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ABSTRACT
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MATHEMATICAL MODELLING OF LITHIUM ION BATTERIES

by Rahifa Ranom

In this study, we discuss a lithium battery model based on dilute electrolyte theory

and fast diffusion of lithium in the electrode particle and calculate some novel solutions

to the model. We then discuss moderately concentrated electrolyte theory and outline

how homogenisation techniques can be applied to this theory, in combination with a

microscale model for lithium transport in the electrode particles in order to derive a

Newman type model of the battery [59]. We formulate a numerical method, based on

the method of lines in order to solve this model, and apply it to the cases of a half cell

graphite anode and a half cell LiFePO4 cathode. In both scenarios, the results show

very good agreement to experimental discharge curves.
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trolyte at Ī = 1 discharge rate. The arrow shows the direction of time
increases (t = 0.55, 0.6, 0.65, ...) and t̂ = 0.55. . . . . . . . . . . . . . . . . 44

3.1 Structure of the electric double layer near a solid/electrolyte interface.
When external electric field is applied, bulk motion of an electrolyte
caused by Coulombic forces acting on ions in the electric double layer. The
electric double layer, composed of a Stern layer(layer 1), Debye layer(layer
2) and bulk solution(layer 3). The bottom graph shows the difference of
potential energy in each layer before the mobile ions extending into the
bulk solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Diffusion coefficient as a function of concentration; line represents the fit
to (3.71) and circles are the experimental data from Riemers [90]. . . . . 57

3.3 Concentration-dependent of electrolyte conductivity; line represents the
fit to (3.72) and circles are the experimental data from Riemers [90]. . . . 57

4.1 Illustration of the microstructured boundary . . . . . . . . . . . . . . . . . 63

5.1 Illustration of the shrinking-core model with the side by side of the two
phases and the movement of the phase boundary. The processes during
discharge are illustrated and the pictures below showing concentration of
Lithium as a function of r for different times. The dark region represents
the Lithium-rich region and the bright region represents the Lithium-poor
region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73



LIST OF FIGURES xi

5.2 The lithium concentration profiles in solid particle during discharge where
Q = 1 and Υ = 20. The vertical lines indicate the position of the
phase boundary. When the surface concentration reaches 1, the reac-
tion rate ceases hence stop the discharge. The times plotted are t =
0.01, 0.02, 0.03, 0.04, 0.05, · · · . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3 The comparison of lithium concentration profiles in solid particle during
discharge (Q = 1, Υ = 20) between the numerics and asymptotic solutions
(see (5.38)-(5.39)). The solid lines represent numerics, and dash lines
represent asymptotic solutions. . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4 Phase boundary morphology that occurs between FePO4 (black regions)
and LiFePO4 (grey regions) as discharge rate is increased. From left to
right; (a) I

I0
=0.001, (b) I

I0
=0.01, (c) I

I0
=0.033, (d) I

I0
=0.05. Reprinted

from [63]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.1 The plot of 10300-by-10300 sparse matrix of the Jacobian pattern for
n = 100. The empty elements are the zeros. The elements 1-100 are for
c, 101-200 are for φ, 201-300 are for φs and 301-10300 are for cis. . . . . . 95

7.1 The comparison of model-experimental data for the graphite half cell dis-
charge curve at different currents. Solid lines represent the numerical
results and symbols represent experimental data at various discharge cur-
rents. The dashed curve represents our fit to the equilibrium potential
curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.2 The dimensionless concentration profiles of the intercalated Lithium in
the solid at different positions across the cell for the discharge rate 1C.
The profiles are measured at t∗ = 104s, 208s, 312s, 416s, 520s. . . . . . . . 105

7.3 (a) The concentration profile of Lithium ions in the electrolyte; (b) The
potential in the electrolyte; (c) The solid concentration at the parti-
cle surface and (d) The potential in the solid at 1C discharge rate. ↑
is the direction of increasing time. The profiles are measured at t∗ =
104s, 208s, 312s, 416s, 520s. . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.4 The comparison of analytic-numerical solution for the graphite half cell
discharge curves at different currents. Solid lines represent the analytic
solutions and symbols represent the numerical solution. The dashed curve
represents the equilibrium potential curve. . . . . . . . . . . . . . . . . . 109

7.5 Experimental data of composition-dependant diffusion coefficient by Zhang
et al. [102] and Verbrugge et al. [91]. The solid lines and dots are fitting
to the experimental data by Verbrugge et al. and Zhang et al. respectively. 110

7.6 The concentration of Lithium within the electrode particle with diffusion
coefficients from fitting to the data from Verbrugge et al. [91] as shown
in Figure 7.5 at 3C discharge rate. The profiles are measured at t∗ =
15s, 30s, 45s, 60s, 75s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.7 Discharge curves plot with the diffusion coefficient data given by Ver-
brugge et al. (red) and Zhang et al. (blue) at 3C discharge rate. The
large difference magnitude of Ds(cs) (see Figure 7.5) results in lithium
depletion at the surface in a relatively short time (see Figure 7.6). . . . . 111



xii LIST OF FIGURES

7.8 The comparison of non linear diffusion coefficient-experimental data for
the graphite half cell discharge curves at different currents. The curves
are obtained by analytic approximation solution (7.34) where the diffusion
equation in the solid (see (7.23)-(7.24)) is solved numerically. The nonlin-
ear diffusion coefficient (the fitting to the data from Zhang et al. [102]) is
given by equation (7.36). Solid lines represent the analytic solutions and
symbols represent experimental data at various discharge currents. The
dashed curve represents the equilibrium potential curve. . . . . . . . . . 112

7.9 The dimensionless concentration of Lithium within the electrode par-
ticle at 3C discharge rate where Ds(cs) is calculated using data from
Zhang et al. [102] (see formula (7.36)). The profiles are measured at
t∗ = 30s, 60s, 90s, 120s, 150s. . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8.1 The equilibrium potential of the LiFePO4 electrode as a function of cs
(the state of discharge, cs = c∗s/cmax) (see equation (8.27)). . . . . . . . . 120

8.2 The comparison of model with the experimental data for the LiFePO4

half cell discharge curves at different currents. Solid lines represent the
analytic solutions and symbols represent experimental data at various
discharge currents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8.3 The concentration of solution in the electrolyte across the electrode at (a)
0.8C and (b) 3.2C discharge rate. The profiles are measured at (a) t∗ =
393s, 785s, 1178s, 1571s, 1963s and (b) t∗ = 162s, 325s, 487s, 585s, 650s. . 124

8.4 The concentration of Lithium in the solid at the electrode particle surfaces
as a function of position in the electrode at (a) 0.8C and (b) 3.2C dis-
charge rate. The profiles are measured at (a) t∗ = 393s, 785s, 1178s, 1571s, 1963s
and (b) t∗ = 162s, 325s, 487s, 585s, 650s. . . . . . . . . . . . . . . . . . . 125

8.5 The reaction rate (per unit surface area) at the particle electrolyte inter-
face as a function of position in the electrode for discharge at 3.2C. The
profiles are measured at t∗ = 162s, 325s, 487s, 585s, 650s. . . . . . . . . . 126

8.6 The dimensionless concentration in the electrode particle as a function of
radius at different positions in the electrode for discharge at 3.2C. The
profiles are measured at t∗ = 162s, 325s, 487s, 585s, 650s. . . . . . . . . . 126

8.7 The concentration of solution in the electrolyte across the electrode at 8C
discharge rate. The profiles are measured at t∗ = 33s, 48s, 58s, 62s, 65s. . 127

8.8 The concentration of Lithium in the solid at the electrode particle surfaces
as a function of position in the electrode at 8C discharge rate. The profiles
are measured at t∗ = 33s, 48s, 58s, 62s, 65s. . . . . . . . . . . . . . . . . . 127

8.9 The voltage curves for different conductivity ratios in the solid (σs) and
electrolyte (κmax) phases. The cell is discharged at 1.6C. . . . . . . . . . 128

8.10 The dimensionless solid concentration profiles at the electrode particle
surfaces as a function of position in the electrode for different conduc-
tivity ratios in the solid (σs) and electrolyte (κmax) phases. The cell is
discharged at 1.6C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.11 The electrolyte concentration profiles across the electrode for different
conductivity ratios in the solid (σs) and electrolyte (κmax) phases. The
cell is discharged at 1.6C. . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.12 The dimensionless solid concentration profiles in the electrode particles
as a function of radius at different positions when the cell is discharged
for the 3 different cases. The cell is discharged at 1.6C. . . . . . . . . . . 132



LIST OF FIGURES xiii

8.13 The distribution of dimensionless current density in the solid (js) and in
the electrolyte (j) across the cathode for different conductivity ratios in
the solid (σs) and electrolyte (κ) phases. The cell is discharged at 1.6C. 133

8.14 The dimensionless reaction rate (Gc) across the cathode for different con-
ductivity ratios in the solid (σs) and electrolyte (κmax) phases. The cell
is discharged at 1.6C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8.15 Distribution of the dimensionless electrolyte current density (j) across
the electrode when the cell is discharged at 1.6C for 400s with different
conductivity ratios in the solid (σs) and electrolyte (κmax) phases. . . . . 135

8.16 The dimensionless reaction rate across cathode when the cell is discharged
at 1.6C for 400s with different conductivity ratios in the solid (σs) and
electrolyte (κmax) phases. . . . . . . . . . . . . . . . . . . . . . . . . . . . 136





DECLARATION OF AUTHORSHIP

I, Rahifa Ranom, declare that the thesis entitled Mathematical Modelling of

Lithium Ion Batteries and the work presented in the thesis are both my own, and

have been generated by me as the result of my own research. I confirm that:

• this work was done wholly or mainly while in candidature for a research degree at

this University;

• any part if this thesis has previously been submitted for a degree or any other

qualification at this University or any other institution, this has been clearly stated;

• where I have consulted the published work of others, this is always clearly at-

tributed;

• where I have quoted from the work of others, the source is always given. With the

exception of such quotations this thesis entirely my own work;

• I have acknowledged all main sources of help;

• where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself;

• parts of this work have been published.

Signed:

Date: 31st October 2014

xv





List of Publications

1. Ranom R., Richardson G., Please C., (2011). Steady state solution during dis-

charge in lithium ion batteries with Tafel kinetics, International Conference

of Chemical Engineering and Industrial Biotechnology (ICCEIB), November 28 -

December 1, 2012, Pahang, Malaysia.

2. Ranom R., Richardson G., Please C.P., (2012). Discharge of half cell cathode

of lithium ion battery. British Applied Mathematics Colloquium (BAMC),

April 6 - 9, 2012, London, UK.

3. Adesokan B., Ayass W.A., Lim S., Peace A, & Rahifa R., (2013), Assessing

molecular properties for oral drug delivery., 5th UK Graduate Modelling

Camp, April 9-12 2013, Oxford, UK.

4. Rahifa R., Foster J.M., Richardson G., (2014), Mathematical modelling of

half-cell Lithium ion battery in moderately dilute solution., International

Meeting of Lithium Batteries, June 10-14 2014. Lake Como, Italy.

xvii





Acknowledgements

Thanks to Almighty Allah S.W.T. for graciously bestowing me the perseverance to

undertake this research. Special thanks are due to: University of Southampton for the

opportunity to carry out research; Universiti Teknikal Malaysia Melaka (UTeM) for the

financial support and Kementerian Pengajian Tinggi (KPT). Warmest thanks and a

deepest appreciation to the following people: My parents, Ranom and Hamidah, for

a lifetime of love and support; My lovely husband, Ahmad Fuad, for an eternity love

and full support; My academic father, Dr. Giles Richardson, for all his help and expert

advice, for the encouragement and inspiration; Dr. Jamie Foster, for his numerical

expertise; My daughter and son, Arissa Humaira and Isyhadh Umayr, for make my life

full of happiness and laughters; My family and friends, for all their support and for

sharing me so often with my problems.

xix





To my lovely Ahmad Fuad, Arissa Humaira and Isyhadh Umayr

To my dearest parents, Ranom and Kamidah . . .

xxi





Chapter 1

Introduction

The demand for more efficient renewable energy resources is rapidly growing as energy

and environmental based issues becomes of increasing concern. Lithium ion batteries

are currently the state of art of rechargeable electrochemical storage devices. These

batteries provide high volumetric energy densities, high cyclability and are highly flexible

as regards to design, size and application. They are used in many applications in portable

electronics such as mobile phones, laptops and power tools; and are being considered

for use in electric vehicles. Lithium ion batteries have thus gained much attention from

researchers worldwide. Moreover, the development of lithium batteries has become a key

focus for researchers in automotive companies who are investigating their use in hybrid

electric vehicles (HEV), plugin hybrid vehicles (PHEV), and purely electric vehicles

(EV); the markets for all of which are expected to grow substantially in the future

years.

1.1 Lithium batteries as energy storage solution

The lithium ion battery is one of the most successful electrochemical batteries and billion

of these cells are produced every year. They provide rechargeable energy storage at high

energy density, with no memory effect, and slow loss of charge when not in use [11].

They are of growing interest to the automotive industry, amongst others. Thus, there

is a big drive to increase their efficiency, storage performance and the speed at which

they can be charged and recharged. Many approaches have been taken to simulate the

operation of such devices in order to better understand their behaviour.

The Lithium ion cell consists of four parts, namely (I) the anode which is comprised

of negative electrode particles, (II) the cathode which is comprised of positive electrode

particles, (III) the separator that lies between the electrodes (this is a porous insulator

that prevents direct electrical contact between the electrodes while allowing passage of

1
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Figure 1.1: A schematic diagram of the Lithium Ion Battery during discharge
[59]. The current flowing out of the positive electrode drives the extraction of
lithium ion from negative electrode (anode) particles to the electrolyte across
the porous separator (by diffusion and advection) into the positive electrode
(cathode) and insert into the positive electrode (cathode). The charge of elec-
trons are moving from the negative electrode particles to the negative electrode
current collector and from the positive electrode current collector to the positive
electrode particles.

the electrolyte) and (IV) the Lithium ion electrolyte which transports ions (and thus

charge) between the anode and cathode. A schematic diagram of such a cell (during

discharge) is shown in Figure 1.1. At the outer boundaries of electrodes there are current

collectors (charge collectors) that connect to an external circuit.

During discharge, Lithium diffuses through the negative electrode (anode) particles to

the solid-electrolyte interface where it undergoes a charge transfer reaction (refer Figure

1.1) in which a Lithium ion (Li+) is released into the electrolyte and an electron (e−)

is released into the electrode particle (de-intercalation). The Lithium ion advects, and

diffuses, through the electrolyte solution to the positive electrode (cathode). A similar

reaction occurs on the surface of a positive electrode (cathode) particle in which the

Lithium ion is absorbed into the electrode particle (by a process known as intercalation)

and takes up an electron from the electrode as it does so. The negative ions (N−),

on the other hand, remain in the electrolyte throughout. Thus the Lithium ions (Li+)

carry all the charge through the electrolyte (and separator diaphragm) from the anode

to cathode. Typically, the reaction rate on an electrode particle surface depends upon

the lithium concentration on the electrode surface, the lithium ion concentration in the

adjacent electrolyte, and the potential drop between the electrode and electrolyte [36].

When the cell is charging, the process is reversed: an external electrical power source

(the charging circuit) applies a higher voltage than that produced by the battery, forcing
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current to pass in the reverse direction. The Lithium ions then migrate from the cathode

to the anode, where they become embedded in the electrode material (intercalation).

The anode and cathode materials are selected so that the anode preferentially gives up

electrons (and thus also lithium ions), and the cathode preferentially accepts electrons

(and thus lithium ions). The tendency of a material to give up or accept electrons is

determined by its standard electrode potential. The difference in the standard electrode

potential of the anode and the cathode gives the voltage of the cell at equilibrium (the

potential difference between the current collectors). The equilibrium potential is the

difference between the electrical potential of the two current collectors when no external

electric current flows between them. It is a function of the electrode materials used.

In the following sections, an overview of battery materials for Lithium ion rechargeable

batteries is provided.

1.2 Battery materials for Lithium ion batteries

Typically, both electrodes (anode and cathode) in a lithium ion battery are intercalation

compounds, that is, they have a lattice structure in which small atoms, such as lithium,

can be inserted and extracted. In contrast, the electrolyte allows the flow of electrical

charge (in the form of lithium ions) between the anode and cathode. This section reviews

battery materials for anodes, cathodes and electrolytes.

1.2.1 Desirable electrode and electrolyte properties

In designing a battery, the properties of electrode materials and electrolytes are im-

portant in order to achieve a successful cell once they are assembled. They should, for

example be chosen so that the cell is stable and safe to minimizes the risk of short circuits.

The key requirements for a successful electrolyte are high conductivity (high mobility of

Lithium ions), stability (at high temperatures and in high voltage application) [82], and

safety (low flammability [10]). Electrolyte decomposition and side reactions in lithium

ion batteries can create thermal runaway [11]. Thus, the electrolyte selection has to

balance between flammability and electrochemical performance.

Good electrode materials should have high lithium diffusivity in the host matrix; high

electrical conductivity; stability (not change structure over many charge cycles); high

capacity [95]; thermal stability [10], high cyclability and be non toxic and low cost [11].

The two electrode materials also be chosen to give the cell a high voltage. The solid

electrolyte interface (SEI layer) is another key factor that influences the performance

of battery. The roles of this layer is to eliminate the transfer of negative ions from the

electrolyte to the electrodes and to limit the transfer of electrons from the electrodes to

the electrolytes [48]. However, the SEI layer must also be a good Lithium ion conductor.
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1.2.2 The cathode material

In 1991, the first type of cathode material to go into commercial production, was cobalt

oxide (LiCoO2) [95]. It (de)intercalates lithium ions at around 4V and has a theoretical

capacity of 140 mAh/g [88]. The other advanced cathode materials include lithium

metal oxides (such as LiMn2O4), olivines (such as LiFePO4), and rechargeable lithium

oxides [82].

In 1996, Goodenough patented a new kind of lithium ion cathode material which is iron

phosphate LiFePO4 [65]. This material is more powerful and less likely to catching fire,

which are important considerations for automotive applications. LiFePO4 has already

found in many industrial applications due to its reasonable voltage of 3.5V , high theo-

retical capacity (170mAh/g) [52], low cost, low toxicity, and high thermal stability [65].

Because of its potential, much research has been directed towards optimizing synthesis

routes for LiFePO4 cathodes. A disadvantage of this material is low conductivity. How-

ever carbon coating of the electrode particles increases the conductivity of the electrode

[47]. LiFePO4 is also thermodynamically stable [67], and its has a lattice structure so

that the insertion/extraction lithium ions process does not change structure of the host

material [95].

Lithium metal oxides contain cobalt and nickel. They show a high stability in the high-

voltage range but cobalt has limited availability in natural resources and is toxic [22].

Manganese offers very good rate capabilities but has poor cycling behaviour. Therefore,

mixtures of these three materials are often used for a good cathode material.

1.2.3 The anode material

The commercial anode material in lithium ion batteries is graphitic carbon (LiC6) which

can store up to one Li+ for every six carbon atoms in between its graphene layers. The

material is highly conducting and supports high current densities [13]. However, the

theoretical capacity (372 mAh/g) is poor in comparison to that of pure lithium (3,862

mAh/g) [97] and it exhibits moderate charge/discharge rate performance which limits

the lifetime of the cell [69]. The parameters used to increase the performance of this

anode material are its thickness, and its porosity.

Alloy anodes such as Li-Al (Lithium Aluminium) have high capacities but exhibits sub-

stantial volume changes, which results in low cyclability [22]. Reducing the size of this

electrode particles to the order of a few nanometres stops phase transitions occurring

that typically accompany alloy formation [10] and reduces the size of the volume changes.

Lithium titanate operates at a 2.4V , a voltage for which lithium ions are stable with

respect to the electrolyte [11] (which is a requirement in this material because it does

not form an SEI layer). A disadvantage of the lithium titanate battery is lower capac-

ity and voltage than the conventional anode material. Silicon has an extremely high
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capacity (4,199 mAh/g) corresponding to a composition of Si5Li22 [22]. However, the

large volume changes that occur during the insertion and extraction processes cause

severe cracking of the electrode, which in turn leads to very significant capacity fade

during cycling [98]. The cyclability of this electrode can be improved by adding Ketjen-

black carbon, which gives a chainlike structure that maintains a stable electronic contact

between silicon particles [98]. They can also be improved by nanostructuring [10].

1.2.4 The electrolyte

Liquid electrolytes conduct lithium ions and acting as a carrier between the cathode

and the anode. The electrolytes typically used in lithium ion cells are mainly based

on an organic solvent based. Examples of electrolyte salts used in applications in-

clude lithium hexafluorophosphate (LiPF6), lithium hexafluoroarsenate monohydrate

(LiAsF6), lithium perchlorate (LiClO4), lithium tetrafluoroborate (LiBF4), and lithium

triflate (LiCF3SO3). LiClO4 provides a stable charge-discharge efficiency that increases

the cycling capacity of the cell [10]. LiBF4 is less toxic than LiAsF6 and safer than

LiClO4 but has only moderate ionic conductivity [47]. LiCF3SO3 is resistant to oxida-

tion, nontoxic, thermally stable, and insensitive to ambient temperature in contrast to

LiPF6. However, it has low conductivity in nonaqueous solvents as compared to other

salts [47].

Currently, LiPF6 is the standard electrolyte in commercial batteries. It has qualities

such as high conductivity, high solubility in organic solvents, and stability in the solvents

mixture and on common electrode materials [22]. The organic solvent that often used

in battery electrolyte is a mixture of ethylene carbonate and dimethyl carbonate (1:1

EC:DMC). Ethylene carbonate (EC) has ability to form a good SEI layer on common

anode materials and dimethyl carbonate (DMC) has ability to lower the EC melting

point [22]. In this study, we chose the most common electrolyte solution, which is LiPF6

salts dissolved in a mixture of 1:1 EC:DMC. This combination performs well enough in

current battery systems.

1.3 Charge-transfer reaction

The reactions in which charges are transferred across a solid electrolyte interface are

called charge transfer reactions. Here both electrodes are either oxidized or reduced;

Li(s) 
 Li+ + e−.

Charge separation occurs when charge transfers across the electrode surface. The excess

charge on the electrode surface is counterbalanced by the accumulation of oppositely
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charged ions, on the electrolyte phase. The layer across which this charge separation

occurs is called the electrical double layer, and is extremely thin (typically of order

1nm) compared with the width of the electrolyte and electrodes. In its simplest form

the double layer is described by the Helmholtz model, which describes the double layer

as a parallel plate capacitor with a small plate separation (see Figure 1.2). In this model,

the potential changes linearly from the electrode potential φs to the electrolyte potential

φ in a thin layer. This layer is referred to as the Helmholtz layer.

Figure 1.2: Structure of the electric double layer near a solid electrolyte inter-
face when external electric field is applied. The electric drops linearly from the
electrode potential φs to the electrolyte potential φ in a thin layer.

The electrical double layer translates into boundary layers in the concentration profiles.

Near an electrode that is negatively charged we expect an excess of Li+ ions and a

deficit of N− ions. These differences are only expected close to the electrode surface,

thus it is usual to assume charge neutrality in the bulk of the solution. Further details

on charge neutrality will be discussed later. The overpotential, qη is defined such that

η gives the change in the electrochemical potential of a Li+ between the electrolyte and

the electrode. It takes the form

η = φ− φs + Ueq

where φ is the electrolyte potential, φs is the solid potential and Ueq is the equilibrium

potential of the electrode material (qUeq is the change in chemical potential of Li+

ion between the electrode and electrolyte). The equilibrium potential, or open circuit

potential, is the difference of electrical potential between the two terminals of a device

when there is no electric current flows between them. Usually it is measured at a very

low discharge rate.

1.4 Battery Terminology

• Capacity. The capacity is a measurement of how many electrons can be ex-

tracted from an electrode during each charge or discharge cycle and has unit in
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milliamp hours per gram. A symbol Q is used for this parameter. This quantity is

often normalized by mass, so that it is unaffected by the size of the battery. The

maximum capacity of a cell is determined by the amount of charge when the cell is

discharged at a very low rate. Current cathode materials have maximum capacities

in the range of Qmax = 100− 200mAh/g and graphitic carbon (the most common

anode material) which has a maximum capacity of around Qmax = 300mAh/g.

• Specific Power. Another important parameter for battery operation is how

much power can be provided per unit mass. This value, measured in watts per

kilogram, is particularly important for high power applications such as acceleration

of electric vehicles where a large amount of energy must be provided in a short

time. Specific power is heavily influenced by the voltage difference between the

anode and cathode and the speed of ion transfer between the electrodes.

• Cell Voltage. A key parameter in maximizing the specific power of a battery

is the voltage difference between the anode and cathode. This difference is deter-

mined by the relative voltages at which the (de)intercalation reactions take place.

In this thesis, discharge curves are plotted showing the cell voltage as a function

of the state of discharge and at certain specific discharge rates.

• Discharge rate, C-rate. The discharge rate is the rate at which current is taken

from a cell. It is reported as a C-rate with 1C corresponding to a battery being

completely charged or discharged in one hour. High rate capability is essential for

quick charging batteries and high power applications. For instance, for a battery

with a capacity of 100A/hours, this equates to a discharge current of 100Amps.

A 5C rate for this battery would be 500Amps, and a C/2 rate would be 50Amps.

• State of charge / discharge. The state of charge (SOC) is defined as the

capacity still available in the cell. It is normally expressed as a ratio of the rated

capacity to the maximum capacity and a 0 SOC battery is fully discharged while a

1 SOC battery is fully charged battery. The state of discharge (SOD) is defined as

the ratio of battery capacity that has been discharged to the maximum capacity.

State of charge/discharge can be calculated as the current multiplied by the time

and divided by the maximum capacity of the cell (It/Qmax).

1.5 The half-cell

In order to test a particular electrode in the lab it is usual to perform experiments on a

half-cell. This consists of a single electrode (working electrode either anode or cathode)

and a pure Lithium electrode (reference electrode) as the other electrode (see Figures

1.3 and 1.4). Since the electrochemical potential of lithium in a lithium electrode does

not change as it charges / discharges, it also acts as a reference electrode. Indeed in
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applications it is usual to define potential with respect to a lithium electrode such that its

potential is defined to be zero. The voltage drop across the half cell is then determined by

the potential of the current collector. This motivated Newman to formulate his models

[60] in terms of a lithium reference potential rather than the real potential. Theoretical

treatment of half-cells include works by Newman et. al. [84] and Farrell et.al. [23].

Fundamental research on electrode material is usually conducted in half-cell systems.

Figure 1.3 shows a schematic diagram of a half-cell anode and Figure 1.4 that for a

half-cell cathode.
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Figure 1.3: Schematic diagram for typical half cell anode. The cathode material
is a lithium-foil which is reacting as reference electrode. During discharge,
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1.6 Battery modelling

Electrochemical battery models are based on the numerous chemical processes that take

place in the battery. In particular they must account for conservation of ion species in

the electrolyte, charge transfer at electrolyte/electrode interfaces [19] and transport of

intercalated Lithium in the electrodes. These processes take place over a wide range

of scales ranging from that of the electrode particles (microscopic) to that of the full

cell (macroscopic). Thus, modelling capable of directly relating the geometry of the

microstructure to the coefficients in a macroscopic model of battery behaviour provides

a useful tool. Microscopic modelling on the particle lengthscale should account for

charge transfer at the solid particle surface, diffusion of lithium in the electrode particles

and diffusion of lithium and charge transport in the electrolyte around the particles.

These microscopic and interfacial phenomena largely control the rate of electrochemical

reactions. Macroscopic models on the electrode lengthscale can be used to account for

charge transport, electrolyte lithium transport and charge transfer reactions all in an

averaged sense.

The typical voltage and charge capacity of lithium-ion cells can be computed using clas-

sical electrochemistry or measured with simple experiments. However, understanding

the dynamic processes that occur during charge and discharge of the battery is neces-

sary in order to improve the power density and cycle life of the battery. Study of the

charge/discharge processes is made more difficult by the range of length scales involved

[21]. The charge carriers inside the battery move via a combination of diffusion and

advection in an electric field. Their movement causes potential differences [64]. The

reaction rate for the deintercalation/intercalation of lithium from the electrodes may

be limited by diffusion of Lithium ions in the electrolyte, diffusion of Lithium in the

electrode particles or by the electrical resistivity of the electrolyte or electrodes [36, 74].

Thus, it is important to investigate the relative importance of these processes.

John Newman, a chemical engineer at the University of California at Berkeley, has de-

veloped a modelling framework for lithium ion batteries [58]. In [57] Newman and his

co-worker use this framework to predict battery behaviour. The modelling approach

is based on transport equations for Lithium ions in the electrolyte as well as Lithium

transport in the electrode particles of the cathode and the anode, and Butler-Volmer

equations describing the charge-transfer kinetics at the electrode particle surfaces (be-

tween electrode and electrolyte). Solutions of such models can be used to predict cell

voltage as a function of current and time. In addition they can be used to predict the

potentials in the electrolyte and electrode phases, salt concentration, reaction rates and

current density in the electrolyte as functions of time and position.

