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ABSTRACT
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NUMERICAL SIMULATIONS OF NEUTRON STAR CRUSTS

by Stephanie Jeanne Erickson

A neutron star has a solid crust and a fluid core. There are various different

mechanisms that can break the crust, including magnetic field decay, spindown

of a rotating star, and tidal forces due to a companion star in a binary merger.

Although the crust makes up only a small portion of the mass of the star, its

oscillations frequencies are different from the fundamental fluid modes, meaning

that behavior originating in the crust can be distinguished from fluid behavior—in

other words, starquakes can produce observable effects. They have been suggested

as a possible mechanism behind quasiperiodic oscillations after magnetar flares,

flares and outbursts in anomalous x-ray pulsars and soft gamma-ray repeaters,

precursors to short-hard gamma-ray bursts, and pulsar glitches. Consequently, we

want to investigate the dynamics of starquakes in neutron stars.

The goal of my PhD was to develop a toy model, which demonstrates methods

that are necessary to perform realistic simulations of neutron stars. First, we need

a mechanism to simulate the solid crust: for this, we implement a conservation-

law formulation of non-linear elasticity in general relativity. The crust then must

be coupled to a fluid core; in particular, the crust-core transition is much smaller

than the size of the neutron star. This means that it is best modeled as a sharp

transition; we use a ghost-fluid based method here. We use an atmosphere to

handle the surface of the star where density, pressure, and internal energy all go

to zero. Once these components are combined to produce a toy model, we shatter

the crust and analyze the outcome. Although the results may not be physically

significant, this is the first time that these technical aspects have been combined

into a single simulation. This represents a significant step forward, showing that

realistic simulations of starquakes are technically feasible.
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Chapter 1

Introduction and motivation

1.1 Physics background

The following sections summarize some information about neutron stars, the neu-

tron star crust, how it breaks, and some observed phenomena that could be linked

to starquakes in neutron stars.

1.1.1 Neutron stars

Compact objects are stars at the end stage of stellar evolution; they no longer

burn nuclear fuel, and as a result, can no longer be supported by thermal pressure.

Because of this, they are extremely small and dense.

Neutron stars are an intermediate form of compact object (between white dwarf

stars and black holes). They have too much mass to be held up by electron

degeneracy pressure (as white dwarf stars are), but not enough mass to cause

them to collapse completely. Instead, neutron stars are supported by the pressure

of degenerate neutrons. Because neutron stars populate this intermediate space,

the theory to describe them must incorporate a wide range of interesting theoretical

physics: to fully understand them, we must combine our understanding of general

relativity and nuclear physics.

Neutron stars were initially proposed by Baade and Zwicky 1934 [2] who posited

that “a supernova represents the transition of an ordinary star into a neutron star,

consisting mainly of neutrons,” as a passing comment in a paper focused on the

analysis of supernovae.

In 1939, Tolman [3] and Oppenheimer and Volkoff [4] presented the first neu-

tron star model. A static solution for Einstein’s field equations was found using

an ideal gas equation of state. Assuming that the neutron star consisted of an

1



2 Chapter 1 Introduction and motivation

ideal gas of free neutrons at high density, a maximum mass of 0.7M� with radius,

R = 9.6 km was derived.

Most of the early work on neutron stars was motivated by the idea that main

sequence stars could contain neutron cores; when it became clear that this was not

the case, the theoretical community largely lost interest in the stars. However, this

changed with the discovery of the first pulsar in 1968 [5]. Gold 1968 [6] proposed

that the most likely source for these regular radio pulses were rotating neutron

stars, where radiation is beamed along some axis other than the axis of rotation,

so that pulses occur when the beam sweeps across the Earth. Observations of

pulsars generated new theoretical interest in neutron stars.

In 1931, Chandrasekhar [7] calculated the maximum mass of a white dwarf to

be ∼ 1.4M�; above this limit, stars must collapse further to become neutron stars

or black holes. The upper limit on the neutron star mass is more uncertain, but it

is expected to be ∼ 3M�. Observed masses of neutron stars range from 1−2.5M�

[8]. The typical neutron star has a radius of ∼ 10 km. A good overview of the

physics of neutron stars (as well as other compact objects) is given in [9].

The structure of a neutron star is roughly as follows. It has a outer en-

velope of normal nuclear matter at extreme temperatures and magnetic fields

(ρ & 106 g cm−3), a solid outer crust consisting of a Coulomb lattice of heavy

nuclei in a relativistic degenerate electron gas (106 g cm−3 . ρ . 4×1011 g cm−3),

an inner crust where the solid lattice is also permeated by a gas of free neutrons

(4 × 1011 g cm−3 . ρ . 2.8 × 1014 g cm−3), a core containing a gas of superfluid

neutrons and Type II superconducting protons (ρ . 2.8× 1014 g cm−3), and pos-

sibly a further phase transition to more exotic matter towards the center of the

star. In what follows, we focus on the neutron star crust.

1.1.2 The neutron star crust

Nuclear saturation density, or the density where each nucleon is at its minimum

energy, is around ρ0 = 2.8 × 1014 g cm−3; however, we know that neutron stars

could have central densities as high as ∼ 5ρ0 − 10ρ0. Although theories exist

to describe material at such high densities, this is far beyond the range that is

achievable on Earth. However, most of the neutron star crust is in the region

where ρ < ρ0, so we know considerably more about this region, and methods

developed for terrestrial materials can be applied [10].

Fig. 1.1 shows a sketch of the structure of the neutron star crust in ground

state. The outer-most layer of the star is the envelope, which consists of mostly

iron atoms. As the pressure and density increase, the atoms become ionized, with
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Figure 1.1: A sketch showing the structure of the neutron star crust in its
ground state. This image comes directly from [10].

atoms consisting of only nuclei at densities of around ρ ∼ 104 g cm−3. As density

continues to increase to above around ρ ∼ 107 g cm−3, electrons and protons begin

to combine to become neutrons, making the material much more neutron-rich. As

the density rises above ρND ≈ 4 × 1011 g cm−3, neutrons begin to “drip” out of

nuclei to become unbound, and form a gas of free neutrons around the nuclei.

As the density continues to increase, some calculations predict “pasta” phases

consisting of non-spherical nuclei in the shape of elongated spheres, cylinders or

slabs. Once the density goes above around 1014 g cm−3, nuclei can no longer exist,

and there is a uniform plasma of nearly pure neutron matter [10].

There is a distinction between the outer crust, where the density is below

ρ < ρND, and the inner crust at higher densities. The outer crust consists of

normal nuclear matter—albeit in extreme conditions—and can therefore be mod-

eled using extrapolated experimentally measured values. However, there is much

less certainty as the density is increased to ρ > ρND, and we must rely solely on

theoretical calculations.

1.1.3 Crust breaking

There are various different mechanisms that could break the neutron star crust,

including magnetic field decay, spin down of a rotation neutron star, or tidal

forcing due to a companion star in a binary merger system. Some of the possible

mechanisms are discussed in the following sections. However, it is important to

first discuss how crust breaking is likely to occur.
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Horowitz and Kadau 2009 [11] perform molecular dynamics simulations of the

neutron star crust material in order to estimate the breaking strain. In the neu-

tron star crust, the atoms are completely pressure-ionized, and are immersed in

a degenerate relativistic electron gas. The Coulomb interactions of the individual

ions are screened, but only at large distances due to the electron gas. To describe

the interaction between two particles, a screened Coulomb or Yukawa potential is

used. Then the total potential energy is calculated summing over all particle pairs

that are not screened from one another.

Shearing of the material is then simulated. The strain is applied by deforming

a periodic boundary, and is applied linearly with time. The resulting shear stress

is then calculated, and a stress-strain curve is produced. The timescales simulated

are much shorter than astrophysical timescales, and a model-dependent extrapo-

lation is needed to apply these results to relevant timescales, as mentioned below

[11].

The breaking strain is measured as the peak of the stress-strain relation. Stress

increases with strain until the material breaks, or yields, at a maximum breaking

stress—further strain causes a decrease in the stress—and the associated strain is

the breaking strain. Perfect crystals, which exhibit no defects or granularity, show

a breaking strain well above 0.1, and breaking occurs in a rather abrupt fashion,

with very little plasticity present; in other words, the stress-strain relation is linear

nearly until the material yields. Although it is not possible to simulate the large

time and length scales of the physical system, in the small range of variation that

is possible, no size effects were present in single crystal simulations.

Simulations with multiple grains in the crystal were also performed. As it fails,

the material deforms plastically along grain boundaries in a collective manner,

rather than exhibiting dislocations or localized events. Because the failure is more

collective and less localized, the crystal is stronger, and breaks at larger strains

than terrestrial materials.

This is basically because the density and pressure are so high that electrons

are contained in an electron gas, rather than associated with particular atoms, so

variations in electron density cannot cause localized structure to allow for local

defects. These molecular dynamics simulations agree with the earlier predictions

of Jones 2003 [12], which showed that it is not possible to have voids or fractures

in the material: essentially, this can be thought of as localized defects immediately

healing due to the high pressure. In fact, when simulations are initialized with a

void in an otherwise perfect crystal, this quickly heals and disappears, reducing

the breaking stress by only 25% [11].
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Chugunov and Horowitz 2010 [13] then look at how the breaking stress of the

neutron star crust depends on both the temperature (via the coupling parameter),

and the strain rate. Using molecular dynamics simulations, the parameters for

the Zhurkov model of strength are estimated and used to determine what the

breaking stress should be for timescales of ∼ 1 s – 1 year; these are the timescales

relevant for astrophysical applications, but they are much longer than is possible to

model using molecular dynamics (typically molecular dynamics simulations have

a timescale of ∼ 1 ms, so this large extrapolation may be a cause for concern).

The results show that the breaking stress depends significantly on the tem-

perature, with higher temperatures leading to lower breaking stresses. At higher

temperatures, the breaking stress varies more for different strain timescales, with

longer timescales producing lower breaking stresses. It is worth noting, though,

that to get results at this time scale, the molecular dynamics results have to be

extrapolated over more than 10 orders of magnitude; hence, they should be used

with caution [13].

1.1.4 Magnetic field decay or reconnection

Both anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs) are

thought to be best described as isolated neutron stars with very high magnetic

fields (B ∼ 1014 − 1015 G); however, they behave very differently, with SGRs ex-

hibiting giant flares, and AXPs showing X-ray outbursts where the burst location

correlates with the pulsar phase. Perna and Pons 2011 [14] attempt to explain

some of these discrepancies by examining the model for these events.

In both cases, after birth, the magnetic field of the magnetar decays due to

some dissipative process (Ohmic dissipation, ambipolar diffusion, Hall drift). At

the star’s birth, the magnetic stresses are balanced by the elastic stresses in the

crust, but as the magnetic field evolves, these stresses can go out of balance.

Eventually the elastic stress can exceeds its breaking stress, and the crust will

break. This release of energy could result in outbursts or flares. Clearly this

mechanism relies on the magnetic field, but it is not directly correlated to field

strength. Namely, there are some low magnetic field stars that produce X-ray

bursts, and some high-magnetic field stars that do not; why should this be the

case if it is the magnetic field that is important?

Perna and Pons numerically follow the magnetic field evolution of the crust of

a star as it ages. The elastic stress induced by the magnetic stress is calculated; if

the breaking stress is exceeded, then the crust is said to have broken in that region.

In this way, it is possible to map out the areas of the star where the crust will
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fracture, as well as to estimate the energy released by the burst and the frequency

with which bursts will occur over time.

The authors identify three different ages of stars that seem to correspond to

different observed behaviors. “Young” stars, of around 400 − 1600 years behave

in a more “SGR-like” manner; the energies released are higher, as is the event

rate. As the stars age, the energy released by each burst begins to form a bimodal

distribution, with a second peak about three orders of magnitude lower; the bursts

also occur more often at smaller polar angles, exhibiting the correlation between

burst location and pulsar phase characteristic of AXPs. [14]

This model suggests that starquakes would be the source of the flares of SGRs;

basically, the magnetic field decays, causing the stress in the elastic crust to exceed

the breaking stress, which causes the crust to break. The seismic waves in the crust

couple to the magnetosphere, and a fireball forms above the surface. Levin and

Lyutikov 2012 [15] suggest another mechanism for the production of SGRs. Instead

of the starquakes causing the burst, their proposed mechanism is essentially the

other way around. As the magnetic field evolves and untwists, it eventually reaches

a stability threshold that requires it to reconnect in a process similar to that which

produces coronal mass ejections from our sun (solar flares). This sudden relaxation

and change in magnetic field topology results in a flare; it will also result in large-

amplitude torsional oscillations, which would likely cause the crust to break.

By studying the dynamics of how thin cracks form in the crust, Levin and

Lyutikov 2012 [15] reveal that the energy released from a thin crack is strongly

suppressed, because the magnetic field does not allow much slippage between the

two sides of the crack; even if cracks form, they are held in place by the magnetic

field lines. The energy travels through the crust as seismic oscillations. Even for

an optimistically large crack area, the energy released is ∼ 1012 times less than a

typical weak SGR flare.

In any case, whether the seismic oscillations cause the flare or the flare causes

the seismic oscillations, starquakes will still be important for the overall dynamics

of the magnetar system.

In the NS environment, crack formation is suppressed in the first place because

of high pressure [12]; even if cracks did form, we now know that strong magnetic

fields would prevent slippage along those cracks, and the subsequent release of

energy. However it is believed that some magnetar events are linked to crustal

motion: the twist in the magnetosphere decays too quickly to be replenished by

ambipolar diffusion or Hall drift. Because of this, Beloborodov and Levin 2014

[16] investigate the possible involvement of plastic flow in these events. There, a

new instability is described, which leads to a thermoplastic wave (TPW), similar in
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quality to a deflagration front seen in terrestrial combustion simulations. Basically,

over a critical stress, the NS crust begins to deform plastically; this leads to heating

of that region of the crust. The heating, in turn, lowers the critical stress of the

material, which speeds the plastic deformation.

Although the TPW is likely to operate in the neutron star environment, it

cannot explain all magnetar events. In particular, it cannot explain short duration

bursts ∼ 0.1-0.3 s [16]. These could be explained by magnetic reconnection events

in the magnetosphere, as mentioned above, or by some faster failure mechanism

in the crust.

A related phenomenon is that of quasiperiodic oscillations (QPOs) after X-ray

flares from magnetars. Magnetar flares are most likely powered by reconfigurations

of the decaying magnetic field; since the field is pinned to the crust, which is highly

conductive, these events cause the crust to break and generate global seismic

oscillations [17]; this is similar to the mechanism mentioned previously for SGRs

[15].

These QPOs reflect crustal frequencies, and can be measured fairly accurately.

It turns out that the frequency of shear oscillations in the crust depends sensitively

on the nuclear symmetry energy, meaning that QPOs can constrain this property,

which is a significant uncertainty in the current description of the neutron star

crust. Basically, the speed of shear waves in the crust is strongly affected by

the nuclear symmetry energy, and this, in turn, affects the fundamental-mode

frequency and first radial overtone [18].

1.1.5 Pulsar glitch possibilities

Baym et al 1969 [19] suggest a model for the sudden observed increase in pulse

frequency of some pulsars, called “glitches.” Generally, the systems spin up, and

then slowly relax back to their original frequencies. Several hundred glitches have

since been observed; their magnitude being around ∆Ωc/Ωc ∼ 10−9− 10−6, where

Ωc is the observed rotation frequency [20].

The scenario suggested by Baym et al is as follows. As the star forms, it is

rotation, and therefore slightly oblate; the crust freezes in this configuration. As

the spin frequency of the star decreases, the centrifugal force decreases, putting

the system out of balance and inducing elastic stresses in the crust of the star.

Eventually, when the breaking stress of the crust is exceeded, the crust will break,

and the shape of the star will change; because the star will become more spherical,

its moment of inertia will decrease. The timescale of the cracking is much shorter
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than the timescale of spin down, so we can apply conservation of angular momen-

tum: the sudden decrease in moment of inertia must induce a sudden increase in

the angular velocity of the star. This is what is observed as the glitch [19].

The initial cracking and spin-up occur on a timescale of around ∼ 0.01− 0.1s

(the time it takes a shear wave to propagate through one stellar radius). Then this

spin up is communicated to the charged particles in the interior of the star via the

magnetic field within around ∼ 100s. Eventually, the neutron superfluid responds

(t ∼ 1year) due to electron scattering off of the vortex lines of the superfluid—

this timescale of relaxation after a glitch is used as evidence for the presence of

superfluidity in neutron stars [19].

Another model for pulsar glitches was proposed by Anderson and Itoh 1975

[21]. In this model, glitches are due to the unpinning of vortices from the crust due

to some instability or other unpinning mechanism. Basically, a superfluid rotates

by forming a dense array of vortices; these induce global rotation of the system.

If these vortices are pinned to the crustal lattice, then a rotational lag begins

to build up between the crust and the superfluid as the crust slows down due

to electromagnetic braking; the superfluid cannot change its rotation frequency,

because the locations of its vortices are fixed by the pinning, and it can only change

its global rotation by moving these vortices around. Eventually, some unknown

mechanism breaks the pinning, and the vortices move, allowing some angular

momentum to be transferred from the superfluid to the crust, which increases the

crust’s rotational frequency (and therefore, the observed pulsar frequency).

Glampedakis and Andersson 2009 [20] suggest a possible mechanism behind the

unpinning of the vortices from the crust, showing the presence of a new instability,

which acts on the inertial modes of a rotating superfluid star, and begins to have an

effect above a certain critical rotational lag between the two rotating components:

a superfluid neutron component and a combination of all of the charged particles

in the star. The instability has a short enough growth timescale to overcome the

relevant viscous damping timescale. The instability has roughly the right features

for a glitch trigger mechanism. The maximum expected glitch size matches well

with observations, as does the idea that systems should evolve into the instability

region before they glitch. The time between successive glitches is estimated for

various pulsars and compared to the observations.

Alternatively, Link 2012 [22] suggests that vortices could undergo vortex creep

via thermal activation or quantum tunneling, which could cause the vortex lattice

to become tangled. This would cause the superfluid to become turbulent, causing

an instability—this is another possible mechanism behind unpinning.
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One missing link is how these mechanisms actually break the pinning of the

vortices to the neutron star crust. When the system evolves into the instability

region, a range of unstable modes will grow on a timescale of a few rotation periods

of the star, causing large-amplitude oscillations. It seems likely that this could

cause the vortex pinning to break, but it is not clear exactly how this would come

about [20]. Naively, our idea is that this could be due to breaking or shattering in

the crust; another possibility is that starquakes would not be the mechanism that

links these, but could occur as a side effect.

1.1.6 Resonant shattering during binary inspirals

An argument against the inclusion of an elastic crust in neutron star models might

rely on the fact that the crust only makes up a small portion of the total mass

of the star. One could also point out that the ratio between the shear modulus

and the compression modulus is much smaller than one [10] in the outer crust, so

the effect of the shear stress will be small compared to the effect of pressure in

those regions; one might say that it could be just as effective to simply treat the

material as a fluid.

However, the interaction between the crust and the core can introduce modes

that are qualitatively different from pure fluid modes. Because the stresses are

weak, crustal and interfacial modes have lower frequencies than purely fluid modes,

meaning that these modes could be excited when purely fluid modes are not.

A possible mechanism behind the precursors to short-hard gamma-ray bursts

(SGRBs) has been proposed by Tsang et al 2012 [23] and relies precisely on this.

For a handful of SGRBs, a flare was observed preceding the main GRB event by

around 1 − 10s. Crust cracking was suggested as a possible explanation behind

these precursors, but the timescale implied cracking due to direct tidal deformation

did not fit the observations.

Instead, Tsang et al 2012 [23] suggest that modes could be excited due to

resonance with periodic tidal deformation of the system; tidal deformation occurs

in each star due to its companion, and this will naturally vary with the orbital

frequency of inspiral. A mode with amplitude concentrated at the crust-core

interface is identified; this could be the source of crust breaking, and therefore the

precursor flares [23].

Tsang also shows that this type of resonant shattering of the crust could occur

when compact objects undergo close passes via eccentric or hyperbolic encoun-

ters. Although the event rate for these situations is low, the resulting flares could

provide an important electromagnetic counterpart for the expected gravitational
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wave signals from these systems, meaning that triggered searches could be used

[24].

1.2 Motivation

It is clear that there are some astrophysical scenarios that will cause the crust

of a neutron star to break. In fact, starquakes have been proposed as a possible

mechanism behind a number of observed phenomena, as described in the previous

sections. Because of this, we would like to investigate how crust breaking affects

the dynamics of neutron star binary systems as well as isolated neutron stars. To

do this, a number of technological advances are necessary.

Because of this, the goal of my PhD has been to develop a toy model that

demonstrates a number of numerical methods that we will need in order to do

more realistic, fully-relativistic neutron star simulations (i.e. binary neutron star

mergers, etc). The toy model includes a solid crust coupled to a fluid core in

a background Newtonian gravitational potential. A region of the crust is then

shattered, and the system is allowed to evolve.

Obviously, to do this type of simulation it is first necessary to have some

method for simulating a solid crust in general relativity; for this a conservation-

law formulation for elasticity was developed and is described in Gundlach et al

2012 [1]. Next, the solid crust must be coupled to a fluid core. In particular,

the crust-core transition is much smaller than the overall size of the neutron star,

so this should be modeled as a sharp interface; this means that we will need

some method for numerically evolving two different materials with a dynamical

boundary between them. At the surface of the star, the density, pressure, and

internal energy will all go to zero; we will need to take this into consideration to

avoid numerical problems. Once we have all of these aspects together, we will also

need some way to break the crust in the numerical code.

As described in the next section, each of these technical challenges is addressed

in the following chapters of this thesis, culminating in a 2D toy model, which

combines all of the methods into a single simulation.

1.3 Overview

For the sake of clarity, it is important to note that there are two separate codes

that are used in this work. The first code, ElasticEvolution, was written by me

and Ian Hawke, and is the code that was used in [1] to demonstrate the general

relativistic elasticity formulation presented there. The code is general relativistic
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with a general background metric. It can run 1D and 2D simulations with 3D

variables. ElasticEvolution uses a choice of slope limiting techniques to recon-

struct the primitive variables; however, all the results shown here use van Leer’s

MC limiter [25]. The numerical fluxes are calculated using the HLL approximate

Riemann solver [26]. Quantities that are advected in ElasticEvolution are done

so using upwind differencing.

Preliminary work on 1D material interfaces was done in the ElasticEvolution

code, but eventually it became clear that 2D implementation within this code

would take a significant time investment. For this reason, we moved to using

the MultiModel code, originally implemented by Ian Hawke and John Muddle, to

make use of the 2D infrastructure already in place in that code, adding an elas-

ticity model, as well as methods to handle different types of material interfaces.

MultiModel also runs 1D and 2D simulations using 3D variables, and makes use

of the HLL approximate Riemann solver. However, instead of slope limiter recon-

struction methods, MultiModel uses WENO reconstructions [27]; for all results

shown here, the primitive variables are reconstructed. The code is also not gen-

eral relativistic; all of the results shown here from the MultiModel code will be

Newtonian (again, some special relativistic models have been implemented in the

MultiModel code, but the metric is hard-coded, and no results are shown here).

For advection, MultiModel uses the Lax-Friedrichs method for Hamilton-Jacobi

equations with WENO reconstruction of the derivatives. For reinitialization of the

level-set function, as well as extrapolation as prescribed by the ghost-fluid method,

the fast-marching method is used.

Both codes use the method of lines to convert the set of partial differential

equations to a set of ordinary differential equations and solve the time evolution

part using the Runge-Kutta method. Typically, for the results shown here, the

third-order Runge-Kutta method is used.

In Chapter 2, we discuss some general numerics background and some nu-

merical methods that we use to implement the elasticity formalism and interface

treatment in the codes described later. In this chapter we discuss the REA algo-

rithm, reconstruction methods, ENO and WENO schemes, Godunov-type methods

for evolving conservation-law systems, and the HLL approximate Riemann solver.

Much of this chapter is a summary of content from [28].

The next chapter, Chapter 3, is based on Gundlach et al, 2012 [1]. We cover the

kinematic and dynamic equations describing elasticity, deriving a conservation-law

formulation of the equations, and then showing that, with appropriate constraint

additions, the system is symmetric hyperbolic. We then go on to discuss the

numerical code written based on this formulation, and various numerical tests that
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show the functioning of the code. In the paper [1], the content in the kinematics,

dynamics, and hyperbolicity sections is the work of Carsten Gundlach; I have

rewritten this material to get a better understanding of these sections, but the

content is largely the same. The numerics section of the paper was written by Ian

Hawke and myself, and is included as is.

Chapter 4 discusses methods used for interfaces between different materials.

It includes a discussion of level-set functions and the ghost-fluid method (GFM)

for fluids. The GFM is then adapted to other types of material interfaces, and a

description of the method in general relativity is included. We also look at some

numerical tests of the implementation of these methods.

Chapter 5 discusses the mechanism for shattering in our code. It shows some

results for tests of numerical shattering mechanisms in 2D simulations, as well as

a description of the final 2D toy model and a description of the results of this

simulation.

Chapter 6 summarizes conclusions of this work and discusses possible next

steps.

There are also two appendices included for the sake of completeness. The first,

Appendix A, includes a summary of what hyperbolicity is and why it is important;

this section closely follows the lecture notes of Kreiss and Busenhart [29], with the

last section on hyperbolicity in differential geometry notation covering material

from Beig and Schmidt [30], and Anile [31].

Appendix B covers additional information relevant to the elasticity formulation

covered in [1]. Appendix C discusses the various equations of state used in this

work, while Appendix D clarifies the method used for calculating the error for

various convergence tests. Lastly, Appendix E discusses some details of a minor

unresolved bug in the calculation of the error in conservation for relativistic tests.



Chapter 2

Numerics background

2.1 Finite difference versus finite volume meth-

ods

2.1.1 Finite differencing

Say we have a system of conservation laws as follows:

q,t + f(q)l,m = 0, (2.1)

where q is generally a vector of conserved quantities, f(q)j are the corresponding

fluxes in each direction, l and m are spatial tensor indices, and the comma repre-

sents a partial derivative (i.e. q,t := ∂q
∂t

). In order to numerically evolve this system,

we need to discretize it; we could imagine doing this by simply approximating the

derivatives using finite-difference approximations. If we use forward-differencing

in time, centered differencing in space, and only consider variation in one spatial

dimension, we would get the following:

qn+1
i = qni +

∆t

2∆x
(f(qi+1)− f(qi−1)) (2.2)

where the spatial discretization is indicated by the subscript i,1 and temporal dis-

cretization is indicated by the superscript n. The discretization is most naturally

thought of as a sampling of the continuum solution at specific points in space and

time.

In some situations, this discretization would be suitable. However, conserva-

tion laws generally arise most naturally from physical laws in their integral form.

1Note that i, j, and k are used to indicate spatial discretization in the x, y, and z directions,
respectively, while l and m are spatial tensor indices.

13
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When we translate to the differential form, we assume that the relevant derivatives

exist; in other words, we assume that the conserved quantities do not exhibit any

discontinuities. The problem is that this is not a requirement in the integral form

of the conservation law and is also not a requirement in nature. In fact, in many

cases, the physically correct behavior for non-linear conservation law systems is

for discontinuities (called shocks or weak solutions, referring to the fact that they

are solutions of the integral but not differential form of the governing equations)

to arise from smooth initial data.

Because finite differencing methods are derived from discretizing the differential

form of the equations, they will inherently break down at discontinuities where the

derivatives do not exist. Because of this, we would like to use methods that are

more suited to discontinuous behavior.

2.1.2 Finite volume methods

We know that discontinuous solutions are allowed by the integral form of conserva-

tion laws, so that is a natural place to start. If we integrate the above conservation

law over a particular volume, V , it becomes

∫

V
q,tdV +

∫

V
f(q)l,mdV = 0, (2.3)

which can be rewritten as

(∫

V
qdV

)

,t

+

∮

S
f(q)lnldS = 0, (2.4)

by reordering operations in the first term and applying the divergence theorem in

the second. S is the surface of the volume V , and has surface element dS and unit

normal nl. This is the form of the equation that is usually easiest to intuitively

relate to the underlying physical law: the change in the amount of a quantity in a

given volume over time is given by the amount of that quantity flowing through

the surfaces of that volume.

Now, suppose that instead of sampling the continuum solution at certain

points, we split the space up into a finite number of cells, and we think of the

discrete solution as the cell average of the continuum solution within each cell.

We use the compound index I = (i, j, k), where integer indices, i, refer to cell

centers, and half-integer indices (i.e. i + 1
2
) to refer to cell edges. To keep the

distinction between sampling and cell averages clear, the cell average in cell I will
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be called q̄I . Then the cell average at any time can be expressed as follows:

q̄I =
1

vI

∫

vI

qdV, (2.5)

where vI is the volume of cell I, and could be expressed as

vI = (xi+ 1
2
− xi− 1

2
)(yj+ 1

2
− yj− 1

2
)(zk+ 1

2
− zk− 1

2
) = ∆x∆y∆z. (2.6)

From this, we can write the following exact equation for the time derivative of the

cell average in a particular cell:

dq̄I
dt

+
1

vI

∮

SI

f(q)jnjdS = 0, (2.7)

where SI is the surface of the cell. If we consider this in one dimension, we get

dq̄i
dt

+
1

∆x

(
fi+ 1

2
− fi− 1

2

)
= 0, (2.8)

where fi± 1
2

= f(q(xi± 1
2
, t)), which is exact and already discretized in space. To

evolve this numerically, we need to choose some discretization in time, and also to

choose some appropriate approximation to fi± 1
2

at the cell edges.

It is easy to see that, for certain choices of approximations to fi± 1
2
, our finite

volume method would be identical to a finite differencing method. However, if we

think carefully about how to approximate the flux, or more generally the whole

flux term, then we can get more accurate treatment of discontinuous behavior than

we get using finite differencing methods.

2.2 Method of lines

We consider our discrete solution, Qi(t), to be an approximation to the cell aver-

ages Qi(t) ≈ q̄i(t). If we choose Fi± 1
2

to be some approximation of f(q(xi± 1
2
, t)),

which will depend on the values of Qi(t) over several cells, then, in 1D, we can

write
dQi

dt
= − 1

∆x

(
Fi+ 1

2
− Fi− 1

2

)
, (2.9)

which is a discrete system of ordinary differential equations for Qi(t). In this way,

we have separated the spatial and temporal parts of our original system of partial

differential equations; this process is called the method of lines.

One major advantage to the method of lines is that the accuracy in time and

space can be addressed independently. Spatial accuracy is increased by improving
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the numerical approximation of the fluxes at the cell boundaries, while temporal

accuracy can be improved by using higher-order time-stepping methods.

2.3 Time evolution

One way to solve an ordinary differential equation (as we must do in order to

evolve our system forward in time) is to use the Runge-Kutta method. Runge-

Kutta methods use a trial step at the midpoint of the integration interval to cancel

out lower-order error terms. Typically, the results shown in this work are pro-

duced using a third-order Runge-Kutta integrator, although first-2 through fourth-

order Runge-Kutta schemes are implemented in both the ElasticEvolution and

MultiModel codes.

2.4 REA algorithm

REA stands for reconstruct, evolve, average; these are the three main steps to

the algorithm. At the beginning of each time step, the information provided is

the discrete solution at the previous time step; we assume that each point in

the discrete solution represents the cell average of the continuous solution in that

region.

The first step is to reconstruct a continuous solution from the discrete solution.

The reconstruction should be consistent with the assumption that the discrete so-

lution from the previous time step was a cell average of some continuous solution:

the reconstruction that we choose must average to the discrete solution. One

simple reconstruction uses a piecewise constant function, where the reconstructed

solution at any point within a cell is simply the value of the discrete solution at

the central point of the cell. It is trivial to show that taking cell averages of this

reconstruction will give the original discrete solution. To get better accuracy, we

use better reconstruction methods; one example is a piecewise linear reconstruc-

tion, where a neighboring point is used to define a slope. The reconstruction then

consists of line segments rather than constant states, and, in smooth regions, the

result is a more accurate approximation of the solution in the continuum.

The second step is to evolve the reconstruction. This could be done via a

number of different methods; for nonlinear conservation laws, we will typically

solve a Riemann problem at each boundary between two cells, either exactly or

2We note that first-order Runge-Kutta is equivalent to forward-in-time differencing.
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xx

q q

t = tt = tn n+1

Figure 2.1: Oscillations induced by a simple one-sided slope function in
scalar advection of Riemann initial data. The discrete solution, Qn

i , is
shown as dots in the diagram on the left; its reconstruction, q̃, is repre-
sented on that figure as lines segments. The reconstruction is evolved to
the later time, t = tn+1, and a new discrete solution, Qn+1

i , is constructed
from the cell averages, shown as dots in the right-hand side of the figure.
This type of oscillation can be avoided by using a slope-limiter method.
This figure is based on a similar figure from Chapter 6 in [28].

approximately. Evolution gives us a solution at the next time step, which is known

everywhere.

Once we have a new continuous solution, we must average over each cell and

construct a discrete solution from these cell averages. We can then repeat the

process for the next time step.

2.5 Reconstruction methods

The simplest reconstruction method that will give us higher-than-first-order ac-

curacy is a piecewise-linear reconstruction. This is relatively straightforward; we

create a reconstruction, q̃ (x, tn), from the discrete solution, Qn
i , as follows:

q̃ (x, tn) = Qn
i + σni (x− xi) for xi− 1

2
≤ x < xi+ 1

2
, (2.10)

where σni is the slope of the line segment, xi is the cell center, and xi± 1
2

are the left

and right edges of the cell. Now all that remains is to decide how to choose the

slope, σni . Note that choosing the slope, σni = 0, will give us a piecewise-constant

reconstruction, and therefore, a first-order method.

One simple idea for determining the slopes is simply to take the differences

between adjacent cell centers. Three possible slopes that are determined in this

way are as follows:



18 Chapter 2 Numerics background

Centered Slope : σni =
Qn
i+1 −Qn

i−1

2∆x
(2.11)

Upwind Slope : σni =
Qn
i −Qn

i−1

∆x
(2.12)

Downwind Slope : σni =
Qn
i+1 −Qn

i

∆x
(2.13)

(2.14)

These slopes work well in some cases, but they assume that the continuous so-

lutions are smooth. When the solutions become discontinuous, the slopes listed

above can introduce unphysical Gibbs oscillations. Fig. 2.1 shows how these oscil-

lations can come about [28].

To avoid these oscillations, several methods for choosing slopes have been de-

veloped specifically for discontinuous solutions. In general, these are called slope-

limiter methods, because they limit the slope in some way that eliminates the

introduction of oscillations. The first is called the minmod slope-limiter. It is as

follows:

σni = minmod

(
Qn
i −Qn

i−1

∆x
,
Qn
i+1 −Qn

i

∆x

)
, (2.15)

where

minmod (a, b) =





a if |a| < |b| and ab > 0

b if |b| < |a| and ab > 0

0 if ab ≤ 0

. (2.16)

Basically, this chooses the smaller of the two slopes as long as they have the same

sign; if the two slopes have different signs, then the slope is set to zero. Using

this choice of slopes prevents the type of oscillations shown in Fig. 2.1. At the

central point, a slope of 0 would be used for the reconstruction rather than the

negative slope pictured; this would prevent the central cell average from increasing

unphysically during the evolution stage.

Another choice is the superbee limiter, proposed by Roe [32],

σni = maxmod
(
σ

(1)
i , σ

(2)
i

)
, (2.17)

where σ
(1)
i and σ

(2)
i are as follows:

σ
(1)
i = minmod

(
2

(
Qn
i −Qn

i−1

∆x

)
,
Qn
i+1 −Qn

i

∆x

)
, (2.18)
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and

σ
(2)
i = minmod

(
Qn
i −Qn

i−1

∆x
, 2

(
Qn
i+1 −Qn

i

∆x

))
. (2.19)

In this choice of slope-limiter, each one-sided slope is compared against twice

the value of the other one-sided slope; maxmod chooses the larger of these two

options. This limiter method is particularly good at showing sharp discontinuities;

the downside is that it can sometimes also sharpen smooth transitions [28].

