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Abstract—This paper addresses the problem of amplify-6
and-forward (AF) relaying for multiple-input–multiple-output7
(MIMO) multiuser relay networks, where each source transmits8
multiple data streams to its corresponding destination with the9
assistance of multiple relays. Assuming realistic imperfect chan-10
nel state information (CSI) of all the source–relay and relay–11
destination links, we propose a robust optimization framework12
for the joint design of the source transmit precoders (TPCs),13
relay AF matrices and receive filters. Specifically, two well–14
known CSI error models are considered, namely, the statistical15
and the norm-bounded error models. We commence by consid-16
ering the problem of minimizing the maximum per-stream mean17
square error (MSE) subject to the source and relay power con-18
straints (min–max problem). Then, the statistically robust and19
worst-case robust versions of this problem, which take into ac-20
count the statistical and norm-bounded CSI errors, respectively,21
are formulated. Both of the resultant optimization problems22
are nonconvex (semi-infinite in the worst-case robust design).23
Therefore, algorithmic solutions having proven convergence and24
tractable complexity are proposed by resorting to the iterative25
block coordinate update approach along with matrix transforma-26
tion and convex conic optimization techniques. We then consider27
the problem of minimizing the maximum per-relay power subject28
to the quality-of-service (QoS) constraints for each stream and29
the source power constraints (QoS problem). Specifically, an ef-30
ficient initial feasibility search algorithm is proposed based on31
the relationship between the feasibility check and the min–max32
problems. Our simulation results show that the proposed joint33
transceiver design is capable of achieving improved robustness34
against different types of CSI errors when compared with non-35
robust approaches.36

Index Terms—Amplify-and-forward (AF) relaying, channel37
state information (CSI) error, convex optimization, multiple-input38
multiple-output (MIMO), multiuser, robust transceiver design.39
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I. INTRODUCTION 40

41COOPERATIVE relaying [1] is capable of improving the 42

communication link between the source and destination 43

nodes, in the context of wireless standards such as those of the 44

Long-Term Evolution Advanced [2], Worldwide Interoperabil- 45

ity for Microwave Access (WiMAX) [3], and fifth-generation 46

networks [4]. Relaying strategies may be classified as amplify- 47

and-forward (AF) and decode-and-forward (DF) techniques. 48

The AF relaying technique imposes lower signal processing 49

complexity and latency; therefore, it is preferred in many 50

operational applications [5] and is the focus of our attention 51

in this paper. 52

Recently, multiple-input–multiple-output (MIMO) AF relay- 53

ing designed for multiuser networks has attracted considerable 54

interest [6]–[11]. In typical wireless multiuser networks, the 55

amount of spectral resources available to each user decreases 56

with an increase in the density of users sharing the channel, 57

hence imposing a degradation on the quality of service (QoS) 58

of each user. MIMO AF relaying is emerging as a promising 59

technique of mitigating this fundamental limitation. By exploit- 60

ing the so-called distributed spatial multiplexing [5] at the mul- 61

tiantenna assisted relays, it allows multiple source/destination 62

pairs to communicate concurrently at an acceptable QoS over 63

the same physical channel [5]. The relay matrix optimiza- 64

tion has been extensively studied in a single-antenna assisted 65

multiuser framework, under different design criteria (see, e.g., 66

[6]–[10]), where each source/destination is equipped with a sin- 67

gle antenna. In general, finding the optimal relay matrix in these 68

design approaches is deemed challenging because the resultant 69

optimization problems are typically nonconvex. Hence, existing 70

algorithms have relied on convex approximation techniques, 71

e.g., semi-definite relaxation (SDR) [9], [10] and second- 72

order cone programming (SOCP) approximation [7], [8], in 73

order to obtain approximate solutions to the original design 74

problems. 75

Again, the given contributions focus on single-antenna mul- 76

tiuser networks. However, wireless standards aim for the pro- 77

motion of mobile broadband multimedia services with an 78

enhanced data rate and QoS, where parallel streams corre- 79

sponding to different service types can be transmitted simul- 80

taneously by each source using multiple antennas [11]. This 81

aspiration has led to a strong interest in the study of cooperative 82

relaying in a MIMO multiuser framework, where multiple 83

antennas are employed by all the sources (S), relays (R), and 84
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destinations (D). The joint transceiver design1 is more challeng-85

ing than the relay matrix design of the single-antenna scenario,86

but it provides further performance benefits. Prior contributions87

[6]–[10], [12], [13] are therefore not readily extendable to this88

more general case. At the time of this writing, the literature89

of the joint transceiver design for MIMO multiuser relaying90

networks is still limited. To be specific, in [14], global objective91

functions such as the sum power of the interference received92

at all the destinations and the sum mean square error (MSE)93

of all the estimated data streams are minimized by adopting94

the alternating minimization approach of [15], where only a95

single design variable is updated at each iteration based on the96

SDR technique of [16]. However, the use of global objective97

functions is not readily applicable to multimedia applications98

supporting several types of services, each characterized by99

a specific QoS requirement. To overcome this problem, in100

[17], the objective of minimizing the total source and relay101

power subject to a minimum signal-to-noise-plus-interference102

ratio (SINR) requirement for each S−D link is considered. To103

this end, a two-level iterative algorithm is proposed, which104

also involves SDR. Since the main goal of [17] was that of105

achieving a high spatial diversity gain to improve the attainable106

transmission integrity, the number of data streams transmitted107

by each source in this setting is limited to one [17].108

The efficacy of the joint transceiver design in [14] and109

[17] relies on the idealized simplifying assumption of perfect110

channel state information (CSI) for all the S−R and R−D111

links. In practice, acquiring perfect or even accurate channel112

estimates at a central processing node is quite challenging. This113

is primarily due to the combined effects of various sources114

of imperfections, such as the affordable channel estimation115

complexities and the limited quantized feedback and feedback116

delays [18], [19]. The performance of the previous methods117

may hence be substantially degraded in the presence of realistic118

CSI errors. In view of this, robust transceiver designs, which119

explicitly take into account the effects of CSI errors, are highly120

desirable. Depending on the assumptions concerning the CSI121

errors, robust designs fall into two major categories, namely,122

statistically robust [18] and worst-case robust designs [19].123

The former class models the CSI errors as random variables124

with certain statistical distributions (e.g., Gaussian distribu-125

tions), and robustness is achieved by optimizing the average126

performance over all the CSI error realizations; the latter family127

assumes that the CSI errors belong to some predefined bounded128

uncertainty regions, such as norm-bounded regions, and opti-129

mizes the worst-case performance for all the possible CSI errors130

within the region.131

As a further contribution, we study the joint transceiver132

design in a more general MIMO multiuser relay network,133

where multiple S−D pairs communicate with the assistance of134

multiple relays, and each source transmits multiple parallel data135

streams to its corresponding destination. Assuming realistic136

imperfect CSI for all the S−R and R−D links, we propose a137

new robust optimization framework for minimizing the max-138

imum per-stream MSE subject to the source and relay power139

1We use “transceiver design” to collectively denote the design of the source
TPCs, relay AF matrices, and receive filters.

constraints, which is termed as the min–max problem. In the 140

proposed framework, we aim for solving both the statistically 141

robust and worst-case robust versions of the min–max problem, 142

which take into account either the statistical CSI errors or 143

the norm-bounded CSI errors, respectively, while maintaining 144

tractable computational complexity. Furthermore, to strictly 145

satisfy the QoS specifications of all the data streams, we sub- 146

sequently consider the problem of minimizing the maximum 147

per-relay power, subject to the QoS constraints of all the data 148

streams and to the source power constraints, which is referred 149

to as the QoS problem. Against this background, the main 150

contributions of this paper are threefold. 151

• With the statistically robust min–max problem for the 152

joint transceiver design being nonconvex, an algorithmic 153

solution having proven convergence is proposed by in- 154

voking the iterative block coordinate update approach 155

of [20] while relying on both matrix transformation and 156

convex conic optimization techniques. The proposed iter- 157

ative algorithm successively solves in a circular manner 158

three subproblems corresponding to the source transmit 159

precoders (TPCs), relay AF matrices, and receive filters, 160

respectively. We show that the receive filter subproblem 161

yields a closed-form solution, whereas the other two 162

subproblems can be transformed to convex quadratically 163

constrained linear programs (QCLPs). Then, each QCLP 164

can subsequently be reformulated as a efficiently solvable 165

SOCP. 166

• The worst-case robust min–max problem is both non- 167

convex and semi-infinite. To overcome these challenges, 168

we first present a generalized version of the so-called S 169

lemma given in [21], based on which each subproblem 170

can be exactly reformulated as a semi-definite program 171

(SDP) with only linear matrix inequality (LMI) con- 172

straints. This results in an iterative algorithmic solution 173

involving several SDPs. 174

• The QoS-based transceiver optimization is more chal- 175

lenging than that of the min–max problem because it is 176

difficult to find a feasible initialization. Hence, our major 177

contribution here is to propose an efficient procedure for 178

finding a feasible starting point for the iterative QoS- 179

based optimization algorithm, provided that there exits 180

one; otherwise, the procedure also returns a certificate of 181

infeasibility. 182

The remainder of this paper is organized as follows. 183

Section II introduces our system model and the modeling of CSI 184

errors. The robust joint transceiver design problems are also 185

formulated here. In Sections III and IV, iterative algorithms are 186

proposed for solving the min–max problem both under the sta- 187

tistical and the norm-bounded CSI error models, respectively. 188

The QoS problem is dealt with in Section V. Our numerical 189

results are reported in Section VI. This paper is then concluded 190

in Section VII. 191

Notations: Boldface uppercase (lowercase) letters represent 192

matrices (vectors), and normal letters denote scalars. (·)∗, (·)T , 193

(·)H , and (·)−1 denote the conjugate, transpose, Hermitian 194

transpose, and inverse, respectively. ‖·‖ corresponds to the 195

Euclidean norm of a vector, whereas ‖·‖F and ‖·‖S denote the 196
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Fig. 1. MIMO multiuser multirelay one-way network with each source
transmitting multiple data streams to its corresponding destination.

Frobenius norm and the spectral norm of a matrix, respectively.197

Furthermore, Tr(·), vec(·), and ⊗ denote the matrix trace, the198

vectorization, and the Kronecker product, respectively. RM×N199

and CM×N denote the spaces of M ×N matrices with real200

and complex entries, respectively. IN represents the N ×N201

identity matrix. E{·} denotes the statistical expectation. �{·}202

and �{·} denote the real and imaginary parts of a scalar,203

respectively.204

II. SYSTEM MODEL AND PROBLEM FORMULATION205

We consider a MIMO multiuser relaying network, where M206

AF relay nodes assist the one-way communication between207

K S−D pairs, as shown in Fig. 1, where all the nodes are208

equipped with multiple antennas. Specifically, the kth S and209

D, respectively, employ NS,k and ND,k antennas for k ∈ K �210

{1, 2, . . . ,K}, whereas the mth R employs NR,m antennas211

for m ∈ M � {1, . . . ,M}. All the relays operate under the212

half-duplex AF protocol, where the data transmission from213

the sources to their destinations is completed in two stages.214

In the first stage, all the sources transmit their signals to the215

relays concurrently, whereas in the second stage, the relays216

apply linear processing to the received signals and forward the217

resultant signals to all the destinations. We assume that no direct218

links are available between the sources and destinations due to219

the severe attenuation.220

A narrow-band flat-fading radio propagation model is con-221

sidered, where we denote the channel matrix between the222

kth S and the mth R by Hm,k ∈ CNR,m×NS,k , and the chan-223

nel matrix between the mth R and the kth D by Gk,m ∈224

CND,k×NR,m . Let sk � [sk,1, . . . , sk,dk
]T denote the informa-225

tion symbols to be transmitted by the kth S at a given time226

instant, where dk ≤ min{NS,k, ND,k} is the number of inde-227

pendent data streams. The symbols are modeled as independent228

random variables with a zero mean and unit variance; hence,229

E{sksHk } = Idk
. The kth S applies a linear vector of fk,l ∈230

CNS,k×1 for mapping the lth data stream to its NS,k anten-231

nas for l ∈ Dk � {1, . . . , dk}, thus forming a linear TPC of232

Fk = [fk,1, . . . , fk,dk
] ∈ CNS,k×dk . The transmit power is thus233

given by Tr(FkF
H
k ) ≤ Pmax

S,k , where Pmax
S,k is the maximum234

affordable power of the kth S. Let nR,m ∈ CNR,m×1 be the235

spatially white additive noise vector at the mth R, with a zero 236

mean and covariance matrix of E{nR,mnH
R,m} = σ2

R,mINR,m
. 237

After the first stage of transmission, the signal received at the 238

mth R is given by 239

zR,m =

K∑
k=1

Hm,kFksk + nR,m. (1)

Each R applies a linear matrix Wm ∈ CNR,m×NR,m to zR,m 240
and forwards the resultant signal 241

rR,m = WmzR,m =

K∑
k=1

WmHm,kFksk +WmnR,m (2)

to all the destinations at a power of 242

PR,m =
K∑

k=1

‖WmHm,kFkR‖2F + σ2
R,m‖Wm‖2F . (3)

Let nD,k denote the spatially white additive noise vector 243

at the kth D with a zero mean and covariance matrix of 244

E{nD,kn
H
D,k} = σ2

D,kIND,k
. The kth D observes the following 245

signal after the second stage of transmission: 246

yk =
K∑
q=1

M∑
m=1

Gk,mWmHm,qFqsq

+

M∑
m=1

Gk,mWmnR,m + nD,k (4)

where subscript q is now used for indexing the sources. To 247

estimate the lth data stream received from its corresponding 248

source, the kth D applies a linear vector uk,l to the received 249

signal, thus forming a receive filter Uk = [uk,1, . . . ,uk,dk
] ∈ 250

CND,k×dk . Specifically, the estimated information symbols are 251

given by ŝk,l = uH
k,lyk, which can be expressed as 252

ŝk,l = uH
k,l

M∑
m=1

Gk,mWmHm,kfk,lsk,l︸ ︷︷ ︸
desired data stream

+ uH
k,l

M∑
m=1

Gk,mWmHm,k

dk∑
p=1,p 	=l

fk,psk,p

︸ ︷︷ ︸
interstream interference

+

K∑
q=1,q 	=k

uH
k,l

M∑
m=1

Gk,mWmHm,qFqsq

︸ ︷︷ ︸
interuser interference

+
M∑

m=1

uH
k,lGk,mWmnR,m︸ ︷︷ ︸

enhanced noise from relays

+ uH
k,lnD,k︸ ︷︷ ︸

receiver noise

. (5)

Throughout this paper, we also make the following common 253

assumptions concerning the statistical properties of the signals. 254

A1) The information symbols transmitted from different S 255

are uncorrelated, i.e., we have E{sksHm} = 0 ∀k,m ∈ K 256

and k 	= m. 257
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A2) The information symbols sk, the relay noise nR,m, and the258

receiver noise nD,l are mutually statistically independent259

∀k, l ∈ K and m ∈ M.260

A. QoS Metric261

We adopt the MSE as the QoS metric for each estimated data262

stream. The major advantage of using the MSE is to make our263

design problem tractable, which has been well justified in the264

AF relay matrix design literature [22], [23] and in the references265

therein. In fact, the links between the MSE and other classic266

criteria such as the bit error rate (BER) and the SINR have267

been well established in [22], [24]. Specifically, it has been268

shown that an improvement in MSE will naturally lead to a269

reduced BER.270

The MSE of the lth estimated data stream received at the kth271

D is defined as272

εk,l = E
{
|ŝk,l − sk,l|2

}
. (6)

Substituting (5) into (6), and using assumptions A1 and A2, we273

obtain274

εk,l =

∥∥∥∥uH
k,l

M∑
m=1

Gk,mWmHm,kFk − eTk,l

∥∥∥∥2

+

K∑
q=1,q 	=k

∥∥∥∥uH
k,l

M∑
m=1

Gk,mWmHm,qFq

∥∥∥∥2

+

M∑
m=1

σ2
R,m

∥∥uH
k,lGk,mWm

∥∥2 + σ2
D,k ‖uk,l‖2 (7)

where ek,l ∈ Rdk×1 is a vector with all zero entries except the275

lth entry, which is equal to one.276

B. CSI Error Model277

In typical relaying scenarios, the CSI of both the S−R and278

R−D links, which is available at the central processing node, is279

contaminated by channel estimation errors and by the quantized280

feedback, and is outdated due to feedback delays. To model281

these CSI errors, let us characterize the true but unknown282

channels as283

Hm,k = Ĥm,k +ΔHm,k,Gk,m = Ĝk,m +ΔGk,m (8)

where Ĥm,k and Ĝk,m, respectively, denote the estimated S−R284

and R−D channels, whereas ΔHm,k and ΔGk,m capture the285

corresponding channel uncertainties [8], [9]. In what follows,286

we consider two popular techniques of modeling the channel287

uncertainties.288

1) Statistical Error Model: In this model, we assume that289

the elements of ΔHm,k and ΔGk,m are zero-mean complex290

Gaussian random variables. Specifically, based ontheKronecker291

model [18], [25], they can, in general, be written as292

ΔHm,k = ΣΣΣ
1/2
Hm,k

ΔHW
m,kΨΨΨ

1/2
Hm,k

(9)

ΔGk,m = ΣΣΣ
1/2
Gk,m

ΔGW
k,mΨΨΨ

1/2
Gk,m

(10)

TABLE I
EQUIVALENT NOTATIONS USED IN THE SUBSEQUENT ANALYSIS

where ΣΣΣHm,k
and ΣΣΣGk,m

are the row correlation matrices, 293

whereasΨΨΨHm,k
andΨΨΨGk,m

are the column correlation matrices, 294

all being positive definite. The entries of ΔHW
m,k and ΔGW

k,m 295

are independently and identically distributed (i.i.d.) complex 296

Gaussian random variables with a zero mean and unit variance.2 297

This model is suitable when the CSI errors are dominated by the 298

channel estimation errors. 299

2) Norm-Bounded Error Model: When the CSI is subject 300

to quantization errors due to the limited-rate feedback, it can 301

no longer be accurately characterized by the given statistical 302

model. Instead, ΔHm,k and ΔGk,m are considered to assume 303

values from the following norm-bounded sets [19]: 304

Hm,k � {ΔHm,k : ‖ΔHm,k‖F ≤ ηm,k} (11)

Gk,m � {ΔGk,m : ‖ΔGk,m‖F ≤ ξk,m} (12)

where ηm,k > 0 and ξk,m > 0 specify the radii of the uncer- 305

tainty regions, thus reflecting the degree of uncertainties. The 306

benefits of such an error model have been well justified in the 307

literature of robust relay optimization (see, e.g., [8], [9], and 308

[26]). The determination of the radii of the uncertainty regions 309

has also been discussed in [19]. 310

Throughout this paper, we assume that the magnitudes of 311

the CSI errors are significantly lower than those of the chan- 312

nel estimates; therefore, the third- and higher-order terms in 313

ΔHm,k and ΔGk,m are neglected in our subsequent analysis. 314

We also introduce in Table I some useful notations to simplify 315

our exposition. 316

Substituting (8) into (7) and applying the aforementioned 317

assumptions, the per-stream MSE in the presence of CSI errors 318

can be expressed as 319

εk,l (ΔH,ΔGk)

≈
∥∥∥∥uH

k,lTTT k,k +

M∑
m=1

uH
k,lΔGk,mWWWm,kFk

+

M∑
m=1

uH
k,lGGGk,mΔHm,kFk − eTk,l

∥∥∥∥2 + σ2
D,k ‖uk,l‖2

+
K∑

q=1,q 	=k

∥∥∥∥uH
k,lTTT k,q +

M∑
m=1

uH
k,lΔGk,mWWWm,qFq

+

M∑
m=1

uH
k,lGGGk,mΔHm,qFq

∥∥∥∥2

+

M∑
m=1

σ2
R,m

∥∥uH
k,lGGGk,m + uH

k,lΔGk,mWm

∥∥2 . (13)

2The superscript “W” simply refers to the spatially white or uncorrelated
nature of these random variables.
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We now observe that the per-stream MSE becomes uncertain in320

ΔHm,k ∀(m, k) ∈ M×K and ΔGk,m ∀m ∈ M. Therefore,321

we introduce the following compact notations for convenience:322

ΔGk � (ΔGk,1, . . . ,ΔGk,M ) ∈ Gk � Gk,1 × · · · × Gk,M

ΔH � (ΔH1,1, . . . ,ΔHM,K) ∈ H � H1,1 × · · · × HM,K .

