’ leftward from RE ... makes one further hop to the left, and sticks rocket.
Glances to previous trial, then latest estimate.]

Count-back from midpoint

Child 5, R4. T2, range 0-20, target to estimate is 9.

J: And number 9.
Z: [eyes sweep from LE fast to middle area of line, then MP... takes rocket to MP, then makes one
jump leftward along line from MP. Sticks rocket. Throws arms in the air (as if in victory).]

Judgment using relative numerosities

Child 5, R5. T4, range 0-100, target to be estimated is 92.
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Z: [looks to LE, RE then rocket. Writes answer.] ... Ninety ... eight.

Task responses

Change of mind

Child 10, R2. T2, range 0-100, target to be estimated is 18.

J: Eighteen.
M: [Counts-on about 18-20 small jumps from LE rightwards .... then glides further rightwards to
MP and sticks rocket.]

Immediacy

Child 2, R3. T4, range 0-100, target to be estimated is 4.

J: And this one?
A: [looks to rocket next to LE and writes immediately]
J: Two, good.

Hazard —initial response led child to a recognised mathematical

contradiction

Child 8, R1. T4, range 0-10, target to be estimated is 8.

J: Now this rocket over here?

C: [goes to LE, glances RE, counts-on from LE] 12 3 4 5 ...[glances to blank rocket, carries on with
silent count-on] ... 13 14 uhhhoo [reaching rocket], there's no 15 though. [Sits up with puzzled
expression, looks to J].

J:No ...

C: But how, can it -? [Looks to previous rocket, then to current trial ... crosses arms]

“Easy” — explicit indication that a trial was found easy

Child 1, R4. T2, range 0-100, target to estimate is 25.

J: 25
P: That's quite easy cos it's a quarter. [Taking rocket to left part of line, adjusting tiny amount,
sticking down.]
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Appendix 7
Work plan after pilot study
This section briefly outlines the projected research progress and timeframe for completion. The

main data collection is well underway, so the principal stages to be considered are data analysis

and writing up. The following list and diagram show the planned timing of the research phases.

Oct 2012 - Jul 2013 Main study data collection
Jun 2013 — Nov 2013 Transcription of video data

Jul 2013 International Conference for the Psychology of Mathematics

Education research report presentation (Kiel, Germany)

Sept 2013 — Mar 2014 Data analysis and interpretation

April 2014 British Congress of Mathematics Education presentation

(Nottingham, UK)

Jan 2014 - Sept 2014 Writing up
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The main study data collection is on schedule to be completed in early July 2013. The
transcription phase will overlap with the final months of data collection since it is not necessary to
wait — transcription of earlier data can and should begin sooner, to allow more time to reacquaint
with the data and reflect upon it. The analysis and interpretation of data will similarly overlap
with the transcription phase. Transcription is itself a stage of data analysis, of course, but in

addition progress can be made on other analyses — particularly the statistical work — without
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needing to wait for all video interviews to be transcribed. Beginning earlier will allow more time
to carry out the intended analyses, reflect upon possible interpretations and consider whether

further analysis is required.

Writing will be carried out as part of the research process at all phases shown above, but it is
anticipated that the remaining chapters of the thesis —in a fairly final form — will be written from

January 2014 onwards.
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