A model based on loss of the active lithium ions due to the electrochemical parasitic

reaction and rise of the anode film resistance has been developed by Gang Ning et al.

[61]. Loss of cyclable lithium ions occurs when irreversible solvent reduction reaction
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takes place on the surface anode and hence increased the resistances on the surface

of anode particle. Safari et al. [77] simulated the ageing phenomena in a commercial

graphite/LiFePO4 cell.

The effects of interionic drag in non-dilute solution has been incorporated into Newman

framework [60] but requires the model to be calibrated again experimental electrolyte

data. An example of such data is found in the work of Riemers et. al [90] which measures

conductivity, diffusivity and transference number as function of ions concentration in the

electrolyte LiPF6 in 1:1 EC:DMC. Fuller, Doyle and Newman [28, 36] incorporated the

effects of the chemical activity in the electrolyte into their modelling framework.

Recent work has shown that performance of Lithium ion battery can be improved

through emphasis on engineering the microstructural architecture of the electrodes see

[41, 83, 39]. Typically the effects of the microstructure in macroscopic models, such

as Newman’s [58], are represented by a few phenomenological parameters which can

be crudely related to the properties of the microstructure. A more systematic ap-

proach, that is capable of relating the geometry of the microstructure coefficients in

the macroscopic model, has been developed by Richardson et.al [74] in the case of dilute

electrolytes. Here we shall extend this method to a moderately concentrated electrolyte.

Solutions to a battery model based on a dilute electrolyte model in which Lithium

diffusion in the electrode particles is extremely fast are discussed in Chapter 2. In

Chapter 3 we discuss an electrolyte model of a moderately concentrated electrolyte and

fit the model to real electrolyte diffusion, conductivity and transference number data.

In Chapter 4, we discuss the application of homogenisation techniques to a model based

on the moderately concentrated electrolyte model discussed in Chapter 3. In Chapter 5,

we discuss Lithium transport in electrode particles (in particular the LiFePO4 and the

LiC6 electrode materials), this is crucial for understanding intercalation. In Chapter 6,

we discuss the numerical method that we use to solve the homogenised model presented

in Chapter 4. Solutions to the model are compared against experimental data for half-

cell LixC6 (graphite) anodes (Chapter 7) and half-cell LiFePO4 cathodes (Chapter 8).

Finally, we draw our conclusions in Chapter 9.

1.6.1 Statement of originality

Here, we highlight the original parts in this study. In Chapter 2 we obtain new solu-

tions of battery model in dilute electrolyte theory. In Chapter 3, we review the existing

moderately concentrated electrolyte model (originally formulated in [59]) and highlights

some errors and give corrections. In Chapter 4, we extend the results of the homogeni-

sation in [74] to a battery model in moderately concentrated electrolyte. The numerical

procedure developed in Chapter 6 to solve battery problems is new and is very efficient.

The results in Chapter 7 follow the work of Srinivasan and Newman [85] for a half
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cell anode but are significantly extended and provide considerably better agreement to

experimental data. The results for the half cell cathode in Chapter 8 are all new.





Chapter 2

Dilute electrolyte modelling of

battery

2.1 Introduction

In this section we develop a battery model based on dilute electrolyte theory. We start

in §2.2, by discussing a model for a dilute electrolyte. We then discuss lithium transport

between the electrolyte and the electrode particles in §2.3 before briefly discussing trans-

port in the electrode particles in §2.4 and illustrating how homogenisation can be used

to derive a model on the scale of the battery model in §2.5. In §2.6 and §2.7 we derive

some solutions to this battery scale model that illustrate the behaviour of a certain class

of cell.

2.2 Derivation of a model for a dilute electrolyte

The Nernst-Planck theory has been used to describe a sufficiently dilute electrolyte [60].

This theory describes conservation equations for the ionic species that diffuse by ionic

concentration gradient and advect by an electric field. Here we discuss the derivation of

battery model in a dilute electrolyte, which previously has been described in Richardson

et al. [74].

The general conservation of mass equation for two species, concentrations c∗n and c∗p (mol

m−3), that diffuse independently are

∂c∗i
∂t∗

+∇ · q∗i = 0 q∗i = −Di∇c∗i for i = n, p. (2.1)

where q∗i is the ion flux of species i. The second equation is Fick’s Law of diffusion which

states that the diffusive flux is proportional to the concentration gradient. Here Dn and

13
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Dp are the diffusion coefficient of species n and p. To extend Fick’s Law of diffusion to

charged species (ions) we need to include electric forces arising from the electric field,

E = −∇φ∗ where φ∗ is the electric potential. Consider an ion of charge q, it experiences

a force, F = qE. As the ion moves through the solvent, it also experiences a frictional

drag force, F = κυ. Here the drag coefficient κ is related to the mobility, µ of the ion

by κ = 1/µ. The drift velocity is reached when both forces balance, i.e for qE = υ/µ.

This gives the drift velocity, υ = qE µ. Thus, the advection-diffusion equation for a

negatively charged ion species with charge −qn and a positively charged ion species with

charge +qp is

∂c∗n
∂t∗

+∇ · q∗n = 0 q∗n = −(Dn∇c∗n − qnµnc∗n∇φ∗), for anions (2.2)

∂c∗p
∂t∗

+∇ · q∗p = 0 q∗p = −(Dp∇c∗p + qpµpc
∗
p∇φ∗), for cations (2.3)

The Einstein relation relates mobility to the diffusion coefficient Di via µi = Di/kT

where k is Boltzmann’s constant and T is the absolute temperature.

The electric potential obeys Poisson’s equation

∇ · (ε∇φ∗) = −ρ, (2.4)

where ρ is the charge density (C m−3). Equation (2.4) can be rewritten in terms of the

ion concentration

∇ · (ε∇φ∗) = F (c∗n − c∗p) (2.5)

where ε is the permittivity of the electrolyte and F is Faraday’s constant (C mol−1). It

is also useful to write the current density in terms of ion fluxes, q∗p and q∗n

j∗ = F (q∗p − q∗n) (2.6)

2.2.1 Charge neutrality

Here we consider a 1:1 electrolyte in which the charge of the negative ions is −qn = −q
and of the positive ions ions is qp = +q and q is the charge on a proton. For all reasonable

concentrations the Debye length is very small (of the order of nanometres) so that the

standard charge neutrality assumption c∗p ≈ c∗n is appropriate [73]. Writing c∗n = c∗p = c∗

in (2.2)-(2.3) allows us to rewrite the model in the form

∂c∗

∂t∗
= ∇ · (Dn∇c∗ −

DnF

RT
c∗∇φ∗), (2.7)

∂c∗

∂t∗
= ∇ · (Dp∇c∗ +

DpF

RT
qc∗∇φ∗), (2.8)
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Here we use the fact that q/k = F/R where F is Faraday’s constant and R is the

universal gas constant. Now we can manipulate (2.7)-(2.8) by multiplying (2.8) by Dn

and (2.7) by Dp, respectively and adding the resulting equations to obtain a diffusion

equation for the electrolyte concentration c

∂c∗

∂t∗
= ∇ ·

((
2DnDp

Dn +Dp

)
∇c∗

)
(2.9)

Subtracting (2.7) from (2.8) leads to an equation for the current density as defined in

(2.6)

∇ · j∗ = 0 (2.10)

j∗ = −(Dn +Dp)

[
F

RT
c∗∇φ∗ − Dn −Dp

Dn +Dp
∇c∗

]
(2.11)

We emphasize that the resulting conservation equation (2.9) only works for constant

diffusion coefficients. However, this is not an accurate behaviour of electrolyte and

non-linear diffusion coefficient has to be taken into account. The non-linear diffusion

coefficients can be adapted into the model using more complicated multicomponent

diffusion equations [8]. These are discussed in Chapter 3 (for a moderately concentrated

electrolyte model).

2.3 Reaction kinetics on the electrode particle surfaces

Here we consider the intercalation reaction that takes place on the surface of the electrode

particles and which is responsible for transport of lithium out of the electrode particles

into the electrolyte and vice versa.

Figure 2.1: Reaction rate on the solid electrolyte interface in anode and cathode.
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On the particle electrolyte interface (Figure 2.1), conservation of lithium ions and neg-

ative ions are described by the relations

n · q∗p = G∗a, n · q∗n = 0 on ∂Ωa (2.12)

n · q∗p = G∗c , n · q∗n = 0 on ∂Ωc (2.13)

where G∗a and G∗c are surface reaction rates giving the flux of lithium ions out of the

anode and cathode electrode particles respectively. The surface reaction rates depend

typically upon the intercalated lithium concentration on the electrode surface, and the

concentration of ions in the electrolyte at the surface. They are usually modelled by

the phenomenological Butler-Volmer equation. Here we shall assume that individual

particles are electronically well-connected to the current collector and effectively neglect

resistance within the electrodes. Without loss of generality we take the potential of the

negative electrode (anode) particles to be 0. The overpotential in the anode (the change

in electrochemical potential that a charged species goes through as it passes through an

anode particle surface into the electrolyte) is φ∗+U∗eqa [55]. The Butler Volmer relation

for the surface reaction rate depends on the overpotential in the following manner

G∗a =
i0a
F

(
exp

[ −F
2RT

(φ∗ + U∗eqa(c
∗
s))

]
− exp

[
F

2RT
(φ∗ + U∗eqa(c

∗
s))

])
in 0 < x∗ < L(2.14)

Here i0a is the exchange current density in anode. In the cathode (positive electrode)

we denote the potential V ∗ so that the overpotential is φ∗ − V ∗ + U∗eqc and the Butler

Volmer relation takes the form

G∗c =
i0c
F

(
exp

[ −F
2RT

(φ∗ − V ∗ + U∗eqc(c
∗
s))

]
− exp

[
F

2RT
(φ∗ − V ∗ + U∗eqc(c

∗
s))

])

in L < x∗ < 2L(2.15)

where i0c is the exchange current density in cathode. Here U∗eqa(c
∗
s) and U∗eqc(c

∗
s) are the

anodic and cathodic equilibrium potentials respectively and vary with the intercalated

lithium concentrations c∗s on the surface of the electrode particles. The open circuit po-

tentials can vary widely depending on the insertion chemistry of the material. The work

[36] gives analytic expression for U∗eqc(y) that fits to the experimental data for LiyMn2O4

where y is the amount of lithium inserted. This expression shows a small step decrease of

potential around the middle of the discharge (see Figure 2.2(b)). In the case of LiyFePO4,

the discharge curve shows hardly any variation until the cell is entirely discharged [84]

(see Figure 2.2(c)). Moreover, the open circuit potential of cobalt dioxide, LiyCoO2

varies with changes in y [37] (see Figure 2.2(a))). The open-circuit potential curves for

different cathode materials and anode materials are shown in Figures 2.2 and 2.3. The

analytic expression for U∗eqa(x) of LixC6 which has been given in [36] shows significant

variation with changes in x (refer Figure 2.3(a)). Lithium titanate (LixTi5O12) has a flat
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discharge curve [80] (see Figure 2.3(c)) whereas silica (LixSi5) is more like LixC6 in that

its discharge curve varies significantly with changes in composition x (see Figure 2.3(b)).
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Figure 2.2: Different types of open circuit potential i.e. U∗eqc(y) curves for dif-
ferent cathode materials with respect to the insertion chemistry of the materials,
y (normalized capacity).

2.4 The electrode particles

In the anode particles (as the cell is discharged), lithium diffuses to the electrolyte-solid

interface where the chemical reaction occurs, transferring lithium ions to the solution

and electrons to the collector [14]. The lithium ions thus produced, flow through the

electrolyte solution to the positive electrode, where, at the interface of the solid material,

they react and insert into the metal oxide solid particles.
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Figure 2.3: Different types of open circuit potential i.e U∗eqa(x) curves for
different anode materials with respect to the insertion chemistry of the materials,
x (normalized capacity).

This process is enabled by diffusion of Lithium into (and out of) the electrode particle.

At the surface of the particles, lithium ions are released into the electrolyte by the surface

electrode reaction. In [28], diffusion of lithium in the solid phase is described by the

diffusion equation in spherical coordinates;

∂c∗s
∂t∗

= Ds
∂c∗s
∂r∗

, 0 ≤ r∗ ≤ R0 (2.16)

∂c∗s
∂r∗

∣∣∣∣
r∗=0

= 0, Ds
∂c∗s
∂r∗

∣∣∣∣
r∗=R0

= −G∗ (2.17)

where c∗s is the concentration in the electrode particle, Ds is the lithium diffusion in the

electrode particle, R0 is the radius and G∗ is the surface reaction rate (per unit area).

Here, we follow [74] in which it is assumed that the electrode particles are sufficiently

small so that diffusion of intercalated lithium within the particle is much faster than



Chapter 2 Dilute electrolyte modelling of battery 19

that of ions in the electrolyte across the battery. Thus, the Lithium concentration in

the solid particles can be approximated as a function of time only. The material balance

for the lithium ions in anode and cathode particles on radius Ra and Rc, respectively

are thus governed by

∂

∂t∗

(
4

3
πR3

ac
∗
sa

)
= −4πR2

aG
∗
a,

∂

∂t∗

(
4

3
πR3

cc
∗
sc

)
= −4πR2

cG
∗
c . (2.18)

These equations describe conservation of lithium within a particle accounting for the

total rate of lithium intercalation on its surface.

2.5 Homogenisation of model accounting for microstruc-

ture on electrode particle scale

We now set out to write down a model for a battery based on the dilute electrode

solution theory discussed in §2.2 and on the typical battery structures discussed in

Chapter 1 (see Figure 1.1 for an illustration). At the battery-scale, the number of

variables governing performance increases enormously and can only be analyzed at a

reasonable cost in an appropriate mathematical framework. Recent work has shown

that the performance of lithium ion technology can be improved through emphasis on

engineering the microstructural architecture of the electrodes see [41, 23]. Here we follow

Richardson et al. [74] and incorporate the microscale effects into the macro-scale problem

through homogenization.

Newman had written down macroscopic battery equations based on phenomenological

grounds [58] which have been used subsequently in a number of applications [28, 36,

23, 29]. In [74], however, the equations are derived systematically using homogenisation

techniques. The macroscopic model is characterized by the Lithium-ion concentration

in the liquid phase, c∗, and the electric potential of the liquid phase, φ∗ and the Lithium

concentration in the solid electrode particles. The intercalation of Lithium-ions from

the electrolyte into the particles is represented by a surface reaction rate on the surface

of the particles, G∗ which gives the flux of lithium ions from the electrode particle into

the electrolyte per unit area of the interface.

At the micro-scale, a single representative electrode particle is examined. The micro-

scale variables include the microscopic lithium concentration in the anodic and cathodic

particles, c∗sa and c∗sc, respectively. The rate of diffusion into the particle and subse-

quently into the particle depend on the microscopic lithium transfer rate, G∗.

The geometry of the problem is illustrated in Figure 1.1. Here 0 < x∗ < L is a region

occupied by the negative electrode electrode particles, there is then a thin separator on

the other side of which the positive electrode occupies the region L < x∗ < 2L. The
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Figure 2.4: Schematic representation of the mathematical domains in particle
scale.

particles are bathed in the electrolyte which can freely permeate the porous spacer. Here

we denote the region occupied by the anode particles by Ωa and the cathode particles

by Ωc (as illustrated in Figure 2.4). ∂Ωa is the anode solid electrolyte interface and

∂Ωc is the cathode solid electrolyte interface. We denote the unit normal vector to the

interface ∂Ωa and ∂Ωc by n; this is directed.

The homogenised equations for the diffusion of lithium ions in the electrolyte and for

the potential in the electrolyte are derived in [74] from (2.9)-(2.11) accounting for the

lithium flux G∗ on the surface of the electrode particles. The resulting equations are

εv
∂c∗

∂t∗
− ∂

∂x∗

(
Deff

∂c∗

∂x∗

)
= (1− t+)betiG

∗
i (2.19)

∂j∗

∂x∗
= FbetiG

∗
i (2.20)

j∗ = −F Deff

2t+(1− t+)

(
F

RT
c∗
∂φ∗

∂x∗
− (1− 2t+)

∂c∗

∂x∗

)
(2.21)

where i = a in the anode and i = c in the cathode. Here the effective diffusitivity,

Deff =
B112DnDp

Dn+Dp
(where B11 is the 11-component of the permeability tensor which

describes the ease with which a substance can diffuse through the tortuous electrolyte

paths in the electrode), bet is the BET surface area (i.e. the surface area of particles per

unit volume of electrode) and εv is the volume fraction of the electrolyte and t+ is the

transference number defines by

t+ =
Dp

Dn +Dp
. (2.22)
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Notably (2.21) gives the effective electrical conductivity of electrolyte as

κ(c∗) =
DeffF

2c∗

2RTt+(1− t+)
(2.23)

which in this dilute solution theory is linearly concentration-dependent [90]. It turns out

that this dependence of conductivity on concentration is not realistic for many of the

electrolytes used in real battery and this motivates us to look at models for moderately

concentrated electrolytes in Chapter 3.

The electrode equations (2.18), after the homogenisation process are

(1− εva)
∂c∗sa
∂t∗

= −betaG∗a, (1− εvc)
∂c∗sc
∂t∗

= −betcG∗c (2.24)

2.5.1 The current collectors

At the anodic and cathodic current collectors we assume that the fluxes of the ions are

both zero

∂c∗

∂x∗

∣∣∣∣
x∗=0

= 0,
∂c∗

∂x∗

∣∣∣∣
x∗=2L

= 0 (2.25)

and that the current transfers between the current collectors and the electrolyte are

j∗|x∗=0 = 0, j∗|x∗=2L = 0 (2.26)

2.5.2 The separator

The separator is thin insulating porous spacer that stops direct contact between anode

and cathode particles but allow flow of ions through its pores (see Figure 1.1) [44].

Assuming the separator is thin then the ion fluxes, the electrolyte potential and electric

field in the electrolyte are all continuous so that

[c∗]x∗=L = 0,

[
∂c∗

∂x∗

]

x∗=L

= 0, [j∗]x∗=L = 0, [φ∗]x∗=L = 0 (2.27)

2.5.3 The initial conditions

We assume that before the discharge process begins the battery is fully charged in an

equilibrium state. This corresponds to the initial conditions

c∗(0, x∗) = C0, c∗sa(0, x
∗)|0<x∗<L = Cmaxa , c∗sc(0, x

∗)|L<x∗<2L = 0 (2.28)

that is the anode particles are full of lithium while the cathode particles are empty.
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2.5.4 The relation between current and global reaction rate

Let I∗ be the total current flowing through cell. The total charge released by the

anode particles must equal the charge absorbed by the cathode particles. By taking

a representative cylindrical volume through the whole cell of cross-sectional A (where

bet is the active surface area per unit volume of electrode particles), due to charge

conservation, we can express the integral of the reaction rates of the two electrodes in

terms of the current I∗ by

AbetaF

L∫

0

G∗a(φ
∗)dx∗ = −AbetcF

2L∫

L

G∗c(φ
∗)dx∗ = I∗ (2.29)

It follows that beta
L∫
0

G∗a(φ
∗)dx∗ + betc

2L∫
L

G∗c(φ
∗)dx∗ = 0. When posing the problem we

can either specify I∗ as an input variable and V ∗ as the output (galvanostatic discharge)

or we can specify V ∗ and determine I∗ (potentiostatic discharge).

2.5.5 Summary of the battery model and comparison to other models

To summarise, a homogenised model of a battery based on Poisson-Nernst-Planck (PNP)

equations for a dilute electrolyte, and assuming fast diffusion in the electrode particles,

has the form

εvi
∂c∗

∂t∗
− ∂

∂x∗

(
Deff

∂c∗

∂x∗

)
= (1− t+)betiG

∗
i (2.30)

∂j∗

∂x∗
= FbetiG

∗
i (2.31)

j∗ = −F Deff

2t+(1− t+)

(
F

RT
c∗
∂φ∗

∂x∗
− (1− 2t+)

∂c∗

∂x∗

)
(2.32)

G∗a =
i0a
F

(
exp

[ −F
2RT

(φ∗ + U∗eqa(c
∗
sa)

]
− exp

[
F

2RT
(φ∗ + U∗eqa(c

∗
sa))

])

in 0 < x∗ < L (2.33)

G∗c =
i0c
F

(
exp

[ −F
2RT

(φ∗ − V ∗ + U∗eqc(c
∗
sc))

]
− exp

[
F

2RT
(φ∗ − V ∗ + U∗eqc(c

∗
sc))

])

in L < x∗ < 2L (2.34)

(1− εva)
∂c∗sa
∂t∗

= −betaG∗a, in 0 < x∗ < L (2.35)

(1− εvc)
∂c∗sc
∂t∗

= −betcG∗c , in L < x∗ < 2L (2.36)
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∂c∗

∂x∗

∣∣∣∣
x∗=0

= 0,
∂c∗

∂x∗

∣∣∣∣
x∗=2L

= 0 (2.37)

j∗|x∗=0 = 0, j∗|x∗=2L = 0 (2.38)

[c∗]x∗=L = 0,

[
∂c∗

∂x∗

]

x∗=L

= 0, [j∗]x∗=L = 0, [φ∗]x∗=L = 0 (2.39)

c∗(0, x∗) = C0, (2.40)

c∗sa(0, x
∗)|0<x∗<L = Cmaxa , c∗sc(0, x

∗)|L<x∗<2L = 0 (2.41)

betaF

L∫

0

G∗a(φ
∗)dx∗ = −betc

2L∫

L

G∗c(φ
∗)dx∗ =

I∗

A
(2.42)

where the suffix i = a denotes the anode (0 < x∗ < L) and i = c denotes the cathode

(L < x∗ < 2L). Here the transference number t+ and the effective diffusivity Deff are

given by

t+ =
Dp

Dn +Dp
, Deff =

2B11(DnDp)

Dn +Dp)
, (2.43)

respectively and the conductivity is given by

κ(c∗) = Deff
F 2c∗

2t+(1− t+)RT
(2.44)

This system of equations is similar to the macroscopic Newman model [29, 28, 23, 25]

for which there is no systematic derivation. It is notable that using this technique,

the permeability factor B11 appears which accounts for the detailed microstructure of

the electrode (and can be calculated using the recipe in [74]). The permeability factor

appears both in the effective diffusivity and the effective conductivity of the electrolyte.

The derivation also illustrates that the factor (1− 2t+) appearing in (2.32) differs from

the equivalent factor in Newman’s model [28] which is (1 − t+). Richardson et al. [74]

claim that the difference comes about because [28] uses the concentrated solution theory

instead of the dilute solution although we believe that in fact this is due to potential

in the Newman model being measured with respect to a Lithium electrode rather than

being an absolute potential as here (see Chapter 3 for more details).

2.6 Numerical and analytical solutions for the full cell model

The forward (oxidation) and backward (reduction) for electron transfer at the electrode

particles surfaces is describe by Butler Volmer equations (2.33) and (2.34). When the

battery operates far from equilibrium these Butler Volmer equations can be approx-

imated by Tafel equations [4] in which either the reduction, or oxidation, transfer is
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switched off depending upon whether the cell is charging or discharging. In this sec-

tion we introduce Tafel reaction kinetics and present some model solutions base on this

approximation. The model is solved analytically in quasi steady state with uniform equi-

librium potentials. This analytical solution allow us to validate the numerical results

and can be used to explain how the electrolyte concentration is depleted when large

currents are applied.

Equilibrium solution At equilibrium I∗ = 0 and G∗a = G∗c = 0 and the solution to

(2.30) - (2.42) is

φ∗ = −U∗eqa, V ∗ = U∗eqc − U∗eqa (2.45)

2.6.1 Nondimensionalization

To nondimensionalize the model we let J̄ represents the typical current density, A is the

the cross-sectional area, J̄A represents the magnitude of the typical current, and beta

and betc are the typical BET surface area in anode and cathode. Away from equilibrium

we write (2.45) in the form

φ∗ = −Ueqa,0 + Φ̃φ, V ∗ = Ueqc,0 − Ueqa,0 + Φ̃V (2.46)

and

U∗eqa = Ueqa,0 + Φ̃Ua(csa), U∗eqc = Ueqc,0 + Φ̃Uc(csc) (2.47)

where Φ̃ = RT
F is the thermal voltage which is, at room temperature, about 25mV .

We then nondimensionalise of (2.30)-(2.42) as follows

x∗ = Lx, c∗ = C0c, c∗sa = Csa,maxcsa, c∗sc = Csc,maxcsc, t∗ = τt,

j∗ = J̄j, I∗ = J̄A(Ī), G∗i =
J̄

LbetiF
Gi, V ∗ = Φ̃V φ∗ = Φ̃φ (2.48)

where L is the thickness of the electrode, Csa,max and Csc,max are the maximum concen-

tration in the anode and cathode electrodes, C0 is the typical concentration of lithium

ions in the electrolyte. Here LA gives an approximation of the electrode volume and

the number of moles of intercalated lithium is thus of size O(Cs,maxLA). Thus where

lithium is consumed at a rate of JA/F , we expect the timescale τ for discharge to be

given by

τ =
LFCsc,max

J̄
. (2.49)
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On defining the dimensionless parameters

γ =
DeffFC0

J̄L(1− t+)
, Ωa =

Lbetai0a
J̄

, Ωc =
Lbetci0c

J̄
, (2.50)

Γ =
J̄L

FDeffCsc,max
, χ =

csc,max
csa,max

(2.51)

and nondimensionalising (2.30)-(2.42) using (2.46)-(2.48), we obtain the dimensionless

system

Γεv
∂c

∂t
− γ ∂

2c

∂x2
=

1

γ




Ga(csa, φ), if 0 < x < 1

Gc(csc, φ), if 1 < x < 2
(2.52)

∂j

∂x
=




Ga(csa, φ), if 0 < x < 1

Gc(csc, φ), if 1 < x < 2
(2.53)

j = − γ

2t+
c

(
∂φ

∂x
− (1− 2t+)

∂ log c

∂x

)
(2.54)

(1− εv)
∂csa
∂t

= −χGa(csa, φ), if 0 < x < 1 (2.55)

(1− εv)
∂csc
∂t

= −Gc(csc, φ), if 1 < x < 2 (2.56)

∂c

∂x

∣∣∣∣
x=0

= 0, j|x=0 = 0, (2.57)

∂c

∂x

∣∣∣∣
x=2

= 0, j|x=2 = 0 (2.58)

[c]x=1 = 0,

[
∂c

∂x

]

x=1

= 0, [j]x=1 = 0, [φ]x=1 = 0 (2.59)

c(0, x) = 1, (2.60)

csa(0, x) = 1 if 0 < x < 1, csc(0, x) = 0 if 1 < x < 2(2.61)
1∫

0

Ga(csa, φ)dx = −
2∫

1

Gc(csc, φ)dx = Ī (2.62)

where the dimensionless reaction rates are given by

Ga = Ωa

(
exp

[
−1

2
(φ+ Ua(csa))

]
− exp

[
1

2
(φ+ Ua(csa))

])

if 0 < x < 1 (2.63)

Gc = Ωc

(
exp

[
−1

2
(φ− V + Uc(csc))

]
− exp

[
1

2
(φ− V + Uc(csc))

])

if 1 < x < 2 (2.64)
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Parameter Value

Electrolyte Parameters

Diffusivity of Lithium ions, Deff (m2s−1) 5.34× 10−10 [32]
Volume fraction, εv 0.4764

Initial salt concentration, c0 (molm−3) 1000 [23]
Transference number, t+ 0.38 [90]

Electrode Parameters LiC6 LiFePO4

Radius of particle, a (m) 1.1× 10−5 [85] 5.2× 10−8 [85]
Exchange current density, i0 (Am−2) 30 [32] 5.4× 10−5 [23]

BET surface area, bet (m−1) 2× 104 5× 107

Maximum concentration in the solid, Cs,max (molm−3) 30000 [85] 20950 [23]

Other Parameters

Electrode thickness, L (m) 6.25× 10−5 [23]
Faraday constant, F (Cmol−1) 96487 [23]

Universal gas constant, R (Jmol−1K−1) 8.3144 [23]
Temperature, T (K) 298 [23]

Electrode area, A (m2) 10−4 [23]

Table 2.1: Parameter values used in the model.

