
Cognitive and Probabilistic Models of Group Decision Making
Yuqing Tang1, Christian Lebiere1, Katia Sycara1, Don Morrison1 and Paul Smart2

1Carnegie Mellon University, USA
yuqing.tang@cs.cmu.edu,cl@cmu.edu,katia@cs.cmu.edu,dfm2@cmu.edu

2University of Southampton, UK
ps02v@ecs.soton.ac.uk

Keywords:
Cognitive Modeling, ACT-R, Argumentation, Group Decision Making

ABSTRACT: We introduce an experiment designed to study trade-offs in collaborative decision making environ-
ments such as the ability to accumulate information and its impact on the fluctuation of decisions. Two models of the
experiment are presented: a cognitive model using the ACT-R cognitive architecture and a probabilistic argumenta-
tion model using Markov Random Fields. Representative results from the experiment are presented and compared to
the results of the two models. Implications of the results and avenues for future work are discussed.

1. Introduction

Decision making in distributed environments has become
a ubiquitous part of our environment. Collaborative net-
worked environments range from Google Docs to elabo-
rate military command and control centers. The design of
such environments is far from trivial: while more informa-
tion is generally better, too much information can also be
detrimental by overwhelming its users. Given various cog-
nitive and attentional bottlenecks, decision makers face a
fundamental trade-off in interacting with this type of envi-
ronment. One could attempt to exchange as much infor-
mation as possible with partners on the collaborative net-
work but the obvious gains are limited by two factors: the
limitations of our perceptual-motor capabilities, i.e., how
fast we can enter information into the network (e.g., by
typing) and parse information received from the network
(e.g., by sorting through chat messages), and the limita-
tions on retaining information gleaned externally (e.g., for-
getting messages read earlier). Conversely, one could at-
tempt to focus on one’s own experiences, making the most
of them by rehearsing them and performing as many infer-
ences as possible, but at the potential cost of neglecting cru-
cial information available externally. The effectiveness of
a focus on internal (i.e., personal experience and memory)
vs. external (i.e., group experiences shared through the en-
vironment) sources of information fundamentally depends
upon the precise quantitative nature of our cognitive archi-
tecture, the statistical nature of the external environment,
and the organizational structure of the information-sharing
tool (Reitter & Lebiere, 2012).

In this paper, we assume some degree of information shar-
ing through the information environment and focus on a re-
lated dilemma: what level of information to share between
decision makers. One possibility is to share detailed in-
formation, making sure that all decision makers have all

potentially useful information, at the possible cost of over-
whelming them with irrelevant details. The alternative is to
share a high-level, refined version of the information avail-
able, hoping to maximize the utility of the exchange while
minimizing the perceptual-motor and attentional costs. The
difficulty of that trade-off is that one does not always (or
even most of the time) know a priori what is likely to be of
interest to another decision maker. The only way to know
in general would be to have access to all their information,
creating a Catch-22 situation.

In the rest of the paper, we present the design of an exper-
iment intended to address the issue, specifically by allow-
ing decision-makers to share detailed facts or a high-level
guess regarding a variety of questions that can be answered
using the facts. We then present two computational models
of decision-making for that experiment that are intended
to quantitatively address the tradeoffs described. We then
present an analysis of experimental results as well as pre-
liminary results from the model simulations on the accu-
mulation of information and its impact on the fluctuation
of decisions. Finally, we draw some parallels between the
two models and discuss some potential extensions of the
work.

2. Experiment

The task used simulates, using textual information, an arti-
ficial world region with political unrest. It requires four co-
operating subjects to discover a variety of details and draw
conclusions regarding an impending terrorist attack. The
data underlying this task are from ELICIT (Chan & Adali,
2012). Facts1 from which these conclusions can be drawn
are released to the subjects in stages over time. Each fact
is given to only one subject, each subject receiving facts

1ELICIT calls these statements “factoids”



disjoint from those given to other subjects, and the subjects
must decide which facts to forward to which other subjects.
For each trial, 68 facts are distributed in three waves. Each
wave contains roughly 1/3 of the 68 facts. Between two
consecutive waves, the subjects have 5 minutes to process
a wave of new facts. At the end of a trial, the subject must
submit their best conclusions from the facts collected, 15
minutes after starting. In addition to running experiments
with four human subjects, automated subjects (bots) were
also implemented, and data were collected for single sub-
jects playing with three bots, though without the human
subjects knowing their teammates were automated.

