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Resumé

L’approche proposée permet d’estimer de manière consistante des paramètres qui sont
solutions d’équations estimantes (par exemple: moyennes, totaux, quantiles, corrélation,
paramètres de régressions (non)linéaire). L’approche proposée a l’avantage de permettre
de construire des intervalles de confiance sans devoir estimer la variance. Ces inter-
valles de confiance ne sont pas basés sur la normalité de l’estimateur ponctuelle. La
linéarisation, le ré-échantillonnage (jackknife ou bootstrap) ou les probabilités d’inclusion
d’ordre deux ne sont également pas nécessaires, même dans le cas ou le paramètre d’intérêt
n’est pas linéaire. Cette approche donne des intervalles de confiance consistants même
si la distribution d’échantillonnage est asymétriques (par exemple, pour des domaines ou
en présence de valeurs extrêmes), ou lorsque la linéarisation ne donne pas de bon estimés
de variance. L’approche proposée permet aussi d’estimer des paramètres de modèles de
régressions généralisées (par exemple, la régression logistique) et de tester s’ils sont sig-
nificatifs, sous une approche basée sur le plan d’échantillonnage. L’information auxiliaire
peut être tenue en compte de manière naturelle et très simple, sans faire appel à aucune
technique de calage et sans perte de précision. L’approche basée sur la vraisemblance
empirique est une approche basée sur le plan d’échantillonnage. Un modèle de super-
population n’est pas nécessaire. L’approche proposée est différente de l’approche basée
sur la pseudo vraisemblance empirique [6].

Abstract

The approach proposed gives design-consistent estimators of parameters which are so-
lutions of estimating equations (e.g. averages, totals, quantiles, correlation, (non)linear
regression parameters). It can be used to construct confidence intervals without variance
estimates. These confidence intervals are not based on the normality of the point esti-
mator. Linearisation, re-sampling (jackknife or bootstrap) or joint-inclusion probabilities
are not necessary, even when the parameter of interest is not linear. This approach gives
consistent confidence intervals even when the sampling distribution is skewed (e.g. with
domains or with outlying values), or when linearisation gives biased variance estimates.
The proposed approach can be used to estimate generalised regression parameters (e.g.
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logistic regression) and to test if they are significant, under a design-based approach.
The auxiliary information is naturally taken into account, without the need of a calibra-
tion distance function. The empirical likelihood approach is a design-based approach. A
super-population model is not necessary. The empirical likelihood approach proposed is
different from the pseudoempirical likelihood approach [6].
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inclusion probabilities.

1 Introduction

Let U be a finite population of N units; where N is not necessarily known. Suppose that
the population parameter of interest θN is the unique solution of the following estimating
equation (see [8]).

G(θ) = 0, with G(θ) =
∑
i∈U

gi(θ), (1)

where gi(θ) is a function of θ and of the characteristics of the unit i, such as the variables
of interest and the auxiliary variables. This function does not need to be differentiable.

The aim is to compute a maximum empirical likelihood point estimate and a confidence
interval for θN . Suppose that we have a sample s of size n selected randomly using a
sampling design. The πi shall denote the first-order inclusion probabilities. We adopt
a non-parametric design-based approach; where the sampling distribution is specified by
the sampling design and where θN and the values of the variables are fixed (non-random)
quantities. We consider a single stage design. The approach proposed can be generalised
for multi-stage design (see § 3 and [3])

In § 2, the approach proposed by Berger & De La Riva Torres [3] is described. In § 4,
we presents extensions of this approach. In § 3, we have an illustration based on the
European Union Statistics on Income and Living Conditions (EU-SILC) survey.

2 Empirical likelihood approach

Let zi be the values of the design (or stratification) variables defined by

zi = (zi1, . . . , ziH)> and where n = (n1, . . . , nH)> (2)

denotes the vector of the strata sample sizes, with zih = πi when i ∈ Uh and zih = 0
otherwise.

