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Abstract—In this paper we propose a pair of low-complexity
user selection schemes with zero-forcing precoding for multiuser
massive MIMO downlink systems, in which the base station
is equipped with a large-scale antenna array. First, we derive
approximations of the ergodic sum rates of the systems invoking
the conventional random user selection (RUS) and the location-
dependant user selection (LUS). Then, the optimal number of
simultaneously served user equipments (UEs), K∗, is investigated
to maximize the sum rate approximations. Upon exploiting K

∗,
we develop two user selection schemes, namely K

∗-RUS and K
∗-

LUS, where K
∗ UEs are selected either randomly or based on

their locations. Both of the proposed schemes are independent
of the instantaneous channel state information of small-scale
fading, therefore enjoying the same extremely-low computational
complexity as that of the conventional RUS scheme. Moreover,
both of our proposed schemes achieve significant sum rate
improvement over the conventional RUS. In addition, it is worth
noting that like the conventional RUS, the K

∗-RUS achieves good
fairness among UEs.

Index Terms—User selection, massive MIMO, low-complexity,
system sum rate, user fairness.

I. INTRODUCTION

The multiuser MIMO (MU-MIMO) technology plays a

key role in modern wireless communications due to its sub-

stantial performance gains over the conventional single-input

single-output (SISO) techniques [1], [2]. Relying on MU-

MIMO, a multi-antenna base station (BS) can simultaneously

serve multiple user equipments (UEs) within a cell using the

same spectrum resource, and thus the spectral efficiency is

improved. User selection is critical for optimizing MIMO

systems’ overall performance in a variety of scenarios and has

been extensively studied, such as in cellular networks (see for

example [3] and references therein) and in multi-hop networks

[4]–[7]. The semi-orthogonal user selection (SUS) leveraging

the degree of channel orthogonality among UEs is probably

one of the most popular low-complexity user selection meth-

ods for improving system sum rates [3], [8], [9]. Additionally,

considering the fairness amongst UEs, round robin scheduling

[3] and random user selection (RUS) are regarded as the

two simplest methods offering equal opportunities to all the
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candidate-UEs. Both of them have been widely employed in

practical cellular systems as well [1].

In the realm of MU-MIMO, the recently proposed massive

MIMO, where the BS is equipped with a large-scale antenna

array to serve multiple UEs, has been widely envisaged as one

of the major candidate technologies for the fifth generation

(5G) cellular networks owing to its favorable features, such

as huge spectral efficiency and energy efficiency gains [10]–

[12], [14], [15]. Like in the conventional small-scale MU-

MIMO systems, user selection is also important in massive

MU-MIMO systems [16]–[19], though it faces new challenges.

More specifically, in the user selection for conventional MU-

MIMO systems, it is usually assumed that the number of

candidate-UEs,N , is much larger than that of the BS antennas,

M . Therefore, upon employing instantaneous channel state

information (CSI)-aided user selection methods (e.g. SUS),

multiuser diversity gains can be harvested to boost the overall

system performance. By contrast, in massive MIMO systems,

it is impractical to have N ≫ M , since M is already

very large. Moreover, the computational complexity of the

conventional user selection methods might be too high for

the massive MIMO systems. For example, the computational

complexity of SUS is roughly O(M3N) [3], which will cause

huge consumption of power and computational resources if M
becomes large.

Recently, a range of user selection schemes have been pro-

posed for massive MIMO systems. The time-division duplex

(TDD) and frequency-division duplex (FDD) based massive

MIMO systems impose different requirements on user selec-

tion. By exploiting the instantaneous CSI of candidate-UEs,

Lee et al. proposed an SUS-like user selection method in [18]

and Xu et al. developed a greedy user selection scheme in [19].

These selection methods mainly focus on FDD scenarios, in

which the amount of downlink transmission resources con-

sumed by the downlink channel estimation training for all the

candidate-UEs does not increase with the number of candidate-

UEs N [20]. By contrast, in TDD scenarios, the downlink

channel is estimated through uplink training relying on channel

reciprocity, and the pilot/training symbol overhead imposed

by channel estimation increases with N [21]. In this scenario,

if the number of candidate-UEs is large, most of the channel

coherence slot in time domain will be consumed by channel es-

timation, leaving only a small fraction for downlink data trans-

mission. Hence, besides the high computational complexity,

the pilot overhead needed for channel estimation of candidate-

UEs also limits the application of instantaneous CSI-aided

user selection methods in TDD scenarios. In addition, for

FDD based massive MIMO systems, Nam et al. introduced
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user selection methods based on the candidate-UEs’ feedback

of instantaneous signal-to-interference-plus-noise ratio (SINR)

in [17]. However, these methods are not applicable for TDD

systems either. This is because in TDD scenarios, the feedback

signals from a large number of candidate-UEs will increase

the uplink proportion of the uplink-downlink shared frequency

band at each coherence slot, resulting in reduced resources

left for downlink data transmission. In summary, neither the

instantaneous-CSI estimation based nor the uplink-feedback

based user selection methods are suitable for the downlink of

TDD-based massive MIMO systems. At the time of writing,

the design of user selection for massive MIMO systems with

the TDD mode remains a largely open area. Hence, the novel

user selection methods which cause no or just little decrease

of downlink transmission resources represent a new promising

research subject.