Each of the four subjects is asked to answer a different
question about the attack: who, where, what and when. For
any group of subjects these four questions are distributed
once to each subject on four different trials. The first is a
training trial, the results of which are not used, followed
by three experimental trials. The answer to the who ques-
tion is the name of the group expected to conduct the at-
tack; group names are colors, such as the “gold group” or
the “violet group.” The answer to the where question is a
country name; country names are derived from Greek let-
ter names, such as “Chiland” or “Omegaland.” The answer
to the what question is a kind of target, such as “embassy”
or “military base.” The answer to the when question has a
four-fold structure, consisting of month name, day of the
month, hour on a twelve hour clock, and “AM” or “PM.”
While not the subject of any of the questions, there are also
individuals, who serve as links connecting some of the facts
presented to subjects; individuals are named after animals,
such as “the Lion” or “the Jackal.”

The facts delivered to the subjects are sentences. Some are
simple and immediately useful, such as “The attack will be
at 11:00.” Though even this fact is delivered to the “where”
subject, and so must be forwarded by that subject to the
“when” subject. Others are more complex, and must be
combined with other information to be useful; for example,
“The Azure and Brown groups prefer to attack at night,” or
“The Lion is known to work only with the Azure, Brown,
or Violet groups.” Some of the facts delivered are essen-
tial for constructing correct answers, others are helpful but
not essential, and still others are mere noise, contributing
nothing to correct answers.

The four subjects interact with the system and with each
other through a web-based user interface, Figure 1, imple-
mented with HTML and JavaScript. This interface is di-
vided into several panes. One, on the right, summarizes the
player’s current role (who, where, what or when), describes
the names and roles of the other players, and allows access
to the instructions for reference.

The most prominent pane of the interface is the inbox, to
which new facts are delivered. These may be new facts,

delivered by the system; or they may be facts forwarded
by another subject. Facts are normally displayed here in a
partially obscured form, with only a few keywords, such as
“Yellow,” “Magenta” and “Green,” legible, the rest of the
text being replaced with ellipses. The user can click on a
fact to cause the full text to be presented. When the mouse
pointer is moved off the fact it is partially obscured again;
by recording the users’ mouse actions insight into the the
users’ attention can be gleaned. Below the inbox is a pane
multiplexed for three purposes: outbox, mylist and guess-
box. When used as the outbox facts can be dragged to it,
and forwarded to other subjects, in whose inbox they will
appear. When used as mylist, facts can dragged to it for
future reference; while users can use this for whatever pur-
pose they choose, it is expected that those who do employ
it will use it to consolidate facts they suspect are important
for answering their own question. Facts in mylist, as in the
inbox, are normally partially obscured, and must be clicked
to be read in full. At several points in each round subjects
are asked to make their best guess so far at the question they
have to answer, along with their confidence in the guess,
on a five-point scale. In this way, we can trace human sub-
jects’ behaviors on accumulating facts and its impact on
the fluctuation of decisions. These decision traces are then
compared with the traces produced by the ACT-R model
and the probabilistic argumentation model.

3. Models

Two different computational models of this task were im-
plemented, and their results compared to the human data.
The reason for using two different modeling paradigms is
to study what each can contribute to understanding group
decision making and draw lessons from any parallels or dif-
ferences between models. (Lebiere, Gonzalez, & Warwick,
2009)

3.1. ACT-R Cognitive Model

The ACT-R model uses the ACT-R cognitive architecture
(Anderson & Lebiere, 1998) and follows the instance-
based learning (IBL) modeling methodology (Gonzalez,
Lerch, & Lebiere, 2003). To provide for finer discrimi-
nation in judgment and ensure the ability to gradually ac-
cumulate evidence from a stream of individual facts, the
basic problem of determining the most likely candidate an-
swer for each question is formulated as a goal to assign a
probability to each potential answer. The goal is defined as
a chunk of type hypothesis that contains three slots:

• Question: the representation of the question, i.e., who,
what, where and when

• Answer: the representation of each possible answer, e.g.,
various groups for who



Figure 1: The user interface of the experiment

• Probability: a probability value assigned to the question-
answer pair

This representation follows the general IBL pattern of con-
text (question), decision (answer) and outcome (probabil-
ity). In keeping with the instance-based methodology,
this representation is used both for facts as well as goals.
Specifically, most facts are transformed into chunks of this
type if they make a strong assertion about a given ques-
tion. For instance, if the fact rules out a particular group,
a hypothesis chunk will be created (or reinforced if it al-
ready exists) stating (who, group, 0). Conversely, if it
strongly implies a group’s involvement, the chunk (who,
group, 100) will be created. If the fact mentions the pos-
sible involvement of n groups, then a separate hypothesis
chunk is created for each group with a probability of 1/n,
reflecting mutually exclusive participation.