Let vector xi be the vector containing the values of auxiliary variables for unit i. Let
fi(xi,ϕN ) be known vector function of xi and ϕN , where ϕN is a fixed and known vector
of parameters which is defined as the solution of∑

i∈U

fi(xi,ϕN ) = 0· (3)
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For example, if the population means µx = N−1
∑

i∈U xi are known, ϕN = µx and
fi(xi,ϕN ) = xi − ϕN . The most common situation is practice is to know a set of totals,
means or proportions from large external censuses or surveys. The vector ϕN may contains
simultaneously totals, means, proportions or quantiles. The functions fi(xi,ϕN ) need to
be defined accordingly.

Consider the following empirical log-likelihood function

`(m) = log

(∏
i∈s

mi

)
=
∑
i∈s

log(mi), (4)

where
∏

i∈s and
∑

i∈s denote the product and the sum over the sampled units. The
quantities mi are unknown positive scale loads [10] which shall be estimated. Let m̂?

i (θ)
be the values which maximise (4) subject to the constraints mi ≥ 0 and∑

i∈s

mic
?
i (θ) = C?, (5)

with c?i (θ) = (c>i , gi(θ))
> and C? = (C>, 0)>, for a given θ. Here ci = (z>i , fi(xi,ϕN )>)>

and C = (n>,0>)>. Consider

`(m̂?, θ) =
∑
i∈s

log(m̂?
i (θ)), (6)

which is the maximum value of the empirical log-likelihood function (4) subject to the
constraint (5).

2.1 Maximum empirical likelihood point estimator

The maximum empirical likelihood estimate θ̂ of θN is defined by the value of θ which
maximises the empirical log-likelihood function `(m̂?, θ) in (6). Berger & De La Riva

Torres [3] showed that θ̂ is simply the solution of

Ĝ(θ) = 0, with Ĝ(θ) =
∑
i∈s

m̂i gi(θ), (7)

where the m̂i are the values which maximise (4) subject to mi ≥ 0 and the reduced
constraint ∑

i∈s

mici = C· (8)

The m̂i are survey weights. Berger & De La Riva Torres [3] showed that the weights m̂i

are asymptotically optimal.

Note that the m̂i are calibrated weights because
∑

i∈s m̂ifi(xi,ϕN ) = 0 (see (8) and the
definition of ci before (6)). The calibration property is the consequence of the maximi-
sation of the empirical log-likelihood function (8), rather than a weighting technique.
Calibration is achieved because the parameter ϕN is a known fixed parameter which does
not need to be estimated from the empirical log-likelihood function. The focus is on the
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maximisation of the empirical log-likelihood function rather than on weighting. The sur-
veys weights appear naturally as the consequence of this maximisation.

Note that if we do not include the auxiliary information fi(xi,ϕN ) within ci; that is, if
we use ci = zi and C = n, we obtain the Horvitz & Thompson [11] weights: m̂i = π−1i .
When the parameter of interest is a total, we use gi(θ) = yi − n−1θπi and the maximum

empirical likelihood estimator is the Horvitz & Thompson [11] estimator: θ̂ =
∑

i∈s yiπ
−1
i .

If the parameter of interest is a mean, we use gi(θ) = yi− θ, and the maximum empirical

likelihood estimator is the Hájek [9] estimator of a mean: θ̂ =
(∑

i∈s π
−1
i

)−1∑
i∈s yiπ

−1
i .

The approach proposed is not limited to these estimators, as it can be used for any
parameters which are defined as the solution of (1).

