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ABSTRACT
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School of Mathematics

Doctor of Philosophy

MATHEMATICAL MODELLING OF LITHIUM ION BATTERIES

by [Rahifa Ranom

In this study, we discuss a lithium battery model based on dilute electrolyte theory
and fast diffusion of lithium in the electrode particle and calculate some novel solutions
to the model. We then discuss moderately concentrated electrolyte theory and outline
how homogenisation techniques can be applied to this theory, in combination with a
microscale model for lithium transport in the electrode particles in order to derive a
Newman type model of the battery [59]. We formulate a numerical method, based on
the method of lines in order to solve this model, and apply it to the cases of a half cell
graphite anode and a half cell LiFePOy4 cathode. In both scenarios, the results show

very good agreement to experimental discharge curves.
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Chapter 1

Introduction

The demand for more efficient renewable energy resources is rapidly growing as energy
and environmental based issues becomes of increasing concern. Lithium ion batteries
are currently the state of art of rechargeable electrochemical storage devices. These
batteries provide high volumetric energy densities, high cyclability and are highly flexible
as regards to design, size and application. They are used in many applications in portable
electronics such as mobile phones, laptops and power tools; and are being considered
for use in electric vehicles. Lithium ion batteries have thus gained much attention from
researchers worldwide. Moreover, the development of lithium batteries has become a key
focus for researchers in automotive companies who are investigating their use in hybrid
electric vehicles (HEV), plugin hybrid vehicles (PHEV), and purely electric vehicles
(EV); the markets for all of which are expected to grow substantially in the future

years.

1.1 Lithium batteries as energy storage solution

The lithium ion battery is one of the most successful electrochemical batteries and billion
of these cells are produced every year. They provide rechargeable energy storage at high
energy density, with no memory effect, and slow loss of charge when not in use [11].
They are of growing interest to the automotive industry, amongst others. Thus, there
is a big drive to increase their efficiency, storage performance and the speed at which
they can be charged and recharged. Many approaches have been taken to simulate the

operation of such devices in order to better understand their behaviour.

The Lithium ion cell consists of four parts, namely (I) the anode which is comprised
of negative electrode particles, (II) the cathode which is comprised of positive electrode
particles, (III) the separator that lies between the electrodes (this is a porous insulator

that prevents direct electrical contact between the electrodes while allowing passage of
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Figure 1.1: A schematic diagram of the Lithium Ion Battery during discharge
[59]. The current flowing out of the positive electrode drives the extraction of
lithium ion from negative electrode (anode) particles to the electrolyte across
the porous separator (by diffusion and advection) into the positive electrode
(cathode) and insert into the positive electrode (cathode). The charge of elec-
trons are moving from the negative electrode particles to the negative electrode
current collector and from the positive electrode current collector to the positive
electrode particles.

the electrolyte) and (IV) the Lithium ion electrolyte which transports ions (and thus
charge) between the anode and cathode. A schematic diagram of such a cell (during
discharge) is shown in Figure At the outer boundaries of electrodes there are current

collectors (charge collectors) that connect to an external circuit.

During discharge, Lithium diffuses through the negative electrode (anode) particles to
the solid-electrolyte interface where it undergoes a charge transfer reaction (refer Figure
in which a Lithium ion (Li") is released into the electrolyte and an electron (e™)
is released into the electrode particle (de-intercalation). The Lithium ion advects, and
diffuses, through the electrolyte solution to the positive electrode (cathode). A similar
reaction occurs on the surface of a positive electrode (cathode) particle in which the
Lithium ion is absorbed into the electrode particle (by a process known as intercalation)
and takes up an electron from the electrode as it does so. The negative ions (N ™),
on the other hand, remain in the electrolyte throughout. Thus the Lithium ions (LiT)
carry all the charge through the electrolyte (and separator diaphragm) from the anode
to cathode. Typically, the reaction rate on an electrode particle surface depends upon
the lithium concentration on the electrode surface, the lithium ion concentration in the
adjacent electrolyte, and the potential drop between the electrode and electrolyte [36].
When the cell is charging, the process is reversed: an external electrical power source

(the charging circuit) applies a higher voltage than that produced by the battery, forcing
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current to pass in the reverse direction. The Lithium ions then migrate from the cathode

to the anode, where they become embedded in the electrode material (intercalation).

The anode and cathode materials are selected so that the anode preferentially gives up
electrons (and thus also lithium ions), and the cathode preferentially accepts electrons
(and thus lithium ions). The tendency of a material to give up or accept electrons is
determined by its standard electrode potential. The difference in the standard electrode
potential of the anode and the cathode gives the voltage of the cell at equilibrium (the
potential difference between the current collectors). The equilibrium potential is the
difference between the electrical potential of the two current collectors when no external
electric current flows between them. It is a function of the electrode materials used.
In the following sections, an overview of battery materials for Lithium ion rechargeable

batteries is provided.

1.2 Battery materials for Lithium ion batteries

Typically, both electrodes (anode and cathode) in a lithium ion battery are intercalation
compounds, that is, they have a lattice structure in which small atoms, such as lithium,
can be inserted and extracted. In contrast, the electrolyte allows the flow of electrical
charge (in the form of lithium ions) between the anode and cathode. This section reviews

battery materials for anodes, cathodes and electrolytes.

1.2.1 Desirable electrode and electrolyte properties

In designing a battery, the properties of electrode materials and electrolytes are im-
portant in order to achieve a successful cell once they are assembled. They should, for
example be chosen so that the cell is stable and safe to minimizes the risk of short circuits.
The key requirements for a successful electrolyte are high conductivity (high mobility of
Lithium ions), stability (at high temperatures and in high voltage application) [82], and
safety (low flammability [10]). Electrolyte decomposition and side reactions in lithium
ion batteries can create thermal runaway [I1]. Thus, the electrolyte selection has to

balance between flammability and electrochemical performance.

Good electrode materials should have high lithium diffusivity in the host matrix; high
electrical conductivity; stability (not change structure over many charge cycles); high
capacity [95]; thermal stability [10], high cyclability and be non toxic and low cost [11].
The two electrode materials also be chosen to give the cell a high voltage. The solid
electrolyte interface (SEI layer) is another key factor that influences the performance
of battery. The roles of this layer is to eliminate the transfer of negative ions from the
electrolyte to the electrodes and to limit the transfer of electrons from the electrodes to

the electrolytes [48]. However, the SEI layer must also be a good Lithium ion conductor.
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1.2.2 The cathode material

In 1991, the first type of cathode material to go into commercial production, was cobalt
oxide (LiCoO2) [95]. It (de)intercalates lithium ions at around 4V and has a theoretical
capacity of 140 mAh/g [8§]. The other advanced cathode materials include lithium
metal oxides (such as LiMngOy), olivines (such as LiFePOy), and rechargeable lithium
oxides [82].

In 1996, Goodenough patented a new kind of lithium ion cathode material which is iron
phosphate LiFePOy [65]. This material is more powerful and less likely to catching fire,
which are important considerations for automotive applications. LiFePOy4 has already
found in many industrial applications due to its reasonable voltage of 3.5V, high theo-
retical capacity (170mAh/g) [52], low cost, low toxicity, and high thermal stability [65].
Because of its potential, much research has been directed towards optimizing synthesis
routes for LiFePO,4 cathodes. A disadvantage of this material is low conductivity. How-
ever carbon coating of the electrode particles increases the conductivity of the electrode
[47]. LiFePOy is also thermodynamically stable [67], and its has a lattice structure so
that the insertion/extraction lithium ions process does not change structure of the host

material [95].

Lithium metal oxides contain cobalt and nickel. They show a high stability in the high-
voltage range but cobalt has limited availability in natural resources and is toxic [22].
Manganese offers very good rate capabilities but has poor cycling behaviour. Therefore,

mixtures of these three materials are often used for a good cathode material.

1.2.3 The anode material

The commercial anode material in lithium ion batteries is graphitic carbon (LiCg) which
can store up to one LiT for every six carbon atoms in between its graphene layers. The
material is highly conducting and supports high current densities [13]. However, the
theoretical capacity (372 mAh/g) is poor in comparison to that of pure lithium (3,862
mAh/g) [97] and it exhibits moderate charge/discharge rate performance which limits
the lifetime of the cell [69]. The parameters used to increase the performance of this

anode material are its thickness, and its porosity.

Alloy anodes such as Li-Al (Lithium Aluminium) have high capacities but exhibits sub-
stantial volume changes, which results in low cyclability [22]. Reducing the size of this
electrode particles to the order of a few nanometres stops phase transitions occurring
that typically accompany alloy formation [10] and reduces the size of the volume changes.
Lithium titanate operates at a 2.4V, a voltage for which lithium ions are stable with
respect to the electrolyte [11] (which is a requirement in this material because it does
not form an SEI layer). A disadvantage of the lithium titanate battery is lower capac-

ity and voltage than the conventional anode material. Silicon has an extremely high
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capacity (4,199 mAh/g) corresponding to a composition of SizLise [22]. However, the
large volume changes that occur during the insertion and extraction processes cause
severe cracking of the electrode, which in turn leads to very significant capacity fade
during cycling [98]. The cyclability of this electrode can be improved by adding Ketjen-
black carbon, which gives a chainlike structure that maintains a stable electronic contact

between silicon particles [98]. They can also be improved by nanostructuring [10].

1.2.4 The electrolyte

Liquid electrolytes conduct lithium ions and acting as a carrier between the cathode
and the anode. The electrolytes typically used in lithium ion cells are mainly based
on an organic solvent based. Examples of electrolyte salts used in applications in-
clude lithium hexafluorophosphate (LiPFg), lithium hexafluoroarsenate monohydrate
(LiAsFg), lithium perchlorate (LiClOy), lithium tetrafluoroborate (LiBFy), and lithium
triflate (LiCF3S03). LiClO4 provides a stable charge-discharge efficiency that increases
the cycling capacity of the cell [10]. LiBF, is less toxic than LiAsFg and safer than
LiClO4 but has only moderate ionic conductivity [47]. LiCF3SO3 is resistant to oxida-
tion, nontoxic, thermally stable, and insensitive to ambient temperature in contrast to
LiPFg. However, it has low conductivity in nonaqueous solvents as compared to other
salts [47].

Currently, LiPFg is the standard electrolyte in commercial batteries. It has qualities
such as high conductivity, high solubility in organic solvents, and stability in the solvents
mixture and on common electrode materials [22]. The organic solvent that often used
in battery electrolyte is a mixture of ethylene carbonate and dimethyl carbonate (1:1
EC:DMC). Ethylene carbonate (EC) has ability to form a good SEI layer on common
anode materials and dimethyl carbonate (DMC) has ability to lower the EC melting
point [22]. In this study, we chose the most common electrolyte solution, which is LiPFg
salts dissolved in a mixture of 1:1 EC:DMC. This combination performs well enough in

current battery systems.

1.3 Charge-transfer reaction

The reactions in which charges are transferred across a solid electrolyte interface are

called charge transfer reactions. Here both electrodes are either oxidized or reduced;
Li(s) = Lit +e .

Charge separation occurs when charge transfers across the electrode surface. The excess

charge on the electrode surface is counterbalanced by the accumulation of oppositely
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charged ions, on the electrolyte phase. The layer across which this charge separation
occurs is called the electrical double layer, and is extremely thin (typically of order
Inm) compared with the width of the electrolyte and electrodes. In its simplest form
the double layer is described by the Helmholtz model, which describes the double layer
as a parallel plate capacitor with a small plate separation (see Figure . In this model,
the potential changes linearly from the electrode potential ¢ to the electrolyte potential

¢ in a thin layer. This layer is referred to as the Helmholtz layer.

electrolyte

Figure 1.2: Structure of the electric double layer near a solid electrolyte inter-
face when external electric field is applied. The electric drops linearly from the
electrode potential ¢, to the electrolyte potential ¢ in a thin layer.

The electrical double layer translates into boundary layers in the concentration profiles.
Near an electrode that is negatively charged we expect an excess of LiT ions and a
deficit of N~ ions. These differences are only expected close to the electrode surface,
thus it is usual to assume charge neutrality in the bulk of the solution. Further details
on charge neutrality will be discussed later. The overpotential, ¢qn is defined such that
7 gives the change in the electrochemical potential of a Li* between the electrolyte and
the electrode. It takes the form

n:¢_¢s+Ueq

where ¢ is the electrolyte potential, ¢, is the solid potential and U, is the equilibrium
potential of the electrode material (qUe, is the change in chemical potential of Lit*
ion between the electrode and electrolyte). The equilibrium potential, or open circuit
potential, is the difference of electrical potential between the two terminals of a device
when there is no electric current flows between them. Usually it is measured at a very

low discharge rate.

1.4 Battery Terminology

e Capacity. The capacity is a measurement of how many electrons can be ex-

tracted from an electrode during each charge or discharge cycle and has unit in
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milliamp hours per gram. A symbol Q@ is used for this parameter. This quantity is
often normalized by mass, so that it is unaffected by the size of the battery. The
maximum capacity of a cell is determined by the amount of charge when the cell is
discharged at a very low rate. Current cathode materials have maximum capacities
in the range of Qaz = 100 —200mAh/g and graphitic carbon (the most common

anode material) which has a maximum capacity of around Q,q; = 300mAh/g.

e Specific Power. Another important parameter for battery operation is how
much power can be provided per unit mass. This value, measured in watts per
kilogram, is particularly important for high power applications such as acceleration
of electric vehicles where a large amount of energy must be provided in a short
time. Specific power is heavily influenced by the voltage difference between the

anode and cathode and the speed of ion transfer between the electrodes.

e Cell Voltage. A key parameter in maximizing the specific power of a battery
is the voltage difference between the anode and cathode. This difference is deter-
mined by the relative voltages at which the (de)intercalation reactions take place.
In this thesis, discharge curves are plotted showing the cell voltage as a function

of the state of discharge and at certain specific discharge rates.

e Discharge rate, C-rate. The discharge rate is the rate at which current is taken
from a cell. It is reported as a C-rate with 1C' corresponding to a battery being
completely charged or discharged in one hour. High rate capability is essential for
quick charging batteries and high power applications. For instance, for a battery
with a capacity of 1004 /hours, this equates to a discharge current of 100 Amps.
A 5C rate for this battery would be 500Amps, and a C'/2 rate would be 50 Amps.

e State of charge / discharge. The state of charge (SOC) is defined as the
capacity still available in the cell. It is normally expressed as a ratio of the rated
capacity to the maximum capacity and a 0 SOC battery is fully discharged while a
1 SOC battery is fully charged battery. The state of discharge (SOD) is defined as
the ratio of battery capacity that has been discharged to the maximum capacity.
State of charge/discharge can be calculated as the current multiplied by the time

and divided by the maximum capacity of the cell (It/Qmaz)-

1.5 The half-cell

In order to test a particular electrode in the lab it is usual to perform experiments on a
half-cell. This consists of a single electrode (working electrode either anode or cathode)
and a pure Lithium electrode (reference electrode) as the other electrode (see Figures
and . Since the electrochemical potential of lithium in a lithium electrode does

not change as it charges / discharges, it also acts as a reference electrode. Indeed in
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applications it is usual to define potential with respect to a lithium electrode such that its
potential is defined to be zero. The voltage drop across the half cell is then determined by
the potential of the current collector. This motivated Newman to formulate his models
[60] in terms of a lithium reference potential rather than the real potential. Theoretical
treatment of half-cells include works by Newman et. al. [84] and Farrell et.al. [23].
Fundamental research on electrode material is usually conducted in half-cell systems.
Figure [1.3] shows a schematic diagram of a half-cell anode and Figure [1.4] that for a
half-cell cathode.