Of course, those assertions are not literally correct–rather
the intent is to provide the basis for a rough estimate of
relative probabilities based on the information provided.
More precise facts (e.g., stating actual probabilities, or us-
ing qualifiers such as likely or probably) could be used to
create more accurate chunk encodings. When the model is
asked to generate a guess to a question, it iterates through
all the possible answers (e.g., all the groups for a who ques-
tion) and generates a probability estimate for each using the
blending mechanism used for memory retrievals (Lebiere,
1999). During memory retrievals, each chunk in mem-
ory has an activation that reflects factors such as recency,

frequency, and degree of match to the requested pattern.
Recency is factored through a power law decay from the
time that the chunk is created. Frequency reflects a power
law of practice of the numbers of times that a chunk is
strengthened following rehearsals. For degree of match,
we assume for simplicity that each question and answer are
distinct and no similarities are defined. Blending retrieval
then assigns for a given question-answer pair a probabil-
ity to each chunk matching that request (in general, there
will be several) reflecting a softmax (Boltzmann) distribu-
tion of chunk activations given a certain amount of noise.
Those probability estimates for each chunk associated with
the question-answer pair are then blended according to a
weighted average of the chunk probabilities (assuming lin-
ear similarities over the probability space (Lebiere et al.,
2013)). The probability estimates are not normalized but
instead the largest one is selected to generate the guess. All
parameters controlling the behavior of the model are left
at their default values: the base-level decay rate is 0.5, the
mismatch penalty is 2.5, the activation noise is 0.25, and
the blending temperature is 0.4.

Note that, as mandated by the ACT-R theory, the hypoth-
esis goals generated to provide the guess become them-
selves chunks in memory, as are guesses received from
other agents. This can give rise to cognitive biases such
as confirmation bias, where a strong initial estimate leads
to overoptimistic estimates later despite contradictory evi-
dence.



3.2. Probabilistic argumentation model

We developed the Markov Argumentation Random Field
(MARF) (Tang, Toniolo, Sycara, & Oren, 2014), which is
a combination of formal theory of human reasoning in ar-
gumentation and Markov random fields. The formal the-
ory of argumentation (Dung, 1995) formalizes the essen-
tials of human reasoning about inconsistent, uncertain and
incomplete information in the course of argumentative di-
alogues. However, in real world scenarios deviation from
the formal theory is unavoidable. MARF is a probabilis-
tic model which carries out real world reasoning after the
formal theory of human reasoning while at the same time
being flexible to accommodate the deviations from the the-
ory. Unlike the ACT-R model which focuses on revealing
the cognitive process of human reasoning, MARF follows
the knowledge engineering path aiming at reaching correct
reasoning as much as possible.

A Markov random field (Kollar & Friedman, 2009) is a
graphical model which encodes local Markov properties
— a random variable is independent of all other variables
given its neighbors — as an undirected graph to establish
probabilities of all valuations to the variables. Echoing the
local Markov properties, Dung’s argumentation semantics
(Dung, 1995) can be recovered by applying a list of ac-
ceptability rules based on a graphical model of argument
interaction. For example, “A is labeled IN (accepted) if
all its attackers are labeled OUT (rejected)” (Caminada &
Gabbay, 2009). Such rules, which assign acceptability to
an argument given the status of its neighbors, also satisfy
local Markov properties. Moreover, the construction of ar-
guments as proof networks (Tang, Cai, McBurney, Sklar,
& Parsons, 2011) also admit the local Markov properties
— the establishment of a conclusion is independent of all
other rules given the premises of the rules for the conclu-
sion. These two observations allow us to construct Markov
Argumentation Random Fields (MARF).