For subsequent derivations, the dependence of εk,l on ΔH and323

ΔGk is made explicit in (13).324

The kth relay’s transmit power in the presence of CSI errors325

can also be explicitly expressed asPR,m(ΔHm), whereΔHm �326

(ΔHm,1, . . . ,ΔHm,K) ∈ Hm � Hm,1 × · · · × Hm,K .327

C. Problem Formulation328

In contrast to the prior advances [6]–[8], [14], [22] found329

in the relay optimization literature, where certain global ob-330

jective functions are minimized subject to power constraints331

at the sources and relays, we formulate the following robust332

design problems under the explicit consideration of QoS. Let333

us commence by introducing the following unified operation:334

U {f (ΔX)} =

{
EΔXf (ΔX) , ΔX is random

max
ΔX∈X

f (ΔX) , ΔX is deterministic

(14)
where ΔX ∈ CM×N and f(·) : CM×N → R. Depending on335

the specific assumptions concerning ΔX, U{·} either computes336

the expectation of f(ΔX) over the ensemble of realizations337

ΔX or maximizes f (ΔX) for all ΔX within some bounded338

set X . This notation will be useful and convenient for char-339

acterizing the per-stream MSE of (13) and the relay’s power340

PR,m(ΔHm) for different types of CSI errors in a unified form341

in our subsequent analysis.342

1) Min–Max Problem: For notational convenience, we343

define F � (F1, . . . ,FK), W � (W1, . . . ,WM ), and U �344

(U1, . . . ,UK), which collects the corresponding design vari-345

ables. In this problem, we jointly design {F,W,U} with the346

goal of minimizing the maximum per-stream MSE subject to347

the source and relay power constraints. This problem pertains348

to the design of energy-efficient relay networks, where there is a349

strict constraint on the affordable power consumption. Based on350

the notation in (14), it can be expressed in the following unified351

form, which is denoted M(PR):352

min
F,W,U

max
∀k∈K,l∈Dk

κk,lU {εk,l(ΔH,ΔGk)} (15a)

s.t. U {PR,m(ΔHm)} ≤ ρmPR ∀m ∈ M (15b)

Tr(FH
k Fk) ≤ Pmax

S,k ∀k ∈ K (15c)

where {κk,l > 0 : ∀k ∈ K, l ∈ Dk} is a set of weights assigned353

to the different data streams for maintaining fairness among354

them, PR is the common maximum affordable transmit power355

of all the relays, and {ρm > 0 : ∀m ∈ M} is a set of coeffi-356

cients specifying the individual power of each relay.357

2) QoS Problem: The second strategy, which serves as a358

complement to the given min–max problem, aims for minimiz-359

ing the maximum per-relay power, while strictly satisfying the360

QoS constraints for all the data streams and all the source power 361

constraints.3 Specifically, this problem, which is denoted Q(γ), 362

can be formulated as 363

min
F,W,U

max
m∈M

1
ρm

U {PR,m(ΔHm)} (16a)

s.t. U {εk,l (ΔH,ΔGk)} ≤ γ

κk,l
∀k ∈ K, l ∈ Dk

(16b)

Tr
(
FH

k Fk

)
≤ Pmax

S,k ∀k ∈ K (16c)

where γ denotes a common QoS target for all the data streams. 364

The following remark is of interest. 365

Remark 1: The major difference between the min–max and 366

QoS problems is that solving the QoS problem is not always 367

feasible. This is because the per-stream MSE imposed by the 368

interstream and interuser interference [cf. (13)] cannot be made 369

arbitrarily small by simply increasing the transmit power. By 370

contrast, solving the min–max problem is always feasible since 371

it relies on its “best effort” to improve the QoS for all the data 372

streams at limited power consumption. Both problem formu- 373

lations are nonconvex and in general NP-hard. These issues 374

motivate the pursuit of a tractable but suboptimal solution to 375

the design problems considered. 376

III. STATISTICALLY ROBUST TRANSCEIVER DESIGN 377

FOR THE MIN–MAX PROBLEM 378

Here, we propose an algorithmic solution to the min–max 379

problem of (15) in the presence of the statistical CSI errors of 380

Section II-B1. The corresponding statistically robust version of 381

(15) can be formulated as 382

min
F,W,U

max
∀k∈K,l∈Dk

κk,lεk,l (17a)

s.t. PR,m ≤ ρmPR ∀m ∈ M (17b)

Tr
(
FH

k Fk

)
≤ Pmax

S,k ∀k ∈ K (17c)

where we have 383

εk,l � EΔH,ΔGk
{εk,l (ΔH,ΔGk)}

PR,m � EΔHm
{PR,m(ΔHm)} . (18)

To further exploit the structure of (17), we have to compute the 384

expectations in (18), which we refer to as the averaged MSE 385

and relay power, respectively. By exploiting the independence 386

3In fact, the min–max problem M(PR) and the QoS problem Q(γ)
are the so-called inverse problems, i.e., we have γ = M[Q(γ)] and PR =
Q[M(PR)]. The proof follows a similar argument to that of [27, Th. 3].
However, as shown in the subsequent analysis, the proposed algorithm cannot
guarantee finding the global optimum of the design problems. Therefore,
monotonic convergence cannot be guaranteed, which is formally stated as
PR ≥ P ′

R � M(PR) ≤ M(P ′
R) and γ ≥ γ′ � Q(γ) ≤ Q(γ′). Due to the

lack of the monotonicity, a 1-D binary search algorithm is unable to solve Q(γ)
via a sequence of M(PR) evaluations. Consequently, a formal inverse problem
definition is not stated in this paper.
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of ΔHm,k and ΔGk,m in (13), the per-stream MSE averaged387

over the channel uncertainties can be expanded as388

εk,l= uH
k,l

(
TTT k,kTTT H

k,k +Rk

)
uk,l − 2�

{
uH
k,lTTT k,kek,l

}
+ 1

+

K∑
q=1

M∑
m=1

E
{
uH
k,lΔGk,mWWWm,qFqF

H
q WWWH

m,qΔGH
k,muk,l

}︸ ︷︷ ︸
I1

+

K∑
q=1

M∑
m=1

E
{
uH
k,lGGGk,mΔHm,qFqF

H
q ΔHH

m,qGGGH
k,muk,l

}︸ ︷︷ ︸
I2

+

M∑
m=1

σ2
R,m E

{
uH
k,lΔGk,mWmWH

mΔGH
k,muk,l

}︸ ︷︷ ︸
I3

(19)

where we have389

Rk =
K∑

q=1,q 	=k

TTT k,qTTT H
k,q +

M∑
m=1

σ2
R,mGGGk,mGGGH

k,m + σ2
D,kIdk

.

(20)

To compute the expectations in (19), we rely on the results of390

[28, (10)] to obtain391

I1 = uH
k,lE

{
ΔGk,mWWWm,qFqF

H
q WWWH

m,qΔGH
k,m

}
uk,l

= Tr
(
WWWm,qFqF

H
q WWWH

m,qΨΨΨGk,m

)
uH
k,lΣΣΣGk,m

uk,l. (21)

Similarly, I2 and I3 can be simplified to392

I2 = Tr
(
FqF

H
q ΨΨΨHm,q

)
uH
k,lGGGk,mΣΣΣHm,q

GGGH
k,muk,l (22)

I3 = Tr
(
WmWH

mΨΨΨGk,m

)
uH
k,lΣΣΣGk,m

uk,l. (23)

Based on (21)–(23), the averaged MSE in (19) is therefore393

equivalent to394

εk,l = uH
k,l

(
TTT k,kTTT H

k,k +Rk +ΩΩΩk

)
uk,l

− 2�
{
uH
k,lTTT k,kek,l

}
+ 1 (24)

where395

ΩΩΩk =

K∑
q=1

M∑
m=1

(
Tr
(
WWWm,qFqF

H
q WWWH

m,qΨΨΨGk,m

)
ΣΣΣGk,m

+Tr
(
FqF

H
q ΨΨΨHm,q

)
GGGk,mΣΣΣHm,q

GGGH
k,m

)

+
M∑

m=1

σ2
R,mTr

(
WmWH

mΨΨΨGk,m

)
ΣΣΣGk,m

. (25)

After careful inspection, it is interesting to find that εk,l is396

convex with respect to each block of its variables F, W, and397

U, although not jointly convex in all the design variables.398

The averaged relay power PR,m can be derived as 399

PR,m =

K∑
k=1

(
Tr
(
FH

k ĤH
m,kW

H
mWmĤm,kFk

)
+Tr

(
FkF

H
k ΨΨΨHm,k

)
Tr
(
WH

mWmΣΣΣHm,k

) )
+ σ2

R,mTr
(
WmWH

m

)
(26)

and the convexity of PR,m in each of F and W is immediate. 400

A. Iterative Joint Transceiver Optimization 401

It is worthwhile noting that the inner pointwise maximization 402

in (17a) preserves the partial convexity of εk,l. Substituting 403

(24) and (26) back into (17), the latter is shown to possess a 404

so-called block multiconvex structure [20], which implies that 405

the problem is convex in each block of variables, although in 406

general not jointly convex in all the variables. 407

Motivated by the given property, we propose an algorithmic 408

solution for the joint transceiver optimization based on the 409

block coordinate update approach, which updates the three 410

blocks of design variables, one at a time while fixing the 411

values associated with the remaining blocks. In this way, three 412

subproblems can be derived from (17), with each updating F, 413

W, and U, respectively. Each subproblem can be transformed 414

into a convex one, which is computationally much simpler 415

than directly finding the optimal solution to the original joint 416

problem (if at all possible). Since solving for each block at 417

the current iteration depends on the values of the other blocks 418

gleaned from the previous iteration, this method in effect can be 419

recognized as a joint optimization approach in terms of both the 420

underlying theory [15], [20] and the related applications [14], 421

[17]. We now proceed by analyzing each of these subproblems. 422

1) Receive Filter Design: It can be observed in (19) that 423

εk,l in (17a) only depends on the corresponding linear vector 424

uk,l, whereas the constraints (17b) and (17c) do not involve 425

uk,l. Hence, for a fixed F and W, the optimal uk,l can be 426

obtained independently and in parallel for different (k, l) values 427

by equating the following complex gradient to zero: 428

∇u∗
k,l
εk,l = 0. (27)

The resultant optimal solution of (27) is the Wiener filter, i.e., 429

uk,l =
(
TTT k,kTTT H

k,k +Rk +ΩΩΩk

)−1 TTT k,kek,l. (28)

2) Source TPC Design: We then solve our problem for the 430

TPC F, while keeping W and U fixed. For better exposi- 431

tion of our solution, we can rewrite (17) after some matrix 432

manipulations, explicitly in terms of F as given in (29), shown 433

at the bottom of the next page, where Ek,l�ek,le
T
k,l, ηR,m � 434

ρmPR − σ2
R,mTr

(
WmWH

m

)
, and 435

ak,l3 � uH
k,l

[
M∑

m=1

σ2
R,m

(
Tr
(
WmWH

mΨΨΨGk,m

)
ΣΣΣGk,m

+GGGk,mGGGH
k,m

)
+ σ2

D,kIND,k

]
uk,l + 1. (30)

The solution to the problem (29) is not straightforward; hence, 436

we transform it into a more tractable form. To this end, we 437
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introduce the new variables of fk � vec (Fk) ∈ CNS,kdk×1438

∀k ∈ K and define the following quantities that are independent439

of fk ∀k ∈ K:440

Ak,l
1,q �

M∑
m=1

Idk
⊗
(

M∑
n=1

WWWH
m,qUUUH

k,mEk,lUUUk,nWWWn,q

+Tr
(
uH
k,lΣΣΣGk,m

uk,l

)
WWWH

m,kΨΨΨGk,m
WWWm,k

+Tr
(
uH
k,lGGGk,mΣΣΣHm,q

GGGH
k,muk,l

)
ΨΨΨHm,q

)
(31)

ak,l2 = vec

(
M∑

m=1

WWWH
m,kUUUH

k,mEk,l

)
(32)

Am
4,k = Idk

⊗
(
WWWH

m,kWWWm,k +Tr
(
WH

mWmΣΣΣHm,k

)
ΨΨΨHm,k

)
.

(33)

It may be readily verified that Ak,l
1,q and Am

4,k are positive441

definite matrices. Then, we invoke the following identities, i.e.,442

Tr
(
AHBA

)
= vec (A)H (I⊗B) vec (A) and Tr

(
AHB

)
=443

vec (B)H vec (A), for transforming both the objective (29a)444

and the constraints (29b)–(29c) into quadratic expressions of445

fk, and finally reach the following equivalent formulation:446

min
f1,...,fK ,t

t (34a)

s.t.
K∑
q=1

fHq Ak,l
1,qfq − 2�

{
fHk ak,l2

}
+ ak,l3 ≤ t

κk,l

∀k ∈ K, l ∈ Dk (34b)
K∑

k=1

fHk Am
4,kfk ≤ ηR,m ∀m ∈ M (34c)

fHk fk ≤ Pmax
S,k ∀k ∈ K (34d)

where t is an auxiliary variable. Problem (34) by definition is a447

convex separable inhomogeneous QCLP [16]. This class of op-448

timization problems can be handled by the recently developed449

parser/solvers, such as CVX [29] where the built-in parser is450

capable of verifying the convexity of the optimization problem451

(in user-specified forms) and then, of automatically transform-452

ing it into a standard form; the latter may then be forwarded453

to external optimization solvers, such as SeduMi [30] and 454

MOSEK [31]. To gain further insights into this procedure, we 455

show in Appendix A that the problem (34) can be equivalently 456

transformed into a standard SOCP that is directly solvable by 457

a generic external optimization solver based on the interior- 458

point method. Therefore, the SOCP form bypasses the tedious 459

translation by the parser/solvers for every problem instance in 460

real-time computation. 461

3) Relay AF Matrix Design: To solve for the relay AF ma- 462

trices, we follow a similar procedure to that used for the source 463

TPC design. However, here we introduce a new variable, which 464

vertically concatenates all the vectorized relay AF matrices, 465

yielding 466

w �

⎡
⎢⎣ w1

...
wM

⎤
⎥⎦ �

⎡
⎢⎣ vec (W1)

...
vec (WM )

⎤
⎥⎦ (35)

along with the following quantities, which are independent 467

of w: 468

[
Bk,l

1

]
m,n

=
K∑
q=1

[(
HHH∗

m,qHHHT
n,q

)
⊗
(
UUUH

k,mEk,lUUUk,n

)]
(36)

bk,l
2,m � vec

(
UUUH

k,mEk,lHHHH
m,k

)
(37)

Bk,l
3,m �

K∑
q=1

[
Tr
(
uH
k,lΣΣΣGk,m

uk,l

)
HHH∗

m,qHHHT
m,q ⊗ΨΨΨGk,m

+Tr
(
FH

q ΨΨΨHm,q
Fq

)
ΣΣΣT

Hm,q
⊗UUUH

k,mEk,lUUUk,m

]
+ σ2

R,mTr
(
uH
k,lΣΣΣGk,m

uk,l

)
INR,m

⊗ΨΨΨGk,m

+ σ2
R,mINR,m

⊗
(
UUUH

k,mEk,lUUUk,m

)
(38)

bk,l4 � σ2
D,k ‖uk,l‖2 + 1 (39)

B5,m �
[
σ2
R,mINR,m

+
K∑

k=1

(
HHH∗

m,kHHHT
m,k

+Tr
(
FkF

H
k ΨΨΨHm,k

)
ΣΣΣT

Hm,k

)]
⊗ INR,m

(40)

min
F

max
∀k∈K,l∈Dk

κk,l

{
K∑
q=1

M∑
m=1

M∑
n=1

Tr
(
FH

q WWWH
m,qUUUH

k,mEk,lUUUk,nWWWn,qFq

)
−

M∑
m=1

2�{Tr (Ek,lUUUk,mWWWm,kFk)}+ ak,l3

+

K∑
q=1

M∑
m=1

Tr
(
FH

q WWWH
m,kΨΨΨGk,m

WWWm,kFq

)
Tr
(
uH
k,lΣΣΣGk,m

uk,l

)

+
K∑
q=1

M∑
m=1

Tr
(
FH

q ΨΨΨHm,q
Fq

)
Tr
(
uH
k,lGGGk,mΣΣΣHm,q

GGGH
k,muk,l

)}
(29a)

s.t.
K∑

k=1

Tr

(
FH

k

(
ĤH

m,kW
H
mWmĤm,k +Tr

(
WH

mWmΣΣΣHm,k

)
ΨΨΨHm,k

)
Fk

)
≤ ηR,m, ∀m ∈ M (29b)

Tr
(
FH

k Fk

)
≤ Pmax

S,k , ∀k ∈ K (29c)



8 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY

where Bk,l
1 is a block matrix with its (m,n)th block de-469

fined earlier. Then, using the identities Tr
(
AHBCDH

)
=470

vec (A)H
(
DT ⊗B

)
vec(C), Tr

(
AHBA

)
=vec(A)H (I⊗B)471

vec (A), and Tr
(
AHB

)
= vec (B)H vect (A), we can formu-472

late the following optimization problem:473

min
w,t

t (41a)

s.t. wHBk,l
1 w −

M∑
m=1

2�
{
wH

mbk,l
2,m

}
+

M∑
m=1

wH
mBk,l

3,mwm

+ bk,l4 ≤ t

κk,l
∀l ∈ Dk, k ∈ K (41b)

wH
mB5,mwm ≤ ρmPR ∀m ∈ M. (41c)