In this paper, we consider the downlink of a TDD based

massive MIMO system where pilot-based channel estimation

and zero-forcing (ZF) precoding are invoked for serving a

number of UEs. First, with the aid of the random matrix

theory (RMT)-based large system analysis, we derive approx-

imations of the ergodic sum rates of the systems invoking the

conventional RUS and the location-dependent user selection

(LUS). The optimal number of simultaneously served UEs,

denoted as K∗, is solved offline for maximizing the sum

rate approximations. Then, aiming for improving the system

sum rates, a pair of K∗-based low-complexity user selection

methods are proposed, namely the K∗-based random user

selection (K∗-RUS) and the K∗-based location-dependant

user selection (K∗-LUS). For K∗-RUS, K∗ UEs are randomly

selected for simultaneous data transmissions at each time

slot. The system sum rates are improved with an appropriate

configuration of K∗. Meanwhile, the fairness among UEs is

guaranteed as a result of the random selection. For the K∗-

LUS scheme, K∗ UEs nearest to the BS are selected for data

transmission, which may achieve higher sum rate performance

than K∗-RUS.

Notably, our schemes exhibit two fundamental differences

as compared with the conventional user selection schemes.

First, unlike the conventional SUS that requires the instan-

taneous CSI of small-scale fading (SSF), our schemes only

need long-term CSI. Second, rather than emphasizing which

UEs should be selected for improving system performance,

the proposed user selection schemes mainly focus on how

many UEs should be selected for simultaneous transmissions.

Thanks to these differences, we bypass the complicated online

computations regarding the sum rates and the selection metric,

which are often inevitable in the conventional schemes. There-

fore, the online computational complexity of the proposed two

schemes is on the same order as that of the conventional RUS

scheme. Furthermore, since our user selection schemes are

independent of the SSF CSI of candidate-UEs, we no longer

have to carry out channel estimation of all the candidate-UEs

for user selection. Instead, only the active-UEs need to send

pilots at each coherence slot. As a beneficial result, we are

capable of saving the cost of channel training significantly

and attaining more resources for data transmission.

It is worth pointing out that a location-adaptive transmission

BS UE_1

UE_N

UE_k

UE_K

UE_2

Fig. 1. The downlink of a TDD based massive MIMO system, which is
composed of an M -antenna BS and N single-antenna candidate-UEs. Among
all the candidate-UEs, K UEs are selected to be simultaneously served, which
are regarded as the active-UEs.

strategy was proposed for TDD based massive MIMO systems

in [22]. Our work differs from [22] in several respects.

Random locations of UEs are assumed in this paper, whereas

in [22] the UEs were assumed to be placed at fixed points.

Therefore, the optimal number of active-UEs in our paper is

independent of specific channel realizations, while in [22] this

number has to be re-calculated whenever any candidate-UE’s

large-scale-fading (LSF) CSI changes. Moreover, we consider

spatial correlation in the channel model, which is ignored in

[22].

The remainder of this paper is organized as follows. The

system model is presented in Section II. In Section III, we

analyze the asymptotic sum rates of the system invoking the

conventional RUS and LUS, and then further develop two low-

complexity user selection schemes. Our numerical results are

provided in Section IV. Finally, the conclusions are drawn in

Section V.

Notations: We use uppercase and lowercase boldface letters

to denote matrices and vectors, respectively. (·)H , (·)† and

tr(·) denote the conjugate transpose, the pseudo-inverse, and

the trace operations, respectively. Ex[·] represents the expected

value with respect to x. CN (m,Θ) denotes the circularly

symmetric complex Gaussian distribution with mean vector

m and covariance matrix Θ. Finally,
a.s.−−→ denotes the almost

sure convergence.

II. SYSTEM MODEL

We consider the downlink of a TDD based massive MIMO

system consisting of an M -antenna BS and N single-antenna

candidate-UEs (N ≥M ). We assume that N and M are of the

same order. K UEs (K < M) are selected for simultaneous

data transmissions at each coherence slot. The composite

channel matrix G ∈ CK×M from the BS to the K active-UEs

characterizes LSF, SSF and transmit correlation1, and can be

expressed as

G = D1/2HR1/2, (1)

1The distance between UEs is supposed to be sufficiently large compared
to the signal wavelength, so the receive correlation is not taken into account.
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where H ∈ CK×M is the SSF matrix with independent

and identically distributed (i.i.d.) CN (0, 1) entries, and the

diagonal matrix D ∈ RK×K contains the LSF coefficients βk
along its main diagonal. We model the LSF of the k-th active-

UE as2 βk = cd−αk , k = 1, . . . ,K , in which dk is the distance

from the k-th active-UE to the BS, α is the pathloss exponent

and c is the pathloss at the reference distance. The transmit

correlation matrix at the BS is modeled by the widely used

δ-Kac-Murdock-Szeg? matrix R, in which δ is the antenna

correlation coefficient [23].

The system operates in the TDD mode and the BS obtains

the SSF CSI relying on the training-based channel estimation.

