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1. INTRODUCTION

Confidence intervals based on least squares may have poor coverages for regression
parameters when the effect of sampling design is ignored. In addition, confidence
intervals obtained from the standard design-based approaches [e.g. 1, 2, 3, 4] may not
have the right coverages when the sampling distribution is skewed.

We propose to use an empirical likelihood approach to construct design-based confidence
intervals and to test hypotheses for regression parameters under unequal probability
sampling. Berger and De La Riva Torres [5] proposed an empirical likelihood approach
which can be used for point estimation and to construct confidence intervals under
complex sampling designs for a single parameter. We show that this approach can be
extended to the multidimensional parameter case, in the sense that we can derive
confidence intervals and test the significance of a subset of model parameters while
taking the sampling design into account. This requires profiling which is not covered by
Berger and De La Riva Torres [5].

The proposed approach intrinsically incorporates sampling weights, design variables, and
auxiliary information. It may yield to more accurate confidence intervals when the
sampling distribution of the regression parameters is not normal, the point estimator is
biased, or the regression model is not linear. The proposed approach is simple to
implement and less computer intensive than bootstrap. It does not rely on re-sampling,
linearisation, variance estimation, or design-effect.

1.1. Parameter of interest and estimating equations

Let s be a random sample of size n which is selected from the finite population L7 of size
N with respect to a probability sampling 2{3). Let ¥: and Z: be some variables of interest.
Suppose that % x is an unknown finite population parameter, which is the solution of the
following population estimating equation.

G(vy) = Zgi(yirmia¢) =0,

ielU

where 9 (Y, i, %) is a vector of estimating functions [e.g. 1, 2, 4, 6]. For example, for a
. . . T
simple linear regression, we have 9:(¥i, i, ¥) = @i(y; — z; B),

We assume that the finite population parameter ¥ converges to the model parameter
Yo If ¥ isa design-consistent estimator of ¥ based on a sample data (see Section
2.1), the estimator % is also an estimator of ¥o- Assuming that the sampling fraction is

negligible, the variability of % is driven by the sampling design. Hence, design-based
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confidence intervals proposed in this paper can be viewed as confidence intervals of %~

or ¥q-

2. EMPIRICAL LIKELIHOOD INFERENCE

We use the empirical log-likelihood function given by Berger and De La Riva Torres [5].
It is defined as follows.

L(m) = Z log (m;), (1)
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where the . are unknown scale loads. The empirical log-likelihood function in (1) can
be used for the sampling with replacement with unequal probability designs as shown by
Hartley and Rao [7]. In this paper, we assume that the sampling fraction is negligible.
Hence, the proposed approach is valid under the 7ps sampling as n/N =0,

The maximum empirical likelihood estimators 77:; maximise the empirical log-likelihood
in (1) with respect to the constraints m; > 0 and

Z m;c; = C, 2)

i€s

where the ¢; and C are vectors defined in Section 2.1. We assume that ¢: and C satisfy
with a set of regularity conditions given by Berger and De La Riva Torres [5] and the
condition [|0¢i/OA[l = O(1), for all i € s and A € A, where ||| denotes the Euclidean
norm, O() defines the order of convergence, and A is a neighbourhood around the true
population value Ax. This condition implicitly implies that the ¢ are differentiable with
respect to A in a neighbourhood of Awn [e.g. 1, 6, 8].

Berger and De La Riva Torres [5] showed that the maximum empirical likelihood

estimators 77; are given by 7 = (7 +n ') ™", where 1 is such that the constraint (2)
is satisfied.

2.1. Point estimation

Let £(712) be the maximum value of the empirical log-likelihood function £(7) under the
constraints m; > 0 and (2) with ¢; = m; and C' = n. This implies that m; = 7T1-_1. Assume
that 7; maximises £(7) subject to the constraints M > 0 and 2-ies i€ = C7 with
c; = (ci»g;(yi,@i,%) ") Tand C* = (C,07)7 for a given vector ¥. The empirical log-
likelihood ratio function is defined by

() = 2{t(m) — £(m"(¢))}- (3)

The maximum empirical likelihood estimate ¥ of the population parameter ¥ x is defined
by the vector which minimises (3). The minimum value of (3) is obtained when 7'(¥) = 0

) ~w —1 ) i - .
; that is, when 7% = " = T; _ Thus, the maximum empirical likelihood estimator of
¥ v is the solution of the following sample estimating equation.