It may be readily shown that Bk,l
1 , Bk,l

3,m, and B5,m are all474

positive definite matrices and that (41) is also a convex sepa-475

rable inhomogeneous QCLP. Using a similar approach to the476

one derived in Appendix A, the SOCP formulation of (41)477

can readily be obtained. The details of the transformation are478

therefore omitted for brevity.479

B. Algorithm and Properties480

We assume that there exists a central processing node, which,481

upon collecting the channel estimates {Ĥm,k, Ĝk,m ∀m ∈482

M, k ∈ K} and the covariance matrices of the CSI errors483

{ΣΣΣHm,k
,ΣΣΣGk,m

,ΨΨΨHm,k
,ΨΨΨGk,m

∀m ∈ M, k ∈ K}, optimizes484

all the design variables and sends them back to the485

corresponding nodes. The iterative procedure listed in486

Algorithm 1 therefore should be implemented in a centralized487

manner, where {F(i),W(i),U(i)} and t(i) represent the set of488

design variables and the objective value in (17a), respectively,489

at the ith iteration. A simple termination criterion can be490

|t(i) − t(i−1)| < ε, where ε > 0 is a predefined threshold. In the491

following, we shall analyze both the convergence properties492

and the complexity of the proposed algorithm.493

1) Convergence: Provided that there is a feasible initializa-494

tion for Algorithm 1, the solution to each subproblem is glob-495

ally optimal. As a result, the sequence of the objective values496

in (17a) is monotonically nonincreasing as the iteration index497

i increases. Since the maximum per-stream MSE is bounded498

from below (at least) by zero, the sequence of the objective499

values must converge by invoking the monotonic convergence500

theorem.501

2) Complexity: When the number of antennas at the sources502

and relays, i.e., NS,k and NR,m, have the same order of503

magnitude, the complexity of Algorithm 1 is dominated by the504

SOCP of (62), which is detailed in Appendix A, as it involves505

all the constraints of the original problem (17). To simplify506

the complexity analysis, we assume that NS,k = NS, and dk =507

d ∀k ∈ K. In (62), the total number of design variables is508

Ntotal = N2
SK + 1 +K2d+KM . The size of the second-509

order cones (SOCs) in the constraints (62b)–(62g) is given510

by (N2
S + 1)dK(K − 1), (N2

S + 1)dK, (K + 2)dK, (N2
S +511

1)KM , (K + 1)M , and (N2
S + 1)K, respectively. Therefore,512

the total dimension of all the SOCs in these constraints can 513

be shown to be DSOCP = O(N2
SdK

2 +N2
SMK). It has been 514

shown in [32] that problem (62) can be solved most efficiently 515

using the primal–dual interior-point method at worst-case com- 516

plexity on the order of O(N2
totalD) if no special structure in 517

the problem data is exploited. The computational complexity of 518

Algorithm 1 is therefore on the order of O(N6
S ), O(K6), and 519

O(M3) in the individual parameters NS, K and M , respec- 520

tively. In practice, however, we find that the matrices Ak,l
1,q and 521

Am
4,k in (31) and (33), respectively, exhibit a significant level of 522

sparsity, which allows solving the SOCP more efficiently. In our 523

simulations, we therefore measured the CPU time required for 524

solving (62) for different values of NS, K, and M (the results 525

are not reported due to the space limitation) and found that 526

the orders of complexity obtained empirically are significantly 527

lower than those of the given worst-case analysis. Empirically, 528

we found these to be around O(N1.6
S ), O(K1.7), and O(M1.3). 529

Algorithm 1 Iterative Algorithm for Statistically Robust
Min–Max Problem

Initialization: 530

1: Set the iteration index i = 0, F
(0)
k =

√
Pmax
S,k INS,k×dk

, 531

∀k ∈ K and W
(0)
m =

√
ρmPR

Tr(B5,m)INR,m
, ∀m ∈ M 532

2: repeat 533

3: Compute u(i+1)
k,l ∀k∈K, l ∈ Dk, using the Wiener filter 534

(28) in parallel; 535

4: Compute F
(i+1)
k ∀k ∈ K by solving the SOCP (62); 536

5: Compute W
(i+1)
m ∀m ∈ M by solving the SOCP (41); 537

6: i ← i+ 1; 538

7: until |t(i) − t(i−1)| < ε 539

IV. WORST-CASE ROBUST TRANSCEIVER DESIGN 540

FOR THE MIN–MAX PROBLEM 541

Here, we consider the joint transceiver design problem under 542

min–max formulation of (15) and the norm-bounded CSI error 543

model of Section II-B2. To this end, based on the notation in 544

(14), we explicitly rewrite this problem as 545

min
F,W,U

max
∀k∈K,l∈Dk,

∀ΔH∈H,ΔGk∈Gk

κk,lεk,l (ΔH,ΔGk) (42a)

s.t. PR,m (ΔHm) ≤ ρmPR ∀m ∈ M,ΔHm ∈ Hm

(42b)

Tr
(
FH

k Fk

)
≤ Pmax

S,k ∀k ∈ K (42c)

whose epigraph form can be expressed as 546

min
F,W,U

t (43a)

s.t. εk,l (ΔH,ΔGk) ≤
t

κk,l
∀k ∈ K, l ∈ Dk,

ΔH ∈ H,ΔGk ∈ Gk (43b)
PR,m (ΔHm) ≤ ρmPR ∀m ∈ M,ΔHm ∈ Hm

(43c)
Tr
(
FH

k Fk

)
≤ Pmax

S,k ∀k ∈ K (43d)
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where t is an auxiliary variable. As compared with the sta-547

tistically robust version of (17), problem (43) now encounters548

two major challenges, namely the nonconvexity and the semi-549

infinite nature of the constraints (43b) and (43c), which render550

the optimization problem mathematically intractable. In what551

follows, we derive a solution to address these calamities.552

A. Iterative Joint Transceiver Optimization553

To overcome the first difficulty, we still rely on the iterative554

block coordinate update approach described in Section III;555

however, the three resultant subproblems are semi-infinite due556

to the continuous but bounded channel uncertainties in (43b)557

and (43c). To handle the semi-infiniteness, an equivalent refor-558

mulation of these constraints as LMI will be derived by using559

certain matrix transformation techniques and by exploiting an560

extended version of the S-lemma of [21]. In turn, such LMI561

will convert each of the subproblems into an equivalent SDP562

[33] efficiently solvable by interior-point methods [34].563

1) Receive Filter Design: In this subproblem, we have to564

minimize t in (43a) with respect to uk,l subject to the constraint565

(43b). To transform this constraint into an equivalent LMI, the566

following lemma is presented, which is an extended version of567

the one in [21].568

Lemma 1 (Extension of S-lemma [21]): Let A(x) =569

AH (x), Σ(x) = ΣH (x), {Dk(x)}Nk=1, and {Bk}Nk=1 be ma-570

trices with appropriate dimensions, where A(x), ΣΣΣ(x), and571

{Dk(x)}Nk=1 are affine functions of x. The following semi-572

infinite matrix inequality:573

(
A(x) +

N∑
k=1

BH
k CkDk(x)

)

×
(
A(x) +

N∑
k=1

BH
k CkDk(x)

)H

� Σ(x) (44)

holds for all ‖Ck‖S ≤ ρk, k = 1, . . . , N if and only if there574

exist nonnegative scalars τ1, . . . , τN satisfying (45), shown at575

the bottom of the page.576

A simplified version of Lemma 1, which considers only 577

a single uncertainty block, i.e., N = 1, can be traced back 578

to [35], whereas a further related corollary is derived in 579

[21, Proposition 2]. Lemma 1 extends this result to the case 580

of multiple uncertainty blocks, i.e., K > 1; the proof which 581

follows similar steps as in [21] is omitted owing to the space 582

limitation. 583

Upon using Lemma 1, the constraint (43b) can equivalently 584

be reformulated as follows. 585

Proposition 1: There exist nonnegative values of τττGk,l ∈ 586

RM×1 and τττHk,l ∈ RKM×1 capable of ensuring that the semi- 587

infinite constraint (43b) is equivalent to the matrix inequality 588

in (46), shown at the bottom of the page, where we have 589

NR �
∑M

m=1 NR,m, NS �
∑K

k=1 NS,k, and the operator (∗) 590

denotes the Khatri–Rao product (blockwise Kronecker product) 591

[36]. In (46), ΘΘΘk,l and ΦΦΦk,l are defined as 592

ΘΘΘk,l �

⎡
⎢⎣ ξk,1ΘΘΘ

k,l
1

...
ξk,MΘΘΘk,l

M

⎤
⎥⎦ ,ΦΦΦk,l �

⎡
⎢⎣

η1,1ΦΦΦ
k,l
1,1

...
ηM,KΦΦΦk,l

M,K

⎤
⎥⎦ (47)

whereas ΘΘΘk,l, ΦΦΦk,l, and θθθk,l are defined in (71) of Appendix B. 593

Proof: See Appendix B. � 594

Using (46), the subproblem formulated for uk,l can be equiv- 595

alently recast as 596

min
t,uk,l,τττ

g
k,l

,τττh
k,l

t s.t. Qk,l � 0. (48)

With fixed F and W, (46) depends affinely on the design 597

variables {t,uk,l, τττ
g
k,l, τττ

h
k,l}. Therefore, (48) is a convex SDP 598

of the LMI form [33], which is efficiently solvable by existing 599

optimization tools based on the interior-point method. Since the 600

uk,l for different values of (k, l) are independent of each other, 601

they can be updated in parallel by solving (48) for different k 602

and l. 603

2) Source TPC Design: We now have to solve problem (43) 604

for F by fixing U and W. The solution is formulated in the 605

following proposition. 606

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Σ(x)−
N∑

k=1

τkB
H
k Bk A(x) 0 · · · 0

AH (x) I ρ1D
H
1 (x) · · · ρNDH

N (x)
0 ρ1D1(x) τ1I · · · 0
...

...
...

. . .
...

0 ρNDN (x) 0 · · · τNI

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
�0 (45)

Qk,l �

⎡
⎢⎢⎢⎢⎢⎣

t
κk,l

− 1TτττGk,l − 1TτττHk,l θθθk,l 01×ND,kNR
01×NSNR

θθθHk,l Id+NR+ND,k
ΘΘΘ

H

k,l ΦΦΦ
H

k,l

0ND,kNR×1 ΘΘΘk,l diag
(
τττGk,l

)
∗ IND,kNR

0ND,kNR×NSNR

0NSNR×1 ΦΦΦk,l 0NSNR×ND,kNR
diag

(
τττHk,l

)
∗ INSNR

⎤
⎥⎥⎥⎥⎥⎦ � 0 (46)
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Proposition 2: The subproblem of optimizing the TPCs F607

can be formulated as the following SDP:608

min
t,F,τττg

k,l
,τττh

k,l
,τττp

m

t (49a)

s.t. Qk,l � 0 ∀k ∈ K, l ∈ Dk (49b)
Pm � 0 ∀m ∈ M (49c)[

Pmax
S,k fHk
fk INS,kdk

]
� 0 ∀k ∈ K

(49d)

where we have609

Pm �

⎡
⎣ ρmPR − 1Tτττpm tHm 01×NSNR,m

tm I Tm

0NSNR,m×1 T
H
m diag (τττpm) ∗ I

⎤
⎦�0

(50)

with τττpm ∈ RK×1, Tm(F) �
[
TT

m,1, . . . ,T
T
m,K

]T
, and610

tm �

⎡
⎢⎢⎢⎢⎢⎣

vec
(
WmĤm,kF1

)
...

vec
(
WmĤm,KFK

)
σR,mvec (Wm)

⎤
⎥⎥⎥⎥⎥⎦ (51)

Tm,k �

⎡
⎢⎢⎣

0∑k−1

q=1
dqNR,m×NS,kNR,m

FT
k ⊗Wm

0(∑K

q=k+1
dqNR,m+N2

R,m

)
×NS,kNR,m

⎤
⎥⎥⎦ . (52)

Proof: Since F is involved in all the constraints of the611

original problem (43), in the following, we will transform each612

of these constraints into tractable forms.613

First, note that (43b) has already been reformulated as (46),614

which is a trilinear function of F, W, and U. By fixing the615

values of W and U, it essentially becomes an LMI in F.616

Then, to deal with the semi-infinite constraint of the relay617

power (43c), we can express PR,m as follows based on the618

definitions in (51):619

PR,m =

∥∥∥∥∥tm +
K∑

k=1

Tm,khm,k

∥∥∥∥∥
2

. (53)

Substituting (53) into (43c) and again applying Lemma 1, (43c)620

can be equivalently recast as the matrix inequality (49c), whose621

left-hand side is bilinear in Wm and F, which is an LMI in F622

when Wm is fixed.623

Finally, (43d) can be expressed as ‖fk‖2 ≤ Pmax
S,k , which can624

be equivalently recast as (49d) by using the Schur complement625

rule of [33]. The SDP form (49) is then readily obtained. �626

3) Relay AF Matrix Design: Since the constraint (49d) is627

independent of the relay AF matrices W, this subproblem is628

equivalent to629

min
t,W,τττg

k,l
,τττh

k,l
,τττp

m

t s.t. (49b), (49c). (54)

The given problem becomes a standard SDP in W by noting630

that Qk,l and Pm in (49b) and (49c), respectively, are LMIs in631

W, provided that the other design variables are kept fixed.632

The convergence analysis of the overall iterative algorithm, 633

which solves problems (48), (49), and (54) with the aid of the 634

block coordinate approach, is similar to that in Section III-B 635

and therefore omitted for brevity. One slight difference from 636

Algorithm 1 is that we initialize F
(0)
k =

√
Pmax
S,k INS,k×dk

∀k ∈ 637

K and U
(0)
k = Idk×NS,k

∀k ∈ K, and the iterative algorithm will 638

start by solving for the optimal W(1)
m . Solving (49) imposes a 639

worst-case complexity on the order of O(N2
totalDSDP), where 640

DSDP represents the total dimensionality of the semi-definite 641

cones in constraints (49b)–(49d). Comparing the SDP formu- 642

lation of (49) derived for the norm-bounded CSI errors and the 643

SOCP formulation in (62) deduced for the statistical CSI errors, 644

the total dimensionality of (49) is seen to be significantly larger 645

than that of (62). 646

V. TRANSCEIVER DESIGN FOR THE QUALITY-OF-SERVICE 647

PROBLEM 648

Here, we turn our attention to the joint transceiver design for 649

the QoS problem (16). Following the same approaches as in 650

Sections III and IV, the solution to the QoS problem can also 651

be obtained by adopting the block coordinate update method. 652

Since the derivations of the corresponding subproblems and 653

algorithms are similar to those in Sections III and IV deduced 654

for the min–max problem, we hereby only present the main 655

results. 656

A. QoS Problem Under Statistical CSI Errors 657

1) Receive Filter Design: An optimal uk,l can be obtained 658

by minimizing εk,l(ΔH,ΔGk) with respect to uk,l, which 659

yields exactly the same solution as the Wiener filter in (28). 660

2) Source TPC Design: The specific subproblem of finding 661

the optimal F can be solved by the following QCLP: 662

min
F,t

t (55a)

s.t.
K∑
q=1

fHq Ak,l
1,qfq − 2�

{
fHk ak,l2

}
+ ak,l3 ≤ γ

κk,l

∀k ∈ K, l ∈ Dk (55b)
K∑

k=1

fHk Am
4,kfk ≤ η′R,m ∀m ∈ M (55c)

Tr(FH
k Fk) ≤ Pmax

S,k ∀ k ∈ K (55d)

where η′R,m � ρmt′ − σ2
R,mTr(WmWH

m). 663

3) Relay AF Matrix Design: The optimal W can be found 664

by solving 665

min
w,t

t (56a)

s.t. wHBk,l
1 w −

M∑
m=1

2�
{
wH

mbk,l
2,m

}

+

M∑
m=1

wH
mBk,l

3,mwm + bk,l4 ≤ γ

κk,l
∀k, l

(56b)

wH
mB5,mwm ≤ ρmt ∀m ∈ M. (56c)
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B. QoS Problem under Norm-Bounded CSI Errors666

1) Receive Filter Design: The optimal uk,l can be obtained667

from (48).668

2) Source TPC Design: The optimal F can be obtained as669

the solution to the following SDP:670

min
t,F,τττg

k,l
,τττh

k,l
,τττp

m

t (57a)

s.t. Q′
k,l � 0 ∀k ∈ K, l ∈ Dk (57b)

P′
m � 0 ∀m ∈ M (57c)[
Pmax
S,k fHk
fk INS,kdk

]
� 0 ∀k ∈ K

(57d)

where Q′
k,l is obtained from Qk,l in (46) upon replacing t by671

γ in the top-left entry (1,1). Similarly, P′
m can be obtained by672

substituting PR with t in the (1,1)th entry of Pm in (50).673

3) Relay AF Matrix Design: The optimal relay AF matrices674

are obtained by solving675

min
t,W,τττg

k,l
,τττh

k,l

t s.t. (57b), (57c). (58)

C. Initial Feasibility Search Algorithm676

An important aspect of solving the given QoS problem is to677

find a feasible initial point. Indeed, it has been observed that,678

if the iterative algorithm is initialized with a random (possibly679

infeasible) point, the algorithm may fail at the first iteration.680

Finding a feasible initial point of a nonconvex problem, such681

as our QoS problem (16), is in general NP-hard. All these682

considerations motivate the study of an efficient initial feasibil-683

ity search algorithm, which finds a reasonably “good” starting684

point for the QoS problem of (16).685

Motivated by the “phase I” approach in general optimization686

theory [33], we formulate the feasibility check problem for the687

QoS problem as follows:688

min
F,W,U

s (59a)

s.t. κk,lU {εk,l (ΔH,ΔGk)} ≤ s ∀k ∈ K, l ∈ Dk

(59b)

Tr
(
FH

k Fk

)
≤ Pmax

S,k ∀k ∈ K (59c)

where s is a slack variable, which represents an abstract mea-689

sure for the violation of the constraint (16b). The given problem690

can be solved iteratively using the block coordinate approach691

until the objective value s converges or the maximum affordable692

number of iterations is reached. If, at the (n+ 1)st iteration,693

s(n+1) meets the QoS target γ, then the procedure successfully694

finds a feasible initial point; otherwise, we claim that the QoS695

problem is infeasible. In this case, it is necessary to adjust γ696

or to drop the services of certain users by incorporating an697

admission control procedure, which, however, is beyond the698

scope of this paper.699

Interestingly, (59) can be reformulated as 700

min
F,W,U

max
∀k∈K,l∈Dk

κk,lU {εk,l (ΔH,ΔGk)} (60a)

s.t. U {PR,m (ΔHm)} ≤ ρmP∞
R ∀m ∈ M (60b)

Tr
(
FH

k Fk

)
≤ Pmax

S,k ∀k ∈ K (60c)

where we have P∞
R → ∞, which is equivalent to removing the 701

constraint on the relay’s transmit power. In fact, (60) becomes 702

exactly the same as the min–max problem of (15) upon setting 703

PR = P∞
R . We therefore propose an efficient iterative feasibil- 704

ity search algorithm, which is listed as Algorithm 2, based on 705

the connection between the feasibility check and the min–max 706

problems. 707

Algorithm 2 Iterative Initial Feasibility Search Algorithm for
the QoS problems

1: repeat 708

2: Solve one cycle of the problem (60) and denote the 709

current objective value by γ̂(i+1); 710

3: Verify if γ̂(i+1) ≤ γ, and if so, stop the algorithm; 711

4: i ← i+ 1; 712

5: until Termination criterion is satisfied, e.g., |γ̂(i) − γ̂(i−1)| 713

≤ ε; or the maximum allowed number of iteration is 714

reached. 715

Based on the definition of U{·} in (14), Algorithm 2 is ap- 716

plicable to the QoS problems associated with both types of CSI 717

errors considered. Furthermore, Algorithm 2 indeed provides a 718

feasible initial point for the QoS problem if it exists. Otherwise, 719

it provides a certificate of infeasibility if γ̂(i+1) > γ after a few 720

iterations. Then, the QoS problem is deemed infeasible in this 721

case, and the admission control procedure may deny the access 722

of certain users. 723

VI. SIMULATION EXPERIMENTS AND DISCUSSIONS 724

This section presents our Monte Carlo simulation results for 725

verifying the resilience of the proposed transceiver optimization 726

algorithms against CSI errors. In all simulations, we assume 727

that there are K = 2 S−D pairs, which communicate with 728

the assistance of M = 2 relays. Each node is equipped with 729

NS,k = NR,m = ND,k = 3 antennas ∀ k ∈ K,m ∈ M. Each 730

source transmits 2 independent quadrature phase-shift keying 731

(QPSK) modulated data streams to its corresponding destina- 732

tion, i.e., dk = 2 ∀ k ∈ K. Equal noise variances of σ2
D,k = 733

σ2
R,m are assumed. The maximum source and relay transmit 734

power is normalized to one, i.e., we have Pmax
S,k = 1 ∀ k ∈ K 735

and ρmPR = 1, ∀m ∈ M. Equal weights of κk,l are assigned 736

to the different data streams, unless otherwise stated. The chan- 737

nels are assumed to be flat fading, with the coefficients given 738

by i.i.d. zero-mean unit-variance complex Gaussian random 739

variables. The signal-to-noise ratios (SNRs) at the relays and 740

the destinations are defined as SNRR,m � Pmax
S /|NR,mσ2

R,m| 741

and SNRD,k � Pmax
R /|ND,kσ

2
D,k|, respectively. The optimiza- 742

tion solver MOSEK [31] is used for solving each optimization 743

problem. 744
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Fig. 2. Convergence behavior of the proposed iterative algorithm with
statistical CSI errors.