The estimation Ĥ of the SSF CSI matrix H is modeled as

H = Ĥ+ H̃, (2)

where the K×M dimensional estimated channel matrix Ĥ =
[ĥT1 , · · · , ĥTK ]T and the K×M dimensional error matrix H̃ =
[h̃T1 , · · · , h̃TK ]T can be expressed as

Ĥ =
√

1− ρZ1, H̃ =
√
ρZ2, 0 ≤ ρ ≤ 1. (3)

ĥk ∈ C1×M and h̃k ∈ C1×M are the k-th rows of Ĥ and

H̃, respectively. Both Z1 ∈ CK×M and Z2 ∈ CK×M are

composed of i.i.d. CN (0, 1) entries, and the two matrices are

independent with each other3. We assume that the LSF CSI of

each UE and the transmit correlation matrix R are perfectly

known at the BS. According to (2) and (3), the downlink

channel matrix defined in (1) can be rewritten as4

G = Ĝ+ G̃

= D1/2ĤR1/2 +D1/2H̃R1/2.
(4)

Upon invoking the estimated channel matrix Ĝ and the ZF

precoding, the transmitted vector x ∈ CM×1 is written as

x = γĜ†s

= γĜH(ĜĜH)−1s,
(5)

where γ is the power controlling factor, s = [s1, · · · , sK ]T is

the K×1 information-bearing symbol vector and sk represents

the symbol intended to the k-th active-UE. Denoting the

available total transmit power at the BS as P , the long-term

power constraint is given by

E[tr(xxH)] ≤ P.

Thus, γ can be calculated as

γ =

√

P

tr(ĜĜH)−1
. (6)

2In this paper, we use a simplified LSF model in which the shadow fading
is excluded. Nevertheless, it should be noted that algorithms and schemes
developed in this paper can be directly extended to the model including
shadow fading.

3Note that the imperfect CSI model invoked here is similar to that of [10]
and different from that employed by [24] and [25]. In [24] and [25], the

authors assumed Ĥ = H+ H̃, where H̃ and H are mutually independent.
4In fact, as shown in [26], the explicit forms of Ĝ and G̃ is related to

the channel estimation approach, the power and the length of the training
pilots, as well as the statistical information of the estimated channel. Here, we
adopt a simplified model for tractability. Some tailored user selection schemes
relying on a specific channel estimation algorithm (e.g., LS, MMSE) will be
postponed for our future work.

It should be noted that we employ the equal power allocation

among active-UEs for the sake of low computational com-

plexity. Relying on (5), the K×1 dimensional received signal

vector at the K active-UEs is expressed as

y = Gx+ n

= γs+ γG̃Ĝ†s+ n,
(7)

where n = [n1, · · · , nk]T ∈ CK×1 is the additive white Gaus-

sian noise (AWGN) vector at the UEs, and nk ∼ CN (0, σ2
n)

represents the noise at the k-th active-UE. Additionally, the

received signal received at the k-th active-UE is given by

yk = γsk + γ
√

cd−αk h̃kR
1/2Ĝ†s+ nk. (8)

Then, we can write the SINR recorded at the k-th active-UE

as

SINRk =
γ2

σ2
n + cd−αk γ2h̃kR1/2Ĝ†ssH(Ĝ†)H(R1/2)H h̃Hk

.

(9)

Then, the sum rate R is given by

R =

(

1− K

T

) K
∑

k=1

Rk

=

(

1− K

T

) K
∑

k=1

log2(1 + SINRk),

(10)

where Rk is the rate of the k-th active-UE, and T denotes

the number of symbols over which the channel is constant.

As a percentage, the pre-log factor (1 − K/T ) implies that

the downlink data transmission only occupies a fraction of

the coherence slot. In particular, we assume that K UEs are

simultaneously served. Since each of the K UEs is assigned

one of the K orthogonal pilot sequences, the length of the

pilot sequence should not be shorter than K symbols [11].

For simplicity, in this paper we adopt the shortest available

pilot sequence of K-symbol length. Because the BS does not

transmit data during the uplink pilot transmission for channel

estimation, there exist (T −K) symbols left for downlink data

transmission at each coherence slot consisting of T symbols.

Therefore, the sum rate for downlink data transmission may

be evaluated using (10). Note that in order to guarantee the

feasibility of data transmission, we assume K < T in this

paper. Otherwise, the pilot transmission would occupy the

entire coherence slot T .

III. ASYMPTOTIC SUM RATE ANALYSES-BASED

LOW-COMPLEXITY USER SELECTION

In this section, the proposed user selection schemes are

presented. First, relying on the RMT-based large system anal-

ysis, we derive a deterministic approximation of the ergodic

sum rate of the ZF precoder aided massive MIMO system.

This result brings new insights into the question of how to

enhance the system sum rate performance. Then, a pair of

low-complexity user selection schemes are proposed based on

the attained approximation of the sum rate.
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A. Sum Rate Approximation in the Large-System Regime

We first evaluate the value of SINRk for the scenario where

M and K go to infinity with a finite ratio M/K > 0. Then,

the approximation of the ergodic sum rate is derived.

Applying RMT-based large-system analysis, we reveal that

SINRk may be characterized by (please see Appendix for the

detailed derivation)

SINRk
a.s.−−→ 1

∑K
i=1 d

α
i

(

A(K,M) +B(K,M)d−αk
)
, (11)

where

A(K,M) =
1

1− ρ

σ2
n

PcφM
,

B(K,M) =
ρ

1− ρ

ψ

Mφ2 −Kψ
.

(12)

In (12), φ is the unique solution of the equation

φ =
1

M
tr

(

R

(

IM +
K

M

1

φ
R

)−1
)

and ψ is defined as

ψ =
1

M
tr

(

R2

(

IM +
K

M

1

φ
R

)−2
)

.

Exploiting (10) and (11), the ergodic sum rate E[R] in large-

system regime can be formulated as

E[R] =

(

1− K

T

)

Ed1,··· ,dK

[

K
∑

k=1

log2(1 + SINRk)

]

≥ R̃,

in which R̃ is defined as

R̃ =

(

1− K

T

) K
∑

k=1

Edk

[

log2(1 + S̃INRk)
]

, (13)

and “≥” is obtained by applying Jensen’s inequality

E

[

log2

(

1 +
1

x

)]

≥ log2

(

1 +
1

E[x]

)

.