MARF compiles the argumentative knowledge and re-
ceived information into a mathematically rigid Markov
Random Field. The resulting MARF is able to track both
supporting links and conflicting links (argumentative de-
feats) among the outcomes, the applied knowledge and the
received information. It can compute the most probable
argumentation for the outcomes and identify the pieces of
knowledge or received information that would render the
premises or outcomes unreliable or reverse the outcome
dramatically.

For example, the MARF in Figure 2 is compiled from
the following facts in the ELICIT tasks2: (1) The Lion
is involved; (7) The Chartreuse group is not involved;

2The numbering of the facts are same as it is in the ELICIT
fact set coded as 1aGMU.

(9) The Purple or Gold group may be involved; (10) All
of the members of the Azure group are now in custody;
(12) There is a lot of activity involving the Violet group;
(13) The Brown group is recruiting locals - intentions un-
known; (16) Members of the Purple group have been vis-
iting Omega; (18) The Azure group has a history of at-
tacking embassies; and a domain constraint (S-1) there is
only one answer for the who question: either Brown, Vio-
let, Chartreuse, Purple, Gold, or Azure.

In Figure 2, Oval nodes are variable nodes tracking the ac-
ceptability status (i.e., accepted, rejected, undecided) of
predicates (including equality assertion, e.g. who? :=
“Brown”). Square nodes are factor nodes modeling how
predicates acceptability status interrelate with each other
regarding the meaning of facts. For example, fact “10) All
of the members of the Azure group are now in custody”
relates acceptability of predicates inCustody(“Azure”) and
the equality assertion who? := “Azure” (the answer to who
is “Azure”). If inCustody(“Azure”) is accepted, then who?
:= “Azure” is likely to be rejected. Every factor node is as-
sociated with a weight to reflect how much such a factor
should be taken into account when evaluating the probabil-
ity of an acceptability assignment to predicates via an ex-
ponential family distribution parameterized by the weights
of the facts:

Pr(~x) =
1
Z ∏

Fj∈F
exp

(
〈~Wj,φ j(~x j)〉

)

where 〈~Wj,φ j(~x j)〉 is the inner product of the weights and
the argumentative features φ j(~x j) of the acceptability vari-
ables vector ~x j of a fact Fj. Z is a normalization con-
stant to ensure that Pr(~x) is a probability distribution over
all possible acceptability assignments. Argumentative fea-
tures φ j(~x j) reveal elements that are essentials in evaluating
the meaning of the fact according to the formal argumen-
tation theory. The higher the validity of an acceptability
assignment is, the higher the probability of such an assign-
ment will be; the higher the weight of a fact is, the higher
the probability will be for an acceptability assignment that
conforms with the meaning of the fact.

With MARF, we can model the interactions of premises,
conclusions, inference rules, and argument attacks quan-
titatively through potential functions. Simple operations
on these potentials facilitate the computation of a coherent
probabilistic interpretation of the argumentation outcome
— the argumentation structure along with the acceptabil-
ity status assigned to premises, conclusions, inference rules
and arguments. In addition, MARF provides a computa-
tional framework to learn probabilistic evaluation functions
of the premises and outcomes following data revealing hu-
man reasoning.



Figure 2: A compiled Markov Argumentation Random Fields after the first wave of facts (light green oval nodes are
accepted predicates; grey oval nodes are rejected predicates; light blue oval nodes are undecided predicates; red square
nodes model the argumentative conflicting relationships among predicates)

4. Results

In this section, we will compare the results of human exper-
iments, the ACT-R model, and the MARF model running
on the same ELICIT task.

4.1. Human experiment results

Sixty subjects, divided into twelve groups of five, were re-
cruited and finished the task. While they did not know
how they were divided, four of each five worked cooper-
atively together, and the fifth worked separately, with three
bots. Among the 60 subjects who participated in our ex-
periments, 15 of them (including the subjects who worked
with bots) answered the “who” question for the fact set
“1aGMU17”. The results are depicted in Figure 3. Among
all these participants, 50% of them reached to the correct
answer, “the Violet group”, after seeing the first wave of
facts. After seeing the second wave of facts, 100% percent-
age of the participants reached the correct answer. How-
ever, after the third wave, about 40% of the participants
were confused by the new facts and changed their answers
from the correct one.