G) = gilyimip)m = 0.
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2.2. Hypothesis testing

T AT\ T . . :
Let ¥~ = (On,AN) where 8~ is a P X 1 vector of parameters of interest and A is a



g X 1 vector of parameters which are not of primary interest. Suppose we wish to test
Hy : O = 6%, Consider the profile empirical log-likelihood ratio function defined by

POR) = 2{¢(M) — max (" (6, M) @

where the set of 7; maximises £() subject to the constraints m; >0 and
2ies i = C" with ¢f = (7, 9;(yi, 2. 0%, A) ") " and C* = (n,0")" Note that in
(4), we maximise £(7" (6%, X)) over the parameter A for a given value of O~ = 6%,

Under Ho, it can be shown that the profile empirical log-likelihood ratio function 7(6%)
given by (4) follows asymptotically a chi-squared distribution with a » degree of
freedom. Based on this, we can compute the p-value. Note that lack of fit would not
affect the performance of the proposed empirical likelihood test [e.g. 8].

2.3. Confidence region

We can obtain confidence region for each parameter individually profiling out over the
other parameters. In this case, » = 1 and we have the scalar . instead of the vector & .

Then, based on the asymptotic chi-squared distribution of 7(6X) under the null
hypothesis Ho : O = 0% the (1 — @)% empirical likelihood confidence region for x is

given by the set {0 7(0) < xGr=1 ()} where Xr=1(2) is the upper « - quantile of the
chi-squared distribution with one degree of freedom.

3. RESULTS

We present some numerical results for a linear regression model with one intercept and
one slope. We generated the Hansen, Madow and Tepping (HMT) population [see 9]. The
population size is N = 10000. We selected 1000 random samples of size n = 500 from
this population using the randomised systematic sampling with unequal probabilities.

The linear regression model of interest is defined by ¥i = A + 6x; + wi, where the u; are

: . : |y .3/2 . .
independent random variables with var(uilz;) o< 27" The parameter of interest is the
slope 6. We profile out over the intercept A when minimising (4).

Table 1 gives the observed coverages of the 95% confidence intervals constructed based
on several methods. We considered two Pseudo likelihood approaches which are given
by Binder and Patak [2] and Godambe and Thompson [4] [see also 1].

Standard confidence intervals are based on the normality of the point estimator. Note
that, when the sampling distribution is skewed, the normality assumption may not hold.
This explains the poor coverages of the Wald and the pseudo likelihood 1 approaches
(see Table 1). The poor coverage of the Wald type of confidence intervals is also due to
the fact that this method ignores the sampling design. We have an overcoverage with the
rescaled bootstrap [e.g. 10]. Moreover, it has the largest confidence intervals on average
compared to the other methods (see the ratio of average lengths in Table 1).

The coverage probabilities of the empirical likelihood and the pseudo likelihood 2
confidence intervals are not significantly different from the nominal level (i.e. 95%).
However, the former is more reliable than the latter with regards to the standard deviation
of length (see the last column of Table 1).



4. CONCLUSIONS

We proposed an empirical likelihood approach which can be used to make inferences for
regression parameters incorporating the sampling design. The proposed approach can be
used for generalised linear models.

It can be easily shown that the population level information can be taken into account
with the proposed approach. Unlike the usual calibration approach [11], the proposed
approach can be used for testing and constructing confidence intervals. Moreover, the
auxiliary information does not have to be in the form of totals or means [5].

The proposed approach can be easily extended to stratified sampling designs by
incorporating the strata information into the ..

Table 1. Observed coverages of the 95% confidence intervals for the slope .

Wald 76.6* 23.8* 0.1* 0.96 0.53
Empirical likelihood 94.8 3.1* 2.1* 1.00 1.00
Pseudo likelihood 1 94.0* 3.5* 2.5 0.97 1.07
Pseudo likelihood 2 94.8 3.3* 1.9* 0.99 1.09
Rescaled bootstrap 96.5* 2.4 1.1* 1.05 0.91

* Significantly different from the nominal levels (95% and 2.5% for coverage probability and tail errors
respectively) at the 5% significance level (i.e. P — value < 0.05),
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