Additionally, S̃INRk is given by

S̃INRk =
1

T1dαk + T2d
−α
k + T3

,

where

T1 = A(K,M),

T2 = B(K,M)

K
∑

i=1,i6=k

Edi [d
α
i ],

T3 = A(K,M)

K
∑

i=1,i6=k

Edi [d
α
i ] +B(K,M).

(14)

In this paper, we employ the lower bound R̃ defined by

(13) as an approximation of the system sum rate. It should

be emphasized that R̃ is independent of the SSF CSI of UEs,

which constitute the basis for our designs.

Remark 1. The results obtained above are invalid for the

scenario of K = M due to mathematical intractability.

Fortunately, as shown by our simulation results that are given

in Section IV-A, K =M is rarely beneficial for enhancing the

performance of the considered massive MIMO system. This

phenomenon was also observed by [16] and [24]. Therefore,

in this section we focus on the sum rate approximation for

K < M .

B. K∗-Based Random User Selection (K∗-RUS)

In this subsection, we develop a novel RUS scheme, namely

K∗-RUS, for the sake of improving the system sum rate

and ensuring the fairness among candidate-UEs. Specifically,

compared with the conventional RUS scheme in which M
UEs are selected for simultaneous data transmissions at each

coherence slot, we modify the number of active-UEs to a

more appropriate value K∗, which is decided according to the

system parameters (e.g., the transmit power P of the BS) and

the statistical information of the channel (e.g., the probability

distributions of SSF CSI and LSF CSI).

BS

( , )
k k
r

k

k
r

UE_k

(0,0)

UE_1

UE_N

UE_K

Fig. 2. The diagram of UE locations.

In order to obtain K∗
RUS, we need to consider the user

distribution, which facilitates characterizing the effects of LSF.

As shown in Fig. 2, in this paper we employ the common

circular cell model [27], where all the N candidate-UEs are

independently uniformly distributed (i.u.d.) in a circular cell

having an inner radius of Rmin and outer radius of Rmax,

while the BS is located at the center point. We denote the

locations in polar coordinates, i.e., (rk, θk) is the location for

the k-th candidate-UE and (0, 0) for the BS. Therefore, the

probability density functions (PDFs) of rk and θk are given

by (the subscript k is omitted below for ease of notation)

fR(r) =
2r

R2
max −R2

min

, Rmin ≤ r ≤ Rmax, (15)

and

fΘ(θ) =
1

2π
,

respectively. The cumulative distribution functions (CDFs) of

rk and θk are written as

FR(r) =
r2 −R2

min

R2
max −R2

min

, Rmin ≤ r ≤ Rmax, (16)
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and

FΘ(θ) =
θ

2π
,

respectively.

As a result, for K∗-RUS, the PDF of the distance from the

k-th active-UE to the BS, i.e. fRUS
dk

(r), is given by

fRUS
dk

(r) = fR(r), Rmin ≤ r ≤ Rmax, k = 1, . . . ,K.

Then, it is easy to obtain

K
∑

i=1,i6=k

Edi [d
α
i ] = (K − 1)

∫ Rmax

Rmin

rαfR(r)dr

=
2(K − 1)(Rα+2

max −Rα+2
min )

(α + 2)(R2
max −R2

min)
.

(17)

Thus, R̃ in (13) can be rewritten as

R̃RUS =

(

1− K

T

)

K

×
∫ Rmax

Rmin

log2

(

1 +
1

T1rα + T2r−α + T3

)

fRUS
dk

(r)dr.

(18)

Substituting (12) and (17) into (14), and then substitut-

ing (14) and (15) into (18), R̃RUS can be reformulated

as (19) which is given on the next page. We can see

that (19) is only related to the system parameters of

T,M,K,Rmin, Rmax, P, c, σ
2
n, ρ, α and δ.

Given these system parameters, the optimal number K∗
RUS

in the sense of R̃RUS maximization can be obtained effi-

ciently with an one-dimensional search over the candidate set

{1, 2, . . . ,M − 1}, i.e.,

K∗
RUS

= argmax
K∈{1,...,M−1}

Γ1(T,M,K,Rmin, Rmax, P, c, σ
2
n, ρ, α, δ).

(20)

Obviously, K∗
RUS is independent of any instantaneous CSI,

which makes it possible to find K∗
RUS offline.

After obtaining K∗
RUS, the only online operation in the

proposed K∗-RUS scheme is to randomly select K∗
RUS UEs

for simultaneous data transmissions. Therefore, little extra

computational complexity is imposed on the proposed K∗-

RUS compared to the conventional RUS.

Remark 2. The authors of [24], [28] and [29] also discussed

the optimal number of UEs for the ZF precoding, but they

treated the LSF coefficients of UEs as deterministic values,

which limit the generality of K∗. In other words, K∗ has to

be updated whenever any LSF CSI of the system changes.

By contrast, we take random UE locations into account for

obtaining a more general and practical K∗. As long as the

statistical properties of the system remain unchanged, our K∗

keeps its current value for arbitrary LSF and SSF channel

realizations.

C. K∗-Based Location-Dependant User Selection (K∗-LUS)

In order to enhance the sum rate performance further, a

K∗-based location-dependant user selection scheme, namely

the K∗-LUS is developed in this subsection. In K∗-LUS, we

select an appropriate number of UEs in descending order of

the LSF coefficients (i.e., in ascending order of the BS-UE

distances) for simultaneous data transmissions.