2.6.1.1 Size of dimensionless parameters

In the above equations, γ is the maximum sustainable flux of ions in the electrolyte

to the actual ion flux. Ωa and Ωc are the dimensionless reaction rates on the anode

particles and cathode particles respectively. To estimate the size of the typical size of

dimensional parameters in the problem we use the data listed in Table 2.1. Note that

ioa and ioc values depend upon the electrode material. The BET surface area beti (by

considering a periodic cube contains one spherical particle of radius a where the particle

just touches its neighbours) is the surface area of the spherical particle divided by the

volume of the periodic cube such that

bet =
Surface are of particle

Volume of periodic cube
=

4πa2

8a3
=

π

2a
. (2.65)

We now use these dimensional parameters listed in Table 2.1 to estimate the size of the

key dimensionless parameters as follows

γ ≈ 25, Ωc ≈ 10−3, Ωa ≈ 10−2, Γ ≈ 10−4 (2.66)

Here we take J̄ = 26Am−2. Note that if we discharge the cell at a relatively slow

rate, than Γ is estimated to be extremely small (10−4) and that will allow us to solve a

quasi-steady state problem for the concentration in the electrolyte.
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2.6.2 The Tafel equation approximation for Ωa << 1 and Ωc << 1

The Butler-Volmer equation can be approximated by the Tafel equation in the limit

that Ωa and Ωc are small. During discharge, the current drives the lithium ions from

the anode to the cathode (Ī > 0), while during charging, the flow of Lithium ions is

in reversed Ī < 0). If Ī(t) is O(1) and positive it follows that Ga > 0 and Gc < 0,

and both are order O(1) from the integral condition (2.62). Thus, we can rescale the

Butler-Volmer relation by writing

φ = −2 log

(
1

Ωa

)
+ φ̃, V = −2 log

(
1

Ωa

)
− 2 log(

1

Ωc
) + Ṽ (2.67)

The reaction rates of (2.63)-(2.64) can then be approximated by the Tafel equations

Ga = exp

(
−1

2
(φ̃+ Ua(csa)

)
if 0 < x < 1 (2.68)

Gc = − exp

(
1

2
(φ̃− Ṽ + Uc(csc))

)
if 1 < x < 2 (2.69)

provided log(1/Ωa) >> 1 and log(1/Ωc) >> 1. Here Ṽ is now the unknown parameter

we are looking for.

2.6.3 The quasi steady approximations for Γ << 1

Provided that the rate of discharge is not very fast, we expect that Γ to be small,

thus we can neglect the
∂c

∂t
term in (2.52) and solve the quasi steady-state problem.

Before taking the limit Γ → 0 , we note first that by integrating (2.52) between x = 0

and x = 2, applying the boundary conditions (2.57)-(2.58) and the integral conditions

(2.62), we find
d

dt

(∫ 2

0
cdx

)
= 0 and hence from the initial condition (2.60), we have

2∫

0

c dx = 2 (2.70)

Taking the limit Γ→ 0 in (2.52) gives the quasi-steady equation

−γ ∂
2c

∂x2
=




Ga(x, t), 0 < x < 1

Gc(x, t), 1 < x < 2
(2.71)

Combination of equations (2.53) and (2.54) gives

∂j

∂x
= − γ

2t+

∂

∂x

(
c
∂φ̃

∂x
− (1− 2t+)

∂c

∂x

)
=




Ga(x, t) 0 < x < 1

Gc(x, t) 1 < x < 2
(2.72)
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Then by equating equations (2.71) and (2.72) we find

−γ ∂
2c

∂x2
= − γ

2t+

∂

∂x

(
c
∂φ̃

∂x
− (1− 2t+)

∂c

∂x

)
(2.73)

which can be simplified to the integrable equation

∂

∂x

(
∂c

∂x
− c∂φ̃

∂x

)
= 0. (2.74)

Integrating (2.74) and applying the boundary conditions (2.57) to (2.74) then gives

∂c

∂x
− c∂φ̃

∂x
= 0 (2.75)

Equation (2.75) states that there is zero flux of the negative counterion through the

device. Solutions of this equation have the form;

c(x, t) = A(t) exp(φ̃(x, t)) (2.76)

or alternatively

φ̃(x, t) = log

(
c(x, t)

A(t)

)
. (2.77)

Hence, we can eliminate φ̃ from (2.68)-(2.69) and (2.71) to give a problem with one fewer

dependant variables

−γ ∂
2c

∂x2
=





exp
(
−1

2

(
log
(

c
A(t)

)
+ Ua(csa(x, t))

))
, if 0 < x < 1

− exp
(

1
2

(
log
(

c
A(t)

)
− Ṽ + Uc(csc(x, t))

))
, if 1 < x < 2

(2.78)

2.6.4 Solution for flat discharge curves

We now look at finding solutions to the model with the above assumptions (quasi-state

discharge and Tafel reaction equations) and in addition we will assume that both the

anode and cathode materials have flat discharge curves. This last corresponds to the

assumption that Ua(csa) and Uc(csc) are only very weakly dependant on csa and csc

(e.g this would be for a LiFePO4 cathode). This allows us to assume that Ua(csa) and

Uc(csc) are constant until fully discharged (i.e. csa = 0 and csc = 1) at which point the
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equilibrium potentials become large and effectively shut off the reaction rate; thus

Ua(csa) =




∞, if csa ≤ 0

Ua0, if 0 < csa ≤ 1
(2.79)

Uc(csc) =




Uc0, if 0 ≤ csc < 1

−∞, if csc ≥ 1
(2.80)

Solution before the particles are fully discharged. Before the particles are fully

discharged, (2.78) can be rewritten as

−γ ∂
2c

∂x2
=





exp
(
−1

2

(
log
(
c
A

)
+ Ua0)

))
, if 0 < x < 1, 0 < csa ≤ 1

− exp
(

1
2

(
log
(
c
A

)
− Ṽ + Uc0

))
, if 1 < x < 2, 0 ≤ csc < 1

(2.81)

By expressing the parameters in (2.81) as follows,

A = exp(−W ), Ṽ = W + Ua0 + Uc0 − log(A),

β = exp

(
−W

2
− Ua0

2

)
, (2.82)

we can write the model (2.81) with boundary conditions (2.57(a)), (2.58(a)), and (2.59(a),(b)),

(2.62) and (2.70) as follows

∂2c

∂x2
=




−β
γ c
−1/2, if 0 < x < 1

β
γ c

1/2, if 1 < x < 2
(2.83)

subject to the conditions

∂c

∂x

∣∣∣∣
x=0

= 0,
∂c

∂x

∣∣∣∣
x=2

= 0, (2.84)

[
∂c

∂x

]

x=1

= 0, [c]x=1 = 0 (2.85)

2∫

0

c dx = 2 (2.86)

β

1∫

0

c−1/2 dx = β

2∫

1

c1/2 dx = Ī . (2.87)
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With the same rescaling, the concentration in the solid equations (2.55) and (2.56) with

Tafel kinetics (2.68)-(2.69) can be rewritten as

(1− εv)
∂csa
∂t

= χβc−1/2, 0 < x < 1 (2.88)

(1− εv)
∂csc
∂t

= −βc1/2 1 < x < 2 (2.89)

csa(0, x) = 1, csc(0, x) = 1. (2.90)

Here Ī is an unknown constant that we shall determine as part of the solution and β

is a specified parameter (alternatively we could specify Ī and determine β). We note

that β is specify so that it satisfies the integral condition (2.86). Once we have solved

(2.83)-(2.86) to determine c(x) for a given value of β we can use (2.87) to determine the

corresponding current, Ī. When we solve the second order differential system (2.83)-

(2.85) analytically, we obtain the implicit solution

x =





2
3

√
γ
β

√
c(0)1/2 − c(x)1/2(2c(0)1/2 + c(x)1/2), 0 < x < 1

2 + i
√

3γ
β c(2)1/4

(
c(x)
c(2) Hypergeometric2F1

(
2
3 ,

1
2 ,

5
3 ,
[
c(x)
c(2)

]3/2
)
−√π Γ(5/3)

Γ(7/6)

)
, 1 < x < 2

(2.91)

This analytical result will be compared to the numerical solution. The result is coupled

to (2.88)-(2.90) for the time dependant concentration in the electrode particles.

Numerical procedure Equations (2.83)-(2.85) has been solved for c and φ̃ using

Matlab ’bvp4c’ (boundary value problem solver). The current, Ī is determined by the

Newton method which satisfies the integral conditions (2.87). The concentration in the

solid in (2.88)-(2.90) are numerically solved using Forward Euler method.

2.6.5 Results and Discussion

Figure 2.5 shows the comparison of steady state analytic solution (2.91) against nu-

merical simulation for the equation (2.83)-(2.87). The graph shows that the analytical

solution compares well with the numerical simulation. The dimensionless parameters

values (refer Table 2.1 for the values of dimensional parameters) used to obtain the

results are listed in Table 2.2.

The results for lithium concentration, electric potential in electrolyte and concentration

of lithium in solid will be presented as a function of position (x) where the anode and

cathode current collectors are at x = 0 and x = 2, respectively, and the separator at

x = 1. Figure 2.6 shows the concentration profile of Lithium ions in the electrolyte phase

for different discharge currents Ī. The concentration profile has a negative gradient,

which decreases, with increases in Ī, until full discharge is no longer possible. Increasing

Ī further will drive the Lithium ion concentration to zero in the region adjacent to the
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Figure 2.5: The solution of dimensionless electrolyte potential, φ̃(x) from (sym-
bols) analytical expression (2.91) compared to (line) numerical simulation using
MATLAB ’bvp4c’ at discharge current Ī = 1.32.

Parameter Value Figure(s)

γ 25
2.5, 2.7, 2.6, 2.8εv 0.13643

t+ 0.38

Ī

1.32 2.5
1.0, 1.2, 1.4, 1.7 2.7, 2.6

1.0 2.8(a)
1.5 2.8(b)

Table 2.2: The values of dimensionless parameters for Figure 2.5, Figure 2.7,
Figure 2.6 and Figure 2.8.

current collector at x = 2. This is thus leads to dead regions of the cathode that are

unable to discharge properly. Once this happens the particles in this region can no

longer be used because there are no Lithium ions in the solution to insert. The lack of

Lithium ions is called a limiting-current phenomenon and has been discussed in [36] and

will be investigated further here in §2.7 for a half cell cathode.

The plots of φ̃(x), (see Figure (2.7)) shows that potential, φ̃(x) is high in the region

furthest from the separator in the anode and dropped to a small value near the separator,

and goes negative in the cathode.

The lithium concentration cs in the solid electrode particles in the anode and the cathode
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Figure 2.6: Graph of dimensionless electrolyte concentration c(x) at different
discharge currents Ī = 1.0, 1.2, 1.4, 1.7 as a function of position. This analytical
solutions are obtained by equation (2.91).
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Figure 2.7: Graph of dimensionless electrolyte potential φ̃(x) at different dis-
charge currents Ī = 1.0, 1.2, 1.4, 1.7 as a function of position. This figure is
obtained by relation to the electrolyte concentration as stated in (2.77).

are determined by solving (2.88)-(2.90) numerically. The profiles of lithium concentra-

tion in the solid particles in the anode and the cathode are shown in Figure 2.8 at
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different discharge currents. Lithium ions are released into the electrolyte from the an-

ode particles, after which they diffuse through the electrolyte to the cathode, where

they insert into the particles. The figure shows that the rate of release/insertion are

quicker in the region closest to the separator than those in the region furthest from the

separator. Figure 2.8(b) depicts scenario in which cell that is discharged at a higher

current (Ī = 1.5) than in Figure 2.8(a) (Ī = 1).

2.7 The half cell cathode model

A schematic of a half cell cathode is shown in Figure 1.4. We use the same model

equations (2.30)-(2.32), (2.34) and (2.36) with the following boundary conditions at the

separator (x∗ = 0) and the cathode current collector (x∗ = L)

φ∗|x∗=0 = 0, c∗|x=0 = C0, j∗|x=0 = − I
A
, (2.92)

∂c∗

∂x∗

∣∣∣∣
x=L

= 0, j∗|x=L = 0 (2.93)

and initial conditions

c∗(x∗, 0) = C0, c∗sc(x
∗, 0) = 0. (2.94)

We nondimensionalise the half-cell model using the scaling in (2.48). The dimensionless

model for the half cell cathode is similar to that for the full cell, except the cathode now

occupies 0 < x < 1 (rather than 1 < x < 2), and is given by

Γεv
∂c

∂t
− ∂2c

∂x2
=

1

γ
Gc(cs, φ), (2.95)

∂j

∂x
= Gc(cs, φ), (2.96)

j = − γ

2t+
c

(
∂φ

∂x
− (1− 2t+)

∂ log c

∂x

)
(2.97)

φ|x=0 = 0, c|x=0 = 1, j|x=0 = −Ī , (2.98)

∂c

∂x

∣∣∣∣
x=1

= 0, j|x=1 = 0 (2.99)

(1− εv)
∂csc
∂t

= −Gc(cs, φ), if 1 < x < 2 (2.100)

c(0, x) = 1, csc(0, x) = 0. (2.101)

During discharge, Ī(t) > 0 and Gc < 0 and of O(1). If we discharge the cell at a

slow discharge rate, Ωc is small and we can once again approximate the Butler Volmer
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Figure 2.8: Dimensionless intercalated Lithium concentration distribution in the
particle for anode (0 < x < 1) and cathode (1 < x < 2), csa and csc, respectively
(by solving (2.88)-(2.90) numerically) for discharge current (a) Ī = 1 and (b)
Ī = 1.5. Here 0 < x < 1 is the anode and 1 < x < 2 is the cathode. The profiles
are measured at t∗ = 100s, 200s, 300s, 400s, ....
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equations by the Tafel

Gc = − exp

(
1

2
(φ− Ṽ + Ũc(csc))

)
(2.102)

by rescaling

V = −2 log

(
1

Ωc

)
+ Ṽ (2.103)

provided log(1/Ωc) >> 1. In the case of a cathode material (such as LiFePO4) with a

flat discharge curve, Ũc(csc) is constant until the material is almost entirely discharge.

The reaction shuts off because of a lack of vacancies in the solid as csc approaches 1.

2.7.1 Quasi-steady state limit Γ→ 0

In the limit Γ → 0, (2.95)-(2.97) can once again be approximated by the quasi-steady

equation

−γ ∂
2c

∂x2
= Gc(x, t) (2.104)

− γ

2t+

∂

∂x

(
c
∂φ̃

∂x
− (1− 2t+)

∂c

∂x

)
= Gc(x, t) (2.105)

By equating these two equations, integrating in x and applying the appropriate boundary

conditions we find

c = exp(φ) (2.106)

or alternatively

φ = log(c). (2.107)

By substituting this relation into (2.104) and (2.102), we obtain an ODE for concentra-

tion of electrolyte

∂2c

∂x2
= −1

γ
Gc(c), where Gc(c) = −√c exp

(
−1

2
(V − Ũc(csc(x, t)))

)
. (2.108)

The boundary conditions for the above system (see (2.98)-(2.99)) are

c|x=0 = 1,
∂c

∂x

∣∣∣∣
x=0

= − Ī
γ
,

∂c

∂x

∣∣∣∣
x=1

= 0 (2.109)
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Transport of Lithium in the solid particles (as previously stated which is assumed to be

fast) is given by

(1− εv)
∂csc
∂t

=
√
c exp

(
−1

2
(V − Ũc(csc(x, t)))

)
(2.110)

csc(x, 0) = 0. (2.111)

2.7.2 Flat discharge curve approximation for LiFePO4 cathode

Once again we assume that the cathode material has a flat discharge curve so that, as

previously,

Ũc(csc) =




−∞, when csc ≥ 1

U0, when csc < 1
(2.112)

This approximation allows the model to be simulated numerically and semi analytically.

The Tafel kinetic from equation (2.102) leads to a free boundary problem, where the free

boundary x = s(t) is the front between a region of fully discharged particles (csc = 1)

and partially discharge particles (csc < 1) (as illustrated in Figure 2.9). Thus, the free

boundary reaction equation (2.102)

csc = 1, Gc = 0 in x < s(t)

csc < 1, Gc = −√c exp

[
−1

2
(V − U0)

]
in x > s(t) (2.113)

Here we specify Ī and seek to determine V .

Figure 2.9: The free boundary problem; (a) x < s(t) - Cathode particles are
full with Lithium (csc = 1) and (b) x > s(t) - Cathode particles are partially
filled (csc < 1)
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2.7.3 Analytic solutions

The analytic solutions of the ODE system (2.108)-(2.109) are divided into two regimes;

before and after the development of free boundary.

2.7.3.1 Before the development of a free boundary

Since U0 is constant then the voltage V is also constant. Hence, the ODE system

(2.108)-(2.109) can be written as

∂2c

∂x2
=
K

γ

√
c. (2.114)

K = exp

(
−1

2
(V − U0)

)
. (2.115)

The boundary conditions in this regimes are as follows

c|x=0 = 1,
∂c

∂x

∣∣∣∣
x=1

= 0 (2.116)

∂c

∂x

∣∣∣∣
x=0

= − Ī
γ
. (2.117)

Solving (2.114) with the boundary condition (2.116(b)) we obtain

∂c

∂x
= −

√
K

γ

√
4

3

√
c(x)3/2 − c(1)3/2. (2.118)

Integrating this and applying the boundary condition (2.116(a)), we get

− 2√
3

√
K

γ
x = ic(1)−3/4

[
c(x)Hypergeometric2F1

(
2

3
,
1

2
,
5

3
,

[
c(x)

c(1)

]3/2
)

−Hypergeometric2F1

(
2

3
,
1

2
,
5

3
,

[
1

c(1)

]3/2
)]

. (2.119)

Applying the boundary condition (2.117) to the solution (2.118) we obtain an equation

for constant K which is

K =
3

4

Ī2

γ

1

1− c(1)3/2
. (2.120)

We determine the half cell voltage, V from (2.120) by recalling (2.115); thus

V = −2 log

(
3

4

Ī2

γ

1

1− c(1)3/2

)
+ U0 (2.121)

Thus at zero current (Ī = 0), V = U0, but as the current increases so V decreases.
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The concentration in the solid, csc is obtained by solving (2.110) numerically. Alterna-

tively, we can solve (2.110) analytically since Gc(c) is x-dependent only which gives

csc(x, t) =
t
√
c

(1− εv)
exp

(
−1

2
(V − U0)

)
. (2.122)

Numerical solution procedure We solve the half-cell model (2.114)-(2.116) in x

for c, using Matlab ’bvp4c’. The current, Ī is specified by equation (2.117) and the

Newton method is used for the accuracy of the approximations . The concentration in

the solid problem (2.110)-(2.111) is solved using Forward Euler method.

2.7.3.2 After development of free boundary

When the free boundary develops the ODE system (2.108)-(2.109) can be written as

∂2c

∂x2
=





0, if x ≤ s(t)
K
√
c

γ , if x > s(t)
(2.123)

where

K = exp

(
−1

2
(V − U0)

)
. (2.124)

The boundary conditions for the region x ≤ s(t) are as follows

c|x=0 = 1,
∂c

∂x

∣∣∣∣
x=0

= − Ī
γ
. (2.125)

The lithium concentration in the solid equation (2.110) can be written as

(1− εv)
∂csc
∂t

=





0, if x ≤ s(t)
K
√
c

γ , if x > s(t)
(2.126)

csc(x, 0) = 0. (2.127)

The analytical solution of (2.123) for x ≤ s(t) (where Gc = 0) with boundary conditions

(2.125) is given by

c = − Ī
γ
x+ 1 for x ≤ s(t). (2.128)
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Evaluating (2.128) at x = s(t) gives the boundary conditions for ODE system (2.123)

for x > s(t) which are

c|x=s(t) = − Ī
γ
s(t) + 1,

∂c

∂x

∣∣∣∣
x=1

= 0 (2.129)

∂c

∂x

∣∣∣∣
x=s(t)

= − Ī
γ

(2.130)

The analytic solution of the second order differential equation (2.123) with the boundary

condition (2.129(b)) is

∂c

∂x
= −

√
K

γ

√
4

3

√
c(x)3/2 − c(1)3/2. (2.131)

Integrating this and once again applying the boundary condition (2.129(a)), we get

− 2√
3

√
K

γ
x = −ic(1)−3/4

√
c(s(t))3/2 − c(1)3/2

[
c(x)Hypergeometric2F1

(
2

3
,
1

2
,
5

3
,

[
c(x)

c(1)

]3/2
)

−c(s(t))Hypergeometric2F1

(
2

3
,
1

2
,
5

3
,

[
c(s(t))

c(1)

]3/2
)]

(2.132)

Applying the boundary condition (2.130) to the solution (2.131), we obtain an equation

for constant K which is

K =
3

4

Ī2

γ

1

c(s(t))3/2 − c(1)3/2
. (2.133)

The half cell voltage, V is calculated by applying the boundary condition (2.130) to the

solution (2.131) and recalling that K is given by (2.124).

V (t) = −2 log

(
3

4

Ī2

γ

1

c(s(t), t)3/2 − c(1, t)3/2

)
+ U0. (2.134)

Hence for fixed Ī as the free boundary s(t) increases with time, and c(x, t) decreases

with x, the half cell voltage V decreases with time.

Note that although the analytical solutions (2.119) and (2.132) for c(x) contain complex

constant, i =
√
−1, they are in fact real.

Numerical solution procedure We solve the half-cell model (2.123)-(2.125) in x

for c, using Matlab ’bvp4c’. The current, Ī is specified by equation (2.130) and the

Newton method is used for the accuracy of the approximations . The concentration in

the solid problem (2.126)-(2.127) is solved using Forward Euler method.
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2.7.3.3 Results and discussion

Parameter Value Figure

γ 20
2.10, 2.11, 2.12, 2.13εv 0.4764

t+ 0.38

Ī
0.5 2.10, 2.11, 2.12
1 2.13

Table 2.3: The values of dimensionless parameters for Figure 2.10, Figure 2.11,
Figure 2.12 and Figure 2.13.
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0.5

0.6

0.7

0.8
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1

x∗

L

 

 

c

Numerical solution

Analytic solution

Figure 2.10: Dimensionless concentration profiles of the model before the free
boundary develops by (symbol) analytical solution (2.119) and (solid line) nu-
merical simulation for Ī = 1.

The dimensionless parameter values used to obtain the solution are listed in Table 2.3.

The analytical solution (2.119) has been validated against the numerical simulation in

Figure 2.10. It is observed that the numerical procedure predicts the concentration pro-

files accurately. Initially, the concentration of electrolyte is uniform, until the discharge

reaches certain time, t = t̂ ≈ 0.55 at which a free boundary develops.

Figure 2.11 shows the analytical solutions (2.122) of concentration in the solid csc be-

fore the development of free boundary. The figure shows that lithium intercalates into

particles near the separator faster than in other parts of the electrode.

Figure 2.12 shows that for t > t̂ free boundary propagates in from the separator. Figure

2.12(b) shows the profiles of the lithium ion concentration, c, in the electrolyte for times
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Figure 2.11: Lithium ion concentration distribution in the solid particles by
equation (2.122) at Ī = 1. The profiles are measured at t = 0.05, 0.1, 0.15, 0.2, ....
At certain time (t = t̂), the concentration in the solid reaches maximum (csc = 1)
in region near separator and at later time (t > t̂), free boundary develops. Here
t̂ = 0.55

t > t̂. In the region x < s(t), c has a linear profile. While for x > s(t) the particles

are still absorbing lithium ions. As the discharge proceeds, the movement of the free

boundary across the electrode is clearly seen in this figure. At higher discharge rate,

the intercalation rate near the separator is much faster than elsewhere (see Figure 2.13).

After time t = t̂, the csc reaches 1 in region near the separator and the surface reactions

cease (i.e. Gc = 0).

At large discharge rates, a further boundary develops close to the current collector (x =

1) where the electrolyte becomes depleted as shown in Figure 2.13. The concentration in

the electrolyte is driven to zero, (this is called the limiting-current phenomenon) [36]),

this prevents from discharging further and so the intercalation reaction will cease here

too. However, we do not investigate this further here.

2.8 Summary

A detailed model for a lithium ion battery based on dilute electrolyte theory and ac-

counting for intercalation reactions on the surface of the electrode particles has been

developed. Following [74], the homogenisation technique was used to derive macroscopic

equations from a microscopic mocel. These macroscopic equations was then solved in a
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whole cell and in a half cell cathode material. An asymptotic approximation was used

to approximate the Butler Volmer equations with Tafel equations. Analytic solutions

for the electrolyte concentration, c and electrolyte potential, φ̃ were derived for whole

cell system in a quasistatic regime for electrode materials with flat discharge curves.

In the half cell cathode, the system develops a free boundary problem dividing regions

that have fully discharged from those which are only partially discharged. Analytic

solutions for the electrolyte concentration, c and electrolyte potential (φ̃(x)) were calcu-

lated; before and after the development of free boundary. At high discharge currents, the

electrolyte concentration was also found to zero near the current collector, thereby pre-

venting the solid particles to facilitate discharge. Hence, another free boundary develops

in this region. However, we do not investigate this further here.
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(a) Concentration of Lithium in the solid
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(b) Concentration of Lithium ions in the electrolyte

Figure 2.12: (a) Upper figure: the concentration of lithium in solid particles
that reaches the maximum capacity at x = s(t). The solubility rate of lithium
no longer at the same rate at this point forward because of the concentration
profiles of electrolyte. (b) Lower figure: The concentration profiles across the
cell in comparison to the time before (t < t̂) (by equation (2.119)) and after
(t > t̂) (by equation (2.132)) formation of free boundary. The profiles are
discharged at Ī = 0.5. The arrow shows the direction of increasing time and
t̂ = 0.64.
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Figure 2.13: The concentration of Lithium in solid particles and Lithium ions
electrolyte at Ī = 1 discharge rate. The arrow shows the direction of time
increases (t = 0.55, 0.6, 0.65, ...) and t̂ = 0.55.



Chapter 3

Modelling moderately

concentrated electrolytes

3.1 Introduction

In this chapter we discuss a description of the transport equations in moderately con-

centrated electrolytes. This is the regime in which although the ionic concentration is

low in comparison to that of the solvent, it is high enough so that significant interacting

occur between the charged ions, this, in turn, lead to non-ideal behaviour of the elec-

trolyte and in particular the conductivity. Newman has been the pioneer in developing

mathematical models of batteries in concentrated electrolyte [59]. Models based on his

approaches have been applied to a variety of systems by Newman and his co-workers

with a degree of success. However, his approach has not been widely adopted outside

his group [51] with the notable exceptions of; see [28, 30, 84, 23]. In order to rectify this

we set out here to explain his approach while also highlighting theoretical difficulties.

In most battery systems, the electrolyte solutions are at sufficiently high concentration

that they behave non-ideally as demonstrated primarily by the concentration dependence

of the conductivity [90] but also from activity coefficient measurements [78] and studies

of ion-pairing and aggregation process [103]. It is necessary to look at the behaviour of

solutions in which not only ion/solvent interactions are significant but also ion/ion in-

teractions. As they move in solution, ions tend to attract to oppositely charged ions and

this reduces the ionic mobility since paired ions have zero net charge and consequently

do not move in response to an electric field [78].

Typically the phenomenological moderately concentrated electrolyte theory presented

here is appropriate for most electrolyte solutions but would not be appropriated for

molten salts and ionic liquids. The theory is based on the three most readily measured

experimental characterizations of an electrolyte as its concentration changes, namely

45
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ionic diffusivity, transference number and ionic conductivity. We parametrize the model

against experimental data for the most common lithium ion electrolyte LiPF6 in 1:1

EC:DMC [90].

3.2 Stefan-Maxwell equations

The Stefan-Maxwell multicomponent diffusion equation has been used by Newman as

the foundation of concentrated solution theory. The basic idea of this approach is that

mass transfer is driven by the gradient of electrochemical potential of a species and

limited by the friction with its surroundings. The balance of these two forces determines

the speed with which a species moves. The mutual friction force between species i and

j is assumed to be proportional to the friction forces arising from velocity differences

between the species and is proportional to the mole fractions of the two species [8]. Let

χi =
ci
cT
, χj =

cj
cT

(3.1)

be the mole fractions of ion species i and j, where cT is the total molar concentration of

all species in the electrolyte and ci and cj are the molar concentration of species i and

j. The Stefan-Maxwell equation give a relation between di, the drag force exerted on

a mole of species i by all the other species, and the velocities of the various species. In

light of the above discussions the drag force acting per mole of species i is (see [8])

di = RT
∑

j 6=i
kijχiχj(vj − vi). (3.2)

Here vi and vj are the velocities of species i, j and RTkijχiχj is the drag coefficient

between species i and j. Note that by the Einsten relation the diffusivity, Dij = 1/kij

where Dij describes the pairwise frictional interactions of inter-species i and j. This drag

force di, is equal and opposite to the force (per unit mole) arising from the gradient of

the electrochemical potential of the i′th species, µi, so that

di = χi∇µi. (3.3)

3.2.1 Chemical potential (µ̄) and electrochemical potential (µ) of the

electrolyte at constant pressure and temperature

Chemical potential The chemical potential µ̄i is defined in terms of the Gibbs free

energy G such that at constant pressure and temperature, the chemical potential of the

i’th species is given by

µ̄i =
∂G

∂ci
(3.4)
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For an ideal solution [4], this takes the form

µ̄i = µ0
i +RT log(χi) (3.5)

where µ0
i is standard state potential of species i and the second term gives the entropy

of mixing with the other components in a mixture. However this relation is usually

insufficient because of chemical interactions with other species (including the solvent)

and so is usually replaced by

µ̄i = µ0
i +RT log(ai(χi)) (3.6)

where ai(χi) is the activity coefficient; a quantity that contains the deviation from

ideality. In order to generalise this concept to charged species in an electric field we

need to introduce the idea of an electrochemical potential.