A third type of slope-limiter is the monotonized central-difference limiter, pro-

posed by van Leer [25], also known as the MC limiter. It is chosen as follows:

σni = minmod

(
Qn
i+1 −Qn

i−1

2∆x
, 2

(
Qn
i+1 −Qn

i

∆x

)
,

2

(
Qn
i −Qn

i−1

∆x

))
.

(2.20)

The MC limiter is very versatile, producing sensible solutions for a wide variety

of problems [28]. Although the minmod limiter is also implemented in our code,

we most often use the MC limiter, because of its versatility.

It is also possible to produce higher-order methods by choosing higher-order

reconstruction methods. For example, instead of using a piecewise-constant re-

construction, one might instead use a piecewise-polynomial reconstruction.

2.6 ENO/WENO reconstruction

To get higher-order accuracy, we will need to use higher-order reconstruction meth-

ods, so that the reconstructed continuous solution more closely approximates the

physical solution. This allows us to get high-order convergence, but only as long

as the physical solution is sufficiently differentiable; if the physical solution is dis-

continuous, we get the type of oscillations seen Fig. 2.1. To solve this problem,

essentially non-oscillatory (ENO) schemes attempt to achieve high-order accuracy

in smooth regions while still handling discontinuities by generating piecewise poly-

nomial reconstructions that keep the total variation bounded [33]. This is done

by choosing the smoothest possible stencil for the order polynomial desired.

Weighted ENO (WENO) schemes are similar to ENO schemes, but instead of

using the smoothest possible stencil, a convex combination of all of the different

possible stencils is used [27]. WENO schemes allow the user to get higher order

accuracy for the same set of stencils. Additionally, very small changes in the

solution near zeros can cause ENO schemes to swap from one stencil to another,
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whereas WENO schemes smoothly transition between stencils. A useful review of

ENO and WENO schemes is given in [34].

2.7 Godunov-type methods

Godunov’s method is a specific method using the REA algorithm. It uses a

piecewise-constant reconstruction method. However, the main idea behind Go-

dunov’s method is that the boundaries between cells are small-scale Riemann

problems, consisting of piecewise-constant initial data with a single discontinuity.

As long as the increment, ∆t, between time steps is short enough that the waves do

not begin to interact, we can simply evolve the system by solving these Riemann

problems. A similar evolution approach can be used with other reconstruction

methods; these will technically not be Godunov’s method, but are typically re-

ferred to as Godunov-type methods.

There are two ways to adjust the cell averages during evolution: one way is

to calculate the flux at the cell boundary, and to use this in the flux-differencing

equation, and the other is to use the wave decomposition of the solution to the

Riemann problem to determine the fractional change in the cell average over a

time step. Because these two methods are equivalent for linear systems, the wave

method will first be demonstrated via a linear system, and then this will be related

to the flux-differencing approach for that linear system. Then I will discuss how

this is generalized to non-linear systems.

To evolve a constant-coefficient linear system, we solve the Riemann problem

at each cell interface; from this we are able to decompose the solution into waves

moving away from the interface at different speeds. Godunov’s method seeks to

use these waves to calculate new cell averages. A linear system in one dimension

can be written as

q,t + Aq,x = 0, (2.21)

because the flux is simply f(q) = Aq, where A is a matrix of constant coefficients.

The wave speeds will be the eigenvalues of A, denoted λp, and the eigenvectors,

rp, will be proportional to the wave-jumps, so that we can decompose the solution

into a set of waves:

Qi −Qi−1 =
m∑

p=1

αp
i− 1

2

rp ≡
m∑

p=1

Wp

i− 1
2

. (2.22)
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We will use the example of a linear system of m equations [28], assuming

that λ1... < 0 < ...λm.3 The Riemann problem for a system of m equations will

generally produce m discontinuities at xi− 1
2

+ λ1∆t, ... xi− 1
2

+ λm∆t, where waves

with negative speeds propagate into the cell centered at xi−1, and waves with

positive speeds propagate into the cell centered at xi. Each wave contributes a

jump in the value of q̃n (x, tn+1), the reconstructed solution evolved forward in

time. However, because the waves move at different speeds, they only contribute

this jump over a fraction of the grid, i.e. the wave, W2
i− 1

2

, has traveled a distance

λ2∆t in the time ∆t, and therefore, has modified the value of q̃ over a fraction of

the grid, λ2∆t
∆x

. This changes the value of the grid average by −λ2∆t
∆x
W2

i− 1
2

. From

this we can infer the general form of the update of the cell averages for Godunov’s

method:

Qn+1
i = Qn

i −
∆t

∆x

[
m∑

p=1

(λp)+Wp

i− 1
2

+
m∑

p=1

(λp)−Wp

i+ 1
2

]
, (2.23)

where the positive and negative characteristic speeds are calculated as follows:

λ+ = max (λ, 0) and λ− = min (λ, 0) . (2.24)

Basically, we have split the system up into left-going and right-going waves, and

determined which should affect each cell average; we get the right-going waves

from the Riemann problem at the left edge of the cell and the left-going waves

from the Riemann problem at the right edge of the cell.

This can also be written in a short-hand form, as follows:

Qn+1
i = Qn

i −
∆t

∆x

(
A+∆Qi− 1

2
+ A−∆Qi+ 1

2

)
, (2.25)

where

A±∆Qi± 1
2

=
m∑

p=1

(λp)±Wp

i± 1
2

. (2.26)

In the linear case, A± can be interpreted as the parts of the matrix of constant

coefficients corresponding to the positive and negative characteristic speeds; how-

ever, in a nonlinear system, we will not have such a simple correspondence between

the Jacobian matrix and the wave-structure of the solution.

In the constant-coefficient linear case, we can find a relation between the nu-

merical flux function, F n
i− 1

2

, and this wave-propagation form of Godunov’s method.

We start by recognizing that the value of the evolved reconstructed solution, q̃,

3Generally, we could have a situation where all wave speeds are positive (or negative), but
we choose the above as an illustrative example.
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along x = xi− 1
2
, which we refer to as Q↓

i− 1
2

, is

Q↓
i− 1

2

= Qi−1 +
∑

p:λp<0

Wp

i− 1
2

= Qi −
∑

p:λp>0

Wp

i− 1
2

, (2.27)

where we step through the negative waves from the left for the first equality, and

the positive waves from the right for the second equality to get to the central value

at x = xi− 1
2
. Since the flux at Qi− 1

2
is given by

f(Q↓
i− 1

2

) = AQ↓
i− 1

2

, (2.28)

where f(Q↓
i− 1

2

) the value of the flux function when q = Q↓
i− 1

2

, we can see that the

numerical flux will be

F n
i− 1

2
= AQi−1 +

∑

p:λp<0

AWp

i− 1
2

. (2.29)

And since Wp

i− 1
2

is an eigenvector of A with eigenvalue λp, we can write

F n
i− 1

2
= f (Qi−1) +

m∑

p=1

(λp)−Wp

i− 1
2

≡ f (Qi−1) + A−∆Qi− 1
2
, (2.30)

or similarly,

F n
i− 1

2
= f (Qi)−

m∑

p=1

(λp)+Wp

i− 1
2

≡ f (Qi)− A+∆Qi− 1
2
. (2.31)

If you plug these into the flux-differencing formula,

Qn+1
i = Qn

i −
∆t

∆x

(
F n
i+ 1

2
− F n

i− 1
2

)
, (2.32)

then you recover the wave-propagation form of Godunov’s method, Eq. 2.25.

For nonlinear problems, we generalize this procedure by solving nonlinear Rie-

mann problems at each cell interface (either exactly or approximately); again we

find the waves and characteristic speeds or the numerical flux function, using either

an exact or an approximate Riemann solver, and use these to evolve the system.

In the non-linear system, we can use the Jacobian of the flux vector in the place of

A, and we can decompose the problem into waves and characteristic speeds to do

the update—this is called flux-vector splitting, and in some sense, we are finding

the fluxes first and then reconstructing these to the cell edges. The other option is

to first reconstruct the conserved or characteristic variables to the cell edges, and
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then to calculate numerical fluxes from these by solving an exact or approximate

Riemann problem. As shown above, these two methods are equivalent for a linear

system with piecewise constant reconstruction, but this will not generally be the

case.

2.8 HLL Riemann solver

While effective HRSC methods for systems of nonlinear conservation laws often

require the solution of a Riemann problem over the boundaries of cells, it is often

not practical to solve the problem exactly, because of the computation time in-

volved. Often, approximate Riemann solvers are used instead; with a well-designed

approximate solver, the code is still able to accurately capture the discontinuous

behavior of the conservation law, but the vast computation time needed for exact

solutions is drastically decreased.

One simple approximate Riemann solver, originally proposed by Harten, Lax,

and van Leer [26], is known as the HLL solver. Basically, the HLL solver assumes

that the solution to the Riemann problem consists of two discontinuities separated

by a constant state. The two waves travel at speeds λR and λL, where these speeds

represent the maximum and minimum characteristic speeds, respectively (waves

do not travel at speeds outside of this range). These can either be chosen to be

physical limitations of the system (light speed in a relativistic problem), or they

can be calculated by solving the eigenproblem. The solution is as follows:

Q(x, t) =





QL if x/t ≤ λL

Q∗ if λL ≤ x/t ≤ λR

QR if x/t ≥ λR

, (2.33)

where Q∗ is the value of the intermediate state. The value of Q∗ can be calculated

as follows. We know, from the Rankine-Hugoniot conditions, that the numerical

flux for the central state, FHLL, should have the following relationship with the

left and right states as well as their flux functions:

f (QL)− FHLL = λL (QL −Q∗) (2.34)

and

FHLL − f (QR) = λR (Q∗ −QR) . (2.35)

We can solve these equations for the intermediate state Q∗, as well as the numerical

flux, FHLL. Note that we refer to this flux as FHLL, not f (Q∗); because we are
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requiring conservation, it will not be equivalent to applying the flux function to

the intermediate state. Using the above equations, we find

Q∗ =
f (QL)− f (QR)− λLQL + λRQR

λR − λL
(2.36)

and

FHLL =
λRf (QL)− λLf (QR) + λLλR (QR −QL)

λR − λL
. (2.37)

For simplicity, we may want to use only one maximum characteristic speed magni-

tude, λ. For example, we may not want to calculate the maximum characteristic

speed, but instead, set it to some maximum physical value (λ = 1.0 in relativistic

systems). If this is the case, then we can assume that the maximum and mini-

mum characteristic speeds are λR = λ and λL = −λ. For this case, the HLL flux

becomes

FHLL =
f (QL) + f (QR)− λ (QR −QL)

2
. (2.38)

This is the form of the HLL flux that we use in the code. Note, however, that

this equation appears to conflict with the HLL-flux equation mentioned in [1]; this

is because, in that equation, qRi−1 is the right edge of the cell to the left of the

interface, meaning that it corresponds to QL in the above equation.

2.9 Hamilton-Jacobi equations

Hamilton-Jacobi equations are equations of the form

φ,t +H(φ,j) = 0, (2.39)

where H can be a function of both space and time. Note that, if the quantity φ is

advected with velocity, vj, across the grid, then we have

φ,t + vjφ,j = 0. (2.40)

This is just a Hamilton-Jacobi equation with H(φ,j) = vjφ,j. Because of this,

we can use methods developed to evolve Hamilton-Jacobi equations to advect

quantities in our code. One limitation of this is that the derivatives, φ,j, must

exist, meaning that φ should be smooth in order for our treatment to be accurate.

To discretize these types of equations in space, we must find a numerical ap-

proximation of H(φ,j):

Ĥ = Ĥ(φ−,x, φ
+
,x;φ

−
,y, φ

+
,y;φ

−
,z, φ

+
,z), (2.41)
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where φ±,x, for example, are approximations to the spatial derivatives to the left

and right edges of the cell. The simplest approximations are forward and backward

differences:

φ+
,x =

φi+1 − φi
∆x

(2.42)

and

φ−,x =
φi − φi−1

∆x
. (2.43)

However, higher order estimates of the derivatives can be made using ENO or

WENO schemes. This is similar to the reconstruction methods described in Sec-

tion 2.6. When the ENO/WENO scheme is used to reconstruct variables, a poly-

nomial expression for the variable is constructed from surrounding values, and

then the value of that expression at the cell edges is computed. Which surround-

ing values are used depends on which scheme is used (ENO or WENO) and how

smooth the numerical solution is in that region. However, in order to numerically

estimate Ĥ, we need estimates of the derivatives of φ, not the value of φ itself.

To get these, we can calculate the same polynomial expression as we would in the

usual ENO/WENO reconstruction scheme, and simply take its derivative analyti-

cally. From this expression, we can estimate the value of the derivative at the cell

edges.

2.10 Lax-Friedrichs scheme

One method for calculating the approximation Ĥ is called the Lax-Friedrichs

scheme. It is as follows (in 2D):

Ĥ = H

(
φ−,x + φ+

,x

2
,
φ−,y + φ+

,y

2

)
− αx

(
φ+
,x − φ−,x

2

)
− αy

(
φ+
,y − φ−,y

2

)
, (2.44)

where αx and αy are dissipation coefficients controlling the amount of numerical

viscosity. The dissipation coefficients are chosen based on partial derivatives of H:

αx = max

∣∣∣∣
∂H(φ,x, φ,y)

∂(φ,x)

∣∣∣∣ (2.45)

and

αy = max

∣∣∣∣
∂H(φ,x, φ,y)

∂(φ,y)

∣∣∣∣ (2.46)

For advection equations we simply get αx = max |vx| and αy = max |vy|.
The stencils over which we find the maximum for the values of αx and αy

determine the amount of dissipation due to numerical viscosity. In the original
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Lax-Friedrichs scheme, the maximum is taken over the entire grid (or rather, we

find the maximum and minimum values of φ,x and φ,y over the grid, and then find

the maximum value of the partial derivatives of H over the resulting intervals,

Ix = [φmin
,x , φmax

,x ] and Iy = [φmin
,y , φmax

,y ]). This scheme can be improved by limiting

the stencil over which the dissipation coefficients are determined, but we find the

original Lax-Friedrichs scheme to be sufficient for our purposes.

2.11 Fast-marching method

To do efficient extrapolation (both linear and zeroth order) in the MultiModel

code, we use the fast-marching method. The method was originally developed

to solve boundary value problems of the Eikonal equation, where a closed curve

travels outward in a direction normal to the curve; a key feature is that information

propagates in one direction (away from the curve). We can think of extrapolation

as evolving some Eikonal equation in fictitious time: values on the curve are

propagated outward to the remainder of the grid.

We will not go into detail about the theory behind the algorithm here; there is

a good description in [35]. We will just present a brief overview of the main points

of implementation of the algorithm.

To start, we choose the values of the variable in the cells from which we would

like to extrapolate. Typically, in this work, the fast-marching method is used for

extrapolation away from the interface between two materials—material interfaces

will be discussed further in Chapter 4—so for us, this means choosing the values

of the variable in a thin band immediately adjacent to the interface. These cells

are considered part of the accepted region, as they already have their value for the

variable in question.

Next, cells adjacent to this initial band are reserved as possible candidates for

further extrapolation; we will call these cells candidates. The distance of each of

these from the interface is calculated and stored.

After this initial set up, the iterative part of the algorithm begins. It proceeds

as follows:

1. The candidate with the minimum distance to the interface is removed from

the candidate pool. Call this cell A.

2. The variable is extrapolated to cell A from its accepted neighbors using

whichever method we choose.

3. Cell A becomes accepted.
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4. All of cell A’s non-accepted neighbors are added to the candidate pool, and

their distances from the interface are calculated and stored.

This proceeds until the variable has been extrapolated to the entirety of the grid.





Chapter 3

Elasticity

3.1 Elasticity Background

Although the Newtonian theory of elasticity is well established1, the problem of

describing the behavior of elastic media in relativity was ignored for many years.

The first real need for a description of elastic solids in relativity comes about

with attempts to detect gravitational waves. Weber 1960 [38] proposes the use

of solid bars, which would resonate when they encounter gravitational waves of

specific frequencies; the idea is that the induced strain would cause a measurable

voltage via the piezoelectric effect. For this, he needs a theory to describe how the

gravitational waves interact with the solid bars. For his purpose, it is sufficient

to consider the linearized Einstein equations in a Newtonian background. Dyson

1969 [39] uses a similar theory to examine the interaction between gravitational

waves and the Earth, to determine whether it is possible to detect these waves via

seismic oscillations.2

Around the same time, there are several attempts to understand elasticity

in full general relativity, though none are completely successful. Synge 1959 [40]

proposes an unsound theory, and introduces the idea that only time rates of strain,

but not absolute strains can be examined in relativity. The (faulty) logic behind

this is that the idea of a “natural” state of the body against which strain should

be measured is not consistent with relativity; it does not make sense to think

of “turning off” gravity for the entire body to examine the relaxed state. This

idea seems to have thwarted several subsequent attempts to develop a relativistic

elasticity theory, namely the work of Bennoun 1965 [41]. However, Hernandez 1970

1See Landau and Lifshitz [36] and Marsden and Hughes [37] for a good overview of both
linear and non-linear Newtonian elasticity.

2He finds that the seismic oscillations would be 105 times smaller than the prevailing noise
levels for 1 Hz gravitational waves.

29
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[42] points out that strain is a microscopic property, so we can simply consider

the configuration with respect to the relaxed or “natural” state locally, by taking

a small region to a large distance where it is free from stresses. It is true that

there is no “natural” state for the body as a whole, but there is a natural state

for the material. In order for relativity to influence our local understanding of

strain, it would need to be dominant on a microscopic scale; however, while it

dominates on a macroscopic scale in extreme astrophysical environments, it still

remains negligible when compared to electromagnetic or strong forces between

particles, and so does not affect local crystal (or fluid) properties.

Another partially successful attempt is by Rayner 1963 [43], who attempts to

produce a Hookean (i.e. with a linear stress-strain relationship) theory of elasticity

in relativity. This theory assumes the validity of the concept of absolute strain, but

ultimately, his guess for the form of the equations of motion was not consistent

with perfect elasticity. In the small-strain limit, the theory does not pose any

problems, but it does not satisfy energy conservation for finite strains.

A major step towards a theory of relativistic elasticity is Oldroyd 1970 [44],

where a mathematical formalism describing general continuous media in general

relativity is presented. Convected coordinates (basically particle labels) are intro-

duced. The important concept of rheological invariance is also introduced; namely

that the material state of any particle in the medium should only depend on quan-

tities at that particle and along its past world line. This means that the equation

of state must be written in terms of only integrals, derivatives, and functions

of quantities that are space-tensor functions (tensors on the convected material

space) of only particles (i.e. coordinates in the material space) and their proper

time.

Carter and Quintana 1972 [45] rewrite this mathematical formalism in clearer

mathematical terms, emphasizing the existence of two manifolds (the 3D ma-

terial manifold that keeps track of particles—in Oldroyd, these are convected

coordinates—and the background spacetime manifold) and a map between them,

which allows us to identify spacetime points with specific particles. They then

apply this mathematical approach to relativistic elasticity. This is analogous to

the approach taken in the Newtonian literature for non-linear elasticity [37].

As noted in Carter 1980 [46], this formulation of elasticity was developed ear-

lier by Souriau 1965 [47]; however, it went largely unnoticed. The approach here is

slightly more elegant than the Carter and Quintana approach: Carter and Quin-

tana assume energy conservation in the local rest frame in order to derive equations

with the appropriate number of degrees of freedom. As a consequence, their theory
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can be written as a simple action principle. In Souriau 1965 [47], the variational

principle is taken as an axiom, and, as a result, conservation of energy is derived.

It is also worth mentioning the work of Maugin (1971 [48] and 1978 [49]) and

of Christodoulou 1998 [50], where a theory of electromagnetic elastic media is

introduced and studied.

Kijowski and Magli (1992 [51] and 1998 [52]) have also reformulated relativis-

tic elasticity to emphasize its gauge character. A nice, clear discussion of how

this reformulation relates to the formulation discussed in Carter and Quintana is

presented in [53]. They make the analogy between electromagnetism and the elas-

ticity theory: essentially, the Carter and Quintana approach is like deriving the

Maxwell equations directly from the Hilbert variational principle, without making

use of electromagnetic potentials. The Kijowski and Magli approach is similar to

the standard approach to electrodynamics, where physical quantities are written

as first derivatives of potentials. The matter-space coordinate labels are the neces-

sary gauge potentials in elasticity, and the material equations of motion are written

in terms of these potentials. This approach may have conceptual advantages.

Beig and Schmidt 2003 [30] discuss the characteristic decomposition of rela-

tivistic elasticity. They present several existence and uniqueness theorems, includ-

ing showing that the system can be written as a first-order symmetric hyperbolic

system.

Karlovini and Samuelsson 2003 [54] gives a good summary of relativistic elas-

ticity, following Carter and Quintana closely. They include new methods and

results that help to elucidate and update the theory.

In the following sections, we closely follow three of these works. Firstly, we

use the approach of Carter and Quintana 1972 [45] and Karlovini and Samuelsson

2003 [54] to develop the basis for our description of the kinematic and dynamical

equations for relativistic elasticity. Section 3.4 follows the approach of Beig and

Schmidt 2003 [30] closely to determine the conditions for hyperbolicity of our

system, and analyze its characteristics.

3.2 Kinematics

3.2.1 Evolution equations

One major difference between an elastic solid and a fluid is the fact that we need

to keep track of the particle positions relative to their preferred configuration. As

the solid is deformed from its relaxed state, it behaves differently; we need some

way of keeping track of this, and allowing this to affect the evolution of the system.
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spacetime

particle world lines

matter space

Figure 3.1: In elasticity, we must keep track of the particle positions in
relation to their preferred relative positions. To do this, we make use of
two manifolds and a map between them. The four-dimensional spacetime
is the background with respect to which the matter moves and transforms,
while the three-dimensional matter space keeps track of the preferred par-
ticle positions with respect to one another. Each point on matter space
corresponds to a particle, and therefore, a world-line on spacetime. Infor-
mation about deformations that occur can be obtained by comparing the
matter-space and spacetime metrics, which is done by pushing forward
one metric onto the other manifold using the gradient of the map (the
configuration gradient).

We do this by following Carter and Quintana [45] and using two manifolds

and a map between them. The two manifolds are called the matter space, which

keeps track of the preferred particle positions relative to one another, and the

spacetime, which is the background with respect to which the matter is moving

and transforming. We call the map between these the configuration, because it

contains information about how the particles are configured on spacetime. This is

illustrated in Fig. 3.1. Formally, the configuration is described as follows:

χ : M4 → X3, (3.1)

or in coordinates:

χA : xa 7→ ξA = χA(xa). (3.2)

Assuming that the map is continuous, we then introduce the derivative of this

map with respect to spacetime coordinates, called the configuration gradient, as

follows:

ψ : xa 7→ ψAa =
∂ξA

∂xa
. (3.3)



Chapter 3 Elasticity 33

This derivative, along with the metrics of the two manifolds, contains all the infor-

mation about the deformations that occur, because they tell us how the preferred

particle positions and the actual particle positions compare on spacetime. To do

this, we can use the configuration gradient to push forward and pull back between

the two manifolds: for example, the spacetime metric pushed forward onto matter

space is

gAB := ψAaψ
B
bg
ab. (3.4)

We can also introduce a time foliation on spacetime,

M4 → X3 × R, (3.5)

so that the coordinates will be

xa 7→ (t, xi), (3.6)

and the configuration gradient becomes

ψAa 7→ (ψAt, ψ
A
i) (3.7)

We define the four velocity, ua, such that it points along particle world lines;

since the matter-space coordinates label particles, these particle labels should stay

constant along particle world lines, and we can define the four velocity such that

uaψAa := 0. (3.8)

If we split the four velocity in the usual way, such that

ua = (ut, ui) = α−1W (1, v̂i), (3.9)

where

v̂i := αvi + βi (3.10)

and W is the Lorentz factor based on the three velocity,

W := (1− vivi)−1/2, (3.11)

then we can express the time component of the configuration gradient in terms of

v̂i, and the spatial components of the configuration gradient as follows:

ψAt = −v̂iψAi. (3.12)
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(A summary of the 3 + 1 split used in this work is given in Appendix B.1.)

Since the configuration gradient is a group of partial derivatives, we can use

the fact that partial derivatives must commute to write

CA
ab := ψA[a,b] = 0; (3.13)

we call this system CA
ab for convenience. Next, we can split this system using the

time foliation introduced earlier to get the following:

CA
ij = ψA[i,j] = 0 (3.14)

and

EA
i := CA

it = ψAi,t + (v̂jψAj),i = 0. (3.15)

Eq. 3.14 is in the form of a constraint, while Eq. 3.15 is an evolution equation

for ψAi. In fact, both of these are already in conservation-law form; this is made

clearer by writing them as

EA
i = ψAi,t + (v̂jψAjδ

k
i ),k = 0, (3.16)

and

CA
ij =

(
ψA[iδ

l
j]

)
,l

= 0. (3.17)

However, although the evolution equation is already in conservation-law form, it

turns out that in order to make our system of equations strongly hyperbolic, we

will need to instead use the following system (compare o Eq. 3.222):

2αW−1uaCA
ia = 2αW−1uaψA[i,a] = 0, (3.18)

which can be written in balance law form as

ψAi,t + (v̂jψAj),i = −2v̂jψA[i,j]. (3.19)

This will be discussed further in Section 3.4. As you can see, Eq. 3.19 is simply

the evolution equation, Eq. 3.15, with an added source term that is proportional

to the constraint, Eq. 3.14. As long as the constraint is satisfied, this balance law

is equivalent to the conservation law, Eq. 3.15.

Although, formally the balance law form of the evolution equation for the

configuration gradient (Eq. 3.19) is needed for hyperbolicity, in practice, the con-

servation law form (Eq. 3.15) is implemented in the code. As discussed later in

Section 3.5.8, the constraints (Eq. 3.14) are trivial if all variables depend on only
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defined by 1−form fields

world volumes of crystal surfaces

constant time

slice

world line of 

individual particle

t

y

x

Figure 3.2: Each 1-form component of ψAi represents a set of crystal
surfaces over all time (world volumes); the intersection between the set of
these and a constant time slice is the instantaneous crystal lattice at that
specific time. The intersections between the three sets of crystal world
volumes give the world lines of the individual particles.

one dimension. In 2D, where the constraints are non-trivial, the system without

the constraint addition is no longer strongly hyperbolic; we expect this constraint

addition to be necessary for stability, as it is in the Newtonian literature. Although

we have seen no stability issues to date despite neglecting this constraint addition,

we note that it may be necessary in the future. Despite the importance for sta-

bility, there seems to be no agreement as to how important constraint violations

are to the accuracy of solutions. In MHD, the ∇ · B = 0 constraint is crucial

for accuracy; similarly, one might imagine that some methods that reduce these

constraint violations—for example, adding a parabolic damping term [55], which

is analogous to the Powell method in MHD [56, 57]—could be necessary in the

future.

It will also be convenient to write this equation as an advection equation:

ψAi,t + v̂jψAi,j = −ψAj v̂j,i. (3.20)

As an advection equation, this is hyperbolic in ψAi for given v̂i.

3.2.2 Physical meaning of ψAi evolution equations

The configuration gradient, ψAi, can be thought of as being three 1-forms in

spacetime with labels, A = 1, 2, 3. Each 1-form field defines a set of surfaces
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x

y
XY

Figure 3.3: Matter-space coordinates superimposed onto the spacetime
coordinates using the map, χA. To integrate ψXx, we must count up lines
of constant X crossed when moving in the x direction; for ψY x, we count
up lines of constant Y .

which physically represent the world volumes of the crystal surfaces, or the planes

of the crystal at all times. The intersection between these 1-forms and a time

slice gives the instantaneous crystal surfaces. The intersections between the three

crystal surfaces give the world lines of individual particles. When the intersection

between two of the crystal surfaces and a time slice is found, this gives the crystal

axis in the third direction. This is illustrated in 3D (with two spatial dimensions

and time) in Fig. 3.2.

Because of this, the evolution equation for ψAi in some way represents the

conservation of crystal axes; each 1-form represents a set of crystal surfaces, and

these are evolved using the conservation law discussed earlier. The flux, which is

−ψAt, tells whether the particle label at any given grid point should change, thus

making it a natural flux for the conservation of crystal surfaces.

We should examine exactly what we mean by conservation of crystal structure.

It is helpful to draw the matter-space coordinates superimposed onto the spacetime

coordinates; of course, this can only be done using the map. Fig. 3.3 shows

this situation, where the spacetime coordinates are (x, y), and the matter-space

coordinates are (X, Y ). This is equivalent to looking at a constant time slice of

Fig. 3.2: the red lines are the intersections between the world volumes of the crystal

surfaces with the constant time slice, giving the instantaneous crystal surfaces at

that particular time.
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For conservation laws, the actual conserved quantity is the variable in the

evolution equations integrated over some volume; for example, the equation that

physically represents conservation of mass is an evolution equation for the density

when we look at it in differential form. To understand the physical meaning of the

evolution equations for ψAi, we should first determine what the conserved quantity

is by integrating the configuration gradient, ψAi, over some volume. Essentially,

what this comes down to is counting up the lines of constant matter-space co-

ordinate that we cross as we move in a particular spacetime direction. This is

illustrated in Fig. 3.3. If we integrate ψXx, we count up the number of constant X

contours that we cross as we move along the x-direction. Likewise, integrating ψY x

gives us the number of constant Y lines crossed moving in the same direction. So,

roughly, we can think of ψAi as a sort of “density” of crystal axes in a particular

direction; all of this is really just a physical interpretation of the meaning of a

gradient.

Now that we have some physical intuition about the meaning of ψAi, we can

use this to interpret the evolution equations and constraints. To do this, it is best

to look at the jump conditions.

To examine the jump conditions for ψAi, we consider a shock with a normal

covector ni and velocity si. Then s := sini is the normal shock speed. We find

the Rankine-Hugoniot conditions from the evolution equation and constraint for

ψAi by first rotating into a frame where one coordinate direction is perpendicular

to the shock (so we only have variation in 1D), and then integrating across the

shock. They are as follows:

[[
ψAkδ

k
[iδ

l
j]

]]
nl =

[[
ψA[inj]

]]
= 0 (3.21)

and

− s
[[
ψAi
]]

+
[[
v̂jψAjδ

k
i

]]
nk = 0, (3.22)

where the double square brackets indicate the difference in the quantity between

the left and right states.

We start by looking at the constraint jump conditions; it is easiest to consider

what these do not allow. Consider the situation shown in Figs. 3.4a and 3.4b,

where the direction normal to the shock is the horizontal, or x, direction. From

the constraint jump conditions, we see that, since ny = 0, and nx is constant

across the shock, we must have
[[
ψAy

]]
= 0. In other words, if we move in the

y direction, the number of crystal axes that we cross (either X or Y ) should be

the same for the left and right states. Figs. 3.4a and 3.4b show two scenarios

that are disallowed by this constraint. In Fig. 3.4a, the number of Y lines crossed
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x

y

X

Y

X

Y

(a)

x

y

X

Y

X

Y

(b)

Figure 3.4: The first jump condition, Eq. 3.27, prevents the above ex-
amples of ‘surgery’ of the material. If we choose space and matter space
coordinates such that the shock is along the y-axis and ψAi = δAi on the
left-hand side, with the sketched coordinates being the matter-space coor-
dinates, and the space coordinates being evenly spaced and square, then
3.4a is prevented by

[[
ψY y

]]
= 0, and 3.4b is prevented by

[[
ψXy

]]
= 0.

This figure is a modified version of Figure 1 in [1].

as you move along y varies between the left and right states; in other words, we

have
[[
ψY y

]]
6= 0. In Fig. 3.4b, the number of X lines varies, as in the left state,

no constant X lines are crossed, while they are crossed in the right state, which

means that we have
[[
ψXy

]]
6= 0.

Another way to see this is to decompose the jump conditions into their com-

ponents normal and parallel to the shock. This will also help to illuminate the

jump conditions for the evolution equations for ψAi. To do this decomposition, we

introduce the normal vector such that

nini = 1, (3.23)

and the projector normal to the normal covector (tangent to the shock surface),

||ij := δij − ninj, (3.24)

which has the expected properties of a projector, i.e. ||ijnj = 0 and ||ij||jk = ||ik.
Next we define

v̂n := v̂ini (3.25)

and

v̂||i := ||ij v̂j. (3.26)

We split the other tensors into their normal and tangential parts in a similar way.



Chapter 3 Elasticity 39

x

y

X

Y

X

Y

(a)

x

y

X

Y

X

Y

(b)

Figure 3.5: These types of discontinuities are allowed by the jump condi-
tions. 3.5a shows a pure density shock, where vy is continuous. It is shown
in the rest frame of the shock, so s = 0. The density and velocity on the
left and right are therefore related by

[[
ψXxv

x
]]

= 0; in the higher density
region, vx is smaller than in the lower density region. 3.5b shows a pure
traveling kink; for simplicity, we have chosen vx = 0, ψXx is constant, and
we also have a discontinuity in vy. We see that the density is continuous
across the discontinuity, but we have a discontinuity in ψAi, and therefore
in the crystal axes. This figure is a modified version of Figure 2 in [1].

We now see that, for the constraints, we have

[[
ψAi||iknj − ψAj||ikni

]]
=
[[
ψA||k

]]
= 0. (3.27)

Now it is easy to see that when we have ni completely in the x direction, we must

have
[[
ψAy

]]
= 0.

Next we can look at the jump conditions for the evolution equations. Projecting

as above, we get [[
ψAn(v̂n − s)

]]
+ ψA||i

[[
v̂||i
]]

= 0, (3.28)

where we have plugged in ψAiv̂
i = ψAnv̂

n + ψA||j v̂
||j and rearranged.

From this, we can see that there are two basic shocks that are allowed in this

system. The first is a density shock; this is illustrated in Fig. 3.5a, in the frame

of reference where the shock is stationary. In this case, s = 0 and v̂||i = 0, so we

must have
[[
ψAnv̂

n
]]

= 0. This tells us that the number of crystal axes counted

up along a certain direction can only change if the velocity in that direction also

changes. Intuitively, this is what you would expect for conservation of crystal axes:

there must be the same number of crystal axes flowing into the shock as there are

flowing out over some period of time. Specifically, this is illustrating conservation

of crystal axes, but if we combine the equations for the crystal axes in all directions

with advection of the matter-space metric, which keeps track of the particles, this
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situation is equivalent to a density shock. The relationship between the particle

number density evolution equation and the evolution equations for ψAi and kAB

is derived explicitly in Section 3.2.3.

Another possible scenario is a traveling kink, illustrated in Fig. 3.5b. In this

situation, the left region is static, and the right is moving upward at some constant

velocity, so we have v̂n = 0, and v̂||i and s are non-zero. From the jump conditions,

we see that we are only allowed to have a non-zero velocity parallel to the shock

surface if we also have some non-zero shock speed. The result is that the crystal

axes stay connected, and are dragged upward; you can think of this as being like

someone lifting a tablecloth up off of a table. In this situation, the discontinuity

between the moving and static segments must move to the left; in the tablecloth

analogy, the kink between the lifted and static portions is moving towards the

non-lifted area.

In hydrodynamics, we have both a contact discontinuity where entropy jumps,

as well as one where tangential velocity can jump. In elasticity, we are left with only

an entropy-jump contact discontinuity, because of the kinematic jump conditions

discussed above.

One might expect that it would be possible to recover fluid behavior using the

formulation described here simply by setting the shear modulus in the equation of

state to zero; however, the above jump condition makes this impossible.

In fact, the tangential-velocity-jump contact discontinuity requires a discon-

tinuous map, χ, between spacetime and matter space. Consider a situation where

the map is initially continuous and we have an initial discontinuity only in the tan-

gential velocity so that vy = −v where x < 0, and vy = v where x ≥ 0. Assume

that initially X = x and Y = y everywhere; this defines a continuous map with

a configuration gradient, ψAi, equal to the identity matrix. Physically, in a fluid,

this tangential-velocity discontinuity should stay stationary in time; if we assume

this behavior for the current situation, then after some time ∆t, the discontinuity

is still located at x = 0, but the matter to the left-hand side has moved downward,

and the matter to the right-hand side has moved upward. Therefore, we have a

new map with new expressions for the matter-space coordinates in terms of the

spacetime coordinates: Y = y + v∆t where x < 0 and Y = y − v∆t where x ≥ 0.