Figure 3: The human experiment result

4.2. ACT-R Results

Sample results for the “who” question are presented in Fig-
ure 4 of fact set “1aGMU17”. Probability estimates for
each possible answer (i.e., all groups) are presented for
each of three waves of facts. Note that those are the unnor-
malized (non-exclusive) probability estimates rather than
actual (exclusive) forced-choice answers. The initial esti-
mate for the violet group (the correct answer, as it turns
out) is the highest following the first and second batch of
facts, making it the preferred choice in these two phases as



for the human subjects. However, the estimate for the vio-
let group falls to third-highest after the third batch of facts
due to a dilution effect from a number of facts mentioning
other possibilities.

Note that these results were generated without reflecting
the effect of previous guesses on later phases. This would
be a case where confirmation bias could actually lead to
a correct final answer by strengthening the correct guess
based on the effect of early evidence.

Figure 4: The ACT-R result

4.3. Probabilistic argumentation results

The results MARF over the same ELICIT task (the fact set
“1aGMU17”) is depicted in Figure 5. The three waves of
incoming facts are compiled into three MARFs. Figure 2
is the MARF compiled from the first wave of facts. In this
first wave MARF, the fact “(1) The Lion is involved” is dis-
connected from other facts because the meaning of this fact
is disconnected from other facts. After the second wave of
facts, fact (1) is connected to the majority of facts (as de-
picted in Figure 6); however, there is a new disconnected
fact (15). As more and more facts becomes available, the
MARFs are able to consider more connected facts to evalu-
ate the acceptability of the predicates underlying the mean-
ings of these facts. After 3 waves of facts, the MARF
is able to evaluate acceptability status of each answer as
marginal probabilities, i.e., the probability of accepted, re-
jected and undecided, considering all available facts. To
align with the results of human experiments and the ACT-R
model, Figure 5 plots the probabilities of accepting the an-
swers omitting the probabilities of rejected and undecided
status of these answers where weights of all the facts are
set to 10 and the weight of the domain constraint is set to
100. In the first two waves, MARF decides that the “Pur-
ple” group is the answer with probability of 94%. How-
ever, after the receiving the third wave, MARF changes its
opinion sharply to the “Violet” group. This is the case be-
cause different from human and ACT-R model, the MARF
is constructed to be decisive separating the accepted an-
swers and the rejected answers as much as possible while

following meanings of the available facts as closely as pos-
sible.

Figure 5: The probabilistic argumentation result

5. Conclusions and Further Work

We present an experiment and two computational models
of group decision making. While both data analysis and
model development are preliminary, they highlight interest-
ing emerging effects. Rather than following a linear path,
the deductive processes faced with a constant stream of
facts induce a fluctuation in beliefs that reflect a potentially
rich dynamic. Both computational models capture some as-
pects of the human data but not others. While both include
a representation of the deductive process (e.g. a question
activates its relevant facts and answers in the ACT-R model;
an MARF factor models a logical deductive rule) and its
constituent facts and conclusions, the processes reflect dis-
tinct assumptions regarding the parallel vs sequential na-
ture of inference processes, the implicit vs explicit nature of
probabilistic information, and whether those processes are
fundamentally optimizing or satisficing. Still, those mod-
els share many representational assumptions regarding the
nature and structure of the problem representation, which
will allow us to formally examine the implications of their
assumptions.

ACT-R uses IBL to drive decision making; while MARF
uses potential factors to relate facts and answers. If the
given facts and its symbolic representation truly reflects
logical relation among the facts and answers, by design
MARF will produce the right answers. Furthermore, as
factors in MARF are interrelated through an undirected
graphical model, MARF is not sensitive in the order of re-
ceiving facts but sensitive in the availability of facts. On
the other hand, since the ACT-R model uses IBL activa-
tion, it is more sensitive to the order of receiving facts.
Therefore the ACT-R model follows human decision mak-
ing closely while MARF follows closely the logical rela-
tionships of information embedded in the facts to estimate
the answers.



Figure 6: The compiled Markov Argumentation Random Field after the second wave of facts (light green oval nodes are
accepted predicates; grey oval nodes are rejected predicates; light blue oval nodes are undecided predicates; red square
nodes model the argumentative conflicting relationships among predicates)



Numerous avenues of work are possible for both data anal-
ysis and model development. We will examine whether
learning processes can improve decision making with expe-
rience, develop models of judgments for information shar-
ing, and analyze various experimental conditions to deter-
mine the answer to our initial question as to whether infor-
mation is best shared at the most detailed level of basic facts
or in the form of refined, high-level conclusions.
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