A. Performance Evaluation Under Statistical CSI Errors745

We first evaluate the performance of the iterative algorithm746

proposed in Section III under statistical CSI errors. The747

channel correlation matrices in (9) and (10) are obtained by748

the widely employed exponential model of [37]. Specifically,749

their entries are given by [ΣΣΣHm,k
]i,j = [ΣΣΣGk,m

]i,j = α|i−j|750

and [ΨΨΨHm,k
]i,j=[ΨΨΨGk,m

]i,j= σ2
eβ

|i−j|, i, j ∈ {1, 2, 3}, where751

α and β are the correlation coefficients, and σ2
e denotes752

the variance of the CSI errors. The available channel753

estimates Ĥm,k and Ĝk,m are generated according to754

Ĥm,k ∼ CN (0NR,m×NS,k
, ((1−σ2

e)/σ
2
e)ΣΣΣHm,k

⊗ΨΨΨT
Hm,k

) and755

Ĝk,m ∼ CN (0ND,k ×NR,m
, ((1 − σ2

e) / σ
2
e)ΣΣΣGk,m

⊗ΨΨΨT
Gk,m

),756

respectively, such that the entries of the true channel matrices757

have unit variances. We compare the robust transceiver758

design proposed in Algorithm 1 to the 1) nonrobust design,759

which differs from the robust design in that it assumes760

ΣΣΣHm,k
=ΣΣΣGk,m

=0 and ΨΨΨHm,k
=ΨΨΨGk,m

=0, i.e., it neglects761

the effects of the CSI errors; 2) perfect CSI case, where the762

true channel matrices Hm,k and Gk,m are used instead of the763

estimates Ĥm,k and Ĝk,m in Algorithm 1 and where there764

are no CSI errors, i.e., we have ΣΣΣHm,k
= ΣΣΣGk,m

= 0 and765

ΨΨΨHm,k
= ΨΨΨGk,m

= 0. The curves labeled “optimal MSE”766

correspond to the value of the objective function in (17a) after767

optimization by Algorithm 1. In all the simulation figures, the768

MSEs of the different approaches are calculated by averaging769

the squared error between the transmitted and estimated770

experimental data symbols over 1000 independent CSI error771

realizations and 10 000 QPSK symbols for each realization.772

As a prelude to the presentation of our main simulation re-773

sults in the following, the convergence behavior of Algorithm 1774

is presented for different CSI error variances, It can be observed775

in Fig, 2 that in all cases, the proposed algorithm can converge776

within a reasonable number of iterations, Therefore, in our ex-777

perimental work, we set the number of iterations to a fixed value778

of 5, and the resultant performance gains will be discussed in779

the following.780

Fig. 3. MSE performance of different design approaches versus SNR.
(a) Maximum per-stream MSE. (b) Sum MSE (SNRR,m = SNRD,k = SNR,
α = β = 0.5).

1) Experiment A.1 (MSE Performance): In Fig. 3(a), the 781

maximum per-stream MSE among all the data streams is shown 782

as a function of the SNR for different values of CSI error vari- 783

ance. It is observed that the proposed robust design approach 784

achieves better resilience against the CSI errors than the non- 785

robust design approach. The performance gains become more 786

evident in the medium-to-high SNR range. For the nonrobust 787

design, degradations are observed because the MSE obtained 788

at high SNRs is dominated by the interference, rather than by 789

the noise. Therefore, the relays are confined to relatively low 790

transmit power in order to control the interference. This, in turn, 791

leads to performance degradation imposed by the CSI errors. In 792

contrast, the proposed robust design is capable of compensating 793

for the extra interference imposed by the CSI errors, thereby 794

demonstrating its superiority over its nonrobust counterpart. 795

Furthermore, we observe that the “Optimal MSE” and our 796

simulation results tally well, which justifies the approximations 797

invoked in calculating the per-stream MSE in (13). In addition 798
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Fig. 4. Per-stream MSE performance with the optimized codebook based on
the GLA-VQ. (B = 8 corresponds to σ2

e = 0.334, and B = 12 corresponds to
σ2
e = 0.175.)

to the per-stream performance, the overall system performance4799

quantified in terms of the sum MSE of different approaches800

is examined in Fig. 3(b), where a similar trend to that of801

Fig. 3(a) can be observed.802

The MSE performance associated with a limited number803

of feedback bits is also studied. To this end, we assume that804

each user is equipped with a codebook that is optimized using805

the generalized Lloyd algorithm of vector quantization (GLA-806

VQ) [38]. Each user then quantizes the channel vector, and807

the corresponding codebook index is fed back to the central808

processing unit. The results presented in Fig. 4 show that the809

proposed algorithm significantly outperformed the nonrobust810

one for the different number of quantization bits considered.811

2) Experiment A.2 (Data Stream Fairness): Next, we exam-812

ine the accuracy of the proposed robust design in providing813

weighted fairness for the different data streams. To this end,814

we set the weights for the different data streams to be κ1,1 =815

κ2,1 = 1/3 and κ1,2 : κ2,2 = 1/6. Fig. 5 shows the MSE of816

each data stream for different values of the error variance.817

Comparing the two methods, the robust design approach results818

in significantly better weighted fairness than the nonrobust one.819

In particular, the MSEs obtained are strictly inversely propor-820

tional to the predefined weights. This feature is particularly821

desirable for multimedia communications, where the streams822

corresponding to different service types may have different823

priorities.824

3) Experiment A.3 (Effects of Channel Correlation): The825

effects of channel correlations on the MSE performance of826

the different approaches are investigated in Fig. 6. It can be827

observed that the performance of all the approaches is degraded828

as the correlation factor α increases. While the robust design829

4Note that the objective of portraying the sum MSE performance is to
validate whether the proposed robust design approach can also achieve a perfor-
mance gain over the nonrobust approach in terms of its overall performance. In
fact, the sum MSE performance can be optimized by solving a design problem
with the sum MSE being the objective function.

Fig. 5. Comparison of the per-stream MSEs of the robust and nonrobust
design approaches (SNRR,m = SNRD,k = 15 dB, and α = β = 0.5).

Fig. 6. MSE performance of different design approaches versus correlation
factor of the source–relay channels. (a) Per-stream MSE. (b) Sum MSE
(SNRR,m = SNRD,k = 10 dB, and β = 0.45).
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Fig. 7. MSE performance of different design approaches versus SNR.
(a) Worst-case per-stream MSE. (b) Worst-case sum MSE.

shows consistent performance gains over its nonrobust one as-830

sociated with different α and σ2
e , the discrepancies between the831

two approaches tend to become less significant with an increase832

in α. This is because the achievable spatial multiplexing gain is833

reduced by a higher channel correlation; therefore, the robust834

design can only attain a limited performance improvement in835

the presence of high channel correlations.836

B. Performance Evaluation Under Norm-Bounded CSI Errors837

Here, we evaluate the performance of the proposed worst838

case design approach in Section V for the min–max problem839

under norm-bounded CSI errors. Similar to that given earlier,840

we compare the proposed robust design approach both to the841

nonrobust approach and to the perfect CSI scenario. We note842

that the power of each relay is a function of ΔHm. According843

to the worst-case robust design philosophy, the maximum relay844

transmit power has to be bounded by the power budget, whereas845

the average relay transmit power may become significantly846

Fig. 8. Maximum relay transmit power versus QoS targets with different
uncertainty sizes of the CSI errors.

lower than that of the nonrobust design. To facilitate a fair 847

comparison of the different approaches, we therefore assume 848

the absence of CSI errors for the S−R links, i.e., we have 849

ΔHm,k = 0. For the R−D links, we consider the uncertainty 850

regions with equal radius, i.e., we have ξk,m = r ∀k ∈ K,m ∈ 851

M. To determine the worst-case per-stream MSE, we generate 852

5000 independent realizations of the CSI errors. For each re- 853

alization, we evaluate the maximum per-stream MSE averaged 854

over 1000 QPSK symbols and random Gaussian noise. Then, 855

the worst-case per-stream MSE is obtained by selecting the 856

largest one among all the realizations. 857

1) Experiment B.1 (MSE Performance): The worst-case per- 858

stream MSE and the worst-case sum MSE are reported in 859

Fig. 7 as a function of the SNR. Three sizes of the uncertainty 860

region are considered, i.e., r = 0.05, r = 0.1, and r = 0.15. 861

Focusing on the first case, it can be seen that the performance 862

achieved by our robust design approach first monotonically 863

decreases as the SNR increases and then subsequently remains 864

approximately constant at high-SNR values. This is primarily 865

because, at low SNR, the main source of error in the estimation 866

of the data streams is the channel noise. At high SNR, the 867

channel noise is no longer a concern, and the MSE is dominated 868

by the CSI errors. Observe also in Fig. 7 that for r = 0.1 869

and r = 0.15, the MSE is clearly higher, although it presents 870

a similar trend to the case of r = 0.5. The performance gain 871

achieved by the robust design also becomes more noticeable 872

for these larger sizes of the uncertainty regions. 873

2) Experiment B.2 (Relay Power Consumption): Next, we 874

investigate the performance of the approach proposed in 875

Section VI for the QoS problem under the norm-bounded CSI 876

errors. The maximum per-relay transmit power is plotted in 877

Fig. 8 as a function of the QoS target γ for different sizes of 878

uncertainty regions. As expected, it can be observed that the 879

relay power for all cases decreases as the QoS target is relaxed. 880

An important observation from this figure is that, when the size 881

of uncertainty region is large, the required relay transmit power 882

becomes significantly higher than the perfect CSI case. From an 883
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Fig. 9. CDFs of per-stream MSEs using the robust and nonrobust approaches
for SNR = 5 dB.

energy-efficient design perspective, this is not desirable, which884

motivates the consideration of the min–max design in such885

applications.886

3) Experiment B.3 (CDF of Per-stream MSE): Finally, we887

evaluate how consistently the QoS constraints of all the data888

streams can be satisfied by the proposed design approach for889

the QoS problem. In this experiment, the CSI errors of both the890

S−R and R−D links are taken into consideration and generated891

according to the i.i.d. zero-mean complex Gaussian distribution892

with a variance of σ2
e = 0.001. Then, the probability that the893

CSI errors are bounded by the predefined radius r can be894

formulated as [9, Sec. IV-C]895

Pr
{
‖hm,k‖2 ≤ r2

}
= Pr

{
‖gk,m‖2 ≤ r2

}
=

1

Γ
(

N2

2

)γ (N2

2
,
r2

σ2
e

)
(61)

where Γ(·) and γ(·, ·), respectively, denote the complete and896

lower incomplete Gamma functions. Given the required bound-897

ing probability of, e.g., 90% in the simulation, the radius r898

can be numerically determined from (61). Fig. 9 shows the899

cumulative distribution functions (cdfs) of the MSE of each900

data stream using both the robust and nonrobust design meth-901

ods. As expected, the proposed robust method ensures that902

the MSE of each data stream never exceeds the QoS target903

shown as the vertical black solid line in Fig. 9. By contrast,904

for the nonrobust design, the MSE frequently violates the QoS905

target, namely for more than 60% of the realizations. Based on906

these observations, we conclude that the proposed robust design907

approach outperforms its nonrobust counterpart in satisfying908

the QoS constraints for all the data streams.909

VII. CONCLUSION910

Jointly optimized source TPCs, AF relay matrices, and re-911

ceive filters were designed by considering two different types912

of objective functions with specific QoS consideration in the 913

presence of CSI errors in both the S−R and R−D links. To 914

this end, a pair of practical CSI error models, namely, the 915

statistical and the norm-bounded models were considered. Ac- 916

cordingly, the robust transceiver design approach was formu- 917

lated to minimize the maximum per-stream MSE subject to 918

the source and relay power constraints (min–max problem). 919

To solve the nonconvex optimization problems formulated, an 920

iterative solution based on the block coordinate update algo- 921

rithm was proposed, which involves a sequence of convex conic 922

optimization problems. The proposed algorithm generated a 923

convergent sequence of objective function values. The problem 924

of relay power minimization subject to specific QoS constraints 925

and to source power constraints was also studied. An efficient 926

feasibility search algorithm was proposed by studying the link 927

between the feasibility check and the min–max problems. Our 928

simulation results demonstrate a significant enhancement in 929

the performance of the proposed robust approaches over the 930

conventional nonrobust approaches. 931

APPENDIX A 932

TRANSFORMATION OF (34) INTO A STANDARD 933

SECOND-ORDER CONE PROGRAMMING 934935

By exploiting the separable structure of (34) and the proper- 936

ties of quadratic terms, the problem can be recast as 937

min
t,{fk},

{λλλk,l},{θθθm}

t (62a)

s.t.

∥∥∥∥(Ak,l
1,q

)1/2
fq

∥∥∥∥ ≤ λk,l
q

∀q, k ∈ K, q 	= k, l ∈ Dk (62b)∥∥∥∥(Ak,l
1,k

)1/2
fk −

(
Ak,l

1,k

)−1/2

ak,l2

∥∥∥∥ ≤ λk,l
k

∀k ∈ K, l ∈ Dk (62c)∥∥λλλk,l
∥∥2−(ak,l2

)H(
Ak,l

1,k

)−1

ak,l2 + ak,l3 ≤ t

κk,l

∀k ∈ K, l ∈ Dk (62d)∥∥∥(Am
4,k

)1/2
fk

∥∥∥ ≤ θmk ∀k ∈ K,m ∈ M (62e)

‖θθθm‖ ≤ √
ηR,m ∀m ∈ M (62f)

‖fk‖ ≤
√
Pmax
S,k ∀k ∈ K (62g)

where λλλk,l = [λk,l
1 , . . . , λk,l

K ]T , θθθm = [θm1 , . . . , θmK ]T , and t are 938

auxiliary variables. The main difficulty in solving this problem 939

is with (62d), which is a so-called hyperbolic constraint [32], 940

whereas the remaining constraints are already in the form 941

of SOC. 942

To tackle (62d), we observe that, for any x and y, z ≤ 0, the 943

following equation holds: 944

‖x‖2 ≤ yz ⇐⇒
∥∥∥∥
[

2x
y − z

]∥∥∥∥ ≤ y + z. (63)
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We can apply (63) to transform (62d) into945 ∥∥∥∥∥
[

2λλλk,l

t
κk,l

+
(
ak,l2

)H (
Ak,l

1,k

)−1

ak,l2 − ak,l3 − 1

]∥∥∥∥∥
≤ t

κk,l
+
(
ak,l2

)H (
Ak,l

1,k

)−1

ak,l2 − ak,l3 + 1. (64)

Therefore, substituting (62d) by (64), we can see that (62) is in946

the form of a standard SOCP.947

APPENDIX B948

PROOF OF PROPOSITION 1949950

First, we define TTT k � [TTT k,1, . . . ,TTT k,K ] and GGGk �951

[σR,1GGGk,1, . . . , σR,M GGGk,M ]. We exploit the fact that, for any952

vectors {ak}Nk=1, the following identity holds:953

N∑
k=1

‖ak‖2 =
∥∥[aT1 , . . . ,aTN ]∥∥2 . (65)

The per-stream MSE (13) can be subsequently expressed as954

εk,l =

∥∥∥∥∥uH
k,lTTT k+

M∑
m=1

uH
k,lΔGk,m [WWWm,1F1, . . . ,WWWm,KFK ]

+

K∑
q=1

M∑
m=1

[
01×

∑q

t=1
dt
,uH

k,lGGGk,m

× ΔHm,qFq,01×
∑K

q+1
dt

]∥∥∥∥∥
2

+

∥∥∥∥∥
M∑

m=1

[
0
1×
∑m−1

p=1
NR,p

,uH
k,lΔGk,mWm,

0
1×
∑M

p=m+1
NR,p

]
uH
k,lGGGk

∥∥∥∥∥
2

+ σ2
D,k‖uH

k,l. (66)

Upon applying the identity vecT (ABC) = vec(B)T (C⊗955

AT ) to (66), we arrive at956

εk,l =

∥∥∥∥∥uH
k,lTTT k − eTk,l +

M∑
m=1

gT
k,mCk,l

1,m +
∑
m,q

hT
m,qD

k,l
m,q

∥∥∥∥∥
2

+

∥∥∥∥∥uH
k,lGGGk +

M∑
m=1

gT
k,mCk,l

2,m

∥∥∥∥∥
2

+
∥∥σD,ku

H
k,l

∥∥2 (67)

wherehm,k �vec(ΔHm,k)andgk,m�vec(ΔGk,m)denote the957

vectorized CSI errors, ek,l� [0
1×
∑k−1

t=1
dt
, eTk,l,01×

∑K

t=k+1
dt
]T ,958

and the following matrices have also been introduced:959

Ck,l
1,m �

[
(WWWm,1F1)⊗ u∗

k,l, . . . , (WWWm,KFK)⊗ u∗
k,l

]
(68)

Ck,l
2,m �

[
0
ND,kNR,m×

∑m−1

p=1
NR,p

,Wm ⊗ u∗
k,l

0
ND,kNR,m×

∑M

p=m+1
NR,p

]
(69)

Dk,l
m,q �

[
0
NS,qNR,m×

∑q−1

t=1
dt
,Fq ⊗

(
GGGT
k,mu∗

k,l

)
0
NS,qNR,m×

∑K

t=q+1
dt

]
. (70)

Again, by exploiting the property in (65), we can write (67) in 960

a more compact form as follows: 961

εk,l =

∥∥∥∥∥ [uH
k,lTTT k − ek,l,u

H
k,lGGGk, σD,ku

H
k,l

]︸ ︷︷ ︸
θθθk,l

+

M∑
m=1

gT
k,m

[
Ck,l

1,m,Ck,l
2,m,0ND,kNR,m×ND,k

]︸ ︷︷ ︸
ΘΘΘk,l

m

+

M∑
m=1

K∑
q=1

hT
m,q

[
Dk,l

m,q,0NR,mNS,q×NR+ND,k

]︸ ︷︷ ︸
ΦΦΦk,l

m,q

∥∥∥∥∥
2

.