Electrochemical potential If the species is an ion of valency zi the work per mole

of ions is ziFφ̃ where F is Faraday’s constant and φ̃ is the local electric potential. The

electrochemical potential includes contribution from electric potential and is related to

the chemical potential (3.6) by

µi = µ̄i + ziFφ̃ = µ0
i +RT log(ai(χi)) + ziFφ̃ (3.7)

(see [4]). However, this form is only true if φ̃ is the true electric potential calculated from

taking account of each ion individually. It is common to replace φ̃, the true potential, by

φ, the potential calculated from the average charge distribution of the ions. Whilst this

is often a good approximation in dilute electrolytes it is not so good in more concentrated

solutions where short range interionic forces can cause ion pairing for significant periods

of time.

At phase equilibrium the total sum of the electrochemical potentials of all species is

zero, as the free energy is at a minimum

∑
µi = 0 (3.8)

3.3 The Stefan Maxwell equations for the binary 1:1 elec-

trolyte

Insertion of (3.3) and the Maxwell-Stefan diffusivity Dij = 1/kij into the Maxwell-Stefan

equation (3.2) yields the multicomponent diffusion system [60]

−ci∇µi =
∑

i

Kij(vi − vj) (3.9)
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where

Kij = RT
cicj
cTDij

(3.10)

and Dij is the diffusivity of species i in species j. For the sake of clarity we will only

consider a binary 1:1 electrolyte (i.e. z+ = 1 and z− = −1). We denote the three

species involved as the solvent, cation (P+) and anion (N−) by the subscript i = w, p, n;

respectively. The expansion of (3.9) can then be written as

−p∇µp = Kpn(vp − vn) +Kpw(vp − vw) (3.11)

−n∇µn = Knp(vn − vp) +Knw(vn − vw) (3.12)

−w∇µw = Kwp(vw − vp) +Kwn(vw − vn) (3.13)

where c1 = p, c2 = n and c3 = w are the concentration of P+, N− and the solvent;

respectively. By Newton’s third law of motion, Kij = Kji. Addition of (3.11)-(3.13)

then leads to the Gibbs-Duhem relation

∑

i

ci∇µi = 0 (3.14)

w∇µw + p∇µp + n∇µn = 0 (3.15)

This relation tells us that the chemical potentials of a mixture cannot change indepen-

dently. In a binary system, if the potential of one species increases than the potential

of the other species must decrease.

Averaged approximation to Poisson’s equation The electric potential φ̃ for a

given distribution of point charges qi at position Xi obeys Poisson’s equation

∇ · (ε∇φ̃) = −
∑

qiδ(X −Xi) (3.16)

where δ is the Dirac delta function. In an electrolyte with molar concentrations p positive

+1 ions and n negative −1 ions; an averaged approximation to the electric potential is

given by

∇ · (ε∇φ) = F (n− p) (3.17)

Here, φ is the averaged potential and ε is the permittivity. A major concern in treating

electrolytes properties using the electrochemical potential is to what extent is it reason-

able to replace φ̃ in (3.7) by φ as defined by (3.17). By doing so, we neglect the effects

of short range ’pairing’ interactions between ions.
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Figure 3.1: Structure of the electric double layer near a solid/electrolyte in-
terface. When external electric field is applied, bulk motion of an electrolyte
caused by Coulombic forces acting on ions in the electric double layer. The
electric double layer, composed of a Stern layer(layer 1), Debye layer(layer 2)
and bulk solution(layer 3). The bottom graph shows the difference of potential
energy in each layer before the mobile ions extending into the bulk solution.

Non-dimensionalising Poisson’s equation Non-dimensionalizing equation (3.17)

by

φ =
RT

F
φ∗, p = C0p

∗, n = C0n
∗, x = Lx∗ (3.18)

we get

∇2φ∗ =
1

λ2
D

(n∗ − p∗) (3.19)

where

λD =
LD
L
, and (3.20)

Here LD describes the thickness of the double layer and is called the Debye length, L is

the geometrical length scale and LD is given by

LD =

√
εRT

F 2C0
. (3.21)

Debye region is the distance over which significant charge separation can occur. From

Figure 3.1, we can see that the jump of potential drop in the Debye layer where the

concentration of ions in which neutrality is not even approximately satisfied. In general
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we don’t see charge separation over a spatial distance more than a few Debye lengths.

In typical electrolytes, the Debye length LD is much smaller, at the nanoscale, so that

double layers are typically thin compared to most geometrical length scales. For instance,

for a solution with typical concentration of 1000molm−3, LD ≈ 10−10m and width

L = 10−3m, we find λD ≈ 5 × 10−7 [6]. We shall thus consider in the limit λ2
D → 0,

(3.19) gives p ≈ n in the bulk of the cell. Hence, we can say that the electrode charge

neutrality is almost satisfied, and this motivates us to write p ≈ c and n ≈ c.

Charge neutrality For the above reasons it is usual to assume electroneutrality

n = p in the bulk of the electrolyte. Debye layers on the electrode are treated by the

phenomenological Butler-Volmer conditions.

Equations for the current density j In what follows we broadly follow [60] but

make their argument (which is often very hard to follow) more transparent. The total

current density, j is the sum of the anodic and cathodic partial current density (Jn =

−Fnvn,Jp = Fpvp), namely

j = Jp + Jn = F (pvp − nvn) (3.22)

By electroneutrality, and on denoting c = p = n, this can be written as

j = Fc(vp − vn) (3.23)

Substitution of (3.23) into (3.11) and (3.12) yields the system for cation and anion

species

−c∇µp = Kpw(vp − vw) +
Kpn
Fc

j (3.24)

−c∇µn = Knw(vn − vw)− Knp
Fc

j (3.25)

where Kij can be obtained from (3.10) as follows

Kpn = Knp =
RTc2

cTDpn
; Kpw =

RTcw

cTDpw
; Knw =

RTcw

cTDnw
(3.26)

Rearranging (3.24) and (3.25), the ion velocities are found to be

vp = vw −
cT
RT

Dpw

w
∇µp −

Dpw

DpnwF
j (3.27)

vn = vw −
cT
RT

Dnw

w
∇µn +

Dnw

DpnwF
j (3.28)
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Subtraction of (3.28) from (3.27) we obtain

vp − vn =
cT
RTw

(Dnw∇µn −Dpw∇µp)−
Dpw +Dnw

FwDpn
j (3.29)

Substituting for vp − vn from (3.23) into (3.29) and rearranging yields an equation for

current density in terms of electrochemical potentials

j =
FcTDpnc

RT (c(Dpw +Dnw) +Dpnw)
(Dnw∇µn −Dpw∇µp) (3.30)

where the electrochemical potential for the charged species µn and µp are defined by

(3.7) such that

µn = µ0
n +RT log(an)− Fφ̃, µp = µ0

p +RT log(ap) + Fφ̃ (3.31)

where an and ap are (the concentration dependant) activity coefficients of the species N−

and P+ in electrolyte. Notice that the definitions are in terms of the real electrostatic

potential φ̃ and not the averaged potential φ.

It is usual to define the transference numbers of cations (t0+) and anions (t0−) with respect

to solvent velocity [4] by

t0+ =
Dpw

Dpw +Dnw
, t0− = 1− t0+ =

Dnw

Dpw +Dnw
(3.32)

In an electrolyte, at a constant concentration different ions carry different fractions of

the current because different ions move at different speeds under the same potential

gradient. Here t0+ is the fraction of current carried by positive ions and t0− is the fraction

of current carried by negative ions.

Rearranging equation (3.30) to include the transference number (3.32), we obtain

j =
FcTDpnc(Dpw +Dnw)

RT (c(Dpw +Dnw) +Dpnw)

(
(1− t0+)∇µn − t0+∇µp

)
(3.33)

Substituting (3.31) into (3.33) yields the equation of current density

j = − F 2cTDpnc(Dpw +Dnw)

RT (c(Dpw +Dnw) +Dpnw)

(
∇φ̃+

RT

F
(t0+∇ log(ap)− (1− t0+)∇ log(an))

)
.(3.34)

At constant concentration (c and w constant)

j = − F 2cTDpnc(Dpw +Dnw)

RT (c(Dpw +Dnw) +Dpnw)
∇φ̃ = −κ(c)∇φ̃ (3.35)
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This version of Ohm’s Law motivates the definition of the electrolyte conductivity κ(c)

by

κ(c) =
cTF

2Dpn

RT

(
(Dpw +Dnw)c

Dpnw + (Dpw +Dnw)c

)
(3.36)

Derivation of the ion velocities in terms of the electrolyte chemical potential

µe and j. Motivated by the final terms in (3.27) and (3.28) we seek an expression

for
j

FDpnw
writing it as

j

FDpnw
=
c(Dpw +Dnw) + wDpn

FDpnwc(Dpw +Dnw)
j − j

Fc(Dpw +Dnw)
. (3.37)

If we now substitute for j from (3.30) in the first term on the right hand side of this

expression we find

j

FDpnw
=

cT
RTw

(Dnw∇µn −Dpw∇µp)
(Dpw +Dnw)

− j

Fc(Dpw +Dnw)
(3.38)

Substituting this into (3.27) - (3.28), we obtain

vp = vw −
cT
wRT

DnwDpw

Dpw +Dnw
(∇µp +∇µn) +

t0+
Fc

j (3.39)

vn = vw −
cT
wRT

DnwDpw

Dpw +Dnw
(∇µp +∇µn)− (1− t0+)

Fc
j (3.40)

These expressions can be simplified further on substituting for the chemical potential of

the electrolyte µe and the chemical diffusion coefficient D which are defined by

µe =
µn + µp

2
, D =

2DnwDpw

Dnw +Dpw
; (3.41)

this gives

vp = vw −
cT
wRT

D∇µe +
t0+
Fc

j (3.42)

vn = vw −
cT
wRT

D∇µe −
(1− t0+)

Fc
j (3.43)

Notably Dnw and Dpw can vary independently with concentration without affecting the

proceeding analysis. It follows that D and t0+ may also be functions of concentration.
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Diffusion equation for the electrolyte concentration By electroneutrality, the

mass conservation of the ions in the electrolyte are written as

∂c

∂t
+∇ · (cvp) = 0 for the cations (3.44)

∂c

∂t
+∇ · (cvn) = 0 for the anions (3.45)

Taking the differences of these two equations gives

∇ · (c(vp − vn)) = 0 (3.46)

which gives the current conservation equation. On substitution for vp and vn from

(3.42)-(3.43) into (3.46) we obtain the current conservation condition

∇ · j = 0. (3.47)

Substitution for either vp, from (3.42), in (3.44) (or for vn, from (3.43), in (3.45)) yields

∂c

∂t
+∇ · (cvw) = ∇ ·

( cT
wRT

cD∇µe
)
− ∇t

0
+ · j
F

. (3.48)

The resulting model of the electrolyte is closed by constitutive equations for the current

density j, namely (3.34), and one for the electrochemical potential µe, namely (3.41 a).

3.3.1 Summary of model for moderately concentrated electrolyte

The model has the form

∂c

∂t
+∇ · (cvw) = ∇ · (D(c)∇c)− ∇t

0
+ · j
F

(3.49)

∇ · j = 0 (3.50)

where

j = −κ(c)

(
∇φ̃+

RT

F

(
(t0+∇ log(ap))− (1− t0+)∇ log(an)

))
(3.51)
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The electrochemical potential for the electrolyte, µe, the transference number, t0+, the

conductivity, κ(c) and the effective diffusivity D(c) are given by

µe =
µ0
n + µ0

p

2
+RT log

(
(anap)

1/2
)

(3.52)

t0+ =
Dpw

Dpw +Dnw
(3.53)

κ(c) =
cTF

2

RT
(Dpw +Dnw)


 c

w + c
(
Dpw+Dnw

Dpn

)


 (3.54)

D(c) =
2cT cD
w

(
a′n
an

+
a′p
ap

)
. (3.55)

The conductivity, κ(c) in (3.54) can also be written in terms of the transference number

(3.53), the diffusion coefficient (3.41)

κ(c) =

(
F 2cT
2RT

) D
(1− t0+)t0+


 c

w +
(
Dpw+Dnw

Dpn

)
c


 . (3.56)

Note that we retrieve the dilute solution conductivity for Dpn >> (Dpw +Dnw) that is

κ(c) =
cTF

2Dpn

RT
(Dpw +Dnw)c. (3.57)

3.3.2 An ideal solution

The solution is said to be ideal if the activities are directly proportional to the concen-

trations so that

ap(c) =
c

cT
, an(c) =

c

cT
(3.58)

where cT is the total molar concentration of all species including the solvent. Hence, the

diffusion equation (3.49) and the current density equation (3.51) become

∂c

∂t
+∇ · (cvw) = ∇ ·

(
D cT
w
∇c
)
− ∇t

0
+ · j
F

(3.59)

∇ · j = 0 where j = −κ(c)

(
∇φ̃− RT

F
(1− 2t0+)∇ log(c)

)
(3.60)

3.3.3 How might we deal with the electric potential

One possible way to relate the true electric potential, φ̃ (that appears in the electro-

chemical potentials) to the averaged electric potential φ, which appears in the averaged
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version of Poisson’s equation

∇ · (ε∇φ) = F (n− p) (3.61)

is to write

φ̃ = g(c)φ (3.62)

where g(c) gives the fraction of unpaired ions. It is important to realise that this

is a phenomenological relationship. The reason for doing this is that it is only the

unpaired ions that are affected by the electric field and thus contribute to electrical part

of potentials of the negative ions (µn) and of the positive ions (µp). Thus from (3.31),

µn and µp take the form

µn = µ0
n +RT log(an)− Fgn(c)φ (3.63)

µp = µ0
p +RT log(ap) + Fgp(c)φ (3.64)

However, as we shall see, it is not necessary to do this in order to understand elec-

trolytes. This is partly because the result of solving Poisson’s equations (3.61) is the

same whichever potential we use namely charge neutrality n ≈ p and partly because

electric potentials in electrolytes are measured using reference electrodes.

3.3.4 The potential measured with respect to Lithium electrode

Note that the factor (1− 2t0+) appearing in (3.60) differs from that given in [59] which

(1 − t0+). This difference comes about because Newman defines the potential φ̂ with

respect to a reference lithium electrode rather than using the true electrolyte potential,

φ̃. The calculation here is based on the work by Richardson [75]. Based on the reaction

at the lithium electrode/electrolyte interface the chemical reaction has the form

Li+ + e− 
 Li(s) (3.65)

where e− is the electron and Li(s) is the Lithium solid. Assuming the reference electrode

draws very little current, it is in approximate thermodynamic equilibrium with the

electrolyte, so that from (3.65) we have

µp + µe− = µLi(s) (3.66)

where the electric potential of the electron is given by µe− = −Fφ̂ and the potential of

the solid Lithium µLi(s) is constant. By substituting this and µp from (3.31) into (3.66),

we obtain a relation between the lithium electrode potential, φ̂ and the true electric
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potential, φ̃

φ̃ = φ̂− RT

F
log(ap) +

1

F
(µLi(s) − µ0

p). (3.67)

On substitution for φ̃ in (3.60), the current density equation in terms of lithium electrode

potential can be written as

j = −κ(c)

(
∇φ̂− RT

F
(1− t0+)(∇ log(ap) +∇ log(an))

)
(3.68)

and hence

j = −κ(c)

(
∇φ̂− 2

F
(1− t0+)∇ log(µe)

)
(3.69)

so that for an ideal solution

j = −κ(c)

(
∇φ̂− 2RT

F
(1− t0+)∇ log(c)

)
(3.70)

We remark that the current density equation in [59, 23, 50] is identical to the equation

(3.70). However, we found out that some authors such as [28, 36] used an incorrect

current density equation by neglecting the factor 2 in front of (1 − t0+). Note that,

in this particular electrolyte, we use (3.70) for the current density equation provided

that the treatment for this electrolyte has been taken into account in the conductivity

equation κ(c) (see (3.54)).

Remarks We note that equations written in terms of the lithium electrode potential

φ̂ are unaffected by ion pairing (since we write φ̃ = g(c)φ but then eliminate φ̃ in

favour of φ̂). We note that all experimental data are measured in terms of lithium

electrode potentials. In particular the Butler-Volmer equations are calibrated using

lithium electrode (and hence in term of the lithium potential φ̂).

3.4 Thermodynamic fitting to data

A lithium ion electrolyte can be fully characterized, in terms of the moderately con-

centrated solution model (3.49)-(3.54), by experimental measurements of transference

number t0+ and ionic diffusivity D(c) and conductivity κ(c) as functions of concentration.

These have been measured by Riemers et al. [90] for LiPF6 in 1:1 E:DMC at T = 293K

for which it is found that transference number is constant t0+ = 0.38, and that the ionic

diffusivity and conductivity can be accurately fitted to the following functions of the
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concentration c (measured in mol m−3):

D(c) = 5.253× 10−10 exp (−0.0003071c)m2s−1 (3.71)

κ(c) = 10−4c(5.2069096− 0.002143628c+ 2.34402× 10−7c2)2AV −1m−1 (3.72)

as shown in Figure 3.2 and Figure 3.3.
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Figure 3.2: Diffusion coefficient as a function of concentration; line represents
the fit to (3.71) and circles are the experimental data from Riemers [90].
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Figure 3.3: Concentration-dependent of electrolyte conductivity; line represents
the fit to (3.72) and circles are the experimental data from Riemers [90].

It has been stated in the literature [59] that the maximum of electrolyte conductivity

for electrolytes such as shown in Figure 3.2 is caused by the increasing viscosity as the
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concentration increases. The thermodynamics fitting parameters present here are valid

for LiPF6 1:1 EC:DMC liquid electrolyte at room temperature for which the transfer-

ence number t0+ is found to be constant (t0+ = 0.38) . However, for some polymer elec-

trolytes, the cationic transference number of this system has proved to be concentration-

dependant, for instance, the dry polymer electrolyte studied by Doeff et al. [27] and the

PEO-based electrolyte studied by Fauteux et al. [34], both have t0+ that varies with con-

centration. In spite of that, the three transport properties can be fitted to the resulting

model by the relation (3.56).

3.5 Summary

Our approach consists in studying the transport of charged species in a moderately dilute

electrolyte using drift diffusion models under the assumption of electroneutrality. The

model discussed here is essentially the same as that given in [60]. We note the importance

of the choice of potential. In particular if we choose to measure potential with respect to

a lithium electrode this changes the factor appearing in front of the ∇ log(c) term in the

equation for j. The relation between these two potential definitions has been discussed.

The crucial parameters such as the transference number, t0+(c), the diffusion coefficient,

D(c) and ionic conductivity, κ(c) are calculated from the experimental data and can be

related to the three drag coefficient in the Stefan-Maxwell equations Dpw, Dnw and Dpn

as functions of concentrations.



Chapter 4

Review of homogenisation

technique for moderately

concentrated electrolyte model

4.1 Introduction

Recent work has shown that performance of Lithium ion battery technology can be im-

proved through emphasis on engineering the architecture of the electrode microstructure

[41]. However, it is such a complex system to account for the exact micro-geometry at a

scale of a full cell [93]. An approach based upon physical intuition has been adopted by

Newman and co-workers [28, 36] to write the macroscopic model which the parameters

in their macroscopic model are phenomenologically related to microstructure. The tech-

nique of averaging has been used by Wang et al. [92], however their resulting macroscopic

model only restricted to constant transport parameters. A more successful approach is a

multiple scales method, see for example, [19, 23, 74]. This method systematically relates

a microscale electrolyte model with the microscopic geometry of the electrodes and the

parameters in the macroscopic model are determined by the properties of microstructure.

Gully et al. [42] determined the effective transport coefficients for multiscale porous

materials used in various electrochemical system by homogenisation approach. While

homogenisation methods have resulted in the systematic derivation of macroscopic whole

cell battery models (e.g. [23, 74, 19]), a systematic study to understand the relationship

between the electrode microstructures and electrode performance has yet to be under-

taken. David et al. use an ad-hoc approach by imaging sections of commercially porous

electrode (LiCoO2) using focused ion beam-scanning electron microscopy (FIB/SEM)

and directly measure ionic pathways (permeability) and ion transport (conductivity) ex-

perimentally [86]. Similar work by Wilson et.al [96] has provided the three dimensional

59
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microstructural data for the particles that have a highly irregular shape such as internal

cracking.

We note that the length of the cell between current collectors is much smaller then the

length of the other dimensions. The observation will, eventually, enable us to write

down an approximate one dimensional averaged model for the battery. However, the

microscale model of the battery, that we consider, must be genuinely three-dimensional.

4.2 The cell scale electrolyte equations by homogenisation

technique

In this chapter we highlight the works by Richardson et al. [74] who derived the macroscale

equations for dilute electrolyte using homogenisation technique and apply their results

to the moderately concentrated electrolyte. The technique derives the macroscale elec-

trolyte equations from a microscopic model. We have written down the moderately con-

centrated electrolyte equations in previous chapter which can then be applied directly

to the microscale problem. The microscale problem is characterized by the Lithium ion

concentration in the electrolyte, c, and the electric potential of the electrolyte, φ̂. The

intercalation of Lithium ions from the electrolyte into the particles is represented by a

surface reaction rate (per unit area) on the surface of the particles, G. At the microscale,

a single representative electrode particle is examined. The microscale variables include

the microscopic lithium concentration in the particle, cs. The rate of diffusion in the

particle and subsequent particle depends on the microscopic lithium transfer rate, G.

Here we briefly explain how the homogenisation is being considered. However, the details

of derivation and calculation can be referred to the work by Richardson et al. [74]. The

homogenisation is tackled using the asymptotic method of multiple scales and so should

really non-dimensionalise the problem as a first step. In dimensionless units in which

length has been scaled with cell width, the lengthscale of the microstructure is O(δ)

where δ << 1 and that of the cell is O(1). The homogenisation is accomplished by taking

the limit δ → 0 (see e.g. [20]). Here Ωper is the region occupied by the electrode particles

and Vper is the region occupied by the electrolyte. We assume that the microstructure

is locally periodic inside a completely periodic array of boxes, Vper ∪Ωper, thus allowing

the microstructure to vary slowly, over the O(1) lengthscale. Figure 4.1 shows one of

the periodic units that comprise the microstructure. A surface reaction occurs on the

solid electrolyte interface, ∂Ωper with rate (per unit area), G.

Boundary conditions on the surface of the electrode particles Concentration

of lithium ions c∗ and current density j∗ equations, within the electrolyte, are described

by (3.49) and (3.70), respectively. On the electrode particles surface, reactions taking
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place give rise to a flux of Li+ ions (but none of the N− ions). Hence the boundary

conditions on the surface of the electrode particles (on ∂Ωper) are given by

q∗p · n|∂Ωper = G∗, q∗p = −Dp

(
∇p+

Fp

RT
∇φ̂∗

)
(4.1)

q∗n · n|∂Ωper = 0, q∗n = −Dn

(
∇n− Fn

RT
∇φ̂∗

)
(4.2)

j∗ · n|∂Ωper = FG∗. (4.3)

where n is unit vector normal to the surface, p, n are the concentration of Li+ and N−,

respectively, q∗p, q
∗
n are the ion fluxes of the two ion species. The parameters Dp, Dn are

the diffusion coefficients of species p and n, respectively. Here G∗ is the reaction rate of

the Lithium at the surface and is so-called Butler Volmer condition.

We note further that the total ionic flux may be written in terms of the ionic transference

number as follows:

q∗ =
Dnq

∗
p +Dpq

∗
n

(Dn +Dp)
= (1− t0+)q∗p − t0+q∗n. (4.4)

where t0+ is given by (3.53).

General set of microscale electrolyte equations. The electrolyte model (New-

man’s type of battery model) with constant transference number and constant concen-

tration of solvent has the form (see (3.49) and (3.70))

∂c∗

∂t∗
+∇ · q∗ = 0, q∗ = −D∗(c∗)∇c∗ (4.5)

∇ · j∗ = 0 j∗ = −κ∗(c∗)
(
∇φ̂∗ − 2

RT

F
(1− t0+)∇ log(c∗)

)
(4.6)

On reference to (4.4), the boundary conditions (4.1)-(4.3) can be rewritten in terms of

Lithium ion flux q as boundary conditions on (4.5) - (4.6) [75]

n · q∗ = (1− t0+)G∗, n · j∗ = FG∗ on ∂Ωper (4.7)

For conservation of intercalated Lithium (c∗s) at the particle surface is given by

n · q∗s = G∗ on ∂Ωper (4.8)

Note that the asterisk is appended into the equations to denote that it is dimensional.
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We now non-dimensionalise (4.5) - (4.6) as follows:

x∗ = Lx, t∗ = τt, c∗ = c0c, j∗ = Jj, D∗ = D0D,

G∗ =
J

betLF
G, q∗ =

J

betLF
q, q∗s =

J

F
qs, κ∗ = Kκ φ̂∗ = Φφ̂.

(4.9)

Here, c0 is the typical concentration of lithium ions in the electrolyte, Φ is the typical

potential drop across the cell, D0 is a typical diffusivity in the electrolyte and bet is the

typical active surface area density (surface area per unit volume) of electrode particles.

τ is the typical timescale for discharge of the cell and is given by

τ =
Fc0L

J
(4.10)

The non-dimensionalisation leads to a general set of electrolyte equations for an elec-

trolyte with constant transference number [75], namely

∂c

∂t
+∇ · q = 0 where q = −D(c)∇c in Vper, (4.11)

q · n|∂Ωper
= g1(1− t0+)G(c, φ̂), (4.12)

∇ · j = 0 where j = −κ(c)(λ∇φ̂− 2(1− t0+)∇ log(c)) in Vper, (4.13)

j · n|∂Ωper
= g2G(c, φ̂), (4.14)

where the parameters are defined as follows

δ =
1

betL
, g1 =

JLδ

FD0c0
, g2 =

JLFδ

KRT
, λ =

FΦ

RT
. (4.15)

Here the size of δ is about 10−2 by considering the electrode particles are all spheres of

radius a [74]. In Figure 4.1, δ measures the size of the periodic domain Vper ∪ Ωper and

the microscale variable is defined by

x = δx̂ (4.16)

where x̂ is the lengthscale of an electrode particle and x is the lengthscale of the thickness

of the electrode.

The asymptotic expansions. In order to look at the behaviour of each variable

we shall write the asymptotic expansions of the variables in [74, 75]. The expansions of
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Figure 4.1: Illustration of the microstructured boundary

c, φ̂, q and j in powers of δ are as follows:

c = c0(x, t) + δc1(x̂,x, t) + δ2c2(x̂,x, t) + · · · ,
φ̂ = φ̂0(x, t) + δφ̂1(x̂,x, t) + δ2φ̂2(x̂,x, t) + · · · ,

q = q0(x̂,x, t) + δq1(x̂,x, t) + δ2q2(x̂,x, t) + · · · ,
j = j0(x̂,x, t) + δj1(x̂,x, t) + δ2j2(x̂,x, t) + · · · .

We note that the lithium ion concentration and the electrolyte potential are largely con-

trolled by changes on the cell lengthscale with small changes on the particle lengthscale.

The current density j and ion flux q shows significant changes on the particle length-

scale, i.e. are functions of x̂ at leading order. However the leading order for the lithium

ion concentration and the electrolyte potential are c0(x, t) and φ̂0(x, t), respectively, de-

pend only on the cell lengthscale x and time, and thus give a good approximation to the

averaged quantities. This allows us to use the results of the homogenisation equations

in [74] for the moderately concentrated electrolyte model. Such calculations using this

technique for the model have been done by Richardson [75]. The resulting dimensionless

equations are

|Vper|
|Vper|+ |Ωper|

∂c0
∂t

=
∂

∂x

(
D(c0)B∂c0

∂x

)
+ g1(1− t0+)G(c0, φ0)

∫
Ωper

dS

|Vper|+ |Ωper|
(4.17)

∂j0
∂x

= g2G(c0, φ0)

∫
Ωper

dS

|Vper|+ |Ωper|
, where j0 = −Bκ(c0)(λ

∂φ̂0

∂x
− 2(1− t0+)

∂ log(c0)

∂x
).(4.18)

where B is the permeability tensor.
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The solution to the moderately concentrated electrolyte model. The redi-

mensionalisation (4.17) - (4.18) using (4.9) gives the macroscale electrolyte model (see

[74, 75]) which is in the form

εv
∂c∗

∂t∗
=

∂

∂x∗

(
D(c∗)B ∂c

∗

∂x∗

)
+ (1− t0+)betG

∗, (4.19)

∂j∗

∂x∗
= FbetG

∗, where j∗ = −Bκ(c∗)

(
∂φ̂∗

∂x∗
− 2RT

F
(1− t0+)

∂ log(c∗)

∂x∗

)
(4.20)

where εv is the volume fraction of the electrolyte as defined by

εv =
|Vper|

|Vper|+ |Ωper|
, (4.21)

bet is the B.E.T. surface area (i.e. the surface area of particles per unit volume of

electrode) defined by

bet =

∫
Ωper

dS

|Vper|+ |Ωper|
, (4.22)

G∗ is the reaction rate per unit surface area of electrode particle (typically given in

terms of a Butler-Volmer equation) and B is the permeability tensor in x direction. The

permeability tensor is found by solving a boundary value problem over a period of the

microstructure (see equation (7.19) in [74]). Such a calculation has been done for various

packing of spheres by Bruna [12].