Graphite

O
X.X.XOX.X.
0101010
.‘.’.’.‘
. 101010

.
et
(OQO0)

Solid interphase
(SEI) layer

AR
>-Q><Q CH
Qi Q>-
CH
=)
)
Jojesedas

3po43d3[e WiniyH

=
=
Os
(=

o
c
S
=
S
=3
a
=}
o
a
o
o
=

4

()
(X
(X

Figure 1.3: Schematic diagram for typical half cell anode. The cathode material
is a lithium-foil which is reacting as reference electrode. During discharge,
the Lithium ions are conducted through the electrolyte solution to the lithium
electrode. Here x* = 0 is the anode current collector and x* = L is the separator.

OQOQOOOC

O O O O

O O O Qe
O O O O |3
=g O O O Gz
elglO O O _0O |8
2OOOOOOO §’

OOOOOOOC“
: O O Q0
x =0 x =L

Figure 1.4: A schematic diagram for a typical half-cell cathode. The anode
material is a lithium-foil. Here 2* = 0 is the separator and z* = L is at cathode
current collector
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1.6 Battery modelling

Electrochemical battery models are based on the numerous chemical processes that take
place in the battery. In particular they must account for conservation of ion species in
the electrolyte, charge transfer at electrolyte/electrode interfaces [19] and transport of
intercalated Lithium in the electrodes. These processes take place over a wide range
of scales ranging from that of the electrode particles (microscopic) to that of the full
cell (macroscopic). Thus, modelling capable of directly relating the geometry of the
microstructure to the coefficients in a macroscopic model of battery behaviour provides
a useful tool. Microscopic modelling on the particle lengthscale should account for
charge transfer at the solid particle surface, diffusion of lithium in the electrode particles
and diffusion of lithium and charge transport in the electrolyte around the particles.
These microscopic and interfacial phenomena largely control the rate of electrochemical
reactions. Macroscopic models on the electrode lengthscale can be used to account for
charge transport, electrolyte lithium transport and charge transfer reactions all in an

averaged sense.

The typical voltage and charge capacity of lithium-ion cells can be computed using clas-
sical electrochemistry or measured with simple experiments. However, understanding
the dynamic processes that occur during charge and discharge of the battery is neces-
sary in order to improve the power density and cycle life of the battery. Study of the
charge/discharge processes is made more difficult by the range of length scales involved
[21]. The charge carriers inside the battery move via a combination of diffusion and
advection in an electric field. Their movement causes potential differences [64]. The
reaction rate for the deintercalation/intercalation of lithium from the electrodes may
be limited by diffusion of Lithium ions in the electrolyte, diffusion of Lithium in the
electrode particles or by the electrical resistivity of the electrolyte or electrodes [36], [74].

Thus, it is important to investigate the relative importance of these processes.

John Newman, a chemical engineer at the University of California at Berkeley, has de-
veloped a modelling framework for lithium ion batteries [58]. In [57] Newman and his
co-worker use this framework to predict battery behaviour. The modelling approach
is based on transport equations for Lithium ions in the electrolyte as well as Lithium
transport in the electrode particles of the cathode and the anode, and Butler-Volmer
equations describing the charge-transfer kinetics at the electrode particle surfaces (be-
tween electrode and electrolyte). Solutions of such models can be used to predict cell
voltage as a function of current and time. In addition they can be used to predict the
potentials in the electrolyte and electrode phases, salt concentration, reaction rates and

current density in the electrolyte as functions of time and position.

A model based on loss of the active lithium ions due to the electrochemical parasitic
reaction and rise of the anode film resistance has been developed by Gang Ning et al.

[61]. Loss of cyclable lithium ions occurs when irreversible solvent reduction reaction
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takes place on the surface anode and hence increased the resistances on the surface
of anode particle. Safari et al. [77] simulated the ageing phenomena in a commercial
graphite/LiFePOy cell.

The effects of interionic drag in non-dilute solution has been incorporated into Newman
framework [60] but requires the model to be calibrated again experimental electrolyte
data. An example of such data is found in the work of Riemers et. al [90] which measures
conductivity, diffusivity and transference number as function of ions concentration in the
electrolyte LiPFg in 1:1 EC:DMC. Fuller, Doyle and Newman [28], [36] incorporated the

effects of the chemical activity in the electrolyte into their modelling framework.

Recent work has shown that performance of Lithium ion battery can be improved
through emphasis on engineering the microstructural architecture of the electrodes see
[41] 83 B9]. Typically the effects of the microstructure in macroscopic models, such
as Newman’s [58], are represented by a few phenomenological parameters which can
be crudely related to the properties of the microstructure. A more systematic ap-
proach, that is capable of relating the geometry of the microstructure coefficients in
the macroscopic model, has been developed by Richardson et.al [74] in the case of dilute

electrolytes. Here we shall extend this method to a moderately concentrated electrolyte.

Solutions to a battery model based on a dilute electrolyte model in which Lithium
diffusion in the electrode particles is extremely fast are discussed in Chapter 2. In
Chapter 3 we discuss an electrolyte model of a moderately concentrated electrolyte and
fit the model to real electrolyte diffusion, conductivity and transference number data.
In Chapter 4, we discuss the application of homogenisation techniques to a model based
on the moderately concentrated electrolyte model discussed in Chapter 3. In Chapter 5,
we discuss Lithium transport in electrode particles (in particular the LiFePO4 and the
LiCg electrode materials), this is crucial for understanding intercalation. In Chapter 6,
we discuss the numerical method that we use to solve the homogenised model presented
in Chapter 4. Solutions to the model are compared against experimental data for half-
cell Li;Cg (graphite) anodes (Chapter 7) and half-cell LiFePOy cathodes (Chapter 8).

Finally, we draw our conclusions in Chapter 9.

1.6.1 Statement of originality

Here, we highlight the original parts in this study. In Chapter 2 we obtain new solu-
tions of battery model in dilute electrolyte theory. In Chapter 3, we review the existing
moderately concentrated electrolyte model (originally formulated in [59]) and highlights
some errors and give corrections. In Chapter 4, we extend the results of the homogeni-
sation in [74] to a battery model in moderately concentrated electrolyte. The numerical
procedure developed in Chapter 6 to solve battery problems is new and is very efficient.

The results in Chapter 7 follow the work of Srinivasan and Newman [85] for a half
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cell anode but are significantly extended and provide considerably better agreement to

experimental data. The results for the half cell cathode in Chapter 8 are all new.






Chapter 2

Dilute electrolyte modelling of
battery

2.1 Introduction

In this section we develop a battery model based on dilute electrolyte theory. We start
in by discussing a model for a dilute electrolyte. We then discuss lithium transport
between the electrolyte and the electrode particles in before briefly discussing trans-
port in the electrode particles in and illustrating how homogenisation can be used
to derive a model on the scale of the battery model in In and we derive
some solutions to this battery scale model that illustrate the behaviour of a certain class

of cell.

2.2 Derivation of a model for a dilute electrolyte

The Nernst-Planck theory has been used to describe a sufficiently dilute electrolyte [60].
This theory describes conservation equations for the ionic species that diffuse by ionic
concentration gradient and advect by an electric field. Here we discuss the derivation of
battery model in a dilute electrolyte, which previously has been described in Richardson
et al. [74].

The general conservation of mass equation for two species, concentrations c;, and cj, (mol
m~3), that diffuse independently are
oct

S V-l =0 q=-DiVe fori=np. (2.1)

where g} is the ion flux of species i. The second equation is Fick’s Law of diffusion which

states that the diffusive flux is proportional to the concentration gradient. Here D,, and

13
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D,, are the diffusion coefficient of species n and p. To extend Fick’s Law of diffusion to
charged species (ions) we need to include electric forces arising from the electric field,
E = —V¢* where ¢* is the electric potential. Consider an ion of charge g, it experiences
a force, F' = gE. As the ion moves through the solvent, it also experiences a frictional
drag force, F' = kv. Here the drag coefficient k is related to the mobility, u of the ion
by k = 1/u. The drift velocity is reached when both forces balance, i.e for ¢E = v/pu.
This gives the drift velocity, v = ¢FE u. Thus, the advection-diffusion equation for a
negatively charged ion species with charge —¢,, and a positively charged ion species with

charge +gqj is

oct

8# +V-q,=0 q=—(D,Vc — quiinc,V¢*), for anions (2.2)
oc’
atf +V-q,=0 q, = —(DpVe, + qpupc,Vo*),  for cations (2.3)

The Einstein relation relates mobility to the diffusion coefficient D; via p; = D;/kT

where k is Boltzmann’s constant and T is the absolute temperature.

The electric potential obeys Poisson’s equation
V- (eVe") = —p, (2.4)

where p is the charge density (C m™3). Equation (2.4)) can be rewritten in terms of the
ion concentration

V- (eV¢*)=F(c), —c}) (2.5)

P

where ¢ is the permittivity of the electrolyte and F is Faraday’s constant (C mol~1). Tt

is also useful to write the current density in terms of ion fluxes, g, and g,

j*=F(q, —q,) (2.6)

2.2.1 Charge neutrality

Here we consider a 1:1 electrolyte in which the charge of the negative ions is —¢, = —¢q
and of the positive ions ions is g, = +¢ and ¢ is the charge on a proton. For all reasonable
concentrations the Debye length is very small (of the order of nanometres) so that the
standard charge neutrality assumption cj ~ ¢}, is appropriate [73]. Writing ¢}, = ¢, = c*
in — allows us to rewrite the model in the form

oc* . DnpF
o V- (DaVe" - RT

V), (2.7)

oc* D,F

9 = V- (D,Vc' + 7 1 Vo), (2.8)
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Here we use the fact that ¢/k = F/R where F is Faraday’s constant and R is the

universal gas constant. Now we can manipulate (2.7)-(2.8) by multiplying (2.8]) by D,
and (2.7) by D,, respectively and adding the resulting equations to obtain a diffusion

equation for the electrolyte concentration ¢
oc* 2D, D

=V |(|+—2E )V 2.9
ot ((Dn+Dp) C) (29)

Subtracting (2.7) from (2.8) leads to an equation for the current density as defined in
29)

Vit =0 (2.10)

F D, — D
i* = —(D,+D,) |—c'V¢* — =2 _—"Pyc* 2.11
J ( n + p) RTC o) Dn+Dp c ( )

We emphasize that the resulting conservation equation only works for constant
diffusion coefficients. However, this is not an accurate behaviour of electrolyte and
non-linear diffusion coefficient has to be taken into account. The non-linear diffusion
coefficients can be adapted into the model using more complicated multicomponent
diffusion equations [8]. These are discussed in Chapter 3 (for a moderately concentrated

electrolyte model).

2.3 Reaction kinetics on the electrode particle surfaces

Here we consider the intercalation reaction that takes place on the surface of the electrode
particles and which is responsible for transport of lithium out of the electrode particles

into the electrolyte and vice versa.

Anode Cathode
Lt /f___\\Potent|aI, @ Lt LT~ Potential, ¢
7 Debyelayer ~ electrolyte bebvelaver ~ electrolyte

(2, particle
Potential, 0

(). particle

Potential, v”

Figure 2.1: Reaction rate on the solid electrolyte interface in anode and cathode.
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On the particle electrolyte interface (Figure , conservation of lithium ions and neg-

ative ions are described by the relations

n-q, =G, n-q,=0 on 08, (2.12)
n-q,=G; n-q,=0 on 09 (2.13)

where G and G} are surface reaction rates giving the flux of lithium ions out of the
anode and cathode electrode particles respectively. The surface reaction rates depend
typically upon the intercalated lithium concentration on the electrode surface, and the
concentration of ions in the electrolyte at the surface. They are usually modelled by
the phenomenological Butler-Volmer equation. Here we shall assume that individual
particles are electronically well-connected to the current collector and effectively neglect
resistance within the electrodes. Without loss of generality we take the potential of the
negative electrode (anode) particles to be 0. The overpotential in the anode (the change
in electrochemical potential that a charged species goes through as it passes through an

anode particle surface into the electrolyte) is ¢* + U 5]. The Butler Volmer relation

eqa [
for the surface reaction rate depends on the overpotential in the following manner

G =12 (o0 | 307+ U0 — e [ G0 + U] ) 0 <t < 20

Here ig, is the exchange current density in anode. In the cathode (positive electrode)
we denote the potential V* so that the overpotential is ¢* — V* + U7, and the Butler

Volmer relation takes the form

) c * * * F * * *
G: = Z% <eX |:2RT(¢ -Vt Ueqc( s)):| — exp |:2RT(¢ -V + UeqC( 3)):|)
in L <2 <2L(2.15)

where iq, is the exchange current density in cathode. Here U, (c;) and Ug.(c;) are the
anodic and cathodic equilibrium potentials respectively and vary with the intercalated
lithium concentrations ¢} on the surface of the electrode particles. The open circuit po-
tentials can vary widely depending on the insertion chemistry of the material. The work
[36] gives analytic expression for Ug,.(y) that fits to the experimental data for Li,MnyO4
where y is the amount of lithium inserted. This expression shows a small step decrease of
potential around the middle of the discharge (see Figure. In the case of Li, FePOy,
the discharge curve shows hardly any variation until the cell is entirely discharged [84]
(see Figure . Moreover, the open circuit potential of cobalt dioxide, Li,CoO2
varies with changes in y [37] (see Figure 2.2(a))). The open-circuit potential curves for
different cathode materials and anode materials are shown in Figures 2.2 and 2.3] The
analytic expression for Ug,(z) of Li;Cgs which has been given in [36] shows significant

variation with changes in x (refer Figure[2.3(a)]). Lithium titanate (Li;Ti5O12) has a flat
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discharge curve [80] (see Figure [2.3(c)|) whereas silica (Li;Sis) is more like Li;Cg in that
its discharge curve varies significantly with changes in composition x (see Figure[2.3(b)]).
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Figure 2.2: Different types of open circuit potential i.e. U .(y) curves for dif-

eqc
ferent cathode materials with respect to the insertion chemistry of the materials,
y (normalized capacity).