(71)

Substituting (71) into (43b), we can express (43b) as 962(
θθθk,l +

M∑
m=1

gT
k,mΘΘΘk,l

m +

M∑
m=1

K∑
q=1

hT
m,qΦΦΦ

k,l
m,q

)

×
(
θθθk,l +

M∑
m=1

gT
k,mΘΘΘk,l

m +

M∑
m=1

K∑
q=1

hT
m,qΦΦΦ

k,l
m,q

)H

≤ t

(72)

where the uncertain blocks hm,k and gk,m should satisfy 963

‖hm,k‖S = ‖hm,k‖ ≤ ξm,k and ‖gk,m‖S = ‖gk,m‖ ≤ ηk,m, 964

respectively. Through a direct application of Lemma 1, (72) can 965

readily be recast as (46) where the nonnegativity of τττGk,l and τττHk,l 966

has been implicitly included in the positive semi-definite nature 967

of Qk,l. 968
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Abstract—This paper addresses the problem of amplify-6
and-forward (AF) relaying for multiple-input–multiple-output7
(MIMO) multiuser relay networks, where each source transmits8
multiple data streams to its corresponding destination with the9
assistance of multiple relays. Assuming realistic imperfect chan-10
nel state information (CSI) of all the source–relay and relay–11
destination links, we propose a robust optimization framework12
for the joint design of the source transmit precoders (TPCs),13
relay AF matrices and receive filters. Specifically, two well–14
known CSI error models are considered, namely, the statistical15
and the norm-bounded error models. We commence by consid-16
ering the problem of minimizing the maximum per-stream mean17
square error (MSE) subject to the source and relay power con-18
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I. INTRODUCTION 40

41COOPERATIVE relaying [1] is capable of improving the 42

communication link between the source and destination 43

nodes, in the context of wireless standards such as those of the 44

Long-Term Evolution Advanced [2], Worldwide Interoperabil- 45

ity for Microwave Access (WiMAX) [3], and fifth-generation 46

networks [4]. Relaying strategies may be classified as amplify- 47

and-forward (AF) and decode-and-forward (DF) techniques. 48

The AF relaying technique imposes lower signal processing 49

complexity and latency; therefore, it is preferred in many 50

operational applications [5] and is the focus of our attention 51

in this paper. 52

Recently, multiple-input–multiple-output (MIMO) AF relay- 53

ing designed for multiuser networks has attracted considerable 54

interest [6]–[11]. In typical wireless multiuser networks, the 55

amount of spectral resources available to each user decreases 56

with an increase in the density of users sharing the channel, 57

hence imposing a degradation on the quality of service (QoS) 58

of each user. MIMO AF relaying is emerging as a promising 59

technique of mitigating this fundamental limitation. By exploit- 60

ing the so-called distributed spatial multiplexing [5] at the mul- 61

tiantenna assisted relays, it allows multiple source/destination 62

pairs to communicate concurrently at an acceptable QoS over 63

the same physical channel [5]. The relay matrix optimiza- 64

tion has been extensively studied in a single-antenna assisted 65

multiuser framework, under different design criteria (see, e.g., 66

[6]–[10]), where each source/destination is equipped with a sin- 67

gle antenna. In general, finding the optimal relay matrix in these 68

design approaches is deemed challenging because the resultant 69

optimization problems are typically nonconvex. Hence, existing 70

algorithms have relied on convex approximation techniques, 71

e.g., semi-definite relaxation (SDR) [9], [10] and second- 72

order cone programming (SOCP) approximation [7], [8], in 73

order to obtain approximate solutions to the original design 74

problems. 75

Again, the given contributions focus on single-antenna mul- 76

tiuser networks. However, wireless standards aim for the pro- 77

motion of mobile broadband multimedia services with an 78

enhanced data rate and QoS, where parallel streams corre- 79

sponding to different service types can be transmitted simul- 80

taneously by each source using multiple antennas [11]. This 81

aspiration has led to a strong interest in the study of cooperative 82

relaying in a MIMO multiuser framework, where multiple 83

antennas are employed by all the sources (S), relays (R), and 84

0018-9545 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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destinations (D). The joint transceiver design1 is more challeng-85

ing than the relay matrix design of the single-antenna scenario,86

but it provides further performance benefits. Prior contributions87

[6]–[10], [12], [13] are therefore not readily extendable to this88

more general case. At the time of this writing, the literature89

of the joint transceiver design for MIMO multiuser relaying90

networks is still limited. To be specific, in [14], global objective91

functions such as the sum power of the interference received92

at all the destinations and the sum mean square error (MSE)93

of all the estimated data streams are minimized by adopting94

the alternating minimization approach of [15], where only a95

single design variable is updated at each iteration based on the96

SDR technique of [16]. However, the use of global objective97

functions is not readily applicable to multimedia applications98

supporting several types of services, each characterized by99

a specific QoS requirement. To overcome this problem, in100

[17], the objective of minimizing the total source and relay101

power subject to a minimum signal-to-noise-plus-interference102

ratio (SINR) requirement for each S−D link is considered. To103

this end, a two-level iterative algorithm is proposed, which104

also involves SDR. Since the main goal of [17] was that of105

achieving a high spatial diversity gain to improve the attainable106

transmission integrity, the number of data streams transmitted107

by each source in this setting is limited to one [17].108

The efficacy of the joint transceiver design in [14] and109

[17] relies on the idealized simplifying assumption of perfect110

channel state information (CSI) for all the S−R and R−D111

links. In practice, acquiring perfect or even accurate channel112

estimates at a central processing node is quite challenging. This113

is primarily due to the combined effects of various sources114

of imperfections, such as the affordable channel estimation115

complexities and the limited quantized feedback and feedback116

delays [18], [19]. The performance of the previous methods117

may hence be substantially degraded in the presence of realistic118

CSI errors. In view of this, robust transceiver designs, which119

explicitly take into account the effects of CSI errors, are highly120

desirable. Depending on the assumptions concerning the CSI121

errors, robust designs fall into two major categories, namely,122

statistically robust [18] and worst-case robust designs [19].123

The former class models the CSI errors as random variables124

with certain statistical distributions (e.g., Gaussian distribu-125

tions), and robustness is achieved by optimizing the average126

performance over all the CSI error realizations; the latter family127

assumes that the CSI errors belong to some predefined bounded128

uncertainty regions, such as norm-bounded regions, and opti-129

mizes the worst-case performance for all the possible CSI errors130

within the region.131

As a further contribution, we study the joint transceiver132

design in a more general MIMO multiuser relay network,133

where multiple S−D pairs communicate with the assistance of134

multiple relays, and each source transmits multiple parallel data135

streams to its corresponding destination. Assuming realistic136

imperfect CSI for all the S−R and R−D links, we propose a137

new robust optimization framework for minimizing the max-138

imum per-stream MSE subject to the source and relay power139

1We use “transceiver design” to collectively denote the design of the source
TPCs, relay AF matrices, and receive filters.

constraints, which is termed as the min–max problem. In the 140

proposed framework, we aim for solving both the statistically 141

robust and worst-case robust versions of the min–max problem, 142

which take into account either the statistical CSI errors or 143

the norm-bounded CSI errors, respectively, while maintaining 144

tractable computational complexity. Furthermore, to strictly 145

satisfy the QoS specifications of all the data streams, we sub- 146

sequently consider the problem of minimizing the maximum 147

per-relay power, subject to the QoS constraints of all the data 148

streams and to the source power constraints, which is referred 149

to as the QoS problem. Against this background, the main 150

contributions of this paper are threefold. 151

• With the statistically robust min–max problem for the 152

joint transceiver design being nonconvex, an algorithmic 153

solution having proven convergence is proposed by in- 154

voking the iterative block coordinate update approach 155

of [20] while relying on both matrix transformation and 156

convex conic optimization techniques. The proposed iter- 157

ative algorithm successively solves in a circular manner 158

three subproblems corresponding to the source transmit 159

precoders (TPCs), relay AF matrices, and receive filters, 160

respectively. We show that the receive filter subproblem 161

yields a closed-form solution, whereas the other two 162

subproblems can be transformed to convex quadratically 163

constrained linear programs (QCLPs). Then, each QCLP 164

can subsequently be reformulated as a efficiently solvable 165

SOCP. 166

• The worst-case robust min–max problem is both non- 167

convex and semi-infinite. To overcome these challenges, 168

we first present a generalized version of the so-called S 169

lemma given in [21], based on which each subproblem 170

can be exactly reformulated as a semi-definite program 171

(SDP) with only linear matrix inequality (LMI) con- 172

straints. This results in an iterative algorithmic solution 173

involving several SDPs. 174

• The QoS-based transceiver optimization is more chal- 175

lenging than that of the min–max problem because it is 176

difficult to find a feasible initialization. Hence, our major 177

contribution here is to propose an efficient procedure for 178

finding a feasible starting point for the iterative QoS- 179

based optimization algorithm, provided that there exits 180

one; otherwise, the procedure also returns a certificate of 181

infeasibility. 182

The remainder of this paper is organized as follows. 183

Section II introduces our system model and the modeling of CSI 184

errors. The robust joint transceiver design problems are also 185

formulated here. In Sections III and IV, iterative algorithms are 186

proposed for solving the min–max problem both under the sta- 187

tistical and the norm-bounded CSI error models, respectively. 188

The QoS problem is dealt with in Section V. Our numerical 189

results are reported in Section VI. This paper is then concluded 190

in Section VII. 191

Notations: Boldface uppercase (lowercase) letters represent 192

matrices (vectors), and normal letters denote scalars. (·)∗, (·)T , 193

(·)H , and (·)−1 denote the conjugate, transpose, Hermitian 194

transpose, and inverse, respectively. ‖·‖ corresponds to the 195

Euclidean norm of a vector, whereas ‖·‖F and ‖·‖S denote the 196
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Fig. 1. MIMO multiuser multirelay one-way network with each source
transmitting multiple data streams to its corresponding destination.

Frobenius norm and the spectral norm of a matrix, respectively.197

Furthermore, Tr(·), vec(·), and ⊗ denote the matrix trace, the198

vectorization, and the Kronecker product, respectively. RM×N199

and CM×N denote the spaces of M ×N matrices with real200

and complex entries, respectively. IN represents the N ×N201

identity matrix. E{·} denotes the statistical expectation. �{·}202

and �{·} denote the real and imaginary parts of a scalar,203

respectively.204

II. SYSTEM MODEL AND PROBLEM FORMULATION205

We consider a MIMO multiuser relaying network, where M206

AF relay nodes assist the one-way communication between207

K S−D pairs, as shown in Fig. 1, where all the nodes are208

equipped with multiple antennas. Specifically, the kth S and209

D, respectively, employ NS,k and ND,k antennas for k ∈ K �210

{1, 2, . . . ,K}, whereas the mth R employs NR,m antennas211

for m ∈ M � {1, . . . ,M}. All the relays operate under the212

half-duplex AF protocol, where the data transmission from213

the sources to their destinations is completed in two stages.214

In the first stage, all the sources transmit their signals to the215

relays concurrently, whereas in the second stage, the relays216

apply linear processing to the received signals and forward the217

resultant signals to all the destinations. We assume that no direct218

links are available between the sources and destinations due to219

the severe attenuation.220

A narrow-band flat-fading radio propagation model is con-221

sidered, where we denote the channel matrix between the222

kth S and the mth R by Hm,k ∈ CNR,m×NS,k , and the chan-223

nel matrix between the mth R and the kth D by Gk,m ∈224

CND,k×NR,m . Let sk � [sk,1, . . . , sk,dk
]T denote the informa-225

tion symbols to be transmitted by the kth S at a given time226

instant, where dk ≤ min{NS,k, ND,k} is the number of inde-227

pendent data streams. The symbols are modeled as independent228

random variables with a zero mean and unit variance; hence,229

E{sksHk } = Idk
. The kth S applies a linear vector of fk,l ∈230

CNS,k×1 for mapping the lth data stream to its NS,k anten-231

nas for l ∈ Dk � {1, . . . , dk}, thus forming a linear TPC of232

Fk = [fk,1, . . . , fk,dk
] ∈ CNS,k×dk . The transmit power is thus233

given by Tr(FkF
H
k ) ≤ Pmax

S,k , where Pmax
S,k is the maximum234

affordable power of the kth S. Let nR,m ∈ CNR,m×1 be the235

spatially white additive noise vector at the mth R, with a zero 236

mean and covariance matrix of E{nR,mnH
R,m} = σ2

R,mINR,m
. 237

After the first stage of transmission, the signal received at the 238

mth R is given by 239

zR,m =
K∑

k=1

Hm,kFksk + nR,m. (1)

Each R applies a linear matrix Wm ∈ CNR,m×NR,m to zR,m 240
and forwards the resultant signal 241

rR,m = WmzR,m =

K∑
k=1

WmHm,kFksk +WmnR,m (2)

to all the destinations at a power of 242

PR,m =

K∑
k=1

‖WmHm,kFkR‖2F + σ2
R,m‖Wm‖2F . (3)

Let nD,k denote the spatially white additive noise vector 243

at the kth D with a zero mean and covariance matrix of 244

E{nD,kn
H
D,k} = σ2

D,kIND,k
. The kth D observes the following 245

signal after the second stage of transmission: 246

yk =

K∑
q=1

M∑
m=1

Gk,mWmHm,qFqsq

+

M∑
m=1

Gk,mWmnR,m + nD,k (4)

where subscript q is now used for indexing the sources. To 247

estimate the lth data stream received from its corresponding 248

source, the kth D applies a linear vector uk,l to the received 249

signal, thus forming a receive filter Uk = [uk,1, . . . ,uk,dk
] ∈ 250

CND,k×dk . Specifically, the estimated information symbols are 251

given by ŝk,l = uH
k,lyk, which can be expressed as 252

ŝk,l = uH
k,l

M∑
m=1

Gk,mWmHm,kfk,lsk,l︸ ︷︷ ︸
desired data stream

+ uH
k,l

M∑
m=1

Gk,mWmHm,k

dk∑
p=1,p 	=l

fk,psk,p

︸ ︷︷ ︸
interstream interference

+
K∑

q=1,q 	=k

uH
k,l

M∑
m=1

Gk,mWmHm,qFqsq

︸ ︷︷ ︸
interuser interference

+

M∑
m=1

uH
k,lGk,mWmnR,m︸ ︷︷ ︸

enhanced noise from relays

+ uH
k,lnD,k︸ ︷︷ ︸

receiver noise

. (5)

Throughout this paper, we also make the following common 253

assumptions concerning the statistical properties of the signals. 254

A1) The information symbols transmitted from different S 255

are uncorrelated, i.e., we have E{sksHm} = 0 ∀k,m ∈ K 256

and k 	= m. 257
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A2) The information symbols sk, the relay noise nR,m, and the258

receiver noise nD,l are mutually statistically independent259

∀k, l ∈ K and m ∈ M.260

A. QoS Metric261

We adopt the MSE as the QoS metric for each estimated data262

stream. The major advantage of using the MSE is to make our263

design problem tractable, which has been well justified in the264

AF relay matrix design literature [22], [23] and in the references265

therein. In fact, the links between the MSE and other classic266

criteria such as the bit error rate (BER) and the SINR have267

been well established in [22], [24]. Specifically, it has been268

shown that an improvement in MSE will naturally lead to a269

reduced BER.270

The MSE of the lth estimated data stream received at the kth271

D is defined as272

εk,l = E
{
|ŝk,l − sk,l|2

}
. (6)

Substituting (5) into (6), and using assumptions A1 and A2, we273

obtain274

εk,l =

∥∥∥∥uH
k,l

M∑
m=1

Gk,mWmHm,kFk − eTk,l

∥∥∥∥2

+

K∑
q=1,q 	=k

∥∥∥∥uH
k,l

M∑
m=1

Gk,mWmHm,qFq

∥∥∥∥2

+

M∑
m=1

σ2
R,m

∥∥uH
k,lGk,mWm

∥∥2 + σ2
D,k ‖uk,l‖2 (7)

where ek,l ∈ Rdk×1 is a vector with all zero entries except the275

lth entry, which is equal to one.276

B. CSI Error Model277

In typical relaying scenarios, the CSI of both the S−R and278

R−D links, which is available at the central processing node, is279

contaminated by channel estimation errors and by the quantized280

feedback, and is outdated due to feedback delays. To model281

these CSI errors, let us characterize the true but unknown282

channels as283

Hm,k = Ĥm,k +ΔHm,k,Gk,m = Ĝk,m +ΔGk,m (8)

where Ĥm,k and Ĝk,m, respectively, denote the estimated S−R284

and R−D channels, whereas ΔHm,k and ΔGk,m capture the285

corresponding channel uncertainties [8], [9]. In what follows,286

we consider two popular techniques of modeling the channel287

uncertainties.288

1) Statistical Error Model: In this model, we assume that289

the elements of ΔHm,k and ΔGk,m are zero-mean complex290

Gaussian random variables. Specifically, based ontheKronecker291

model [18], [25], they can, in general, be written as292

ΔHm,k = ΣΣΣ
1/2
Hm,k

ΔHW
m,kΨΨΨ

1/2
Hm,k

(9)

ΔGk,m = ΣΣΣ
1/2
Gk,m

ΔGW
k,mΨΨΨ

1/2
Gk,m

(10)

TABLE I
EQUIVALENT NOTATIONS USED IN THE SUBSEQUENT ANALYSIS

where ΣΣΣHm,k
and ΣΣΣGk,m

are the row correlation matrices, 293

whereasΨΨΨHm,k
andΨΨΨGk,m

are the column correlation matrices, 294

all being positive definite. The entries of ΔHW
m,k and ΔGW

k,m 295

are independently and identically distributed (i.i.d.) complex 296

Gaussian random variables with a zero mean and unit variance.2 297

This model is suitable when the CSI errors are dominated by the 298

channel estimation errors. 299

2) Norm-Bounded Error Model: When the CSI is subject 300

to quantization errors due to the limited-rate feedback, it can 301

no longer be accurately characterized by the given statistical 302

model. Instead, ΔHm,k and ΔGk,m are considered to assume 303

values from the following norm-bounded sets [19]: 304

Hm,k � {ΔHm,k : ‖ΔHm,k‖F ≤ ηm,k} (11)

Gk,m � {ΔGk,m : ‖ΔGk,m‖F ≤ ξk,m} (12)

where ηm,k > 0 and ξk,m > 0 specify the radii of the uncer- 305

tainty regions, thus reflecting the degree of uncertainties. The 306

benefits of such an error model have been well justified in the 307

literature of robust relay optimization (see, e.g., [8], [9], and 308

[26]). The determination of the radii of the uncertainty regions 309

has also been discussed in [19]. 310

Throughout this paper, we assume that the magnitudes of 311

the CSI errors are significantly lower than those of the chan- 312

nel estimates; therefore, the third- and higher-order terms in 313

ΔHm,k and ΔGk,m are neglected in our subsequent analysis. 314

We also introduce in Table I some useful notations to simplify 315

our exposition. 316

Substituting (8) into (7) and applying the aforementioned 317

assumptions, the per-stream MSE in the presence of CSI errors 318

can be expressed as 319

εk,l (ΔH,ΔGk)

≈
∥∥∥∥uH

k,lTTT k,k +
M∑

m=1

uH
k,lΔGk,mWWWm,kFk

+

M∑
m=1

uH
k,lGGGk,mΔHm,kFk − eTk,l

∥∥∥∥2 + σ2
D,k ‖uk,l‖2

+

K∑
q=1,q 	=k

∥∥∥∥uH
k,lTTT k,q +

M∑
m=1

uH
k,lΔGk,mWWWm,qFq

+

M∑
m=1

uH
k,lGGGk,mΔHm,qFq

∥∥∥∥2

+
M∑

m=1

σ2
R,m

∥∥uH
k,lGGGk,m + uH

k,lΔGk,mWm

∥∥2 . (13)

2The superscript “W” simply refers to the spatially white or uncorrelated
nature of these random variables.
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We now observe that the per-stream MSE becomes uncertain in320

ΔHm,k ∀(m, k) ∈ M×K and ΔGk,m ∀m ∈ M. Therefore,321

we introduce the following compact notations for convenience:322

ΔGk � (ΔGk,1, . . . ,ΔGk,M ) ∈ Gk � Gk,1 × · · · × Gk,M

ΔH � (ΔH1,1, . . . ,ΔHM,K) ∈ H � H1,1 × · · · × HM,K .