4.3 Butler-Volmer reaction equations

4.3.1 The general version of Butler-Volmer equations for insertion ma-

terial

The charge transfer at particle electrolyte interface depends upon the physical condi-

tions, the intercalated lithium concentration on the electrode surface and the concen-

tration of ions in the electrolyte is modelled by the phenomenological Butler-Volmer

equation, which can apply to an elementary or a global reaction. The reaction at the

solid/electrolyte interface has the form

Li+ + e− 
 Li(s) (4.23)

which represents the (de)intercalation of a Lithium ion in the electrolyte which combines

with an electron form the electrode (left-hand side of equation) to give a an electrically

neutral atom in the electrode particle (right-hand side of equation). Let ka and kc de-

note the forward and backward reaction rate constants, respectively, then corresponding
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current fluxes are given by

−→
i = Fkac(cs,max − cs)β exp

(
−αa

(F 4 φ+4Gchem(cs))

RT

)
forward reaction(4.24)

←−
i = Fkccs exp

(
αc

(F 4 φ+4Gchem(cs))

RT

)
backward reaction (4.25)

respectively. Here cs and c are the surface concentration of Li(s) on the electrode and the

concentration of Li+ in the electrolyte respectively; cs,max is the maximum concentration

of lithium in the solid; (cs,max − cs) is proportional to the surface density of available

sites on the electrode surface for lithium intercalation; β is the vacancy factor of the

electrode and depends upon the electrode material and 4Gchem(cs) is the chemical

potential difference between a mole of lithium in the electrolyte and in the electrode.

Here M φ is the potential difference between the solid particle and the electrolyte (across

the Debye layer) which is defined by

4φ = φ̂s − φ̂ (4.26)

where φ̂s is potential of the electrode particle and φ̂ is that of the electrolyte. The

symmetry factors αa and αc represent the fraction of the applied potential promoting

the forward and backward reactions, respectively [7]. In the case of a simple one-electron

transfer, αc+αa = 1. Hence, we can write αa = α and αc = 1−α. Usually α ≈ 0.5, as the

anodic and cathodic current-voltage curves are nearly symmetrical [7]. At equilibrium,

the two partial current densities (4.24)-(4.25) are equal in magnitude so that

−→
i =

←−
i (4.27)

It follows from this and (4.24)-(4.25) that the equilibrium potential difference 4φ̂eq
satisfies

Fkac(cs,max − cs)β exp

(
−α(F 4 φ̂eq +4Gchem(cs))

RT

)

= Fkccs exp

(
(1− α)

(F 4 φ̂eq +4Gchem(cs))

RT

)
. (4.28)

which gives

4φ̂eq =
RT

F
log

(
kac(cs,max − cs)β

kccs

)
− 4Gchem(cs)

F
. (4.29)
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The net current density (for the backward reaction) at the electrode particle surface is

defined by i =
←−
i −−→i and is hence given by the relation

i = Fkccs exp

(
(1− α)

(F 4 φ+4Gchem(cs))

RT

)

−Fkac(cs,max − cs)β exp

(
−α(F 4 φ+4Gchem(cs))

RT

)
. (4.30)

The overpotential, η is the departure of the potential difference (between electrode

particle and electrolyte) from its equilibrium value and is thus defined by

η = φ̂− φ̂s +4φ̂eq (4.31)

We note that 4φ̂eq(c, cs) is an easily measured experimental quantity.

It follows that (4.30) can be written in the form

i = Fkccs exp

(
−(1− α)

F (η −4φ̂eq)−4Gchem(cs)

RT

)

−Fkac(cs,max − cs)β exp

(
α
F (η −4φ̂eq)−4Gchem(cs)

RT

)
. (4.32)

Substituting for 4φ̂eq from (4.29) into (4.32) gives

i = [F (kc)
α(ka)

(1−α)]cαs c
(1−α)(cs,max − cs)β(1−α)

(
exp

(
−(1− α)

Fη

RT

)
− exp

(
α
Fη

RT

))
(4.33)

or equivalently by

i = i0(c, cs)

(
exp

(
−(1− α)

Fη

RT

)
− exp

(
α
Fη

RT

))
(4.34)

where the exchange current density, i0(c, cs) has the form

i0(c, cs) = [Fk0](cs)
α(c)(1−α)(cs,max − cs)β(1−α). (4.35)

and k0 is given by

k0 = (kc)
α(ka)

(1−α). (4.36)

Equation (4.33) relates the rate of an electrochemical reaction on the surface of the

particle in terms of the concentration of the reacting species and the potential difference

between the electrolyte and the electrode [7]. If η > 0 (forward reaction), i is positive

and electrons from the electrode bond to ions from the electrolyte to form lithium

atoms in the electrode. If η < 0 (backward reaction), i is negative and lithium atoms
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in the electrode dissociate into an electron and a lithium ion which is released into the

electrolyte. The Butler-Volmer equation (4.33) describes the general electrochemical

reaction that occurs when a solid metal is in contact with an ionic solution and the

dependence of exchange current density on concentration is given by (4.35)-(4.36).

4.3.2 The Butler-Volmer equations of electrode materials for lithium

battery

The (de)intercalation at the particle surface in the battery system depends upon the

number of sites on the particle surface available for intercalation. Hence, it is necessary

to take into account the dependence of the current density on the concentration of

lithium on the surface of the electrode. In particular the reaction stops when there are

no vacant sites on the surface for intercalation or when there are no lithium atom on

the surface for deintercalation. Here we give some examples of Butler-Volmer equations

for different electrode materials such as LiC6, LiFePO4 and LiCoO2.

LiC6 anode material The reaction of LiC6 anode materials is given by

6C + yLi+ + ye− 
 LiyC6. (4.37)

Here x is proportional to the density of surface vacant sites. Depending on the level of

intercalation of lithium ions in the graphite structure (4.37), y goes from 0 to 1 (which

forward reactions limit up to x = 1). Thus, the Butler Volmer equations (4.33), can be

rewritten (in which β = 1) in the form

i = F (kc)
α(ka)

(1−α)(cs)
α(c)(1−α)(cmax − cs)(1−α)

(
exp

(
−α Fη

RT

)
− exp

(
(1− α)

Fη

RT

))
.(4.38)

It can be rewritten as

i = i0

(
exp

(
−α Fη

RT

)
− exp

(
(1− α)

Fη

RT

))
(4.39)

where the exchange current density, i0 has the form

i0 = Fk0(cs)
α(c)(1−α)(cmax − cs)(1−α). (4.40)

LiFePO4 and LiCoO2 cathode materials The reaction for LiFePO4 and LiCoO2

cathode materials is given by

Li1−xFePO4 + xLi+ + xe− 
 LiFePO4 (4.41)

Li1−xCoO2 + xLi+ + xe− 
 LiCoO2 (4.42)
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respectively. Here the maximum level of reversible of the (de)intercalation of lithium in

cathode electrodes (4.41)-(4.42) is limited by structural restrictions and corresponds to

less than x = 1. Thus, the Butler Volmer equations (4.33), can be rewritten (in which

β = 1) in the form

i = F (kc)
α(ka)

(1−α)(cs)
α(c)1−α)(cmax − cs)(1−α)

(
exp

(
−α Fη

RT

)
− exp

(
(1− α)

Fη

RT

))
(4.43)

or equivalently

i = i0

(
exp

(
−α Fη

RT

)
− exp

(
(1− α)

Fη

RT

))
(4.44)

where the exchange current density, i0 has the form

i0 = Fk0(cs)
α(c)(1−α)(cmax − cs)(1−α). (4.45)

In (4.43), the reaction rate approaches zero (switches off); when (i) the concentration

of Lithium in the solid cs approaches cmax for lithium insertion, (ii) cs reaches zero for

lithium extraction and (iii) the concentration in the electrolyte c is zero.

We denote the overpotential as

η = φ̂− φ̂s − Ûeq(cs|r=a0) (4.46)

where φ̂ and φ̂s are the potential of electrolyte and solid particle with respect to Lithium

electrode; respectively. Ûeq(cs|r=a0) is the equilibrium potential of the electrode material

as a function of the amount of lithium intercalated at the particle surface (cs|r=a0) where

a0 is the radius of particle. The detail equations for the concentration and potential in

the solid system is discussed in the Chapter 5.

4.4 Summary of the resulting model

The equations presented below constitute the general mathematical model of moderately

concentrated solution (with the potential φ̂ is measured with respect to Lithium elec-

trode). The numerical results obtain in the next chapter are based upon these equations

with boundary conditions that change depending on the regime of battery that we are

solving. The asterisk is appended into the equations to denote that it is dimensional.
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The equations in the electrolyte (see (4.19)-(4.20)) are

εv
∂c∗

∂t∗
=

∂

∂x∗

(
D(c∗)B ∂c

∗

∂x∗

)
− j∗

F

∂t0+
∂x∗

+ (1− t0+)betG
∗, (4.47)

∂j∗

∂x∗
= Fb∗etG

∗, where j∗ = −Bκ(c∗)

(
∂φ̂∗

∂x∗
− 2RT

F
(1− t0+)

∂ log(c∗)

∂x∗

)
. (4.48)

In this study, the anode and cathode materials are chosen to be graphite (LiC6) and

Lithium iron phosphate (LiFePO4), respectively. By taking α = 0.5, the reaction rate

equation for both material (see (4.38) and (4.43)) is

G∗ = k0(c∗)
1
2 (c∗s)

1
2 (c∗max − c∗s)

1
2

(
exp

(
− Fη

∗

2RT

)
− exp

(
Fη∗

2RT

))
(4.49)

where the overpotential, η∗ = φ̂∗ − φ̂∗s − U∗eq(c∗s|r∗=a0).

Here G is a function of electrolyte concentration, solid concentration and the overpoten-

tial (G∗(c∗, c∗s|r∗=a0 , φ̂
∗− φ̂∗s)). Hence, these equations couple to transport equations for

Lithium within the solid electrode particle. These will be discussed in Chapter 5.

4.4.1 Boundary conditions for the full cell battery

The full cell consists of the anode, separator (which is thin) and cathode which are

sandwiched between two current collectors. Here x∗ = 0, La, Lc are the positions of the

anode current collector, the separator and the cathode current collector, respectively.

On the current collectors, there is no flux of Lithium ions, so that

∂c∗

∂x∗

∣∣∣∣
x∗=0

= 0,
∂c∗

∂x∗

∣∣∣∣
x∗=Lc

= 0 (4.50)

and in addition no current flows directly from the electrolyte into the current collectors,

thus

j∗|x∗=0 = 0, j∗|x∗=Lc
= 0. (4.51)

Assuming that the separator is extremely thin, the appropriate continuity conditions on

x∗ = La are

[c∗]x∗=La
= 0,

[
∂c∗

∂x∗

]

x∗=La

= 0, [j∗]x∗=La
= 0, [φ∗]x∗=La

= 0. (4.52)

Lastly, the total surface reaction on all the anode particles is proportional to the applied

current while that on the cathode particles is proportional to minus the applied current

AbetaF

La∫

0

G∗a(φ
∗)dx∗ = −AbetcF

Lc∫

La

G∗c(φ
∗)dx∗ = I∗. (4.53)
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where A is the area of the electrode, bet,a and bet,c are the BET surface area of anode

and cathode , respectively and I∗ is the total current flowing through cell.

4.5 Summary

This chapter reviews the derivation of the type of macroscopic model used by Newman

and co-workers to investigate battery performance [29, 28, 23, 25]. The homogenisation

technique has been successfully used in deriving the macroscale dilute electrolyte model

[74]. Here, it is extended to moderately concentrated electrolyte model. It started from a

model on the scale of the electrode particles used homogenisation technique to derive the

macroscopic model [74, 19]. Such calculations using this technique for the model have

been done by Richardson [75]. It is notable that using this technique, the permeability

factor B can be calculated from the underlying microstructure. This enables us to

derive the effective conductivity and an effective diffusion equation for the Lithium ion

concentration within the electrolyte in terms of the properties of the microstructure.

The advantage of the homogenisation discussed here lies in the fact that the effective

parameters in the Newman modelling framework can be derived directly from analysis

of the microstructure. In addition we described Butler Volmer reaction kinetics for the

intercalation reaction at the solid electrolyte interface. In what follows we will use the

Butler Volmer equations (4.49) for the model simulation in Chapter 7 and Chapter 8.



Chapter 5

Models for electrode particles

5.1 Introduction

Lithium diffusion within electrode particles plays a crucial part in the behaviour of

Lithium ion batteries. Phase transitions occur during intercalation of Lithium in the

solid electrode. Typically, phase separation occurs between regions with different Lithium

content (e.g. for olivine phosphate, regions between FePO4 and LiFePO4). Many elec-

trode materials exhibit multiple phases with varying composition [35]. A popular cath-

ode material, the olivine phosphates, exhibit two phases as reported by Goodenough

[65, 18, 66], while the standard graphite (anode material), exhibits three or more phases

[35]. However, the treatment of phase transformations pose a major modelling chal-

lenge. Furthermore, the dynamics of phase separation driven by electrochemical re-

action is poorly understood. In this chapter, we present theories and summarize the

experimental work on such phase transformations in some electrode materials.

5.2 Two phase Lithium insertion/extraction

Electrode material which perform a two phase transition during charge and discharge

commonly exhibit flat discharge curve characteristic. Examples of such materials in-

clude lithium iron phosphate (LiFePO4) and lithium titanate (Li4Ti5O12) [76]; they are

characterised by a wide potential plateau between the intercalated and deintercalated

states.

The study of the two-phase system (FePO4 to LiFePO4) based on three dimensional

shrinking core model was initially suggested by Padhi [65]. Subsequently the math-

ematical model was developed by Srinivasan and Newman [84]. The shrinking core

model assumes a three-dimensional growth mechanism. Intercalated Lithium from the

71
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outer surface of the spherical particle, causes phase separation into a core-shell struc-

ture. Recently, Farrell et. all [23] incorporated a shrinking core model into a battery

model and used it to simulate the discharge of a LiFePO4 cathodic material. Interesting

result from the particle scale of the simulation is discussed in [23] and the model shows

good agreement with the experimental data taken from Srinivasan and Newman [84].

The performance of LiFePO4 can be increased by shrinking the sizes of the individual

particles through which the diffusion of lithium takes place.

The second approach, the phase field modelling method, employs a phase field variable to

describe a smooth transition from one phase to another. Phase field models are widely

used to describe phase transformations in material science but are relatively new to

electrochemistry [40]. This method has recently received growing attention particularly

in the context of LiFePO4 materials. Ferguson and Bazant [40] have developed a general

phase field theory of ion intercalation kinetics. This theory is based on the Cahn-Hilliard

model, and incorporates a heterogeneous charge-transfer reaction rate via a generalized

Butler-Volmer equation [100]. The study has led to a better quantitative understanding

of phase separation dynamics in LiFePO4 nanoparticles.

Recent experimental evidence has pointed out that the lithium diffusion in LiFePO4 is

one-dimensional [2, 17, 3] occurring primarily along the b-axis of the crystal. Chen [17]

has demonstrated that the LiFePO4/FePO4 interface moves perpendicular to the b-axis,

consistent with rapid Lithium diffusion along that direction. The resulting evolution

gives rise either to fully intercalated, or fully empty, 1D Lithium channels. This finding

shows that the shrinking core model is not an accurate representation of the phase-

change process.

Owen et al. [46] have observed that the solid state and interfacial processes can be

neglected during fast discharge of LiFePO4 composite electrode composed of very fine

electrode particles (particle size < 1µm). They suggested that for thin electrodes con-

taining large particles of active material the effect of particle size, i.e. solid state diffu-

sion, becomes increasingly significant. Furthermore, Bazant et al. [40] have developed a

general continuum theory for ion intercalation dynamics in a single crystal based on an

existing phase field formulation of the bulk free energy and they found that the phase

boundary extends from surface to surface along planes of fast ionic diffusion, consistent

with recent experiments on LiFePO4 [2]. It remains an open question what happens in

real electrode particles composed of multiple crystals of LiFePO4
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5.2.1 ”Shrinking-core” model

Newman and Srinivasan demonstrated the ”shrinking core” path dependence phenomenon

[84], and results from the mathematical model is compare reasonably well to their exper-

imental discharge curve. In a spherical particle, ”shrinking core” diffusion is modelled

as a central sphere outside of which intercalated Lithium undergoes isotropic linear dif-

fusion. This model assumes a growing shell of one phase surrounding a shrinking core

of the other phase, with the shell and core phases determined by the direction of the net

lithium flux.

r = a0

r = s (t1)

r = a0

r = s (t2)

r = a0 r = a0

Full charged, t = t0 Full discharged, t = tn

e
- Li+

e
- Li+

Li
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0 a0

s (t2)

0

t = t1 t = t2
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c
e
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o
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Lithium poor region
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Figure 5.1: Illustration of the shrinking-core model with the side by side of
the two phases and the movement of the phase boundary. The processes dur-
ing discharge are illustrated and the pictures below showing concentration of
Lithium as a function of r for different times. The dark region represents the
Lithium-rich region and the bright region represents the Lithium-poor region.

As current is passed during discharge, an electrochemical reaction occurs at the surface

of the particle in which lithium is intercalated and is then transported to the interior.

Further insertion of Lithium forms a new phase that results in a shell of a Lithium-rich

phase enclosing the Lithium-poor phase. As the electrode is discharged further, more

Lithium is inserted and transported towards the particle centre which leads to a shrink-

ing core phenomenon as depicted by Figure 5.1.

Fick’s second law is use to describe the diffusion in the lithium-rich shell as

∂c∗s
∂t∗

= DLi
∂2c∗s
∂r∗2

+
2DLi

r∗
∂c∗s
∂r∗

, s∗(t) < r∗ < r0 (5.1)

where c∗s is the concentration of the intercalated Lithium in the solid, DLi is the diffusion

coefficient of Lithium in the solid, t∗ is time and r∗ is the radial coordinate. Boundary
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and initial conditions on the above problem are as follows

c∗s|(t∗=0) = ceq (5.2)

−DLi
∂c∗s
∂r

∣∣∣∣
r∗=a0

= G∗ (5.3)

where a0 is the radius of the particle. The reaction current, G∗ at the surface is given

by a Butler Volmer equation. We note that, for the Lithium to be inserted into the

particles, G∗ has to be negative and G∗ = 0 when cs reaches cmax (cmax is the maximum

lithium concentration in the electrode material). The position of the unknown interface

r∗ = s∗(t∗) is evaluated from a mass balance condition at the interface, written as

c∗s|r∗=s∗(t∗) = ceq (5.4)

(ceq − c0)
ds∗(t∗)

dt∗
= −DLi

∂c∗s
∂r∗

∣∣∣∣
r∗=s∗(t∗)

. (5.5)

Here ceq is the concentration at the interface in the Lithium-rich phase, while c0 is the

concentration throughout the lithium poor phase so that

c∗s = c0, for r∗ < s∗(t∗) (5.6)

where c0 = 0.02cmax is the concentration of the Lithium-poor phase [84].

When the core is consumed, then the whole electrode is uniformly in one phase, thus

the boundary condition (5.5) is replaced by

DLi
∂c∗s
∂r∗

∣∣∣∣
r∗=0

= 0 (5.7)

We note that the problem described above is for battery discharge. As the battery

is charged we might expect a similar free boundary problem, however it is not clear

whether the free boundary will be stable.

Nondimensionalisation We non-dimensionalize the above system as follows:

r∗ = a0r, c∗s = ceq + (cmax − ceq)cs, s∗ = a0s, t∗ = τt, G∗ = G0G (5.8)

and choosing the time scale for the problem to be

τ =
ceq − c0

cmax − ceq
a2

0

DLi
, (5.9)
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Thus the dimensionless problem of ”shrinking core” diffusion model (5.1)-(5.7) is as

follows

∂cs
∂t

= Υ
1

r2

∂

∂r

(
r2∂cs
∂r

)
, (5.10)

∂cs
∂r

∣∣∣∣
r=1

= QG, ∂cs
∂r

∣∣∣∣
r=0

= 0, (5.11)

cs|r=s(t) = 0, (5.12)

ds

dt
= − ∂cs

∂r

∣∣∣∣
r=s(t)

(5.13)

cs|t=0 = 0. (5.14)

with

cs = −Υ, if r < s(t). (5.15)

The dimensionless parameters Q and Υ are defined by

Q =
a0G0

(cmax − ceq)DLi
Υ =

ceq − c0

cmax − ceq
. (5.16)

The parameters used in the model are listed in Table 5.1. The reaction rate switches off

when cs reaches 1 which motivates us to write

G =




G1, if cs < 1

0, if cs = 1.
(5.17)

where G1 is constant. The electrode variables for LiFePO4 electrode are listed in Table

5.1. Based on those values, the size dimensionless parameter Υ is Υ ≈ 20. We note

that, Q depends upon the typical reaction rate G0 which varies at different discharge

currents. For example, if the cell is discharged at 1C discharge current (I = 13Am−2),

the typical reaction rate is G0 ≈ 3 × 10−7 which gives Q ≈ 0.4, and at 5C discharge

rate, Q ≈ 2. Thus, the size of Q can be fairly approximated to be O(1).

Parameter Value Units Reference

Radius of particle, a0 5× 10−7 m [84]
Maximum concentration in LiFePO4, cmax 20950 molm−3 [23]

Concentration of the Lithium-rich phase, ceq 0.9525cmax molm−3 [23]
Concentration of the Lithium-poor phase, c0 0.02cmax molm−3 [23]

Lithium diffusivity, DLi 8× 10−18 m2s−1 [84]

Table 5.1: Parameter values used in the model.
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5.2.1.1 Solution Procedure

The moving boundary problem is solved using the Landau transformation [84] to make

the coordinates fixed by substituting

χ =
r − s(t)
1− s(t) (5.18)

into (5.10)-(5.13). Therefore, we obtain the conservative form of cs across a fixed domain

(0 ≤ s(t) ≤ 1) as the following

[χ(1− s(t)) + s(t)](χ− 1)(1− s(t))∂cs
∂χ

ds

dt
+ [χ(1− s(t)) + s(t)](1− s(t))2∂cs

∂t

= 2Υ(1− s(t))∂cs
∂χ

+ [χ(1− s(t)) + s(t)]
∂2cs
∂χ2

(5.19)

cs = 0 at t = 0 (5.20)

cs|χ=0 = 0 (5.21)

− ∂cs
∂χ

∣∣∣∣
χ=0

= (1− s(t))ds(t)
dt

(5.22)

∂cs
∂χ

∣∣∣∣
χ=1

= (1− s(t))QG. (5.23)

The porous electrode model is solved with spatial discretization along the r coordinate

with finite difference technique. Note that the solution for (5.19)-(5.23) is for the region

s(t) < r < 1. In order to plot the result within the r-coordinate (in which 0 < r < 1)

and to see the moving phase boundary, we rescale the solution as follows

ĉs =

(
cmax − ceq
cmax

cs +
ceq
cmax

)
(5.24)

which gives

ĉs =





0.02, if 0 < r < s(t)

0.9525, if r = s(t)

0.9525 < ĉs ≤ 1, if s(t) < r ≤ s(t)
(5.25)

Here, ĉs = 0.02 is the dimensionless concentration in the Lithium-poor region (r < s(t),

ĉs = 0.9525 is the dimensionless concentration at the free boundary (r = s(t)) and ĉs = 1

is the dimensionless maximum concentration.

Figure 5.2 presents a sketch of the lithium ion concentration profiles inside a LiFePO4

particle during discharge. The phase between Lithium rich ĉs = 0.9525 and Lithium

poor ĉs = 0.02 are separated by a phase boundary which moves toward the center of a

particle as the intercalation process proceeds which r = s(t) is where the position of the
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phase boundary and s(t) is a function of the discharge time. Note that s(0) = 1 is the

initial position of the phase boundary.
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0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r
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Figure 5.2: The lithium concentration profiles in solid particle during dis-
charge where Q = 1 and Υ = 20. The vertical lines indicate the po-
sition of the phase boundary. When the surface concentration reaches 1,
the reaction rate ceases hence stop the discharge. The times plotted are
t = 0.01, 0.02, 0.03, 0.04, 0.05, · · · .

5.2.1.2 Asymptotic solution of shrinking core diffusion

Here we look for an asymptotic solution to (5.10)-(5.13) with Q = O(1) and in the

physically relevant limit Υ� 1. Expanding in power of 1/Υ as follows

cs = cs0 +
1

Υ
cs1 + ..., s(t) = s0 +

1

Υ
s1 + ... (5.26)

we obtain the following leading order problem

1

r2

∂

∂r

(
r2∂cs0

∂r

)
= 0, (5.27)

cs0|r=s0 = 0, (5.28)

∂cs0
∂r

∣∣∣∣
r=1

= QG, (5.29)

ds0

dt
= − ∂cs0

∂r

∣∣∣∣
r=s0

. (5.30)
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Solving the system (5.27) to (5.29) yields the solution

cs0 = QG
(

1

s0
− 1

r

)
(5.31)

Now we make use of the solution to solve (5.30) with initial condition s0(0) = 1 gives us

the free boundary behaviour which is

s0 = (−3QGt+ 1)1/3 (5.32)

At the next order O(1/Υ), the system is

∂cs0
∂t

=
1

r2

∂

∂r

(
r2∂cs1

∂r

)
, (5.33)

cs1|r=s1 + s1
∂cs0
∂r

∣∣∣∣
r=s0

= 0,
∂cs1
∂r

∣∣∣∣
r=1

= 0, (5.34)

ds1

dt
=
∂cs1
∂r

∣∣∣∣
r=s0

+ s1
∂2cs0
∂r2

∣∣∣∣
r=s0

. (5.35)

Substituting (5.31) into (5.33) with boundary conditions (5.34), we obtain the next order

solution

cs1 =
1

3

(
r2

2
+

1

r
− s2

0

2
− 1

s0

) Q2G2

s4
0

− s1
QG
s2

0

(5.36)

The solution (5.36) leads us to find the next order solution of the free boundary interface

(5.35) with s1(0) = 1 which is

s1 =
s2

0

10

(
(−1 + 5QGt)QG

s05
+QG

)
(5.37)

Summary. In summary the solid concentration and the free boundary interface take

the form

cs = QG
(

1

s0
− 1

r

)
+

1

Υ

1

3

(
r2

2
+

1

r
− s2

0

2
− 1

s0

) Q2G2

s4
0

− s1
QG
s2

0

+O

(
1

Υ2

)
, (5.38)

s0 = (−3QGt+ 1)1/3, s1 =
s2

0

10

(
(−1 + 5QGt)QG

s5
0

+QG
)
. (5.39)

Figure 5.3 shows that the asymptotic with two term demonstrates a good agreement with

the numerics except at later time, it underestimates the solution. From the equation

above, we highlight that as the interface approaches zero then 1/s0 becomes a large

number and the asymptotic solution breaks down.
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Figure 5.3: The comparison of lithium concentration profiles in solid particle
during discharge (Q = 1, Υ = 20) between the numerics and asymptotic so-
lutions (see (5.38)-(5.39)). The solid lines represent numerics, and dash lines
represent asymptotic solutions.

5.2.2 Phase-field model

In recent years, other phase behaviour has been demonstrated experimentally [2, 26, 17]

hence the ”shrinking core” theory remains questionable. For example, Bazant et al.

[40, 101] has predicted the phase behaviour theoretically using a Cahn-Hilliard phase-

field model in isotropic nanoparticles with boundary condition for reaction kinetics based

on local chemical potential differences and concentration gradient contributions [40].

They found that intercalation phase boundaries move along planes of fast ionic diffusion

which agrees with the ”domino cascade” model by Delmas et al. [26].