Inspired by K∗-RUS, let us first investigate the optimal

number of active-UEs in LUS, which is denoted by K∗
LUS. We

assume that K UEs are selected and the distances between

the selected UEs and the BS satisfy d1 ≤ d2 ≤ · · · ≤ dK . Let

(rk, θk) represent the k-th active-UE according to the distance

in ascending order. According to (16), we can get the PDF of

the order statistic dk, k = 1, . . . ,K in LUS as

fLUS
dk

(rk)=
1

B(k,N−k + 1)
F

(k−1)
R (rk)[1−FR(rk)]N−kfR(rk)

=
2rk(R

2
max − r2k)

N−k(r2k −R2
min)

k−1

B(k,N − k + 1)(R2
max −R2

min)
N

,

(21)

in which B(x, y) represents the Beta function with parameters

x and y. Then, we have

Edk [d
α
k ] = Rαmin2F1

(

k,−α
2
;N + 1; 1− R2

max

R2
min

)

(22)

and

Edk

[

log2(1 + S̃INRk)
]

=

∫ Rmax

Rmin

log2

(

1 +
1

T1rαk + T2r
−α
k + T3

)

fLUS
dk

(rk)drk,

(23)

where 2F1(·) is the ordinary hypergeometric function [30].

Therefore, R̃LUS can be formulated with the aid of (12), (14),

(21), (22) and (23), as shown in (24) on the next page.

If the system parameters are fixed, we are capable of solving

for the optimal number K∗
LUS maximizing R̃LUS offline relying

on standard line search algorithms, i.e.,

K∗
LUS

= argmax
K∈{1,...,M−1}

Γ2(T,M,K,Rmin, Rmax, P, c, σ
2
n, ρ, α, δ).

(25)

As long as we find K∗
LUS, we just need to sort UEs in ascending

order of their distances from the BS and select the first K∗
LUS

UEs for data transmission.

Remark 3. With respect to the number of active-UEs K ,

we determine K = K∗
RUS and K = K∗

LUS according to the

given system parameters in the proposed K∗-RUS and K∗-

LUS schemes, respectively. By contrast, there usually exists

the scenario of K = M , where the full-spatial-multiplexing

transmission may be performed in the conventional RUS and

LUS schemes. In SUS, the value of K∗ depends on specific

channel realizations and will not be obtained until the selection

procedure is completed (please see Section IV-B and Section

VI-A in [3] for more details).
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R̃RUS

= Γ1(T,M,K,Rmin, Rmax, P, c, σ
2
n, ρ, α, δ)

=

(

1− K

T

)

K

×
∫ Rmax

Rmin

2r

R2
max −R2

min

log2



1 +
1− ρ

σ2
n

PcφM

(

rα +
2(K−1)(Rα+2

max−R
α+2

min
)

(α+2)(R2
max−R

2
min

)

)

+ ρψ
Mφ2−Kψ

(

2(K−1)(Rα+2
max−R

α+2

min
)

(α+2)(R2
max−R

2
min

)
r−α + 1

)



 dr.

(19)

R̃LUS

= Γ2(T,M,K,Rmin, Rmax, P, c, σ
2
n, ρ, α, δ)

=

(

1− K

T

) K
∑

k=1

∫ Rmax

Rmin

2rk(R
2
max − r2k)

N−k(r2k −R2
min)

k−1

B(k,N − k + 1)(R2
max −R2

min)
N

log2

(

1+

1− ρ
σ2
n

PcφM

(

rαk +Rαmin2F1

(

k,−α
2 ;N + 1; 1− R2

max

R2
min

))

+ ρψ
Mφ2−Kψ

(

r−αk Rαmin2F1

(

k,−α
2 ;N + 1; 1− R2

max

R2
min

)

+ 1
)

)

drk.

(24)

D. Computational Complexity Analysis

For a system having M BS antennas and N candidate-

UEs, although the user selection relying on exhaustive

search achieves the best sum rate performance, approximately
∑M

k=1

(

N
k

)

k5M complex-valued operations are required to

complete one selection [31], which may be unaffordable in

practice. For SUS, the computational complexity is roughly

O(M3N) [3], which is high for large-M systems. In stark

contrast to these conventional schemes, the online computa-

tional complexity of the proposed K∗-RUS and K∗-LUS is

independent of M and N , and the instantaneous CSI-based

complicated online computations are avoided. As a result, the

computational complexity is approximately O(1), which is just

the same as that of the conventional RUS scheme.

E. Performance Analysis for the Special Case of ρ = 0, δ = 0

All the above investigations are subject to the general case,

i.e., in the context of the systems with imperfect CSI and

transmit antenna correlation. In this subsection, we consider a

special case in which there exists neither channel estimation

error nor transmit antenna correlation, i.e., ρ = 0, δ = 0. In

this context, because we can obtain clearer insights into how

the system performance is affected by different user selection

schemes.

For ρ = 0, δ = 0, we have

A(K,M) =
σ2
n

Pc(M −K)
,

B(K,M) = 0.

Substituting them into (19) and (24), the approximate sum

rates can be calculated. Nevertheless, the integrals of logarith-

mic functions in (19) and (24) degrade the intelligibility of the

results.