2.4 The electrode particles

In the anode particles (as the cell is discharged), lithium diffuses to the electrolyte-solid
interface where the chemical reaction occurs, transferring lithium ions to the solution
and electrons to the collector [I4]. The lithium ions thus produced, flow through the
electrolyte solution to the positive electrode, where, at the interface of the solid material,

they react and insert into the metal oxide solid particles.
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Figure 2.3: Different types of open circuit potential i.e UZ,,(z) curves for

different anode materials with respect to the insertion chemistry of the materials,
x (normalized capacity).

This process is enabled by diffusion of Lithium into (and out of) the electrode particle.
At the surface of the particles, lithium ions are released into the electrolyte by the surface
electrode reaction. In [28], diffusion of lithium in the solid phase is described by the

diffusion equation in spherical coordinates;

o e
Gr=D.5t 0<r <R (2.16)
r
oc; oc;
Sl—0, D - (2.17)
87‘ r*=0 37" r*=Rp

where c} is the concentration in the electrode particle, D, is the lithium diffusion in the
electrode particle, Ry is the radius and G* is the surface reaction rate (per unit area).
Here, we follow [74] in which it is assumed that the electrode particles are sufficiently

small so that diffusion of intercalated lithium within the particle is much faster than
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that of ions in the electrolyte across the battery. Thus, the Lithium concentration in
the solid particles can be approximated as a function of time only. The material balance
for the lithium ions in anode and cathode particles on radius R, and R., respectively

are thus governed by

0 (4
- RS *

4
> = —47TR2GE, 8(3* (37ngc:c

) = —4wR2GE. (2.18)
These equations describe conservation of lithium within a particle accounting for the

total rate of lithium intercalation on its surface.

2.5 Homogenisation of model accounting for microstruc-

ture on electrode particle scale

We now set out to write down a model for a battery based on the dilute electrode
solution theory discussed in §2.2] and on the typical battery structures discussed in
Chapter 1 (see Figure for an illustration). At the battery-scale, the number of
variables governing performance increases enormously and can only be analyzed at a
reasonable cost in an appropriate mathematical framework. Recent work has shown
that the performance of lithium ion technology can be improved through emphasis on
engineering the microstructural architecture of the electrodes see [41},23]. Here we follow
Richardson et al. [74] and incorporate the microscale effects into the macro-scale problem

through homogenization.

Newman had written down macroscopic battery equations based on phenomenological
grounds [58] which have been used subsequently in a number of applications [28, [36),
23, 29]. In [74], however, the equations are derived systematically using homogenisation
techniques. The macroscopic model is characterized by the Lithium-ion concentration
in the liquid phase, ¢*, and the electric potential of the liquid phase, ¢* and the Lithium
concentration in the solid electrode particles. The intercalation of Lithium-ions from
the electrolyte into the particles is represented by a surface reaction rate on the surface
of the particles, G* which gives the flux of lithium ions from the electrode particle into

the electrolyte per unit area of the interface.

At the micro-scale, a single representative electrode particle is examined. The micro-
scale variables include the microscopic lithium concentration in the anodic and cathodic
respectively. The rate of diffusion into the particle and subse-

3 k k
particles, c¢i, and ci,

quently into the particle depend on the microscopic lithium transfer rate, G*.

The geometry of the problem is illustrated in Figure Here 0 < z* < L is a region
occupied by the negative electrode electrode particles, there is then a thin separator on

the other side of which the positive electrode occupies the region L < z* < 2L. The
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Solid electrolyte ~
e »~ interface \ |
A 0Q, Q.
> Li” > n
electrolyte
Anode Cathode

Figure 2.4: Schematic representation of the mathematical domains in particle
scale.

particles are bathed in the electrolyte which can freely permeate the porous spacer. Here
we denote the region occupied by the anode particles by 2, and the cathode particles
by Q. (as illustrated in Figure 2.4). 09, is the anode solid electrolyte interface and
€. is the cathode solid electrolyte interface. We denote the unit normal vector to the
interface 02, and 9€). by m; this is directed.

The homogenised equations for the diffusion of lithium ions in the electrolyte and for
the potential in the electrolyte are derived in [74] from (2.9)-(2.11)) accounting for the

lithium flux G* on the surface of the electrode particles. The resulting equations are

oc* 0 oc*
— — —— | Depr— | = (1 —t1)bet, G 2.19
€v 8t* 83:'* < eff 833'*) ( +) et; T ( )
aj5* .
ajc = Fb, G (2.20)
, Deyy F 00" oc*
= F—— | —(" —(1—=2t 2.21
J 2t (1 —tq) RTC 1~ ( +)8x* (2:21)
where ¢ = a in the anode and ¢ = ¢ in the cathode. Here the effective diffusitivity,
Depy = BB%DZ)?’ (where Bjj is the 1l-component of the permeability tensor which

describes the ease with which a substance can diffuse through the tortuous electrolyte
paths in the electrode), be; is the BET surface area (i.e. the surface area of particles per
unit volume of electrode) and €, is the volume fraction of the electrolyte and ¢, is the

transference number defines by

by = —L2 (2.22)
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Notably (2.21)) gives the effective electrical conductivity of electrolyte as

DeffF2c*

(") = ORTt, (1 — L)

(2.23)
which in this dilute solution theory is linearly concentration-dependent [90]. It turns out
that this dependence of conductivity on concentration is not realistic for many of the
electrolytes used in real battery and this motivates us to look at models for moderately

concentrated electrolytes in Chapter 3.

The electrode equations (2.18]), after the homogenisation process are

9¢s5q ] 9¢se
(1 - eva) at* = _betaGaﬂ (]‘ - E'Uc)

ot*

= by, G (2.24)

2.5.1 The current collectors

At the anodic and cathodic current collectors we assume that the fluxes of the ions are
both zero

oc* oc*

=0
* ’ *
Ox z*=0 Ox r*=2L

=0 (2.25)
and that the current transfers between the current collectors and the electrolyte are

2.5.2 The separator

The separator is thin insulating porous spacer that stops direct contact between anode
and cathode particles but allow flow of ions through its pores (see Figure [1.1) [44].
Assuming the separator is thin then the ion fluxes, the electrolyte potential and electric

field in the electrolyte are all continuous so that

ac*
[C*]iﬂ*: - 07 |: *:| - O’ [j*]m*: = 07 [QZ)*}I*: = O (227)
L 855 el L L

2.5.3 The initial conditions

We assume that before the discharge process begins the battery is fully charged in an

equilibrium state. This corresponds to the initial conditions
0.0 =Co (0.8 gy = O, 0,07 g, =0 (2.28)

that is the anode particles are full of lithium while the cathode particles are empty.



22 Chapter 2 Dilute electrolyte modelling of battery

2.5.4 The relation between current and global reaction rate

Let I* be the total current flowing through cell. The total charge released by the
anode particles must equal the charge absorbed by the cathode particles. By taking
a representative cylindrical volume through the whole cell of cross-sectional A (where
bet is the active surface area per unit volume of electrode particles), due to charge
conservation, we can express the integral of the reaction rates of the two electrodes in

terms of the current I* by

L 2L
Abe, F / G (¢*)da* = — Abe, F / G (¢*)da* = I* (2.29)
0 L

L 2L
It follows that be, [ Gi(¢*)dz* + bey, [ GE(¢*)dz* = 0. When posing the problem we
0 L

can either specify I* as an input variable and V* as the output (galvanostatic discharge)

or we can specify V* and determine I* (potentiostatic discharge).

2.5.5 Summary of the battery model and comparison to other models

To summarise, a homogenised model of a battery based on Poisson-Nernst-Planck (PNP)
equations for a dilute electrolyte, and assuming fast diffusion in the electrode particles,

has the form

oc* 0 oc*
e = Do) = (1= )b G 2.
07"
— Fb, G 2.31
or* thl ( 3 )
" Dess P 09" oc*
= —p—dr (= —(1-2 2.32
J 2% (1—t,) (RTC gor (17255 [2:32)
x Z‘OJ —F * * * - F * * *
Gi = (o |50+ Ua(ct)| = om0 | 506"+ Uslcia)) )
in0<z*<L (2.33)
in L <z*<2L (2.34)
9csq . : ]
(1—€y,) e —bet, Gy in0<az*<L (2.35)
ock, « . *
(1—-e,) = —be, Gy, in L <z*<2L (2.36)

ot*
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oc* oc*
¢ = 0, & =0 (2.37)
0r* | .o 0™ | v _op
j*|x*:o = 0, j*|x*:2L =0 (2-38)
[C ]a:*:L = 07 W = 07 [.] ]q;*:L = 0’ [¢ ]z*:L = O (239)
T a*=L
c"(0,2") = Co, (2.40)
Cea (0,2 )gcgrcr, = CF,  Ceel0,2)|pcpecor, =0 (2.41)
L 2L I+
bor, F / GO )dr* = —bu, / Gron)rt = 1 (2.42)
0 L

where the suffix i = a denotes the anode (0 < z* < L) and i = ¢ denotes the cathode
(L < x* < 2L). Here the transference number ¢, and the effective diffusivity D.s; are

given by
D 2B11(DnD )
ty = —7>2 Dy = "~ "P7 2.43
* T D,+D, ‘I "D, +D,) (243)
respectively and the conductivity is given by
F2 *
K(c*) =D ¢ (2.44)

ot (1=t )RT

This system of equations is similar to the macroscopic Newman model [29, 28| 23] 25]
for which there is no systematic derivation. It is notable that using this technique,
the permeability factor Bj; appears which accounts for the detailed microstructure of
the electrode (and can be calculated using the recipe in [74]). The permeability factor
appears both in the effective diffusivity and the effective conductivity of the electrolyte.
The derivation also illustrates that the factor (1 — 2t4) appearing in differs from
the equivalent factor in Newman’s model [28] which is (1 — ¢4). Richardson et al. [74]
claim that the difference comes about because [28] uses the concentrated solution theory
instead of the dilute solution although we believe that in fact this is due to potential
in the Newman model being measured with respect to a Lithium electrode rather than

being an absolute potential as here (see Chapter 3 for more details).

2.6 Numerical and analytical solutions for the full cell model

The forward (oxidation) and backward (reduction) for electron transfer at the electrode
particles surfaces is describe by Butler Volmer equations (2.33) and (2.34). When the
battery operates far from equilibrium these Butler Volmer equations can be approx-

imated by Tafel equations [4] in which either the reduction, or oxidation, transfer is
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switched off depending upon whether the cell is charging or discharging. In this sec-
tion we introduce Tafel reaction kinetics and present some model solutions base on this
approximation. The model is solved analytically in quasi steady state with uniform equi-
librium potentials. This analytical solution allow us to validate the numerical results
and can be used to explain how the electrolyte concentration is depleted when large

currents are applied.

Equilibrium solution At equilibrium /* = 0 and G}, = G} = 0 and the solution to

E) - @) is

—U*

eqa

eqa’ eqc

(2.45)

2.6.1 Nondimensionalization

To nondimensionalize the model we let J represents the typical current density, A is the
the cross-sectional area, JA represents the magnitude of the typical current, and bey,

and be, are the typical BET surface area in anode and cathode. Away from equilibrium

we write (2.45)) in the form
¢* = _Ueqa,O + E)¢a V= Ueqc,O - Ueqa,O + (EV (2-46)
and

U;qa = Uega,0 + &)Ua(csa)7 U:qc = Uege,0 + EIV)UC(CSC) (2'47)

where & = % is the thermal voltage which is, at room temperature, about 25mV.

We then nondimensionalise of (2.30))-(2.42)) as follows

= Lz, = Coc, C:a = Usa,maxzCsas C:C = Use,maxCsc t* = Tt,
_ _ J ~ ~
o= T, F=JAD), Gi=-—"1—G, V=3V ¢ =dp (2.48)
Lo F

where L is the thickness of the electrode, Csq max and Csemasz are the maximum concen-
tration in the anode and cathode electrodes, Cj is the typical concentration of lithium
ions in the electrolyte. Here LA gives an approximation of the electrode volume and
the number of moles of intercalated lithium is thus of size O(Cs mazLA). Thus where
lithium is consumed at a rate of JA/F, we expect the timescale 7 for discharge to be

given by

7= L Camas (2.49)
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On defining the dimensionless parameters

_ DesFCy () _ Lbetsiva (, _ Lherine

- 7 ) a 9 c 9 250
TTTL0 -t 7 7 (2:50)
JL Csc,max
== = Zsemaz 2.51
FDefszc,ma:B, X Csa,mazx ( )
and nondimensionalising ([2.30))-(2.42)) using (12.46[)-(2.48)), we obtain the dimensionless
system
o 5?2 1 | Galecsa, @), if0<ax<1
Tey oo — oo = = (€20, 9) (2.52)
o oz V| Gelese,d), ifl<az<?2
07 GolCsa, ), if0<z<1
2= (€10, ) (2.53)
Iz Go(Coer ), ifl<a<?2
, 07 0¢ Odlogc
= ——c¢c|=——-(1-2¢ 2.54
i= e (2.54)
a sa .
(1 - ev)% = _XGG(CSGH ¢)7 ifo<z <1 (255)
8 SC .
(1 - Ev) act = _GC(CSC7 ¢)7 ifl<z<?2 (256)
Oc
i = 0 i =0 2.57
oz |,_, ’ Ila=0 ’ (2.57)
oc
— = 0 ] =0 2.58
I (259)
Oc ,
c,—; = 0, 9 . =0, [7],—1 =0, ¢],-.1 =0 (2.59)
c(0,z) = 1, (2.60)
csa(0,2) = 1 it 0<a<l, cse(0,2) =0 if 1<z <2(2.61)
1 2
/Ga(csa,gb)da; = —/GC(CSC,¢)daz =1 (2.62)
0 1

where the dimensionless reaction rates are given by

Go = S (ex0 [0 + Uulew))] — exp | 306+ Uulew)])

if 0<z<l1 (2.63)

Go = 9 (oxp |36 -V + Uleu)] — o 60—V + Uiteu)])
if 1<az<?2 (2.64)
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Parameter Value
Electrolyte Parameters
Diffusivity of Lithium ions, Dess (m?s™1) 5.34 x 10710 [32]
Volume fraction, e, 0.4764
Initial salt concentration, co (molm=3) 1000 [23]
Transference number, ¢4 0.38 [90]
Electrode Parameters LiCg LiFePOy4
Radius of particle, a (m) 1.1 x 107 [87] | 5.2 x 10~% [85]
Exchange current density, ip (Am~2) 30 [32] 5.4 x 1075 [23]
BET surface area, be; (m~1) 2 x 10 5 x 107
Maximum concentration in the solid, Cs e (molm=3) 30000 [85] 20950 [23]
Other Parameters
Electrode thickness, L (m) 6.25 x 107° [23]
Faraday constant, F' (Cmol~!) 96487 23]
Universal gas constant, R (Jmol 1K~1) 8.3144 [23]
Temperature, 7' (K) 298 [23]
Electrode area, A (m?) 1074 [23]

Table 2.1: Parameter values used in the model.