In 2011, Bai et al. [5] have extended the model for reaction limited intercalation in

anisotropic nanoparticles. The phase separation is neglected in the y-direction ([010]

direction) due to fast diffusion along this axis that causes the bulk concentration equi-

librates quickly. Bai [5] proposed that phase separation could occur at low currents

while at large currents, the particle fills homogeneously, hence suppress phase separa-

tion. Thus, the theory suggests that phase separation does not occur during normal

battery operation which can be explained the high-rate capability of LiFePO4. The

transition from fully phase separation to no phase separation is captured in the simula-

tion for filling at different currents are shown in Figure 5.4 . At low current, the phase

separation is clearly appear and at slightly above the critical current, phase separation

is hardly visible.
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Further analysis has been done by Bazant et al. [63] in investigating the dynamics

of interparticle mosaic instability in phase separating electrodes during discharge and

charge. At low currents, the model assumes the nanoparticles (which have large surface

area per volume ratios) fill preferentially, hence no phase separations occur within the

individual nanoparticles. While at high current, the current density is more homoge-

neous throughout the electrode hence the phase separation is suppressed in individual

particles. Furthermore, the diffusion time of lithium in the particles is much faster than

the transport time of Lithium ions in the electrolyte. Hence, they used Fick’s diffusion

model for the transport of lithium in the particles.

Figure 5.4: Phase boundary morphology that occurs between FePO4 (black
regions) and LiFePO4 (grey regions) as discharge rate is increased. From left
to right; (a) I

I0
=0.001, (b) I

I0
=0.01, (c) I

I0
=0.033, (d) I

I0
=0.05. Reprinted from

[63].

Based on the above works, we came to the conclusion that when the particles of the

electrode materials are sufficiently large, the particles tend to phase separate into their

different stable phases generating interfaces, and that the ”shrinking core” model may

still provide an appropriate description. But for nanosized particles, phase separation is

suppressed . In Chapter 8, we consider cathode composed of nanosized LiFePO4 particles

and note that since the diffusion timescales within the particles are small in comparison

o those in the electrolyte the actual behaviour in the particles is unimportant. This

motivates us to use a simple model for lithium transport in the electrode particles and

incorporate this into a battery model in order to simulate the discharge curves in a

LiFePO4 half-cell.

5.3 More than two phases

Certain material exhibit multiple phases a common example being graphite [76, 35].

However, the diffusion of lithium in graphite (LixC6) is not well understood and still

under investigation, but some work has been done to model the diffusion and intercala-

tion of lithium into the electrode material. Roscher has reported that graphite exhibits

three or more phases (probably five) that can be inferred from several potential plateaus

in the equilibrium potential curve of graphite [76]. Recently, Ferguson and Bazant [35]

developed a predictive theory i.e a free energy model for three phases graphite. They
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have approximated only the three phases at x ≈ 0, x ≈ 1/2, and x ≈ 1, as x in LixC6

varies from 0 to 1. The comparison between simulation and experiment shows a good

agreement. To date, this is the only model that has demonstrated the diffusion in the

solid material for more than two phase transformations. However when there are many

phases a nonlinear diffusion model may actually provide a very good phenomenologi-

cal description of the behaviour. This is demonstrated in Chapter 7 where we show

good agreement to experimental discharge curves in a graphite half-cell using a lithium

concentration dependent diffusivity.

5.4 Diffusion equation in the spherical coordinate

In this section the solid phase is assumed to comprise of identical spherical particles of a

predetermined size and diffusion in the radial direction is assumed to be the predominant

mode of transport. In LixC6, we are motivated to neglect the phase transformations

since no phase field model is able to adequately describe these phase transformations.

Furthermore, it is common to model lithium transport in the electrode particles by

diffusion equations (in fact typically linear diffusion) [37, 28, 72] especially for graphite.

A generic diffusion model for lithium transport in a spherical electrode particles is

∂c∗s
∂t∗

=
1

r∗2
∂

∂r∗

(
r∗2D∗s(c

∗
s)
∂c∗s
∂r∗

)
(5.40)

subject to the

∂c∗s
∂r∗

∣∣∣∣
r∗=0

= 0, −D∗s(c∗s)
∂c∗s
∂r∗

∣∣∣∣
r∗=a

= G∗. (5.41)

where the last condition specifies the lithium flux on the particle surface r = a in terms

of the reaction rate G.

Current density in the electrode We highlight that, in dilute electrolyte model,

the potential in the electrode particles is taken to be constant (see Section 2.3) in as-

sumption that the electronic conductivity in the electrode particles is large. However,

in true battery behaviour this potential may varies across the length of the cell. In this

section, we discuss the addition of this parameter into the model.

The total current density, j∗tot is conserved in the two phases (electrolyte and electrode

matrix phase) so that

j∗tot = j∗ + j∗s (5.42)
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where j∗ is the current density in the electrolyte and j∗s is current density in the electrode

matrix. The current flowing in the solid phase is usually modelled by Ohm’s Law

j∗s = −σs
∂φ̂∗s
∂x∗

(5.43)

where current conservation in the matrix is given by

∂j∗s
∂x∗

= −FbetG∗. (5.44)

Here σs is the conductivity of intercalated Lithium in the solid phase and φ̂∗s is the

solid potential. These couple to particle equations that describe the concentration of

lithium within single electrode particles at position x∗ and the electrolyte equations

(4.47)-(4.48). Note that (5.44) is to ensure that total current conservation
∂jtot
∂x∗

= 0

since
∂j∗

∂x∗
= FbetG

∗.

5.5 Summary

Electrode materials such as LiyFePO4 and LixC6 exhibit phase transformations dur-

ing the intercalation reactions at the solid phase. Phase transitions usually appear as

plateaus in the open circuit potential of the materials as a function of lithium concen-

tration in the material. The ”shrinking core” model was initially considered the phase-

separating mechanism in LiFePO4 material. However, recently it has been demonstrated

experimentally that the behaviour is not an accurate representation of the phase change

in electrode nanoparticles. From experimental observation, the orientation of the mov-

ing phase boundary in LiFePO4 crystal is one dimensional and the particle is most likely

to be either fully intercalated or fully deintercalated. Furthermore, in nano-structured

electrodes the intercalation reaction occurs predominantly at the particle surface, and

can be approximated by fast diffusion in the solid where the particles are sufficiently

small (refer to Chapter 8). Analysis of phase separation models leads to the conclusion

that the phase transformation is extinguished [63] at the high reaction rates which occur

in normal battery operation. Only at very small currents in large particles should phase

separation play a major role.

For the LixC6, up until now, there is no phase transition model that can adequately

describe its multiple phase transitions. Therefore, it is usual to describe (de)intercalation

of Lithium in the solid by a nonlinear diffusion equation (see Chapter 7). Previous

works [see [37], [85],[72]] have been fitted to the experimental data assuming only linear

diffusion in the electrode particle (although as we shall show this leads to disparities

between the experimental data and the model).
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Numerical Procedure

6.1 Introduction

Modelling of battery systems involves the solution of complicated systems of equations

that incorporate the electrochemical kinetics and the transport phenomena in the elec-

trolyte and within the electrode particle. Analytical solutions in such system are avail-

able for several limiting cases. Doyle and Newman [31] obtained analytical solutions

in the following cases: (i) when transport in the electrolyte phase is limiting (assumes

constant diffusion coefficient in the electrolyte and fast diffusion in the solid phase); (ii)

when diffusion in the solid phase is limiting (assumes the electrolyte concentration is

uniform and the reaction occurs uniformly throughout the electrodes), and; (iii) when

ohmic losses in the reaction zone dominate (assumes fast diffusion in the electrolyte

and electrode particles). Darling and Newman [25] used Laplace transforms to obtain

analytical solutions for the short time behaviour of a one-dimensional lithium ion cell.

Doyle’s [28] approach to describing the transport of lithium in the solid phase is to as-

sume linear diffusion and to use the Duhamel’s superposition integral [45] to obtain the

solution.

Numerical methods are more flexible. The simplest, and most common, numerical ap-

proaches are based on finite difference approximations. For example, Newman’s BAND

subroutine which is written in FORTRAN [60] has been used for simulating batteries. It

is a routine for solving a set of n coupled, linear, second order differential equations and

is suitable for solving initial boundary value problems which are formulated as matrix

equation using finite difference method [56]. White [94] provides an extension of the

BAND subroutine for solving nonlinear finite difference equations. The inefficiencies of

this subroutine is that the coefficient matrices have to be supplied to the subroutine ev-

ery time BAND is called [9]. The battery model simulations in ([31], [25]) incorporate a

single particle size with the same surface area across the electrode. However, these works

by Newman and his co-workers ([31], [25]) use a finite number of particles which is not

83
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self-consistent with the homogenisation averaging procedure used to derive electrolyte

equations. In [85], Newman and Srinivasan use a two particle size distributions in order

to achieve good comparison between their model and experiment. Recently, Farrell et al.

[23] incorporate two particle sizes with constant diffusion in the solid in their three scales

battery model simulation and discretised the system of equations using a finite volume

method. They solved the resulting nonlinear system of differential-algebraic equations

using an implicit differential-algebraic solver.

The system of partial differential equations, describing the evolution of: (i) concentration

gradients of lithium ions in the electrolyte (c∗) ; (ii) the electrolyte potential (φ∗) (see

(4.47)-(4.48)); (iii) the concentration of lithium ions in the solid (c∗s) (see (5.40)-(5.41)),

and; (iv) the solid potential (φ̂∗s) (see (5.43)-(5.44)) in time and space are certainly not

trivial to deal with even using numerical techniques. The main source of this difficulty

is the coupling of the solid and electrolyte phases via the (de-)intercalation reaction rate

equation, G∗(c∗, φ̂∗φ̂∗s, c
∗
s), (see (4.49)). This reaction rate is applied on a continuum basis

across each electrode, i.e. at each and every station in x (distance through the electrode)

we assume that there is a representative particle in which lithium is transported by

diffusion. This, combined with our assumption that the transport in each particle is

radially symmetric, means that c∗s has a 2D spatial dependency (i.e c∗s = c∗s(x
∗, r∗, t∗))

where r∗ is the radial position within a given particle. Thus, the complexity of the system

increases when the number of stations in x (and hence the number of representative

particles) increases.

Here, we elect to find approximate numerical solutions to the dimensionless systems

(7.16)-(7.25), using the method of lines (MOL). In order to help the discussion of the

method we shall assume here that the diffusion coefficient in the electrolyte D(c), the

conductivity κ(c), and the diffusion of Lithium in the solid Ds(cs) are all constant.

However, the same procedures can be applied to the more general model (7.16)-(7.25)

with some relatively minor modification. The MOL methodology essentially converts a

system of PDEs into a (large) coupled system of (in some sense equivalent) ODEs by

approximating spatial derivatives using finite difference approximations. The resulting

system of ODEs can then be evolved forward in time using standard ODE solvers.

Note that the numerical techniques discussed in this chapter will be applied later in the

thesis to the dimensionless half cell model of an anode (see Chapter 7) and a cathode

(see Chapter 8). However, we stress that they can readily be adapted for use in other

scenarios.

The resulting scheme provides a fast and numerically efficient of solving the model. The

complete discharge simulation with n = 100 spatial points in x and r, is able to deal

with internal boundary layers and runs in less than one minute. This scheme could for

example fairly easily be generalised to ellipsoidal shaped particles or to particles whose

size distribution depends upon x.
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In §6.2, we demonstrate the MOL approach using the simple example of linear diffusion

within a spherical particles. Then, in §6.3, we discuss some of the subtleties of applying

the technique to our half cell model of an anode.

6.2 Method of Lines

The MOL is the central approach used in the numerical methods developed in this

work. The power of this technique is that it allows one to decouple the spatial and

temporal discretisation processes. It enables us to convert partial differential equations

(PDEs) into a large set of ordinary differential equations (ODEs) that are approximate

the PDEs. To demonstrate the MOL technique we consider the following example of

the linear diffusion equation in a ‘slab’ geometry with an insulating boundary condition

at x = 0 and a specified outward flux of u at x = 1. Initially the concentration of u is

taken to be unity. We write

∂u

∂t
=
∂2u

∂x2
(6.1)

with boundary conditions and initial condition

u|x=0 = 1,
∂u

∂x

∣∣∣∣
x=1

= −1; (6.2)

u|t=0 = 1. (6.3)

First, we introduce a set of points in space, xi for i = 0, ..., n , at which the spatial

derivatives in equation (6.1) will be approximated using finite differences. For ease, we

take this spatial grid to be uniform, i.e. we take xi = i× δx where δx = 1/n. However,

one could easily generalise to a non-uniform spatial grid if, for example, a higher spatial

resolution is required in given parts of the spatial domain. We also introduce the fol-

lowing notation for the values of u at each of the points on the spatial grid: u|x=xi = ui.

The second order spatial derivative, at each points xi, can then be approximated by the

central difference

∂2u

∂x2

∣∣∣∣
x=xi

≈ ui+1 − 2ui + ui−1

δx2
(6.4)

Employing this approximation at each of the points xi converts the PDE (6.1) into the

following set of n coupled ODEs

dui
dt
≈ ui+1 − 2ui + ui−1

δx2
, i = 1, 2, · · · , n. (6.5)



86 Chapter 6 Numerical Procedure

At both ends, we discretise the boundary conditions (6.2) as follows

u1 = 1, at x = 0 (i = 1),

un+1 = un−1 − 2δx, at x = 1 (i = n). (6.6)

so that when we substitute the last into (6.5), with i = n, we can eliminate the fictitious

point n+ 1 to obtain

dun
dt

=
2(un−1 − un)

δx2
− 2

δx
. (6.7)

The system of equation (6.5) can then be written in form

d

dt




u1

u2

...

un−1

un




=
1

δx2




1 0 0 · · · · · ·
1 −2 1 · · · · · ·
...

...
. . .

. . .
...

· · · · · · 1 −2 1

· · · · · · · · · 2 −2







u1

u2

...

un−1

un




+
1

δx




0

0
...

0

−2




(6.8)

or more concisely as

∂u

∂t
= Bu+ g (6.9)

whereB is the differentiation matrix and g is the source vector. This system can then be

solved with an appropriate time integration method. In this work, the systems of ODEs

arising from the MOL will be solved using an existing adaptive initial value problem

solver, namely the Matlab routine ode15s.

6.3 Development of sparse matrix for the system

The dimensionless system (7.16)-(7.25) which we give in the next chapter is a coupled

system of non-linear reaction-diffusion equations describing the discharge of a half cell

anode. Note that in order to easily illustrate the method, we take the concentration

dependant variables, D(c), κ(c) and Ds(cs) in the system to be constant and equal to 1

and all the dimensionless parameters to be 1 but that a similar procedure can be applied

to the real system with some minor modifications. The full system involves PDEs for

diffusion in the solid (7.23)-(7.24) which has a 2D spatial dependacy; i.e. it is dependant

on both x and r, where 0 ≤ x ≤ 1 is the position through the electrode and 0 ≤ r ≤ 1

is the radial position within a particle.

We begin by setting up n equally spaced grid points across the spatial variable x. At

each of these stations in x we also consider a representative spherically symmetric solid

particle which is discretised using m grid points in the radial position within the particle,
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r. We introduce δx = 1/n and δr = 1/m so that our discretisation points are located at

xi = i×δx and rj = j×δr. At each of the (n×n) discretisation points spatial derivatives

in the system (7.16)-(7.18) (or (m ×m) in the system (7.23)) are approximated using

the central finite difference method. For example, spatial derivatives in x of a generic

dependant variables u are approximated using equation (6.4). Carrying out this process

on the system (7.16)-(7.21) will lead, as we shall show, to

M
du

dt
= Au+ f(x, t). (6.10)

Here, u(3+m)n×1 is the solution vector, M ((3+m)n×(3+m)n) is the time-dependent mass

matrix, A((3+m)n×(3+m)n) is the differentiation matrix and f ((3+m)n×1) is the source

vector account for the reaction terms and the subscripts give the size of the matrices.

The diagonal entries of the mass matrix are such that Mi,i = 1 if the i-th equation is a

PDE and Mi,i = 0 if the i-th equation is an ODE. Note that each of it’s elements are

constant. We now discuss construction of the matrices M , u, A, and f for our system

of PDEs (7.16)-(7.25) if we discretised with n grid points.

6.3.1 The development of the solution vector u

The equation system consists of electrolyte concentration, c, electrolyte potential, φ̂,

electrode potential, φ̂s (which are functions of x and t) and concentration of Lithium in

the electrode particles, ĉs (which is a function of r, x and t). The solution vector u of

ci, φ̂i, φ̂si and ĉjsi (where the subscript i denotes the solution for the particle at x = iδx
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and the superscript j gives the radial position such that r = jδr) is formed as follows

u =




c1

...

cn

φ̂1

...

φ̂n

φ̂s1
...

φ̂sn

ĉ1
s1
...

ĉns1
...
...
...

ĉ1
sn
...

ĉnsn




((3+m)n×1)





Solution for ci





Solution for φi





Solution for φ̂si





Solution for particle 1 ĉjs1 (j = 1, · · · ,m)





Solution for particles 2, · · · , n− 1, ĉjsi (i = 2, · · · , n− 1, j = 1, · · · ,m)





Solution for particle n, ĉjsn (j = 1, · · · ,m)

(6.11)

In order to make the assembles of the matrix ODE system more transparent we shall

split the system into its constituent parts (equations for (I) electrolyte concentration,

(II) electrolyte potential, (III) solid potential and (IV) lithium concentration in the

electrode particles) in §6.3.2 - §6.3.5 before showing how to assemble the equations in

the form (6.10) in §6.3.6.

6.3.2 The development of matrices for electrolyte concentration, c

The equation for the electrolyte concentration, c in (7.16) is a time dependent PDE, and

hence the mass matrix for this particular equation is

M c =




1 0 0 · · · · · ·
0 1 0 · · · · · ·
...

...
. . .

. . .
...

· · · · · · · · · 1 0

· · · · · · · · · 0 1



n×n

(6.12)
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The discretisation of c (7.16), with boundary conditions (7.19 (a))-(7.20 (b)), by central

difference (6.4) gives the following differentiation matrix

Ac =
1

δx2




1 0 0 · · · · · ·
1 −2 1 · · · · · ·

. . .
. . .

. . .
. . .

...

· · · · · · 1 −2 1

· · · · · · · · · 2 −2




(n×n)

. (6.13)

The reaction terms in the equation is written in matrix form as

f c =




G(c1, ĉ
m
s1, φ̂1 − φ̂s1)

G(c2, ĉ
m
s2, φ̂2 − φ̂s2)

...

G(cn−1, ĉ
m
s(n−1), φ̂n−1 − φ̂s(n−1))

G(cn, ĉ
m
sn, φ̂n − φ̂sn)




(n×1)

(6.14)

Summary The discretisation of (7.16) can thus be represented by the matrix system

M c
duc
dt

= Acuc + f c (6.15)

where

uc =




c1

c2

...

cn−1

cn




(n×1)

(6.16)

6.3.3 The development of matrices for electrolyte potential, φ̂

The electrolyte potential equation, φ̂ in (7.17) is an ODE in x, hence the mass matrix

is zero matrix

[0]n×n. (6.17)

The discretisation of φ̂ (7.17) with boundary conditions (7.19(b))-(7.20(a)) by central

difference (6.4), gives a differentiation matrix that is identical to Ac. The matrix for the

reaction terms in the equation follows the matrix that identical to f c.
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It follows that subsystem of ODEs approximating the electrolyte potential equation

(7.17) is given by

[0]
duφ̂
dt

= Acuφ̂ + f c (6.18)

where

uφ̂ =




φ̂1

φ̂2

...

φ̂n−1

φ̂n




(n×1)

(6.19)

6.3.4 The development of matrices for the electrode potential, φ̂s

The solid potential equation, φ̂s in (7.18) is an ODE in x, and hence the mass matrix is

zero matrix

[0]n×n. (6.20)

The discretisation of φ̂s (7.18) with boundary conditions (7.21(a)-(b)) by central differ-

ence (6.4) gives

Aφ̂s
=

1

δx2




−2 2 0 · · · · · ·
1 −2 1 · · · · · ·

. . .
. . .

. . .
. . .

...

· · · · · · 1 −2 1

· · · · · · · · · 2 −2




(n×n)

. (6.21)

The reaction terms matrix in the equation is also identical to that f c matrix (6.14).

It follows that the subsystem of ODEs approximating the electrode potential equation

(7.18) is

[0]
duφ̂s
dt

= Aφ̂s
uφ̂s + f c (6.22)
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where

uφ̂s =




φ̂s1

φ̂s2
...

φ̂s(n−1)

φ̂sn




(n×1)

(6.23)

6.3.5 The development of matrices for concentration in the electrode

particles, cs

As noted earlier, the concentration in the solid has 2D spatial dependacy (that is cs is

a function of both r and x), hence the construction of the matrix of equations approxi-

mating this variable is more complex than for the other variables. We define cjsi where

the superscript j denotes radial position in the particle, and the subscript i denotes the

position of the particle in the electrode (that is rj = jδr, xi = iδx). This discretisation

is such that at each grid point i in x there is one representative particle, which means if

we take n grid points in x, there are n particles.

In order to make the discretisation of cs much simpler, we introduce the new variables

ĉs defined rescale by ĉs = csr, so that (7.23)-(7.24) can now be rewritten (on setting

Q = 1 and Ds(ĉs) = 1 as discussed previously)

∂ĉs
∂t

=
∂

∂r

(
∂ĉs
∂r

)
, (6.24)

ĉs|r = 0 = 0,

(
∂ĉs
∂r
− ĉs

)∣∣∣∣
r=1

= −G. (6.25)

Let consider a particle at position x = iδx. The equation above is a PDE, in which

ĉs depends on t and hence the mass matrix is similar to M c (6.12) but of different

dimensions

M cs =




1 0 0 · · · · · ·
0 1 0 · · · · · ·
...

...
. . .

. . .
...

· · · · · · · · · 1 0

· · · · · · · · · 0 1



m×m

(6.26)
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The discretisation of (6.24)-(6.25) using the central difference (6.4) gives

Acs =
1

δx2




−2 2 0 · · · · · ·
1 −2 1 · · · · · ·

. . .
. . .

. . .
. . .

...

· · · · · · 1 −2 1

· · · · · · · · · 2 −2(1− δx)




(m×m)

. (6.27)

We note that, the reaction rate equation appears only at the solid particle surface, r = 1

which is at j = m (by boundary condition (6.25)). The matrix for reaction equation for

particle at position x = iδx is in the form

fpi = − 2

δx




0

0
...

0

G(ci, ĉ
m
si , φ̂i − φ̂si)



m×1

for i = 1, 2, · · · , n
(6.28)

It follows that the subsystem of ODEs approximating (6.24)-(6.25) for ĉs at position

x = iδx, is given by

M cs
dupi
dt

= Acsupi + fpi (6.29)

where

upi =




ĉ1
si

ĉ2
si
...

ĉm−1
si

ĉmsi




(m×1)

for i = 1, 2, · · · , n
(6.30)

The system of solid concentration for all n particles is thus represented by

Mp
dup
dt

= Apup + fp (6.31)

where

Mp =




M cs · · · · · · · · · · · ·
· · · M cs · · · · · · · · ·
· · · · · · . . .

. . .
...

. . .
. . .

. . . M cs
...

· · · · · · · · · · · · M cs




(mn×mn)

(6.32)
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and the differentiation matrix for all the n particles is given by the block tri-diagonal

matrix

Ap =




Acs · · · · · · · · · · · ·
· · · Acs · · · · · · · · ·
...

...
. . .

. . .
...

. . .
. . .

. . . Acs
...

· · · · · · · · · · · · Acs




(mn×mn)

. (6.33)

and the source vector matrix for all the n particles is given by

fp =




fp1

fp2
...

fp(n−1)

fpn




(mn×1)

. (6.34)

6.3.6 The development of A, M and f

Combining all the matrix elements of all variables for (7.16)-(7.21), we write (6.12)-

(6.21),(6.32), (6.33) and (6.34) in the full matrix system (6.10) such that




M1 · · · · · · · · ·
· · · 0 · · · · · ·
· · · · · · 0 · · ·
· · · · · · · · · Mp



∂u

∂t
=




A1 · · · · · · · · ·
· · · A1 · · · · · ·
· · · · · · A2 · · ·
· · · · · · · · · Ap



u

+




f1

f1

f1

fp




System for electrolyte concentration c

System for electrolyte potential φ̂

System for solid potential φ̂s

System for solid concentration ĉs

(6.35)

where the size of the vector M and A are ((3 +m)n× (3 +m)n) and vector u is in the

form (6.11).

6.4 ode15s

Owing to the fact that our system of equations contains both PDEs and ODEs the

mass matrix M is clearly singular. This means that we must use a differential-algebraic

solver. Here, we use the ode15s solver in MATLAB which is particlarly suitable for

solving systems of DAEs (differential-algebraic equations). ode15s uses the backward
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differentiation formulas which means it is an implicit scheme, with an adaptive time-

step and it is also efficient at solving problems that are stiff [79]. However, our system

is so large system. For example, takes n = m = 100 results in 10300 coupled DAEs.

If ode15s attempts to compute all 10300-by-10300 entries in the Jacobian of Au + f

any standard desktop computer will simply run out of memory (RAM) and take an

impractical amount of time to obtain convergence. Since there is no information on

the Jacobian, the routine has to calculate the full Jacobian, numerically. However, one

can avoid this situation by explicitly telling the solver that the Jacobian only contains

2650 nonzero entries – substantially less than the 10300×10300 possible nonzeros the

finite-differencing code attempts to compute. We can achieve this in two different ways:

1. Provide a Jacobian matrix or a routine to calculate the Jacobian if the Jacobian is

not constant. We set the ’Jacobian’ option in the odeset structure to the matrix.

2. Provide a Jacobian pattern so that the routine is able to avoid expensive calls to

the rate of change function. A Jacobian pattern is a sparse matrix of ones (only

appear where the Jacobian is non-zero) and zeros. We set the ’Jpattern’ option in

the odeset structure to the matrix.

For this study, we adopt the second option by specifying the sparsity pattern of Jacobian

matrix. By doing so, the efficiency of the solver is greatly improved. The sparsity

structure for the system of ODEsAu+f (6.35) with n = m = 100 is shown in Figure 6.1.

Providing the sparsity pattern can drastically reduce the computational time needed.

Convergence The error tolerance for this problem is set to be 10−8. The code is

assessed for convergence by taking double the number of grid points and seeing whether

the results obtained are similar to those computed with n = 100. And also by refining

the error tolerance to 10−6 and seeing whether the results obtained are similar to those

computed with error tolerance 10−8. Hence, we believe that the numerical accuracy is

good and reliable.
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6.5 Summary

By using finite difference approximations of the space derivatives, i.e. using a constant

step space discretisation grid, initial value problems were consisting of a large system of

coupled ordinary differential equations (ODEs) in time. MATLABs built-in solver for

ODE-systems, ode15s, was employed to solve the problems. The procedure we describe

offers an efficient, robust and versatile means of simulating the whole system that al-

lows for much simpler coding of the underlying equations than alternative simulation

procedures. The MOL technique is especially well-suited to simulating stiff (and hence

difficult to solve) equations. It is well known that explicit solvers for parabolic PDEs

are limited by a stability criterion that requires small time steps are taken. However,

ode15s is designed to solve systems of differential equations using an implicit method

and so overcomes this difficulties. Furthermore, the solver employs variable time step

length in the integration, increasing calculation speed and accuracy significantly. The

resulting numerical method provides a fast and efficient way of calculating solutions to

multiscale battery problems such as described in Chapter 4,7, and 8.



Chapter 7

The Half cell Anode

7.1 Introduction

The battery model (4.47)-(4.49) and (5.40)-(5.44) describes the transport process within

the full cell battery which consists of current collectors, negative electrode, separator

and positive electrode. This model can also be used to describe half-cells which are used

to conduct fundamental research on Lithium battery electrodes. The present study is

conducted on a graphite anode half cell system.

In order to verify the resulting model is capable of representing the true behaviour of the

electrochemical dynamics in the battery system, we compare our results to experimental

galvanostatic discharge currents obtained in [85] for a half cell graphite anode. The

objectives of the study are to assess the performance of the anodic material and to

establish guidelines for their optimization by using the phenomenological moderately

concentrated electrolyte model discussed in Chapter 3. The results allow an assessment

of the effects of transport, and can be used to evaluate the performance of the system.