Since the Y coordinate is now a discontinuous function of y and x, the map must

also be discontinuous.

Because, in the process of deriving the elasticity formulation, we assume that

the map is continuous, which is required in elastic materials (where we expect

crystal axes to be continuous), but not in fluids, we acquire jump conditions that

prevent tangential-velocity contact discontinuities. Consequently, even if the shear
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modulus is set to zero, shear waves will still be present when using the elasticity

formulation, and we are left with only an entropy-jump contact discontinuity.

3.2.3 Relationship between particle number density and

ψAi

It is intuitively clear that an evolution equation for crystal axes should automati-

cally contain an evolution equation for the particle number density of the material.

We can see that this is indeed the case by taking the following steps.

First, we introduce a volume form on matter space, nABC . Then, integration

of this volume form over a particular volume represents the number of particles

contained within that volume.

In addition to the volume form, we will also need to define a conformal metric

in order to define angles. These angles are essential in elasticity, because we will

need to compare these to the angles on spacetime to define deformations of the

material.

Together, the volume form and the conformal metric define a full Riemannian

metric, which we will call kAB, and which is compatible with nABC such that,

nABC =
√
kξδABC , (3.29)

where kξ is the usual matrix determinant:

kξ :=
1

3!
δABCδDEFkADkBEkCF , (3.30)

and δABC is the totally antisymmetric tensor with an independent component of 1

in a particular coordinate system on matter space. We label these coordinates ξA,

and because this determinant is coordinate dependent, we label it with the sub-

script, ξ, indicating that it is associated with the particular choice of coordinates

ξA. The unsheared state occurs when the matter-space metric is proportional to

the spacetime metric pushed forward onto matter space: specifically, when

kAB = n2/3gAB, (3.31)

where kAB is the matter-space metric, and n is the particle number density.

We next consider a pull-back of volume form onto spacetime:

nabc := ψAaψ
B
bψ

C
cnABC . (3.32)



42 Chapter 3 Elasticity

Spacetime also has a volume form compatible with the metric, which we write as

εabcd =
√
gxδabcd (3.33)

where gx is the determinant of the metric,

gx := − 1

4!
δabcdδefghgaegbfgcggdh, (3.34)

and δabcd is associated with a particular coordinate system, and therefore, so is gx.

Next, we define the particle-number current to be

ja :=
1

3!
εabcdnbcd. (3.35)

This vector is time-like and conserved:

∇aj
a = εabcd∇anbcd = 0, (3.36)

where the second equality comes about because we can write

εabcd∇[anbcd] = εabcdn[bcd,a] = εABCDn[BCD,A]. (3.37)

The last equality depends on the fact that ψAa,b is symmetric in a and b, but

is contracted with the totally antisymmetric tensor εabcd. Finally, n[BCD,A] is a

4-form on 3D space, meaning it must be 0.

We then define the split,

ja =: nua. (3.38)

Then the conservation of the particle-number current becomes

(
√
γxWn),t + (

√
γxWnv̂i),i = 0, (3.39)

where γx is the determinant of the spatial part of the spacetime metric in the 3+1

split; its definition is analogous to the definition for gx. Therefore, we note that

gx = α2γx.

We can also write

n = −uaja. (3.40)

We recall that

ua = W (−α + vjβ
j, vi) (3.41)



Chapter 3 Elasticity 43

and

ε0ijk = α−1εijk. (3.42)

If we plug all these in, and also note that nij0 = −v̂knijk (from writing nabc in

terms of ψAa and nABC), we can work out that

n =
1

3!
W−1εijknijk. (3.43)

Because we know that εijk = 1√
γx
δijk, and nABC =

√
kξδABC , we can write n

as

n =

√
kξψxξ

W
√
γx

(3.44)

where

ψxξ :=
1

3!
δijkδABCψ

A
iψ

B
jψ

C
k. (3.45)

From here we can show that ∇aj
a = 0 is a linear combination of the evolution

equations for ψAi with the hyperbolicity fix. To do this, we first contract the

advection version of the evolution equation for ψAi with the matrix inverse, F i
A,

and use the matrix identity (δ(lnψxξ) = F i
Aδ(ψ

A
i)) to get the following:

(lnψxξ),t + v̂i(lnψxξ),i + v̂i,i = 0. (3.46)

Now to manipulate ∇aj
a = 0, we recall that

ua = α−1W (1, v̂i) and ja = nua, (3.47)

so that

ja =

√
kξψxξ√
gx

(1, v̂i). (3.48)

Then ∇aj
a = 0 becomes

(
√
kξψxξ),t + (

√
kξψxξv̂

i),i = 0. (3.49)

We can now define the pull-back of the matter-space metric onto spacetime:

kab := ψAaψ
B
bkAB. (3.50)

From this definition, we have

uakab = 0. (3.51)
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From our definition of ja, we can see that

jakAB,a = 0, (3.52)

which implies that

uakAB,a = 0. (3.53)

This is what we would expect, since we can view the components of kAB as scalars

on spacetime that should be carried along with the particle flow. In fact, the above

implies that

Lukab = 0, (3.54)

meaning that the matter-space metric is Lie-dragged along with the flow. In the

3+1 split, the Eq. 3.53 becomes

kAB,t + v̂ikAB,i = 0 (3.55)

and we use this to evolve the matter space metric.

Since the determinant of the matter-space metric, kξ, is just a function of

scalars on spacetime (the components of kAB), it will be evolved in the same way

as those scalars. Thus, the advection equation for kAB implies

(kξ),t + v̂i(kξ),i = 0, (3.56)

and means that Eq. 3.49 is equivalent to Eq. 3.46. This can be shown by ex-

panding Eq. 3.49 using the product rule: we then get a term proportional to the

advection equation for kξ, and one proportional to Eq. 3.46. Therefore, we have

shown that the evolution equation for ψAi with the hyperbolicity fix carries all

of the necessary information about conservation of particle number. In fact, in

the ElasticEvolution code, we evolve both the conservation-of-particle-number

equation and the evolution equation for ψAi; this gives us two independent sources

for the particle number, which we call nD and nψ.

3.3 Dynamics

3.3.1 Derivation of stress-energy tensor

To derive the stress-energy tensor for elasticity, we start with the action:

S :=

∫
e(gab, ψAa, kAB, ..., s)g

1/2
x d4x, (3.57)
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where the dots represent any other matter-space tensors. We assume that there

is no heat flow between particles, so entropy is constant along particle world lines

aside from at shocks, and we can consider it to be a scalar on matter space. We

call the Lagrangian density here e, because it turns out later that it is the total

energy density when our resulting equations are solutions to the Euler equations.

Next, we vary the metric to get the standard definition of the stress energy

tensor:

δS =:
1

2

∫
Tabδg

abg1/2
x d4x. (3.58)

From this definition, the stress energy tensor ends up being the following:

Tab = 2
∂e

∂gab
− egab. (3.59)

This is derived as follows:

δ(
√
gxe) =

√
gx

∂e

∂gab
δgab + eδ (

√
gx) (3.60)

and then

δ (
√
gx) =

1

2
g−1/2
x δgx (3.61)

=
1

2
g1/2
x

1

gx
δgx (3.62)

=
1

2
g1/2
x δ (ln gx) (3.63)

=
1

2
g1/2
x gabδgab (3.64)

= −1

2
g1/2
x gabδg

ab. (3.65)

We define the projector onto the tangent space normal to the 4-velocity,

hab := uaub + gab, (3.66)

and then, we can then write the stress-energy tensor as

Tab = euaub + pab, (3.67)

where

pab := 2
∂e

∂gab
− ehab. (3.68)

Note that pab is symmetric by definition. Physically, we will discover later that it

encodes the stresses: namely the isotropic part is the pressure, and, in elasticity,
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we additionally have anisotropic stresses.

Next we define the push-forward of the spacetime metric onto matter space:

gAB := ψAaψ
B
bg
ab. (3.69)

Its matrix inverse is defined such that

gACgCB := δAB. (3.70)

We now have two Riemannian metrics on matter space: kAB and gAB. gAB trans-

forms like a tensor on matter space,3 but it depends on deformations in the matter,

so it is time-dependent. kAB is a genuine tensor on matter space so we call this

the matter-space metric. However, we use gAB and gAB to move indices on matter

space, so kAB := gACgBDkCD and kAB is not the matrix inverse of kAB.

We also define

ψA
a := ψBbg

abgAB. (3.71)

This is the inverse of ψAa in the sense that

ψAaψB
a = δAB (3.72)

and

ψAaψA
b = ha

b. (3.73)

The first equality is easy to see from the definitions of ψA
a and gAB. The second

can be shown by demonstrating that the construction has the properties of being

normal to ua and ub and satisfying ha
bhb

c = ha
c (and also that the trace is 3).

This shows that the construction is indeed a projector, and that it is the specific

projector onto a 3D surface normal to ua.

To achieve covariance on both matter space and spacetime, e must be a scalar

quantity on both of these manifolds. Eventually, this means that we will need e to

depend only on scalars on both matter space and spacetime. We start by writing

e as a function of tensors on matter space only; since the components of tensors

on matter space are scalars on spacetime, this means that we have e as a function

of scalars on spacetime. Later, we will have to rewrite this as a function of scalars

on matter space, constructed from the tensors here. As a function of tensors on

matter space, we must have e(ψAa, g
ab) = e(gAB): this is the only way that ψAa

and gab can be contracted to form a tensor on matter space.

3This is shown in Appendix F.
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Now we must write our expression for the stress energy tensor in terms of gAB

instead of gab. We start by writing the following:

∂e

∂gab
=

∂e

∂gAB
ψAaψ

B
b, (3.74)

using the chain rule. Then

pabu
a = 0 (3.75)

and

uahbcT
ab = 0. (3.76)

This contraction of T ab gives the normal-tangential components in the frame co-

moving with the material: these components represent the energy flux relative to

the matter, i.e. heat flux or other energy dissipation. This means that there is no

energy flux relative to the matter, and we have non-dissipative (ideal) elasticity.

Roughly, this lack of generality is due to the fact that our calculations are all tied

to specific particles on a matter space; we have not included any transfer of energy

between the particles. Our matter space ensures that all matter variables stay as-

sociated with specific particles, meaning that there is no interaction between the

particles, and physical quantities cannot move along at any other rate. To produce

a more general stress-energy tensor, we would need a way of modeling the flow of

variables relative to the matter; one example of this is the approach presented in

Andersson and Comer’s review from 2006 [58], where heat flow could be modeled

by taking the matter particles and entropy to be two separate fluids (so entropy

is a second fluid with its own associated matter space).

We call pab the pressure, or stress, tensor. We can now see that the Lagrangian

density, e, is the total energy density when our equations are solutions to the

Euler-Lagrange equations. This is precisely because of Eq. 3.75: we find that the

contraction

uaubTab = e, (3.77)

so we can see that e is the total energy density, measured in the frame comoving

with the material.

Note that

n2 =
1

3!
nabcnabc =

1

3!
gadgbegcfnabcndef . (3.78)

From its definition, nabc does not depend on gab, but only on ψAa, so we can write

the following derivative:
∂n

∂gab
=

1

2
nhab. (3.79)
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This is done by first finding the derivative

∂n2

∂gpq
=

1

2
gbegcfnpbcnqef , (3.80)

where we note that
∂gad

∂gpq
= δa(pδ

d
q), (3.81)

and multiplying by a factor of 3 comes from the fact that we can swap and rename

the indices, so that all of the terms from the derivative are the same. We can then

write
∂n2

∂gpq
=

1

2
gBEgCFnPBCnQEFψ

P
pψ

Q
q. (3.82)

Since

n2 =
1

3!
gADgBEgCFnABCnDEF , (3.83)

and gABgAB = 3, we can say that

1

2
gBEgCFnABCnDEF = n2gAD. (3.84)

(This also depends on the fact that the left-hand side is symmetric.) From here,

we can write
∂n2

∂gpq
= n2gPQψ

P
pψ

Q
q = n2hpq. (3.85)

Then we use the chain rule to find

∂n

∂gab
=

∂n

∂n2

∂n2

∂gab
=

1

2
nhab. (3.86)

Next we define

e =: n(1 + ε) (3.87)

so that we get

pab = 2n
∂ε

∂gab
, (3.88)

which can be written as

pab = nτABψ
A
aψ

B
b (3.89)

where we define

τAB := 2
∂ε

∂gAB
. (3.90)

We now restrict ourselves to considering isotropic matter. This is the special

case when the internal energy, ε, depends on ψAa, g
ab, s, and kAB only—for an
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anisotropic crystal structure, the internal energy would need to depend on other

tensors that provide additional information about preferred frames, etc.

We require that e and ε transform as scalars on both matter space and space-

time. To achieve this property in e and ε, we need them to be functions of only

double scalars (which are scalars on matter space and spacetime) that can be con-

structed from gAB and kAB. In order for e and ε to be scalars, they must depend

on scalars; if they depended on the components of the tensors, gAB and kAB, then

they would be gauge dependent. Therefore, we need to find these double scalars,

to see how our equation of state should be structured.

We know that gAB transforms as a (2,0)-tensor on matter space and a set of

scalars on spacetime. We now define

kAB := gACkBC = gacψAaψ
C
ckBC , (3.91)

which is a set of scalars on spacetime and a (1,1)-tensor on matter space. Its

eigenvalues are scalars on matter space. Since the components of kAB are scalars

on spacetime, a combination of them will also be a scalar. This means that they

are the required double scalars.

Next we split kAB into its determinant and the unit-determinant matrix:

ηAB := k−1/3kAB, (3.92)

where the determinant is related to the particle number density as follows:

k :=
1

3!
δABCδ

DEFkADk
B
Ek

C
F (3.93)

= δD [Aδ
E
Bδ

F
C]k

A
Dk

B
Ek

C
F (3.94)

= g[A|DkADg
|B|EkBEg

|C]FkCF (3.95)

=
1

3!
gADgBEgCFnABCnDEF = n2. (3.96)

From the third line to the fourth line, we use the fact that nABC is the volume

form for kAB. This can be seen as follows: the third line can be rewritten as

k = gADgBEgCFXABCDEF , (3.97)

where XABCDEF is some expression that is as of yet to be determined. We know

that, in order for this expression to be equal to Eq. 3.95, we must have

XABCDEF = X[ABC]DEF = k[A|Dk|B|Ek|C]F . (3.98)
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Since kAB is symmetric, we now have

XABCDEF = X[ABC][DEF ]. (3.99)

That means that we should be able to write the expression XABCDEF as follows:

XABCDEF = XξδABCδDEF , (3.100)

whereXξ is some constant factor, and δABC is the unit totally antisymmetric object

in the particular coordinates, ξA. If we plug in our known value for XABCDEF ,

contract with the upstairs unit totally antisymmetric object, δABC , and divide by

a factor of 3!, then we get

1

3!
δABCδDEFkADkBEkCF =

1

3!
Xξδ

ABCδABCδ
DEF δDEF , (3.101)

which becomes

kξ = 3!Xξ, (3.102)

and so

XABCDEF =
1

3!
nABCnDEF , (3.103)

which gets us to Eq. 3.96.

Now we can think of ε as a function of n, ηAB, and s. However, since ε should

only depend on scalars, it can only depend on scalar invariants of ηAB, so

ε(kAB, s) = ε(k, ηAB, s) = ε(n, I1, I2, s), (3.104)

where we choose

I1 := ηAA = k−1/3gABkAB, (3.105)

I2 := ηABη
B
A = k−2/3gABgCDkACkBD. (3.106)

We can write
∂k

∂gAB
= kgAB. (3.107)

(The derivation for this is similar to that of Eq. 3.79.) From this, we can then

derive the following derivative:

∂n

∂gAB
=

1

2
ngAB. (3.108)
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With these derivatives, we can write τAB as follows:

τAB =
p

n
gAB + 2fαπ

α
AB, (3.109)

where the index α tells which scalar invariant the variable indexed depends on, as

defined below. (α is replaced below by 1 and 2.) We use a summation convention

over the index, α, and we have the following definitions:

p := n2 ∂ε

∂n
, (3.110)

f1,2 :=
∂ε

∂I1,2
, (3.111)

π1
AB :=

∂I1

∂gAB
= ηAB −

1

3
gABI

1, (3.112)

π2
AB :=

∂I2

∂gAB
= 2(ηACη

C
B −

1

3
gABI

2). (3.113)

If we put this expression for τAB into our expression for pab, then we get

pab = phab + πab (3.114)

(recall from earlier that hab = ψAaψ
B
bgAB), where

πab = ψAaψ
B
bπAB (3.115)

and

πAB := 2nfαπ
α
AB. (3.116)

We can then see that πab is trace free (gabπab = 0) and spatial (πabu
a = 0). In the

fluid limit, when ε only depends on n and s, πab vanishes automatically, leaving

only pab = phab, as mentioned before. Since πab is trace free, we can also think of

p as being the trace of the pressure tensor:

p = gabpab. (3.117)

With temperature defined as follows:

T :=
∂ε

∂s
, (3.118)

the first law of thermodynamics becomes

dε = Tds− pd
(

1

n

)
+ f1dI

1 + f2dI
2. (3.119)
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This means that f1,2 are generalized forces associated with the variables I1,2 in the

thermodynamical sense.

Finally, the stress-energy tensor can be written as

T ab = euaub + pab = (e+ p)uaub + pgab + πab. (3.120)

3.3.2 Evolution equations

Non-relativistic fluids are governed by three conservation laws: conservation of

mass, momentum, and energy. In general relativity, things are more complex;

there is no local conservation of momentum or energy. Instead, we have the

following constraint on the stress-energy tensor:

∇aT
ab = 0. (3.121)

To get this in conservation-law form, we start by contracting with a basis covector

and expanding using the product rule to get

∇a

(
T abeb

)
= T ab∇(aeb). (3.122)

If we define the basis as follows:

ea =

{
na

(∂j)a
. (3.123)

where na is the unit normal to the time-constant hypersurfaces and (∂j)a are

tangent to these surfaces, then we can split the above expression as follows:

∇a

[
T ab(∂j)b

]
= T ab∇(a(∂j)b), (3.124)

∇a

(
−T abnb

)
= −T ab∇(anb). (3.125)

In the 3 + 1 split, this becomes the Valencia formulation [59]:

(
α
√
γxT

0
j

)
,t

+
(
α
√
γxT

i
j

)
,i

=
1

2
α
√
γxT

ab∂jgab, (3.126)

(
α2√γxT 00

)
,t

+
(
α2√γxT 0i

)
,i

= α2√γx
[
T a0∂a (lnα)− T abΓ0

ab

]
. (3.127)

In addition to these, we use a conservation law for particle number, which is

analogous to conservation of mass in the non-relativistic case:

∇a (nua) = 0. (3.128)
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With this, we can write the set as

(
√
γxU),t +

(
α
√
γxF i

)
,i

= S, (3.129)

where U = (D,Si, τ) represents the conserved variables which are defined as fol-

lows:

D = αnu0 (3.130)

Si = αT 0
i (3.131)

τ = α2T 00 −D. (3.132)

The corresponding fluxes are given by

F(D)i = nui (3.133)

F(Sj)
i = T ij (3.134)

F(τ)i = αT 0i −F(D). (3.135)

The source terms are

S (D) = 0, (3.136)

S (Sj) =
1

2
α
√
γxT

ab∂jgab, (3.137)

S (τ) = α2√γx
[
T a0∂a (lnα)− T abΓ0

ab

]
. (3.138)

A perfect fluid is an idealized fluid that experiences no viscosity, shear stress, or

heat conduction. For relativistic perfect fluids, the stress-energy tensor is

T ab = (e+ p)uaub + pgab, (3.139)

where e is the energy density, and p is the pressure. In an orthonormal frame co-

moving with the fluid, T 00 = e, T ii = p, and T ab = 0 when a 6= b; this corresponds

to a fluid with energy density, e, pressure, p, zero viscosity (T ij = 0 for i 6= j), and

zero heat flux (T 0i = 0). The T 0i components are usually interpreted as represent-

ing the flow of energy through the xi surfaces. Since mass and internal energy will

flow with the fluid, we expect these contributions to be 0 in a comoving frame;

the only contribution that would be non-zero would be that of heat. However, in

a perfect fluid, we expect no heat conduction, and therefore, this term is also zero.

From this, the corresponding values of D, Si, and τ , along with their fluxes, can

be calculated.
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The structure of the stress-energy tensor for a perfect fluid reflects the fact

that there is no shear stress in this situation. For example, think of a perfect fluid

that is divided into two regions, say corresponding to positive and negative x in

a three-dimensional Cartesian grid. Now imagine that the negative-x region has

a velocity in the positive-y direction, and the positive-x region has a velocity in

the negative-y direction: both velocities are parallel to the interface between the

two regions. In a perfect fluid, this does not induce any stresses at the interface;

however, in an elastic material, this motion would induce stresses, and waves would

propagate through the material in directions other than the original direction of

motion. Because of the shear stresses present in elasticity, the T ij components of

the stress-energy tensor in the comoving frame, will need to be non-zero. This is

achieved by using

T ab = (e+ p)uaub + pgab + πab, (3.140)

as derived in the previous section. The only difference from the perfect-fluid form

is the addition of the anisotropic stress term, πab. This term is trace free (gabπab

= 0) and spatial (uaπab = 0). The additional term means that, other than the fact

that we still have no heat flux, this form of the stress-energy tensor is completely

general. Our expressions for D, Si, and τ include both a term analogous to those

found in relativistic hydrodynamics and a term derived from the anisotropic stress:

D = nW, (3.141)

Si = nhW 2vi + πijv
j, (3.142)

τ = n(hW 2 −W )− (p− π), (3.143)

where we have defined the standard specific enthalpy

h := 1 + ε+
p

n
. (3.144)

The fluxes become

F(D)i = nα−1Wv̂i, (3.145)

F(Sj)
i = nhW 2α−1v̂ivj + pδij + πij, (3.146)

F(τ)i = n(hW 2 −W )α−1v̂i

+ (p− π)α−1βi + γijπjkv
k. (3.147)

In the Newtonian limit, where vi/c � 1, p/c2 � 1, and ε/c2 � 1, these equa-

tions become the standard Euler equations for conservation of mass, momentum,
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and internal energy. For more on the Newtonian limit of these equations, see

Appendix B.2.

3.3.3 Special source terms

One particularly useful case where the source terms are non-zero is the case where

we have a Newtonian gravitational potential. In this case, the metric becomes

ds2 = −(1 + 2φ)dt2 + (1− 2φ)dxidxjγij. (3.148)

From this, we can derive source terms for this potential as follows, assuming that

γij is Cartesian:

S (Sj) = −α√γx∂jφ[T tt + T xx + T yy + T zz], (3.149)

S (τ) = −√γxT ti∂iφ. (3.150)

In the Newtonian limit, where T tt ≈ ρ, T tt � T ij, and T ti ≈ ρvi, and in Cartesian

coordinates, where α =
√
γx = 1, these source terms become

S (Sj) = −ρ∂jφ, (3.151)

S (τ) = −ρvi∂iφ. (3.152)

This is what we expect; the source term for the momentum should be the force on

the material, which is the gradient of the potential, and the source term for the

energy should be the work done as we move through the potential.

As a test that the code and formulation can handle a general background

metric, we will also consider the case of cylindrical coordinates. In this case, the

metric is as follows:

ds2 = −dt2 + dr2 + r2dφ+ dz2. (3.153)

This means that all of the Christoffel symbols are zero aside from the following:

Γrφφ = −r (3.154)

and

Γφrφ = Γφφr =
1

r
. (3.155)

The source term for τ is 0, because all of the Christoffel symbols, Γ0
ab, are 0,

and because α is constant in these coordinates. We also see that the φ and z

components of the source term for Sj are 0; the only non-zero component is the r
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component:

S (Sr) = r2T φφ. (3.156)

Since the stress energy tensor for an elastic material is

T ab = ρhuaub + pgab + πab, (3.157)

in this case, the φφ component becomes

T φφ = ρhv̂φv̂φ +
p

r2
+

1

r4
πφφ, (3.158)

and the source term is

S (Sr) = ρhv̂φv̂φr2 + p+
πφφ
r2
. (3.159)

We also must be sure to use the general form of the evolution equations. In

cylindrical coordinates,
√
γx = r, instead of 1, so our evolution equations look like

(rU),t +
(
rF i
)
,i

= S. (3.160)

3.4 Hyperbolicity

To numerically evolve an initial value problem for a system of partial differential

equations (PDE’s), we first need to ensure that the system is well-posed ; in other

words, the solutions evolved in time should be bounded so that small errors in

the initial data do not cause significantly different behavior later in the evolution.

Hyperbolicity is a property of the system of equations that implies well-posedness,

so we would like to show this property for the elasticity formulation to show that

these evolution equations will be suitable for this type of numerical simulation.

A discussion of well-posedness and its relationship with hyperbolicity, as well as

a definition for when a system of equations is hyperbolic are given in Appendix A.

The relevant points to the following discussion are summarized here.

To show hyperbolicity in general relativity, using differential geometry nota-

tion, we must rewrite our system of equations so that it is in the following form:

Pαβ
cωβ,c + l.o. = 0, (3.161)

where “l.o.” refers to lower order terms, the indices α label the equations, and the

indices β label the variables. Here, Pαβ
c is called the principle symbol. If α and

β are indices of the same type, and Pαβ
c is symmetric in α and β, then we can
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construct the following energy norm:

E(ω, ω) := tcPαβ
cωαωβ, (3.162)

where, in relativity, tc is a time-like covector. If there exists some tc for which

E is positive definite, then the system of equations is symmetric hyperbolic. For

this reason, the goal of the following sections will be to rewrite the elasticity

formulation in the form of Eq. 3.161, show that the principle symbol is symmetric,

and then derive an expression for the energy norm, E, to determine the conditions

on its positive definiteness.

3.4.1 Second order system

We need to show that the kinematic equations (evolution equations for ψAi) and

the dynamic equations (equations from ∇aT
ab = 0) with constraints, form a sym-

metric hyperbolic system of evolution equations, regardless of whether or not the

constraints are actually obeyed. We also will show that without the constraints,

the system is strongly hyperbolic, but not symmetric hyperbolic. Background on

hyperbolicity, as well as its treatment in differential geometry notation, is given

in Appendix A.

We will start by deriving the second order equations. This is because the first

order equations for ψAa are the second order equations for χA, so all we need

to do to go from one to the other is replace χA,ab with ψAa,b; we can also add

multiples of ψA[a,b] to the right-hand side (since we know that ψa[a,b] = 0). This

means that we have an infinite number of first-order systems that are equivalent

to our second-order system; these are parameterized by the factor multiplied by

our constraint, ψA[a,b]. We now must select one that is symmetric hyperbolic.

We start by thinking of χA and gab as the independent variables, and ψAa =

χA,a as a derived object. The matter space metric, kAB, and the entropy, s, are

not varied. With all of these considerations in mind, the action becomes

S :=

∫
e(gab, χA, χA,a, kAB, ..., s)

√
gxd

4x; (3.163)

again, the dots stand for any other matter-space tensors. With integration by

parts, and neglecting boundary terms, we get

δS =

∫ (
1

2
Tabδg

ab + EAδχA
)√

gxd
4x, (3.164)
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where the first term is the same definition we had in Section 3.3, and in the second

term is

EA :=
∂e

∂χA
− 1√

gx

(√
gx

∂e

∂ (χA,a)

)

,a

. (3.165)

We can derive the second term as follows. We find

δ (
√
gxe) = eδ (

√
gx) +

√
gxδ (e) (3.166)

=
1

2

√
gxTabδg

ab +
√
gx

[
∂e

∂χA
δχA +

∂e

∂ (χA,a)
δ
(
χA,a

)]
, (3.167)

where the first term comes about as before. We can look more closely at the last

term:

∂e

∂ (χA,a)
δ
(
χA,a

)
=

∂e

∂ (χA,a)
δ
(
∇aχ

A
)

(3.168)

= ∇a

[
∂e

∂ (χA,a)
δχA

]
−∇a

[
∂e

∂ (χA,a)

]
δχA (3.169)

= b.t.− 1√
gx

(√
gx

∂e

∂ (χA,a)

)

,a

δχA, (3.170)

where b.t. stands for a boundary term (which we neglect here). Because χA is a

scalar on spacetime, we can say that χA,a = ∇aχ
A on the first line. Then we swap

the order of the derivatives, and use the product rule to get to the second line. In

the second line, the first term is of the form ∇av
a, where va is some vector; this

means that this term is a boundary term. We can then rewrite the second term

in terms of partial derivatives.

The variations are then generated by an infinitesimal change in coordinates:

xa → xa + ζa, (3.171)

and so they take the form

δχA = LζχA = ζcψAc (3.172)

and

δgab = Lζgab = 2∇(aζb). (3.173)

Our action must be invariant under such changes, so we plug in these values and

get

δS =

∫ (
1

2
Tab2∇(aζb) + EAζcψAc

)√
gxd

4x. (3.174)
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We can write

Tab∇aζb = ∇a(Tabζ
b)− ζb∇aTab, (3.175)

using the product rule. Since the first term is a boundary term, we can see that,

in order for δS to be 0, we must have

∇bTab = ψAaEA. (3.176)

This means that we have linked stress-energy conservation to our second order

system, EA, which represents the elastic matter field equations; stress-energy con-

servation will only be achieved if ψAaEA = 0 is satisfied. It is not immediately

obvious how this can be true, because EA = 0 only has 3 independent components,

while ∇aTab = 0 appears to have 4. However, it is possible to show that one

component of the latter, namely ua∇bTab = 0, is equivalent to

− nε̇+
p

n
ṅ− πab∇bua = 0, (3.177)

where, for example, ṅ = ua∇an. However, this equation is just the first law of

thermodynamics, which should automatically be satisfied by any thermodynam-

ically consistent equation of state. With an equation of state, the number of

independent components for stress-energy conservation reduce to 3, which is the

same as for EA = 0.

The matter equations can be written in second order form as follows:

EA = Mab
ABχ

B
,ba −GA = 0, (3.178)

where GA represents all lower-order terms, and

Mab
AB :=

∂2e

∂ψAa∂ψBb
. (3.179)

This can be seen from the definition of EA and the fact that

(
∂e

∂ (χA,a)

)

,a

=
∂2e

∂ψAa∂ψBb

∂ψBb
∂xa

=
∂2e

∂ψAa∂ψBb
χB,ba, (3.180)

and all of the other terms from the definition of EA are comprised of lower-order

derivatives.

We call Mab
AB the principal symbol, and note that, while it is not symmetric

in ab alone, it is symmetric in the sense that Mab
AB = M ba

BA. Although the prin-

cipal symbol is not symmetric in ab, the antisymmetric part does not contribute
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to EA, because these indices are contracted with the symmetric object χA,ba.

Next, we would like to write the principal symbol explicitly in terms of quan-

tities involved in the equation of state and information about the shear. We start

by noting, again, that e(ψAa, g
ab) = e(gAB); we use this and the chain rule for

partial derivatives to write

Mab
AB =

∂2gCD

∂ψAa∂ψBb

∂e

∂gCD
+
∂gCD

∂ψBb

∂gEF

∂ψAa

∂2e

∂gEF∂gCD
. (3.181)

Then with the derivatives

∂gCD

∂ψAa
= 2δ(D

Aψ
C)
cg
ca, (3.182)

∂2gCD

∂ψBb∂ψBb
= 2δ(D

Aδ
C)
Bg

ab, (3.183)

we can write

Mab
AB = 4

∂2e

∂gAC∂gBD
ψCaψDb + 2

∂e

∂gAB
gab, (3.184)

where

ψAa := ψAbg
ab. (3.185)

We now recall that hab = ψAaψ
B
bgAB. We can split Mab

AB into parts parallel

and normal to the 4-velocity by replacing gab = −uaub + ψAaψBbgAB to get the

following:

Mab
AB = −µABuaub + UACBDψ

CaψDb, (3.186)

where we have the following definitions:

µAB := 2
∂e

∂gAB
, (3.187)

UACBD := 4
∂2e

∂gAC∂gBD
+ 2

∂e

∂gAB
gCD. (3.188)

From this, we notice that there are no cross terms; in other words, uahbcM
ab
AB = 0.

Next we can evaluate our expressions for µAB and UACBD further. The first

becomes

µAB = nτAB + egAB, (3.189)

via the chain rule, where τAB was defined earlier. We can also write

UACBD = n[gACτBD + gBDτAC + τABgCD + τACBD] + 2egA[CgD]B, (3.190)
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where

τABCD := 4
∂2ε

∂gAB∂gCD
. (3.191)

The above expression for UACBD is derived using the chain rule for partial deriva-

tives, and we recall that
∂gBD
∂gAC

= −gB(AgC)D. (3.192)

Next we use the chain rule to write the objects τAB and τABCD as a sum of

terms. We already have

τAB =
p

n
gAB + 2fαπ

α
AB. (3.193)

Now we can also write

τABCD =− 2
p

n
gA(CgD)B +

(
c2
s −

p

n

)
gABgCD + 2n (gABfnαπ

α
CD + gCDfnαπ

α
AB)

+ 4fαβπ
α
ABπ

β
CD + 4fαπ

α
ABCD, (3.194)

where we have introduced the objects

c2
s :=

∂p

∂n
(3.195)

fnα :=
∂2ε

∂n∂Iα
(3.196)

fαβ :=
∂2ε

∂Iα∂Iβ
(3.197)

π1
ABCD :=

∂2I1

∂gAB∂gCD

=

(
1

3
gA(CgD)B +

1

9
gABgCD

)
I1 − 1

3
(ηABgCD + ηCDgAB) (3.198)

π2
ABCD :=

∂2I2

∂gAB∂gCD

=

(
2

3
gA(CgD)B +

4

9
gABgCD

)
I2 − 4

3

(
ηAEη

E
BgCD + ηCEη

E
DgAB

)

+ 2ηA(CηD)B. (3.199)

3.4.2 Unsheared state

To get a better sense of the meaning of these equations, we look at the structure

of these equations in the unsheared state. We will denote this state by a circle. In

the unsheared state, we have

k̊AB = n2/3gAB. (3.200)
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From this, we get the following

I̊α = 3 (3.201)

π̊αAB = 0 (3.202)

π̊1
ABCD = gA(CgD)B −

1

3
gABgCD (3.203)

π̊2
ABCD = 4π̊1

ABCD. (3.204)

From this, we can write

nτ̊AB = pgAB (3.205)

nτ̊ABCD = 2rgA(CgD)B + qgABgCD, (3.206)

where

r := −p+ 2n(f1 + 4f2), (3.207)

q := nc2
s − p−

4

3
n(f1 + 4f2). (3.208)

Note that only the linear combination (f1 +4f2) appears in these expressions. This

is discussed further in Section 3.4.5. Finally we can write

µ̊AB = (p+ e)gAB, (3.209)

ŮACBD = (2p+ q + e)gACgBD + (p+ r)gABgCD + (r − e)gADgBC . (3.210)

3.4.3 First order system

We now reduce the second order system to the first order system. This reduction

must have the form

ĒA := M̄ab
ABψ

B
b,a −GA = 0. (3.211)

with

M̄ab
AB := Mab

AB +Dab
AB, (3.212)

whereDab
AB = D[ab]

AB, which is the constraint addition. This form means that the

first order system is made up of the symmetric part, which is the same as the second

order system, with the addition of an antisymmetric part, which corresponds to

the necessary constraint addition.

We also need ∇bT
ab = 0 to give us the dynamical part of the equations; how-

ever, we need the full system to be hyperbolic, so we may also need constraints

for these terms. To formalize this constraint addition, we define the system of
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equations to be

Ēa := ∇bT
ab + Λ̄ACBDψ

AaψCcψDbψB [b,c] = 0, (3.213)

where Λ̄ACBD = −Λ̄ADBC . This parameterizes a family of constraint additions.