2.6.1.1 Size of dimensionless parameters

In the above equations, 7 is the maximum sustainable flux of ions in the electrolyte
to the actual ion flux. Q, and €. are the dimensionless reaction rates on the anode
particles and cathode particles respectively. To estimate the size of the typical size of
dimensional parameters in the problem we use the data listed in Table Note that
ioa and i, values depend upon the electrode material. The BET surface area b, (by
considering a periodic cube contains one spherical particle of radius a where the particle
just touches its neighbours) is the surface area of the spherical particle divided by the

volume of the periodic cube such that

Surface are of particle 47a’® s

= = = —, 2.65
Volume of periodic cube 8a3 2a ( )

bet

We now use these dimensional parameters listed in Table to estimate the size of the

key dimensionless parameters as follows
v~ 25, Q. ~ 1073, Q, ~ 1072, Ir~10"* (2.66)

Here we take J = 26Am~2. Note that if we discharge the cell at a relatively slow
rate, than I is estimated to be extremely small (10~4) and that will allow us to solve a

quasi-steady state problem for the concentration in the electrolyte.
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2.6.2 The Tafel equation approximation for 2, << 1 and 2. << 1

The Butler-Volmer equation can be approximated by the Tafel equation in the limit
that ©Q, and €. are small. During discharge, the current drives the lithium ions from
the anode to the cathode (I > 0), while during charging, the flow of Lithium ions is
in reversed I < 0). If I(t) is O(1) and positive it follows that G, > 0 and G. < 0,
and both are order O(1) from the integral condition . Thus, we can rescale the

Butler-Volmer relation by writing

¢ =—2log (é) +¢, V=-2log (S) - 21og(Qi) +V (2.67)

The reaction rates of (2.63)-(2.64]) can then be approximated by the Tafel equations

G, = exp (—;(é + Ua(csa)> it O<z<l1 (2.68)
G. = —exp (;(qg - V+ UC(CSC))> it 1<z<2 (2.69)

provided log(1/,) >> 1 and log(1/€.) >> 1. Here V is now the unknown parameter

we are looking for.

2.6.3 The quasi steady approximations for I' << 1

Provided that the rate of discharge is not very fast, we expect that I' to be small,

0
thus we can neglect the —(tj term in (2.52)) and solve the quasi steady-state problem.
Before taking the limit I' — 0 , we note first that by integrating (2.52) between z = 0
and x = 2, applying the boundary conditions (2.57)-(2.58)) and the integral conditions
2

d
2.62)), we find 7 < / cdm) = 0 and hence from the initial condition (|2.60|), we have
0

2
/cdx =2 (2.70)
0

Taking the limit I' — 0 in (2.52)) gives the quasi-steady equation

9% Go(x,t), O<z<l1

_oe (2.71)
Ox? Ge(z,t), l<z<2
Combination of equations (2.53|) and (2.54) gives
; b Go(z,t 0<z<l1
@:_lﬁ C%—(l—%_ﬁ% = (z,7) (2.72)
ox 2ty Ox \ Oz Ox Ge(z,t) l<gp<?2
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Then by equating equations (2.71)) and (2.72) we find

0?%c v 0 8¢ Jdc
e 79 1-2 2.
o022 T T2, oz ( ar ~ 1725, ) (2.73)

which can be simplified to the integrable equation

o (e  9¢
— | = —c=— ] =0 2.74
Ox (83: 695) (2.74)
Integrating (|2 and applying the boundary conditions (2.57)) to ( - ) then gives
Jdc 8(15
el =0 2.75
oz ‘oz (275)

Equation (2.75)) states that there is zero flux of the negative counterion through the

device. Solutions of this equation have the form;

c(z,t) = A(t) exp((z, 1)) (2.76)

or alternatively

3z, 1) = log <C(”"’t)) . (2.77)

Hence, we can eliminate ¢ from (2.68)-(2.69) and (2.71) to give a problem with one fewer

(108 (557 ) + Ualesalw,1) ), if O<a<1
<log( )>—‘~/+Uc(csc(x,t))>>, it 1<z<2

dependant variables

\ —

9*c  Jexp (

V2 = o ( (2.78)

o= N

2.6.4 Solution for flat discharge curves

We now look at finding solutions to the model with the above assumptions (quasi-state
discharge and Tafel reaction equations) and in addition we will assume that both the
anode and cathode materials have flat discharge curves. This last corresponds to the
assumption that Uy (csq) and Ue(cse) are only very weakly dependant on ¢y, and cse
(e.g this would be for a LiFePO, cathode). This allows us to assume that U,(csq) and
Uc(csc) are constant until fully discharged (i.e. ¢sq = 0 and ¢5. = 1) at which point the
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equilibrium potentials become large and effectively shut off the reaction rate; thus

o0, if csq <0

Ua(Csa) = = (2.79)
Uao, ifO0<ecse <1
Uco, if0<eee <1
Uc(csc) = (280)
—00, if cge >1

Solution before the particles are fully discharged. Before the particles are fully
discharged, (2.78]) can be rewritten as

_7222 _ Jexp (—3 (log (%) + Ufo))) , if 0 .< r<1, 0<ceq<1 (2.81)
z —exp(%(log(%)—V%—UaO)), if 1<x<2 0<¢ce<1
By expressing the parameters in as follows,
A = exp(—W), V =W + Ui + U — log(A),
B = exp (—V;/ - U2“0> : (2.82)

we can write the model (2.81]) with boundary conditions (2.57|(a)), (2.58{(a)), and (2.59(a),(b)),
(2.62) and (2.70) as follows

2 _B.1/2
372: - , if O<zx<1 (2.83)
O B2 if 1<w<2

subject to the conditions

Jc

i 0, 5 - 0, (2.84)
[80] = 0, [cJs=1=0 (2.85)
Ox =1 7 -

2

/cdm = 2 (2.86)

0
1 2
,8/01/2 de = ﬂ/cl/2 dr = 1. (2.87)
0 1
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With the same rescahng, the concentration in the solid equations (2.55)) and ( - with
Tafel kinetics —- can be rewritten as

(1— ey)agia = xBc V2, 0<z<l1 (2.88)
(1- ev)égf = —B? 1<az<2 (2.89)
csa(0,) = 1, cse(0,2) = 1. (2.90)

Here I is an unknown constant that we shall determine as part of the solution and 3
is a specified parameter (alternatively we could specify I and determine ). We note
that 3 is specify so that it satisfies the integral condition . Once we have solved
([2-83)-(2.86) to determine ¢(z) for a given value of 3 we can use to determine the
corresponding current, I. When we solve the second order differential system —
analytically, we obtain the implicit solution

\/7\/0 0)1/2 — c(2)1/2(2¢(0)Y/2 + ¢(x)/?), 0 < 2 < 1

2+, /2 7 c(2 )1/4 ( E gHypergeometrlcQFl ( %, g, [CEQH > - ﬁgg??g;) 1< <2

This analytical result will be compared to the numerical solution. The result is coupled
to (2.88)-(2.90) for the time dependant concentration in the electrode particles.

Numerical procedure Equations — has been solved for ¢ and q~5 using
Matlab ‘bvp4c’ (boundary value problem solver). The current, I is determined by the
Newton method which satisfies the integral conditions . The concentration in the
solid in — are numerically solved using Forward Euler method.

2.6.5 Results and Discussion

Figure shows the comparison of steady state analytic solution against nu-
merical simulation for the equation —. The graph shows that the analytical
solution compares well with the numerical simulation. The dimensionless parameters
values (refer Table for the values of dimensional parameters) used to obtain the
results are listed in Table 2.2

The results for lithium concentration, electric potential in electrolyte and concentration
of lithium in solid will be presented as a function of position (z) where the anode and
cathode current collectors are at * = 0 and x = 2, respectively, and the separator at
x = 1. Figure[2.6]shows the concentration profile of Lithium ions in the electrolyte phase
for different discharge currents I. The concentration profile has a negative gradient,
which decreases, with increases in I, until full discharge is no longer possible. Increasing

I further will drive the Lithium ion concentration to zero in the region adjacent to the
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0.3

Numerical solution

x  Analytic solution

-0.31

I I I I
1.2 14 1.6 18

SIS

Figure 2.5: The solution of dimensionless electrolyte potential, (f;(x) from (sym-
bols) analytical expression ([2.91)) compared to (line) numerical simulation using
MATLAB ’bvp4c’ at discharge current I = 1.32.

Parameter Value Figure(s)
¥ 25
€ 0.13643
te 0.38
1.32 2.5
7 1.0, 1.2, 1.4, 1.7 2.7 -6
1.0 2.8(a)
1.5 2.3(b)

Table 2.2: The values of dimensionless parameters for Figure Figure

Figure @ and Figure @

current collector at x = 2. This is thus leads to dead regions of the cathode that are
unable to discharge properly. Omnce this happens the particles in this region can no
longer be used because there are no Lithium ions in the solution to insert. The lack of
Lithium ions is called a limiting-current phenomenon and has been discussed in [36] and

will be investigated further here in for a half cell cathode.

The plots of ¢(z), (see Figure (2.7)) shows that potential, ¢(z) is high in the region
furthest from the separator in the anode and dropped to a small value near the separator,

and goes negative in the cathode.

The lithium concentration ¢, in the solid electrode particles in the anode and the cathode
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Figure 2.6: Graph of dimensionless electrolyte concentration c(x) at different
discharge currents I = 1.0,1.2,1.4,1.7 as a function of position. This analytical
solutions are obtained by equation ([2.91]).
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Figure 2.7: Graph of dimensionless electrolyte potential <;~5(a:) at different dis-
charge currents I = 1.0,1.2,1.4,1.7 as a function of position. This figure is
obtained by relation to the electrolyte concentration as stated in (2.77).

are determined by solving (2.88)-(2.90) numerically. The profiles of lithium concentra-

tion in the solid particles in the anode and the cathode are shown in Figure [2.8] at
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different discharge currents. Lithium ions are released into the electrolyte from the an-
ode particles, after which they diffuse through the electrolyte to the cathode, where
they insert into the particles. The figure shows that the rate of release/insertion are
quicker in the region closest to the separator than those in the region furthest from the
separator. Figure depicts scenario in which cell that is discharged at a higher

current (I = 1.5) than in Figure (I=1).

2.7 The half cell cathode model

A schematic of a half cell cathode is shown in Figure We use the same model
equations (2.30)-(2.32)), (2.34) and (2.36]) with the following boundary conditions at the

separator (z* = 0) and the cathode current collector (z* = L)

¢y = 0, c*|z=0 = Co, I le=0 = 1 (2.92)

oc*
=0 o=, = 0 2.93

and initial conditions
c*(z*,0) = Cy, ci(z",0) = 0. (2.94)

We nondimensionalise the half-cell model using the scaling in (2.48]). The dimensionless
model for the half cell cathode is similar to that for the full cell, except the cathode now

occupies 0 < z < 1 (rather than 1 < z < 2), and is given by

dc 0% 1
Fﬁya T o2 ;Gc(csa ), (2.95)
9j
o = c\Cs, V), 2.
2= Gelend) (2.96)
. 8;;5 o Ologc
j = 2t+c (83: (1—2ty) o (2.97)
Ol = 0, cloeo=1, dl,eg=—1, (2.98)
Oc .
92 T 0, 41 =0 (2.99)
Ocse .
(1—-e) rali —Geles,9), fl<z<?2 (2.100)
c(0,z) = 1, cse(0,2) = 0. (2.101)

During discharge, I(t) > 0 and G, < 0 and of O(1). If we discharge the cell at a

slow discharge rate, (). is small and we can once again approximate the Butler Volmer
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Figure 2.8: Dimensionless intercalated Lithium concentration distribution in the
particle for anode (0 < z < 1) and cathode (1 < x < 2), ¢gq and cs, respectively

(by solving (2.88)-(2.90) numerically) for discharge current (a) I = 1 and (b)

I =1.5. Here 0 < x < 1 is the anode and 1 < x < 2 is the cathode. The profiles
are measured at t* = 100s, 200s, 300s, 400s, ....
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equations by the Tafel

1 ~
G.= —exp <2(¢> -V+ Uc(csc))> (2.102)
by rescaling
1 -
V = —2log <Q> +V (2.103)

provided log(1/9.) >> 1. In the case of a cathode material (such as LiFePOy) with a
flat discharge curve, Uc(csc) is constant until the material is almost entirely discharge.

The reaction shuts off because of a lack of vacancies in the solid as cg. approaches 1.