For subsequent derivations, the dependence of εk,l on ΔH and323

ΔGk is made explicit in (13).324

The kth relay’s transmit power in the presence of CSI errors325

can also be explicitly expressed asPR,m(ΔHm), whereΔHm �326

(ΔHm,1, . . . ,ΔHm,K) ∈ Hm � Hm,1 × · · · × Hm,K .327

C. Problem Formulation328

In contrast to the prior advances [6]–[8], [14], [22] found329

in the relay optimization literature, where certain global ob-330

jective functions are minimized subject to power constraints331

at the sources and relays, we formulate the following robust332

design problems under the explicit consideration of QoS. Let333

us commence by introducing the following unified operation:334

U {f (ΔX)} =

{
EΔXf (ΔX) , ΔX is random

max
ΔX∈X

f (ΔX) , ΔX is deterministic

(14)
where ΔX ∈ CM×N and f(·) : CM×N → R. Depending on335

the specific assumptions concerning ΔX, U{·} either computes336

the expectation of f(ΔX) over the ensemble of realizations337

ΔX or maximizes f (ΔX) for all ΔX within some bounded338

set X . This notation will be useful and convenient for char-339

acterizing the per-stream MSE of (13) and the relay’s power340

PR,m(ΔHm) for different types of CSI errors in a unified form341

in our subsequent analysis.342

1) Min–Max Problem: For notational convenience, we343

define F � (F1, . . . ,FK), W � (W1, . . . ,WM ), and U �344

(U1, . . . ,UK), which collects the corresponding design vari-345

ables. In this problem, we jointly design {F,W,U} with the346

goal of minimizing the maximum per-stream MSE subject to347

the source and relay power constraints. This problem pertains348

to the design of energy-efficient relay networks, where there is a349

strict constraint on the affordable power consumption. Based on350

the notation in (14), it can be expressed in the following unified351

form, which is denoted M(PR):352

min
F,W,U

max
∀k∈K,l∈Dk

κk,lU {εk,l(ΔH,ΔGk)} (15a)

s.t. U {PR,m(ΔHm)} ≤ ρmPR ∀m ∈ M (15b)

Tr(FH
k Fk) ≤ Pmax

S,k ∀k ∈ K (15c)

where {κk,l > 0 : ∀k ∈ K, l ∈ Dk} is a set of weights assigned353

to the different data streams for maintaining fairness among354

them, PR is the common maximum affordable transmit power355

of all the relays, and {ρm > 0 : ∀m ∈ M} is a set of coeffi-356

cients specifying the individual power of each relay.357

2) QoS Problem: The second strategy, which serves as a358

complement to the given min–max problem, aims for minimiz-359

ing the maximum per-relay power, while strictly satisfying the360

QoS constraints for all the data streams and all the source power 361

constraints.3 Specifically, this problem, which is denoted Q(γ), 362

can be formulated as 363

min
F,W,U

max
m∈M

1
ρm

U {PR,m(ΔHm)} (16a)

s.t. U {εk,l (ΔH,ΔGk)} ≤ γ

κk,l
∀k ∈ K, l ∈ Dk

(16b)

Tr
(
FH

k Fk

)
≤ Pmax

S,k ∀k ∈ K (16c)

where γ denotes a common QoS target for all the data streams. 364

The following remark is of interest. 365

Remark 1: The major difference between the min–max and 366

QoS problems is that solving the QoS problem is not always 367

feasible. This is because the per-stream MSE imposed by the 368

interstream and interuser interference [cf. (13)] cannot be made 369

arbitrarily small by simply increasing the transmit power. By 370

contrast, solving the min–max problem is always feasible since 371

it relies on its “best effort” to improve the QoS for all the data 372

streams at limited power consumption. Both problem formu- 373

lations are nonconvex and in general NP-hard. These issues 374

motivate the pursuit of a tractable but suboptimal solution to 375

the design problems considered. 376

III. STATISTICALLY ROBUST TRANSCEIVER DESIGN 377

FOR THE MIN–MAX PROBLEM 378

Here, we propose an algorithmic solution to the min–max 379

problem of (15) in the presence of the statistical CSI errors of 380

Section II-B1. The corresponding statistically robust version of 381

(15) can be formulated as 382

min
F,W,U

max
∀k∈K,l∈Dk

κk,lεk,l (17a)

s.t. PR,m ≤ ρmPR ∀m ∈ M (17b)

Tr
(
FH

k Fk

)
≤ Pmax

S,k ∀k ∈ K (17c)

where we have 383

εk,l � EΔH,ΔGk
{εk,l (ΔH,ΔGk)}

PR,m � EΔHm
{PR,m(ΔHm)} . (18)

To further exploit the structure of (17), we have to compute the 384

expectations in (18), which we refer to as the averaged MSE 385

and relay power, respectively. By exploiting the independence 386

3In fact, the min–max problem M(PR) and the QoS problem Q(γ)
are the so-called inverse problems, i.e., we have γ = M[Q(γ)] and PR =
Q[M(PR)]. The proof follows a similar argument to that of [27, Th. 3].
However, as shown in the subsequent analysis, the proposed algorithm cannot
guarantee finding the global optimum of the design problems. Therefore,
monotonic convergence cannot be guaranteed, which is formally stated as
PR ≥ P ′

R � M(PR) ≤ M(P ′
R) and γ ≥ γ′ � Q(γ) ≤ Q(γ′). Due to the

lack of the monotonicity, a 1-D binary search algorithm is unable to solve Q(γ)
via a sequence of M(PR) evaluations. Consequently, a formal inverse problem
definition is not stated in this paper.
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of ΔHm,k and ΔGk,m in (13), the per-stream MSE averaged387

over the channel uncertainties can be expanded as388

εk,l= uH
k,l

(
TTT k,kTTT H

k,k +Rk

)
uk,l − 2�

{
uH
k,lTTT k,kek,l

}
+ 1

+

K∑
q=1

M∑
m=1

E
{
uH
k,lΔGk,mWWWm,qFqF

H
q WWWH

m,qΔGH
k,muk,l

}︸ ︷︷ ︸
I1

+

K∑
q=1

M∑
m=1

E
{
uH
k,lGGGk,mΔHm,qFqF

H
q ΔHH

m,qGGGH
k,muk,l

}︸ ︷︷ ︸
I2

+

M∑
m=1

σ2
R,m E

{
uH
k,lΔGk,mWmWH

mΔGH
k,muk,l

}︸ ︷︷ ︸
I3

(19)

where we have389

Rk =

K∑
q=1,q 	=k

TTT k,qTTT H
k,q +

M∑
m=1

σ2
R,mGGGk,mGGGH

k,m + σ2
D,kIdk

.

(20)

To compute the expectations in (19), we rely on the results of390

[28, (10)] to obtain391

I1 = uH
k,lE

{
ΔGk,mWWWm,qFqF

H
q WWWH

m,qΔGH
k,m

}
uk,l

= Tr
(
WWWm,qFqF

H
q WWWH

m,qΨΨΨGk,m

)
uH
k,lΣΣΣGk,m

uk,l. (21)

Similarly, I2 and I3 can be simplified to392

I2 = Tr
(
FqF

H
q ΨΨΨHm,q

)
uH
k,lGGGk,mΣΣΣHm,q

GGGH
k,muk,l (22)

I3 = Tr
(
WmWH

mΨΨΨGk,m

)
uH
k,lΣΣΣGk,m

uk,l. (23)

Based on (21)–(23), the averaged MSE in (19) is therefore393

equivalent to394

εk,l = uH
k,l

(
TTT k,kTTT H

k,k +Rk +ΩΩΩk

)
uk,l

− 2�
{
uH
k,lTTT k,kek,l

}
+ 1 (24)

where395

ΩΩΩk =
K∑
q=1

M∑
m=1

(
Tr
(
WWWm,qFqF

H
q WWWH

m,qΨΨΨGk,m

)
ΣΣΣGk,m

+Tr
(
FqF

H
q ΨΨΨHm,q

)
GGGk,mΣΣΣHm,q

GGGH
k,m

)

+

M∑
m=1

σ2
R,mTr

(
WmWH

mΨΨΨGk,m

)
ΣΣΣGk,m

. (25)

After careful inspection, it is interesting to find that εk,l is396

convex with respect to each block of its variables F, W, and397

U, although not jointly convex in all the design variables.398

The averaged relay power PR,m can be derived as 399

PR,m =
K∑

k=1

(
Tr
(
FH

k ĤH
m,kW

H
mWmĤm,kFk

)
+Tr

(
FkF

H
k ΨΨΨHm,k

)
Tr
(
WH

mWmΣΣΣHm,k

) )
+ σ2

R,mTr
(
WmWH

m

)
(26)

and the convexity of PR,m in each of F and W is immediate. 400

A. Iterative Joint Transceiver Optimization 401

It is worthwhile noting that the inner pointwise maximization 402

in (17a) preserves the partial convexity of εk,l. Substituting 403

(24) and (26) back into (17), the latter is shown to possess a 404

so-called block multiconvex structure [20], which implies that 405

the problem is convex in each block of variables, although in 406

general not jointly convex in all the variables. 407

Motivated by the given property, we propose an algorithmic 408

solution for the joint transceiver optimization based on the 409

block coordinate update approach, which updates the three 410

blocks of design variables, one at a time while fixing the 411

values associated with the remaining blocks. In this way, three 412

subproblems can be derived from (17), with each updating F, 413

W, and U, respectively. Each subproblem can be transformed 414

into a convex one, which is computationally much simpler 415

than directly finding the optimal solution to the original joint 416

problem (if at all possible). Since solving for each block at 417

the current iteration depends on the values of the other blocks 418

gleaned from the previous iteration, this method in effect can be 419

recognized as a joint optimization approach in terms of both the 420

underlying theory [15], [20] and the related applications [14], 421

[17]. We now proceed by analyzing each of these subproblems. 422

1) Receive Filter Design: It can be observed in (19) that 423

εk,l in (17a) only depends on the corresponding linear vector 424

uk,l, whereas the constraints (17b) and (17c) do not involve 425

uk,l. Hence, for a fixed F and W, the optimal uk,l can be 426

obtained independently and in parallel for different (k, l) values 427

by equating the following complex gradient to zero: 428

∇u∗
k,l
εk,l = 0. (27)

The resultant optimal solution of (27) is the Wiener filter, i.e., 429

uk,l =
(
TTT k,kTTT H

k,k +Rk +ΩΩΩk

)−1 TTT k,kek,l. (28)

2) Source TPC Design: We then solve our problem for the 430

TPC F, while keeping W and U fixed. For better exposi- 431

tion of our solution, we can rewrite (17) after some matrix 432

manipulations, explicitly in terms of F as given in (29), shown 433

at the bottom of the next page, where Ek,l�ek,le
T
k,l, ηR,m � 434

ρmPR − σ2
R,mTr

(
WmWH

m

)
, and 435

ak,l3 � uH
k,l

[
M∑

m=1

σ2
R,m

(
Tr
(
WmWH

mΨΨΨGk,m

)
ΣΣΣGk,m

+ GGGk,mGGGH
k,m

)
+ σ2

D,kIND,k

]
uk,l + 1. (30)

The solution to the problem (29) is not straightforward; hence, 436

we transform it into a more tractable form. To this end, we 437
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introduce the new variables of fk � vec (Fk) ∈ CNS,kdk×1438

∀k ∈ K and define the following quantities that are independent439

of fk ∀k ∈ K:440

Ak,l
1,q �

M∑
m=1

Idk
⊗
(

M∑
n=1

WWWH
m,qUUUH

k,mEk,lUUUk,nWWWn,q

+Tr
(
uH
k,lΣΣΣGk,m

uk,l

)
WWWH

m,kΨΨΨGk,m
WWWm,k

+Tr
(
uH
k,lGGGk,mΣΣΣHm,q

GGGH
k,muk,l

)
ΨΨΨHm,q

)
(31)

ak,l2 = vec

(
M∑

m=1

WWWH
m,kUUUH

k,mEk,l

)
(32)

Am
4,k = Idk

⊗
(
WWWH

m,kWWWm,k +Tr
(
WH

mWmΣΣΣHm,k

)
ΨΨΨHm,k

)
.

(33)

It may be readily verified that Ak,l
1,q and Am

4,k are positive441

definite matrices. Then, we invoke the following identities, i.e.,442

Tr
(
AHBA

)
= vec (A)H (I⊗B) vec (A) and Tr

(
AHB

)
=443

vec (B)H vec (A), for transforming both the objective (29a)444

and the constraints (29b)–(29c) into quadratic expressions of445

fk, and finally reach the following equivalent formulation:446

min
f1,...,fK ,t

t (34a)

s.t.
K∑
q=1

fHq Ak,l
1,qfq − 2�

{
fHk ak,l2

}
+ ak,l3 ≤ t

κk,l

∀k ∈ K, l ∈ Dk (34b)
K∑

k=1

fHk Am
4,kfk ≤ ηR,m ∀m ∈ M (34c)

fHk fk ≤ Pmax
S,k ∀k ∈ K (34d)

where t is an auxiliary variable. Problem (34) by definition is a447

convex separable inhomogeneous QCLP [16]. This class of op-448

timization problems can be handled by the recently developed449

parser/solvers, such as CVX [29] where the built-in parser is450

capable of verifying the convexity of the optimization problem451

(in user-specified forms) and then, of automatically transform-452

ing it into a standard form; the latter may then be forwarded453

to external optimization solvers, such as SeduMi [30] and 454

MOSEK [31]. To gain further insights into this procedure, we 455

show in Appendix A that the problem (34) can be equivalently 456

transformed into a standard SOCP that is directly solvable by 457

a generic external optimization solver based on the interior- 458

point method. Therefore, the SOCP form bypasses the tedious 459

translation by the parser/solvers for every problem instance in 460

real-time computation. 461

3) Relay AF Matrix Design: To solve for the relay AF ma- 462

trices, we follow a similar procedure to that used for the source 463

TPC design. However, here we introduce a new variable, which 464

vertically concatenates all the vectorized relay AF matrices, 465

yielding 466

w �

⎡
⎢⎣ w1

...
wM

⎤
⎥⎦ �

⎡
⎢⎣ vec (W1)

...
vec (WM )

⎤
⎥⎦ (35)

along with the following quantities, which are independent 467

of w: 468

[
Bk,l

1

]
m,n

=

K∑
q=1

[(
HHH∗

m,qHHHT
n,q

)
⊗
(
UUUH

k,mEk,lUUUk,n

)]
(36)

bk,l
2,m � vec

(
UUUH

k,mEk,lHHHH
m,k

)
(37)

Bk,l
3,m �

K∑
q=1

[
Tr
(
uH
k,lΣΣΣGk,m

uk,l

)
HHH∗

m,qHHHT
m,q ⊗ΨΨΨGk,m

+Tr
(
FH

q ΨΨΨHm,q
Fq

)
ΣΣΣT

Hm,q
⊗UUUH

k,mEk,lUUUk,m

]
+ σ2

R,mTr
(
uH
k,lΣΣΣGk,m

uk,l

)
INR,m

⊗ΨΨΨGk,m

+ σ2
R,mINR,m

⊗
(
UUUH

k,mEk,lUUUk,m

)
(38)

bk,l4 � σ2
D,k ‖uk,l‖2 + 1 (39)

B5,m �
[
σ2
R,mINR,m

+

K∑
k=1

(
HHH∗

m,kHHHT
m,k

+Tr
(
FkF

H
k ΨΨΨHm,k

)
ΣΣΣT

Hm,k

)]
⊗ INR,m

(40)

min
F

max
∀k∈K,l∈Dk

κk,l

{
K∑
q=1

M∑
m=1

M∑
n=1

Tr
(
FH

q WWWH
m,qUUUH

k,mEk,lUUUk,nWWWn,qFq

)
−

M∑
m=1

2�{Tr (Ek,lUUUk,mWWWm,kFk)}+ ak,l3

+

K∑
q=1

M∑
m=1

Tr
(
FH

q WWWH
m,kΨΨΨGk,m

WWWm,kFq

)
Tr
(
uH
k,lΣΣΣGk,m

uk,l

)

+

K∑
q=1

M∑
m=1

Tr
(
FH

q ΨΨΨHm,q
Fq

)
Tr
(
uH
k,lGGGk,mΣΣΣHm,q

GGGH
k,muk,l

)}
(29a)

s.t.
K∑

k=1

Tr

(
FH

k

(
ĤH

m,kW
H
mWmĤm,k +Tr

(
WH

mWmΣΣΣHm,k

)
ΨΨΨHm,k

)
Fk

)
≤ ηR,m, ∀m ∈ M (29b)

Tr
(
FH

k Fk

)
≤ Pmax

S,k , ∀k ∈ K (29c)
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where Bk,l
1 is a block matrix with its (m,n)th block de-469

fined earlier. Then, using the identities Tr
(
AHBCDH

)
=470

vec (A)H
(
DT ⊗B

)
vec(C), Tr

(
AHBA

)
=vec(A)H (I⊗B)471

vec (A), and Tr
(
AHB

)
= vec (B)H vect (A), we can formu-472

late the following optimization problem:473

min
w,t

t (41a)

s.t. wHBk,l
1 w −

M∑
m=1

2�
{
wH

mbk,l
2,m

}
+

M∑
m=1

wH
mBk,l

3,mwm

+ bk,l4 ≤ t

κk,l
∀l ∈ Dk, k ∈ K (41b)

wH
mB5,mwm ≤ ρmPR ∀m ∈ M. (41c)