We now need to write ∇bT
ab = 0 in terms of ψAa, starting with the expression

T ab = 2
∂e

∂gAB
ψAaψBb − egab. (3.214)

Now we expand this, and keep only the principal part, consisting of terms of the

form ψBb,c. To do this, we plug the above expression for T ab into ∇bT
ab = 0. We

recall that

∇aψ
Aa = ψAa,a + l.o., (3.215)

where “l.o.” represents all lower order terms. We can then see that, using the

chain rule and expanding using the product rule,

∂gCD

∂xb
= 2ψ(C

d,bψ
D)d + l.o.. (3.216)

After rearranging terms, we get

∇bT
ab =

(
ψAaM cb

AB − 4
∂e

∂gAB
ψA[bgc]a

)
ψBb,c + l.o.. (3.217)

Next, we substitute in gab = −uaub + ψAaψBbgAB, recalling that µAB := 2 ∂e
∂gAB ,

our definition for Ēa, and the symmetries in Λ̄ACBD, and we get

Ēa =
(
ψAaM̄ cb

AB + 2uaµABψ
A[buc]

)
ψBb,c + l.o., (3.218)

where our definition of M̄ab
AB becomes

M̄ab
AB := Mab

AB +
(
Λ̄ACBD − 2gA[CµD]B

)
ψCaψDb. (3.219)

Then this modification of Mab
AB can be written as a modification of UACBD:

ŪACBD := UACBD + Λ̄ACBD − 2gA[CµD]B, (3.220)

so that we have

M̄ab
AB = −µABuaub + ŪACBDψ

CaψDb. (3.221)
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We then split Ēa into the parts parallel and normal to the 4-velocity as follows:

uaĒ
a = −2µABψ

AbucψB [b,c] (3.222)

and

ψAaĒ
a = gADM̄ cb

DBψ
B
b,c −GA, (3.223)

where GA are lower order terms. However, if µAB is invertible, then uaĒ
a =

0 is equivalent to the kinematic evolution equations with the hyperbolicity fix

(Eq. 3.19), because we can write

ucψB [b,c] = 0, (3.224)

which is equivalent to Eq. 3.18 in Section 3.2.1.

Showing symmetric hyperbolicity for the first-order system For sym-

metric hyperbolicity, the principal symbol must be symmetric, and, roughly, the

time component must be positive definite. (More precisely, there must exist a

time-like covector, such that the norm constructed from this is positive definite.)

We start by showing the first condition, and then move on to the second.

Neither of the principal symbols used so far have the correct index structure,

which should be of the form, pαβ
c, where the composite index is defined by ωα :=

ψAa, and will be represented by Greek indices. We need to obtain a symbol of this

index structure, because this is the form in which the definition of hyperbolicity

is written, so to show hyperbolicity, we must write the equations in this way. To

achieve our goal of symmetry, we start by defining the symbol

W ab
AB

c := uaM̄ cb
AB − 2u[cM̄ b]a

BA. (3.225)

We then consider a system of first order equations:

EaA := W ab
AB

cψBb,c −GAu
a = 0 (3.226)

and

AA := −ucgABχB,c = 0, (3.227)

where χA and ψAa are now considered to be independent variables, and ua is

derived from them via ja, which comes from the volume forms on matter space

and spacetime. Now we show that each solution, χA, to the second order system

above generates a solution, ψAa = χA,a, to the first order system. Beig and
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Schmidt have also proven the converse of this: a solution, ψAi, to the first order

system, obeying ψA[i,j] = 0, gives rise to a second order solution, χA [30].

In summary, we started with a second order system, EA. Then, from this we

constructed the general form of the first order system, ĒA. Once we had this,

we made a particular choice of constraint addition which gave us the specific

first order system, ψAaĒ
a, which is of the form, ĒA. Now we have constructed

another, modified first order system, EaA, in order to have the necessary form of

the principle symbol to show when and if the system is hyperbolic. We must now

show that solutions to this new first order system (EaA) are also solutions to our

chosen first order system (ψAaĒ
a), and that they therefore generate solutions to

the second order system, EA.

Equivalence of solutions to (EaA,AA) and (Ea) We see that our symbol,

W ab
AB

c, is symmetric in terms of the composite indices:

W ab
AB

c = W ba
BA

c, (3.228)

if and only if M̄ab
AB has the same sort of symmetry:

M̄ab
AB = M̄ ba

BA. (3.229)

To ensure that this is the case, we set

Λ̄ACBD = ΛACBD + 2gA[CµD]B, (3.230)

where ΛACBD = ΛBDAC = −ΛADBC , and which we will determine later, when we

look at positivity. We can see that this object produces the right symmetries in

M̄ab
AB as long as ΛACBDψ

CaψDb has the right symmetries. We can see that it

does as follows:

ΛADBCψ
CaψDb = ΛBCADψ

DbψCa (3.231)

= ΛBDACψ
CbψDa, (3.232)

where we first use the symmetries mentioned above, and then relabel the con-

tracted indices C and D.

We now must verify that this is equivalent to our evolution equations. We

know that

uaM̄
ab
AB = uaM

ab
AB = ubµAB. (3.233)
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This means that

uaW
ab
AB

c = −M̄ cb
AB. (3.234)

Also, we have

ψCaW
ab
AB

c = −2ψD[buc]ŪACBD. (3.235)

If ŪACBD is invertible as a matrix in the compound indices AC and BD, then

we get the final decomposition

uaEaA = 0⇒ M̄ cb
ABψ

B
b,c = GA (3.236)

ψEaEaA = 0⇒ ubψA[a,b] = 0 (3.237)

AA = 0⇒ uaχC,a = 0. (3.238)

The second line comes from the fact that we can write

ψEaEaA = −2ψDbucŪAEBDψ
B

[b,c]; (3.239)

if ŪAEBD is non-singular, then we can write this simply as ucψB [b,c] = 0. It can

then be seen that the first two lines are equivalent to Eq. 3.222 and Eq. 3.223.

It turns out that the third line is equivalent to the advection equation for the

matter-space metric, uakAB,a = 0, as we have the following equality:

uakAB,a = kAB,Cu
aχC,a, (3.240)

because of the chain rule. We have now shown that solutions to our chosen system,

EaA and AA, will be the same as the solutions to the advection equation for kAB,

and the first order system with constraint addition, Ea.

Positive definiteness of the energy norm for the first-order system In

order to show positive definiteness, we show the existence of a time-like covector,

ta, that makes the following quadratic form (the energy norm), positive definite:

E := tc(W
ab
AB

cmA
am

B
b − ucgABlAlB). (3.241)

This energy norm is constructed as in Eq. 3.162. The first term comes from EaA
(Eq. 3.226), and the second comes from AA (Eq. 3.227), where mA

a and lA are the

characteristic variables, which can be thought of as either perturbations of ψAa

and χA about the background, or general versions of the variables ψAa and χA

themselves. For the first order system, the norms of both mB
b and lA must be

bounded for the system (EaA and AA) to be well-posed, so both are included in
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the constructed energy norm. We decompose using

mA
a =: αAua + αACψCa, (3.242)

and choosing ta = ua, to get

E = µABα
AαB + ŪACBDα

ACαBD + gABl
AlB. (3.243)

This means that ua is a subcharacteristic vector (meaning it produces positive

definiteness of E) as long as µAB and ŪACBD are positive definite (which means

that they are also invertible). For simplicity, we examine only the unsheared state.

We know that µAB is positive definite in the unsheared state if (p+ e) > 0, so we

just need to examine the positive definiteness of the term containing ŪACBD, or

its value in the unsheared state, ˚̄UACBD.

We choose

ΛACBD = 2(d− e− p)gA[CgD]B (3.244)

or

Λ̄ACBD = 2(d− e− p)gA[CgD]B + 2gA[CµD]B

= 2(d− e− p)gA[CgD]B + 2gA[CδD]
E [pgEB + 2nfαπ

α
EB + egEB]

= 4nfαgA[Cπ
α
D]B + 2dgA[CgD]B. (3.245)

To find the value of the total constraint addition, we will need to determine the

value of d.

Next we look again at the unsheared state, and use the decomposition,

αAB = ωAB + κAB +
κ

3
gAB, (3.246)

where ωAB is antisymmetric, κAB is symmetric and trace free, and gAB is the

spacetime metric on matter space as defined before. We first note that

˚̄UACBD =(2p+ q + e)gACgBD + (p+ r)gABgCD

+ (r − e)gADgBC + 2(d− p− e)gA[CgD]B. (3.247)

From this we get

˚̄UACBDα
ACαBD =

(
nc2

s +
2d

n

)
κ2 + dωABωAB + [4n(f1 + 4f2)− d]κABκAB.

(3.248)
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In order for our energy norm, E, to be positive definite, this expression must be

positive definite. This will be the case as long as 0 < d < 4n(f1 + 4f2). Since

d > 0, adding constraints to ∇bT
ab = 0 is necessary for symmetric hyperbolicity.

For example, we could choose d = 2n(f1 + 4f2), and then the constraint addition

becomes

Ēa = ∇bT
ab + hacψDb[4nfαπ

α
DB + 4n(f1 + 4f2)gDB]ψB [b,c], (3.249)

where the first term of the constraint addition makes the principal part of the

second order system symmetric, and the second term makes it positive definite.

This can be seen, because the first term comes from the second term in Λ̄ACBD,

2gA[CµD]B, which we need to include in order to make M̄ab
AB = M̄ ba

BA, which is

necessary for the symmetry of W ab
AB

c in its compound indices. The second term

includes d, which we know needs to be non-zero for the term including ˚̄UACBD to

be positive definite.

3.4.4 Characteristics of the first-order system

To get a better sense of the wave structure of solutions to this system, and to

evaluate whether this approaches the expected Newtonian limit, we now examine

the characteristics of the elasticity formulation.

The variable, ka, is a characteristic covector of the first order system of equa-

tions with characteristic variable, ωβ = mB
b, if

W ab
AB

cmB
bkc = 0. (3.250)

(Compare this to kcPαβ
cωα = 0 from Appendix A.6. When kc is decomposed into

a time-like part and a spatial part—i.e. Eq. A.146—it is clear that this becomes

the usual equation defining an eigenvector.) We now use the decomposition of

mB
b as before, fix the irrelevant overall factor, and parameterize ka = λua − ea,

where ea = ψAaeA is a unit covector on spacetime, normal to ua and eA is the

corresponding unit covector on matter space. Then λ is the physical velocity of

the mode relative to the matter. If we use a decomposition where uaW
ab
AB

c =

−M̄ cb
AB and ψCaW

ab
AB

c = −2ψD[buc]ŪACBD (Eq. 3.234 and Eq. 3.235), then we

can convert the characteristic variable equation into the pair,

ŪACBD(αBeD + λαBD) = 0, (3.251)

λµABα
B + ŪACBDe

CαBD = 0. (3.252)
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Symmetric hyperbolicity implies that ŪACBD is invertible, so the first of these

equations becomes

αBeD + λαBD = 0. (3.253)

Then this has two classes of solutions. The first class consists of solutions where

λ = 0 and αB = 0, which gives

ŪACBDe
CαBD = 0, (3.254)

from Eq. 3.252. The fact that λ = 0 means that the modes are stationary with

respect to the material. Eq. 3.254 consists of 3 equations for 9 unknowns (the

components of αBD), so we have 6 degrees of freedom, which result in 6 modes for

the solutions. We can then parameterize these solutions as follows:

αBD = (Ū−1)ACBDvAwC , (3.255)

where wCe
C = 0, and wC and vC are otherwise arbitrary covectors on matter space

that parameterize our six degrees of freedom. (wCe
C = 0 ensures that the object,

vAwC = ŪACBDα
BD, is normal to eC , so that our original equation is satisfied.)

The second class of solutions occurs where λ 6= 0, and

αBD = −λ−1αBeD, (3.256)

or equivalently,

mB
b = λ−1αBkb. (3.257)

Since αA is a characteristic variable of the system, we can write it as a plane wave,

αA = ᾱAeikcu
c

, (3.258)

where ᾱA is the amplitude, and then the gradient of this is

αA,a = ᾱAikae
ikcuc = ikaα

A (3.259)

From this, we see that we can interpret mB
b as the gradient of the plane wave,

λ−1αB, with wave vector, kb; this means that it is a possible perturbation of ψBb

(since ψBb is a gradient itself, it should have perturbations of this form), which

means that the modes are physical, and obey the constraints. The previously

considered modes are not generally gradients, and therefore, cannot be guaranteed

to be allowed perturbations of ψAi; this means that they are not physical, and all

the physical modes are of the form of Eq. 3.257.
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Next, we substitute our equation for αBD from the second class of solutions

into the second equation of the decomposition (Eq. 3.252). This gives

(−λ2µAB + ŪACBDe
CeD)αB = 0, (3.260)

or

(−λ2µAB + UACBDe
CeD)αB = 0, (3.261)

because the constraint addition drops out, because we know that ΛACBD = ΛBDAC =

−ΛADBC , so

ΛACBDe
CeD = −ΛADBCe

CeD = −ΛACBDe
DeC , (3.262)

where in the last step we have relabeled indices. From this, we see that this term

must be 0. We can write this as

∆ABα
B = 0, (3.263)

where

∆AB := Mab
ABkakb. (3.264)

However, this is precisely the condition for ka to be a characteristic covector of

the second order system with the characteristic variable αA, so the modes of the

first order system correspond 1-1 to the modes of the second order system. Hence,

there will be 6 modes that consist of 3 pairs with speeds, ±λ.

3.4.5 Characteristics of the second-order system in the un-

sheared state

We now look at finding the characteristics of the second order system. We start

by looking at the preceding solutions in more detailed. To illuminate these solu-

tions, we examine them in the unsheared state. We can write the unsheared-state

solutions as

∆̊AB = (−Aλ2 +B)gAB + CeAeB, (3.265)

where

A = e+ p, (3.266)

B = p+ r, (3.267)

C = 2p+ r + q. (3.268)
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We can now read off the characteristic covectors and variables by inspection. Dis-

turbances to the solutions travel along na + λea (if the characteristic direction is

parameterized as ka = λna + ea); in other words, they travel in the direction of

ea with speed λ as measured by an observer in the na reference frame. (We have

chosen na = ua.) This means that transversal waves, which have perturbations in

directions normal to the direction of propagation of the wave, have eigenvectors

obeying αBeB = 0, so ∆̊ABα
B = 0 implies

λ2 =
B

A
=

2f1 + 8f2

1 + ε+ p/n
=: λ2

T . (3.269)

The longitudinal waves produce disturbances in the direction of propagation of

the wave, and therefore have eigenvalues such that the characteristic variable, αB

is proportional to eB, so ∆̊ABα
B = 0 gives

λ2 =
B + C

A
=

c2
s

1 + ε+ p/n
+

4

3
λ2
T =: λ2

L. (3.270)

The relationship between the shear modulus and the speed of transversal waves

(or shear speed) in a material is

µ = nλ2
T . (3.271)

From this, it is clear that, in the Newtonian limit, the shear modulus becomes

µ = 2n(f1 + 4f2). (3.272)

We can see above that we only get one set of transverse wave speeds where we

would ordinarily expect to get two sets, corresponding to two left-traveling and two

right-traveling transverse waves (one for each independent transverse direction).

This degeneracy arises from assumed isotropy in the crystal; in the unsheared

state, there is no way to distinguish between the two transverse directions, and

therefore, these two waves should propagate at the same velocity. This is related

to the fact that the two generalized forces, f1 and f2, only appear as the linear

combination (f1 + 4f2) in the expressions describing the unsheared state. In the

Newtonian limit, this linear combination is proportional to the shear modulus. In

the regime of linear perturbations around the unsheared state, we can only measure

the value of this linear combination (the shear modulus); it is impossible to isolate

the values of f1 and f2. This corresponds to the regime where linear (or Hookean)

elasticity holds, and stress is proportional to strain. For larger perturbations away

from the unsheared state, where we expect larger anisotropy in the stress, we see
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the non-linear effects of hyperelasticity, and the two transverse waves separate into

four. Observing systems in the hyperelastic regime enables us to measure f1 and

f2 independently.

Likewise, the longitudinal wave speed should be related to the bulk modulus

by

K = nλ2
L, (3.273)

and in the Newtonian limit, the longitudinal wave speed reduces to the sound

speed:

K = nc2
s. (3.274)

These are in units where c = 1, and n represents the rest-mass density.

3.4.6 Characteristics of the second-order system in general

If we keep the same decomposition of our characteristic direction covector, ka =

λua − ea, then we can write ∆AB in the following form:

∆(λ) = λ2∆2 + ∆0, (3.275)

where the indices have been left out for clarity. This is the form of Eq. 3.260.

However, solving this by computer algebra does not give an illuminating result. For

numerical algorithms in the code, it will be useful to have the characteristic speeds

in the coordinate frame (λ = dxi/dt), so we parameterize ka = λ(dt)a − (dxi)a.

(Note: this is a different λ from that in the previous decomposition.) Then our

characteristic equation (eliminating the indices) has the form

∆α = (λ2∆2 + λ∆1 + ∆0)α = 0, (3.276)

where λ is no longer related to the speed relative to the matter in a simple way,

because of the Lorentz factor in relativistic velocity addition. We solve this system

numerically by using a linear algebra package to find the eigenvalues of

(
−(∆2)−1∆1 −(∆2)−1∆0

I 0

)
. (3.277)

The above is implemented in the ElasticEvolution code, and can be used to set

the maximum characteristic speeds for the HLL flux as well as the dynamic time

step calculations. However, in practice, this process is slow; any advantages gained

by having more accurate characteristic speeds are outweighed by the additional

time taken to solve this system at every grid point and time-step. Instead, in the
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ElasticEvolution code, we use an input parameter to set an overall maximum

value for the maximum characteristic speed. In the MultiModel code, we estimate

λmax by calculating the maximum characteristic speed in the unsheared state and

then multiplying by some fudge factor (an input parameter).

Typically, this fudge factor is set to ∼ 2, but for most tests, the results are not

very sensitive to the choice of this parameter. The maximum characteristic speed

is used in the MultiModel code to both dynamically calculate the time step size

and to calculate the HLL flux. The time step size calculation sets the lower limit on

this fudge factor: the maximum characteristic speed should not be underestimated

such that the CFL condition is violated, causing numerical instabilities. In the

HLL flux, the λmax term acts like a dissipative term with a coefficient λmax∆x (∆x

is the grid spacing), so setting the fudge factor too large can cause unnecessary

smearing of sharp features in the solution, and possible overdamping instabilities.

Fine tuning of this parameter is typically achieved by trial and error.

3.4.7 Hyperbolicity without constraint addition

In the Newtonian literature, the evolution equations for ψAi use the constraint

addition, but the constraint addition for ∇bT
ab = 0 is not included. Generally,

we see that this system will not be symmetric hyperbolic: without the constraint

addition, in the unsheared state, ˚̄UACBD becomes

˚̄UACBD = (p+ q)gACgBD + (p+ r)gABgCD + (p+ r)gADgBD, (3.278)

and while p + r = 2n(f1 + 4f2) is positive definite, p + q = nc2
s − 4

3
n(f1 + 4f2)

is not. We also see that, in general, ŪACBD will no longer be symmetric, since it

becomes

ŪACBD = UACBD − 2gA[CµD]B, (3.279)

and the second term here is not symmetric in AC ↔ BD.

It is clear that the constraint addition is necessary in order for the system to be

symmetric hyperbolic. However, we would like to see whether the system may still

be strongly hyperbolic without the constraint addition to ∇aT
ab = 0. For strong

hyperbolicity, we require that the system admits a complete set of characteristic

variables; we now examine our previous calculation to see how it changes if we do

not assume symmetry of the object, ŪACBD.

We first see that, in finding the characteristic variables, we can no longer go

from ŪACBD(αBeD + λαBD) = 0 to αBeD + λαBD = 0 (Eq. 3.251 to Eq. 3.253),

because ŪACBD will no longer generally be invertible. However, all solutions to the
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latter equation will be solutions to the former equation. If ŪACBD is not invertible,

then we will simply find more solutions to ŪACBDe
CαBD = 0 (Eq. 3.254). We will

still find the same six unphysical modes that we found before, although we may

find extra modes, and we will not generally be able to parameterize them as in

Eq. 3.255.

Our three physical modes are unaffected by the constraint addition, because

we find them using (−λ2µAB +UACBDe
CeD)αB = 0 (Eq. 3.261). Physically, this is

what we should expect; the constraint addition should make no physical difference

to the system, and therefore should not affect the physical modes of the solutions.

We still find the same three physical modes that we found with the constraint

addition.

In summary, we see that without the constraint addition, we still find all of

the same modes that we found with the constraint addition; the difference is that

we may find some extra unphysical modes. Since our characteristic variables with

the constraint addition formed a complete set, they will still form a complete set

without the constraint addition, meaning that the system without the constraint

addition to ∇aT
ab = 0 will still be strongly hyperbolic.

3.5 Numerical elasticity code

3.5.1 Description of the ElasticEvolution code

All of the variables in our computer code are 3-dimensional, but they are assumed

to depend only on one or two spatial coordinates. The numerical methods em-

ployed are those in [60]. Briefly, the code uses a HRSC method with a third-order

Runge-Kutta time evolution. In the reconstruction, standard slope limiting tech-

niques, applied to the primitive variables are used—all results shown used van

Leer’s MC limiter ([25]). The HLL approximate Riemann solver ([26]) is used to

calculate the fluxes. The code can be run using either the relativistic or Newtonian

set of governing equations.

The HLL flux is

fi− 1
2

=
f(qRi−1) + f(qLi ) + λ̄HLL

(
qRi−1 − qLi

)

2
, (3.280)

where qRi−1 and qLi are the right and left reconstructed vectors of conserved vari-

ables for the (i − 1)th and ith cells, respectively, and λ̄HLL is an estimate of the

absolute value of the largest coordinate characteristic speed. (Compare this to

Section 2.8, and note that qRi−1 here refers to the right edge of the cell to the left,
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which is referred to as QL in that section.) We set this either to max |λ| at one

point (using the numerical calculation outlined in Section 3.4.6), to max |λ| over

the whole grid, or to a constant. These three possibilities are in order of increasing

efficiency and increasing dissipation but all can be made to work (possibly multi-

plying max |λ| by a constant fudge factor to get λ̄HLL). Setting max |λ| over the

whole grid allows us, in particular, to not update the calculation of the character-

istic speeds within a complete Runge-Kutta step in the method of lines. Setting

λ̄HLL = 1 globally is sensible in highly relativistic situations (assuming the matter

evolution is causal).

In two dimensions standard directional splitting techniques are used. Specifi-

cally, on our (logically) Cartesian grid we compute the appropriate one dimensional

fluxes F i required by Eq. (3.129) by sweeping through the grid lines one dimen-

sion at a time. The update terms are accumulated and applied simultaneously to

minimize symmetry errors caused by the splitting.

We briefly note that the performance of the code has been compared to a

relativistic hydrodynamics code by reducing the elasticity code explicitly to the

hydrodynamic limit. As none of our codes have been optimized for performance,

any comparisons will be approximate. Nevertheless, as the elasticity code is ap-

proximately 8 times slower than the hydrodynamic code on the same problem. We

believe this is partly due to the greater number of evolved variables (19 instead of

5) and partly due to the fact that the conserved-to-primitive conversion requires a

4-dimensional instead of a 1-dimensional root find, and so there is no obvious way

of reducing this ratio. (Adding spacetime evolution and adaptive mesh refinement

to both hydro and elasticity would obviously reduce the overall ratio).

3.5.2 nD versus nψ

As discussed in Section 3.2.3, the particle number density n can either be obtained

from the conserved variable ψAi, or from the conserved variable D. If we evolve

D as a dynamical variable and use nD to represent the primitive variable, we have

one more variable than if we use nψ. However, we have shown in Section 3.2.3 the

evolution equations for nD and nψ are equivalent even if the constraints are not

obeyed, and so we expect that both formulations have identical stability properties.

In fact, when these two evolutions are compared, the RMS relative error in

the resulting data is small; we expect that this is finite-differencing error, as it

converges away between first and second order. However, when nψ and nD are

compared for a single evolution where nD is dynamical, the difference is of the
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order of round-off error rather than finite-differencing error; we suspect that this

is an artifact of planar symmetry in those tests.

3.5.3 ψ versus F

A mixed framework using the inverse FA
i of the configuration gradient ψiA is out-

lined in [1]. For constraint satisfying initial data the results of the two frameworks

should be the same. We have implemented both frameworks numerically and com-

pared them. We find that the difference is on the order of the finite differencing

error for constraint satisfying initial data, as expected.

Some of the tests given in [61] and [62] do not satisfy the constraints and

so are unphysical—namely the second test in [61] and the fifth test in [62]. As

the evolution of such data depends on the choice of constraint addition to the

equations, we would expect it to depend on the framework used. Our numerical

results obtained in the “mixed” framework, which is that used in [61, 62], matches

their numerical results for all tests. Our results using the Eulerian framework

(presented in Section 3.2 and also used by [55, 63]) match only for the physical

tests, where the initial data obey all constraints.

3.5.4 Newtonian Riemann tests

To validate our Newtonian code, and the Newtonian limit of our relativistic code,

we have compared our results to two previously published studies ([61] and [62]).

These results use the Newtonian theory and the mixed framework outlined in [1].

Broadly the results obtained from our codes matched those shown in [61] and

[62]. As an example, we show the results for the first test of [61] in Figs. 3.7–3.8,

using the results of the Newtonian code. The precise initial data used is outlined

in Section 3.5.12. We see the seven waves expected for this solution; three left

traveling rarefactions (the second is very small), a contact, two right traveling

rarefactions (again the second is very small), and a fast shock. For clarity, the

wave structure of the exact solution is shown in Fig. 3.6. All waves are captured

with only minor under and overshoots, and the numerical solutions converge to

the exact solution [64] with resolution, as seen by comparing Fig. 3.7 with Fig. 3.8.

Similar results are seen for all comparison tests. However, not all of the tests

run robustly for all numerical methods possible within our code. An example is

the sonic point test problem outlined in [62] (see in particular Figs. 5-7 there).

At the contact discontinuity there is an unphysical “dip” in the density and a

corresponding “jump” in the internal energy. This is the classical “wall-heating”

effect seen by most numerical methods when strong rarefactions separate (e.g.,
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Figure 3.6: The density and specific internal energy in the first Newtonian
Riemann test from [61] (from now on BDRT1), illustrating the seven waves
possible in elastic matter. This is the exact solution, illustrating the wave
structure in detail. The rarefactions—the 1, 2, 3, 5 and 6-waves—are given
by the dashed lines and are shaded beneath to show the width of the fan.
The contact—the linear 4-wave—is given by the dash-dotted line. The
shock—the 7-wave—is given by the dotted line. It is clear that resolving
some of the rarefaction waves will be difficult at moderate resolution.
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Figure 3.7: Numerical solution of the BDRT1 test at coordinate time
t = 0.06. We show the results of our Newtonian code using 200 points
(only 100 are plotted for clarity), with the exact solution given by the
solid line. Density, specific internal energy and normal velocity are shown
in the left panel and components of the configuration gradient in the right.
Only minor under and overshoots are visible.

on reflections from walls or the origin in spherical symmetry—see [65] for the

classical case and [66] for a brief discussion of the relativistic case). This error

can lead to unphysical states, and particular care is required with the choice of

the Courant factor and |λ|HLL. The code fails if c2
s or n become (unphysically)

negative (although the variant that sets |λ|HLL a priori can limp on for a while with

negative c2
s). (Generally, there are two constraints on the Courant parameter and

the value of λHLL. The CFL (necessary) stability criterion requires |λ|max,global <

∆x/∆t while, depending on the time discretization, λHLL < O(1)∆x/∆t to avoid

an overdamping instability.)

Finally, we note that a direct and comprehensive comparison to the results of

[62] is complicated by two issues. Firstly the units for the entropy appear inconsis-

tent there, as detailed in Section 3.5.12. Secondly we do not find agreement in the

comparison of the pressure tensor pij (denoted σ there). As all other values and

wave speeds match up well, and we have comprehensive quantitative agreement

with the results of [61], we believe our results to be correct.
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Figure 3.8: Numerical solution of the BDRT1 test at coordinate time
t = 0.06. We show the results of our Newtonian code using 1000 points
(only 100 are plotted for clarity), with the exact solution given by the solid
line. Density, specific internal energy and normal velocity are shown in the
left panel and components of the configuration gradient in the right. Only
minor under and overshoots are visible. Comparing against the results in
Fig. 3.7 we see convergence to the correct weak solution.

3.5.5 Newtonian limit vs Newtonian code

The code (both relativistic and Newtonian) uses geometric units where the speed

of light is one. In particular, all velocities are of the form v = v̄/c̄ where v is

a dimensionless velocity, v̄ its value in conventional units and c̄ the value of the

speed of light in the same units. All parameters in the equation of state, such as ε

and c2
s, are treated analogously. There is no need to rescale rest mass and length,

as long as units are used consistently.

Changing c̄ while keeping v̄ etc. fixed is a trivial scale invariance of the New-

tonian equations and their solution, but in the relativistic equations decreasing c̄

with v̄ etc. fixed makes the same test problem more relativistic. We can use this

to obtain an insight into the effects of (special) relativity, and to verify that our

relativistic code has the correct Newtonian limit as c̄→∞.

In Fig. 3.9 we show the results from the relativistic code run with a small range
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Figure 3.9: BDRT1 again, at coordinate time t = 0.06, but now run using
the relativistic code with various values of c̄, and compared against the
Newtonian results. The results for ρ, vx (appropriately scaled by c̄) are
representative of the behavior of all quantities. We see that as c̄ increases
the Newtonian limit is approached. 10000 points were used in each case
to ensure that we are at the continuum limit within the resolution of this
plot.
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of values for c̄. Only relatively small values of c̄ are shown—3, 5, 10 and 20 km s−1,

compared to a typical velocity in the (Newtonian) Riemann problem of 1 km s−1—

as for sufficiently large values of c̄ the results are visually indistinguishable. We

see that the results from the relativistic code are qualitatively similar, in terms

of wave structure and accuracy, and approach the Newtonian results in the limit

c̄→∞.

3.5.6 Relativistic Riemann tests

In the genuinely relativistic limit we have tested our code against exact solutions

constructed by solving a pre-determined wave structure. The explicit procedure

is detailed in [1] and follows the method used in the Newtonian case outlined in

[61], without constructing a full Riemann problem solver.

We have verified that the code behaves correctly for single shocks and rarefac-

tions in the relativistic limit, and for some invented initial data sets that test a

range of wave structures. As an example, we show in Figs. 3.11–3.12 the results

for a four wave problem. For clarity, the wave structure of the exact solution is

shown in Fig. 3.10. There are two left-going rarefactions (1 and 2-waves), one

right-going rarefaction (a 6-wave) and a right going shock (7-wave). The central

three waves—the nonlinear 3 and 5-waves and the contact—are all trivial. We

note that some of the quantities change so rapidly across some rarefaction waves

that they are only visually distinguishable from shocks at high magnification.

Even with the violent behavior displayed across some waves in this four wave

test, we find our code matching the exact solution well, with no unphysical oscil-

lations and only minor under and overshoots that converge away with resolution.

There are the expected minor oscillations near the trivial waves, most noticeable

near the contact, but again these converge with resolution.

3.5.7 A method for Riemann tests on a 2D grid

As a first test of the role of the constraints in hyperbolicity, we numerically solve

Riemann problems on a 2-dimensional grid, with the initial discontinuity at an

angle to the grid. Assume the grid consists of nx × ny cells, surrounded by the

necessary number of ghost cells. After each time update, the ghost points are

filled using periodic boundary conditions, identifying cell (i, j) with (i + nx, j) in

the x direction, but (i, j) with (i + δx, j + ny) in the y direction, where δx is an

offset. Consistently with these boundary conditions, the initial discontinuity is

then placed on a line of x/y = δx/ny (assuming that the grid spacing is the same

in the x and y directions). This is illustrated in Fig. 3.13.
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Figure 3.10: The density and specific internal energy ε for the relativis-
tic 4-wave test at coordinate time t = 0.25. This is the exact solution,
illustrating the wave structure in detail. The rarefactions—the 1, 2, and
6-waves—are given by the dashed lines and are shaded beneath to show
the width of the fan. The very narrow 2 and 6-waves are shown in detail
in the insets. The contact—the linear 4-wave—is trivial. The shock—the
7-wave—is given by the dotted line. It is clear that resolving some of the
rarefaction waves will be difficult at moderate resolution.
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Figure 3.11: Numerical solution of the relativistic 4-wave test at coordi-
nate time t = 0.25. Density, specific internal energy and normal velocity
are shown in the left panel, and components of the configuration gradient
in the right. The 4 wave structure (two left-going rarefactions, one right-
going rarefaction and one right going shock) is most clearly seen in the
plot of ψY x. The solution is computed using 200 points but only 100 are
plotted for clarity. We see that all waves are captured well and with only
minor under and overshoots, most visible for the second rarefaction wave
in quantities such as ε.

As the x and y directions are interchangeable, the slope δx/ny and its inverse

pose the same Riemann test. (Less obviously, in our implementation those two

tests also have roughly equal computational cost.) We choose ny ≥ δx (and typi-

cally δx = 1) so that the initial discontinuity is always closer to the y axis (where

it is in the 1D tests), and use the x axis as an approximation to a line normal to

the initial discontinuity when taking a cut through the solution.

3.5.8 Two-dimensional Riemann tests

The constraints are trivial if all variables depend only on one coordinate, for

example when a Riemann problem is aligned with a Cartesian grid. As a first

test of the behavior in three dimensions and the role of the constraints, we have

solved Riemann problems also at an arbitrary angle to a two-dimensional Cartesian
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Figure 3.12: Numerical solution of the relativistic 4-wave test at coordi-
nate time t = 0.25. Density, specific internal energy and normal velocity
are shown in the left panel, and components of the configuration gradient
in the right. The solution is computed using 1000 points but only 100
are plotted for clarity. We see that all waves are captured well and with
only minor under and overshoots, and comparing to Fig. 3.11 we see the
expected convergence.

grid. A method for carrying out such 2D simulations efficiently is described in

Section 3.5.7.

We put the initial discontinuity along lines x/y = 0 (our 1D tests), 1, 1/2

and 1/5, and use a cut along the x axis as an approximation to a line normal to

the initial discontinuity. We compare this cut, suitably foreshortened, against the

exact solution, in Fig. 3.14, with results similar to our 1D tests.

We have not implemented the “hyperbolicity fix” constraint additions for ei-

ther the kinematic or dynamical evolution equations. In 1D the equations are

symmetric hyperbolic anyway, as there are no constraints then, but in 2D our

equations are not even strongly hyperbolic. Nevertheless, there is no sign of nu-

merical instability in 2D. We have no explanation for this unexpected stability,

but expect that constraint addition will be necessary in other tests in the future.
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Figure 3.13: Example of a two-dimensional grid with shifted periodic
boundary conditions, with nx = 8, ny = 2 and δx = 3. The physical grid
is surrounded by one ghost cell on each side. In reality, nx would be much
larger, while ny ranges from 1 to a few, and δx from 0 to a few, with no
common factor. The placement of the left and right state of a Riemann
problem is shown by the letters L and R and shading. Cells are initialized
with the left or right state depending on the position of the cell center.
The numbers 1, 2, 3, 4 identify four physical cells and the ghost cells they
donate values to. The initial discontinuity is at an angle α from the y axis,
with tanα = δx/ny (= 3/2 in this example), and goes through the point
x = y = 0.

3.5.9 Two-dimensional rotor tests

To study a problem with nontrivial dependence on two Cartesian coordinates we

consider a test suggested by [67]. The initial data, detailed in Section 3.5.12, repre-

sents an elastic rotor problem, where an inner rotating bearing is instantaneously

welded to the non-rotating exterior, causing the rotor to slow and propagating

elastic waves through the material. This is a cylindrically symmetric problem

simulated in Cartesian coordinates. In all cases the rotor has coordinate radius

0.1, whilst the exterior is at rest. In all numerical experiments shown here 4002

points were used.