Here, a new method, which is different from those adopted

in Section III-B and Section III-C, is developed for finding a

much simpler expression of the ergodic sum rate approxima-

tion in this special case. In what follows we apply Jensen’s

inequality in a slightly different manner for the sake of

finding a more concise expression of the system sum rate

approximation. More specifically, we have

E[R] =

(

1− K

T

)

Ed1,...,dK

[

K
∑

k=1

log2(1 + SINRk)

]

≥
(

1− K

T

)

K log2(1 +
˜̃
SINR),

where
˜̃
SINR =

Pc(M −K)

σ2
n

∑K
k=1 Edk [d

α
k ]
.

The approximate sum rate
˜̃R for K∗-RUS is then given by

˜̃R∗
RUS =

(

1− K∗
RUS

T

)

K∗
RUS

× log2

(

1 +
Pc(M −K∗

RUS)(α + 2)(R2
max −R2

min)

2σ2
nK(Rα+2

max −Rα+2
min )

)

.

(26)

For K∗-LUS, the sum rate is approximated as

˜̃R∗
LUS =

(

1− K∗
LUS

T

)

K∗
LUS

× log2



1+
Pc(M −K∗

LUS)

σ2
n

∑K∗

LUS

k=1 R
α
min2F1

(

k,−α
2 ;N+1; 1− R2

max

R2
min

)



 .

(27)

Compared to (19) and (24), there is no integral calculation of

logarithmic functions in (26) and (27), which simplifies the
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system sum rate expression. Furthermore, as shown in Fig. 3,

(26) and (27) are capable of providing tight approximations in

the case of ρ = 0, δ = 0.

According to (26) and (27), it is clear that both of the sum

rates
˜̃R∗

RUS and
˜̃R∗

LUS increase when P and M become larger.

Additionally, when N increases, the sum rate of K∗-LUS

increases, while the sum rate of K∗-RUS remains unchanged.

As far as SUS is concerned in the TDD scenario, as proved

in [3], the ergodic sum rate is upper bounded by R̄SUS, which

is given by

R̄SUS =

[

1− N

T

]+

MΘ(log2 log2N), (28)

where [·]+ is defined as [x]+ = max{x, 0}. Due to the pilot

overhead imposed by the channel estimation, the system sum

rate is scaled by the factor [1−N/T ]+. More specifically, in

this case the instantaneous CSI of all the N candidate-UEs

are required for select ingactive-UEs at each coherence slot.

Comparing the pre-log parts [1 − N/T ]+ in (28), (1 −
K∗

RUS/T ) in (26) and (1 − K∗
LUS/T ) in (27), we can see

that the advantages of K∗-RUS and K∗-LUS are obvious

for the systems relying on pilot-based channel estimation. In

particular, when T is not significantly larger than N , with

regard to SUS, a large portion of the coherence slot would be

dedicated to channel estimation, which reduces the resources

for the downlink data delivery. By contrast, with the proposed

user selection schemes, we only have to estimate the CSI of

the K∗
RUS or K∗

LUS active-UEs for precoding. Both K∗
RUS and

K∗
LUS are usually much smaller than N , hence our schemes

are superior to SUS by exploiting more data transmission

resources.

Remark 4. The result of Θ(log2 log2N) in (28) is obtained

when we have N → ∞ and a fixedM [3]. Moreover, as shown

in [32], when the number of candidate-UEs N is linearly

related to the number of BS antennas M (i.e. the case we have

discussed in this paper), only marginal multiuser diversity gain

might be achieved by SUS.

IV. NUMERICAL SIMULATIONS AND DISCUSSIONS

In this section we present simulation results to show the

benefits of the proposed user selection schemes. The cellular

model employed is based on that of [16] and [33]. Like [10],

we assume the number of symbols in a coherence slot is 196,

over which the channel is constant, i.e., T = 196. The cell

radius is Rmax = 250 m and the minimum distance is Rmin =
35 m. The pathloss exponent is α = 3.76 and the reference

LSF factor is c = 10−3.53. The total noise power is assumed

as σ2
n = −96 dBm.

A. Sum Rate Performance

In Fig. 3, the sum rate performance of K-RUS and K-

LUS as a function of K is evaluated in the case of P = 30
dBm, M = 32 and N = 64. The simulated ergodic sum rates

(marked as ’Sim.’ in the figure) are obtained by averaging over

10000 independent channel realizations (both SSF and LSF

CSI are regenerated at each realization). It is observed that

5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

K

S
um

 r
at

e 
(b

ps
/H

z)

 

 

LUS, Sim.
LUS, (20).
LUS, (27).
RUS, Sim.
RUS, (19).
RUS, (26).ρ=0, δ = 0

ρ=0.2, δ = 0.5

Fig. 3. Sum rates of K-RUS and K-LUS. P = 30 dBm,M = 32, N = 64.
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Fig. 4. Contour figures of K∗

RUS, K∗

LUS, R∗

RUS and R∗

LUS against P and N .
ρ = 0, δ = 0,M = 32. K∗

RUS
and K∗

LUS
are shown in (a) (i.e., the top-left

sub figure) and (b) (i.e., the top-right sub figure) with solid lines, respectively.
R∗

RUS and R∗

LUS are shown in (c) (i.e., the bottom-left sub figure) and (d) (i.e.,
the bottom-right sub figure) with dash lines, respectively.

there exist K∗
RUS and K∗

LUS which maximize the system sum

rate for K-RUS and K-LUS, respectively. Moreover, we have

K∗
RUS < M and K∗

LUS < M for the simulation parameters

considered. In Fig. 3 we also show the approximate sum rates

given by (19) and (24), which are very tight. Therefore, it is

reasonable to design user selection schemes based on them.