2.2 Empirical likelihood confidence intervals

Consider the empirical log-likelihood ratio function (or deviance) defined by

r̂(θ) = 2 {`(m̂)− `(m̂?, θ)} , (9)

where `(m̂) =
∑

i∈s log(m̂i) is the maximum value of (4) under the reduced constraint (8).
Berger & De La Riva Torres [3] show that r̂(θN ) follows asymptotically a χ2-distribution
with 1 degree of freedom when the sampling fraction is negligible, under a set of weak
regularity conditions given in [3]. Thus, the α-level empirical likelihood confidence interval
for the population parameter θN is given by{

θ : r̂(θ) ≤ χ2
1(α)

}
· (10)

where χ2
1(α) is the upper α-quantile of the χ2-distribution with 1 degree of freedom. The

p-value to test H0 : θN = θ0 is given by
∫∞
r̂(θ0)

f(x)dx, where f(x) is the density of the

χ2-distribution with 1 degree of freedom.

Note that r̂(θ) is a convex non-symmetric function with a minimum when θ is the maxi-

mum empirical likelihood estimate θ̂. The confidence interval (10) can be found using a
bisection search method. This involves calculating for several values of θ. The confidence
interval (10) is asymmetric when the sampling distribution is asymmetric. In a series of
simulation, Berger & De La Riva Torres [3] showed that the empirical likelihood confi-
dence interval may give better coverages than standard confidence intervals based on the
central limit theorem and/or bootstrap.

3 An application to the European Union Statistics on

Income and Living Conditions (EU-SILC) survey

The approached described in § 2 is limited to single stage sampling. Berger & De La
Riva Torres [3] show how it can be extended for multi-stage sampling designs using an
ultimate cluster approach. This is the approach which was proposed for the EU-SILC
survey. In this §, we report some numerical results which can be found in Berger & De
La Riva Torres [2].
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Table 1: Persistent at-risk-of-poverty rate & confidence intervals. 2009 EU-SILC.

Rate Emp. Likelihood Standard Rescaled Bootstrap
Country (%) Lower Upper Lower Upper Lower Upper
Ireland 0.53 0.08 1.76 -0.26 1.31 0.00 1.58
Austria 2.14 0.53 6.50 -0.52 4.80 0.14 5.26
Malta 2.90 0.97 7.75 -0.10 5.89 0.62 6.09
Denmark 3.46 1.09 8.95 -0.06 6.98 0.67 7.76
France 4.50 3.33 5.99 3.21 5.8 3.23 6.04
UK 5.18 2.56 9.90 1.78 8.57 2.15 8.85
Netherlands 5.22 1.88 11.66 0.69 9.75 1.31 10.25
Estonia 7.45 4.07 14.69 2.87 12.03 3.47 13.11
Poland 8.58 5.89 12.49 6.32 10.85 5.32 12.13
Latvia 10.34 6.09 17.36 5.05 15.63 5.36 15.27
Greece 11.34 7.51 18.32 6.72 15.96 7.03 16.95
Source: Berger & De La Riva Torres [2].

The 2009 EU-SILC user database was used to estimate the persistent at-risk-of-poverty
rate. An ultimate cluster approach was adopted, where the units are the primary sampling
units. In the Table 1, we have the point estimate for several European countries. Several
confidence intervals are reported: the empirical likelihood confidence intervals, the stan-
dard confidence intervals based on variance estimates [e.g. 5] and the rescaled bootstrap
confidences interval [19]. Note that the bounds of the standard intervals can be outside the
range of the parameter space, as the lower bound are negative for Ireland, Austria, Malta
and Denmark (the rates are always positive). The bootstrap bounds and the empirical
likelihood bounds are larger than the bounds of the standard intervals. These differences
are more pronounced for Austria, Malta, Denmark, the Netherlands, Estonia, Latvia and
Greece. This is due to the skewness of the sampling distribution. The differences between
these confidence intervals are more pronounced for domains. The results for domains are
not presented here. They can be found in [2].

4 Discussion

The proposed approached can be generalised in numerous ways. Berger & De La Riva
Torres [3] proposed a penalised empirical likelihood function to accommodate large sam-
pling fraction. They also show how unit non-response and multi-stage sampling can be
taken into account (see [2] and § 7.3 in [3]).