Results for the Newtonian case are shown at representative coordinate times

in Fig. 3.15. These should be compared to the results shown by Dumbser et al

[67]. The results in the literature use a considerably more accurate numerical

method, which is both higher order and uses finite elements better adapted to the

symmetry of the problem. Despite this, we see qualitative agreement in the waves

emitted during the evolution of the problem. Note that these plots looks slightly

different from those presented in [1]; this due to an error in the plotting script.
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Figure 3.14: Results for the BDRT1 Riemann test at coordinate time
t = 0.06 (left panel) and relativistic 4 wave test at coordinate time t = 0.25
(right panel), calculated on a two-dimensional grid for three different an-
gles between the initial discontinuity and the grid, each at two resolutions.
The initial discontinuity was placed on the line given alongside each plot.
In order to compare the results to the exact solution, a slice through the
two-dimensional grid is taken along the x axis (as an approximation to a
line normal to the waves), and x is scaled to correspond to distance perpen-
dicular to the initial discontinuity. The spatial resolution is independent
of the angle of the initial discontinuity, and the snapshot is always taken
at the same time, for all angles. The relativistic code is used in both cases
(in the Newtonian limit for the BDRT test). The high-resolution results
were produced using ∆x = ∆y = 0.001. (The effective resolution in the
relevant direction, normal to the initial discontinuity, is lower—by a factor
of
√

2 in the worst case, where the initial discontinuity is on the grid di-
agonal). The low-resolution version was produced using ∆x = ∆y = 0.01.
(For clarity, only 1 in 2 or 1 in 20 points are plotted for the x/y = 0 and
x/y = 1/5 cases, while 1 in 3 or 1 in 28 points are plotted for x/y = 1.)
All evolutions look similar, with the results approaching the exact solution
as the resolution is increased.
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Figure 3.15: Newtonian rotor test, following [67]. An initially rotating
central cylinder is slowed by the interaction with the exterior, which is
initially at rest. The figures in the left panel show ρvx whilst those in the
right show ρF y

Y , at coordinate times t = 0.02, 0.05, 0.1 and 0.15. The
results qualitatively match those in Fig. 24 of [67].

We can now see the expected symmetry:

F y
Y (x, y) = F y

Y (−x,−y)

and

vx(x, y) = −vx(−x,−y).

In the continuum, we also expect that

F y
Y (x, y) = −F y

Y (−x, y)

and

vx(x, y) = vx(−x, y);

however, due to the use of a square grid for these tests, we get a systematic

asymmetry when we reflect in x and y. This asymmetry does not disappear with

resolution.

Results for the relativistic case are shown at representative coordinate times

in Fig. 3.16. Again we see qualitative agreement in the emitted wave structure,

despite the differences in the models.
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Figure 3.16: Relativistic rotor test, to be compared with the Newtonian
results in Fig. 3.15. An initially rotating central cylinder is slowed by the
interaction with the exterior, which is initially at rest. These figures in
the left panel show ρvx whilst those in the right show ρF y

Y , at coordinate
times t = 0.02, 0.05, 0.1 and 0.2. The emitted waves are qualitatively
similar to the Newtonian results.

3.5.10 Considerations for a two-dimensional cylindrical grid

Source terms One important difference when moving from Cartesian to cylin-

drical coordinates is that the source terms for the equations of motion derived

from the stress-energy tensor become non-zero. When the cylindrical Minkowski

metric, diag(−1, r2, 1, 1), is used, we find that the only non-zero source term is

S (Sr) = r2T θθ. (3.281)

Transforming initial data and output We start by setting the initial data

using Cartesian coordinates; we then transform both the matter-space and space-

time coordinates to cylindrical coordinates. We use the Jacobian matrix

∂xa
′

∂xb
=




x
r

y
r

0

− y
r2

x
r2 0

0 0 1


 , (3.282)

and its inverse to transform covariant and contravariant spatial indices, where

xa
′

= (r, θ, z) and xb = (x, y, z), and the usual transformation between (x, y) and

(r, θ) is used:

x = r cos θ, y = r sin θ. (3.283)
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The same transformation applies to the matter space indices, with ξA
′

=

(R,Θ, Z) and ξA = (X, Y, Z) in place of xa
′

and xb. To do this for the initial

data, we find the matter-space coordinates in terms of the spacetime coordinates

by integrating ψAi, which is, by definition, ψAi = ∂ξA/∂xi. Where the initial data

for ψAi is piecewise constant, as is the case for all our tests here, this integration

just gives

ξA = ψAix
i + const, (3.284)

with the constants chosen so that the ξA are continuous at the initial discontinuity.

In order to compare the results in cylindrical coordinates with those in Cartesian

coordinates, we need to transform vi and ψAi between the two coordinate systems

at later times. For this diagnostic purpose (only), we advect the (Cartesian)

matter coordinates ξA(xi, t) with the fluid. ξA
′

and ξA are then always linked by

the standard formula (Eq. 3.283).

Limitations on the initial data In these tests, we have hidden the planar

or axisymmetry by making the problem appear to depend nontrivially on two

coordinates (r, θ). However, we do not want to hide the z-translation symmetry

in order to keep simulations two-dimensional. Now, if the Cartesian components,

ψAz, were non-zero, then the matter-space coordinates, ξA, would be dependent

on z, making the transformation, as well as the cylindrical components of ψAi,

z-dependent.

To avoid these problems, we use only tests with ψAz = 0 when we are using

cylindrical coordinates. Because we wanted to compare to published results, we use

a version of BDRT1 [61] which differs from the original by a linear transformation

of the matter space coordinates (and so changes ψAi), and transform the results

back to the original coordinates for the purpose of comparison. The initial data

for this test is described in Section 3.5.12.

Boundaries We have used simple copy boundary conditions in the r direction,

and periodic boundaries in the θ direction, while ensuring that the computational

grid extends over a range of 2π in θ. The copy boundaries are not correct in

general; these incorrect boundary conditions are what cause the visible problems

near the boundaries in the BDRT1 test on the cylindrical grid, visible in Fig. 3.17b.

Since we do not anticipate using cylindrical coordinates (or spherical coordinates)

in the future, we use copy boundary conditions for simplicity’s sake, and note

where the incorrect boundary conditions have caused problems.
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(a) (b)

Figure 3.17: Tests on a two-dimensional cylindrical grid. Fig. 3.17a shows
a pseudocolor density plot and velocity vector plot for a ring rotor at coor-
dinate time t = 0.0095. The initial velocity within the rotating region is a
rigid rotation, while the outer and inner regions are static. The numerical
domain is an annulus, with the origin of cylindrical coordinates cut out.
In the density plot, waves are visible propagating away from the initial
discontinuity. In an equivalent shear test in planar symmetry with a static
inner and outer region and a central region with non-zero velocity parallel
to the initial discontinuities, one would expect the Riemann problem so-
lutions around the two discontinuities to be symmetrical; the asymmetry
visible in the ring rotor version is due to the curvature of the discontinuity
and centrifugal forces. Fig. 3.17b shows a pseudocolor density plot of the
BDRT1 Riemann test at coordinate time t = 0.02. Plane waves can be
seen propagating away from the initial discontinuity at x = −0.5. Only
a part of the annular numerical domain is shown. In the plot, the effect
of the incorrect boundary conditions can also be seen as the solution near
the boundaries is incorrect—this is seen also in Fig. 3.18.

3.5.11 Tests in two-dimensional curvilinear coordinates

To test the functioning of the code with a metric other than the Minkowski metric

in Cartesian coordinates, we have implemented several tests in Minkowski cylin-

drical coordinates. We describe the details of implementing this cylindrical grid

in Section 3.5.10. We use two different Newtonian tests to demonstrate that the

code can handle curvilinear coordinates: a Riemann problem (BDRT1, [61]) and

an off-axis ring rotor, with initial data described in further detail in Section 3.5.12.

The symmetry of each of these tests is obscured on the cylindrical grid; this allows

us to compare the two-dimensional cylindrical evolutions to one-dimensional evo-

lutions that take advantage of the symmetry of the physical systems (cylindrical
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Figure 3.18: One-dimensional slice of BDRT1 test at coordinate time
t = 0.02 evolved on a two-dimensional cylindrical grid. Here the numeri-
cal domain was an annulus with 300 points in the r direction and 601 in
the angular direction; only 1 out of every 3 points is plotted here for clar-
ity. The results have also been transformed from cylindrical coordinates,
which are used for evolution, to Cartesian coordinates, as described in
Section 3.5.10. In addition, while the transformed version of the BDRT1
initial data was used (see Section 3.5.12), the matter-space indices have
been transformed back to the coordinate system of the original BDRT1
test for comparison with the exact solution presented in [61]. The results
using a two-dimensional cylindrical grid visually match well with the ex-
act solution; the only notable feature is that the effect of the incorrect
boundary conditions can be seen near the left edge of the plot for ψY x.
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symmetry for the ring rotor and planar symmetry for the Riemann test), giving

us confidence that the code is self-consistent.

The results of the off-axis ring rotor evolved on the two-dimensional cylindri-

cal grid show good agreement with both the results of a one-dimensional evolu-

tion of an axisymmetric ring rotor, suitably shifted, as well as the results of a

two-dimensional Cartesian evolution of the same ring rotor. As the resolution is

increased, the results of the 2D cylindrical evolution approach those of the 1D

evolution. Fig. 3.17a shows a pseudocolor plot of the density with a vector plot of

the velocity at coordinate time t = 0.0095. The initial velocity within the rotating

ring is a rigid rotation, while the outer regions are static. In the density plot,

waves can be seen propagating away from both edges of the ring.

The Riemann problem results on the 2D cylindrical grid also approach the

published exact solution [61] with increased resolution. Fig. 3.17b shows a pseu-

docolor plot of the density for the Riemann problem on a 2D cylindrical grid at

coordinate time t = 0.02. Waves can be seen propagating away from the initial

discontinuity. The boundary conditions are not consistent with the symmetries

of the initial data, giving rise to error at the boundaries, as was mentioned in

Section 3.5.10.

3.5.12 Initial data for numerical tests

We used several sets of initial data that were defined in published papers; this was

done to ensure that our code agreed with Newtonian results produced previously

[61] [62]. Because both papers chose entropy, s, as a primitive variable, instead of

the pressure, p, we list the initial entropy value here, and calculate the pressure

from the entropy when the system is initialized.

For the following sets of initial data, the spacetime metric is the Minkowski

metric, and the matter-space metric is the Euclidean metric in Euclidean coordi-

nates normalized with the initial density of the elastic medium, n0; we note that

while we must convert units of velocity to geometrized units, we do not need to

convert units of density or of length, as long as we are consistent throughout the

code. For this paper the value n0 = 8.93 g/cm3 was used for the BDRT tests

(from [61]) and n0 = 8.9 g/cm3 was used for the TRT tests (from [62]). In addi-

tion to this, for each of these situations, the Cranfield equation of state, described

in Appendix C, was used. For comparison purposes, the velocities in this section

are taken to be in km s−1, while the entropy is in kJ g−1K−1.
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BDRT1 This is the same as Testcase 1 in [61]. It allows us to examine the entire

seven-wave structure of the solution. Using the Cranfield EOS mentioned above,

the solution consists of three left-traveling rarefaction waves, a right-traveling con-

tact, two right-traveling rarefactions, and a right-traveling shock wave. The initial

data is presented for the state vector w = (vi, F i
A, s) in the mixed framework

given in [1], and all other quantities are derived from them:

wL =








0

0.5

1


 ,




0.98 0 0

0.02 1 0.1

0 0 1


 , 0.001




,

wR =








0

0

0


 ,




1 0 0

0 1 0.1

0 0 1


 , 0




. (3.285)

BDRT1 transformed As explained in Section 3.5.10, we cannot directly use

the original BDRT1 test with the cylindrical grid. To remedy this, we obtain a

transformed version of the BDRT1 test presented in [61] by transforming the lower

matter-space indices as F i
A′ = F i

BΛB
A′ where

ΛB
A′ :=

∂ξB

∂ξA′
=




1 0 0

0 1 −0.1

0 0 1


 , (3.286)

and the upper matter-space indices using its inverse. The transformed version is

as follows:

wL =








0

0.5

1


 ,




0.98 0 0

0.02 1 0

0 0 1


 , 0.001




,

wR =








0

0

0


 ,




1 0 0

0 1 0

0 0 1


 , 0




, (3.287)

where the matter-space metric is also transformed so that, over the whole compu-

tational domain, it is

kAB =




n
2/3
0 0 0

0 n
2/3
0 −0.1n

2/3
0

0 −0.1n
2/3
0 n

2/3
0


 . (3.288)
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4-wave relativistic solution We constructed a range of relativistic solutions,

mostly consisting of a single shock or rarefaction, using the technique outlined in

[1]. The toy relativistic equation of state given in Appendix C, with parameters

Γ = 5/3, λ = 4/3, and κ = 1/2. In particular, we present a solution with four

nonlinear waves. The two left-going waves (1- and 2-waves) are rarefactions. The

contact is trivial, as are the central (3- and 5-waves) nonlinear waves. The slower

right-going wave (a 6-wave) is a rarefaction, and the fast right-going 7-wave is a

shock. The initial data is presented for the state vector w = (vi, ψAi, p), truncated

to 6 significant figures, and all other quantities are derived from them:

wL =








0.05

0.1

0.2


 ,




1.5 0 0

−0.5 1 0

0.5 0 1


 , 1.86054




, (3.289)

wR =








0.469381

−0.0332532

0.349709


 ,




0.764910 0 0

−0.541672 1 0

0.369075 0 1


 , 0.450123




. (3.290)

Rotor tests In addition to Riemann-problem style tests we consider a genuinely

two-dimensional rotor test. The Newtonian rotor test was suggested by [67], where

the evolution was shown using a high-order finite element technique. The domain

is cylindrical, of total radius 0.5. The material is initially at rest except in the

rotor, represented by a cylinder of radius 0.1, within which it rotates with angular

velocity ω = 10. The material is not deformed (i.e., F i
A is the unit matrix) nor

hot (i.e., s = 0). All other matter properties follow the Riemann tests above. That

is, the initial density is given by n0 = 8.93 g/cm3 and the Cranfield equation of

state, described in Appendix C, was used. Here, as we have used a Cartesian grid,

we have simulated the full domain x, y ∈ [−0.5, 0.5].

We have developed a new ring rotor version of the Dumbser Rotor from [67]

so that, while using two-dimensional cylindrical coordinates, we do not have to

include the axis of the coordinate system. The inner and outer areas of the grid

have the same initial data, while the central region of the grid differs from these

states only in that it has a non-zero velocity. Aside from the velocity, the initial

data for this test are exactly the same as for the Dumbser Rotor; the velocity in

the inner and outer regions is 0, while the central region has a uniform angular

velocity of ω = 1.0.

We suggest a relativistic rotor test as a direct comparison with the Newtonian

version. The domain remains the same as the Newtonian case. The angular

velocity is reduced to ω = 0.5. The material is initially set so that ψAi is the
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unit matrix and p = 1. As the shear also depends on the velocity through ψAt,

the material is sheared within the rotor initially, in contrast to the Newtonian

case, but this is small. As in the Riemann tests above we use the toy relativistic

equation of state given in Appendix C, with parameters Γ = 5/3, λ = 4/3, and

κ = 1/2.





Chapter 4

Interfaces

An estimate of the scale of the crust-core transition is given by the size of the

viscous boundary layer between the crust and the core, called the Ekman layer. For

typical neutron star values, this region is very small (∼ 10 cm) [68, 60] compared

to the size of the neutron star (∼ 10 km); this means that it is best modeled by a

sharp transition. However, sharp transitions in the equation of state can lead to

large unphysical oscillations in the pressure [69, 70, 71, 72] These oscillations are

present in first-order computations and are not removed by moving to higher order;

they are due to unphysical (thermodynamically inconsistent) mixing of the two

materials introduced by the smearing of sharp discontinuities that is inherent in

HRSC schemes [73, 74]. To solve this numerical problem, we must think carefully

about how we treat the crust-core interface.

To represent interfaces, we consider the spacetime to be composed of a union of

separate regions, where each region is described by a different physical model [60].

These regions are joined at dynamical boundaries. We track these boundaries

using a level-set function, and then determine and apply appropriate boundary

conditions for a variety of interface types using an extension of the ghost fluid

method [75].

4.1 Level-set methods

In order to implement a method that produces the correct behavior at the interface,

we first need to locate the interface. To keep track of the location of the interface

during evolution, we use a level-set function. A level-set function is a scalar grid

function which is positive where one material is located and negative where the

other material is located. The interface between the two materials occurs where

the level-set function is equal to 0.

97
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If more than two materials are present in an evolution, more than one level-set

function is needed. In general, one needs n−1 level-set functions for an n-material

evolution—one for each material—and then the area where the nth material is

located is where all level-set functions are negative. However, in practice it is

difficult to ensure that multiple level sets will evolve together, meaning that n

level-set functions must be used for n materials, and corrections must be made in

order to eliminate areas of the grid where two level-set functions are positive at

once [76].

To evolve the level-set function, it is only necessary to ensure that the interface

moves at the correct velocity. In our codes, this is done in two ways. In the

ElasticEvolution code, the level set is simply advected along with the materials;

the level-set advection velocity is taken to be the velocity of the real material in

any given cell. In the MultiModel code, we find the interface velocity by finding

the component of velocity normal to each interface in the real cells adjacent to

that interface. Once the advection velocity is determined next to the interfaces,

it is extrapolated to the remainder of the grid.

The methods described above, which are used to estimate the interface ve-

locity for level-set advection, are correct in the continuum limit as long as the

velocity is not discontinuous at the interface. In both cases, advection is in the

direction normal to the interface.1 Since this is the case, the velocity should only

stay discontinuous for sustained times (i.e. aside from shocks passing through

the interface or initial interface Riemann problems) in the vacuum-interface case

(where the physical velocity in the vacuum is not defined). In this case, we advect

the level-set using the velocity in the cell immediately to the material side of the

interface. In essence, we are defining the vacuum velocity in such a way that it is

continuous across the interface. In principle, the correct thing to do would be to

solve the interface Riemann problem and use the interface velocity to advect the

level-set function, regardless of what type of interface we use; however, in most

cases, our approach will produce the correct result.

In the ElasticEvolution code, we use the upwind method for advection; if

the velocity is positive, we use the left-hand difference, and if it is negative, we

use the right-hand difference. In the MultiModel code, we treat the advection

equation as a Hamilton-Jacobi equation, and use the Lax-Friedrichs scheme with

a WENO reconstruction of the derivatives [77]. We use the fast-marching method

[78] both to extrapolate the interface velocity to the remainder of the grid, and

to extrapolate the value of the level-set outward for reinitialization. This helps to

1In 1D, the advection velocity is normal to the interface by definition. In the MultiModel

code, the advection velocity is the component of the material velocity normal to the interface.
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prevent the loss of sharp corners or pockets of material, or excessive steepening of

the level-set function.

4.2 Ghost fluid method

Once we have located the interface, using the level-set function, we need to de-

termine what should happen at the interface between the two materials. We have

chosen to used the ghost-fluid method (GFM), first developed by Fedkiw et al

1999 [75] for interfaces between two fluids with differing equations of state. In

this method, each material is evolved independently, filling a ghost fluid into the

cells occupied by the other material on the original grid. The ghost fluid is of the

same material as the material to be evolved, but is chosen to attempt to reproduce

the physically correct behavior (although for the original GFM, the behavior is

only physically correct in the quiescent state) at the interface between the two

materials. The way that we choose the values of the variables in the ghost fluid

cells determines the physics that occurs at the interface.

In the original GFM of Fedkiw et al [75], the population of these ghost cells

is relatively intuitive. Basically, we look at a stationary contact discontinuity

between the two materials (fluids in the original GFM), and determine which

variables are continuous, and which are generally allowed to be discontinuous. We

then assign variables as follows:

• Taking: If the variable should be continuous across the interface, then we

assign that variable in the ghost cell to be the value of that variable in the

real-material cell located at the same physical location. For clarity, we will

call this taking.

• Extrapolating: If the variable can generally be discontinuous across the con-

tact, then we extrapolate (we will call this extrapolating) from the nearest

real-material cell of the same material as the cell to be populated. Although

generally the value could be extrapolated at any order, we use zeroth order

extrapolation; in other words, we simply copy the value from the nearest

real-material cell.

• Calculating: Generally, we might have multiple variables that are allowed to

be discontinuous, but that must be assigned consistently. For example, in

the fluid-fluid case, the entropy and density can both generally be discon-

tinuous, but must be assigned such that their values are thermodynamically

consistent with the pressure via the equation of state. In this particular case,
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Type Cont. Disc. Set Calc.
Fluid-Fluid (with ρ) p, viki s, vi ⊥j i NA ρ
Fluid-Fluid (with ψAi) p, viki s, vi ⊥j i ψAik

i = k(ψAik
i)ext k

Fluid-Solid (set fluid, with ρ) pijk
ikj, viki s, vi ⊥j i NA ρ

Fluid-Solid (set fluid, with ψAi) pijk
ikj, viki s, vi ⊥j i ψAik

i = k(ψAik
i)ext k

Fluid-Solid (set solid) pijk
ikj, viki s, vi ⊥j i pijk

i ⊥j k = 0 ψAik
i

Solid-Solid (slip) pijk
ikj, viki s, vi ⊥j i pijk

i ⊥j k = 0 ψAik
i

Solid-Solid (stick) pijk
i, vi s NA ψAik

i

Fluid-Vacuum (set fluid) p = 0 s, vi NA ρ
Solid-Vacuum (set solid) pijk

i = 0 s, vi pijk
i = 0 ψAik

i

Solid-Atmosphere (set solid) pijk
ikj = patm s, vi pijk

i ⊥j k = 0 ψAik
i

Fluid-Atmosphere (set fluid) p = patm s, vi NA ρ

Table 4.1: Summary of how each interface type is handled using the sim-
ple ghost-fluid method. Note that we always extrapolate the components
ψAi ⊥i j and pij ⊥i k ⊥j l, because these are generally allowed to be
discontinuous.

we choose to extrapolate the entropy, and then we calculate the density using

the equation of state.

• Setting: For some interface times and certain boundary conditions, we may

also need to set variables to specific values. This could be to enforce certain

physical conditions (i.e. there should be no traction at the interface when

we use slip boundary conditions between two solids) or it could be to ad-

dress certain numerical concerns (i.e. as in the case of using the elasticity

formulation in the fluid limit, where we should only have one free parameter

instead of three).

This will become clearer with an example. The following subsections describe

how this is done for various types of Newtonian interfaces, and are summarized in

Table 4.1. In the following, we shall call the covector normal to the interface, ki.

In the Newtonian case, it is raised by ki = δijkj, and normalized kik
i = 1.

Because the original GFM assumes that the discontinuity at the interface is a

stationary material contact, it is not correct when pressure and normal velocity

are discontinuous at the interface, as when a shock hits; this is because it assumes

that these values are continuous, rather than solving the full Riemann problem.

Methods that seek to address this are mentioned in Section 4.3. In practice, the

GFM performs well where strong shocks are not present; in our shattering simu-

lations, the shocks should be small, and therefore, the GFM should be sufficient

for our purposes.



Chapter 4 Interfaces 101
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Figure 4.1: To populate the ghost fluid for a fluid-fluid interface, the vari-
ables that must be continuous across the interface contact (p, viki =: v(n))
are taken from the real-fluid cell located at the same position as the ghost-
fluid cell being filled. The variables that are generally discontinuous at the
contact (s, vi ⊥j i =: v(t)j) are extrapolated from the nearest real-fluid cell
of the same material as the ghost fluid. Extra discontinuous variables that
must be consistent with these (ρ) are then calculated from the variables
that are already assigned.

4.2.1 Fluid-fluid interface

For fluids in the usual Eulerian formulation, we have the primitive variables: pres-

sure p, density ρ, velocity vi, and entropy s. Pressure and the component of

velocity normal to the interface should be continuous across the contact, so we

take these values from the real-material cells located at the same position as the

cells we are populating (so we take these values from the other material). Tangen-

tial velocity and entropy should generally be discontinuous across the interface, so

we fill in these values using extrapolation from the nearest real-material cell of the

same material. Once we have pressure and entropy, we can calculate the density

from these, using the equation of state. In principle, we could instead populate

the density using extrapolation and calculate the entropy from this, but we follow

[75], and extrapolate the entropy. This process is illustrated for the fluid-fluid

interface in Fig. 4.1.

4.2.2 Fluid-fluid interface (using the ψAi formulation)

In the ElasticEvolution code, we have a choice between using the evolved rest-

mass density, ρ, and the rest-mass density derived from ψAi, and the matter-

space and spacetime metrics, kAB and gab. This means that we can choose to

either produce a fluid evolution by evolving D, the relativistic rest-mass density
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introduced in Section 3.3.2, or by taking the fluid limit of the ψAi formulation. In

general, the latter will not be correct, because of the difference in shear behavior

mentioned in Section 3.2.2, where a discontinuity in the velocity tangential to a

shock causes a non-zero shock speed in elasticity, but not in a fluid. However, the

fluid tests presented here contain no shear, so we use the fluid limit of the ψAi

formalism without incident.

This version of the GFM is almost exactly the same as the GFM using D,

except that, instead of calculating ρ from p and s, we calculate ψAik
i. This

construction has three independent components. However, the pressure is only

one independent component, so we should only solve for one value. To do this,

we set ψAik
i = k(ψAik

i)ext, where (ψAik
i)ext is extrapolated from the nearest real-

fluid cell of the material we are populating, and then use a root finder to calculate

the constant factor k. We extrapolate all of the tangential components, ψAi ⊥i j.

4.2.3 Solid-fluid interface (setting the fluid)

Setting the ghost fluid in a solid-fluid interface is mostly the same as setting the

ghost-fluid cells in the fluid-fluid interface situation while using the ψAi formula-

tion. The only difference here is that, instead of the pressure being continuous,

the normal-normal component of the pressure tensor should be continuous (i.e.

pijk
ikj). In the Newtonian case, for a fluid, p = pijk

ikj; however, this is not

the case for elastic materials, so it is important that we take pijk
ikj, instead

of taking p. If we are evolving D instead of ψAi, we take our Newtonian fluid

pfluid = (pijk
ikj)solid, and calculate ρ from p and s, as in the fluid-fluid interface

case.

One might expect, that since we have set the three components pijk
i, and we

have to solve for three components ψAik
i, we could just use a three-dimensional

root finder. However, for a fluid equation of state, the components pijk
i ⊥j k are

guaranteed to be 0, so we really only have one independent component. Instead of

solving for all three components of ψAik
i independently, we again set these values

to the extrapolated value multiplied by some factor, and then solve for that factor.

If we are evolving D, we simply calculate ρ from s and p.

4.2.4 Solid-fluid interface (setting the solid)

In the solid-fluid interface configuration, the solid is set in almost the same way

as the fluid. Again, we have the case where pijk
ikj should be continuous, and

pijk
i ⊥j k should be 0; however, away from the interface, the normal-tangential

components can generally be anything. This means that the three components
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pijk
i are all independent, and we use a three-dimensional root finder to find all of

the components ψAik
i.

4.2.5 Solid-solid interface (slip conditions)

There are several options for boundary conditions when two solids meet at an

interface. One is for there to be no friction between the two solids; in other words,

for them to slip completely against each other with no resistance. In this case,

the conditions are exactly the same as for the solid-fluid interface (except for the

obvious difference that the second solid is populated like a solid, and not like a

fluid).

4.2.6 Solid-solid interface (stick conditions)

Another possibility for interface boundary conditions between the two materials is

for them to stick completely with no slipping at all. In this situation, the two ma-

terials have essentially become one; if both materials are chosen to have identical

equations of state, the results using these boundary conditions should produce ex-

actly the same thing as if there were no interface at all. The normal components of

the pressure tensor (pijk
i) and all of the components of the velocity should be con-

tinuous, so these variables are taken. The entropy, tangential components of the

pressure tensor, and tangential components of ψAi are all extrapolated. Then the

components ψAik
i are calculated from pijk

i as in the solid-fluid and solid-solid-slip

cases.

In addition, one could imagine a situation somewhere between our “stick” and

“slip” conditions, where the two pieces of material are sliding against each other

with some resistance. Although one could imagine modeling this by assigning the

normal-tangential components of the stress tensor to some intermediate values,

resistance (i.e. friction) implies that some energy will be dissipated, while the

system of equations that we use is inviscid. This means that they include no dissi-

pative mechanism. So, although we could dream up some intermediate boundary

conditions to govern the motion of the material, we could not accurately model

the full physics of such a system.

4.2.7 Solid-vacuum interface

In the vacuum, we have no matter grid variables. In the solid, we expect the

normal components of the pressure tensor, pijk
i, to go to 0 at the interface; there

should be no forces acting at the interface, either normal to it or parallel to it.
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Because of this, we set pijk
i = 0. This can be thought of as either setting or

taking : we are setting the variables to a particular value, but this is also the value

that we would expect to be physically correct in the vacuum. Conceptually, this

process is equivalent to taking, but in the code, what we do looks more like setting.

The velocity, entropy, and tangential components of ψAi are all extrapolated; then

the components, ψAik
i, are calculated from s and pijk

i.

4.2.8 Fluid-vacuum interface

In the fluid-vacuum case, we expect the pressure itself, p, to go to 0 at the interface.

This means that, with most equations of state that we might like to use to model

neutron stars, the rest-mass density, ρ, will also go to 0 at the interface, which is

likely to cause numerical problems (because small errors could cause the density

to become negative, and negative density is not allowed as an input to many of

the equations used). Additionally, to calculate the speed of sound, we need to find

the ratio, p/ρ, which will fluctuate wildly as the density approaches zero. Indeed,

a naive implementation of the fluid-vacuum interface fails; however, following the

approach in [79], we can implement a positivity preserving flux limiter, which

keeps both density and pressure positive. The results for preliminary tests are

promising, but not fully tested.

Neutron-star surface The crust of a neutron star will typically be covered by

a fluid envelope; however, to simplify the neutron star toy model, we will transition

directly from the solid crust to the vacuum exterior. This means that there will be

a solid-vacuum interface at the surface of the star. However, the properties of the

solid will not be like those tested in the sections below. For the Cranfield equation

of state, when the pressure goes to zero the density does not. This means that, at

the vacuum interface, there is no reason for numerical errors to cause the density

to become negative. Additionally, the internal energy does not approach 0, and

this prevents this from becoming negative due to fluctuations as well.

However, in the stellar environment, the equation of state has the property that

the shear modulus scales with density; since pressure is a function of powers of the

density, the density will necessarily approach 0 as pressure approaches 0, as will

the specific internal energy. This means that, as in the fluid-vacuum case above,

small fluctuations can cause the density or internal energy to become unphysically

negative. A positivity preserving scheme could help to address this issue, but it

is unclear how to extend the work in [79] to the system of equations used for

elasticity.
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4.2.9 Atmosphere interfaces

To attempt to address the problems at the stellar surface mentioned above, we

introduce an atmosphere. This atmosphere is treated as a model present in the

MultiModel code. However, this model consists only of an atmospheric pressure

value: while the fluid model consists of grid functions describing density, velocity,

internal energy, and pressure at every point in the grid, the atmosphere model

simply consists of a single grid function which stores the pressure everywhere.

This pressure is then simply initially set to a constant value (set using an input

parameter) all over the grid, and then is never evolved.

Material-atmosphere interfaces are treated in much the same way as material-

vacuum interfaces. In the atmosphere, nothing is set: we only have the atmo-

spheric pressure, which is never updated. In a solid, we set the normal com-

ponents of the pressure tensor as we would in the solid-fluid interface case (i.e.

pijk
ikj = patm and pijk

i ⊥j k = 0). Velocity, entropy, and the tangential com-

ponents of ψAi are then all extrapolated, and the normal components, ψAik
i, are

calculated from pijk
i. In a fluid, we set p = patm, extrapolate velocity and entropy,

and calculate the density from these values using the equation of state.

4.2.10 Isobaric fix

One problem with the original GFM is that it exhibits overheating effects at the

interfaces between materials. This causes an unphysical increase in entropy, and

a corresponding decrease in the density. This effect was already observed in the

original GFM paper [75], and a simple fix was suggested to ameliorate the observed

overheating issues.

The isobaric fix attempts to prevent overheating errors by overwriting the real-

material cell immediately adjacent to the interface, copying the entropy from the

next real-material cell. (For example, if the interface is located between i and

i + 1, with the real material in cells j < i, then we overwrite the entropy in cell

i by copying the value from cell i − 1.) This fix has been implemented in the

ElasticEvolution code, but not in the MultiModel code.

4.2.11 GFM in general relativity

In general relativity, our interface is a 2 + 1 hypersurface, S, in spacetime with

normal covector, sa. We can separate this into space and time-like parts as follows:

sa =: λna + ka, (4.1)
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Figure 4.2: A sketch of the interface, shown as a 3D hypersurface in space-
time. World lines of individual particles may slide along the interface (or
even move away from the interface, if there is circulation in the flow), but
may not pierce the interface. This means that, while the four-velocity can
jump across the interface, it must still be tangential to the interface, so
that sau

a = 0, where sa is the covector normal to the interface.

where na is a covector normal to the constant-t hypersurfaces, which we use for

the 3 + 1 split, and naka = 0, where na is raised by the metric, gab. Then ka is

purely spatial, and we can think of it as being a 3D vector, ki, which is normal to

the instantaneous interface at any given time.

Since particle world lines cannot pierce the interface (as illustrated in Fig. 4.2),

we must have

uasa = W (na + va) (λna + ka) = W (−λ+ vaka) = 0, (4.2)

where ua is split according to the spacetime split as

ua = W (na + va) , (4.3)

so that va is purely spatial (va = (0, vi) in the 3 + 1 split). Then we see that λ

must be

λ = vaka = viki =: v⊥, (4.4)
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which is the component of the 3-velocity normal to the instantaneous interface,

and we can henceforth write

sa = v⊥na + ka, (4.5)

and

s2 = sas
a = 1− v2

⊥. (4.6)

Because the two materials are in contact at the interface, sa and ka must be

continuous there. It does not make sense to have different time-slicing on the

different sides of the interface, so we assume that na is also continuous. This

means that we must have the normal component of the 3 velocity, v⊥, continuous

across the interface.

Now, what we really want to be continuous across the interface is the following

quantity: [[
T absasb

]]
= 0, (4.7)

or for solid-solid stick boundary conditions:

[[
T absa

]]
= 0, (4.8)

where the double square brackets indicate the difference between the quantity in

the left and right states. For the former, we can rewrite this as

[[
euaubsasb + pabsasb

]]
=
[[
pabsasb

]]
= 0. (4.9)

We then split pab into the isotropic and anisotropic stress parts, so that

pab = phab + πab, (4.10)

note that hab = gab + uaub is the projection normal to the 4-velocity, and that

πab = ψAaψ
B
bπAB. (4.11)

It can be shown that

ψAas
a = ψAa(k

a − v⊥va), (4.12)

so we get

pabsasb = p
(
1− v2

⊥
)

+ πij
(
ki − v⊥vi

) (
kj − v⊥vj

)
. (4.13)

In the Newtonian limit, this goes to p+ πijk
ikj, which is the Newtonian quantity

that we expect to be continuous. In a relativistic fluid-fluid interface, this is
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automatically continuous as long as both p and v⊥ are continuous.

For the no slip boundary conditions, we have

[[
pabsa

]]
= 0. (4.14)

We consider the construction

pabs
aγbc = (phab + πab) s

aγbc = pkc + πab (ka − v⊥va) γbc, (4.15)

where γab is the inverse of γab = gab+nanb. Again, this has the expected Newtonian

limit.

4.3 Other interface methods

The level-set function paired with the GFM are not the only ways to produce the

correct behavior at the interface between two materials; they are just the methods

that we found to be simplest and most intuitive. Other methods seek to improve

the performance of these methods through various additions.

Instead of using a level-set function to track the interface, Miller and Colella

2002 [63] choose to evolve volume fractions to keep track of how much of each

material is present in each cell; from this, the position of the interface can be cal-

culated. Mass redistribution is then used to produce a fully conservative method.