In order to provide intuitive insights into how K∗
RUS and

K∗
LUS are affected by P and N , we evaluated K∗

RUS and K∗
LUS

with no transmit correlation and perfect CSI estimation (i.e.,

ρ = 0, δ = 0) in Fig. 4 (a) and (b), respectively. It is observed

that both K∗
RUS and K∗

LUS increase with the transmit power

P . On the other hand, when we increase N , K∗
LUS increases

and K∗
RUS remains unchanged. This can be easily explained

from the perspective of multiuser diversity gain. In particular,

K∗
LUS is related to N because we select UEs according to LSF

in K∗-LUS. By contrast, K∗
RUS is independent of N because

random selection is adopted in K∗-RUS. Moreover, Fig. 4 (c)

and Fig. 4 (d) provide the sum rates of K∗-RUS and K∗-

LUS. As expected, we can see that both R∗
RUS and R∗

LUS are

enhanced by the increase of P . When N increases, R∗
LUS rises

but R∗
RUS remains unchanged.

In Fig. 5 the impacts of channel estimation accuracy ρ and
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Fig. 5. Contour figures of K∗

RUS, K
∗

LUS, R
∗

RUS and R∗

LUS against ρ and δ.
P = 30 dBm,M = 32, N = 64. K∗

RUS and K∗

LUS are shown in (a) and (b)
with solid lines, respectively. R∗

RUS
and R∗

LUS
are shown in (c) and (d) with

dash lines, respectively.

channel correlation factor δ on the system performance are

characterized, where we set P = 30 dBm, M = 32 and N =
64. In sub-figures (a) and (b), the optimal number of active-

UEs for K∗-RUS and K∗-LUS are shown, respectively. We

can see that both K∗
RUS and K∗

LUS attain their maximum values

at ρ = 0, δ = 0. This observation indicates that the BS should

serve more UEs under uncorrelated channel scenarios with

perfect CSI estimation than those under correlated channel

scenarios with imperfect CSI estimation. The sum rates of

K∗-RUS and K∗-LUS are shown in the sub-figures (c) and

(d), respectively. It is clear that the sum rates decrease as δ
and ρ increase.

The sum rate performance of various user selection

schemes, including K∗-LUS, K∗-RUS, SUS and RUS, is

evaluated against the transmit power P with M = 32, N = 64
in Fig. 6. Four scenarios are investigated, i.e., uncorrelated

channel with perfect CSI estimation (ρ = 0, δ = 0), correlated

channel with perfect CSI estimation (ρ = 0, δ = 0.5), uncorre-

lated channel with imperfect CSI estimation (ρ = 0.1, δ = 0)

and correlated channel with imperfect CSI estimation (ρ =
0.1, δ = 0.5). Note that for the conventional RUS, we

randomly select M UEs for simultaneous data transmissions.

For SUS, in order to ensure fair comparisons among all the

four schemes, we adopt the equal power allocation instead of

the water filling allocation. Furthermore, the optimal value of

αSUS, which is an important parameter in SUS (described as

α in [3]), is used for the SUS scheme in our simulations5. As

expected, K∗-LUS achieves the best sum rate performance

among the four schemes, and compared with RUS, K∗-RUS

also achieves a significant sum rate improvement. In addition,

due to the non-negligible channel estimation pilot overhead

and the lack of multiuser diversity gain, the conventional

SUS scheme achieves similar [e.g., in sub-figures (a) and

(b)] or even worse [e.g., in sub-figures (c) and (d)] sum rate

5The sum rate performance of the SUS scheme is highly sensitive to the
choice of αSUS. The optimal value of αSUS varies with the changes of M,N
and P . By means of searching over the interval (0, 1], we obtain optimal
values of αSUS maximizing the sum rates of the SUS scheme for different
configurations of M,N and P .
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Fig. 6. Sum rate R vs. transmit power P . M = 32 and N = 64.
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Fig. 7. Sum rate R vs. the number of candidate-UEs N . P =
30 dBm and M = 32.

performance than the proposed K∗-RUS, even though the

online computational complexity of SUS is much higher than

that of K∗-RUS.

Furthermore, in Fig. 7, we investigate the sum rates of

the four schemes for different numbers of candidate-UEs,

N , when P = 30 dBm and M = 32. It is clear that

with the increase of N , the sum rates of K∗-RUS and RUS

remain unchanged. In contrast, K∗-LUS obtains sum rate

improvements as N increases because more multiuser diversity

related to LSF can be exploited with larger N . For SUS,

the sum rate decreases with N , because the pilot overhead

becomes serious for large N , which overwhelms the increase

of the multiuser diversity gain.

B. Fairness Performance

In this subsection, we evaluate the system performance in

terms of long-term fairness among UEs. The Jain’s Fairness

Index (JFI) [34] F , defined as

F =

(

∑N
n=1 ωnRn

)2

N
∑N
n=1(ωnRn)2

,

is employed in our investigation, where Rn is the rate of the

n-th candidate-UE defined in (10) and ωn is the probability
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Fig. 8. Fairness performance F vs. transmit power P . M = 32 and N = 64.

of the n-th candidate-UE being selected to be served at each

coherence slot.

First, we briefly analyze the long-term fairness performance

of K∗-RUS and K∗-LUS without considering the channel

estimation error and transmit correlation. Then the simulation

results are shown in Fig. 8 and Fig. 9.

In the case of ρ = 0, δ = 0, for the n-th candidate-UE in

K∗-RUS, we have ωn = K∗
RUS/N and Rn = R∗

RUS/K
∗
RUS.