It may be readily shown that Bk,l
1 , Bk,l

3,m, and B5,m are all474

positive definite matrices and that (41) is also a convex sepa-475

rable inhomogeneous QCLP. Using a similar approach to the476

one derived in Appendix A, the SOCP formulation of (41)477

can readily be obtained. The details of the transformation are478

therefore omitted for brevity.479

B. Algorithm and Properties480

We assume that there exists a central processing node, which,481

upon collecting the channel estimates {Ĥm,k, Ĝk,m ∀m ∈482

M, k ∈ K} and the covariance matrices of the CSI errors483

{ΣΣΣHm,k
,ΣΣΣGk,m

,ΨΨΨHm,k
,ΨΨΨGk,m

∀m ∈ M, k ∈ K}, optimizes484

all the design variables and sends them back to the485

corresponding nodes. The iterative procedure listed in486

Algorithm 1 therefore should be implemented in a centralized487

manner, where {F(i),W(i),U(i)} and t(i) represent the set of488

design variables and the objective value in (17a), respectively,489

at the ith iteration. A simple termination criterion can be490

|t(i) − t(i−1)| < ε, where ε > 0 is a predefined threshold. In the491

following, we shall analyze both the convergence properties492

and the complexity of the proposed algorithm.493

1) Convergence: Provided that there is a feasible initializa-494

tion for Algorithm 1, the solution to each subproblem is glob-495

ally optimal. As a result, the sequence of the objective values496

in (17a) is monotonically nonincreasing as the iteration index497

i increases. Since the maximum per-stream MSE is bounded498

from below (at least) by zero, the sequence of the objective499

values must converge by invoking the monotonic convergence500

theorem.501

2) Complexity: When the number of antennas at the sources502

and relays, i.e., NS,k and NR,m, have the same order of503

magnitude, the complexity of Algorithm 1 is dominated by the504

SOCP of (62), which is detailed in Appendix A, as it involves505

all the constraints of the original problem (17). To simplify506

the complexity analysis, we assume that NS,k = NS, and dk =507

d ∀k ∈ K. In (62), the total number of design variables is508

Ntotal = N2
SK + 1 +K2d+KM . The size of the second-509

order cones (SOCs) in the constraints (62b)–(62g) is given510

by (N2
S + 1)dK(K − 1), (N2

S + 1)dK, (K + 2)dK, (N2
S +511

1)KM , (K + 1)M , and (N2
S + 1)K, respectively. Therefore,512

the total dimension of all the SOCs in these constraints can 513

be shown to be DSOCP = O(N2
SdK

2 +N2
SMK). It has been 514

shown in [32] that problem (62) can be solved most efficiently 515

using the primal–dual interior-point method at worst-case com- 516

plexity on the order of O(N2
totalD) if no special structure in 517

the problem data is exploited. The computational complexity of 518

Algorithm 1 is therefore on the order of O(N6
S ), O(K6), and 519

O(M3) in the individual parameters NS, K and M , respec- 520

tively. In practice, however, we find that the matrices Ak,l
1,q and 521

Am
4,k in (31) and (33), respectively, exhibit a significant level of 522

sparsity, which allows solving the SOCP more efficiently. In our 523

simulations, we therefore measured the CPU time required for 524

solving (62) for different values of NS, K, and M (the results 525

are not reported due to the space limitation) and found that 526

the orders of complexity obtained empirically are significantly 527

lower than those of the given worst-case analysis. Empirically, 528

we found these to be around O(N1.6
S ), O(K1.7), and O(M1.3). 529

Algorithm 1 Iterative Algorithm for Statistically Robust
Min–Max Problem

Initialization: 530

1: Set the iteration index i = 0, F
(0)
k =

√
Pmax
S,k INS,k×dk

, 531

∀k ∈ K and W
(0)
m =

√
ρmPR

Tr(B5,m)INR,m
, ∀m ∈ M 532

2: repeat 533

3: Compute u(i+1)
k,l ∀k∈K, l ∈ Dk, using the Wiener filter 534

(28) in parallel; 535

4: Compute F
(i+1)
k ∀k ∈ K by solving the SOCP (62); 536

5: Compute W
(i+1)
m ∀m ∈ M by solving the SOCP (41); 537

6: i ← i+ 1; 538

7: until |t(i) − t(i−1)| < ε 539

IV. WORST-CASE ROBUST TRANSCEIVER DESIGN 540

FOR THE MIN–MAX PROBLEM 541

Here, we consider the joint transceiver design problem under 542

min–max formulation of (15) and the norm-bounded CSI error 543

model of Section II-B2. To this end, based on the notation in 544

(14), we explicitly rewrite this problem as 545

min
F,W,U

max
∀k∈K,l∈Dk,

∀ΔH∈H,ΔGk∈Gk

κk,lεk,l (ΔH,ΔGk) (42a)

s.t. PR,m (ΔHm) ≤ ρmPR ∀m ∈ M,ΔHm ∈ Hm

(42b)

Tr
(
FH

k Fk

)
≤ Pmax

S,k ∀k ∈ K (42c)

whose epigraph form can be expressed as 546

min
F,W,U

t (43a)

s.t. εk,l (ΔH,ΔGk) ≤
t

κk,l
∀k ∈ K, l ∈ Dk,

ΔH ∈ H,ΔGk ∈ Gk (43b)
PR,m (ΔHm) ≤ ρmPR ∀m ∈ M,ΔHm ∈ Hm

(43c)
Tr
(
FH

k Fk

)
≤ Pmax

S,k ∀k ∈ K (43d)
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where t is an auxiliary variable. As compared with the sta-547

tistically robust version of (17), problem (43) now encounters548

two major challenges, namely the nonconvexity and the semi-549

infinite nature of the constraints (43b) and (43c), which render550

the optimization problem mathematically intractable. In what551

follows, we derive a solution to address these calamities.552

A. Iterative Joint Transceiver Optimization553

To overcome the first difficulty, we still rely on the iterative554

block coordinate update approach described in Section III;555

however, the three resultant subproblems are semi-infinite due556

to the continuous but bounded channel uncertainties in (43b)557

and (43c). To handle the semi-infiniteness, an equivalent refor-558

mulation of these constraints as LMI will be derived by using559

certain matrix transformation techniques and by exploiting an560

extended version of the S-lemma of [21]. In turn, such LMI561

will convert each of the subproblems into an equivalent SDP562

[33] efficiently solvable by interior-point methods [34].563

1) Receive Filter Design: In this subproblem, we have to564

minimize t in (43a) with respect to uk,l subject to the constraint565

(43b). To transform this constraint into an equivalent LMI, the566

following lemma is presented, which is an extended version of567

the one in [21].568

Lemma 1 (Extension of S-lemma [21]): Let A(x) =569

AH (x), Σ(x) = ΣH (x), {Dk(x)}Nk=1, and {Bk}Nk=1 be ma-570

trices with appropriate dimensions, where A(x), ΣΣΣ(x), and571

{Dk(x)}Nk=1 are affine functions of x. The following semi-572

infinite matrix inequality:573

(
A(x) +

N∑
k=1

BH
k CkDk(x)

)

×
(
A(x) +

N∑
k=1

BH
k CkDk(x)

)H

� Σ(x) (44)

holds for all ‖Ck‖S ≤ ρk, k = 1, . . . , N if and only if there574

exist nonnegative scalars τ1, . . . , τN satisfying (45), shown at575

the bottom of the page.576

A simplified version of Lemma 1, which considers only 577

a single uncertainty block, i.e., N = 1, can be traced back 578

to [35], whereas a further related corollary is derived in 579

[21, Proposition 2]. Lemma 1 extends this result to the case 580

of multiple uncertainty blocks, i.e., K > 1; the proof which 581

follows similar steps as in [21] is omitted owing to the space 582

limitation. 583

Upon using Lemma 1, the constraint (43b) can equivalently 584

be reformulated as follows. 585

Proposition 1: There exist nonnegative values of τττGk,l ∈ 586

RM×1 and τττHk,l ∈ RKM×1 capable of ensuring that the semi- 587

infinite constraint (43b) is equivalent to the matrix inequality 588

in (46), shown at the bottom of the page, where we have 589

NR �
∑M

m=1 NR,m, NS �
∑K

k=1 NS,k, and the operator (∗) 590

denotes the Khatri–Rao product (blockwise Kronecker product) 591

[36]. In (46), ΘΘΘk,l and ΦΦΦk,l are defined as 592

ΘΘΘk,l �

⎡
⎢⎣ ξk,1ΘΘΘ

k,l
1

...
ξk,MΘΘΘk,l

M

⎤
⎥⎦ ,ΦΦΦk,l �

⎡
⎢⎣

η1,1ΦΦΦ
k,l
1,1

...
ηM,KΦΦΦk,l

M,K

⎤
⎥⎦ (47)

whereas ΘΘΘk,l, ΦΦΦk,l, and θθθk,l are defined in (71) of Appendix B. 593

Proof: See Appendix B. � 594

Using (46), the subproblem formulated for uk,l can be equiv- 595

alently recast as 596

min
t,uk,l,τττ

g
k,l

,τττh
k,l

t s.t. Qk,l � 0. (48)

With fixed F and W, (46) depends affinely on the design 597

variables {t,uk,l, τττ
g
k,l, τττ

h
k,l}. Therefore, (48) is a convex SDP 598

of the LMI form [33], which is efficiently solvable by existing 599

optimization tools based on the interior-point method. Since the 600

uk,l for different values of (k, l) are independent of each other, 601

they can be updated in parallel by solving (48) for different k 602

and l. 603

2) Source TPC Design: We now have to solve problem (43) 604

for F by fixing U and W. The solution is formulated in the 605

following proposition. 606

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Σ(x)−
N∑

k=1

τkB
H
k Bk A(x) 0 · · · 0

AH (x) I ρ1D
H
1 (x) · · · ρNDH

N (x)
0 ρ1D1(x) τ1I · · · 0
...

...
...

. . .
...

0 ρNDN (x) 0 · · · τNI

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
�0 (45)

Qk,l �

⎡
⎢⎢⎢⎢⎢⎣

t
κk,l

− 1TτττGk,l − 1TτττHk,l θθθk,l 01×ND,kNR
01×NSNR

θθθHk,l Id+NR+ND,k
ΘΘΘ

H

k,l ΦΦΦ
H

k,l

0ND,kNR×1 ΘΘΘk,l diag
(
τττGk,l

)
∗ IND,kNR

0ND,kNR×NSNR

0NSNR×1 ΦΦΦk,l 0NSNR×ND,kNR
diag

(
τττHk,l

)
∗ INSNR

⎤
⎥⎥⎥⎥⎥⎦ � 0 (46)
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Proposition 2: The subproblem of optimizing the TPCs F607

can be formulated as the following SDP:608

min
t,F,τττg

k,l
,τττh

k,l
,τττp

m

t (49a)

s.t. Qk,l � 0 ∀k ∈ K, l ∈ Dk (49b)
Pm � 0 ∀m ∈ M (49c)[

Pmax
S,k fHk
fk INS,kdk

]
� 0 ∀k ∈ K

(49d)

where we have609

Pm �

⎡
⎣ ρmPR − 1Tτττpm tHm 01×NSNR,m

tm I Tm

0NSNR,m×1 T
H
m diag (τττpm) ∗ I

⎤
⎦�0

(50)

with τττpm ∈ RK×1, Tm(F) �
[
TT

m,1, . . . ,T
T
m,K

]T
, and610

tm �

⎡
⎢⎢⎢⎢⎢⎣

vec
(
WmĤm,kF1

)
...

vec
(
WmĤm,KFK

)
σR,mvec (Wm)

⎤
⎥⎥⎥⎥⎥⎦ (51)

Tm,k �

⎡
⎢⎢⎣

0∑k−1

q=1
dqNR,m×NS,kNR,m

FT
k ⊗Wm

0(∑K

q=k+1
dqNR,m+N2

R,m

)
×NS,kNR,m

⎤
⎥⎥⎦ . (52)

Proof: Since F is involved in all the constraints of the611

original problem (43), in the following, we will transform each612

of these constraints into tractable forms.613

First, note that (43b) has already been reformulated as (46),614

which is a trilinear function of F, W, and U. By fixing the615

values of W and U, it essentially becomes an LMI in F.616

Then, to deal with the semi-infinite constraint of the relay617

power (43c), we can express PR,m as follows based on the618

definitions in (51):619

PR,m =

∥∥∥∥∥tm +

K∑
k=1

Tm,khm,k

∥∥∥∥∥
2

. (53)

Substituting (53) into (43c) and again applying Lemma 1, (43c)620

can be equivalently recast as the matrix inequality (49c), whose621

left-hand side is bilinear in Wm and F, which is an LMI in F622

when Wm is fixed.623

Finally, (43d) can be expressed as ‖fk‖2 ≤ Pmax
S,k , which can624

be equivalently recast as (49d) by using the Schur complement625

rule of [33]. The SDP form (49) is then readily obtained. �626

3) Relay AF Matrix Design: Since the constraint (49d) is627

independent of the relay AF matrices W, this subproblem is628

equivalent to629

min
t,W,τττg

k,l
,τττh

k,l
,τττp

m

t s.t. (49b), (49c). (54)

The given problem becomes a standard SDP in W by noting630

that Qk,l and Pm in (49b) and (49c), respectively, are LMIs in631

W, provided that the other design variables are kept fixed.632

The convergence analysis of the overall iterative algorithm, 633

which solves problems (48), (49), and (54) with the aid of the 634

block coordinate approach, is similar to that in Section III-B 635

and therefore omitted for brevity. One slight difference from 636

Algorithm 1 is that we initialize F
(0)
k =

√
Pmax
S,k INS,k×dk

∀k ∈ 637

K and U
(0)
k = Idk×NS,k

∀k ∈ K, and the iterative algorithm will 638

start by solving for the optimal W(1)
m . Solving (49) imposes a 639

worst-case complexity on the order of O(N2
totalDSDP), where 640

DSDP represents the total dimensionality of the semi-definite 641

cones in constraints (49b)–(49d). Comparing the SDP formu- 642

lation of (49) derived for the norm-bounded CSI errors and the 643

SOCP formulation in (62) deduced for the statistical CSI errors, 644

the total dimensionality of (49) is seen to be significantly larger 645

than that of (62). 646

V. TRANSCEIVER DESIGN FOR THE QUALITY-OF-SERVICE 647

PROBLEM 648

Here, we turn our attention to the joint transceiver design for 649

the QoS problem (16). Following the same approaches as in 650

Sections III and IV, the solution to the QoS problem can also 651

be obtained by adopting the block coordinate update method. 652

Since the derivations of the corresponding subproblems and 653

algorithms are similar to those in Sections III and IV deduced 654

for the min–max problem, we hereby only present the main 655

results. 656

A. QoS Problem Under Statistical CSI Errors 657

1) Receive Filter Design: An optimal uk,l can be obtained 658

by minimizing εk,l(ΔH,ΔGk) with respect to uk,l, which 659

yields exactly the same solution as the Wiener filter in (28). 660

2) Source TPC Design: The specific subproblem of finding 661

the optimal F can be solved by the following QCLP: 662

min
F,t

t (55a)

s.t.
K∑
q=1

fHq Ak,l
1,qfq − 2�

{
fHk ak,l2

}
+ ak,l3 ≤ γ

κk,l

∀k ∈ K, l ∈ Dk (55b)
K∑

k=1

fHk Am
4,kfk ≤ η′R,m ∀m ∈ M (55c)

Tr(FH
k Fk) ≤ Pmax

S,k ∀ k ∈ K (55d)

where η′R,m � ρmt′ − σ2
R,mTr(WmWH

m). 663

3) Relay AF Matrix Design: The optimal W can be found 664

by solving 665

min
w,t

t (56a)

s.t. wHBk,l
1 w −

M∑
m=1

2�
{
wH

mbk,l
2,m

}

+

M∑
m=1

wH
mBk,l

3,mwm + bk,l4 ≤ γ

κk,l
∀k, l

(56b)

wH
mB5,mwm ≤ ρmt ∀m ∈ M. (56c)
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B. QoS Problem under Norm-Bounded CSI Errors666

1) Receive Filter Design: The optimal uk,l can be obtained667

from (48).668

2) Source TPC Design: The optimal F can be obtained as669

the solution to the following SDP:670

min
t,F,τττg

k,l
,τττh

k,l
,τττp

m

t (57a)

s.t. Q′
k,l � 0 ∀k ∈ K, l ∈ Dk (57b)

P′
m � 0 ∀m ∈ M (57c)[
Pmax
S,k fHk
fk INS,kdk

]
� 0 ∀k ∈ K

(57d)

where Q′
k,l is obtained from Qk,l in (46) upon replacing t by671

γ in the top-left entry (1,1). Similarly, P′
m can be obtained by672

substituting PR with t in the (1,1)th entry of Pm in (50).673

3) Relay AF Matrix Design: The optimal relay AF matrices674

are obtained by solving675

min
t,W,τττg

k,l
,τττh

k,l

t s.t. (57b), (57c). (58)

C. Initial Feasibility Search Algorithm676

An important aspect of solving the given QoS problem is to677

find a feasible initial point. Indeed, it has been observed that,678

if the iterative algorithm is initialized with a random (possibly679

infeasible) point, the algorithm may fail at the first iteration.680

Finding a feasible initial point of a nonconvex problem, such681

as our QoS problem (16), is in general NP-hard. All these682

considerations motivate the study of an efficient initial feasibil-683

ity search algorithm, which finds a reasonably “good” starting684

point for the QoS problem of (16).685

Motivated by the “phase I” approach in general optimization686

theory [33], we formulate the feasibility check problem for the687

QoS problem as follows:688

min
F,W,U

s (59a)

s.t. κk,lU {εk,l (ΔH,ΔGk)} ≤ s ∀k ∈ K, l ∈ Dk

(59b)

Tr
(
FH

k Fk

)
≤ Pmax

S,k ∀k ∈ K (59c)

where s is a slack variable, which represents an abstract mea-689

sure for the violation of the constraint (16b). The given problem690

can be solved iteratively using the block coordinate approach691

until the objective value s converges or the maximum affordable692

number of iterations is reached. If, at the (n+ 1)st iteration,693

s(n+1) meets the QoS target γ, then the procedure successfully694

finds a feasible initial point; otherwise, we claim that the QoS695

problem is infeasible. In this case, it is necessary to adjust γ696

or to drop the services of certain users by incorporating an697

admission control procedure, which, however, is beyond the698

scope of this paper.699

Interestingly, (59) can be reformulated as 700

min
F,W,U

max
∀k∈K,l∈Dk

κk,lU {εk,l (ΔH,ΔGk)} (60a)

s.t. U {PR,m (ΔHm)} ≤ ρmP∞
R ∀m ∈ M (60b)

Tr
(
FH

k Fk

)
≤ Pmax

S,k ∀k ∈ K (60c)

where we have P∞
R → ∞, which is equivalent to removing the 701

constraint on the relay’s transmit power. In fact, (60) becomes 702

exactly the same as the min–max problem of (15) upon setting 703

PR = P∞
R . We therefore propose an efficient iterative feasibil- 704

ity search algorithm, which is listed as Algorithm 2, based on 705

the connection between the feasibility check and the min–max 706

problems. 707

Algorithm 2 Iterative Initial Feasibility Search Algorithm for
the QoS problems

1: repeat 708

2: Solve one cycle of the problem (60) and denote the 709

current objective value by γ̂(i+1); 710

3: Verify if γ̂(i+1) ≤ γ, and if so, stop the algorithm; 711

4: i ← i+ 1; 712

5: until Termination criterion is satisfied, e.g., |γ̂(i) − γ̂(i−1)| 713

≤ ε; or the maximum allowed number of iteration is 714

reached. 715

Based on the definition of U{·} in (14), Algorithm 2 is ap- 716

plicable to the QoS problems associated with both types of CSI 717

errors considered. Furthermore, Algorithm 2 indeed provides a 718

feasible initial point for the QoS problem if it exists. Otherwise, 719

it provides a certificate of infeasibility if γ̂(i+1) > γ after a few 720

iterations. Then, the QoS problem is deemed infeasible in this 721

case, and the admission control procedure may deny the access 722

of certain users. 723

VI. SIMULATION EXPERIMENTS AND DISCUSSIONS 724

This section presents our Monte Carlo simulation results for 725

verifying the resilience of the proposed transceiver optimization 726

algorithms against CSI errors. In all simulations, we assume 727

that there are K = 2 S−D pairs, which communicate with 728

the assistance of M = 2 relays. Each node is equipped with 729

NS,k = NR,m = ND,k = 3 antennas ∀ k ∈ K,m ∈ M. Each 730

source transmits 2 independent quadrature phase-shift keying 731

(QPSK) modulated data streams to its corresponding destina- 732

tion, i.e., dk = 2 ∀ k ∈ K. Equal noise variances of σ2
D,k = 733

σ2
R,m are assumed. The maximum source and relay transmit 734

power is normalized to one, i.e., we have Pmax
S,k = 1 ∀ k ∈ K 735

and ρmPR = 1, ∀m ∈ M. Equal weights of κk,l are assigned 736

to the different data streams, unless otherwise stated. The chan- 737

nels are assumed to be flat fading, with the coefficients given 738

by i.i.d. zero-mean unit-variance complex Gaussian random 739

variables. The signal-to-noise ratios (SNRs) at the relays and 740

the destinations are defined as SNRR,m � Pmax
S /|NR,mσ2

R,m| 741

and SNRD,k � Pmax
R /|ND,kσ

2
D,k|, respectively. The optimiza- 742

tion solver MOSEK [31] is used for solving each optimization 743

problem. 744
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Fig. 2. Convergence behavior of the proposed iterative algorithm with
statistical CSI errors.

