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1. INTRODUCTION 

Confidence intervals based on least squares may have poor coverages for regression 

parameters when the effect of sampling design is ignored. In addition, confidence 

intervals obtained from the standard design-based approaches [e.g. 1, 2, 3, 4] may not 

have the right coverages when the sampling distribution is skewed.  

We propose to use an empirical likelihood approach to construct design-based confidence 

intervals and to test hypotheses for regression parameters under unequal probability 

sampling. Berger and De La Riva Torres [5] proposed an empirical likelihood approach 

which can be used for point estimation and to construct confidence intervals under 

complex sampling designs for a single parameter. We show that this approach can be 

extended to the multidimensional parameter case, in the sense that we can derive 

confidence intervals and test the significance of a subset of model parameters while 

taking the sampling design into account. This requires profiling which is not covered by 

Berger and De La Riva Torres [5].  

The proposed approach intrinsically incorporates sampling weights, design variables, and 

auxiliary information. It may yield to more accurate confidence intervals when the 

sampling distribution of the regression parameters is not normal, the point estimator is 

biased, or the regression model is not linear. The proposed approach is simple to 

implement and less computer intensive than bootstrap. It does not rely on re-sampling, 

linearisation, variance estimation, or design-effect. 

1.1.   Parameter of interest and estimating equations 

Let  be a random sample of size  which is selected from the finite population  of size 

 with respect to a probability sampling . Let  and  be some variables of interest. 

Suppose that  is an unknown finite population parameter, which is the solution of the 

following population estimating equation. 

 

where  is a vector of estimating functions [e.g. 1, 2, 4, 6]. For example, for a 

simple linear regression, we have  .  

We assume that the finite population parameter  converges to the model parameter 

 If    is a design-consistent estimator of  based on a sample data (see Section 

2.1), the estimator  is also an estimator of  Assuming that the sampling fraction is 

negligible, the variability of  is driven by the sampling design. Hence, design-based 

                                                 
1
 University of Southampton, Southampton Statistical Sciences Research Institute, Southampton, SO17 

1BJ, United Kingdom. 
*
 Funded by the Economic and Social Research Council (ESRC), United Kingdom. 

mailto:M.OguzAlper@soton.ac.uk
mailto:Y.G..Berger@soton.ac.uk


confidence intervals proposed in this paper can be viewed as confidence intervals of   

or  

2. EMPIRICAL LIKELIHOOD INFERENCE 

We use the empirical log-likelihood function given by Berger and De La Riva Torres [5]. 

It is defined as follows. 

 

where the  are unknown scale loads. The empirical log-likelihood function in (1) can 

be used for the sampling with replacement with unequal probability designs as shown by 

Hartley and Rao [7]. In this paper, we assume that the sampling fraction is negligible. 

Hence, the proposed approach is valid under the ps sampling as  . 

The maximum empirical likelihood estimators  maximise the empirical log-likelihood 

in (1) with respect to the constraints  and 

                      

where the  and  are vectors defined in Section 2.1. We assume that  and  satisfy 

with a set of regularity conditions given by Berger and De La Riva Torres [5] and the 

condition , for all  and , where ||.|| denotes the Euclidean 

norm,  defines the order of convergence, and  is a neighbourhood around the true 

population value . This condition implicitly implies that the   are differentiable with 

respect to  in a neighbourhood of  [e.g. 1, 6, 8].  

Berger and De La Riva Torres [5] showed that the maximum empirical likelihood 

estimators  are given by  where  is such that the constraint (2) 

is satisfied. 

2.1.   Point estimation 

Let  be the maximum value of the empirical log-likelihood function  under the 

constraints  and (2) with  and . This implies that . Assume 

that  maximises  subject to the constraints  and  with 

and  , for a given vector . The empirical log-

likelihood ratio function is defined by 

 

The maximum empirical likelihood estimate  of the population parameter  is defined 

by the vector which minimises (3). The minimum value of (3) is obtained when 

; that is, when . Thus, the maximum empirical likelihood estimator of 

 is the solution of the following sample estimating equation. 