2.7.1 Quasi-steady state limit ' — 0

In the limit ' — 0, (2.95)-(2.97)) can once again be approximated by the quasi-steady

equation

0%c
“Vgm = Celt) (2.104)
v 8 [ 99 dc\
TN (83: < 2t+>ax> = Gela) (2.105)

By equating these two equations, integrating in  and applying the appropriate boundary

conditions we find
c = exp(¢) (2.106)
or alternatively

¢ = log(c). (2.107)

By substituting this relation into (2.104)) and (2.102]), we obtain an ODE for concentra-

tion of electrolyte

2C ~
2362 = —iGc(C), where G(c) = —/cexp <—;(V — Uc(csc(x,t)))) . (2.108)

The boundary conditions for the above system (see (2.98)-(2.99)) are

0o

20 v Oz

@
ox

=0 (2.109)

c|:v:0 = 1’ -
r=1
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Transport of Lithium in the solid particles (as previously stated which is assumed to be

fast) is given by

(1- ev)a(;;c Jeexp <—;(V - Uc(csc(:n,t)))) (2.110)
Cselz,0) = 0. (2.111)

2.7.2 Flat discharge curve approximation for LiFePO, cathode

Once again we assume that the cathode material has a flat discharge curve so that, as

previously,

- —00, when cg. > 1
Uc(csc) - (2112)
Uy, when cg. < 1

This approximation allows the model to be simulated numerically and semi analytically.
The Tafel kinetic from equation leads to a free boundary problem, where the free
boundary x = s(t) is the front between a region of fully discharged particles (csc = 1)
and partially discharge particles (csc < 1) (as illustrated in Figure . Thus, the free

boundary reaction equation ([2.102))

0 inx < s(t)

c

G
G. = —/cexp [—;(V - Uo)] in x > s(t) (2.113)

Here we specify I and seek to determine V.

| =5(t) Distance

Free boundary

Figure 2.9: The free boundary problem; (a) x < s(t) - Cathode particles are
full with Lithium (csc = 1) and (b) = > s(t) - Cathode particles are partially
filled (cse < 1)
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2.7.3 Analytic solutions

The analytic solutions of the ODE system ([2.108))-(2.109)) are divided into two regimes;

before and after the development of free boundary.

2.7.3.1 Before the development of a free boundary

Since Uy is constant then the voltage V is also constant. Hence, the ODE system

(2.108))-(2.109)) can be written as

2
g:; _ f\@ (2.114)
K = exp (-i(v _ U0)> . (2.115)

The boundary conditions in this regimes are as follows

C‘z:O = ]-7 g; . =0 (2116)
Jc I
— = ——. 2.11
0z |,_q ( 7

Solving ([2.114)) with the boundary condition (2.116(b)) we obtain

g; _ _\/f\/g\/c(x):%/z —e(1)3/2. (2.118)

Integrating this and applying the boundary condition (2.116(a)), we get

2 K , 215 [e(x)]??
— | =a=ie(1) 73 H tric, Fy | =, =, =, | ——2
7 71: ic(1) c(x)Hypergeometricy Fy 323 | o)
2 1 1172
_HypergeometriCQFl <3, 5, g, |:C(1):| )] . (2119)

Applying the boundary condition (2.117)) to the solution (2.118) we obtain an equation
for constant K which is

312 1
= 2.120
4y 1—c(1)3/2 ( )
We determine the half cell voltage, V' from (2.120]) by recalling (2.115)); thus
312 1
V =-21 - U 2.121
oo (35 1) U (2420

Thus at zero current (I = 0), V = Uy, but as the current increases so V' decreases.
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The concentration in the solid, ¢ is obtained by solving (2.110)) numerically. Alterna-
tively, we can solve (2.110)) analytically since G.(c) is z-dependent only which gives

t\/c
(1-¢)

ol ) = exp (-i(v _ UO)> . (2.122)

Numerical solution procedure We solve the half-cell model (2.114))-(2.116)) in x
for ¢, using Matlab "bvpdc’. The current, I is specified by equation (2.117) and the

Newton method is used for the accuracy of the approximations . The concentration in
the solid problem ([2.110))-(2.111)) is solved using Forward Euler method.

2.7.3.2 After development of free boundary

When the free boundary develops the ODE system ([2.108])-(2.109)) can be written as

o2 0, if z < s(t
872 =3 e () (2.123)
x e if x > S(t)
where
1
K =exp <_2(V — U0)> . (2.124)
The boundary conditions for the region x < s(t) are as follows
0 I
oo =1, 25| =_2°, (2.125)
O =0 g
The lithium concentration in the solid equation (2.110) can be written as
0 0, if x < s(t
(1-e) 5;0 = (¥ (2.126)
=, it x> s(t)
cse(z,0) = 0. (2.127)

The analytical solution of (2.123)) for x < s(¢) (where G. = 0) with boundary conditions
(2.125) is given by

c=——c+1 for x < s(t). (2.128)
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Evaluating (2.128) at x = s(t) gives the boundary conditions for ODE system ([2.123|)
for x > s(t) which are

I dc
C|x=s(t) = —;S(t) + 1, % - =0 (2129)
I
9e _ 1 (2.130)
Ox z=5(t) v

The analytic solution of the second order differential equation (2.123)) with the boundary

condition (2.129(b)) is
Oc K /4
et el B 3/2 _ +(1)3/2
e S \/;\/C(.’L') c(1)3/2. (2.131)

Integrating this and once again applying the boundary condition (2.129(a)), we get

c(x)]3?
_\33 Irjx = —ic(1)73/4\/c(s(t))3/2—c(1)3/2 c(xz)Hypergeometricy Fy (;,;,3, Lili] )
(s 3/2
—c(s(t))Hypergeometricy F (;;’27 [ (C((lt)))} )] (2.132)

Applying the boundary condition (2.130)) to the solution (2.131)), we obtain an equation
for constant K which is

312 1
K_

T4y o(s(t)3/2 — ¢(1)3/2 (2.133)

The half cell voltage, V' is calculated by applying the boundary condition (2.130)) to the
solution ([2.131) and recalling that K is given by (2.124)).

312 1
V(t) = —2log < > + Up. (2.134)

Hence for fixed I as the free boundary s(t) increases with time, and c(z,t) decreases

with x, the half cell voltage V decreases with time.

Note that although the analytical solutions (2.119)) and (2.132)) for ¢(x) contain complex
constant, ¢ = v/—1, they are in fact real.

Numerical solution procedure We solve the half-cell model (2.123)-(2.125)) in x
for ¢, using Matlab 'bvp4dc’. The current, I is specified by equation (2.130) and the

Newton method is used for the accuracy of the approximations . The concentration in
the solid problem ([2.126)-(2.127)) is solved using Forward Euler method.
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2.7.3.3 Results and discussion

Parameter | Value Figure
0% 20
€ 0.4764 | [2.10} [2.11} [2.12] [2.13|
ty 0.38
7 0.5 2.10} [2.11} [2.12)
1 2.13

Table 2.3: The values of dimensionless parameters for Figure Figure
Figure and Figure

0.9 4

©  Numerical solution

— — — Analytic solution
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1.6 1.7 1.8 1.9 2

h|&*;‘

Figure 2.10: Dimensionless concentration profiles of the model before the free
boundary develops by (symbol) analytical solution (2.119)) and (solid line) nu-

merical simulation for I = 1.

The dimensionless parameter values used to obtain the solution are listed in Table
The analytical solution has been validated against the numerical simulation in
Figure It is observed that the numerical procedure predicts the concentration pro-
files accurately. Initially, the concentration of electrolyte is uniform, until the discharge

reaches certain time, ¢t = £ ~ 0.55 at which a free boundary develops.

Figure shows the analytical solutions ([2.122]) of concentration in the solid cg. be-
fore the development of free boundary. The figure shows that lithium intercalates into

particles near the separator faster than in other parts of the electrode.

Figure shows that for t > t free boundary propagates in from the separator. Figure
2.12(b)[shows the profiles of the lithium ion concentration, ¢, in the electrolyte for times
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Figure 2.11: Lithium ion concentration distribution in the solid particles by
equation at I = 1. The profiles are measured at t = 0.05,0.1,0.15,0.2, ....
At certain time (t = £), the concentration in the solid reaches maximum (cy. = 1)
in region near separator and at later time (¢ > #), free boundary develops. Here
t=0.55

t > t. In the region 2 < s(t), ¢ has a linear profile. While for x > s(t) the particles
are still absorbing lithium ions. As the discharge proceeds, the movement of the free
boundary across the electrode is clearly seen in this figure. At higher discharge rate,
the intercalation rate near the separator is much faster than elsewhere (see Figure [2.13).
After time ¢t = £, the ¢ reaches 1 in region near the separator and the surface reactions

cease (i.e. G.=0).

At large discharge rates, a further boundary develops close to the current collector (z =
1) where the electrolyte becomes depleted as shown in Figure The concentration in
the electrolyte is driven to zero, (this is called the limiting-current phenomenon) [36]),
this prevents from discharging further and so the intercalation reaction will cease here

too. However, we do not investigate this further here.

2.8 Summary

A detailed model for a lithium ion battery based on dilute electrolyte theory and ac-
counting for intercalation reactions on the surface of the electrode particles has been
developed. Following [74], the homogenisation technique was used to derive macroscopic

equations from a microscopic mocel. These macroscopic equations was then solved in a
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whole cell and in a half cell cathode material. An asymptotic approximation was used
to approximate the Butler Volmer equations with Tafel equations. Analytic solutions
for the electrolyte concentration, ¢ and electrolyte potential, & were derived for whole

cell system in a quasistatic regime for electrode materials with flat discharge curves.

In the half cell cathode, the system develops a free boundary problem dividing regions
that have fully discharged from those which are only partially discharged. Analytic
solutions for the electrolyte concentration, ¢ and electrolyte potential (¢(z)) were calcu-
lated; before and after the development of free boundary. At high discharge currents, the
electrolyte concentration was also found to zero near the current collector, thereby pre-
venting the solid particles to facilitate discharge. Hence, another free boundary develops

in this region. However, we do not investigate this further here.
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Figure 2.12: (a) Upper figure: the concentration of lithium in solid particles
that reaches the maximum capacity at z = s(¢). The solubility rate of lithium
no longer at the same rate at this point forward because of the concentration
profiles of electrolyte. (b) Lower figure: The concentration profiles across the
cell in comparison to the time before (¢ < ) (by equation ) and after
(t > t) (by equation ) formation of free boundary. The profiles are
discharged at I = 0.5. The arrow shows the direction of increasing time and

t = 0.64.
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(b) Concentration of Lithium ions in the electrolyte
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Figure 2.13: The concentration of Lithium in solid particles and Lithium ions
electrolyte at I = 1 discharge rate. The arrow shows the direction of time
increases (t = 0.55,0.6,0.65,...) and £ = 0.55.



Chapter 3

Modelling moderately

concentrated electrolytes

3.1 Introduction

In this chapter we discuss a description of the transport equations in moderately con-
centrated electrolytes. This is the regime in which although the ionic concentration is
low in comparison to that of the solvent, it is high enough so that significant interacting
occur between the charged ions, this, in turn, lead to non-ideal behaviour of the elec-
trolyte and in particular the conductivity. Newman has been the pioneer in developing
mathematical models of batteries in concentrated electrolyte [59]. Models based on his
approaches have been applied to a variety of systems by Newman and his co-workers
with a degree of success. However, his approach has not been widely adopted outside
his group [51] with the notable exceptions of; see [28, B0, 84, 23]. In order to rectify this

we set out here to explain his approach while also highlighting theoretical difficulties.

In most battery systems, the electrolyte solutions are at sufficiently high concentration
that they behave non-ideally as demonstrated primarily by the concentration dependence
of the conductivity [90] but also from activity coefficient measurements [78] and studies
of ion-pairing and aggregation process [103]. It is necessary to look at the behaviour of
solutions in which not only ion/solvent interactions are significant but also ion/ion in-
teractions. As they move in solution, ions tend to attract to oppositely charged ions and
this reduces the ionic mobility since paired ions have zero net charge and consequently

do not move in response to an electric field [7§].

Typically the phenomenological moderately concentrated electrolyte theory presented
here is appropriate for most electrolyte solutions but would not be appropriated for
molten salts and ionic liquids. The theory is based on the three most readily measured

experimental characterizations of an electrolyte as its concentration changes, namely

45



46 Chapter 3 Modelling moderately concentrated electrolytes

ionic diffusivity, transference number and ionic conductivity. We parametrize the model
against experimental data for the most common lithium ion electrolyte LiPFg in 1:1
EC:DMC [90].

3.2 Stefan-Maxwell equations

The Stefan-Maxwell multicomponent diffusion equation has been used by Newman as
the foundation of concentrated solution theory. The basic idea of this approach is that
mass transfer is driven by the gradient of electrochemical potential of a species and
limited by the friction with its surroundings. The balance of these two forces determines
the speed with which a species moves. The mutual friction force between species 7 and
j is assumed to be proportional to the friction forces arising from velocity differences
between the species and is proportional to the mole fractions of the two species [§]. Let

Ci

Xi = s X5 =
cr cr

s
. (3.1)
be the mole fractions of ion species ¢ and j, where cr is the total molar concentration of
all species in the electrolyte and c¢; and ¢; are the molar concentration of species 7 and
j. The Stefan-Maxwell equation give a relation between d;, the drag force exerted on
a mole of species 7 by all the other species, and the velocities of the various species. In

light of the above discussions the drag force acting per mole of species i is (see [8])

di = RTZ kinin<Vj — Vi)- (3.2)

J#i
Here v; and v; are the velocities of species ,j and RTk;;x;x; is the drag coefficient
between species i and j. Note that by the Einsten relation the diffusivity, D;; = 1/k;;
where D;; describes the pairwise frictional interactions of inter-species i and j. This drag
force d;, is equal and opposite to the force (per unit mole) arising from the gradient of

the electrochemical potential of the i'th species, u;, so that
d; = xi V. (3.3)

3.2.1 Chemical potential (51)) and electrochemical potential (;) of the
electrolyte at constant pressure and temperature

Chemical potential The chemical potential ji; is defined in terms of the Gibbs free
energy G such that at constant pressure and temperature, the chemical potential of the

1’th species is given by

[ = 4
i =g (3.4)
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For an ideal solution [4], this takes the form
fii = i + RT log(xi) (3.5)

where 1) is standard state potential of species i and the second term gives the entropy
of mixing with the other components in a mixture. However this relation is usually
insufficient because of chemical interactions with other species (including the solvent)

and so is usually replaced by
fii = 11 + RT log(ai(x:)) (3.6)

where a;(x;) is the activity coefficient; a quantity that contains the deviation from
ideality. In order to generalise this concept to charged species in an electric field we

need to introduce the idea of an electrochemical potential.