A. Performance Evaluation Under Statistical CSI Errors745

We first evaluate the performance of the iterative algorithm746

proposed in Section III under statistical CSI errors. The747

channel correlation matrices in (9) and (10) are obtained by748

the widely employed exponential model of [37]. Specifically,749

their entries are given by [ΣΣΣHm,k
]i,j = [ΣΣΣGk,m

]i,j = α|i−j|750

and [ΨΨΨHm,k
]i,j=[ΨΨΨGk,m

]i,j= σ2
eβ

|i−j|, i, j ∈ {1, 2, 3}, where751

α and β are the correlation coefficients, and σ2
e denotes752

the variance of the CSI errors. The available channel753

estimates Ĥm,k and Ĝk,m are generated according to754

Ĥm,k ∼ CN (0NR,m×NS,k
, ((1−σ2

e)/σ
2
e)ΣΣΣHm,k

⊗ΨΨΨT
Hm,k

) and755

Ĝk,m ∼ CN (0ND,k ×NR,m
, ((1 − σ2

e) / σ
2
e)ΣΣΣGk,m

⊗ΨΨΨT
Gk,m

),756

respectively, such that the entries of the true channel matrices757

have unit variances. We compare the robust transceiver758

design proposed in Algorithm 1 to the 1) nonrobust design,759

which differs from the robust design in that it assumes760

ΣΣΣHm,k
=ΣΣΣGk,m

=0 and ΨΨΨHm,k
=ΨΨΨGk,m

=0, i.e., it neglects761

the effects of the CSI errors; 2) perfect CSI case, where the762

true channel matrices Hm,k and Gk,m are used instead of the763

estimates Ĥm,k and Ĝk,m in Algorithm 1 and where there764

are no CSI errors, i.e., we have ΣΣΣHm,k
= ΣΣΣGk,m

= 0 and765

ΨΨΨHm,k
= ΨΨΨGk,m

= 0. The curves labeled “optimal MSE”766

correspond to the value of the objective function in (17a) after767

optimization by Algorithm 1. In all the simulation figures, the768

MSEs of the different approaches are calculated by averaging769

the squared error between the transmitted and estimated770

experimental data symbols over 1000 independent CSI error771

realizations and 10 000 QPSK symbols for each realization.772

As a prelude to the presentation of our main simulation re-773

sults in the following, the convergence behavior of Algorithm 1774

is presented for different CSI error variances, It can be observed775

in Fig, 2 that in all cases, the proposed algorithm can converge776

within a reasonable number of iterations, Therefore, in our ex-777

perimental work, we set the number of iterations to a fixed value778

of 5, and the resultant performance gains will be discussed in779

the following.780

Fig. 3. MSE performance of different design approaches versus SNR.
(a) Maximum per-stream MSE. (b) Sum MSE (SNRR,m = SNRD,k = SNR,
α = β = 0.5).

1) Experiment A.1 (MSE Performance): In Fig. 3(a), the 781

maximum per-stream MSE among all the data streams is shown 782

as a function of the SNR for different values of CSI error vari- 783

ance. It is observed that the proposed robust design approach 784

achieves better resilience against the CSI errors than the non- 785

robust design approach. The performance gains become more 786

evident in the medium-to-high SNR range. For the nonrobust 787

design, degradations are observed because the MSE obtained 788

at high SNRs is dominated by the interference, rather than by 789

the noise. Therefore, the relays are confined to relatively low 790

transmit power in order to control the interference. This, in turn, 791

leads to performance degradation imposed by the CSI errors. In 792

contrast, the proposed robust design is capable of compensating 793

for the extra interference imposed by the CSI errors, thereby 794

demonstrating its superiority over its nonrobust counterpart. 795

Furthermore, we observe that the “Optimal MSE” and our 796

simulation results tally well, which justifies the approximations 797

invoked in calculating the per-stream MSE in (13). In addition 798
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Fig. 4. Per-stream MSE performance with the optimized codebook based on
the GLA-VQ. (B = 8 corresponds to σ2

e = 0.334, and B = 12 corresponds to
σ2
e = 0.175.)

to the per-stream performance, the overall system performance4799

quantified in terms of the sum MSE of different approaches800

is examined in Fig. 3(b), where a similar trend to that of801

Fig. 3(a) can be observed.802

The MSE performance associated with a limited number803

of feedback bits is also studied. To this end, we assume that804

each user is equipped with a codebook that is optimized using805

the generalized Lloyd algorithm of vector quantization (GLA-806

VQ) [38]. Each user then quantizes the channel vector, and807

the corresponding codebook index is fed back to the central808

processing unit. The results presented in Fig. 4 show that the809

proposed algorithm significantly outperformed the nonrobust810

one for the different number of quantization bits considered.811

2) Experiment A.2 (Data Stream Fairness): Next, we exam-812

ine the accuracy of the proposed robust design in providing813

weighted fairness for the different data streams. To this end,814

we set the weights for the different data streams to be κ1,1 =815

κ2,1 = 1/3 and κ1,2 : κ2,2 = 1/6. Fig. 5 shows the MSE of816

each data stream for different values of the error variance.817

Comparing the two methods, the robust design approach results818

in significantly better weighted fairness than the nonrobust one.819

In particular, the MSEs obtained are strictly inversely propor-820

tional to the predefined weights. This feature is particularly821

desirable for multimedia communications, where the streams822

corresponding to different service types may have different823

priorities.824

3) Experiment A.3 (Effects of Channel Correlation): The825

effects of channel correlations on the MSE performance of826

the different approaches are investigated in Fig. 6. It can be827

observed that the performance of all the approaches is degraded828

as the correlation factor α increases. While the robust design829

4Note that the objective of portraying the sum MSE performance is to
validate whether the proposed robust design approach can also achieve a perfor-
mance gain over the nonrobust approach in terms of its overall performance. In
fact, the sum MSE performance can be optimized by solving a design problem
with the sum MSE being the objective function.

Fig. 5. Comparison of the per-stream MSEs of the robust and nonrobust
design approaches (SNRR,m = SNRD,k = 15 dB, and α = β = 0.5).

Fig. 6. MSE performance of different design approaches versus correlation
factor of the source–relay channels. (a) Per-stream MSE. (b) Sum MSE
(SNRR,m = SNRD,k = 10 dB, and β = 0.45).
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Fig. 7. MSE performance of different design approaches versus SNR.
(a) Worst-case per-stream MSE. (b) Worst-case sum MSE.

shows consistent performance gains over its nonrobust one as-830

sociated with different α and σ2
e , the discrepancies between the831

two approaches tend to become less significant with an increase832

in α. This is because the achievable spatial multiplexing gain is833

reduced by a higher channel correlation; therefore, the robust834

design can only attain a limited performance improvement in835

the presence of high channel correlations.836

B. Performance Evaluation Under Norm-Bounded CSI Errors837

Here, we evaluate the performance of the proposed worst838

case design approach in Section V for the min–max problem839

under norm-bounded CSI errors. Similar to that given earlier,840

we compare the proposed robust design approach both to the841

nonrobust approach and to the perfect CSI scenario. We note842

that the power of each relay is a function of ΔHm. According843

to the worst-case robust design philosophy, the maximum relay844

transmit power has to be bounded by the power budget, whereas845

the average relay transmit power may become significantly846

Fig. 8. Maximum relay transmit power versus QoS targets with different
uncertainty sizes of the CSI errors.

lower than that of the nonrobust design. To facilitate a fair 847

comparison of the different approaches, we therefore assume 848

the absence of CSI errors for the S−R links, i.e., we have 849

ΔHm,k = 0. For the R−D links, we consider the uncertainty 850

regions with equal radius, i.e., we have ξk,m = r ∀k ∈ K,m ∈ 851

M. To determine the worst-case per-stream MSE, we generate 852

5000 independent realizations of the CSI errors. For each re- 853

alization, we evaluate the maximum per-stream MSE averaged 854

over 1000 QPSK symbols and random Gaussian noise. Then, 855

the worst-case per-stream MSE is obtained by selecting the 856

largest one among all the realizations. 857

1) Experiment B.1 (MSE Performance): The worst-case per- 858

stream MSE and the worst-case sum MSE are reported in 859

Fig. 7 as a function of the SNR. Three sizes of the uncertainty 860

region are considered, i.e., r = 0.05, r = 0.1, and r = 0.15. 861

Focusing on the first case, it can be seen that the performance 862

achieved by our robust design approach first monotonically 863

decreases as the SNR increases and then subsequently remains 864

approximately constant at high-SNR values. This is primarily 865

because, at low SNR, the main source of error in the estimation 866

of the data streams is the channel noise. At high SNR, the 867

channel noise is no longer a concern, and the MSE is dominated 868

by the CSI errors. Observe also in Fig. 7 that for r = 0.1 869

and r = 0.15, the MSE is clearly higher, although it presents 870

a similar trend to the case of r = 0.5. The performance gain 871

achieved by the robust design also becomes more noticeable 872

for these larger sizes of the uncertainty regions. 873

2) Experiment B.2 (Relay Power Consumption): Next, we 874

investigate the performance of the approach proposed in 875

Section VI for the QoS problem under the norm-bounded CSI 876

errors. The maximum per-relay transmit power is plotted in 877

Fig. 8 as a function of the QoS target γ for different sizes of 878

uncertainty regions. As expected, it can be observed that the 879

relay power for all cases decreases as the QoS target is relaxed. 880

An important observation from this figure is that, when the size 881

of uncertainty region is large, the required relay transmit power 882

becomes significantly higher than the perfect CSI case. From an 883
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Fig. 9. CDFs of per-stream MSEs using the robust and nonrobust approaches
for SNR = 5 dB.

energy-efficient design perspective, this is not desirable, which884

motivates the consideration of the min–max design in such885

applications.886

3) Experiment B.3 (CDF of Per-stream MSE): Finally, we887

evaluate how consistently the QoS constraints of all the data888

streams can be satisfied by the proposed design approach for889

the QoS problem. In this experiment, the CSI errors of both the890

S−R and R−D links are taken into consideration and generated891

according to the i.i.d. zero-mean complex Gaussian distribution892

with a variance of σ2
e = 0.001. Then, the probability that the893

CSI errors are bounded by the predefined radius r can be894

formulated as [9, Sec. IV-C]895

Pr
{
‖hm,k‖2 ≤ r2

}
= Pr

{
‖gk,m‖2 ≤ r2

}
=

1

Γ
(

N2

2

)γ (N2

2
,
r2

σ2
e

)
(61)

where Γ(·) and γ(·, ·), respectively, denote the complete and896

lower incomplete Gamma functions. Given the required bound-897

ing probability of, e.g., 90% in the simulation, the radius r898

can be numerically determined from (61). Fig. 9 shows the899

cumulative distribution functions (cdfs) of the MSE of each900

data stream using both the robust and nonrobust design meth-901

ods. As expected, the proposed robust method ensures that902

the MSE of each data stream never exceeds the QoS target903

shown as the vertical black solid line in Fig. 9. By contrast,904

for the nonrobust design, the MSE frequently violates the QoS905

target, namely for more than 60% of the realizations. Based on906

these observations, we conclude that the proposed robust design907

approach outperforms its nonrobust counterpart in satisfying908

the QoS constraints for all the data streams.909

VII. CONCLUSION910

Jointly optimized source TPCs, AF relay matrices, and re-911

ceive filters were designed by considering two different types912

of objective functions with specific QoS consideration in the 913

presence of CSI errors in both the S−R and R−D links. To 914

this end, a pair of practical CSI error models, namely, the 915

statistical and the norm-bounded models were considered. Ac- 916

cordingly, the robust transceiver design approach was formu- 917

lated to minimize the maximum per-stream MSE subject to 918

the source and relay power constraints (min–max problem). 919

To solve the nonconvex optimization problems formulated, an 920

iterative solution based on the block coordinate update algo- 921

rithm was proposed, which involves a sequence of convex conic 922

optimization problems. The proposed algorithm generated a 923

convergent sequence of objective function values. The problem 924

of relay power minimization subject to specific QoS constraints 925

and to source power constraints was also studied. An efficient 926

feasibility search algorithm was proposed by studying the link 927

between the feasibility check and the min–max problems. Our 928

simulation results demonstrate a significant enhancement in 929

the performance of the proposed robust approaches over the 930

conventional nonrobust approaches. 931

APPENDIX A 932

TRANSFORMATION OF (34) INTO A STANDARD 933

SECOND-ORDER CONE PROGRAMMING 934935

By exploiting the separable structure of (34) and the proper- 936

ties of quadratic terms, the problem can be recast as 937

min
t,{fk},

{λλλk,l},{θθθm}

t (62a)

s.t.

∥∥∥∥(Ak,l
1,q

)1/2
fq

∥∥∥∥ ≤ λk,l
q

∀q, k ∈ K, q 	= k, l ∈ Dk (62b)∥∥∥∥(Ak,l
1,k

)1/2
fk −

(
Ak,l

1,k

)−1/2

ak,l2

∥∥∥∥ ≤ λk,l
k

∀k ∈ K, l ∈ Dk (62c)∥∥λλλk,l
∥∥2−(ak,l2

)H(
Ak,l

1,k

)−1

ak,l2 + ak,l3 ≤ t

κk,l

∀k ∈ K, l ∈ Dk (62d)∥∥∥(Am
4,k

)1/2
fk

∥∥∥ ≤ θmk ∀k ∈ K,m ∈ M (62e)

‖θθθm‖ ≤ √
ηR,m ∀m ∈ M (62f)

‖fk‖ ≤
√

Pmax
S,k ∀k ∈ K (62g)

where λλλk,l = [λk,l
1 , . . . , λk,l

K ]T , θθθm = [θm1 , . . . , θmK ]T , and t are 938

auxiliary variables. The main difficulty in solving this problem 939

is with (62d), which is a so-called hyperbolic constraint [32], 940

whereas the remaining constraints are already in the form 941

of SOC. 942

To tackle (62d), we observe that, for any x and y, z ≤ 0, the 943

following equation holds: 944

‖x‖2 ≤ yz ⇐⇒
∥∥∥∥
[

2x
y − z

]∥∥∥∥ ≤ y + z. (63)



16 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY

We can apply (63) to transform (62d) into945 ∥∥∥∥∥
[

2λλλk,l

t
κk,l

+
(
ak,l2

)H (
Ak,l

1,k

)−1

ak,l2 − ak,l3 − 1

]∥∥∥∥∥
≤ t

κk,l
+
(
ak,l2

)H (
Ak,l

1,k

)−1

ak,l2 − ak,l3 + 1. (64)

Therefore, substituting (62d) by (64), we can see that (62) is in946

the form of a standard SOCP.947

APPENDIX B948

PROOF OF PROPOSITION 1949950

First, we define TTT k � [TTT k,1, . . . ,TTT k,K ] and GGGk �951

[σR,1GGGk,1, . . . , σR,M GGGk,M ]. We exploit the fact that, for any952

vectors {ak}Nk=1, the following identity holds:953

N∑
k=1

‖ak‖2 =
∥∥[aT1 , . . . ,aTN ]∥∥2 . (65)

The per-stream MSE (13) can be subsequently expressed as954

εk,l =

∥∥∥∥∥uH
k,lTTT k+

M∑
m=1

uH
k,lΔGk,m [WWWm,1F1, . . . ,WWWm,KFK ]

+
K∑
q=1

M∑
m=1

[
01×

∑q

t=1
dt
,uH

k,lGGGk,m

× ΔHm,qFq,01×
∑K

q+1
dt

]∥∥∥∥∥
2

+

∥∥∥∥∥
M∑

m=1

[
0
1×
∑m−1

p=1
NR,p

,uH
k,lΔGk,mWm,

0
1×
∑M

p=m+1
NR,p

]
uH
k,lGGGk

∥∥∥∥∥
2

+ σ2
D,k‖uH

k,l. (66)

Upon applying the identity vecT (ABC) = vec(B)T (C⊗955

AT ) to (66), we arrive at956

εk,l =

∥∥∥∥∥uH
k,lTTT k − eTk,l +

M∑
m=1

gT
k,mCk,l

1,m +
∑
m,q

hT
m,qD

k,l
m,q

∥∥∥∥∥
2

+

∥∥∥∥∥uH
k,lGGGk +

M∑
m=1

gT
k,mCk,l

2,m

∥∥∥∥∥
2

+
∥∥σD,ku

H
k,l

∥∥2 (67)

wherehm,k �vec(ΔHm,k)andgk,m�vec(ΔGk,m)denote the957

vectorized CSI errors, ek,l� [0
1×
∑k−1

t=1
dt
, eTk,l,01×

∑K

t=k+1
dt
]T ,958

and the following matrices have also been introduced:959

Ck,l
1,m �

[
(WWWm,1F1)⊗ u∗

k,l, . . . , (WWWm,KFK)⊗ u∗
k,l

]
(68)

Ck,l
2,m �

[
0
ND,kNR,m×

∑m−1

p=1
NR,p

,Wm ⊗ u∗
k,l

0
ND,kNR,m×

∑M

p=m+1
NR,p

]
(69)

Dk,l
m,q �

[
0
NS,qNR,m×

∑q−1

t=1
dt
,Fq ⊗

(
GGGT
k,mu∗

k,l

)
0
NS,qNR,m×

∑K

t=q+1
dt

]
. (70)

Again, by exploiting the property in (65), we can write (67) in 960

a more compact form as follows: 961

εk,l =

∥∥∥∥∥ [uH
k,lTTT k − ek,l,u

H
k,lGGGk, σD,ku

H
k,l

]︸ ︷︷ ︸
θθθk,l

+

M∑
m=1

gT
k,m

[
Ck,l

1,m,Ck,l
2,m,0ND,kNR,m×ND,k

]︸ ︷︷ ︸
ΘΘΘk,l

m

+

M∑
m=1

K∑
q=1

hT
m,q

[
Dk,l

m,q,0NR,mNS,q×NR+ND,k

]︸ ︷︷ ︸
ΦΦΦk,l

m,q

∥∥∥∥∥
2

.

(71)

Substituting (71) into (43b), we can express (43b) as 962(
θθθk,l +

M∑
m=1

gT
k,mΘΘΘk,l

m +
M∑

m=1

K∑
q=1

hT
m,qΦΦΦ

k,l
m,q

)

×
(
θθθk,l +

M∑
m=1

gT
k,mΘΘΘk,l

m +

M∑
m=1

K∑
q=1

hT
m,qΦΦΦ

k,l
m,q

)H

≤ t

(72)

where the uncertain blocks hm,k and gk,m should satisfy 963

‖hm,k‖S = ‖hm,k‖ ≤ ξm,k and ‖gk,m‖S = ‖gk,m‖ ≤ ηk,m, 964

respectively. Through a direct application of Lemma 1, (72) can 965

readily be recast as (46) where the nonnegativity of τττGk,l and τττHk,l 966

has been implicitly included in the positive semi-definite nature 967

of Qk,l. 968
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