7.2 The half cell anode model

The transport model in the liquid electrolyte phase and in the solid phase of the half

cell anode is identical to that for the full cell described in (4.47)-(4.49) and (5.40)-

(5.44), respectively. The model for the half-cell anode simulates the region between the

negative electrode current collector (x∗ = 0) and the separator (x∗ = L) where L is

the thickness of the electrode as shown in Figure 1.3. We assume that the separator

is extremely thin. During discharge, Lithium diffuses in the electrode particles to the

solid electrolyte interface where it undergoes a charge transfer reaction. The Lithium

ions emitted by this reaction, then diffuse in the electrolyte towards the separator and

lithium electrode. For the anode half-cell, the concentration at the separator (x∗ = L) is

97
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the initial electrolyte concentration (c0) and the flux of electrolyte concentration is zero

at x∗ = 0. Furthermore, we initially take the electrolyte and electrode are in a state of

equilibrium where c∗|t∗=0 = c0 and c∗s|t∗=0 = cs,max corresponding to a fully charged

half cell anode. Here cs,max is the maximum concentration of intercalated lithium in the

graphite electrode. The electrolyte current density at the separator is equal to the total

current flowing in the cell divides by its area, j∗|x∗=L = −I∗/A. On the other boundary

at the current collector, j∗|x∗=0 = 0. Since the total current in the cell is conserved

(see (5.42)), the boundary conditions on the current density in the solid matrix phase

follow directly from those on the electrolyte current. That is all the current at the

separator is in the electrolyte phase and all the current is in the solid matrix phase at the

current collector. The equations and boundary conditions for electrolyte concentration

c∗, electrolyte potential φ̂∗ and electrode potential φ̂∗s in the half-cell anode can thus be

summarized as follows

εv(x
∗)
∂c∗

∂t∗
=

∂

∂x∗

(
D(c∗)B(x∗)

∂c∗

∂x∗

)
− ∂t0+
∂x∗

j

F
+ (1− t0+)bet(x

∗)G∗a, (7.1)

∂j∗

∂x∗
= Fbet(x

∗)G∗a, where j∗ = −B(x∗)κ(c∗)

(
∂φ̂∗

∂x∗
− 2

RT

F
(1− t0+)

∂ log(c∗)

∂x∗

)
(7.2)

∂j∗s
∂x∗

= −Fbet(x∗)G∗a, where j∗s = −σs
∂φ̂∗s
∂x∗

(7.3)

∂c∗

∂x

∣∣∣∣
x∗=0

= 0, c∗|x∗=L = c0, (7.4)

j∗|x∗=0 = 0 j∗|x∗=L = −I
∗

A
(7.5)

j∗s |x=0 = −I
∗

A
, j∗s |x∗=L = 0 (7.6)

c∗|t∗=0 = c0, c∗s|t∗=0 = cmax (7.7)

where I∗ is the total charge flowing across the surfaces of the electrode particles and A

is the cross-sectional area of electrode. It remains to specify the reaction rate G∗a and

pose equations for lithium concentration c∗s in the electrode particles.

We note that in modelling graphite anode, film resistance or the solid electrolyte interface

(SEI) layer resistance (Re) has been considered by Doyle [28] to estimate the ohmic drop

across the solid electrolyte interface (SEI) layer covering the graphite particles. Here, it is

assumed that the voltage drop in graphite anodes is dominated by Lithium intercalation

and the resistance of the SEI layer [48, 53]. In order to account for the latter effect, we

modify the standard overpotential term in the Butler Volmer equation (4.49) by adding

a voltage drop which is linearly proportional to the reaction current [59]. The modified

Butler-Volmer equation has the form

G∗a = k0(c∗)1/2(c∗s|r∗=a0)1/2(cmax − c∗s)1/2

(
exp

(
− Fη

∗

2RT

)
− exp

(
Fη∗

2RT

))
(7.8)
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where

η∗ = φ̂∗ − φ̂∗s + U∗eq(c
∗
s|r∗=a0) + FG∗aRe. (7.9)

Here G∗a is the lithium flux out of the surface of the particle per unit surface area and

Re is the reciprocal of the surface conductance per unit area (and has units Ωm2).

Conservation of Lithium in a single spherical active material particle of radius a is

described by the diffusion equation

∂c∗s
∂t∗

=
1

r∗2
∂

∂r∗

(
r∗2D∗s(c

∗
s)
∂c∗s
∂r∗

)
(7.10)

∂c∗s
∂r∗

∣∣∣∣
r∗=0

= 0, (7.11)

−D∗s(c∗s)
∂c∗s
∂r∗

∣∣∣∣
r∗=a0

= G∗a(c
∗, c∗s|r∗=a0

, φ̂∗ − φ̂∗s) (7.12)

Equation (7.10)-(7.12) is applied on a continuum basis across the anode giving c∗s a

2D spatial dependacy (i.e c∗s = c∗s(x
∗, r∗, t∗)) where x∗ is the particle position, r∗ is

the radial position within a particle and t∗ is time. The other equations in the model

(7.1)-(7.3) depend only upon the solid lithium concentration c∗s at the particle surface

through (7.8)-(7.9).

7.3 Nondimensionalisation

The full problem for the half cell is specified by equations (7.1) - (7.12). We note some

remarks below before nondimensionalising.

Remarks.

• G∗a the surface reaction rate is defined so that it is positive if lithium is being

released from the particle into the electrolyte (i.e. discharge of an anode) and

is negative if lithium is being inserted into the particle from the electrolyte (i.e.

charge of an anode).

• We assume that all electrode particles are identical with radius a0 so that, a(x∗) =

a0 and the volume fraction, εv(x
∗) are constant. We take the permeability factor

to be given by the Bruggeman relation [36] so that

B = ε1.5v (7.13)

The BET surface area bet (by considering a periodic cube contains one spherical

particle of radius a where the particle just touches its neighbours) is the surface
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area of the spherical particle divided by the volume of the periodic cube such that

bet =
Surface area of particle

Volume of periodic cube
=

4πa2
0

8a3
0

=
π

2a0
. (7.14)

Electrochemical cells are constructed such that the distance between the current collec-

tors is small in comparison to the other dimensions of the cell. Let us take the area of

each of the planar current collectors to be A, the typical current density is J0 = I∗/A, it

follows that the magnitude of typical current by J0A, L is the thickness of the electrode

and a0 is the radius of particle.We nondimensionalize the half-cell system (7.1)-(7.12) as

follows:

I∗ ∼ J0A, x∗ ∼ L, r∗ ∼ a0, a∗ ∼ a0, c∗ ∼ c0

G∗a ∼
J0

betLF
, c∗s ∼ cmax, j∗ ∼ J0, D∗s ∼ Ds0 V ∼ V0,

κ ∼ F 2c0D0

(1− t+)RT
, t∗ ∼ τ0, D ∼ D0, bet ∼ bet, j∗s ∼ J0,

V ∗ = Ueq,0 + V0V̂ , Ueq∗ = Ueq,0 + V0Ûeq, φ̂∗ ∼ V0, φ̂∗s = Ueq,0 + V0φ̂s .

(7.15)

Here, c0 is the initial concentration of Lithium ions in the electrolyte, cmax is the maxi-

mum concentration of intercalated lithium in the electrodes, V0 is the typical potential

drop across the cell and D0 is a typical diffusivity in the electrolyte, Ds0 is the typical

diffusivity of Lithium in the solid, τ0 is the typical timescale for discharge of the cell. An

estimate for the volume of the electrode is LA, and it follows that the number of moles

of intercalated lithium is of O(εvcsLA). The latter are consumed at a rate J0A/F and

so the typical timescale for discharge of the cell is

τ0 =
LFcmax
J0

,

this leads to the following dimensionless problem

Q
N εv

∂c

∂t
=

∂

∂x

(
D(c)

∂c

∂x

)
+ ΓGa, 0 < x < 1 (7.16)

∂j

∂x
= Ga,

j = −κ(c)

Γ

(
λ
∂φ̂

∂x
− 2(1− t0+)

∂ log(c)

∂x

)
,





0 < x < 1 (7.17)

∂js
∂x

= −Ga

js = −Θ
∂φ̂s
∂x





0 < x < 1 (7.18)
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∂c

∂x

∣∣∣∣
x=0

= 0, j|x=0 = 0, (7.19)

φ̂|x=1 = 0, c|x=1 = 1, j|x=1 = −Ī , (7.20)

js|x=0 = −Ī , js|x=1 = 0, φ̂s

∣∣∣
x=0

= V̂ . (7.21)

Ga = Υc1/2(cs)
1/2(1− cs)1/2

[
exp

(
−λ

2
(φ̂− φ̂s + Ûeq(cs|r=1) +ReGa)

)

− exp

(
λ

2
(φ̂− φ̂s + Ûeq(cs|r=1) +ReGa)

)]
, (7.22)

Q∂cs
∂t

=
1

r2

∂

∂r

(
r2Ds(cs)

∂cs
∂r

)
, 0 < r < 1, 0 < x < 1 (7.23)

Ds(cs)
∂cs
∂r

∣∣∣∣
r=1

= −QGa,
∂cs
∂r

∣∣∣∣
r=0

= 0 (7.24)

c|t=0 = 1, cs|t=0 = 1. (7.25)

in which the dimensionless parameters in the system are defined by

Γ =
LJ0(1− t+)

D0Fc0
, λ =

FV0

RT
, N =

a2
0D0

Ds0L2
, Re =

J0Re
V0betL

Υ =
betkcmaxc0L

J0
, Q =

a0J0

betLFcmaxDs0
, Θ =

J0L

σsV0
.

(7.26)

Discussion of dimensionless parameters In the above equations, Γ measures the

ratio of the actual ion flux to the maximum sustainable flux of ions in the electrolyte; N
is the ratio of the timescale for diffusion of intercalated lithium into a particle to that for

diffusion of lithium ions across the electrode; Θ measures the ratio of the typical voltage

in the problem to the typical voltage drop across the solid due to Ohmic losses from

current flows through the electrode; Υ gives the ratio of the exchange current density to

the typical current density at the surface of an electrode particle; λ gives the ratio of a

typical voltage drop across cell to the thermal voltage (and is roughly 39 if we assume

that the equilibrium potential drop in graphite across electrode V0 is about 1V); the

ratio of the timescale for diffusion of intercalated lithium into a particle to timescale for

intercalation into a particle (as determined by the current density) is given by Q. We

have chosen to nondimensionalise the applied current so that the dimensionless variable

Ī is of order O(1). Thus, J0 is determined by J0 = I∗(Ī)/A where Ī is the dimensionless

discharge current.
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7.4 Model - experimental comparisons for the natural graphite

electrode

We compare our results to experimental data for a natural graphite anode half-cell

taken from [85]. The electrolyte used is 1M lithium hexafluorophosphate (LiPF6) in 1:1

EC:DEC electrolyte. According to the literatures, the transport properties for a graphite

anode vary by several orders of magnitude depending on the electrode materials being

used. Table 7.1 lists the parameter values from different authors for three parameters

which vary significantly, namely diffusion coefficient in the electrode particles, reaction

rate constant and exchange current density.

Parameter Value Units Reference

Lithium diffusivity in solid, D∗s(c
∗
s)

10−11 − 10−13

(0.1 < y < 0.95) m2s−1
[91],[87]

10−13 − 10−14

(0.05 < y < 0.95)
[102]

10−14 − 10−15

(0 < y < 0.3)
[99]

Reaction rate constant, k
10−12

m2.5mol−0.5s−1
[85]

10−11 [72]
10−15 [15]

Exchange current density, i0
2.15

Am−2 [37]
36 [32]

Table 7.1: The values suggested in literature for the properties of graphite anode
for Lithium-ion cells.

The diffusion coefficient of Lithium within carbonaceous materials Ds(cs) is critical

to determining the charge/discharge characteristics [38]. The values for the diffusion

coefficients change with the Lithium fraction y in LiyC6. Lithium intercalates into

natural graphite up to a composition of y = 1 (fully intercalated) and giving a capacity

of 372mAh/g while for petroleum coke it is only possible to intercalate up to about

y = 0.5 [87, 62]. Chabot et al. [15] found that the lithium diffusivity in the active

material of natural graphite is between 3.9 × 10−14 up to about 3.9 × 10−13m2s−1 in

high performance materials.

We remark that the units of the reaction rate constants vary with the forms of the

Butler-Volmer equation being used. Thus, extra care should be taken in determining

the value of the reaction rate constant. We now look at the exchange current density

which relates to the reaction rate constant in (4.40). The values of this parameter, taken

from two different sources, differ by a fraction of 10. Large value may corresponds to a

highly reversible charge-transfer process at the surface of insertion compounds. These

comparisons show that we have to be extra careful in order to extract the correct data

for the transport properties.
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Parameter Value Units Reference

Electrolyte Parameters

Diffusivity of Lithium ions, D0 2.6× 10−10 m2s−1 [32]
Electrode thickness, L 5× 10−5 m [85]

Volume fraction, εv 0.4764 - -
Initial salt concentration, c0 1000 molm−3 [85]

Transference number, t0+ 0.363 - [32]

Electrode Parameters

Reaction rate constant, k 3× 10−12 m2.5mol−0.5s−1 [85]
Diffusion coefficient in the solid, Ds0 9× 10−14 m2s−1 [85]

Particle radius, a0 1.1× 10−5 m [85]
Conductivity in the solid, σs 100 Sm−1 [85]

Maximum concentration in the solid, cmax 18000 molm−3 [85]

Other Parameters

Faraday constant, F 96487 Cmol−1 [23]
Universal gas constant, R 8.3144 Jmol−1K−1 [23]

Temperature, T 298 K [23]
SEI layer resistance, Re 2.5× 10−2 Ωm2 [85]

Table 7.2: Parameter values used in the model.

The electrode specific information used in this work is listed in Table 7.2. In [85, 28],

the contact resistance Re is used as a fitting parameter at different discharge currents.

In the nondimensionalisation, we take V0 = 1Volt to be the typical cell voltage, J0 to

be 13Am−2 (corresponding to a 1C discharge), the dimensionless parameters calculated

from the parameter values listed in Table 7.2 are

Γ ∼ 0.026, λ ∼ 38.9, N ∼ 421, Re ∼ 7× 10−5

Υ ∼ 0.17, Q ∼ 0.214, Θ ∼ 6.5× 10−6 .
(7.27)

We note that Re is small, hence the dimensionless reaction rate equation (7.22) can be

approximated to

Ga ≈ Υc(cs)
1/2(1− cs)1/2

[
exp

(
−λ

2
(φ̂− φ̂s + Ûeq(cs|r=1))

)

− exp

(
λ

2
(φ̂− φ̂s + Ûeq(cs|r=1))

)]
, (7.28)

and this significantly reduces the difficulty of the numerical procedure.

We take the diffusivity in the electrode particles Ds(cs) to be constant and equal to

that used by Doyle and Fuentes [32] in whose results gave reasonable agreement to ex-

perimental data from [85]. We note however, that a concentration-dependant diffusion

coefficient is reported by some authors ([87],[49],[102]). The conductivity in the elec-

trolyte, κ(c∗), and the diffusion coefficient, D(c∗) were fitted to experimental data by
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Riemers [90] and are given by equations (3.72) and (3.71), respectively. Here, the equi-

librium potential has been reported by Thomas [89] (determined at a very low discharge

rate C/25) and fitted to the equation

U∗eq(y) = 0.124 + 1.5 exp(−70y)− 0.0351 tanh

(
y − 0.286

0.083

)

−0.0045 tanh

(
y − 0.9

0.1119

)
− 0.035 tanh

(
y − 0.99

0.05

)
− 0.0147 tanh

(
y − 0.5

0.034

)

−0.102 tanh

(
y − 0.194

0.142

)
− 0.022 tanh

(
y − 0.98

0.0164

)
− 0.011 tanh

(
y − 0.124

0.0226

)

+0.0155 tanh

(
y − 0.105

0.029

)
(7.29)

where y represents the amount of lithium intercalated in the formula LiyC6 and Ueq is

measured in Volts. The expression, however, is not fitted to the equilibrium potential

curve shown in [85]. This may be due either to a typographical error or a mistake during

the fitting process. Therefore, to reduce the degree of error, we extract the experimental

equilibrium potential data ourselves and fitted to the interpolation approximation using

Matlab (this is plotted by a dashed curve in Figure 7.1).

7.4.1 Results and Discussions

The experimental data used for the comparison was reported by Shim and Striebel [81].

The parameters used in the model in order to compare to the experimental results are

listed in Table 7.2.

Figure 7.1 shows the comparison between experimental and model discharge curves. The

model compares reasonably well to the experimental data, especially at early stages of

the discharge. However, the potential is seen to underestimate the finishing potential

drop especially at high discharge rate. This could be related to the assumption that

the lithium diffusion coefficient in the electrode particles Ds is constant. The diffusivity

data in [91] suggests that Ds(cs) is a fairly rapidly decreasing function of cs.
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Figure 7.1: The comparison of model-experimental data for the graphite half
cell discharge curve at different currents. Solid lines represent the numerical
results and symbols represent experimental data at various discharge currents.
The dashed curve represents our fit to the equilibrium potential curve.
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concentration at the particle surface and (d) The potential in the solid at 1C discharge rate. ↑ is the direction of increasing time. The
profiles are measured at t∗ = 104s, 208s, 312s, 416s, 520s.
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The important factors for optimizing the performance of the cell are good utilization of

the active electrode material and good transport properties in the electrolyte. Figure

7.3 shows the concentration of Lithium ions in the electrolyte, the concentration of

lithium at the particle surface across the spatial variable x and the electrolyte and

solid potentials. As time increases, the results illustrate that electrolyte concentration,

c increases only a very slightly from its initial concentration (see Figure 7.3 (a)). In

addition, the electrolyte potential φ̂ only changes by a very small amount (see Figure

7.3 (b)). These variables do not appear to significantly alter the half-cell discharge.

Notably the φ̂ values are very small compared to the potential in the electrode φ̂s, thus

the Butler Volmer equation (7.22) predominantly depends upon the concentration in

the solid and the solid potential φ̂s. Figure 7.3 (d) shows the solid potential profile is

approximately uniform and constant across the electrode as the dimensionless parameter

Θ (appearing in (7.18)) is extremely small. This allows us to approximate the electrode

potential by φ̂s = φ̂s(t) (i.e. it is independent of space). We thus conclude the charge-

discharge behaviour is limited by the solid-state transport and intercalation of lithium.

To demonstrate the dependence of the solid-phase concentration profiles on distance

across the electrode in more detail, the lithium concentration profiles cs (at 1C discharge

rate) in the electrode particles at different positions (x = 0, 0.2, 0.6, 1) are shown in

Figure 7.2. The particle closest to the current collector at x = 0 is discharged very

slightly faster than the particle nearest the separator. However, the concentration at

different positions x are almost identical (see Figures 7.3 (c) and 7.2). The profiles show

that the concentration in the solid is driven to zero as time increases. The abrupt loss

of capacity in Figure 7.1 occurs as cs|r=1 is zero, and hence the Lithium remaining in

the particles in 0 < r < 1 is effectively inaccessible after this time.

7.4.1.1 An approximation solution

Based on the discussion above, we now approximate the functions c, φ̂s and cs|r=1 as

functions of time only and φ̂ ≈ 0. If we integrate (7.17) from x = 0 to x = 1 and apply

the boundary conditions (7.19(b)) and (7.20(c)) we get

x=1∫

x=0

Gadx = −Ī (7.30)

where

Ga = Υc(cs|r=1)1/2(1− cs|r=1)1/2

[
exp

(
−λ

2
(−φ̂s + Ûeq(cs|r=1))

)

− exp

(
λ

2
(−φ̂s + Ûeq(cs|r=1))

)]
(7.31)
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Since Ga depends only on functions of time, it is also spatially independent and the

integration in (7.30) is thus trivial and yields on substituting for Ga from (7.31)

− Ī

Υc(cs|r=1)1/2(1− cs|r=1)1/2

= exp

(
−λ

2
(−φ̂s + Ûeq(cs|r=1))

)
− exp

(
λ

2
(−φ̂s + Ûeq(cs|r=1))

)
. (7.32)

We can simplify (7.32) by noting that the term in the exponential is dominated by

the φ̂s − Ûeq (because the size of φ̂ is an order 10−3) and by using the trigonometric

hyperbolic identity sinh(x) =
exp(x)− exp(−x)

2
, to obtain

−2 sinh

(
λ

2
(Ûeq(cs|r=1)− φ̂s)

)
= − Ī

Υc(cs|r=1)1/2(1− cs|r=1)1/2
(7.33)

which gives an approximate solution for φ̂s

φ̂s(t) = Ûeq(cs|r=1)− 2

λ
arcsinh

(
Ī

Υc(cs|r=1)1/2(1− cs|r=1)1/2

)
(7.34)

The analytic solution (7.34) requires information about cs|r=1 which is determined by

solving the diffusion equation (7.23) - (7.24) for a single representation particle. On

solving for cs|r=1 and substituting in (7.34), we can use (7.21(c)) to determine V̂ (t)

V̂ (t) = φ̂s(t). (7.35)

Summary To summarise a very good approximation of the solution may be calculated

by solving for cs(r, t) from (7.23) - (7.24). The result of this calculation is used to obtain

cs|r=1 which is then substituted into (7.34) to obtain the voltage of the electrode φ̂s(t)

and hence the potential drop V̂ (t), from (7.35) across half cell.

The comparison between these approximate discharge curves and discharge curves cal-

culated by solution to the full model is shown in Figure 7.4. The results show very

good agreement. In summary a simple model, in which the limiting effect is lithium

diffusion within the electrode particles provides an extremely good approximation of the

discharge.

7.4.1.2 Concentration-dependent of diffusion coefficient

In what follows we use the approximation discussed above to reduce the cost of compu-

tational run time. Since the assumption of constant diffusion coefficient in the electrode

particles underestimates the drop in cell voltage as the cell discharges, we investigate
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Figure 7.4: The comparison of analytic-numerical solution for the graphite
half cell discharge curves at different currents. Solid lines represent the ana-
lytic solutions and symbols represent the numerical solution. The dashed curve
represents the equilibrium potential curve.

the effects of non-linear diffusion on the problem. The values of diffusion for the same

materials, reported by different literatures vary by several orders of magnitude. Conduc-

tion in graphite is strongly dependent upon the degree of crystallinity. As the fraction

(let say f) of amorphous phases (fraction of crystalline phases, 1 − f) increases, and

diffusivity increases [68].

Modelling of concentration-dependent diffusivity in graphite by Verbrugge and Koch [91]

given good agreement to their experimental data . The non-linear diffusion equation

that they use to model their data was calibrated from data provided by Takami [87]

for which the diffusion coefficient changes (exponentially) by two orders of magnitude

(10−14 − 9 × 10−11m2s−1) as the fractional occupancy y, in LiyC6, varies between 0

to 1. Levi and Aurbach [49] and Zhang [102] reported that the diffusion coefficient of

graphite is between 10−14−10−13m2s−1. These inconsistencies probably result from the

different crystal structure and of their samples [87, 49]. Figure 7.5 compares the diffusion

coefficients with respect to composition of y in LiyC6 reported by these different authors.

Using the data provided by Verbrugge and Koch [91] in our model, results in an over

prediction of the cell potential (see Figure 7.7). At the beginning of discharge the

particles are filled with intercalated lithium, and the diffusion coefficient is low. Toward

the end of discharge, the intercalated lithium concentration is lower, and the diffusion

coefficient rises. Because the intercalated lithium concentration is lowest at the particle
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Figure 7.5: Experimental data of composition-dependant diffusion coefficient by
Zhang et al. [102] and Verbrugge et al. [91]. The solid lines and dots are fitting
to the experimental data by Verbrugge et al. and Zhang et al. respectively.

surface and highest at the center of the particle, the diffusion coefficient is always largest

at the particle surface and smallest at the center of the particle. The large difference

magnitude of Ds and the slow diffusion of lithium in the lithium rich region near the

centre of the particle results in lithium depletion occurs near the surface (r = 1) in a

short time as shown in Figure 7.6 and hence to cs at the surface being driven to zero

after a relatively short time. By using the less extreme data of Zhang [102] and Levi [49]

for the diffusion coefficient we obtain results that accurately describe the experimental

data. Comparison between discharge curves calculated using the diffusion coefficient

obtained from fitting to the data from [91] and from [102] is made in Figure 7.7.

Based on the above analysis, we use the diffusion coefficient given by Zhang for the

model comparison to the discharge curve given by Srinivasan and Newman [84]. The

following equation was used to fit to the data measured by Zhang [102]

Ds(cs) = 7× 10−14(1 + 1.5 exp(−8cs)) (7.36)

where the dimensionless cs is the composition of y in LiyC6. The results are then

compared with the experimental data and are shown in Figure 7.8 at various discharge

rates, where excellent agreement is seen. Since the particle surface concentration is

homogeneous across the electrode (see Figure 7.3 (c)), we simulate (7.23) for one particle

instead of many particles.

The abrupt loss of capacity at 3C discharge rate caused by the depletion of Lithium
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Figure 7.6: The concentration of Lithium within the electrode particle with
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shown in Figure 7.5 at 3C discharge rate. The profiles are measured at
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Figure 7.7: Discharge curves plot with the diffusion coefficient data given by
Verbrugge et al. (red) and Zhang et al. (blue) at 3C discharge rate. The large
difference magnitude of Ds(cs) (see Figure 7.5) results in lithium depletion at
the surface in a relatively short time (see Figure 7.6).

in active material at the particle surface is shown in Figure 7.9. As expected, a higher
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for the graphite half cell discharge curves at different currents. The curves are
obtained by analytic approximation solution (7.34) where the diffusion equation
in the solid (see (7.23)-(7.24)) is solved numerically. The nonlinear diffusion co-
efficient (the fitting to the data from Zhang et al. [102]) is given by equation
(7.36). Solid lines represent the analytic solutions and symbols represent ex-
perimental data at various discharge currents. The dashed curve represents the
equilibrium potential curve.

current density leads to a lower utilization of active material and therefore lower capacity.

7.5 Summary

The battery model has been verified in predicting the cell potential and assessing the

battery performance, especially at initial stages of discharge. The assumption of a con-

stant diffusion coefficient Ds for Lithium in the electrode particles, underestimated the

voltage increase that occurs close to the end of the discharge. The numerical results show

that the limiting factor for the lithium carbide half cell performance is the solid state

diffusion in the electrode particles. The numerical results also show that the electrolyte

phase has a negligible effect on the half cell discharge and that the electrode particles

discharge almost synchronously. This allowed us to derive an analytic approximation

for the potential drop V (t) across the cell. The influence of concentration-dependant

diffusion of lithium in the electrode particles is clarified and our results give a much

more accurate comparison to experimental data than that achieved by Newman and

Srinivasan [84].
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trode particle at 3C discharge rate where Ds(cs) is calculated using data
from Zhang et al. [102] (see formula (7.36)). The profiles are measured at
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Chapter 8

Half cell cathode

8.1 Introduction

In the previous chapter we demonstrated that the model accurately predicts the cell

voltage for a half cell graphite anode for a range of discharge rates. In this chapter,

we investigate the ability of the model to predict the behaviour of a half-cell cathode.

The cathode materials commonly used in lithium ion batteries are LiCoO2, LiMnO4

and LiFePO4. The present study will consider the LiFePO4 cathode half-cell. The

nature of the rate limitations within composite electrodes of LiFePO4 is complicated.

Initially, they were attributed to the poor electronic conductivity, which resists electron

transport within the particles. However, the electronic conduction network has been

improved with carbon coating resulting in a substantial increase in the use of LiFePO4 as

a cathode materials nowadays [33, 43]. Ion transport has been improved by controlling

the composition and the structure of the composite electrode. This can for example

be achieved by using carbon black, as a binder, and leaving some open porosity for the

electrolyte [46]. LiFePO4 is a phase separating material, as evidenced by its flat discharge

curve characteristics (the potential is almost independent of degree of discharge until

the particle is fully discharged [65] at which point it drops abruptly).

Srinivasan and Newman [84] modelled Lithium transport in cathode particles by a two-

phase ”shrinking core” model and compared results of their mathematical model to

their own experiments. Their model showed reasonable agreement to the experimental

data where the particles were assumed to be distributed between two sizes. Farrell and

Dargaville [23] have embedded a shrinking-core based model on a three-scale battery

model which again compares reasonably to the experimental data of Srinivasan and

Newman [84]. The transport limitations in the solid was found to be the main factor

of capacity loss. However, in their further work [24], they state that a ”shrinking core”

model is not an accurate description of the phase transformation in LiFePO4 and remarks

that the good agreement between the ”shrinking core” model and the experimental

115
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discharge curves [84] is obtained because the electrical resistance (in the solid particles)

and electrolyte resistance (in the thick, 62µm cathodes), limit the discharge rather than

lithium transport within the cathode particles [24].

Owen et al. [46] found that the performance of LiFePO4 in a composite nano-structured

electrode is significantly improved by carbon coating and inferred that Lithium diffusion

in the solid is not limiting for nanoscale electrode particles. In their modelling of this

problem (which is quite simplistic), at a high discharge rate, they assumed that the elec-

trolyte resistance restricts the discharge as each electrode particle is either fully charged

or discharged and solid state limitations are negligible. This led them to conclude that at

high discharge rates the electrolyte diffusion limits the cell discharge as a consequence of

electrolyte depletion in certain regions of the cell halting discharge. Here, we investigate

a nanostructured electrode such as that considered by Owen et al. [46] and compare our

results to their experiments. We model diffusion of Lithium in the electrode particles by

a linear diffusion equation with a very large diffusivity claiming that since diffusion in

the nanoparticles is not rate limiting, the choice of diffusion model does not significantly

affect our results. We could have, of course, used an infinitely fast diffusion model (such

as postulated in Richardson et al. [74]) without materially affecting the result.