Electrochemical potential If the species is an ion of valency z; the work per mole
of ions is z;F'¢ where F is Faraday’s constant and ¢ is the local electric potential. The
electrochemical potential includes contribution from electric potential and is related to
the chemical potential by

pi = fii + zF¢ = p + RT log(a;i(xi)) + 2 F ¢ (3.7)

(see []). However, this form is only true if ¢ is the true electric potential calculated from
taking account of each ion individually. It is common to replace <z~5, the true potential, by
¢, the potential calculated from the average charge distribution of the ions. Whilst this
is often a good approximation in dilute electrolytes it is not so good in more concentrated
solutions where short range interionic forces can cause ion pairing for significant periods

of time.

At phase equilibrium the total sum of the electrochemical potentials of all species is

zero, as the free energy is at a minimum

> pi=0 (3.8)

3.3 The Stefan Maxwell equations for the binary 1:1 elec-
trolyte

Insertion of (3.3]) and the Maxwell-Stefan diffusivity D;; = 1/k;; into the Maxwell-Stefan
equation ({3.2)) yields the multicomponent diffusion system [60]

—civm = ZICW(vl — Vj) (39)
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where

clc]

Ki; = RT—59 (3.10)

cr
and D;; is the diffusivity of species 7 in species j. For the sake of clarity we will only
consider a binary 1:1 electrolyte (i.e. z4 = 1 and z_ = —1). We denote the three
species involved as the solvent, cation (P1) and anion (N ™) by the subscript i = w, p, n;

respectively. The expansion of (3.9)) can then be written as

=PV = Kpn(vp = Vi) + Kpuw(vp — V) (3.11)
—nVpn = Knp (Vi — Vp) + Knw (Vi — Vi) (3.12)
—wV iy = Kuwp(V — Vp) + Kwn(Vy — Vi) (3.13)

where ¢; = p,co = n and c¢3 = w are the concentration of PT, N~ and the solvent;
respectively. By Newton’s third law of motion, IC;; = Kj;. Addition of (3.11))-(3.13))
then leads to the Gibbs-Duhem relation

Z Civ,ui =0 (3.14)

wV ey +pVip + Vi, =0 (3.15)

This relation tells us that the chemical potentials of a mixture cannot change indepen-
dently. In a binary system, if the potential of one species increases than the potential

of the other species must decrease.

Averaged approximation to Poisson’s equation The electric potential (;3 for a

given distribution of point charges ¢; at position X; obeys Poisson’s equation

(V) = = qid(X — X)) (3.16)

where ¢ is the Dirac delta function. In an electrolyte with molar concentrations p positive
+1 ions and n negative —1 ions; an averaged approximation to the electric potential is

given by

V- (eV¢) = F(n —p) (3.17)

Here, ¢ is the averaged potential and ¢ is the permittivity. A major concern in treating

electrolytes properties using the electrochemical potential is to what extent is it reason-
able to replace q~5 in 1' by ¢ as defined by 1) By doing so, we neglect the effects

of short range ’pairing’ interactions between ions.
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Figure 3.1: Structure of the electric double layer near a solid/electrolyte in-
terface. When external electric field is applied, bulk motion of an electrolyte
caused by Coulombic forces acting on ions in the electric double layer. The
electric double layer, composed of a Stern layer(layer 1), Debye layer(layer 2)
and bulk solution(layer 3). The bottom graph shows the difference of potential
energy in each layer before the mobile ions extending into the bulk solution.

Non-dimensionalising Poisson’s equation = Non-dimensionalizing equation ((3.17))

by
T
¢= R?qﬁ*, p=Cop*, n=Con', x=La* (3.18)
we get
2 % 1 * *
D
where
L

Here Lp describes the thickness of the double layer and is called the Debye length, L is

the geometrical length scale and Lp is given by

eRT
Lp= ’/F2CO' (3.21)

Debye region is the distance over which significant charge separation can occur. From

Figure 3.1} we can see that the jump of potential drop in the Debye layer where the

concentration of ions in which neutrality is not even approximately satisfied. In general
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we don’t see charge separation over a spatial distance more than a few Debye lengths.
In typical electrolytes, the Debye length Lp is much smaller, at the nanoscale, so that
double layers are typically thin compared to most geometrical length scales. For instance,
for a solution with typical concentration of 1000molm=2, Lp ~ 10719 and width
L =1073m, we find A\p ~ 5 x 1077 [6]. We shall thus consider in the limit A\% — 0,
gives p ~ n in the bulk of the cell. Hence, we can say that the electrode charge

neutrality is almost satisfied, and this motivates us to write p ~ ¢ and n ~ c.

Charge neutrality For the above reasons it is usual to assume electroneutrality
n = p in the bulk of the electrolyte. Debye layers on the electrode are treated by the

phenomenological Butler-Volmer conditions.

Equations for the current density j In what follows we broadly follow [60] but
make their argument (which is often very hard to follow) more transparent. The total
current density, j is the sum of the anodic and cathodic partial current density (J,, =

—Fnv,,J, = Fpvy), namely

i=Jp+ 3, =F(pvp —nvy) (3.22)

By electroneutrality, and on denoting ¢ = p = n, this can be written as

j=Fe(vp —vn) (3.23)

Substitution of (3.23) into (3.11)) and (3.12) yields the system for cation and anion

species

Kpn .
—Vip = Kpw(vp — V) + Fipg.l (3.24)
Knp.
Vi = Kpw (Ve — V) — F—nfj (3.25)
where /C;; can be obtained from (3.10]) as follows
RTc? RTcw RTcw
,C — IC — . — . IC = 3.26
p " CTD pn , e CTD pw , " CTD nw ( )
Rearranging (3.24)) and (3.25)), the ion velocities are found to be
cr Dpw Dpw .
— v — 3.27
Vp =V RT w P DpnwF'] ( )
cr an an .
=Vy — — 3.28
Vn = Vy RT w Vi + Dpn F.] ( )
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Subtraction of (3.28)) from (3.27)) we obtain

cr

Dpw + an .
RTw J

(anvun - Dpwvup) - F'UJDpn

(3.29)

Vp— V=

Substituting for v, — v,, from (3.23)) into (3.29)) and rearranging yields an equation for

current density in terms of electrochemical potentials

FerDpyce
RT(c(Dpw + Dnw) + Dppw)

ji= (DnwV pin, — Doy V 1) (3.30)

where the electrochemical potential for the charged species p, and p, are defined by

(3.7) such that
fin = 1 4+ RTlog(ay,) — F, Hp = ug + RTlog(ay) + Fé (3.31)

where a,, and a, are (the concentration dependant) activity coefficients of the species N~
and PT in electrolyte. Notice that the definitions are in terms of the real electrostatic

potential qz and not the averaged potential ¢.

It is usual to define the transference numbers of cations (tJ.) and anions (t° ) with respect
to solvent velocity [4] by
‘DTL'LU

_ L R L 3.32
Dpw + an + Dpw + an ( )

In an electrolyte, at a constant concentration different ions carry different fractions of
the current because different ions move at different speeds under the same potential
gradient. Here t9r is the fraction of current carried by positive ions and t9 is the fraction

of current carried by negative ions.
Rearranging equation (3.30) to include the transference number (3.32)), we obtain

) FerDpne(Dpw + D) 0 0
— 1-—1¢ n — 1t .
j RI((Dye + Do) + Do) (1=t Viy — 5 V) (3.33)

Substituting (3.31)) into (3.33)) yields the equation of current density

_ FPerDpnc(Dyw + D) (
RT(¢(Dpw + Drnw) + Dppw)

j= Vi + T (T Tog(ay) (1 £V log(an) )3.30)

At constant concentration (¢ and w constant)

F2crDppc(Dpw + Dpw) - -
_RT(C(Dpw Do) T Dpnw)V(b = —k(c)Vo (3.35)

j=
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This version of Ohm’s Law motivates the definition of the electrolyte conductivity x(c)
by

k() = T D ( Dy + D) ) (3.36)

RT Dpnw + (Dpw + D)

Derivation of the ion velocities in terms of the electrolyte chemical potential

e and j.  Motivated by the final terms in (3.27) and (3.28) we seek an expression

for wp— Do writing it as

j _ C(Dpw + an) + w-Dpn'7 . J
FD,,w FDppwe(Dpy 4+ Diyy) Fc(Dpy + D)’

(3.37)

If we now substitute for j from (3.30]) in the first term on the right hand side of this

expression we find

j cr (anvﬂn - Dpwvﬂp) .7

= — 3.38
FDy,w RTw (Dpw + an) FC(Dpw + an) ( )
Substituting this into (3.27)) - (3.28)), we obtain

(& anDpw t(J)r .

= — \% Vv — 3.39

Vp Vuw 'LURT Dpw + an( :u’p + /‘Ln) + FCJ ( )
cr anDpw (1 - t(—)i-) .

= — - 3.40

Vn = Vu WRT Dpyy + Dy (Vitp + Viin) Fe J ( )

These expressions can be simplified further on substituting for the chemical potential of

the electrolyte . and the chemical diffusion coefficient D which are defined by

_bntip o p 2Dl (3.41)
e 9 ) an +Dpw’ .
this gives
cr to .
Vp = Vi — wRTDVM€ + F—z,] (3.42)
c 1—19
vV, = Vi — wéTDwe _ ! Fc+) (3.43)

Notably D,,,, and D,,, can vary independently with concentration without affecting the

proceeding analysis. It follows that D and t& may also be functions of concentration.
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Diffusion equation for the electrolyte concentration By electroneutrality, the

mass conservation of the ions in the electrolyte are written as

% +V-(cvp) =0 for the cations (3.44)
3}
8—; +V-(cvy) =0 for the anions (3.45)

Taking the differences of these two equations gives
V-(e(vp—vy)) =0 (3.46)

which gives the current conservation equation. On substitution for v, and v, from

(3.42)-(3.43)) into (3.46|) we obtain the current conservation condition
V-j=o0. (3.47)

Substitution for either vy, from (3.42)), in (3.44) (or for v, from (3.43)), in (3.45))) yields

Oc
a+v-(cvw)zv-(

vl - j
che)— . (3.48)

cr
wRT

The resulting model of the electrolyte is closed by constitutive equations for the current
density 7, namely (3.34)), and one for the electrochemical potential e, namely (3.41]a).

3.3.1 Summary of model for moderately concentrated electrolyte

The model has the form

vt -4
g +V-(evy) = V-(D(c)Ve) — ; J

ot
V-j =0 (3.50)

where

Jj = —k(c) (VQZ; + % ((tiVIog(ap)) —(1- ti)VIog(a@)) (3.51)
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The electrochemical potential for the electrolyte, pe, the transference number, t&, the

conductivity, x(c) and the effective diffusivity D(c) are given by

0 0
n T
fe = %—i—RTng ((anap)1/2> (3.52)
D
o _ __Tpw
W (3.53)
epF? c
K(c) = (Dpw + D) (3.54)
RT p w_’_C(DPTithnan)
2crcD (dl,
D) = =€ (an+f’>. (3.55)
w an  ap

The conductivity, x(c) in (3.54]) can also be written in terms of the transference number

(3.53]), the diffusion coefficient (3.41)

F2CT D c
- . 3.56
r(c) <2RT> 1=t \ o (%> . (356)

pn

Note that we retrieve the dilute solution conductivity for D, >> (Dpy + Dpy) that is

CTF 2Dpn

k(c) = AT (Dpw + Dy )c. (3.57)

3.3.2 An ideal solution

The solution is said to be ideal if the activities are directly proportional to the concen-

trations so that
ap(Q) ==, an(e) = = (3.59)

where cr is the total molar concentration of all species including the solvent. Hence, the
diffusion equation (3.49) and the current density equation ({3.51f) become

Oc _ cr Vti J
SV (eva) =V (DEV0> - (3.59)
~ T
V-j=0 where j=—k(c) (Vqﬁ - R?(l - ZtQF)Vlog(c)) (3.60)

3.3.3 How might we deal with the electric potential

One possible way to relate the true electric potential, qg (that appears in the electro-

chemical potentials) to the averaged electric potential ¢, which appears in the averaged
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version of Poisson’s equation
V.- (Vo) =F(n—0p) (3.61)
is to write

¢ = g(c)¢ (3.62)

where g(c) gives the fraction of unpaired ions. It is important to realise that this
is a phenomenological relationship. The reason for doing this is that it is only the
unpaired ions that are affected by the electric field and thus contribute to electrical part
of potentials of the negative ions (u,) and of the positive ions (y,). Thus from (3.31)),
tn and p, take the form

Hn = Ng + RT log(an) - an(c)¢ (363)
pp = iy + RT log(ap) + Fgp(c)¢ (3.64)

However, as we shall see, it is not necessary to do this in order to understand elec-
trolytes. This is partly because the result of solving Poisson’s equations (3.61)) is the
same whichever potential we use namely charge neutrality n ~ p and partly because

electric potentials in electrolytes are measured using reference electrodes.

3.3.4 The potential measured with respect to Lithium electrode

Note that the factor (1 —2t9) appearing in (3.60) differs from that given in [59] which
(1 —t%). This difference comes about because Newman defines the potential ¢ with
respect to a reference lithium electrode rather than using the true electrolyte potential,
¢. The calculation here is based on the work by Richardson [75]. Based on the reaction

at the lithium electrode/electrolyte interface the chemical reaction has the form
Lit +e~ = Li(s) (3.65)

where e is the electron and Li(s) is the Lithium solid. Assuming the reference electrode
draws very little current, it is in approximate thermodynamic equilibrium with the
electrolyte, so that from ({3.65) we have

Hp + e~ = KLi(s) (366)

where the electric potential of the electron is given by u.- = —F(ﬁ and the potential of

the solid Lithium gz is constant. By substituting this and p, from (3.31)) into (3.66)),

we obtain a relation between the lithium electrode potential, (5 and the true electric
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potential, g?)
~ .~ RT 1
¢=¢— T log(ap) + f(#Li(s) - Mg)~ (3.67)

On substitution for ¢ in 1D the current density equation in terms of lithium electrode

potential can be written as

= =n(e) (V6 ~ T~ ) log(ay) + Vlog(a) (3.68)
and hence
j = (o) (wB 2a- t&wlog(ue)) (3.69)
so that for an ideal solution
= —r(e) (vgfs _ %(1 _ tg)wog(c)) (3.70)

We remark that the current density equation in [59, 23] [50] is identical to the equation
(3.70). However, we found out that some authors such as [28 B6] used an incorrect
current density equation by neglecting the factor 2 in front of (1 —¢9). Note that,
in this particular electrolyte, we use for the current density equation provided

that the treatment for this electrolyte has been taken into account in the conductivity

equation x(c) (see (3.54)).