The approach proposed is not limited to a single parameter. Oguz-Alper & Berger [14]
generalised this approach to a vector of parameters. They show how profiling can be used
to test and construct a confidence interval for a component of the vector of parameters.
For example, with a generalised linear regression model, we may be interested in testing
if a slope is significant. Profiling allows to test if a slope is significant. When building a
model, it is necessary to compare two nested models. In this case, profiling can be used to
test if the additional parameters are significant. Another example is when the parameter
of interest is a correlation coefficient [e.g. 15, 17].
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It is often the case that several surveys carried out from the same population, measure the
same common variable. Population totals of these variables are often unknown. Kabzin-
ska & Berger [13] proposed an empirical likelihood approach to align estimates obtained
from these surveys. This approach ensures that both samples produce the same point
estimates for the common variable. It also allows to incorporate additional benchmark
constraints, constructed around known fixed parameters. The approach that is proposed
by Kabzinska & Berger [13] can be used to construct confidence intervals.

Non-parametric bootstrap is an alternative approach which can be used to derive non-
parametric confidence intervals. The consistency of the bootstrap confidence intervals
is limited to smooth function of means and for quantiles with small sampling fractions
[e.g. 20, Ch.6]. The direct bootstrap [1] is limited to variance estimation of totals, be-
cause it provides a second-moment matching in this case. For complex parameters (such
as quantiles), only simulation evidence are provided. Results on the consistency of the
direct bootstrap confidence interval is not available. The proposed empirical likelihood
confidence interval is consistent for a wider class of parameters (which are solution of
estimating equations) with large and small sampling fractions (see [3]). The approach
proposed is simpler to implement and less computationally intensive than the bootstrap,
especially with calibration weights. From a practical point of view, bootstrap is usually
preferred because it does not rely on analytic derivation. The proposed approach also
possesses the same property. Like bootstrap, the proposed approach does not rely on
analytic derivation. The simulation studies presented in [3] show that, for means and
quantiles, bootstrap confidence intervals may have coverages and tail error rates signif-
icantly different from their nominal levels. The empirical likelihood approach may give
better coverages.

There are some analogies between the proposed empirical likelihood approach and calibra-
tion [7, 12, 16]. Berger & De La Riva Torres [3] showed that empirical likelihood estimator
is asymptotically equivalent to a calibrated regression estimator, where θN is a mean or
a total. The objective function (4) is related to the concept of empirical likelihood and
can be used with or without auxiliary information. The empirical likelihood approach
gives calibrated weights because of the maximisation of the empirical log-likelihood func-
tion. Furthermore, the objective function (4) is not a distance function, because it is
not a function of the first-order inclusion probabilities πi. The advantage of the proposed
empirical likelihood approach over standard calibration [7] is the fact that (i) it gives
positive weights that are asymptotically optimal (see [3]), (ii) the empirical log-likelihood
ratio function (9) can be used to construct confidence intervals and to test hypotheses,
(iii) and it can be used with complex parameters. Berger & De La Riva Torres [4] showed
how the empirical likelihood approach can be used with any additional calibration dis-
tance function.

Note that the empirical likelihood approach proposed is different from the pseudoempir-
ical likelihood approach [6]. The pseudoempirical likelihood approach is not based on
(4) and is based on the Kullback-Leibler distance. Pseudoempirical likelihood confidence
intervals rely on variance estimates [21]. Unlike the pseudoempirical likelihood approach,
the computation of the proposed confidence interval does not rely on variance estimates.
This means that it can be applied to a wide class of parameters. The proposed approach
is also simpler to implement than the pseudoempirical likelihood. The simulation studies
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presented in Berger & De La Riva Torres [3] show that, for means, the empirical likeli-
hood confidence interval may give better coverages than the pseudoempirical likelihood
confidence intervals.

The author is currently developing a R [18] package. More information will be available
on the author’s web-page: http://yvesberger.co.uk. Some papers in the references’
list below can be downloaded from the author’s web-page.
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