 

2.2.   Hypothesis testing 

Let  where  is a  vector of parameters of interest and  is a 



 vector of parameters which are not of primary interest. Suppose we wish to test 

. Consider the profile empirical log-likelihood ratio function defined by  

 

where the set of  maximises  subject to the constraints  and 

 with  and  . Note that in 

(4), we maximise  over the parameter   for a given value of  .  

Under , it can be shown that the profile empirical log-likelihood ratio function  

given by (4) follows asymptotically a chi-squared distribution with a  degree of 

freedom. Based on this, we can compute the p-value. Note that lack of fit would not 

affect the performance of the proposed empirical likelihood test [e.g. 8].  

2.3.   Confidence region 

We can obtain confidence region for each parameter individually profiling out over the 

other parameters. In this case,  and we have the scalar  instead of the vector . 

Then, based on the asymptotic chi-squared distribution of  under the null 

hypothesis , the  empirical likelihood confidence region for  is 

given by the set  where  is the upper  - quantile of the 

chi-squared distribution with one degree of freedom.  

3. RESULTS 

We present some numerical results for a linear regression model with one intercept and 

one slope. We generated the Hansen, Madow and Tepping (HMT) population [see 9]. The 

population size is . We selected  random samples of size  from 

this population using the randomised systematic sampling with unequal probabilities.  

The linear regression model of interest is defined by  where the  are 

independent random variables with . The parameter of interest is the 

slope  . We profile out over the intercept  when minimising (4). 

Table 1 gives the observed coverages of the  confidence intervals constructed based 

on several methods. We considered two Pseudo likelihood approaches which are given 

by Binder and Patak [2] and Godambe and Thompson [4] [see also 1]. 

Standard confidence intervals are based on the normality of the point estimator. Note 

that, when the sampling distribution is skewed, the normality assumption may not hold. 

This explains the poor coverages of the Wald and the pseudo likelihood 1 approaches 

(see Table 1). The poor coverage of the Wald type of confidence intervals is also due to 

the fact that this method ignores the sampling design. We have an overcoverage with the 

rescaled bootstrap [e.g. 10]. Moreover, it has the largest confidence intervals on average 

compared to the other methods (see the ratio of average lengths in Table 1). 

The coverage probabilities of the empirical likelihood and the pseudo likelihood 2 

confidence intervals are not significantly different from the nominal level (i.e. ). 

However, the former is more reliable than the latter with regards to the standard deviation 

of length (see the last column of Table 1).  



4. CONCLUSIONS 

We proposed an empirical likelihood approach which can be used to make inferences for 

regression parameters incorporating the sampling design. The proposed approach can be 

used for generalised linear models.  

It can be easily shown that the population level information can be taken into account 

with the proposed approach. Unlike the usual calibration approach [11], the proposed 

approach can be used for testing and constructing confidence intervals. Moreover, the 

auxiliary information does not have to be in the form of totals or means [5].  

The proposed approach can be easily extended to stratified sampling designs by 

incorporating the strata information into the . 

Table 1. Observed coverages of the 95% confidence intervals for the slope .  

N=10 000, n=500  
Coverage 

probability 

Lower 

error 

Upper 

error 

Ratio average 

length 

Ratio SD 

length 

Wald  76.6* 23.8* 0.1* 0.96 0.53 

Empirical likelihood  94.8 3.1* 2.1* 1.00 1.00 

Pseudo likelihood 1  94.0* 3.5* 2.5 0.97 1.07 

Pseudo likelihood 2  94.8 3.3* 1.9* 0.99 1.09 

Rescaled bootstrap  96.5* 2.4 1.1* 1.05 0.91 

* Significantly different from the nominal levels (95% and 2.5% for coverage probability and tail errors 

respectively) at the 5% significance level (i.e. ). 
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