Another option was proposed by Liu, Khoo and Yeo in 2003 [80] and developed

further by Sambasavian in 2009 [81] and then applied by Barton and Drikakis

in 2010 [82]. This method is largely the same as the GFM—it differs only in

the method for choosing ghost-cell values—and is therefore called the modified

or Riemann GFM. Instead of using the simple criteria based on the continuity or

discontinuity of various variables across the interface contact, an interface Riemann

problem is used to determine the correct behavior at the interface. The ghost cells

are then populated such that the correct behavior is produced on the real-fluid

side of the interface. This method produces correct results when the pressure and

normal velocity are discontinuous at the interface, where the simple GFM can

sometimes have trouble.

4.4 Results

To test our code, we have used various published Riemann problems that show

different types of interfaces. In all the presented cases, our results can be compared
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Figure 4.3: The results of Test B from [75]. The blue triangles show the
results of an evolution using 250 cells, with only every third cell shown for
clarity. The black line shows the results of higher resolution run using 1000
grid cells. These results were produced using an evolution that evolved ψAi
instead of D, but the results of an evolution using D would be visually
indistinguishable from this.

to the results published in other work; this allows us to ensure that our code is

functioning correctly.

4.4.1 Newtonian fluid-fluid test: Test B

This test of a Newtonian fluid-fluid interface is Test B, published in [75]. In this

test, a shock comes in from the left side of the grid, and hits an interface at the

center of the grid. The interface is between two fluids, each described by a gamma

law equation of state with a different value for the ratio of specific heats, γ. The
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initial data are given as follows:

γL = 1.4, ρL = 1.3333, pL = 1.5× 105, uL = 0.3535
√

105

γM = 1.4, ρM = 1, pM = 1× 105, uM = 0

γR = 1.67, ρR = 0.1379, pR = 1× 105, uR = 0

(4.16)

where

xL < 0.05, 0.05 ≤ xM < 0.5, and xR ≥ 0.5. (4.17)

Here, u represents the x component of the velocity, and all other components are

0. In the case where ψAi is evolved and used to calculate the rest mass density

instead of D, the initial values of ψAi are simply set as follows:

ψAi =




ρ 0 0

0 1 0

0 0 1


 . (4.18)

Since, in this case, we set the matter space metric, kAB, to the identity matrix,

this will produce the correct calculated rest mass density. Results are shown at

coordinate time t = 0.0012.

Our results for Test B are shown in Fig. 4.3. The blue markers show the

results of an evolution using 250 grid cells; only 1 in every 3 cell values is shown

for clarity. The black line shows a higher resolution evolution using 1000 grid cells.

From these plots, it can be seen that the numerical solutions converge, and if the

values of the constant states and wave speeds are compared to the results published

in [75], then good agreement is observed. These results were produced using the

ElasticEvolution code, but have been reproduced using the MultiModel code.

4.4.2 Special relativistic fluid-fluid test: separation

We demonstrate that the simple GFM works for interfaces in our code in special

relativistic situations using a fluid-fluid separation test, published in [74]. Two

gamma-law fluids are initially traveling away from each other; aside from the

equation of parameters, the only initially discontinuous quantity is the velocity.

The initial data are as follows:

γL = 5
3
, ρL = 1, pL = 1, uL = −0.3

γR = 4
3
, ρR = 1, pR = 1, uM = 0.3,

(4.19)

where the interface is located at x = 0.5. Again, all other velocity components

are set to zero. To assign ψAi in a relativistic test in order to produce the correct
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Figure 4.4: The density, x-component of velocity, and pressure after evo-
lution for the special relativistic separation test from [74]. The numerical
results (blue triangles) are shown with the exact solution (black line). Here
it is easy to see that, across the interface contact discontinuity, the pres-
sure and x-component of velocity must be continuous, but the density is
allowed to be discontinuous. The density exhibits undershoots on either
side of the interface; this is due to the fact that the x-component of the
velocity in the initial data is discontinuous at the interface, but in our as-
signment of ghost-fluid cells, we have assumed that this value is continuous
(this is what is called the startup error in [74]).
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density, we set it to the following:

ψAi =




ρ/
√

1− v2
x 0 0

0 1 0

0 0 1


 . (4.20)

The results are shown at coordinate time t = 0.4.

The results produced by our code for the separation test are shown in Fig. 4.4.

The blue markers show an evolution using 250 grid cells; there is good agreement

between these results and those presented in [74] as well as with the exact solution,

shown in black. There is an undershoot in the density on either side of the interface.

As discussed in Section 4.2, our method assumes that those quantities that should

generally be continuous across an interface contact discontinuity are continuous

across the interface; it does not take into account the situation where there is a

shock or Riemann problem at the interface. The fact that the normal component

of the velocity is initially discontinuous at the interface means that our method

causes errors near the interface in the first few time steps, which do not disappear

over the evolution, and which do not converge away with increased resolution. The

results were produced using the ElasticEvolution code.

4.4.3 Solid-fluid test: BOD1

Our first solid-fluid test comes from [83], and we therefore refer to it as BOD1. In

this test, a high-pressure gas is in contact with a solid surface. For the solid, we

use the Cranfield equation of state with parameters for copper: ρ0 = 8.93 g/cm3,

c0 = 4.651 km/s, b0 = 2.141 km/s, CV = 3.9 × 10−4 kJ g−1 K−1, T0 = 300 K,

α = 1.0, β = 3.0, γ = 2.0. The gas is completely reacted PBX-9404, which uses the

JWL equation of state with the following parameters: ρ0Q = 10.2 GPa, ρ0 = 1.84

g/cm3, A = 854.45 GPa, B = 20.493 GPa, ω = 0.25, R1 = 4.6, R2 = 1.35, and

ρ0ε
∗ = 49.8051 GPa (the JWL equation of state is given in Appendix C—we use

parameters from [84]). The fluid is on the left (x < 0.5), while the solid is on the
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Figure 4.5: The solid-fluid test published in [83]. The blue triangles show
the results of an evolution with 250 grid cells (1 in every 3 points are shown
for clarity), while the black line shows a higher resolution evolution with
1000 grid cells in the computational grid. These results can be compared to
the first test in [83]. Although our results for the pressure, p, do not match
theirs, our results for the component of the stress tensor, pxx, do match
their results for p. We suspect that there is some discrepancy between their
definition of the pressure in a solid and ours; it is unclear what definition
has been used.
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right (x ≥ 0.5). The initial data are as follows:

(ψAi)L =




(
1.84
ρ0

)1/3

0 0

0
(

1.84
ρ0

)1/3

0

0 0
(

1.84
ρ0

)1/3




pL = 18.9, vL =




0

0

0




(ψAi)R =




1 0 0

0 1 0

0 0 1


 sR = 0, vR =




0

0

0


 .

(4.21)

We use the matter space metric, kAB = diag(ρ
2/3
0 ). In principle, we have some

freedom with how we choose kAB and ψAi, as long as the correct density and shear

scalars are produced as a result. In the fluid limit of the elasticity formulation, we

have even more freedom, since only the density comes into the equation of state

and has an effect on physical behavior. Our choice of kAB is completely arbitrary,

but is the reason for the slightly strange form of ψAi in the fluid; we need to ensure

that the resulting initial rest mass density is ρ = 1.84 g/cm3 in order to match the

initial state of the published test. In the solid, we are given the initial value of the

entropy, s, instead of the initial value of the pressure, p; to handle this, we simply

calculate the pressure from the entropy before the initial time step. The results

are shown for a coordinate time t = 0.05 (which is t = 0.5 µs given the units of

the input parameters and initial data).

The results for this test are shown in Fig. 4.5. The blue markers show a

250-cell evolution, while the black line shows a 1000-cell evolution; for the lower

resolution plot, only 1 in 3 points are shown for clarity. We see good agreement

when our results are compared to those published in [83], aside from in the variable

p. However, their P matches the results of the component of our stress tensor,

pxx, so we suspect that this may be due to a difference between our definitions

for p in a solid; it is not clear what definition has been chosen. The results shown

here were produced using the ElasticEvolution code; the MultiModel code is

currently limited to the gamma-law equation of state for fluids.

4.4.4 Solid-fluid test: BOD2

We refer to the second solid-fluid test from [83] as BOD2. It consists of a moving,

stressed solid in contact with a gas; again, the solid is copper, using the Cranfield

equation of state. The gas is now completely unreacted PBX-9404; this again uses

the JWL equation of state, and all of the material parameters are the same as for

the previous test (aside from the parameter that tells the proportion of reacted to
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unreacted gas). In this test, the solid is on the left (x < 0.5), and the fluid is on

the right (x ≥ 0.5). The initial data for this test are as follows:

(FA
i)L =




1 0 0

−0.01 0.95 0.02

−0.015 0 0.9


 sL = 0, vL =




2

0

0.1




(ψAi)R =




(
1.84
ρ0

)1/3

0 0

0
(

1.84
ρ0

)1/3

0

0 0
(

1.84
ρ0

)1/3




pR = 1× 10−4, vR =




0

0

0


 .

(4.22)

Again we use kAB = diag(ρ
2/3
0 ) for the matter space metric; the resulting initial

density in the fluid will again be ρ = 1.84. In the solid, p must again be calculated

from s before the initial time step. In addition, in [83], the authors use the matrix

inverse of ψAi, FA
i, as the dynamical variable, so their initial data are given in

terms of this instead of ψAi. To handle this, we simply invert the initial value for

FA
i before the initial time step.

Unfortunately, we have not been able to get the results for this test to match

the published results. Although we have not yet been able to account for the

discrepancy, we think it may be problem with the way we are relating the param-

eter, Y , in [83], which gives the fraction of the PBX-9404 that is reacted, to the

parameters used in the JWL equation of state. Perhaps this correspondence is less

straightforward than we had originally assumed.

4.4.5 Solid-solid test: slip

Our solid-solid slip test comes from [82]. It consists of two solids with different

equation of state parameters that are allowed to slip freely against each other.

Both solids are described by the Cranfield equation of state; the solid on the left

is aluminum, while the solid on the right is copper. The copper equation of state

parameters take the same values as in previous tests. The aluminum equation of

state parameters are as follows: ρ0 = 2.71, c0 = 6.22, b0 = 3.16, CV = 9.0× 10−4,

T0 = 300, α = 1.0, β = 3.577, γ = 2.088. The initial data are given by the
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Figure 4.6: The solid-solid interface test using slip conditions published in
[82]. These results were produced by an evolution using 1000 grid cells;
the values in only 1 in every 10 cells is shown for clarity. The lines shown
simply connect the cell values, again for clarity of plotting here. These
results match well with the published results in [82].

following:

(FA
i)L =




1 0 0

−0.01 0.95 0.02

−0.015 0 0.9


 sL = 0, vL =




2

0

0.1




(FA
i)R =




1 0 0

0.015 0.95 0

−0.01 0 0.9


 sR = 0, vR =




0

−0.03

−0.01


 .

(4.23)
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We again use kAB = diag(ρ
2/3
0 ) for the matter space metric. We also need to

calculate p from s and ψAi from FA
i before the initial time step. The results are

given at the coordinate time t = 0.05.

Our results are shown in Fig. 4.6. The blue markers show the values in 100

cells out of a 1000 grid cell evolution. The lines simply connect the points on the

plot so that the various discontinuities can be seen more easily. Our results match

well with those published in [82]. It should also be noted that our stress tensor,

pij, corresponds to their stress tensor, σij, as follows: pij = −σij. These results

were produced by the ElasticEvolution code, and have been reproduced in the

MultiModel code.

4.4.6 Solid-solid test: stick

The solid-solid stick test also comes from [82]. The test consists of two solids that

stick completely at the interface between them; since both materials are considered

to be copper in this test, this is physically just a single material with discontinuous

initial data. The initial data for this test are exactly the same as for the solid-

solid slip test; the only differences are that both material are copper, and we use

stick instead of slip interface conditions. The results are shown at coordinate time

t = 0.06.

The results for this test are shown in Fig. 4.7. The blue markers show 100

of the 1000 cells in a high resolution evolution. The lines shown simply con-

nect the markers so that discontinuities are more apparent. Our results show

good agreement with those published in [82]. These results were produced by the

ElasticEvolution code, and have been reproduced in the MultiModel code.

4.4.7 Solid-vacuum test

We have implemented the solid-vacuum test published in [82]. This test consists

of stressed solid with a free surface, and the remainder of the computational grid is

occupied by vacuum. The left hand region of the grid (x < 0.5) is occupied by the

solid, which is taken to be aluminum, using the same equation of state parameters

as in the solid-solid slip test. The initial conditions for the solid are as follows:

(FA
i) =




1 0 0

−0.01 0.95 0.02

−0.015 0 0.9


 s = 0, v =




2

0

0.1


 (4.24)
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Figure 4.7: The solid-solid interface test using stick conditions published
in [82]. These results were produced by an evolution using 1000 grid cells;
only 1 in every 10 cells is shown for clarity, and are shown in blue. Since
the interface here is trivial—both materials use the same equation of state
with the same parameter values—we can compare these results to a single
material evolution, shown in black. Both of these results also match the
published results in [82].

Again we use kAB = diag(ρ
2/3
0 ), and we calculate p and ψAi from s and FA

i before

the initial time step. We show the results at the coordinate time t = 0.06.

The results for the solid-vacuum test are shown in Fig. 4.8. The blue markers

show 100 out of 1000 grid cells used for evolution, while the lines connect these

markers to make any large discontinuities readily distinguishable. All vacuum cells

have been removed, so the interface between the solid and the vacuum will be at

the last grid cell (to the right) shown on the plot. The values of the constant

states, as well as the wave speeds and the location of the interface match well
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Figure 4.8: The solid-vacuum test published in [82]. This evolution used
1000 grid cells, but only 100 are shown for clarity. Here, instead of simply
advecting the level-set function, we must evolve it instead using the veloc-
ity in the cell immediately to the solid side of the interface; when this is
done, the results match well with the published results for this test. We
note that the seemingly large error in entropy is not visible in the other
variables (i.e. the density), because the thermal term in the equation of
state is still much smaller than the other terms for this test. A similar
increase in entropy at the vacuum surface is seen in the results published
in [82].
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Figure 4.9: A solid-atmosphere evolution of the solid-vacuum test pub-
lished in [82], compared to the solid-vacuum results. These evolutions
used 1000 grid cells, but only 100 are shown for clarity. The blue trian-
gles show the results of a solid-atmosphere evolution with an atmospheric
pressure of 10−1, compared to an initial pressure in the solid of ∼ 18; the
results are reasonably close to the results of the solid-vacuum evolution,
shown in black. It is also possible to see the larger entropy and correspond-
ing dip in density due to overheating in the MultiModel code; these are
not present in the ElasticEvolution code results because of the presence
of the isobaric fix, as described in Section 4.2.10.

between our results and those published in [82]. These results were produced by

the ElasticEvolution code, and have been reproduced in the MultiModel code.
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Figure 4.10: Error between the solid-atmosphere test and the solid-vacuum
test as a function of atmospheric pressure. All of the tests were performed
with 1000 grid cells; the error is computed by finding the L2-norm of
the relative error in the density, as described in Appendix D. The error
is shown as the blue triangles, and a least-squares fit is shown in black.
The overall error from the vacuum solution is linear in the atmospheric
pressure.
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4.4.8 Solid-atmosphere test

To test the accuracy of atmosphere interfaces, we have adapted the solid-vacuum

test presented above to the solid-atmosphere scenario. The initial data are exactly

the same as above aside from the fact that there is an atmosphere in the right-hand

region of the grid. We test various atmospheric pressures to assess the impact of

this parameter on the results.

The results for the solid-atmosphere test are show in Fig. 4.9. An atmospheric

pressure of 10−1 (compared to an initial pressure of ∼ 18 in the solid) is shown

along with the vacuum result. This plot was produced using the MultiModel

code as opposed to the ElasticEvolution code, which was used to produce the

results shown in Fig. 4.8. The MultiModel results show the increased entropy

and dip in density characteristic of overheating; these features are not present in

the ElasticEvolution results because of the isobaric fix implemented there (a

description of overheating and the isobaric fix is in [85]. Fig. 4.10 shows the error

between the vacuum and atmosphere results as a function of atmospheric pressure.

It is clear that as atmospheric pressure is decreased, the results approach the solid-

vacuum result. A least-squares fit of the L2 norm of the error shows that it is linear

in the atmospheric pressure.

This test shows that the atmosphere is able to approximate the vacuum well for

situations where the vacuum results are well-behaved, but we have not yet been

able to quantify how well the atmosphere treatment works in situations where

the vacuum interface fails. We can force stellar-surface type tests to run using

an atmosphere with a suitably high atmospheric pressure, but we do not have an

estimate as to whether or not the results are actually physically correct. However,

as of yet, we have no better method for approximating a stellar-surface type solid-

vacuum interface, so we will use this method for our shattering simulations.

4.4.9 2D Riemann test

To test the 2D capabilities of the MultiModel code, we extended one of the 1D

Riemann problems from [82] to 2D using the method described in Section 3.5.7.

Basically, the initial discontinuity is set at an angle to the grid, and the vectors

and tensors are rotated accordingly.

We first extended the solid-solid slip test to 2D, using a 20 by 160 grid and a

20 by 800 grid. The results for this test, compared to the 1D results (produced by

the ElasticEvolution code) are shown in Fig. 4.11. The 1D and 2D results look

qualitatively similar, but some waves are smeared out in the 2D results, similar

to the effects seen in Section 3.5.8 (i.e. see Fig. 3.14). As in that section, the 2D
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Figure 4.11: A 2D evolution of the solid-solid slip test published in [82],
compared to the 1D results. The 1D evolution used 1000 grid cells, and
is shown in black; the 1D Riemann problem is extended to 2D using the
method described in Section 3.5.7. Results of a 20 by 160 grid are shown
in red, and results of a 20 by 800 grid are shown in blue. Qualitatively, the
2D results are similar to the 1D results; however, there is some smearing
of some features. Still, as resolution increases, the 2D results appear to
converge to the 1D results. Again, the 2D results show a jump in the
entropy near the interface. This is likely due to the overheating, which is
evident in the MultiModel code.
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results approach the 1D results as the resolution increases. We also see increased

entropy at the interface between the two solids; this is likely due to overheating,

which is present in the MultiModel code.

4.4.10 Conservation errors

The ghost fluid method is not conservative. This is due to two issues. First of all,

the flux to the left and right of the interface between two different materials will

not be the same. To understand this, consider the mass continuity equations. The

flux in the x direction is given by ρvx; if the interface is normal to the x direction,

then vx will be the same in the real fluid and ghost fluid at the same location, but

ρ can differ, so the flux will generally differ. Essentially this means that the flux

flowing out of one cell is not the same as the flux flowing into the adjacent cell,

leading to a loss of conservation.

Another contribution to the loss of conservation is advection of the level-set

function. First of all, the location of the interface can only be as accurate as the

method used to advect the level set. We also know that, while the actual location

of the interface will be somewhere between two cell centers, the GFM assumes

that the interface is located exactly at the boundary between the two cells. This

contributes periodic errors in conservation by over- or underestimating the volume

occupied by each material, depending where the interface is located relative to the

boundary between the cells.

To determine how these conservation errors affect our results, we have evaluated

the error in conservation by comparing the conserved quantities integrated over the

computation grid to their initial integrated values evolved forward in time using

the fluxes at the edges of the grid. As an example, we look at how we calculate

the conservation error in the situation where we use a simple forward-in-time time

integrator. The error in conservation is computed as follows:

E = Q−
∑

grid

q. (4.25)

Q, the initially integrated and then evolved conserved quantity, could, for example,

be evolved using simple forward-in-time differencing as follows:

Qn+1 = Qn +
∆t

∆x
(Fnp+ 1

2
− F 1

2
), (4.26)
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where the indices i = 1
2

and i = n + 1
2

are the edges of the grid, Fi− 1
2

is the

numerical flux through the left edge of the ith cell, and Q is initialized as

Q0 =
∑

grid

q0. (4.27)

If simple forward-in-time differencing is used to evolve Q, then it should also be

used to evolve the conserved quantity, q, as follows:

qn+1
i = qni +

∆t

∆x
(Fi+ 1

2
− Fi− 1

2
). (4.28)

In general, we will not use forward-in-time differencing for the time integration.

Instead, we use a Runge-Kutta method. When an RK method is used, the flux

terms above are simply used as an input for the RK method. We use the same

RK method for the time evolution of Q and q.

When we calculate the cumulative error in conservation for the single-model

Riemann tests discussed in Section 3.5, we see that this error typically does not go

above the level of round-off error for Newtonian tests.2 However, when we look at

the error in conservation for our interface tests using a level-set function with the

GFM, we see that the error is much larger, and is periodic in time. These results

are shown for the BOD1 interface test (solid-fluid interface) in Fig. 4.12.

As mentioned above, there is no aspect of the algorithm that identifies or

uses the exact location of the interface, so from a computational perspective,

the interface can only be located at the boundary between two cells; however,

physically, the location of the interface varies continuously in space. This error

in the position of the interface causes an error in the overall conservation of the

system; the error is periodic as the interface moves from one cell boundary to the

next. This is supported by the fact that the error converges with resolution, and

that the period of the error also decreases linearly as the grid spacing decreases,

as can be seen in Fig. 4.13.

In Fedkiw et al 1999 [75], the convergence rate for the error in conservation

is estimated for a helium bubble advected in air. Because of the nature of the

advection problem, the GFM achieves the exact state in each fluid, and the only

contribution to the error in conservation is the advection of the level-set function.

With this test, they observe second-order convergence with resolution. Because

2We expect that the error should not go above the level of round-off error for any single
material tests, but we have a bug that prevents this for relativistic tests. Although this is
unresolved, it is not relevant to our discussion of the conservation error for Newtonian tests,
and is not integral to the overall functioning of the code. A description of this bug is given in
Appendix E.
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Figure 4.12: The cumulative error in conservation over time for the BOD1
interface test. The error in conservation is defined by Eq. 4.25 and the
following equations. The red line shows the error as a function of time
for a 100 grid cell evolution; the blue, green, and black lines are from
evolutions using 250, 500, and 1000 grid cells, respectively. By eye, one can
see that the error converges by somewhere between first and second order
in the resolution, and the period of the error also decreases linearly with a
decrease in grid spacing. The error is periodic, because of the contribution
from the discrepancy between the physical location of the interface and
the location assigned by the level-set/GFM algorithm, which can only be
at cell edges.
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Figure 4.13: The top plot shows the convergence of the cumulative error
in conservation of Sz as the number of points on the computational grid
increases (as the grid spacing, ∆x, decreases). Each blue markers shows
the average error over an evolution (the root mean square value over time),
and the black line shows a least-squares fit to the data. Using the least-
squares fit, we see that the error converges at an order of about 1.5 in the
resolution. The bottom plot shows the decrease in the period of the error
in conservation of Sz with resolution: the blue markers are the period for
each evolution and the black line is a fit. The fit shows that the period
decreases by 1/n, and therefore increases linearly with increasing ∆x, as
expected. The period was found by finding the length of the first half-
period of the evolution, and multiplying by 2.
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our test will be affected by both sources of error, it is to be expected that the order

of convergence should be somewhat lower than this value—as shown in Fig. 4.13,

we measure a convergence order of ∼ 1.5.



Chapter 5

Shattering

As we know, a neutron star has a solid crust and a fluid core. There are various

different mechanisms that could break the crust, including the decay of magnetic

fields in the star, spin down of a rotating star, and tidal forces due to a companion

star in a binary merger system. In fact, it has been suggested that starquakes play

a role in the mechanisms behind observed effects such as pulsar glitches, quasi-

periodic oscillations after magnetar flares, precursors to short-hard gamma-ray

bursts, and flares and outbursts from soft gamma-ray repeaters and anomalous

x-ray pulsars.

In the following chapter, we discuss how breaking of the crust is likely to occur,

how it is achieved in our model, and the results of numerical tests.

5.1 Earthquakes

It is possible that the neutron star crust material will fail by cracking and slipping

along surfaces. This is the type of breaking that you would intuitively think of if

you were making the analogy between an earthquake and a starquake: the crust

breaks along some fault line, slips, and causes waves to propagate away from this

initial slippage area.

We could imagine that it might be easy to simulate cracking in our model using

the interface methods described in Chapter 4. At a certain point in the simulation,

we could simply split the numerical grid into two separate solids, and allow these

two solids to slip against one another at that interface. We could even include a

small vacuum region between the two solids, which would allow voids to form at

the crack.

However, this simple treatment of cracks brings up some obvious questions.

When should the crack form? Would the crack be instantly infinite (or surrounding

some limited region) or would we need to transition between slipping behavior at

129
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the center of the crack and sticking at the edges? If the crack does have edges, how

would these edges propagate through the crust? There is extensive literature about

crack formation and propagation in terrestrial solids in the Newtonian regime, but

more study would be needed to determine how this should be applied to relativistic

systems.

In any case, evidence suggests that this type of breaking will not occur in the

neutron star crust. Molecular dynamics simulations show that, because of the high

density of the material, localized features are not present, and therefore, cracks

do not tend to form [11]. These results agree with an earlier prediction by Jones

2003 [12], arguing that any cracks that form would immediately be rehealed by

the high pressure in the system.

Levin and Lyutikov 2012 [15] point out that the length scale of these simula-

tions is much smaller than the size of a neutron star, and suggest that catastrophic

failure on a microscopic scale could look like crack formation on a macroscopic

scale; however, their own work shows that even if cracks do form, the magnetic

fields permeating the crust essentially hold the two sides of the crack in place,

allowing very little slippage to occur, and not much elastic energy is released.

For these reasons, we believe that it is more likely that the crust will fail in a

catastrophic, global way.

5.2 Shattering

Another scenario for the failure of the neutron star crust is shattering or catas-

trophic failure in some volume of the crust. This type of failure is suggested by

the molecular dynamics simulations of Horowitz and Kadau [11], which show that

this type of catastrophic failure is favored over cracking. This is roughly because

the screened Coulomb interaction in their simulations has no explicit length scale

(i.e. the system at twice the density behaves like the system at the original density

at a lower temperature), and particles can interact with other particles that are a

large distance away from them. This arises from the high density in the neutron

star, which means that the electrons are not associated with particular nuclei, but

instead form an electron gas that permeates the crystal evenly. This means that

the material fails abruptly in a collective fashion, whereas, for example, terrestrial

metals can have localized features which allow localized defects to appear [11].

Horowitz and Kadau also see that molecular dynamics simulations starting

with a cylindrical hole initialized in an otherwise perfect crystal quickly heal due

to the high pressure in the system [11]. This agrees with the predictions in [12]. All

of this suggests that, once a region has shattered, it is expected that it will refreeze
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almost instantaneously due to the high pressure in the system. The shattering

releases any shear stresses present so that when the material has refrozen, the

stress is completely isotropic.

Although the shear stresses are released as a result of both, shattering is dif-

ferent from melting. Penner et al [86] show that the built up local strain required

to melt the crust upon release of the elastic energy was

u & 0.5
(α

5

)1/2

, (5.1)

which is greater than the breaking stress estimates in [11]. This means that, while

we expect catastrophic shattering of the crust, we do not anticipate melting of the

crust.

In our model, what we mean by shattering is the instantaneous relaxation of

the material (i.e. the removal of all shear stresses). Recall, from Section 3.2, that

the unsheared state occurs when the matter-space metric is proportional to the

spacetime metric pushed forward onto matter space:

kAB = n2/3gAB. (5.2)

All we need to do to achieve instantaneous relaxation is to reset quantities in order

to make the above expression true. To do this, we can either reset the matter-

space metric, kAB, or the configuration gradient, ψAi; since it is much simpler to

reset kAB, this is what we choose to do in practice.

It is also worth noting that, when we reset the matter-space metric, the density

remains constant in the shattered cells; generally, we can only keep one thermo-

dynamic quantity constant (i.e. entropy, internal energy, or pressure), since the

relationship between them depends on the shear scalar, which will change at shat-

tering. Physically, the specific internal energy, ε, is the variable that should be

kept constant at shattering due to conservation of energy. The pressure and en-

tropy are then allowed to change. For physically reasonable equations of state, the

reduction in the shear scalar associated with shattering will need to be matched

by an increase in entropy in order to keep the internal energy constant; this repre-

sents some of the elastic energy being converted into heat, which is what we expect

physically. A missing element in this model is some mechanism for the dissipation

of that localized heating.
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5.3 Results

We have implemented a few shattering examples to demonstrate the method’s

effectiveness in neutron star simulations. First we shatter a circular region in a

homogeneously stressed block of solid. Next we set up a star-like toy model with

a crust, core, atmosphere, and background potential, and then shatter a small

region of the crust. Details about the initial data for these systems, as well as the

results, are in the following sections.

5.3.1 Homogeneous initial data

Our first test starts with a stressed block of copper, with homogeneous but non-

zero anisotropic stress, and then a circular region at the center of the 2D com-

putational grid is shattered, and refrozen in the relaxed state. This is a largely

artificial situation, with limited physical interpretations, but you could think of

a block of copper that is stressed in some way (say in some vice grips, but with

the shear stresses non-zero, so maybe one edge is being pushed one way and the

other in the other direction), and then, artificially, the shear stresses are suddenly

relieved in some circular region in the center. The Cranfield equation of state

(Appendix C.2) is used, with the material parameters for copper as discussed in

Section 4.4. The initial data are as follows:

FA
i =




0.98 0 0

0.02 1 0.1

0 0 1


 s = 0.001, v =




0

0

0


 . (5.3)

The matter-space metric is set (before shattering) to kAB = diag(ρ
2/3
0 ). The central

circular region (x2 + y2 < 0.25) is then shattered as discussed in Section 5.2, and

the system is allowed to evolve.

Shattering results in a discontinuity in the components of the matter-space

metric, kAB. If we choose to evolve this shattering simulation using a single-

material evolution (i.e. no level-set function or ghost-fluid method), then advection

of the matter-space metric causes this discontinuity to smear unphysically, which

causes large errors in the density and the entropy. To avoid these errors, we can

simply use two different materials: one for the shattered region and one for the

unshattered region. The ghost-fluid method for elasticity has us extrapolate the

matter-space metric components into the ghost fluid; this means that the method

will perfectly preserve the initial values of the matter-space metric, and prevent
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Figure 5.1: The shear stress component, pxy, of the stress tensor at four
times during a shattering evolution. The initial time step shows the com-
ponent immediately after shattering; in the outer regions, the shear stress
is homogeneous, but non-zero, but in the circular region where shattering
has occurred, the shear stress has been reset to zero. In the subsequent
time steps, waves are seen propagating away from the shattered region;
no numerical problems were encountered as this occurred. The simulation
was produced by the MultiModel code using two materials and a grid res-
olution of 400 × 400; the shown coordinate times are t = 0.00, t = 0.02,
t = 0.05, and t = 0.09.
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Figure 5.2: The results for a 1D slice along the diagonal, y = x, are shown
for the initially homogeneously stressed shattering simulation. The re-
sults are shown at coordinate time t = 0.06, and were produced using the
MultiModel code and a grid resolution of 400 × 400. Examining the 1D
results allows us to distinguish the different waves types. The velocity is
split into components parallel to and perpendicular to the slice so that
shear and pressure waves can be distinguished more readily. For example,
a fast pressure wave can be seen around x = ±0.85 and x = ±0.15 in ρ,
v||, and pxx, while a slightly slower shear wave can be seen at x = ±0.63
and x = ±0.37 in v⊥ and pxy. In this plot, we also compare a single
model evolution (red) to an evolution where we treat the shattered and
unshattered regions as separate materials (black). Using separate materi-
als prevents large errors in the density and entropy, caused by smearing of
the matter-space metric, kAB, during advection.
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Figure 5.3: The convergence of the homogeneous shattering simulation.
The same initial data were used for simulations run on square grids of
various resolutions ranging from 16 × 16 to 200 × 200. These were then
compared to a high resolution (400 × 400) run; the measure of error is
as described in Appendix D. The error in the density was evaluated at
coordinate time t = 0.06. This is plotted for various grid resolutions. A
least-squares fit shows that the convergence is of order −0.59 in n, where
the grid is n× n.
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all smearing. The results shown here use a two-material evolution to eliminate

these errors.

The results are shown in Fig. 5.1. This figure shows a shear-stress component,

pxy, at coordinate times t = 0.00, t = 0.02, t = 0.05, and t = 0.09. Initially, the

shear stress component is homogeneous and non-zero, aside from the central region,

where it has been reset to zero by the shattering process. In the subsequent time

steps, waves can be seen propagating away from the initial discontinuity between

the shattered and unshattered region. At the final time shown here, the fastest

waves have interacted at the center of the grid, and have reached the boundaries.

It is easier to examine the wave structure of the numerical results by looking at a

1D slice of different variables. Such a slice was taken along the diagonal, y = x, and

the values of several variables are shown at t = 0.06; these are shown in Fig. 5.2.

A single-material evolution is shown (red), and compared to the two-material

evolution (black). The large errors in the density and entropy in the single-material

evolution are due to smearing of the matter-space metric components; these are

eliminated by using two materials instead of one. From these plots it is possible to

see fast-traveling longitudinal (pressure) waves, which travel at the sound speed

and are characterized by jumps in ρ, v||, and pxx at around x = ±0.85 and x =

±0.15. It is also possible to see slower-traveling transverse (shear) waves (traveling

at the shear velocity) in v⊥ and pxy at around x = ±0.63 and x = ±0.37. Although

we do not calculate the wave speeds exactly in the MultiModel code, we can

nevertheless see that the wave speeds traveling inward are approximately the same

as the wave speeds traveling outward, as the waves are equal distances from the

initial discontinuity (at x = ±0.5).

It is also possible to see the increased heat in the central region due to the

shattering; as mentioned before, a release of elastic energy means that there should

be an increase in the thermal energy in that region.

Fig. 5.3 shows a convergence plot of the relative error in the density between a

high resolution run and lower resolution runs. The error is calculated at coordinate

time t = 0.06. The plot clearly shows that, as the grid resolution increases, the

results are converging; a least-squares fit shows us that the order of convergence

is −0.59.

Nominally, the methods used for this simulation should converge at second

order in the resolution. Since the observed order of convergence is much lower

than this, we examine a simpler test to try to illuminate what could be causing

this low convergence order.

To do this, we construct a 1D shattering simulation with initial data equivalent

to a slice along the diagonal, y = x, of the 2D homogeneously stressed shattering
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Figure 5.4: A 1D homogeneously stressed shattering simulation with ini-
tial data equivalent to the left half of a diagonal slice along y = x of the
2D shattering simulation. It is evolved in 1D with planar symmetry. This
is a good approximation of the diagonal slice at early times in the evolu-
tion, when the curvature of the discontinuity has not yet begun to affect
the shape of the waves. We study the convergence of this 1D test as a
comparison to the 2D results. Here a grid-resolution of 1600 cells (blue
circles) is compared to a high-resolution simulation using 25600 cells. The
wave structure of ρ, vx, and vy, here can be compared to the wave struc-
ture of ρ, v||, and v⊥ in Fig. 5.2. With the higher resolution here, we can
see not only the pressure waves at around x = −0.85 and x = −0.15,
but we can also see that, while we have one shear wave traveling into
the shattered (unsheared) region at around x = −0.37, we actually have
two shear waves traveling into the unshattered (sheared) region centered
around x = −0.63. This is precisely due to the degeneracy in the shear
waves discussed in Section 3.4.5.
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Figure 5.5: A close up of the density over the right-traveling shear rarefac-
tion wave for the 1D homogeneously stressed shattering simulation. The
rarefaction wave is shown for various resolutions; it is clear that the solu-
tion is converging in this area. We can also see this when we look at the
relative error (measured against a high-resolution run using 25600 cells).
We also see Richardson scaling of this error when we scale the error using
a power of the resolution; however, the power necessary for this scaling is
somewhat lower than the nominal second order convergence rate for the
methods used. Here, the scaling power appears to be around 0.79, which
matches the fit of the error for the higher resolution simulations shown
later in Fig. 5.6.
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Figure 5.6: The convergence of the 1D homogeneously stressed shattering
simulation. For high-resolution shock capturing methods, we only expect
higher-than-first order convergence for smooth regions, so here we have
calculated the norm of the error in the density in only the smooth region
x > −0.4. If we include all of the simulations, then the fit of the error
shows convergence at only an order of −0.41 in n. However, we can see
in Fig. 5.4 that, although the waves in this region are smooth rarefaction
waves, they are quite sharp and look almost like shocks, meaning that
they are not well resolved at low resolution. Even if we restrict the fit
to the highest resolution simulations (1600 cells to 12800 cells), we still
only observe a convergence order of −0.79. We believe this to be due to
the fact that, even at these high resolutions, the rarefaction waves are still
not well-resolved. This is supported by the fact that the wave in Fig. 5.5
is still getting steeper with resolution, and exhibits an undershoot to the
left of the wave: the numerical method is still reacting as if these regions
were discontinuous. This means that we should expect no better than first
order convergence for this simulation.
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simulation discussed above. The simulation is evolved in 1D with planar sym-

metry, so its results are not equivalent to the results of a 1D slice of the above

test, but should be comparable for early times, when the curvature of the initial

discontinuity has negligible effect. The results of this 1D test at coordinate time

t = 0.06 are shown in Fig. 5.4. These results can be compared to the diagonal

slice of the 2D simulation, shown in Fig. 5.2.