Remarks We note that equations written in terms of the lithium electrode potential
é are unaffected by ion pairing (since we write @ = g(c)¢ but then eliminate ¢ in
favour of é) We note that all experimental data are measured in terms of lithium
electrode potentials. In particular the Butler-Volmer equations are calibrated using

lithium electrode (and hence in term of the lithium potential (ﬁ)

3.4 Thermodynamic fitting to data

A lithium ion electrolyte can be fully characterized, in terms of the moderately con-
centrated solution model —, by experimental measurements of transference
number ¢9. and ionic diffusivity D(c) and conductivity x(c) as functions of concentration.
These have been measured by Riemers et al. [90] for LiPFg in 1:1 E:DMC at T' = 293K
for which it is found that transference number is constant ti{ = 0.38, and that the ionic

diffusivity and conductivity can be accurately fitted to the following functions of the
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concentration ¢ (measured in molm~3):
D(c) = 5.253 x 107%exp (—0.0003071c) m?s* (3.71)

-9.7

-9.8

-9.9
0

104¢(5.2069096 — 0.002143628¢ + 2.34402 x 107" c?)2AV tm =1 (3.72)

O Riemers

Exponential fit

1000 1500 2000 2500 3000 3500

c(molm™3)

4000

Figure 3.2: Diffusion coeflicient as a function of concentration; line represents
the fit to (3.71) and circles are the experimental data from Riemers [90].
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O

Riemers

Fitting to the data
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4000

Figure 3.3: Concentration-dependent of electrolyte conductivity; line represents
the fit to (3.72) and circles are the experimental data from Riemers [90].

It has been stated in the literature [59] that the maximum of electrolyte conductivity

for electrolytes such as shown in Figure is caused by the increasing viscosity as the
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concentration increases. The thermodynamics fitting parameters present here are valid
for LiPFg 1:1 EC:DMC liquid electrolyte at room temperature for which the transfer-
ence number t9 is found to be constant (£ = 0.38) . However, for some polymer elec-
trolytes, the cationic transference number of this system has proved to be concentration-
dependant, for instance, the dry polymer electrolyte studied by Doeff et al. [27] and the
PEO-based electrolyte studied by Fauteux et al. [34], both have t9r that varies with con-

centration. In spite of that, the three transport properties can be fitted to the resulting

model by the relation (3.56]).

3.5 Summary

Our approach consists in studying the transport of charged species in a moderately dilute
electrolyte using drift diffusion models under the assumption of electroneutrality. The
model discussed here is essentially the same as that given in [60]. We note the importance
of the choice of potential. In particular if we choose to measure potential with respect to
a lithium electrode this changes the factor appearing in front of the V log(c) term in the
equation for j. The relation between these two potential definitions has been discussed.
The crucial parameters such as the transference number, 9 (c), the diffusion coefficient,
D(c) and ionic conductivity, x(c) are calculated from the experimental data and can be
related to the three drag coefficient in the Stefan-Maxwell equations Dy, Dy and Dy,

as functions of concentrations.



Chapter 4

Review of homogenisation
technique for moderately

concentrated electrolyte model

4.1 Introduction

Recent work has shown that performance of Lithium ion battery technology can be im-
proved through emphasis on engineering the architecture of the electrode microstructure
[41]. However, it is such a complex system to account for the exact micro-geometry at a
scale of a full cell [93]. An approach based upon physical intuition has been adopted by
Newman and co-workers [28] [36] to write the macroscopic model which the parameters
in their macroscopic model are phenomenologically related to microstructure. The tech-
nique of averaging has been used by Wang et al. [92], however their resulting macroscopic
model only restricted to constant transport parameters. A more successful approach is a
multiple scales method, see for example, [19, 23] [74]. This method systematically relates
a microscale electrolyte model with the microscopic geometry of the electrodes and the

parameters in the macroscopic model are determined by the properties of microstructure.

Gully et al. [42] determined the effective transport coefficients for multiscale porous
materials used in various electrochemical system by homogenisation approach. While
homogenisation methods have resulted in the systematic derivation of macroscopic whole
cell battery models (e.g. [23] [74] [19]), a systematic study to understand the relationship
between the electrode microstructures and electrode performance has yet to be under-
taken. David et al. use an ad-hoc approach by imaging sections of commercially porous
electrode (LiCoOg) using focused ion beam-scanning electron microscopy (FIB/SEM)
and directly measure ionic pathways (permeability) and ion transport (conductivity) ex-

perimentally [86]. Similar work by Wilson et.al [96] has provided the three dimensional

59
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microstructural data for the particles that have a highly irregular shape such as internal

cracking.

We note that the length of the cell between current collectors is much smaller then the
length of the other dimensions. The observation will, eventually, enable us to write
down an approximate one dimensional averaged model for the battery. However, the

microscale model of the battery, that we consider, must be genuinely three-dimensional.

4.2 The cell scale electrolyte equations by homogenisation

technique

In this chapter we highlight the works by Richardson et al. [74] who derived the macroscale
equations for dilute electrolyte using homogenisation technique and apply their results
to the moderately concentrated electrolyte. The technique derives the macroscale elec-
trolyte equations from a microscopic model. We have written down the moderately con-
centrated electrolyte equations in previous chapter which can then be applied directly
to the microscale problem. The microscale problem is characterized by the Lithium ion
concentration in the electrolyte, ¢, and the electric potential of the electrolyte, qg The
intercalation of Lithium ions from the electrolyte into the particles is represented by a
surface reaction rate (per unit area) on the surface of the particles, G. At the microscale,
a single representative electrode particle is examined. The microscale variables include
the microscopic lithium concentration in the particle, ¢s. The rate of diffusion in the

particle and subsequent particle depends on the microscopic lithium transfer rate, G.

Here we briefly explain how the homogenisation is being considered. However, the details
of derivation and calculation can be referred to the work by Richardson et al. [74]. The
homogenisation is tackled using the asymptotic method of multiple scales and so should
really non-dimensionalise the problem as a first step. In dimensionless units in which
length has been scaled with cell width, the lengthscale of the microstructure is O(6)
where 0 << 1 and that of the cell is O(1). The homogenisation is accomplished by taking
the limit § — 0 (see e.g. [20]). Here €, is the region occupied by the electrode particles
and V), is the region occupied by the electrolyte. We assume that the microstructure
is locally periodic inside a completely periodic array of boxes, Vper U {)per, thus allowing
the microstructure to vary slowly, over the O(1) lengthscale. Figure shows one of
the periodic units that comprise the microstructure. A surface reaction occurs on the

solid electrolyte interface, 0€pe, with rate (per unit area), G.

Boundary conditions on the surface of the electrode particles Concentration
of lithium ions ¢* and current density 5% equations, within the electrolyte, are described
by (3.49) and (3.70]), respectively. On the electrode particles surface, reactions taking
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place give rise to a flux of LiT ions (but none of the N~ ions). Hence the boundary

conditions on the surface of the electrode particles (on 9, ) are given by

* * * Fp 7 x
qp . n|agper = G , qp = *Dp (Vp + ﬁng > (41)
* * FTL %
a, - nloq,., = 0, q, =-D, <Vn - ﬁVqﬁ ) (4.2)
J*-nleq,.,. = FG". (4.3)

where n is unit vector normal to the surface, p,n are the concentration of Li*™ and N,
respectively, g,, g;, are the ion fluxes of the two ion species. The parameters D), D,, are
the diffusion coefficients of species p and n, respectively. Here G* is the reaction rate of

the Lithium at the surface and is so-called Butler Volmer condition.

We note further that the total ionic flux may be written in terms of the ionic transference

number as follows:

anz + Dypqy,

q = m =(1- tg—)q; - tE)i-q:L' (4.4)

where t9r is given by 1)

General set of microscale electrolyte equations.  The electrolyte model (New-
man’s type of battery model) with constant transference number and constant concen-
tration of solvent has the form (see (3.49)) and (3.70)))

oc*
ot*

+V-¢t = 0, ¢ =-D(Ve (4.5)

V3" = 0 j=-k"c) <V<Z>* — 2%(1 - ti)V]og(c*)) (4.6)

On reference to (4.4)), the boundary conditions (4.1))-(4.3)) can be rewritten in terms of
Lithium ion flux g as boundary conditions on (4.5) - (4.6]) [75]

n-q" = (1- tg)r)G*, n-j*=FG" on  per (4.7)

*

*) at the particle surface is given by

For conservation of intercalated Lithium (c
n-q.=G" on  O0Qpe, (4.8)

Note that the asterisk is appended into the equations to denote that it is dimensional.
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We now non-dimensionalise (4.5 - (4.6) as follows:

x* = Lz, t* = 1t, c* =coc, j3*=Jj, D" = DyD,
J J J . . (4.9)
P 4 Ty Ip? TR B Kk ¢ ¢

Here, ¢y is the typical concentration of lithium ions in the electrolyte, ® is the typical
potential drop across the cell, Dg is a typical diffusivity in the electrolyte and be; is the
typical active surface area density (surface area per unit volume) of electrode particles.

T is the typical timescale for discharge of the cell and is given by

_FCOL
o

T

(4.10)

The non-dimensionalisation leads to a general set of electrolyte equations for an elec-

trolyte with constant transference number [75], namely

g? +V-q=0 where g=-D(c)Vec in Ve, (
q- n|8QpeT = 91(1 - tg)G(ca (ﬁ)a (4'12

V.3=0 where j = —k(c)(A\V¢ —2(1 — t9)Viog(c)) in Ve, (

(

~

§ o, = 92G(c, ),

where the parameters are defined as follows

1 JL _JLF$ Fo

5: = = — = —.
bl T FDooy 2T KRT RT

(4.15)

Here the size of § is about 10~2 by considering the electrode particles are all spheres of
radius a [74]. In Figure 0 measures the size of the periodic domain V), U £2},e, and

the microscale variable is defined by
T =0z (4.16)

where & is the lengthscale of an electrode particle and « is the lengthscale of the thickness
of the electrode.

The asymptotic expansions. In order to look at the behaviour of each variable

we shall write the asymptotic expansions of the variables in [74, [75]. The expansions of
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Figure 4.1: Tlustration of the microstructured boundary

c, g?), q and j in powers of § are as follows:

We note that the lithium ion concentration and the electrolyte potential are largely con-
trolled by changes on the cell lengthscale with small changes on the particle lengthscale.
The current density 7 and ion flux g shows significant changes on the particle length-
scale, i.e. are functions of & at leading order. However the leading order for the lithium
ion concentration and the electrolyte potential are cy(x,t) and ¢20(az, t), respectively, de-
pend only on the cell lengthscale & and time, and thus give a good approximation to the
averaged quantities. This allows us to use the results of the homogenisation equations
in [74] for the moderately concentrated electrolyte model. Such calculations using this
technique for the model have been done by Richardson [75]. The resulting dimensionless

equations are

Voer| Oco O < 800) o Ja,. @S
—perl Z0 2 (D) B=2 ) + g1(1 — t2)Glco, o) 2 (417
Vo] + [Oper] 0t 02 \D(@0)B g, ) Tarl = 1)G o, do) g o (417)

djo Ja,. @S . Do 0 9log(co)
o - QQG(CO, ¢0) |Vper| + |Qper|’ where Jo = BK’(CO)()\ ox 2(]‘ t—l—) ox 9418)

where B is the permeability tensor.



Chapter 4 Review of homogenisation technique for moderately concentrated electrolyte
64 model

The solution to the moderately concentrated electrolyte model.  The redi-

mensionalisation (4.17) - (4.18)) using (4.9) gives the macroscale electrolyte model (see
[74, [75]) which is in the form

gc* 0 g, 0C" 0 .
Ev% - or* <D(C )Bax*> + (1 - t+)b€tG ) (419)
5" 9¢*  2RT 9log(c*)

_ * ko * 40
9 Fb,G*, where j"= B/@(C)(am* fa (1 t+)73:1:* )(4.20)

where ¢, is the volume fraction of the electrolyte as defined by

€, = |Vpcr|

- Wperl 421
Voerl + [Zper] (4.21)

bet is the B.E.T. surface area (i.e. the surface area of particles per unit volume of
electrode) defined by

Jope 45

bop = ——per
7 Voerl + [Qper]

(4.22)
G* is the reaction rate per unit surface area of electrode particle (typically given in
terms of a Butler-Volmer equation) and B is the permeability tensor in x direction. The
permeability tensor is found by solving a boundary value problem over a period of the
microstructure (see equation (7.19) in [74]). Such a calculation has been done for various

packing of spheres by Bruna [12].