8.2 Transport data and parameter values used in the sim-

ulation

The diffusion timescale of Lithium across a solid electrode particles is extremely fast

in comparison to the diffusion timescale of Lithium ions (in the electrolyte) across the

entire width of the cell provided particle sizes are less than 1µm (hence we take Ds to

be constant). The cell is filled with 1M LiPF6 in 1:1 EC:DMC electrolyte. The half-cell

cathode model is similar to that given in (4.47)-(4.49) and (5.43)-(5.44) for the full cell.

Here x∗ = 0 denotes the position of the separator and x∗ = Lc that of the cathodic

current collector (thickness of cathode). Hence, the battery model for half-cell cathode

is

εv(x
∗)
∂c∗

∂t∗
=

∂

∂x∗

(
D(c∗)B(x)

∂c∗

∂x∗

)
− ∂t0+
∂x∗

j∗

F
+ (1− t0+)betG

∗
c , (8.1)

∂j∗

∂x∗
= Fb∗et(x

∗)G∗c ,

where j∗ = −B(x)κ(c∗)

(
∂φ̂∗

∂x∗
− 2RT

F
(1− t0+)

∂ log(c)∗

∂x∗

)
(8.2)

∂j∗s
∂x∗

= −Fb∗et(x∗)G∗c , where j∗s = −σs
∂φ̂∗s
∂x∗

(8.3)
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c∗|x∗=0 = c0,
∂c∗

∂x∗

∣∣∣∣
x∗=Lc

= 0, (8.4)

φ̂∗
∣∣∣
x∗=0

= 0, j∗|x∗=Lc
= 0, (8.5)

j∗s |x∗=0 = 0, j∗s |x∗=Lc
= −I

∗

A
. (8.6)

Note that the half cell potential, V ∗, is usually modelled by the expression

V ∗ = φ̂∗s|x∗=Lc − φ̂∗|x∗=0 −RcI∗ (8.7)

This comprises two parts: the potential difference between the electrode (where it con-

tacts the current collector) and the electrolyte at the separator; and the ohmic drop

at the current collector electrode interface caused by contact resistance, Rc. Since we

set the potential, φ̂∗ at the separator to be zero (see (8.5(a))), and hence the half cell

potential becomes

V ∗ = φ̂∗s|x∗=Lc −RcI∗. (8.8)

The solid state diffusion of Lithium in the spherical cathode particles is modelled by the

diffusion equation

∂c∗s
∂t∗

=
Ds

r∗2
∂

∂r∗

(
r∗2

∂c∗s
∂r∗

)
(8.9)

∂c∗s
∂r∗

∣∣∣∣
r∗=0

= 0, (8.10)

−Ds
∂c∗s
∂r∗

∣∣∣∣
r∗=a(x∗)

= G∗c(c
∗, c∗s|r∗=a(x∗) , φ̂

∗ − φ̂∗s). (8.11)

Here r∗ is distance from the centre of the particle, a(x∗) is the radius of the spherical

electrode particles as a function of position x in electrode, c∗s is the solid concentration

and G∗c is the flux (per unit area) of Lithium out from the surface of the particle which is

determined by the reaction rate at the particle surface which in turn is usually described

by the following Butler-Volmer equation

G∗c = k0(c∗)1/2(c∗s|r∗=a(x∗))
1/2(cmax − c∗s|r∗=a(x∗))

1/2

(
exp

(
− Fη

∗

2RT

)
− exp

(
Fη∗

2RT

))
(8.12)

where the overpotential η∗ = φ̂∗ − φ̂∗s + U∗eq(c
∗
s|r∗=a(x∗)). G∗c is defined so that during

discharge, it is negative as Lithium is inserted into the cathode particles from the elec-

trolyte. In order to simulate discharge we take the initial concentration in the electrode

particles to be small, that is

c∗s|t∗=0 = cs0 (8.13)

where cs0 = 0.02cmax (see, for example [84]).
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We assume that all electrode particles are identical with radius a0 so that, a(x∗) = a0

and the volume fraction, εv(x
∗) are constant. We take the permeability factor to be

given by the Bruggeman relation [36] so that

B = ε1.5v (8.14)

The BET surface area bet (by considering a periodic cube contains one spherical particle

of radius a where the particle just touches its neighbours) is the surface area of the

spherical particle divided by the volume of the periodic cube such that

bet =
Surface area of particle

Volume of periodic cube
=

4πa2
0

8a3
0

=
π

2a0
. (8.15)

8.2.1 Nondimensionalisation

The nondimensionalisation for half cell cathode system is identical to that discussed in

Section 7.4 with the exception that now

x∗ ∼ Lc, G∗ ∼ J0a0

bet,0LcF
. (8.16)

For other scaling, refer (7.15). The nondimensionalisation leads to the following system

of dimensionless equations

Q
N εv

∂c

∂t
=

∂

∂x

(
BD(c)

∂c

∂x

)
+ ΓbetGc, 0 < x < 1 (8.17)

∂j

∂x
= betGc,

j = −B
Γ
κ(c)

(
λ
∂φ̂

∂x
− 2(1− t+)

∂ log(c)

∂x

)
,





0 < x < 1 (8.18)

∂js
∂x

= −betGc

js = − 1

Θ

∂φ̂s
∂x





0 < x < 1 (8.19)

c|x=0 = 1, φ̂|x=0 = 0, js|x=0 = 0, (8.20)

∂c

∂x

∣∣∣∣
x=1

= 0, j|x=1 = 0, js|x=1 = −Ī , φ̂s

∣∣∣
x=1

= V̂ −RĪ (8.21)

c|t=0 = 1, cs|t=0 = 0.02. (8.22)
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Gc = Υc1/2(cs)
1/2(1− cs)1/2

[
exp

(
−λ

2
(φ̂− φ̂s + Ûeq(cs|r=1))

)

− exp

(
λ

2
(φ̂− φ̂s + Ûeq(cs|r=1))

)]
, (8.23)

Q∂cs
∂t

=
1

r2

∂

∂r

(
r2∂cs
∂r

)
, 0 < r < 1, 0 < x < 1 (8.24)

∂cs
∂r

∣∣∣∣
r=1

= −QGc,
∂cs
∂r

∣∣∣∣
r=0

= 0 (8.25)

where the dimensionless parameters in the above system are defined by

Γ =
LJ0(1− t+)

D0Fc0
, λ =

FV0

RT
, N =

a2
0D0

Ds0L2
, R =

RcJ0A

V0

Υ =
betkcmaxc0L

J0
, Q =

a0J0

betLFcmaxDs0
, Θ =

J0L

σsV0
.

(8.26)

For the interpretation of the dimensionless parameters above, we refer to Section 7.4.

Parameter Values The parameters used in the model are listed in Table 8.1. The

electrolyte diffusion is taken to be at 10−11m2s−1 based on the value calculated by

Owen [46], which is one order magnitude lower to the diffusion coefficient of pure LiPF6

solution reported at 10−10m2s−1 by Riemers et al. [90]. This result suggests that the

tortuosity and porosity of the composite electrode structure (where the particle sizes

< 1µm) is responsible for the slower effective diffusion coefficient in the electrolyte

([46],[70]). Values for the lithium diffusion coefficient in LiFePO4 have been reported by

Prosini to range from 10−16 − 10−14m2s−1 [71]. Srinivasan and Newman [84] takes the

value (10−18m2s−1) for the lithium diffusion coefficient. In the simulation, we took it to

be the largest value presented by Prosini et al. [71] which is 10−14m2s−1. However, if we

chose it to be 10−16m2s−1, we obtain the similar results. The equilibrium potential used

in this model is fitted to the experimental discharge curve data provided by Srinivasan

and Newman [84] where the cell is discharged at a very slow rate. The equilibrium

potential curve is plotted in Figure 8.1 where the equation is given by

U∗eq(cs) = 3.114559 + 4.438792 arctan(−71.7352 cs + 70.85337)

−4.240252 arctan(−68.5605 cs + 67.730082). (8.27)

Ueq is measured in Volts and cs is the composition of y in LiyFePO4 (here cs =
c∗s
cmax

and is dimensionless).

The conductivity, κ(c∗) and the effective diffusivity, D(c) were fitted to the experimental

data of Riemers et al. [90] and are given by equation (3.72) and (3.71).
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Figure 8.1: The equilibrium potential of the LiFePO4 electrode as a function
of cs (the state of discharge, cs = c∗s/cmax) (see equation (8.27)).

Parameter Value Units Reference

Electrolyte Parameters

Diffusivity of Lithium ions, D0 2.6× 10−11 m2s−1 [46]
Electrode thickness, Lc 6.2× 10−5 m [84]

Volume fraction, εv 0.4764 - -
Initial salt concentration, c0 1000 molm−3 [84]

Transference number, t0+ 0.3 - [46]

Electrode Parameters

Reaction rate constant, k 3× 10−12 m2.5mol−0.5s−1 [85]
Diffusion coefficient in the solid, Ds0 9× 10−14 m2s−1 [71]

Particle radius, a0 5× 10−8 m [46]
Conductivity in the solid , σs 5× 10−1 Sm−1 [54]

Maximum concentration in the solid, cmax 18805 molm−3 [46]

Other Parameters

Faraday constant, F 96487 Cmol−1 [23]
Universal gas constant, R 8.3144 Jmol−1K−1 [23]

Temperature, T 298 K [23]
Cross-sectional area of cathode , A 1× 10−4 m2 [23]

Weight of LiFePO4, w 7.6× 10−3 g [23]
Density of LiFePO4, ρ 3.6 gcm−3 [23]
Contact resistance, Rc 6.5× 10−3 Ω [23]

Table 8.1: Parameter values used in the model for LiFePO4 half-cell cathode.

Following the parameter values listed in Table 8.1, the size of dimensionless parameters

listed in (8.26) are given by

Γ = 0.6242, λ = 77.88, N = 2.7× 10−4,

Υ = 30, Q = 3× 10−6, Θ = 0.21.
(8.28)
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The values are calculated at 1.6C discharge rate in which the discharge current is J0 =

17Am−2 which is taken to be the base case in the simulation (Ī = 1) and we assume

the potential drop across electrode V0 = 2 Volt. To run the simulation for the other

discharge currents, all the dimensionless parameters remain the same except Ī. For

example; the discharge current J0 = 34Am−2, we set Ī = 2 (the ratio of the discharge

current to the base discharge current).

Numerical Procedure The numerical procedure implemented here is identical to

that discussed in Chapter 6 and will not be repeated here.

8.3 Model-experimental comparison

In this section, we attempt to validate the results from the model developed in Chapter

3.3 with experimental data from Owen et al. [46]. We choose to validate against the

data from [46] for several reasons. Firstly, the cathodes used by their experiments

are nanostructured (size particles < 1µm) and secondly they are discharged at very

high rates. This allows us to investigate the effects of electrolyte depletion on the

discharge curves. The experimental results still show significant capacity even at very

high discharge rates; for instance at 1110 mA/g (8C) the capacity of 28 mAh/g (20%

of the total capacity) is achieved. The LiFePO4 pellets are 3wt% carbon coated, which

gives increased electrical conductivity of the LiFePO4 material on the particle scale

and means that electrical conductivity (in the solid phase) is not thought to be limiting.

The nanostructuring of the electrode means that transport of Lithium in the solid at the

individual particle scale is very rapid and hence phase separation is negligible. The state

of discharge is defined by reference to the maximum capacity (140mAhg−1) obtained

during a very slow discharge rate C/7.

Discharge current
C-rate mAg−1 mAcm−2

0.3C 42 0.39
0.81C 112 0.86
1.6C 224 1.7
3.2C 448 3.39
7.93C 1110.2 7.44

Table 8.2: The discharge current rates in mAg−1 and mAcm−2 units.

The results from the model compare very well to experimental data given by Owen

et al. [46] (see Figure 8.2). The rate of current discharge for each discharge curve is

listed in Table 8.2. The abrupt loss of capacity as the discharge rate increases is due

to the depletion of the electrolyte near the end of discharge (see Figure 8.3). Although

we remark that the smoothing of the real data curves for very large discharge rates
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(8C) in comparison to the model prediction may be because we have taken the (solid)

resistance of the electrode to be small in our model (see Figure 8.2). The electrolyte de-

pletion prevents the active material in the solid being discharged in those region in which

the electrolyte has become depleted. Furthermore, when the electrolyte concentration

approaches zero, the electrolyte conductivity drops (see Figure 3.3), significantly ham-

pering discharge. Figure 8.3 shows how the electrolyte concentration approaches zero

during discharge. Rapid depletion of Lithium ions in the electrolyte for the large value

of dimensionless parameter Γ (appearing in (8.17)). Simultaneous with this electrolyte

depletion, the Lithium intercalation process at particle surface increases very fast and

gradually becomes saturated with lithium (see Figure 8.4). Figure 8.4 shows that two

regions appear, one in which the electrode particles are fully discharged (full of lithium)

and one in which they are not. The current tends to flow into the particles nearest the

separator until they are completely discharged (full of lithium), causing the reaction to

occur preferentially at the front of the electrode. Following this, a layer of discharged

material then progressingly penetrates further into the electrode until all the underlying

electrode material eventually becomes saturated. The discharge is thus limited both in

the depletion region, due to the low lithium ion concentration, and in the saturation

region where the particles are discharged. As these regions approach each other during

the discharge, the electrode reaction becomes confined to a narrowing zone (see Figure

8.5), until it finally becomes impossible to discharge the electrode further.

The solid concentration across the electrode shown in Figure 8.4(a) and 8.4(b) are dis-

charged at the rates 0.8C and 3.2C respectively. The curves represent the state of

discharge of the cell with the corresponding discharge voltage plotted in Figure 8.2. The

concentration curve at the last time step; this is at the position where c first drops to

zero. The profiles of the lithium concentration in the electrode particles at different

position are plotted in Figure 8.6. These show that the particles discharge uniformly,

because diffusion of lithium in the particle is rapid compared to the diffusion of lithium

ions (in the electrolyte) across the electrode.

At higher discharge current (8C), the low rate of transport in the electrolyte phase (see

Figure 8.7) is the main factor causing the sharp drop of cell potential at a low value of

electrode utilization. The concentration gradient is much steeper than the concentration

profile at 3.2C (see Figure 8.3(b)). The electrolyte concentration goes to zero quite near

the current collector, making electrode particles far from the separator impossible to

access, and causing the reaction front to stop close to the separator as shown in Figure

8.8.

We emphasize here, other solid state models [84, 85, 23] explain the loss of capacity

by saturation of the phase transformation. It was suggested that for thin electrodes

containing large particles (about 1− 5µm) of active material the effect of particle size,

solid state diffusion becomes increasingly significant compared to the limitation of elec-

trolyte diffusion in the electrolyte phase [46]. In this work, the LiFePO4 electrode is
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Figure 8.2: The comparison of model with the experimental data for the
LiFePO4 half cell discharge curves at different currents. Solid lines represent the
analytic solutions and symbols represent experimental data at various discharge
currents.

nano-structured and it is this that ensures that diffusion in the particle is not important

due to the short diffusion timescale across a particle (lithium diffusion in the particles

can be important in electrodes manufactured with large LiFePO4 particles).

8.4 The effects of parameter variations on the discharge of

a nanostructured half-cell cathode

In this section, we examine the effects of parameter variations specifically the solid

conductivity on the discharge of a nanostructured half-cell cathode. Here we take other

parameters to remain the same (refer Table 8.1 for the parameter values) and vary the

solid conductivity taking it to be larger, slightly lower and significantly lower than the

maximum conductivity of the electrolyte (κmax). The maximum conductivity of the

electrolyte (LiPF6) can be extracted from Figure 3.3 (see Section 3.4), and is κmax =

1.1AV −1m−1.

The study is useful in analysing the discharge of a nanostructured cathode and provides

guidance for its design. Here we simulate the distribution of current density in the solid

and in the electrolyte, solid concentration and the distribution of reaction rate at the

particle surface across half-cell cathode at 1.6C discharge rate. Note that the plots are

all dimensionless. The results are shown for three different ratios of the solid electrical

conductivity ratios σs to the maximum conductivity in the electrolyte κmax. These
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Figure 8.3: The concentration of solution in the electrolyte across the electrode
at (a) 0.8C and (b) 3.2C discharge rate. The profiles are measured at (a)
t∗ = 393s, 785s, 1178s, 1571s, 1963s and (b) t∗ = 162s, 325s, 487s, 585s, 650s.

ratios are defined as follows: Case (a) σs = 10κmax; Case (b) σs = 10−2κmax; Case (c)

σs = 10−4κmax.

Figure 8.10 shows the solid concentration at the electrode particle surfaces (i.e r = 1

is dimensionless units) for different times. With σs = 10κmax, the particles close to

the separator are the first to discharge fully as shown in Figure 8.10(a). This indicates

that the rate of intercalation in particles in this region is greater than that elsewhere.

In Figure 8.10(b) the ratio of conductivity of the solid and electrolyte phase is σs =

10−2κmax and the intercalation waves move from both separator and current collector.
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Figure 8.4: The concentration of Lithium in the solid at the electrode
particle surfaces as a function of position in the electrode at (a) 0.8C
and (b) 3.2C discharge rate. The profiles are measured at (a) t∗ =
393s, 785s, 1178s, 1571s, 1963s and (b) t∗ = 162s, 325s, 487s, 585s, 650s.

When the conductivity ratio is σs = 10−4κmax, the intercalation wave moves in from

the current collector (see Figure 8.10(c)) in reverse to the direction of propagation in

Figure 8.10(a). This figure demonstrates that current tends to flow into particles near

the current collector until they are completely discharged.
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Figure 8.7: The concentration of solution in the electrolyte across the electrode
at 8C discharge rate. The profiles are measured at t∗ = 33s, 48s, 58s, 62s, 65s.
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(b) σs = 10−2κmax. t∗ = 398s, 796s, 1194s, 1592s, 1990s.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x∗

Lc

c∗ s| r
=
1

c m
ax

 

 

t∗ increasing

(c) σs = 10−4κmax. t∗ = 142s, 284s, 426s, 568s, 710s.

Figure 8.10: The dimensionless solid concentration profiles at the electrode particle surfaces as a function of position in the electrode
for different conductivity ratios in the solid (σs) and electrolyte (κmax) phases. The cell is discharged at 1.6C.
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Figure 8.11: The electrolyte concentration profiles across the electrode for different conductivity ratios in the solid (σs) and electrolyte
(κmax) phases. The cell is discharged at 1.6C.
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It is clearly seen that in Case (a), the electrolyte depletion near the current collector

region stops the discharge before the cell can fully discharge as shown in Figure 8.11(a).

In Case (b), the discharge proceeds for much longer but eventually ends, as for Case

(a), when the electrolyte near the current collector becomes depleted as shown in Figure

8.11(b). On the other hand, for Case (c), the cell voltage drops very significantly (see

Figure 8.9) as the intercalation wave propagates in from current collector because the

resistance in the electrode is so high that current flow to the unlithiated particles near

the separator causes a large ohmic loss as shown in Figure 8.11(c). In Figure 8.9, we

plot the discharge curves for all 3 cases; Case (a) is limited by electrolyte depletion,

Case (c) is limited by the high solid resistance while the intermediate case (Case (b))

has a significantly better discharge curve than either of the others. In some sense this is

rather surprising as it suggests that making the conductivity of the electrode too good

actually limits its performance.

Figure 8.12 shows that the diffusion of lithium in the solid is not important in Case

(a) (see Figure 8.12(a)) and Case (c) (see Figure 8.12(b)) as the particles discharge

uniformly within the solid particles. In Case (b), although it shows that the profiles are

not uniform (see Figure 8.12(c)), the profiles only change by a very small amount and

do not significantly affect the discharge.
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Figure 8.12: The dimensionless solid concentration profiles in the electrode particles as a function of radius at different positions when
the cell is discharged for the 3 different cases. The cell is discharged at 1.6C.



C
h
a
p
ter

8
H
alf

cell
cath

o
d
e

133

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
D
im

en
si
on

le
ss

cu
rr
en
t
de

ns
it
y

x∗

Lc

js

j

t∗ increasing

(a) σs = 10κ. t∗ = 290s, 870s, 1450s.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x∗

Lc

D
im

en
si
on

le
ss

cu
rr
en
t
d
en

si
ty

 

 

jsj

t∗

increasing

(b) σs = 10−2κ. t∗ = 398s, 1194s, 1990s.
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Figure 8.13: The distribution of dimensionless current density in the solid (js) and in the electrolyte (j) across the cathode for different
conductivity ratios in the solid (σs) and electrolyte (κ) phases. The cell is discharged at 1.6C.
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Figure 8.14: The dimensionless reaction rate (Gc) across the cathode for different conductivity ratios in the solid (σs) and electrolyte
(κmax) phases. The cell is discharged at 1.6C.
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Figure 8.13 shows the distribution of current density in the solid (js) and in the elec-

trolyte (j) across the cathode in the 3 different cases. For σs = 10κmax, the current

density profiles propagate in from the separator (see Figure 8.13(a)). In Figure 8.13(b),

for σs = 10−2κmax, the current density profiles propagate in from both separator and

current collector and for σs = 10−4κmax (see Figure 8.13(c)), the current density profiles

propagate in from the current collector. Figure 8.14 shows the reaction rate distribu-

tion across the cathode in the 3 different cases. The reaction rate peaks move from

the separator towards the current collector in Case (a) (see Figure 8.14(a)) while the

trend is reversed in Case (c) (see Figure 8.14(c)). In Case (b), the peaks can be seen to

propagate in from both separator and current collector (see Figure 8.14(b))).

Figure 8.15 shows the curves for the current density in the electrolyte when the cell is

discharged at 1.6C for 400s under different conductivity ratios in the solid and electrolyte

phases. When σs = 10κmax, the crucial region of the current distribution is near the

separator. The current drops in this region indicate that the current travels only a

short distance from separator before being intercalated in the electrode particle. When

σs = 10−2κmax, the current distribution is more uniform; showing that a significant

numbers of Lithium ions are intercalated in the regions near the separator and near the

current collector. However, when σs = 10−4κmax, the significant drop in current occurs

near the current collector. As the conductivity in the solid is very small, it is difficult

for current to travel far from current collector.
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Figure 8.15: Distribution of the dimensionless electrolyte current density (j)
across the electrode when the cell is discharged at 1.6C for 400s with different
conductivity ratios in the solid (σs) and electrolyte (κmax) phases.

Figure 8.16 shows the distribution of reaction rates when the cell is discharged at 1.6C

for 400s for the three different cases. For Case (a) σs = 10κmax, the peak in reaction

rate occurs near the separator ; for Case (b) σs = 10−2κmax, the reaction peaks occur
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at both the separator and the current collector; and, for Case (c) σs = 10−4κmax, the

reaction peak occurs near the current collector.
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Figure 8.16: The dimensionless reaction rate across cathode when the cell is
discharged at 1.6C for 400s with different conductivity ratios in the solid (σs)
and electrolyte (κmax) phases.

8.5 Summary

A half cell model is presented for a LiFePO4 cathode. The model treats the electrolyte

using moderately concentrated solution theory. The simulation results presented in this

chapter compare well to the experimental data from Owen et al. [46] across a range of

discharge rates. We show that at high discharge rates, the ionic diffusivity in the LiPF6

electrolyte limits the discharge of a the half cell as a result of the formation of lithium

depleted regions in the electrolyte.

In this study, we also investigate the effects that varying the ratio of conductivity in the

solid to that the maximum conductivity in the electrolyte has on discharge. The results

show that if the ratio is large, the current distribution propagate in from the separator;

if the ratio is slightly low, the current distribution propagate in from both the separator

and current collector; and if the ratio is very low, the current distribution propagate

in from the current collector. Interestingly, the best discharge curve is obtained for the

intermediate value of the conductivity ratio between electrolyte and solid phases (10−2)

as shown in Figure 8.9. High solid conductivity leads to electrolyte depletion while low

solid conductivity results in high resistance in the solid and a poor discharge curve.

This study may have bearing on the efficient design of electrodes for high discharge

applications.



Chapter 9

Conclusions and Future Works

9.1 Conclusions

A general introduction to the electrochemical process occurring in a battery was pre-

sented in Chapter 1 together with a review of battery modelling over the past few decades

including the framework set out by Newman [59].

In Chapter 2, we discussed solutions to a detailed model of a lithium-ion battery based

on a dilute electrolyte model and fast diffusion in the electrode particles. The extremely

small size of electrode particles led us to use the homogenisation battery model derived

in [74]. We derived quasi static asymptotic solutions to this homogeneous model based

on flat discharge curves for the electrode materials. These asymptotic solutions were

found to compare favourably to numerical solutions.

Interaction between ions in more concentrated solutions leads to non-ideal behaviour

and in Chapter 3 we discuss an electrolyte model for moderately concentrated electrolyte

(based on the Stefan Maxwell equations) that was originally presented in [60]. We note

a source of confussion is the factor premultiplying the concentration term in Ohm’s law

is accounted for by the fact that potentials in this model are measured with respect to a

lithium electrode rather than the absolute potential. The transport properties appear-

ing in the model are then fitted to experimental data. Homogenisation techniques are

applied to the electrolyte model in a battery and it is shown how to derive a macro-

scopic model parameter (the porosity) that accounts for the microscopic structure of the

electrodes. Hence the model could be used to compare the cell performance of different

microstructures with different shapes and sizes of particle.

In Chapter 5, we discussed the modelling of electrode particle of graphite anode par-

ticles (LiC6) and Lithium iron phosphate (LiFePO4) cathode particles. The models

described are based on diffusion equations for lithium in the electrode particles. So for
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example the multiple phase transition that occur as lithium intercalate in LiC6 are de-

scribed by a nonlinear diffusion model (as shown in Chapter 7) which provides a good

phenomenological description of the behaviour.

A numerical procedure based on the method of lines (MOL) was developed in Chapter 6

to solve the multiscale battery problem consisting of macroscopic electrolyte equations

and microscopic diffusion equations for lithium transport in the electrode particles. This

procedure is discussed. The MOL technique is well-suited to relatively stiff equations

and works by converting the set of PDEs into a large set of coupled ODEs system. An

implicit differential algebraic solver; namely ode15s is used to solve this large system of

ODEs. The resulting code is fast, efficient and stable. Furthermore, it can be readily

adapted for use in more complicated scenarios; such as electrodes with different sizes

and shapes of particle.

The model was verified against experiment in Chapters 7 and 8. In Chapter 7, we

discussed the half cell discharge on an LixC6 anode. This is limited by diffusion of

lithium in the electrode particles. In order to accurately reproduce the discharge curves

we needed to account for the strong dependence of diffusivity within the particles on

lithium concentration. An analytic asymptotic solution for the potential drop V across

the cell was derived in the limit that the diffusion timescale in the electrolyte is small

in comparison to the lithium diffusion timescale in the electrode particles. In this limit,

it is shown that the electrode particles discharge synchronously.

In Chapter 8, we formulated a model for nanostructured LiFePO4 half cell cathode in

which we assumed that the diffusion within the electrode particles is sufficiently fast that

discharge is limited solely by the electrolyte and the conductivity of the electrode. The

numerical results of this model compared very favourably against real data from a half

cell LiFePO4 cathode measured by Owen et al. [46]. We then investigated how varying

the electrode conductivity in the simulation affected the discharge curves (see Figure

8.9). We found that the best discharge curve was obtained at an intermediate values

of the electrolyte conductivity. This seems to be because the discharge is affected by

electrolyte depletion if the conductivity in the solid is large and by high solid resistance

if the conductivity in the solid is too small. We believe that the results may prove useful

in electrode design.
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9.2 Future works

The research can be further developed in a number of ways;

The effect of different sizes of particles In this study, we assume that the elec-

trode particles are all spheres of uniform sizes. However, in actual batteries, the particles

may be of different sizes (and of shapes) and hence will encounter different diffusion and

surface reaction rates. The model remains unchanged, except that different size particles

may have different BET surface area if they are packed similarly. However, lithium diffu-

sion in large particles is slower than in small particles, and this may lead to nonuniform

current distribution. Our numerical procedure is capable of simulating this problem

with only minor modifications. Thus, it would be interesting to investigating the effect

of varying the distribution of particle sizes in space upon the cell performance.

The effect of changes in particle shape and packing upon cell performance

Here we have always assumed the electrode particles to be spherical in order to simplify

the theoretical treatment. To date, no comprehensive numerical investigation has been

performed to investigate the effects of changes in particle shape and packing upon cell

performance. Once again the numerical procedure gives here should be capable of be-

ing adapted to non-spherical particles although this involves the introduction of extra

dimensions. So for example a general ellipsoidal particle requires treatment in those

spatial directions r1, r2, r3 but one with an axis of symmetry only requires treatment in

two spatial; directions r1 and r2.
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