Looking at a limited region of the density around the shear, rarefaction wave at

x = −0.37 (Fig. 5.5), we see that the solution is converging with resolution. This

is even clearer when we plot the relative error with respect to a high-resolution

simulation using 25600 cells. Fig. 5.6 shows a log-log plot of the error for a large

range of different resolutions. Since we only expect high-resolution shock capturing

methods to converge at higher-than-first order in smooth regions, we restrict the

error calculation to take the norm of the error over only the smooth region where

x > −0.4. A fit over all of the resolutions gives an order of convergence of just

−0.41 in n. Since the rarefaction waves in this region are quite steep, these features

may not be well-resolved at low resolutions; indeed, if we restrict our fit to higher

resolutions, we see that we get convergence at −0.79 order in n. Using this, we

check for Richardson scaling1 of the error in Fig. 5.5, and see that the error does

seem to scale at approximately this order.

This order of convergence is still significantly lower than the nominal second

order convergence expected for these methods. However, we would argue that the

rarefaction waves are still not well-resolved, even at the high resolutions shown

above. Even for the highest resolutions shown, the rarefaction wave in Fig. 5.5

continues to steepen with increased resolution. It also exhibits an undershoot

to the left of the wave at all the resolutions shown. Essentially, the numerical

methods are still reacting to this wave as if it were a discontinuity, meaning that

we should expect, at best, first order convergence for these tests.

5.3.2 Starquake toy model

In a more realistic neutron-star simulation, the solid crust should be situated in

some background potential, and be in equilibrium before shattering. This will

require gradients in density, pressure, and internal energy. The crust should also

be coupled to a fluid core, and we should have a free surface. To test a more

realistic scenario, we have set up a toy model.

1See Appendix D.
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In this 2D toy model, we have a solid crust, coupled to a fluid core and external

atmosphere, all in a Newtonian background potential. Initially, we have an atmo-

sphere where y > 0, solid where −0.75 < y < 0, and fluid where y < −0.75. The

fluid is described by a Gamma-law equation of state for an ideal gas; the equation

of state for the solid is a toy equation of state (Appendix C.1), which generalizes

the Gamma-law equation of state by adding an additional term proportional to

the shear scalar (this is the Toy equation of state described in [1]). For the fluid,

we set the equation of state parameter Γ = 2, and for the solid, we set Γ = λ = 2,

and κ = 0.1, where λ is the power for the dependence of the shear term on the

density, and κ is a factor that determines the size of this term relative to the

thermal (fluid) term.

To set up the problem, we start by finding the hydrostatic equilibrium for a fluid

described by the Gamma-law equation of state. For this hydrostatic equilibrium,

the density, pressure, and internal energy are as follows:

ρ =

[
Γ− 1

K(s)Γ
(−g(y −R))

] 1
Γ−1

, (5.4)

p = K(s)

[
Γ− 1

K(s)Γ
(−g(y −R))

] Γ
Γ−1

, (5.5)

ε =
1

Γ
(−g(y −R)) , (5.6)

where R is the location of the surface of the star, and g is the acceleration in a

constant, plane-symmetric gravitational field. We choose the isentropic solution

for a fluid star, where K(s) = 1, and as mentioned above, Γ = 2. As a result,

ρ and ε are linear in y, and p is quadratic. We will use the above equations to

calculate the initial data in the fluid part of the star.

Next, we must find the corresponding equilibrium solution in the solid part of

the star. Because there are multiple configuration gradients, ψAi, and matter-space

metrics, kAB, that will produce the same density profile, we have some freedom

with how we choose these variables. However, we also have the additional require-

ment that the solid should be anisotropically stressed: if it were not, shattering

would have no effect.

To do this, we start with ψAi = diag(1, 1, 1) and kAB = diag(ρ
2
3 , ρ

2
3 , ρ

2
3 ), which

is a solid in its relaxed state. We then divide one term of the matter-space metric by

a constant factor, a, and multiply another term by the same factor; this maintains

the value of the determinant of kAB,2 and therefore the density remains the same

2Here we use the Newtonian metric, gab = δab, and ψA
i is the identity matrix, so the trans-

formation between kAB and kAB is trivial
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Figure 5.7: A sketch showing the pressure at the surface of the neutron star
toy model. In the continuum, the pressure goes to zero at the surface of the
star; however, since we are using an atmosphere, the pressure will instead
go to some non-zero atmospheric pressure at the surface. To achieve this
in the initial data, we set R so that p = patm at x = 0, which is the
location of the solid-atmosphere material interface. Effectively, this clips
off the surface of the star; for the simulation shown below, which has a
grid resolution of 50× 200 and an atmospheric pressure of patm = 0.01, 6
cells are clipped off, shown here in red.

as in the relaxed state (it is still equal to ρ). Physically, this is effectively stretching

the solid in one direction and squeezing it in the other (with no shearing), so that

the density remains the same.

To be sure the system is in equilibrium, the pressure in the solid crust should

be the same as it would be if it were in a fluid in the hydrostatic equilibrium

shown above. Since we chose Γ = λ, this is automatically achieved as long as the

density and internal energy are both the same as they were in fluid hydrostatic

equilibrium (see Eq. C.7). If the internal energy is the same between the solid and

fluid cases, then we can derive the relationship between K(s) in the solid and the

fluid:

K(s)solid = K(s)fluid − (Γ− 1)κρλ−ΓS = 1− κS, (5.7)

where we have plugged known quantities into the last equality.

Since we have an atmosphere, the pressure should go to patm at the surface,

rather than to zero. From this, we can calculate the constant, R, which is the

location where p, ρ, and ε go to zero. We also use g = 4 for the toy model

simulation shown here.
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In summary, the fluid is set as follows:

ρ = −2y + p
1
2
atm, ε = −2y + p

1
2
atm, v =




0

0

0


 . (5.8)

The solid is then set like this:

ψAi =




1 0 0

0 1 0

0 0 1


 kAB =




ρ
2
3

a
0 0

0 ρ
2
3 0

0 0 aρ
2
3


 v =




0

0

0


 K(s) = 1− κS,

(5.9)

where ρ is determined as in the fluid case, and a is a scalar factor, which determines

the degree to which the crust is stressed. In this simulation, we set a = 2.5. An

atmospheric pressure of patm = 0.01 was used for this simulation. For reference, the

maximum pressure in the initial data is pmax ≈ 10.0. In the simulation shown here

(meaning for a 50× 200 grid), this atmospheric pressure effectively cuts of 6 grid

points at the surface; this is illustrated in Fig. 5.7. In a hydrostatic equilibrium

where the pressure goes to zero at the surface, the atmospheric pressure is reached

after moving 6 grid points away from the surface (where the pressure is zero).

Once we have this set up, we shatter a circular region centered at (0,−0.475),

with a radius of r = 0.1375. We note that, because we already have 3 materials in

the evolution, and because smearing of the matter-space metric does not seem to

cause errors as drastic as those seen in the homogeneously stressed shattering sim-

ulation above, we do not use separate materials for the shattered and unshattered

regions for this particular test. Some errors result from this smearing, but run-

ning with an additional material would become extremely time-consuming. The

pxx component of the stress tensor, along with velocity vectors, and the difference

between pxx and its equilibrium value, are shown in Figs. 5.8-5.11 at coordinate

times, t = 0.0, t = 0.3, t = 0.6, and t = 1.1. For reference, the free-fall time

across the grid is t ≈ 1, and the sound speed in the equilibrium configuration is

0.5 . cs . 2.5, so the crossing time for sound waves is 0.7 . t . 3.6, where the

sound speed is lowest at the surface, so sound waves will travel more slowly there.

The shear speed in the crust ranges from 0.15 . λT . 0.55; so the crossing time

for shear waves is longer than that for sound waves.

Fig. 5.8 shows the initial data for the toy model shattering simulation. The

stress-tensor component, pxx, in the solid is the sum of the pressure and the

anisotropic stress; the gradient in this variable is due to the gradient in the pres-

sure, which is necessary to keep the system in hydrostatic equilibrium. In the
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Figure 5.8: The toy model shattering simulation at coordinate time, t =
0.0. On the left, the stress-tensor component, pxx, is shown, while on the
right, the difference between this component and its equilibrium value is
shown. The interface boundaries at the top and bottom of the crust are
also shown as a thick black line. Initially, the toy model consists of a solid
crust on top of a fluid core with an atmosphere outside, all in equilibrium in
a background potential. The crust is initially anisotropically stressed; the
result of this can be seen in the right-hand plot. In the outer regions, pxx is
equivalent to its equilibrium value, which is partially due to pressure and
partially due to anisotropic stress, but in the shattered region, the value
of pxx has been altered. The results are produced using a 50× 200 grid.

shattered region, all anisotropic stress has been removed; this can be seen in the

left-hand picture, but it is especially apparent in the right-hand picture, when we

look at the difference from the equilibrium configuration.

Fig. 5.9 shows the results at coordinate time t = 0.3. Here, velocity vectors

are also included. Shattering causes an initial discontinuity in the pressure; this

is the source of the fast-traveling pressure wave that can clearly be seen in the

right-hand image, and that is also seen in the velocity. Because the sound-speed is

higher in the interior of the star, sound waves move more quickly in the downward

direction. This is easily observed in the right-hand plot where the wave has already

propagated well into the fluid in the downward direction, but is only just beginning

to reach the surface in the upward direction. The non-zero velocity along the

surface is not a result of shattering, as the first wave has not yet reached most of

the surface. This is due to errors in the surface treatment. A similar wave can be

seen propagating into the fluid; this is, again, due to small errors in the interface

treatment between the crust and core. We also see these errors in equilibrium

solution evolutions without any shattering.
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Figure 5.9: The toy model shattering simulation at coordinate time,
t = 0.3. In addition to the variables shown in Fig 5.8, here we also see
velocity vectors in the left-hand image. Here we can see a fast pressure
wave moving outward from the initial shattered region, as well as vorticity
being generated there. The results of errors in the surface and interface
treatments are also visible as plane-symmetric waves in the results.

In the left-hand panel of Fig. 5.9, it is also possible to see that some vorticity is

generated at the boundary between the shattered and unshattered regions. When

the anisotropic stress is released, the stress in the x-direction between the shat-

tered and unshattered regions is unbalanced; this causes outward motion in the

x-direction everywhere along the curved discontinuity. The outward motion will

be largest at around y = −0.45, where the discontinuity is normal to the direction

of the stress gradient, and will go to zero at the top and bottom of the shattered

region. The difference in horizontal motion, combined with the curved shape of

the discontinuity causes the vorticity that we see here.

Fig 5.10 shows the results at coordinate time t = 0.6. Here, we see that

the vorticity generated by the initial shattering discontinuity has interacted with

both interfaces, causing them to noticeably deform. The initial pressure wave has

reached the right and left edges of the grid, and, because we use periodic boundary

conditions in x, interacts with itself; this can be seen as the blue arcs at the left and

right edges of the grid. Errors similar to those seen in the homogeneous shattering

simulation (Fig. 5.2) can be seen persisting along the edges of the region that

was initially shattered; as mentioned earlier, these are due to smearing of the

discontinuous matter-space metric. Interestingly, the shape of the error region is

deformed (in Fig. 5.10, the region is wider than it is high) by the vorticity of the

flow in the same way that the interfaces are. Essentially, the fast outward flow due

to the stress gradient in the horizontal direction causes the density and pressure in
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Figure 5.10: The toy model shattering simulation at coordinate time, t =
0.6. Here, the fast-moving pressure wave has interacted with the periodic
boundaries at the left and right edges of the grid. The interfaces at the
top and bottom of the crust are both deformed by the vorticity of the
flow. We also see error persisting at the edge of the shattered region due
to smearing of the matter-space metric; the shape of this error region is
also deformed by the vorticity.

Figure 5.11: The toy model shattering simulation at coordinate time, t =
1.1. After interacting with itself at the boundary, the pressure wave has
reflected back, and interacted again at the center of the grid. The vorticity
travels rather slowly along the interface between the crust and the core;
the main driving force behind this is shear in the solid. The matter-space-
metric-smearing error continues to persist. Low and high stress regions
also form around the initial shattered region.
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the center of the crust to drop; the material then responds with an inward velocity

in the vertical direction, causing the pinching effect.

Fig. 5.11 shows the results at coordinate time t = 1.1. Here the fast pressure

waves have interacted at the boundary, and their reflections have interacted again

at the center of the grid. The vorticity continues to deform the interface between

the crust and core, while traveling outward along this interface. The vorticity

moves along the interface due to shear waves in the crust; this is supported by

the fact that the center of vorticity moves a distance of around ∆x ≈ 0.45 by this

coordinate time, giving a speed of ∼ 0.4, which is well within the range of shear

speeds in the star.

That said, the deformation of the top surface of the star varies much more

quickly than the deformation of the crust-core interface. The dominant force be-

hind this effect must be pressure, since the waves have traveled outward, interacted

at the periodic boundary, reflected back, and are traveling inward again.

We also see that the density errors due to matter-space metric smearing still

persist, and that the shape of the error region has deformed even more. Low stress

areas have also developed at the top and bottom of this region, while high stress

areas have developed to either side.

Fig. 5.12 shows the convergence of the toy model shattering simulation. It is

clear that, as the resolution increases, the results converge. The error is computed

at coordinate time t = 0.3. A least-squares fit shows that the results converge

at order −1.25 in n, where the grid resolution is n × n. The numerical methods

are nominally second-order convergent, so the convergence order between first and

second order is as expected. This test differs from the homogeneously stressed

shattering simulation in that it does not include extremely steep rarefaction waves.

All of this demonstrates that we can combine all of the methods developed into

one simulation: namely, the solid crust, crust-core and atmosphere-crust interfaces,

and shattering.
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Figure 5.12: A convergence plot for the toy model neutron star shattering
simulation. The error was calculated for various grid resolutions ranging
from 5×20 to 25×100; these were then compared to a high resolution sim-
ulation (50×200). The error is estimated as described in Appendix D. The
error is calculated at coordinate time t = 0.3. As the resolution increases,
the results converge. A least-squares fit shows that the error converges
with a power −1.25 in n. This is as expected: the methods used should
nominally converge at second order, so for a simulation including disconti-
nuities, we expect somewhere between first and second order convergence.
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Conclusions

6.1 Summary

Although the mass of the crust of a neutron star makes up only a small portion of

the total mass of the star, starquakes could have significant effects on the dynamics

of neutron star systems. The shear modulus of the crust is much smaller than

the compression (or bulk) modulus: shear modes will be at lower frequencies

than fundamental fluid modes of the star. This means that these modes can

be excited in situations where the fluid modes would not be readily excited. In

particular, starquakes have been suggested as possible mechanisms behind pulsar

glitches, quasi-periodic oscillations after giant flares in soft gamma-ray repeaters,

and the precursor signals to short-hard gamma-ray bursts. In short, breaking of

the neutron star crust can have observable effects, and we would like to examine

the dynamics of these starquakes in neutron star binary systems as well as isolated

neutron stars.

With this long-term aim in mind, the goal of my PhD has been to develop

a toy model that demonstrates several of the different methods that we need in

order to perform more realistic numerical simulations of neutron star systems.

Chapter 2 discusses some of the numerical methods that are commonly used

to simulate systems of conservation laws; these are methods that are used both

for the codes implemented to develop the toy model, as well as for the matter-

evolution parts of 3D fully-relativistic codes, which could be used to do more

realistic neutron star simulations in the future.

With the basics covered, Chapter 3 goes on to describe the solution to the first

of the technical challenges of simulating neutron starquakes; namely, the problem

of evolving a solid crust in general relativity. Here, a conservation-law formulation

for non-linear elasticity is described. The conservation-law formulation means
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that the equations should be relatively easily integrated into existing codes for

neutron star evolutions; it also admits weak solutions, or shocks, which we would

expect to arise naturally from shattering or other types of breaking of the crust.

In Section 3.5, a numerical implementation of the formulation is described, as are

the results of several numerical tests.

With the problem of evolving the solid crust solved, we move on to coupling

that crust to a fluid core. In particular, the transition between the crust and the

core is much smaller than the overall size of the neutron star, so the boundary

should be modeled as a sharp transition, or an interface. In Chapter 4, we discuss

methods for evolving material interfaces, including using a level-set function to

track their location, and an extension of the ghost-fluid method other types of

interfaces and to general relativity. The results of several numerical tests are

discussed.

In addition to the solid-fluid interface between the crust and the core, to model

the system, we will also need some way of treating the surface of the star, where the

density, pressure, and internal energy all go to zero. For the toy model presented

here, we use an atmosphere; Section 4.2.9 discusses exactly how this atmosphere

is implemented in the toy model, and an evaluation of how well this atmosphere

approximates a vacuum is presented in Section 4.4.8.

The last piece necessary to put together the toy model is some mechanism

for breaking the crust. Molecular dynamics simulations suggest that the neutron

star crust fails catastrophically rather than forming local dislocations, or cracks;

because of this, we implement a mechanism for shattering, which amounts to

instantaneous relaxation of the material in some volume of the crust. This is

described in Chapter 5. Some results for a simple shattering simulation are shown.

The final 2D toy model is presented in Section 5.3.2. It consists of a solid

crust, a fluid core, and an external atmosphere all in some background Newtonian

gravitational potential. A region of the crust is then shattered, and the resulting

evolution is examined.

Although the results here may not be physically significant, they represent the

first time that all of these methods have been combined into a single simulation.

As such, this work represents a significant step forward, showing that realistic

simulations of starquakes are technically feasible. These can then be used to

study binary neutron star mergers or isolated neutron stars, and to determine the

mechanisms behind various observed phenomena.
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6.2 Future work

The first thing that we would like to investigate in the near future is the accuracy

of the atmosphere method that we use at the surface of the star. In Section 4.4.8,

we have shown that the results of solid-atmosphere Riemann problems approach

the solid-vacuum results as the atmospheric pressure is reduced, as long as we use

a terrestrial equation of state. We also know that evolutions of the stellar surface

of our toy model are stable for sufficiently high atmospheric pressures. However,

we do not know whether this stellar surface evolution is correct; in principle,

the atmosphere treatment is an approximation of the physical system and is not

expected to be correct, but we would like to quantify exactly how wrong it is, and

how this affects the results of the overall simulation.

In addition to this, we would like to perform a toy model simulation similar

to that presented here, but in general relativity with a fixed background metric.

This will give us an increased level of confidence that the methods implemented

here will work in fully general relativistic simulations.

A future goal for this project is to take the methods used here and to import

them into a 3D fully relativistic code such as Cactus (i.e. as an extension to

the GRHydro thorn) so that more realistic and physically relevant neutron star

simulations can be performed. A first step would probably be to import elasticity

into the matter part of one of these codes by making appropriate additions to the

part of the code that handles the hydrodynamic evolution. Specifically, we would

need to include additional evolution equations for the configuration gradient, ψAi,

and for the matter space metric, kAB; we would also need to adapt the matter

evolution equations as well as the equation of state to include anisotropic-stress

terms. In relativistic elasticity, the conversion of conserved variables to primitive

variables also requires a 4-dimensional root finder rather than the 1-dimensional

root finder used for relativistic hydrodynamics. We would also want to think

carefully about how to implement an elastic atmosphere.

Adding elasticity to this type of code, by itself, could already potentially lead to

some interesting physics results, providing upper limits on the effect that elasticity

could have on the dynamics of binary neutron star mergers, for example. Of course,

if one is only interested in these upper limits; there may be simpler ways to achieve

this goal. For example, one could potentially determine the maximum influence of

elasticity on the tidal deformations of neutron stars in a binary merger system, and

therefore the phase evolution of the gravitational waves emitted from this system,

by importing elasticity into a LORENE-like code to find a series of equilibrium
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orbits. However, to simulate starquakes, we do need to import elasticity into a

fully relativistic hydrodynamics code.

The next step would be to import the methods for interfaces into the code. This

would allow us to do simulations of even more realistic neutron stars, including

both a crust and a core. We could then gain an even better insight into the

dynamics of starquake systems, and how these compare to the observed phenomena

that may be linked to this behavior.

Of course, in order for the observed behavior to actually become observable,

a magnetic field will need to be present. Some of the proposed mechanisms that

could break the crust are due to magnetic field evolution—clearly, realistic sim-

ulations of these phenomena will require the presence of a magnetic field—but

even where the magnetic field is not directly involved in the starquake mechanism

itself, it is involved in converting that into an observable effect. Any complete

description of these observed events will involve a magnetic field, so the long-term

goal is to produce a simulation of a neutron star with a solid crust, fluid core, and

magnetic fields permeating both, as well as the magnetosphere outside the star.

Perhaps it would even make more sense to import elasticity directly into an MHD

code, rather than a purely hydrodynamic code—in this case, we would combine

elasticity and magnetic fields first, and worry about the interface with the fluid

core later.



Appendix A

Introduction to hyperbolicity

To better understand what hyperbolicity is, and why it is important, we include

a summary of the material presented in the lecture notes of Kreiss and Busenhart

from 2001 [29]. The section here follows this work closely.

A.1 An example

To illustrate the fundamental concepts behind hyperbolicity and the idea of well-

posedness, we start with a simple example. Consider the system

u,t(x, t) + u,x(x, t) = 0, x ∈ R, t ≥ 0, (A.1)

u(x, 0) = f(x),

where f(x) = f(x+ 2π) is a smooth, 2π-periodic function. Now assume that

f(x) = f̂(ω)eiωx (A.2)

consists of only one wave, where f̂(ω) is the Fourier transform of f(x). Then we

construct an ansatz solution to the system from Eq. A.1:

u(x, t) = û(ω, t)eiωx. (A.3)

We substitute this into Eq. A.1, and get the following:

û(ω, t),t + iωû(ω, t) = 0, (A.4)

û(ω, 0) = f̂(ω),
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and the solution to this is simple to find:

û(ω, t) = û(ω, 0)e−iωt. (A.5)

We substitute this back into the ansatz, Eq. A.3, and get

u(x, t) = û(ω, 0)eiω(x−t) = f̂(ω)eiω(x−t) = f(x− t). (A.6)

This is a solution to the system, Eq. A.1. More generally, our function, f(x), could

contain more than one wave. A general 2π-periodic function can be written as

f(x) =
1√
2π

∞∑

ω=−∞

f̂(ω)eiωx. (A.7)

Then, by superposition, the general solution becomes

u(x, t) =
1√
2π

∞∑

ω=−∞

f̂(ω)eiω(x−t) = f(x− t). (A.8)

We denote the complex conjugate value of f by f̄ . With this, we can define

the scalar product

(f, g) :=

∫ 2π

0

f̄ gdx. (A.9)

From this, the L2 norm is defined as follows:

‖f‖ := (f, f)1/2. (A.10)

With Parseval’s relation, we can write

∞∑

ω=−∞

|f̂(ω)|2 = ‖f(·)‖2. (A.11)
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Then for any fixed time, t, we have

‖u(·, t)‖2 =
∞∑

ω=−∞

|û(ω, t)|2 (A.12)

=
∞∑

ω=−∞

|f̂(ω)e−iωt|2 (A.13)

=
∞∑

ω=−∞

|f̂(ω)|2 (A.14)

= ‖f(·)‖2. (A.15)

This means that the amplitude of the solution to Eq. A.1 does not increase with

time, and it is said to be norm conserving. This means that small errors introduced

into the initial data (or at each step) do not grow as the system is evolved in time.

In order to solve a problem numerically, we need our system to be well-posed ; in

other words, the solution should be bounded.

A.2 Definition of well-posedness

We now define well-posedness more specifically. The Cauchy problem is

u,t(x, t) = P (∂/∂x)u(x, t), x ∈ Rd, t ≥ 0, (A.16)

u(x, 0) = f(x).

The symbol, P (∂/∂x), is the differential operator of order m:

P (∂/∂x) =
∑

|ν|≤m

AνD
ν , (A.17)

where Aν are constant, complex, matrices of size n× n, where n is the size of the

vector, u. Then ν is a multi-index, i.e. a vector of non-negative integers, and has

order

|ν| := ν1 + ν2 + ...+ νd. (A.18)

Each unique ν has a corresponding Aν , regardless of whether the order, |ν|, is the

same. The derivatives are denoted by Dν such that

Dν =
∂|ν|

∂xν1
1 ...∂x

νd
d

. (A.19)
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The result of all this notation is that P (∂/∂x) is a linear combination of derivatives

up to order m. It can also be thought of as a n× n-matrix. It could, for example,

look something like this:

P (∂/∂x) =

(
1 0

0 2

)
∂2

∂x∂y
+

(
0 5

3 1

)
∂2

∂z2
. (A.20)

In this example, x is a 3-dimensional vector, and u is a 2-dimensional vector. This

in turn means that ν is a vector of 3 non-negative integers, and the coefficients,

Aν , are a 2× 2 matrices.

Now, we again assume that f(x) is smooth and 2π-periodic in all spatial di-

mensions. As in the example, we can write the function as a Fourier series:

f(x) =
∞∑

ω=−∞

f̂(ω)ei〈ω,x〉, (A.21)

where

〈ω, x〉 :=
d∑

i=1

ωixi (A.22)

is the scalar product, and ω is a vector of integer components. Then, application

of the differential operator is equivalent to multiplication by the matrix

P (iω) :=
∑

|ν|≤m

Aν(iω1)ν1 ...(iωd)
νd , (A.23)

and the matrix P (iω) is called the symbol of the differential operator P (∂/∂x). It

is simple to show that our previous example, Eq. A.20, becomes

P (iω) =

(
1 0

0 2

)
(iωx)(iωy) +

(
0 5

3 1

)
(iωz)

2 (A.24)

=

(
(iωx)(iωy) 5(iωz)

2

3(iωz)
2 2(iωx)(iωy) + (iωz)

2

)
. (A.25)

Given this definition of the Cauchy problem, we say that it is well-posed if it

can be bounded in the following way:

|eP (iω)t| ≤ Keαt, (A.26)
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where here we have the matrix norm,

|A| := sup
x6=0

‖Ax‖
‖x‖ , (A.27)

and where K and α are constants, and the above expression is true for all t ≥ 0

and all ω. Now, in the following, we can see that if we assume well-posedness, then

a solution to the Cauchy problem exists. To show this, we start with the ansatz

u(x, t) =
∞∑

ω=−∞

û(ω, t)ei〈ω,x〉. (A.28)

From this, the Cauchy problem, Eq. A.16, becomes

û,t(ω, t) = P (iω)û(ω, t), (A.29)

û(ω, 0) = f̂(ω), (A.30)

which has the solution

û(ω, t) = f̂(ω)eP (iω)t. (A.31)

When we transform this back to the spatial domain, we get

u(x, t) =
∞∑

ω=−∞

f̂(ω)ei〈ω,x〉eP (iω)t. (A.32)

Since the system is well-posed, the norm, |eP (iω)t|, is bounded, so the series,

Eq. A.32, will converge. (Basically, the eP (iω)t term converges because the norm is

bounded, and the other terms converge because they form the Fourier transform

of f(x).) In summary, well-posedness of the Cauchy problem implies the existence

of a solution.

Now, we would like to show that the Cauchy problem is well-posed if and only

if the norm of the solution is bounded relative to the initial data in the following

way:

‖u(·, t)‖2 ≤ K2e2αt‖u(·, 0)‖2. (A.33)



158 Appendix A Introduction to hyperbolicity

This is simply shown as follows:

‖u(·, t)‖2 =
∞∑

ω=−∞

|û(ω, t)|2 (A.34)

=
∞∑

ω=−∞

|f̂(ω)eP (iω)t|2 (A.35)

≤ sup
ω
|eP (iω)t|2

∞∑

ω=−∞

|f̂(ω)|2 (A.36)

≤ Ke2αt‖u(·, 0)‖2, (A.37)

where the first and second equalities come simply from Parseval’s relation, and

then substituting in the solution for the Cauchy problem in the frequency domain.

The third line comes about by first recalling the inequality, |AB| ≤ |A||B|, and

then replacing the factor of |eP (iω)t|2 in each term by its supreme value over ω.

Then we know that |eP (iω)t| ≤ Keαt for all ω, and we transform the second term

back to the spatial domain. This shows that well-posedness implies that the growth

of the norm of the solution over time will be bounded by the exponential function,

and the other direction is trivial.

A.3 The first-order, constant-coefficient, 1D sys-

tem

Now we look at the constant-coefficient, first-order Cauchy problem:

u,t(x, t) = Au,x(x, t), (A.38)

u(x, 0) = f(x),

where u = (u1, u2, ..., un)T , and A is a complex n×n matrix. We now show that the

constant-coefficient system, Eq. A.38, is well-posed if and only if the eigenvalues

of A are real and A had a complete set of eigenvectors, i.e. if the eigenvectors of

A form a basis that spans Rn.

We start by showing that real eigenvalues and a complete set of eigenvectors

imply that the system is well-posed; we will later return to showing the other direc-

tion. If we have a complete set of eigenvalues, then there exists a transformation,

T , such that

TAT−1 = Λ, (A.39)
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where Λ is a diagonal matrix with the eigenvalues along the diagonal. In other

words, the matrix is diagonalizable. Therefore, we see the following:

|eiωAt| = |T−1TeiωAtT−1T | (A.40)

= |T−1eiω(TAT−1)tT | (A.41)

≤ |T−1||eiωΛt||T | (A.42)

= |T−1||T |. (A.43)

The first inequality comes from simply multiplying twice by T−1T = I, the identity

matrix. Then, it can be seen that the transformation can be moved inside the

exponential by the following:

TeiωAtT−1 = T

(
∞∑

n=0

(iωAt)n

n!

)
T−1 (A.44)

= I + iωtTAT−1 +
(iωt)2

2
TAT−1TAT−1 + ... (A.45)

= I + iωtΛ +
(iωt)2

2
Λ2 + ... (A.46)

=
∞∑

n=0

(iωΛt)n

n!
(A.47)

= eiωΛt. (A.48)

Then the third inequality comes from |AB| ≤ |A||B|, and finally, we can eliminate

|eiωΛt| = I if and only if all of the eigenvalues (which are the diagonal values of Λ)

are real. This then shows that the system is well-posed, with K = |T−1||T | and

α = 0.

Showing that well-posedness requires a complete set of eigenvectors and all

real eigenvalues is a little more involved. Generally, we can always transform the

matrix, A, to a Jordan’s normalform using a transformation, T , such that

TAT−1 =




J1 0

J2

. . .

0 Jr



, (A.49)
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where Jj = λjI +Dj, and

Dj =




0 1 0
. . . . . .

. . . 1

0 0



. (A.50)

If we had a complete set of eigenvalues, then the Jordan’s normalform would be the

diagonal matrix, Λ; we only get ones on the first diagonal if we have eigenvectors

which are not linearly independent. From this, we will get a repeated eigenvalue.

Next we work out that

|eiωAt| = |T−1eiωt(TAT
−1)T | (A.51)

=
|T ||T−1eiωt(TAT

−1)T ||T−1|
|T ||T−1| (A.52)

≥ 1

|T ||T−1| |e
iωt(TAT−1)|, (A.53)

where the first equality is similar to the steps we took in Eq. A.40, and then

we multiply by |T ||T−1|/|T ||T−1| = 1, and use the |AB| ≤ |A||B| inequality in

reverse.

Now suppose that we have some matrix B of block diagonal form:

B =

(
B1 0

0 B2

)
. (A.54)

Then the matrix norms of the two blocks, |B1| and |B2|, are given by

|Bj| := sup
uj∈Rnj

‖Bjuj‖
‖uj‖

, (A.55)

where nj is the size of the block Bj (so Bj is nj×nj), and the double vertical lines

indicate some vector norm in Rnj . Now, since

∥∥∥∥∥

(
u1

0

)∥∥∥∥∥
p,Rn

= ‖u1‖p,Rn1 , (A.56)
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where n > n1 and the 0 represents the zero vector of dimension 1 × (n − n1), we

can say that

|B1| = sup
u1∈Rn1

‖B1u1‖p,Rn1

‖u1‖p,Rn1

(A.57)

= sup
u1∈Rn1

∥∥∥∥∥

(
B1u1

0

)∥∥∥∥∥
p,Rn∥∥∥∥∥

(
u1

0

)∥∥∥∥∥
p,Rn

(A.58)

= sup
u1∈Rn1

∥∥∥∥∥B
(
u1

0

)∥∥∥∥∥
p,Rn∥∥∥∥∥

(
u1

0

)∥∥∥∥∥
p,Rn

. (A.59)

We see from this that we can always produce the matrix norm of any particular

block, i.e. |B1| or |B2| here, from the operation ‖Bu‖/‖u‖, as long as we choose

the appropriate value for u, i.e. u = (u1, 0)T for |B1|, etc. Now suppose that, to

find the matrix norm of B, we tried a value of u such that the value of ‖Bu‖/‖u‖
was less than max(|B1|, |B2|). Then this value of u would not be maximizing

‖Bu‖/‖u‖, since if we chose u = (u1, 0)T (for |B1| > |B2|) or u = (0, u2)T (for

|B2| > |B1|), we could increase the value of ‖Bu‖/‖u‖. This means that |B| ≥
max(|B1|, |B2|).

In our case, this means that

|TAT−1| ≥ max
j
|Jj|, (A.60)

and since, for any particular Jordan block, Jj, we can write

∣∣∣∣
(iωt)n(TAT−1)n

n!

∣∣∣∣ ≥
∣∣∣∣
(iωt)n(Jj)

n

n!

∣∣∣∣ , (A.61)

we therefore get

|eiωt(TAT−1)| ≥ max
j
|eiωJjt|. (A.62)

Our inequality then becomes

|eiωAt| ≥ 1

|T ||T−1| max
j
|eiωJjt|. (A.63)

Now, we know that if A and B commute, then we have eA+B = eAeB. From this,
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and the fact that the identity matrix, I, commutes with any matrix, we can see

that

|eiωAt| ≥ 1

|T ||T−1| max
j
|eiωJjt| (A.64)

=
1

|T ||T−1| max
j
|eiωλjIteiωDjt| (A.65)

=
1

|T ||T−1| max
j
|eiωλjteiωDjt| (A.66)

=
1

|T ||T−1| max
j
|eiωλjt||eiωDjt|, (A.67)

where we can take the |eiωλjt| out of the norm, because it is just the absolute

value of a number. Then, if we denote the Jk that maximizes |eiωJkt| simply by

J = λI + D and call the corresponding eigenvalue λ = a + bi, then the above

inequality becomes

|eiωAt| ≥ 1

|T ||T−1| |e
iωat||e−ωbt||eiωDt|. (A.68)

Now suppose that b 6= 0. If this is the case, then for any α, we can choose ω such

that |e−ωbt| grows faster than eαt. This means that, for well-posedness, we must

have b = 0, which means that our eigenvalues must all be real.