Therefore, the JFI of K∗-RUS is given by

FRUS =

(

∑N
n=1

K∗

RUS

N
R∗

RUS

K∗

RUS

)2

N
∑N
n=1

(

K∗

RUS

N

R∗

RUS

K∗

RUS

)2 = 1. (29)

It is clear that K∗-RUS is capable of offering the optimal fair-

ness among candidate-UEs. For K∗-LUS, the K∗
LUS candidate-

UEs near to the BS are always active, whereas the other

UEs far from the BS have little chance to be served. Thus,

for the candidate-UE which is the i-th nearest to the BS,

we have ωi = 1,Ri = R∗
LUS/K

∗
LUS, 1 ≤ i ≤ K∗

LUS, and

ωi = 0,Ri = 0,K∗
LUS < i ≤ N . The JFI of K∗-LUS is then

calculated as

FLUS =

(

∑K∗

LUS

n=1
R∗

LUS

K∗

LUS

)2

N
∑K∗

LUS

n=1

(

R∗

LUS

K∗

LUS

)2 =
K∗

LUS

N
. (30)

Usually, we have FLUS < 1 because of K∗
LUS < N . Moreover,

we can see that FLUS increases when K∗
LUS becomes higher.

In Fig. 8 we show the fairness among UEs against P in the

context of various schemes with M = 32, N = 64. In this

simulation, we assume that the LSF CSI of each candidate-

UE remains unchanged for 100T and the SSF CSI changes

for each T . The window length evaluated for JFI is also

assumed to be 100T for creating the worst scenario in terms

of fairness. We can see that K∗-RUS provides good fairness

among UEs, and K∗-LUS exhibits poor fairness performance.

With perfect channel estimation, the JFI of K∗-RUS maintains

1 for various P , which is consistent with (29). Furthermore,

for K∗-LUS, the JFI increases as P increases. This is because

with the increase of P , more UEs can be served at the same

time while N keeps unchanged, which coincides with (30).
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Fig. 9. Fairness performance F vs. the number of candidate-UEs N . P =
30 dBm and M = 32.

Note that we also give the simulation results concerning the

fairness performance with imperfect channel estimation. In this

context, the JFI of K∗-RUS decreases as P increases. This is

because the SINRs of active-UEs are different from each other

due to the existence of the second part of the denominator

of (9) (i.e., the part related to the channel estimation error).

Moreover, the SINR difference increases when P rises. As a

result, the fairness performance decreases.

Finally, the fairness performance against N for M =
32, P = 30 dBm is shown in Fig. 9. It can be observed that

K∗-RUS is capable of achieving good fairness performance,

whereas K∗-LUS has poor fairness performance. Moreover,

the increasing of N degrades the fairness performance of K∗-

LUS, because the proportion of active-UEs in candidate-UEs

declines although K∗
LUS increases as N becomes larger.

V. CONCLUSIONS

Considering the requirements of high energy efficiency and

massive device connectivity in the future 5G communication

systems, we have proposed a pair of low-complexity user

selection methods for downlink massive MIMO systems in

this paper. Taking the randomness of both the channel matrix

and UE locations into consideration, we have obtained the

approximations of the ergodic sum rates for the multiuser

massive MIMO systems. By exploiting these approximations,

K∗-RUS and K∗-LUS are developed, which are capable of

significantly enhancing the system sum rate performance.

Since no online operations related to SSF CSI are required

in the proposed user selection algorithms, the computational

complexity of the proposed schemes is extremely low. Besides

the sum rate improvements, we also investigated the fairness

among UEs and showed the remarkable fairness performance

advantages of the proposed K∗-RUS scheme. In the future,

we will investigate low-complexity user selection methods in

multi-cell scenarios.

APPENDIX
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DETAILED DERIVATION OF (11)

With (3) and (6), we have

γ2 =
(1− ρ)P

tr(D1/2Z1RZH1 D1/2)−1
. (31)

According to the results in [24, Appendix III], we obtain

tr(D1/2Z1RZH1 D1/2)−1 a.s.−−→ 1

φM
tr(D−1),

where φ is the unique solution of

φ =
1

M
tr

(

R

(

IM +
K

M

1

φ
R

)−1
)

. (32)

Hence, the deterministic value of γ2 satisfies

γ2
a.s.−−→ (1− ρ)PcφM

∑K
k=1 d

α
k

. (33)

Then, we evaluate the second part of the denominator in (9).

Since the entries of h̃k is independent of Ĝ, according to [25,

Theorem 3.4], we have

h̃kR
1/2Ĝ†ssH(Ĝ†)H(R1/2)H h̃Hk

a.s.−−→ ρtr
(

RĜH(ĜĜH)−2Ĝ
)

.
(34)

Applying [25, Theorem 14.3], we can obtain

tr
(

RĜH(ĜĜH)−2Ĝ
)

a.s.−−→ 1

1− ρ

ψ
M
K φ

2 − ψ

1

K
tr(D−1),

where φ is given by (32) and ψ is defined as

ψ =
1

M
tr

(

R2

(

IM +
K

M

1

φ
R

)−2
)

.

Thus, for (34), we obtain

h̃kR
1/2Ĝ†ssH(Ĝ†)H(R1/2)H h̃Hk

a.s.−−→ ρ

1− ρ

ψ
M
K φ

2 − ψ

∑K
k=1 d

α
k

cK
.

(35)

Therefore, substituting (33) and (35) into (9), we obtain (11).
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