If D is a p× p block, then we can write

eiωDt =

p−1∑

j=0

(iωDt)j

j!
, (A.69)

because D is nilpotent, with Dp = 0, and therefore, all of the terms after the

(p− 1)st term will be 0. The the largest term of |eiωDt| grows like |ωt|p−1, and so

|eiωDt| can only be bounded if p = 1, which means that all eigenvectors are linearly

independent, i.e. that they form a complete set. Now we see that, in order to have

a well-posed system, we must have a complete set of eigenvectors, and we must

have all real eigenvalues.

A.4 The symmetrizer in a constant coefficient

system

Now consider the constant coefficient system as we had before, so

û,t(ω, t) = iωAû(ω, t), (A.70)
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and then assume that the matrix, A, is Hermitian, so A = A∗ := ĀT , where the

star represents the Hermitian operator, which is equivalent to taking the complex-

conjugate transpose of the matrix. Equivalently, a Hermitian operator satisfies

〈Au, v〉 = 〈u,Av〉 . (A.71)

Then we look at the time derivative of the energy:

∂

∂t
〈û, û〉 = 〈û, û,t〉+ 〈û,t, û〉 (A.72)

= 〈û, iωAû〉+ 〈iωAû, û〉 (A.73)

= 〈−iωAû, û〉+ 〈iωAû, û〉 (A.74)

= 0. (A.75)

The second to last equality comes about because, if A is Hermitian, then the

matrix, iωA, will be anti-Hermitian, where

〈Au, v〉 = −〈u,Av〉 . (A.76)

We see that the time-derivative of the energy is zero, and therefore, the norm of

û(ω, t) does not change over time:

|û(ω, t)|2 = |û(ω, 0)|2 (A.77)

for all t ≥ 0. This means that well-posedness is satisfied with K = 1 and α = 0.

In fact, we will now go on to show that for any well-posed constant coefficient

problem, we can always construct a norm |û|2H = 〈û, Hû〉, such that this new

norm is conserved.

We start by showing the following lemma. If A is an n × n matrix, then we

can find a positive definite, Hermitian matrix, H, such that HA+A∗H = 0 if and

only if all the eigenvalues of A are purely imaginary, and A has a complete set of

eigenvectors. We then call H the symmetrizer of A.

First we show that purely imaginary eigenvalues and a complete set of eigen-

vectors imply that this matrix can be constructed. We know that these conditions

mean that we can produce a transformation, T , such that

TAT−1 = Λ, (A.78)
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where Λ is the diagonal matrix of the eigenvalues of A. Then we see that the

symmetrizer is H = T ∗T , because

HA+ A∗H = T ∗TA+ A∗T ∗T (A.79)

= T ∗(TAT−1 + (T ∗)−1A∗T ∗)T (A.80)

= T ∗(Λ + Λ∗)T (A.81)

= 0. (A.82)

The second equality comes from multiplying by I = T−1T at the end of the first

term, and I = T ∗(T ∗)−1 at the beginning of the second term. In the third line, we

note that (TAT−1)∗ = (T ∗)−1A∗T ∗, because the order of multiplication reverses

when we take the transpose. Then Λ = −Λ∗, because we have purely imaginary

eigenvalues. We see that a diagonalizable matrix with purely imaginary eigenvalues

will have a symmetrizer, H, that behaves as described above.

We now must show the other direction: that the existence of the symmetrizer,

H, implies that the eigenvalues of A are purely imaginary, and that A has a

complete set of eigenvectors. We start by assuming a positive definite Hermitian

matrix, H, which can be written as H = S∗S, because

H∗ = (S∗S)∗ =
(
S̄TS

)T
(A.83)

=
(
ST S̄

)T
(A.84)

= S̄TS (A.85)

= S∗S (A.86)

= H. (A.87)

We know that

S∗SA+ A∗S∗S = 0, (A.88)

but then, from this we can say

(S∗)−1 [S∗SA+ A∗S∗S]S−1 = SAS−1 + (S∗)−1A∗S∗ = 0, (A.89)

and so the matrix, SAS−1, is anti-Hermitian. Recall that an anti-Hermitian ma-

trix, M , is one that satisfies

〈Mx, y〉 = −〈x,My〉 . (A.90)
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This means that all of the eigenvalues of M must be purely imaginary, because,

for any eigenvalue, λj, with associated eigenvector, ej, we get

λj 〈ej, ej〉 = 〈λjej, ej〉 (A.91)

= 〈Mej, ej〉 (A.92)

= −〈ej,Mej〉 (A.93)

= −〈ej, λjej〉 (A.94)

= −λ̄j 〈ej, ej〉 , (A.95)

so λj = −λ̄j.
Now consider the vector space K1 = span(e1)⊥. If span(e1) is all the vectors

made from a linear combination of e1, then this can be thought of as a line (for

example, in 3D space if M is 3 × 3). Then K1 is all the vectors normal to that

line (i.e. in 3D space, this is a plane). We can then show that K1 is M -invariant;

in other words, if a vector, v is in K1, then Mv will also be in K1 (i.e. ∀v ∈ K1 :

Av ∈ K1). We can see this by choosing v ∈ K1, then

〈Mv, e1〉 = −〈v,Me1〉 (A.96)

= −〈v, λ1e1〉 (A.97)

= −λ̄1 〈v, e1〉 (A.98)

= λ1 〈v, e1〉 , (A.99)

but v was from K1, which is all the vectors normal to e1, meaning that this will

be 0, and 〈Mv, e1〉 = 0. So Mv is also normal to e1, and is therefore in K1.

Now we show that we can find the next eigenvector, e2, in K1; there is no

need to look in the general vector space. Suppose we have some general vector

c1e1 + c2v, where v ∈ K1 and e1 is our first eigenvector. Then, in order for this to

be an eigenvector, we must have

A(c1e1 + c2v)− λ′(c1e1 + c2v) = 0, (A.100)

where λ′ is the corresponding eigenvalue. From this we get

(λ1 − λ′)c1e1 + (A− λ′I)c2v = 0. (A.101)
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Then we can contract this with e1 to get

〈(λ1 − λ′)c1e1, e1〉+ 〈(A− λ′I)c2v, e1〉 = 0 (A.102)

(λ1 − λ′)c1 〈e1, e1〉 = 0. (A.103)

Now if λ′ 6= λ1, then c1 must be 0, and our new eigenvector must be entirely in

K1. If λ′ = λ1, then we get

(A− λ′I)c2v = 0 (A.104)

or

Av − λ′v = 0. (A.105)

This means that our general vector can be an eigenvector only if we have a repeated

eigenvalue (λ′ = λ1), and if this is the case, then the part that is entirely in K1

(which is proportional to v), will also be an eigenvector. This means that if we

restrict ourselves to K1, then we will always be able to find e2. In turn, this means

that we can always find e2 such that it is orthogonal to e1. We can then repeat

the process (i.e. K2 = span(e1, e2)⊥, then K2 is also M -invariant, and we can find

e3 in K2, etc.) until we run out of dimensions, showing that all of our eigenvectors

will be orthogonal to one another.

Now we can choose the eigenvectors of our anti-Hermitian matrix, M , to be an

orthonormal basis. In this basis, M will be diagonal, so M must be diagonalizable.

From this, we go back and see that our anti-Hermitian matrix, SAS−1, will be

diagonalizable; meaning that it has a complete set of eigenvectors. We also know

that SAS−1 will have purely imaginary eigenvalues, because it is anti-Hermitian.

Since SAS−1 is simply a similarity transform of A, we know that A will also be

diagonalizable, and that it will have purely imaginary eigenvalues. So we have

shown that the existence of a symmetrizer, H, with the property HA+A∗H = 0,

implies that A has purely imaginary eigenvalues and a complete set of eigenvectors.

Now we return to the system

û,t(ω, t) = iωAû(ω, t). (A.106)

If the problem is well-posed, then the eigenvalues of the matrix A are real, and

the eigenvalues of the matrix Ã = iωA, are purely imaginary. Ã will also have a

complete set of eigenvectors, since A has this property. From this, we know we

can construct a symmetrizer, HÃ + Ã∗H = 0, and therefore we can construct a
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new norm such that

∂

∂t
〈û, Hû〉 = 〈û,t, Hû〉+ 〈û, Hû,t〉 (A.107)

= 〈iωAû,Hû〉+ 〈û, HiωAû〉 (A.108)

=
〈
û, (Ã∗H +HÃ)û

〉
(A.109)

= 0. (A.110)

This shows that, if our constant coefficient system is well-posed, then we can

always construct a norm from our symmetrizer, H, such that we have

|û(ω, t)|2H = |û(ω, 0)|2H . (A.111)

In other words, this specific norm does not increase as time evolves. It is often

called the energy norm, because, in physical systems, energy is typically conserved,

and the value of this norm is often associated with the energy.

A.5 The constant-coefficient, first-order, multi-

dimensional system

Next we examine the Cauchy problem in multiple space dimensions:

∂u

∂t
(x, t) =

d∑

ν=1

Aν
∂u

∂xν
(x, t), x ∈ Rd, t ≥ 0 (A.112)

u(x, 0) = f(x),

where f(x) is 2π-periodic in all spatial dimensions, and the solutions should have

the same property. We now normalize the symbol, P (iω), as follows:

P (iω) = i
d∑

ν=1

Aνων =: |ω|P (iω′), (A.113)

where |ω|2 =
∑ |ωj|2 and ω′ = ω/|ω|. Then we have the following conditions for

well-posedness:

1. For all ω′ ∈ Rd : |ω′| = 1, all of the eigenvalues of P (iω′) are purely imagi-

nary.
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2. P (iω′) has a complete set of eigenvectors. This means that they are linearly

independent. It also means that there is some constant, K, and transforma-

tion, T (ω′), for every ω′ such that |T |+|T−1| ≤ K, and T (ω′)P (iω′)T−1(ω′) =

Λ(iω′), where Λ(iω′) is the diagonal matrix of eigenvalues.

We then say that our first-order, multi-dimensional system, Eq. A.112, is weakly

hyperbolic if it satisfies condition 1, and strongly hyperbolic if it satisfies both

conditions 1 and 2. For the system to be strictly hyperbolic, P (iω) must have

distinct, purely-imaginary eigenvalues for all ω ∈ Rd : ω 6= 0. This is more

restrictive than strong hyperbolicity, since the eigenvalues do not necessarily have

to be distinct in order for the matrix to be diagonalizable.

Symmetric hyperbolicity occurs when all of the coefficient matrices, Aν , are

Hermitian (Aν = A∗ν). Since Hermitian matrices are diagonalizable and have real

eigenvalues, the symbol, P (iω′), will also be diagonalizable, and will have purely

imaginary eigenvalues; therefore, symmetric hyperbolic systems automatically sat-

isfy conditions 1 and 2, and are therefore strongly hyperbolic.

Next we show that, if we have a strongly hyperbolic, multi-dimensional, constant-

coefficient, first-order system, then it will be well-posed. In Fourier space, our

system, Eq. A.112, becomes

û(ω, t) = |ω|P (iω′)û(ω, t). (A.114)

We can then construct a Hermitian matrix, Ĥ(ω′) = T ∗(ω′)T (ω′), such that

Ĥ(ω′)P (iω′) + P ∗(iω′)Ĥ(ω′) = 0. (A.115)

Let (u, v) be the usual L2 scalar product, and define a new scalar product, (u, v)H =

(u,Hv), where

Hv(x, t) =
∑

ω

ei〈ω,x〉Ĥ(ω′)v̂(ω, t) (A.116)

is well-defined. Then Parseval’s relation tells us that

(u,Hu) =
∑

ω

〈
û(ω, t), Ĥ(ω′)û(ω, t)

〉
. (A.117)
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Now recall that |T |+ |T−1| ≤ K and Ĥ = T ∗T . From this we can write

K−2|û|2 ≤ 1

|T−1|2 |û|
2 (A.118)

≤
〈
û, Ĥû

〉
= |T û|2 (A.119)

≤ |T |2|û|2 (A.120)

≤ K2|û|2. (A.121)

The first inequality comes from |T |+ |T−1| ≤ K, because then

K−2 ≤ 1

(|T |+ |T−1|)2
≤ 1

|T−1|2 , (A.122)

since |T |, |T−1| ≥ 0, so |T |+ |T−1| ≥ |T−1|. We can show the next step by seeing

that

1

|T−1|2 |û|
2 =

1

|T−1|2 |T
−1T û|2 (A.123)

≤ |T
−1|2
|T−1|2 |T û|

2 (A.124)

= |T û|2. (A.125)

The equality in the second line comes from

〈
û, Ĥû

〉
= 〈û, T ∗T û〉 (A.126)

= 〈T û, T û〉 (A.127)

= |T û|2. (A.128)

We then can get to the last line by recalling again that |T |2 ≤ (|T |+ |T−1|)2 ≤ K2.

Now we can see that our norm is bounded by

K−2|û|2 ≤
〈
û, Ĥû

〉
≤ K2|û|2. (A.129)

Now we convert all of these to their spatial domain values using Parseval’s relation:

K−2‖u‖2 = K−2
∑

ω

|û|2 (A.130)

≤ (u,Hu) =
∑

ω

〈
û, Ĥû

〉
(A.131)

≤ K2
∑

ω

|û|2 = K2‖u‖2, (A.132)
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and so (u,Hv) defines a scalar product. Note that, generally, in the spatial domain,

H is not a matrix, but an operator. In addition to this, from ĤP + P ∗Ĥ = 0, we

see that

(u,HPu) + (Pu,Hu) =
∑

ω

〈
û, ĤP û

〉
+
∑

ω

〈
Pû, Ĥû

〉
(A.133)

=
∑

ω

〈
û, ĤP û

〉
+
∑

ω

〈
û, P ∗Ĥû

〉
(A.134)

=
∑

ω

〈
û, (ĤP + P ∗Ĥ)û

〉
(A.135)

= 0. (A.136)

This means that our norm stays invariant:

∂

∂t
(u,Hu) = 0. (A.137)

This shows that strong hyperbolicity implies well-posedness.

In this section, we have not proven that hyperbolicity implies well-posedness

for the general system; instead we have simply aimed to introduce the concepts

of strong, weak, strict, and symmetric hyperbolicity, and their link to the well-

posedness of a system. By showing that strong hyperbolicity implies well-posedness

for the first-order, multi-dimensional Cauchy problem with periodic initial data,

we can get a sense of how this might work in more general systems, and an in-

tuitive understanding of why hyperbolicity is so important in numerics. We now

move on to defining hyperbolicity in differential geometry notation, so that we can

apply it to the elastic-matter system.

A.6 Hyperbolicity in differential geometry nota-

tion

We now discuss the definition of hyperbolicity in differential geometry notation.

The definitions in this section originally come from Beig and Schmidt [30], and

Anile [31], and are also written in much the same form as this in an appendix in

[1]. They are included here for completeness.

We express our system of equations in the following form:

Pαβ
cωβ,c + l.o. = 0, (A.138)
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where l.o. refers to lower order terms, the indices α label the equations, and the

indices β label the variables. In order for this system to have a unique solution,

we must have the number of values of α to be the same as the number of values

of β. If we relate this to the previous section where we looked at hyperbolicity in

separate time and space coordinates, ωβ takes the place of our vector of variables,

u, and Pαβ
c is similar to A or Aν in the constant-coefficient, first-order systems.

The difference is that the time derivative coefficient is also included in this object.

If α and β are of the same type (which is not true in the original form of our

evolution equations—consider the linearized form, δa[aδ
d
b]ψ

A
d,c = l.o., where β

would correspond to the index d, and α would correspond to [a, b]), and if we have

the property Pαβ
c = Pβα

c, then we can construct a conserved current,

J c,c = l.o., (A.139)

where

J c := Pαβ
cωαωβ. (A.140)

If there exists a covector, tc, such that

E(ω, ω) := tcJ
c = tcPαβ

cωαωβ, (A.141)

is positive definite, then the system is symmetric hyperbolic, where tc here is called

the subcharacteristic covector. In relativity, we expect tc to be time-like. This E

is the same energy norm that we discussed previously; it should be conserved

over time if the problem is well-posed. We know from before that E allows us to

estimate an L2 norm of the solution in terms of the initial and boundary data.

The characteristic direction is a covector, kc, such that det(kcPαβ
c) = 0. This

can be compared a standard eigenvalue equation in linear algebra, where det(A−
λI) = 0 for the eigenvalues, λ of A. Then, the characteristic variable corresponding

to kc is the non-zero vector, ωβ, such that

kcPαβ
cωβ = 0. (A.142)

This equation defines ωβ as an eigenvector of the spatial part of kcPαβ
c. Then we

can say that one solution to the principle part of the equation will be a plane wave,

ωβ, with wave number, kc. For a causal system, information should not propagate

faster than the speed of light, so kc should be space-like or null. We can work this

out another way by thinking of the the standard plane-wave in 1D form, which
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gives us

eikcu
c

= ei(k0t+k1x) = e
ik1

(
x−

(−k0
k1

)
t
)

= eik1(x−λt), (A.143)

where we define λ = −k0/k1. The we can read off λ to be the standard wave

speed, which, for causality, should have the property, |λ| ≤ 1. This will require

that |k0| ≤ |k1|, which implies that kc is space-like.

Now we move on to describing the second-order system. The second order

system had the form

Pαβ
cdωβ,cd + l.o. = 0. (A.144)

Then our definition of the characteristic variable, ωβ, is as follows:

kckdPαβ
cdωβ = 0, (A.145)

which has the same plane-wave-solution interpretation as for the first-order system.

We also note that it is often useful to decompose the characteristic equation

with respect to a preferred direction by decomposing the characteristic direction

as follows:

ka = λna − ea, (A.146)

where na is a unit time-like covector, and ea is a unit space-like covector, which

is normal to na. We can then say that λ is the characteristic velocity of the

characteristic variable, ωβ, relative to a na observer, in the direction of ea. Now

kc is normal to the plane spanned by the set of vectors,

va = na − λea + sa, (A.147)

where sa is any vector normal to na and ea, so that kav
a = 0. The plane spanned

by the set of va is called the characteristic plane. The relative speed between na

and va can be read off from the Lorentz factor:

1√
1− u2

=
nava
|n||v| , (A.148)

where u is the relative speed. Working this out shows that the relative speed is

√
λ2 + sasa ≥ λ. (A.149)

A disturbance to the solution should move along with speed, λ, relative to a na

observer, so we see that sa = 0, and the disturbance will move along the vector

na − λea.
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There are a few logical choices for na in the decomposition of the characteristic

direction. One is to use the unit normal surfaces of constant time; this is how

we get the coordinate characteristic speeds calculated and used in our numerical

scheme. Another option is to set na = ua, which is generally easier to compute,

and gives the characteristic speeds relative to the matter.

To more formally make a connection to the previous section where we dis-

cussed the non-relativistic understanding of hyperbolicity, we write the first-order

characteristic equation instead as

Peω = λω, (A.150)

where

Pe := (naP
a)−1(ebP

b), (A.151)

and the indices have been omitted for clarity. Note that the above equation is

equivalent to Eq. A.142. We also recall that if na is subcharacteristic, then naP
a

will have an inverse, since it will be positive definite. From the above equation,

we see that ω is an eigenvector of Pe in the traditional sense, and the associated

eigenvalue is λ.

We can then write the definitions for hyperbolicity for a relativistic system:

• The system is weakly hyperbolic if Pe has real eigenvalues for all ea normal

to na.

• The system is strongly hyperbolic if Pe has a basis of real eigenvectors that

depend continuously on ea.

• The system is symmetric hyperbolic if Pe is symmetric. As before, a real sym-

metric matrix is always diagonalizable with real eigenvalues, so symmetric

hyperbolicity implies strong hyperbolicity.

These definitions are equivalent to those mentioned in the previous section.

More generally, if there exists a positive definite Hermitian matrix, H, such

that PeH is symmetric independent of ea, then we call this system symmetrizable,

where H is called the symmetrizer. Then, instead of choosing the positive definite

energy norm as above, we choose

E := Hαβω
αωβ, (A.152)

so in the Newtonian case, this becomes

E = uTHu = (u,Hu), (A.153)
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which is the general energy norm we saw in the previous section.



Appendix B

Additional information about the

elasticity formulation

B.1 3+1 split of spacetime

For reference, we assemble some standard formulas. In 3+1 numerical relativity,

the spacetime metric gab is split into a spatial metric γij with inverse γij, a lapse

α and shift βi, as

g00 = −α2 + βiβ
i, g0i = βi, gij = γij, (B.1)

where we define indices on βi to be moved implicitly with γij. The (absolute value

of the) determinant of the 4-metric is given by

gx = α2γx (B.2)

and hence the volume forms on M3 and M4 are related by

ε0ijk = αεijk. (B.3)

The inverse 4-metric is

g00 = −α−2, g0i = α−2βi, gij = γij − α−2βiβj. (B.4)

The covector normal to the surfaces of constant t has components

n0 = −α, ni = 0, (B.5)

175



176 Appendix B Additional information about the elasticity formulation

and hence

n0 = α−1, ni = −α−1βi. (B.6)

Hence the projector into the surfaces of constant t

γab := gab + nanb (B.7)

has components

γ00 = βiβ
i, γ0i = βi, γij = γij, (B.8)

and

γ00 = 0, γ0i = 0, γij = γij. (B.9)

We define the convective derivative to be the derivative along the 4-velocity,

ua
∂

∂xa
∝ ∂

∂t
+ v̂i

∂

∂xi
. (B.10)

The factor of proportionality is given by the normalization condition

uaubgab = −1. (B.11)

We find

ua = (ut, ui) = α−1W (1, v̂i), (B.12)

ua = (ut, ui) = W (−α + vjβ
j, vi), (B.13)

where

v̂i := αvi − βi, (B.14)

W :=
(
1− vivi

)−1/2
, (B.15)

and where we define the indices on vi to be moved implicitly with γij. The scalar

− uana = W (B.16)

gives the Lorentz factor of the relative velocity between the matter and the time

slices.



Appendix B Additional information about the elasticity formulation 177

B.2 The Newtonian limit

We obtain the limit of Newtonian motion in the absence of gravity in two steps.

In the first step, we let the spacetime go to Minkowski spacetime in adapted

coordinates,

ds2 = −dt2 + γij dx
i dxj, (B.17)

where γij is flat and independent of t, but xi could still be curvilinear coordinates.

Hence

v̂i = vi, (B.18)

and the advection equation (Eq. 3.55) becomes

(∂t + vi∂i)kAB = 0. (B.19)

In the second step, we use dimensional analysis of the special relativistic equa-

tions of motion to insert a parameter c representing the speed of light, as follows:

n, (B.20)

c−1vi, (B.21)

c−2ε, c−2p, c−2πij, (B.22)

c−3π0i, c−4π00, (B.23)

for the primitive variables, and

D, c−1Si, c−2τ, (B.24)

c−1F(D)i, c−2F(Sj)
i, c−3F(τ)i, (B.25)
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for the conserved variables. We then take the limit c→∞ of the relevant equations

for Minkowski spacetime. In this limit,

W = 1, (B.26)

ua = na, (B.27)

hab = γab, (B.28)

ψAt = 0, (B.29)

π = γijπij = 0, (B.30)

D = n, (B.31)

Si = nvi, (B.32)

τ = n(v2/2 + ε), (B.33)

F(D)i = nvi, (B.34)

F(Sj)
i = nvjv

i + pδij + πij, (B.35)

F(τ)i = n(v2/2 + ε)vi + pvi + πijv
j, (B.36)

S (D) = 0, (B.37)

S (τ) = 0, (B.38)

S (Sj) =
1

2

√
γxT

ik∂jγik. (B.39)

where vi and πij are now the Newtonian velocity and stress tensor, and their indices

are moved implicitly with the metric γij of Euclidean space. Instead of requiring

p, f1 and f2 as functions of h (the relativistic enthalpy, which includes the rest

mass energy) and n, we need them as functions of ε and n. The reconstruction

of n, vi and ε from D, Si and τ becomes explicit for the equations of state we

consider.

B.3 Shear invariants and the shear scalar

The three eigenvalues of ηAB can be parameterized as {a, b, 1/(ab)}. We then find

that in the unsheared state a = b = 1,

I1 = I2 = 3, (B.40)

I1
,a = I1

,b = I2
,a = I2

,b = 0, (B.41)

I1
,aa = I1

,bb = 2, I1
,ab = 1, (B.42)

I2
,aa = I2

,bb = 8, I2
,ab = 4. (B.43)
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Hence 4(I1 − 3) and I2 − 3 are the same function of the shear up to quadratic

order. This is not the result of a bad choice of Iα but a property of any shear

invariant. It is related to the fact that the characteristic speeds in the unsheared

state depend on f1 and f2 only through the one combination f1 +4f2 that appears

in the shear modulus (Eq. 3.272).

Therefore, to model linear elasticity correctly, it is sufficiently general to make

the ansatz

ε(s, n, Iα) = ε̌(n, s) +
µ̌(n, s)

n
S(I1, I2), (B.44)

where the single shear scalar S obeys

S = 0, (B.45)

2
∂S
∂I1

+ 8
∂S
∂I2

= 1 (B.46)

in the unsheared state I1 = I2 = 3, but is otherwise arbitrary. For any such

choice of S, µ̌(n, s) evaluates to the usual shear modulus (Eq. 3.272) in the New-

tonian limit, and the equations of motion are the same when linearized about the

unsheared state.

Clearly there are many possibilities of defining a shear scalar that obeys these

conditions, but we are not aware of any physical reason given in the literature

for why a specific choice should be preferred, or of values given for f1 and f2

independently. Indeed, different choices can only be distinguished in a nonlinear

deformation regime, in which case there is no particular reason to assume that ε

does not depend on I1 and I2 in a more generic way.

An equation of state for copper used in [62] uses the shear scalar

SCran :=
3I2 − (I1)2

12
, (B.47)

which is quadratic in the eigenvalues of ηAB. In [54] the shear scalar

SKS :=
(I1)3 − I1I2 − 18

24
, (B.48)

which is cubic, is suggested for what seem to be aesthetic reasons. Yet another

shear scalar is

SVM := sabsab =
I2 − 2I1 + 3

4
, (B.49)

where

sab :=
1

2
(hab − ηab) (B.50)
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is the “constant volume shear tensor” defined in [45]. In the Newtonian limit,

near the unsheared state, SVM is related to the Von Mises stress scalar (assuming

stress and strain are related linearly). It gives the same values of f1 and f2 in the

unsheared state as SCran.



Appendix C

Equations of state

We now consider examples of equations of state of the form of Eq. B.44. The

following general expressions will be useful:

h = 1 + ε̌+
µ̌

n
S +

p

n
, (C.1)

p = n2 ∂ε̌

∂n
+

(
n
∂µ̌

∂n
− µ̌

)
S, (C.2)

fα =
µ̌(n, s)

n

∂S
∂Iα

. (C.3)

In principle we can eliminate s from these two equations to obtain p, f1 and f2,

as functions of (n, h, I1, I2), which we need in the recovery of the primitive from

the conserved variables.

C.1 A toy relativistic EOS

As a toy model for a relativistic equation of state, we take ε̌ from the commonly

used “Gamma-law” hot equation of state, and make the shear modulus µ̌ a power

of the density only, namely

ε̌(n, s) =
K(s)

Γ− 1
nΓ−1, (C.4)

µ̌(n, s) = κnλ, (C.5)

where Γ, κ and λ are constants. This is motivated by the fact that in neutron

star crusts µ ∝ n4/3, with the factor of proportionality only weakly temperature-

dependent. The bulk modulus in neutron stars is given by the nuclear interactions,

while the shear modulus is provided by Coulomb interactions, which makes it
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independent and much smaller. Following [54], we choose S as SKS given by

Eq. B.48.

The expressions we need for the conserved to primitive variables conversion are

then

p(h, n, Iα) =
Γ− 1

Γ
n(h− 1) +

λ− Γ

Γ
κnλS, (C.6)

p(ε, n, Iα) = (Γ− 1)nε+ (λ− Γ)κnλS, (C.7)

h(p, n, Iα) = 1 +
Γ

Γ− 1

p

n
+

Γ− λ
Γ− 1

κnλ−1S, (C.8)

f1 = κnλ−1 3(I1)2 − I2

24
, (C.9)

f2 = −κnλ−1 I
1

24
. (C.10)

The characteristic speeds in the unsheared state are

λ2
T =

κnλ−1

1 + Γε
, (C.11)

λ2
L =

Γ(Γ− 1)ε+ 4
3
κnλ−1

1 + Γε
. (C.12)

C.2 Cranfield EOS

The equation of state for copper used in [62] for Newtonian shock tube problems,

translated into our notation, is

ε(s, n, Iα) = A(n) +B(n)K(s) + C(n)S, (C.13)

A :=
K0

2α2

[(
n

n0

)α
− 1

]2

, (C.14)

B := cV T0

(
n

n0

)γ
, (C.15)

K := e
s

cV − 1, (C.16)

C := B0

(
n

n0

)β+4/3

, (C.17)

where the parameters K0 = c2
0 − (4/3)b2

0 and B0 = b2
0 are the squared bulk sound

and shear speeds, respectively, and where S is SCran given by Eq. B.47. We need
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the following forms of the equation of state:

p(s, n, Iα) = n [nA′ + γBK + (β + 4/3)CS] , (C.18)

p(h, n, Iα) =
n

γ + 1

[
γ(h− 1)− γA+ nA′

+(β + 4/3− γ)CS
]
, (C.19)

p(ε, n, Iα) = n
[
γε− γA+ nA′

+(β + 4/3− γ)CS
]
, (C.20)

h(p, n, Iα) = 1 +
γ + 1

γ

p

n
+ A− 1

γ
nA′

−1

γ
(β + 4/3− γ)CS, (C.21)

f1 = −CI
1

6
, (C.22)

f2 =
C

4
(C.23)

C.3 JWL

The Jones, Wilkins and Lee (JWL) equation of state is not a solid equation of

state; nevertheless, we summarize it here because of its use in the BOD1 test in

Section 4.4. This is a reactive equation of state for explosives; in the test here, we

simply assume that the material simulated is completely reacted, and ignore the

reaction process. We use the version presented in [84], with the parameters for

PBX 9404. The pressure is as follows:

p = A

(
1− ω

R1V

)
e−R1V +B

(
1− ω

R2V

)
e−R2V +

ωE

V
, (C.24)

where

V :=
n0

n
, (C.25)

and

E := n0ε+ (λ− 1)n0ε
∗ + λn0Q. (C.26)

Here, the parameter λ represents the degree to which the material is reacted, so

we simply set this to λ = 1 (the reaction is already complete).





Appendix D

Estimating error

The relative error in a variable, f(x), is given by:

e(x) =
f(x)− fref(x)

fref(x)
, (D.1)

where fref(x) is some reference value for f(x) (ideally the exact solution). Then,

the L2 norm of the error, e, over the grid [a, b] is given by

‖e‖2 :=

(∫ b

a

|e(x)|2 dx
) 1

2

. (D.2)

On a grid discretized into N cells, we only have a numerical approximation to

the value of our variable (fi) at cell centers (i). The cell centers are located at

x = xi = a+ (i− 1
2
)h, where h = (b− a)/N . Then our calculation of the error in

each cell becomes

ei =
fi − fref(xi)

fref(xi)
. (D.3)

We can then approximate the L2 norm of e to be

‖e‖2 ≈
(
h

N∑

i=1

|ei|2
) 1

2

(D.4)

In two spatial dimensions, we integrate over both x and y, meaning that

‖e‖2 :=

(∫ b

a

∫ d

c

|e(x, y)|2 dxdy
) 1

2

. (D.5)
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In the numerical approximation, this becomes

‖e‖2 ≈
(
h2

N∑

i=1

M∑

j=1

|ei,j|2
) 1

2

, (D.6)

where we have assumed that the grid satisfies h = (b− a)/N = (d− c)/M .

In some cases, it is not possible to obtain the exact solution, in these cases,

we use a high-resolution simulation as a reference value for the variable. We find

the reference value at the relevant low-resolution cell center by averaging the high-

resolution solution over the corresponding cells. If the high-resolution solution is

on an n × n grid, and the low-resolution solution is on an N × N grid, where

n/N =: r, then we find fref as follows:

fref,i,j :=
1

r2

r(i−1)+r∑

l=r(i−1)+1

r(j−1)+r∑

k=r(j−1)+1

fhr,l,k, (D.7)

where i and j run from 1 to N over the grid, and l and k run from 1 to n. We

calculate the reference value for each low-resolution cell, and then calculate the

error in each cell from this.

All of the errors mentioned in this work are calculated as shown above unless

otherwise stated.

D.1 Richardson scaling

For a p-th order convergent method, we expect that the exact solution differs from

the numerical solution by

fexact = f1 + C (h1)p , (D.8)

where f1 is the numerical solution using a given grid spacing, h1, and C is a

constant factor. For another resolution, f2, the constant factor, C, should remain

the same if we have convergence in the order predicted:

fexact = f2 + C (h2)p . (D.9)

One way to evaluate convergence is to estimate the value of C,

C =
fexact − fn

hnp
, (D.10)
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or

C (xmax − xmin)p = (fexact − fn)np, (D.11)

where n is the number of grid points, and xmin and xmax are the x values at

the left and right edges of the grid (so the left-hand side of Eq. D.11 should

be constant for different resolutions). We can then plot this value for different

resolutions and compare. This can give us more information that a simple norm

over the entire grid, which does not allow us to distinguish between discontinuous

and smooth regions. For example, we may be able to observe Richardson scaling

at the expected order of convergence in smooth regions, but not in regions near

sharp discontinuities; however, the norm of the error over the grid would only

tell us that the simulation was not converging as expected. Here, we use a high

resolution reference solution in the place of the exact solution.





Appendix E

Relativistic conservation-error

calculation bug

For a single-material evolution of the special relativistic 4-wave Riemann test, the

error in conservation should not go above the level of round-off error (without use

of the GFM, the method should be conservative). However, while we see that this

is true for D and Si, the error in conservation for τ is several orders of magnitude

larger than round-off error (∼ 10−9), and is characterized by time periods of very

low variation, separated by sudden jumps (of the order 10−9).

The period between jumps is not fixed, but appears to typically be ∼ 0.1 in

coordinate time, where the time step is ∆t = 0.005. These jumps originate as

jumps in the value of τ that is integrated over the grid at each time step (i.e.∑
grid q in Eq. 4.25), while the initially integrated and then subsequently evolved

value of τ (i.e. Q in Eq. 4.25 and the following discussion) displays no such jumps.

Although we were never able to find the source of the bug (and subsequently

switched from using the ElasticEvolution code to the MultiModel code), we

suspect that it originates somewhere in the error calculation (likely the integration

calculation) itself. Because the conservation error calculation is not integral to the

overall functioning of the code, and was only ever intended for use as a means of

illustrating the lack of conservation inherent in the GFM, this particular issue was

left unresolved.

Since the Newtonian tests are not affected by this bug, we limit our discussion

to conservation errors in Newtonian tests.
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Tensor properties of gAB on

matter space

The object gAB is defined to be the push forward of the spacetime metric onto

matter space:

gAB := ψAaψ
B
bg
ab, (F.1)

where we know that ψAa, the configuration gradient, is defined to be the partial

derivative of the map with respect to the spacetime coordinates,

ψAa :=
∂ξA

∂xa
=
∂χA(xa)

∂xa
, (F.2)

where the map χ gives the matter space coordinates ξA corresponding to the

spacetime coordinates xa. If we construct a new coordinate system on matter

space, then we can write a coordinate transformation from the old to the new as

ξ̄A
′
= ξ̄A

′
(ξA). (F.3)

In the new coordinates, we write ḡA
′B′ as follows:

ḡA
′B′ = ψ̄A

′
aψ̄

B′
bg
ab =

∂ξ̄A
′

∂xa
∂ξ̄B

′

∂xb
gab, (F.4)

We can use the chain rule to rewrite these partial derivatives as follows:

ḡA
′B′ =

∂ξ̄A
′

∂ξA
∂ξA

∂xa
∂ξ̄B

′

∂ξB
∂ξB

∂xb
gab, (F.5)
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but we can simply rewrite this as the following, in terms of the matter-space object

gAB:

ḡA
′B′ =

∂ξ̄A
′

∂ξA
∂ξ̄B

′

∂ξB
gAB. (F.6)

This is the usual coordinate transformation for tensors on matter space.
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