4.3 Butler-Volmer reaction equations

4.3.1 The general version of Butler-Volmer equations for insertion ma-

terial

The charge transfer at particle electrolyte interface depends upon the physical condi-
tions, the intercalated lithium concentration on the electrode surface and the concen-
tration of ions in the electrolyte is modelled by the phenomenological Butler-Volmer
equation, which can apply to an elementary or a global reaction. The reaction at the

solid /electrolyte interface has the form
Lit + e~ = Li (4.23)

which represents the (de)intercalation of a Lithium ion in the electrolyte which combines
with an electron form the electrode (left-hand side of equation) to give a an electrically
neutral atom in the electrode particle (right-hand side of equation). Let k, and k. de-

note the forward and backward reaction rate constants, respectively, then corresponding
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current fluxes are given by

FA A o
_i> = Fkoc(Csmaz — cs)ﬁ exp <—aa( ¢ +R1?Chem(c ))> forward reactionf4.24)
FA A o
7 = Fkecsexp <ac( ¢ +R1?Chem(c ))> backward reaction (4.25)

respectively. Here cs and c are the surface concentration of Li(4) on the electrode and the
concentration of Li* in the electrolyte respectively; cs maq is the maximum concentration
of lithium in the solid; (¢smaz — ¢s) is proportional to the surface density of available
sites on the electrode surface for lithium intercalation; 3 is the vacancy factor of the
electrode and depends upon the electrode material and AGcpem(cs) is the chemical
potential difference between a mole of lithium in the electrolyte and in the electrode.
Here A ¢ is the potential difference between the solid particle and the electrolyte (across
the Debye layer) which is defined by

Ap=ds— (4.26)

where QASS is potential of the electrode particle and qg is that of the electrolyte. The
symmetry factors «, and . represent the fraction of the applied potential promoting
the forward and backward reactions, respectively [7]. In the case of a simple one-electron
transfer, a.+a, = 1. Hence, we can write cy, = o and a. = 1—a. Usually a = 0.5, as the
anodic and cathodic current-voltage curves are nearly symmetrical [7]. At equilibrium,
the two partial current densities — are equal in magnitude so that

T=Y (4.27)

It follows from this and 1’1' that the equilibrium potential difference Aqﬁeq

satisfies

_ B _ (F A gf;eq + AGchem(cs))
Fkac(cs,max cs) exp ( o T
= Fkecsexp ((1 ~a) (2 0cq +RATGChem(CS))) : (4.28)
which gives
T RT kac(cs,max - Cs)ﬁ AGchem(Cs)
B0 =108 < kecs > TR (4.29)
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The net current density (for the backward reaction) at the electrode particle surface is

— =
defined by ¢ = ¢ — ¢ and is hence given by the relation

i = Fheyesp ((1 _oFLet ﬁTGmem@s)))

(4.30)

— Fhac(Csmaz — ¢s)? exp (_a (FA ¢+ AGchem(cs))> |

RT

The overpotential, 7 is the departure of the potential difference (between electrode

particle and electrolyte) from its equilibrium value and is thus defined by
n= ¢E - és + A¢Eeq (4.31)

We note that Aq@eq (¢, cs) is an easily measured experimental quantity.

It follows that (4.30]) can be written in the form

T = chcs exp <_(1 — a)F(T] _ A(beq) _ AGChem(CS)>

RT

(4.32)

Fn — AA@ — AGepem(cs
—Fkqc(Csmaz — ¢5)° exp (a ( Peq) G chem (c )> '

RT

Substituting for Aq@eq from (]4.29[) into (]4.32[) gives

= [F(k)(ka) e (e pnan — ¢)?0—)
(oo (-0-) e (af2))  ase

or equivalently by

i = ig(c, cs) (exp <—(1 - a)f;;) ~exp (ag;l)) (4.34)

where the exchange current density, ig(c, ¢s) has the form
io(c, ¢s) = [Fkol(cs)®(€) ™ (Comaz — ¢5)? 1. (4.35)
and kg is given by
ko = (ke)™ (ko). (4.36)
Equation (4.33) relates the rate of an electrochemical reaction on the surface of the
particle in terms of the concentration of the reacting species and the potential difference
between the electrolyte and the electrode [7]. If » > 0 (forward reaction), ¢ is positive

and electrons from the electrode bond to ions from the electrolyte to form lithium

atoms in the electrode. If n < 0 (backward reaction), ¢ is negative and lithium atoms
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in the electrode dissociate into an electron and a lithium ion which is released into the
electrolyte. The Butler-Volmer equation describes the general electrochemical
reaction that occurs when a solid metal is in contact with an ionic solution and the
dependence of exchange current density on concentration is given by —.

4.3.2 The Butler-Volmer equations of electrode materials for lithium
battery

The (de)intercalation at the particle surface in the battery system depends upon the
number of sites on the particle surface available for intercalation. Hence, it is necessary
to take into account the dependence of the current density on the concentration of
lithium on the surface of the electrode. In particular the reaction stops when there are
no vacant sites on the surface for intercalation or when there are no lithium atom on
the surface for deintercalation. Here we give some examples of Butler-Volmer equations
for different electrode materials such as LiCg, LiFePO4 and LiCoOs.

LiCg anode material The reaction of LiCg anode materials is given by
6C +yLiT + ye~ = Li,Ce. (4.37)

Here x is proportional to the density of surface vacant sites. Depending on the level of
intercalation of lithium ions in the graphite structure (4.37)), y goes from 0 to 1 (which
forward reactions limit up to # = 1). Thus, the Butler Volmer equations (4.33]), can be

rewritten (in which 5 = 1) in the form
= PO () )0 s — )t (exp (—al) —exp (1 - ) ) a9
It can be rewritten as
i=1o (exp <—a£;> — exp ((1 - oz)g;)) (4.39)
where the exchange current density, ig has the form
io = Fko(cs)®(©) ™ (emaz — ¢s) 7). (4.40)

LiFePO, and LiCoO, cathode materials The reaction for LiFePO4 and LiCoOs

cathode materials is given by

Lij_,FePOy + xLi*T + xe” = LiFePOy (4.41)
Li;_;CoOg + zLi" 4+ we~ = LiCoOq (4.42)
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respectively. Here the maximum level of reversible of the (de)intercalation of lithium in
cathode electrodes — is limited by structural restrictions and corresponds to
less than z = 1. Thus, the Butler Volmer equations , can be rewritten (in which
B =1) in the form

o= F(kC)a(ka)(l_a)(CS)a(C)l_a)(Cmax _CS)(I_Q)

(o (a2) e (- )2 st

i — i <exp (—ag;) —exp <(1 _ a)g;» (4.44)

where the exchange current density, i¢9 has the form

or equivalently

io = Fko(cs)®() ™ (Cmae — ¢5) 7. (4.45)

In (4.43)), the reaction rate approaches zero (switches off); when (i) the concentration
of Lithium in the solid ¢s; approaches ¢pq, for lithium insertion, (ii) c¢s reaches zero for

lithium extraction and (iii) the concentration in the electrolyte c is zero.

We denote the overpotential as

n= Qg - és - Ueq(cs|r:a0) (4.46)

where gg and ggs are the potential of electrolyte and solid particle with respect to Lithium
electrode; respectively. ﬁeq(cs’T:ao) is the equilibrium potential of the electrode material
as a function of the amount of lithium intercalated at the particle surface (¢s|r=q,) where
ag is the radius of particle. The detail equations for the concentration and potential in

the solid system is discussed in the Chapter 5.

4.4 Summary of the resulting model

The equations presented below constitute the general mathematical model of moderately
concentrated solution (with the potential <Z> is measured with respect to Lithium elec-
trode). The numerical results obtain in the next chapter are based upon these equations
with boundary conditions that change depending on the regime of battery that we are

solving. The asterisk is appended into the equations to denote that it is dimensional.
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The equations in the electrolyte (see (4.19)-(4.20])) are

* * -x atO
oc _ 8 (D(C*)Bac )J (1= )G, (447)

ot~ O ox* ) F 0
07 s . . [00* 2RT o, 0log(c*)
B Fb,,G*, where j*=—Bk(c") (63;* 5 (1 t+)78x* . (4.48)

In this study, the anode and cathode materials are chosen to be graphite (LiCg) and
Lithium iron phosphate (LiFePQOy), respectively. By taking o = 0.5, the reaction rate

equation for both material (see (4.38)) and (4.43))) is

. _ mlomlox ol _Fnt EFyp*
R R e e R -

where the overpotential, n* = ¢* — gZ;;f — Uz (S5 lr=a)-

Here G is a function of electrolyte concentration, solid concentration and the overpoten-
tial (G*(c*, ¢}
Lithium within the solid electrode particle. These will be discussed in Chapter 5.

rr—ag, @ — ¢*)). Hence, these equations couple to transport equations for

4.4.1 Boundary conditions for the full cell battery

The full cell consists of the anode, separator (which is thin) and cathode which are
sandwiched between two current collectors. Here x* = 0, L,, L. are the positions of the
anode current collector, the separator and the cathode current collector, respectively.
On the current collectors, there is no flux of Lithium ions, so that

ac* oc*

dx* *=0 7 ox* *=L¢ ( )

and in addition no current flows directly from the electrolyte into the current collectors,
thus

Assuming that the separator is extremely thin, the appropriate continuity conditions on

z* =L, are

oc*
[y =0, [ *] =0, "], =0, (0" oy, =0.  (4.52)
a a$ I Lq Lq

Lastly, the total surface reaction on all the anode particles is proportional to the applied

current while that on the cathode particles is proportional to minus the applied current

Abe, F / G (¢*)da* = — Abe, F / G (¢")da* = I*. (4.53)
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where A is the area of the electrode, be o and bes . are the BET surface area of anode

and cathode , respectively and I* is the total current flowing through cell.

4.5 Summary

This chapter reviews the derivation of the type of macroscopic model used by Newman
and co-workers to investigate battery performance [29] 28], 23] 25]. The homogenisation
technique has been successfully used in deriving the macroscale dilute electrolyte model
[74]. Here, it is extended to moderately concentrated electrolyte model. It started from a
model on the scale of the electrode particles used homogenisation technique to derive the
macroscopic model [74], [19]. Such calculations using this technique for the model have
been done by Richardson [75]. It is notable that using this technique, the permeability
factor B can be calculated from the underlying microstructure. This enables us to
derive the effective conductivity and an effective diffusion equation for the Lithium ion

concentration within the electrolyte in terms of the properties of the microstructure.

The advantage of the homogenisation discussed here lies in the fact that the effective
parameters in the Newman modelling framework can be derived directly from analysis
of the microstructure. In addition we described Butler Volmer reaction kinetics for the
intercalation reaction at the solid electrolyte interface. In what follows we will use the
Butler Volmer equations for the model simulation in Chapter 7 and Chapter 8.



Chapter 5

Models for electrode particles

5.1 Introduction

Lithium diffusion within electrode particles plays a crucial part in the behaviour of
Lithium ion batteries. Phase transitions occur during intercalation of Lithium in the
solid electrode. Typically, phase separation occurs between regions with different Lithium
content (e.g. for olivine phosphate, regions between FePO, and LiFePO,4). Many elec-
trode materials exhibit multiple phases with varying composition [35]. A popular cath-
ode material, the olivine phosphates, exhibit two phases as reported by Goodenough
[65] (18], [66], while the standard graphite (anode material), exhibits three or more phases
[35]. However, the treatment of phase transformations pose a major modelling chal-
lenge. Furthermore, the dynamics of phase separation driven by electrochemical re-
action is poorly understood. In this chapter, we present theories and summarize the

experimental work on such phase transformations in some electrode materials.

5.2 Two phase Lithium insertion/extraction

Electrode material which perform a two phase transition during charge and discharge
commonly exhibit flat discharge curve characteristic. Examples of such materials in-
clude lithium iron phosphate (LiFePOy,) and lithium titanate (LisTi5O12) [76]; they are
characterised by a wide potential plateau between the intercalated and deintercalated

states.

The study of the two-phase system (FePO4 to LiFePO,) based on three dimensional
shrinking core model was initially suggested by Padhi [65]. Subsequently the math-
ematical model was developed by Srinivasan and Newman [84]. The shrinking core

model assumes a three-dimensional growth mechanism. Intercalated Lithium from the

71
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outer surface of the spherical particle, causes phase separation into a core-shell struc-
ture. Recently, Farrell et. all [23] incorporated a shrinking core model into a battery
model and used it to simulate the discharge of a LiFePOy4 cathodic material. Interesting
result from the particle scale of the simulation is discussed in [23] and the model shows
good agreement with the experimental data taken from Srinivasan and Newman [84].
The performance of LiFePO,4 can be increased by shrinking the sizes of the individual

particles through which the diffusion of lithium takes place.

The second approach, the phase field modelling method, employs a phase field variable to
describe a smooth transition from one phase to another. Phase field models are widely
used to describe phase transformations in material science but are relatively new to
electrochemistry [40]. This method has recently received growing attention particularly
in the context of LiFePO4 materials. Ferguson and Bazant [40] have developed a general
phase field theory of ion intercalation kinetics. This theory is based on the Cahn-Hilliard
model, and incorporates a heterogeneous charge-transfer reaction rate via a generalized
Butler-Volmer equation [I00]. The study has led to a better quantitative understanding

of phase separation dynamics in LiFePO4 nanoparticles.

Recent experimental evidence has pointed out that the lithium diffusion in LiFePQy is
one-dimensional [2, [I7, B] occurring primarily along the b-axis of the crystal. Chen [17]
has demonstrated that the LiFePO,4/FePOy, interface moves perpendicular to the b-axis,
consistent with rapid Lithium diffusion along that direction. The resulting evolution
gives rise either to fully intercalated, or fully empty, 1D Lithium channels. This finding
shows that the shrinking core model is not an accurate representation of the phase-

change process.

Owen et al. [46] have observed that the solid state and interfacial processes can be
neglected during fast discharge of LiFePOy4 composite electrode composed of very fine
electrode particles (particle size < 1um). They suggested that for thin electrodes con-
taining large particles of active material the effect of particle size, i.e. solid state diffu-
sion, becomes increasingly significant. Furthermore, Bazant et al. [40] have developed a
general continuum theory for ion intercalation dynamics in a single crystal based on an
existing phase field formulation of the bulk free energy and they found that the phase
boundary extends from surface to surface along planes of fast ionic diffusion, consistent
with recent experiments on LiFePOy [2]. It remains an open question what happens in

real electrode particles composed of multiple crystals of LiFePOy
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5.2.1 ”Shrinking-core” model

Newman and Srinivasan demonstrated the ”shrinking core” path dependence phenomenon
[84], and results from the mathematical model is compare reasonably well to their exper-
imental discharge curve. In a spherical particle, ”shrinking core” diffusion is modelled
as a central sphere outside of which intercalated Lithium undergoes isotropic linear dif-
fusion. This model assumes a growing shell of one phase surrounding a shrinking core
of the other phase, with the shell and core phases determined by the direction of the net

lithium flux.

e Li’ e Li*
Q\ \ n
0 l
Full charged, 1 = 1, t=1 t=0h Full discharged, ¢ = 1,
s(t) 5 (t)

| | | |

| |
g | | s .
2 | | I:I Lithium poor region
<
2 ] — e
5 0 dy 0 ap I:I Lithium rich region
£
3
&}

Radius,

Figure 5.1: Illustration of the shrinking-core model with the side by side of
the two phases and the movement of the phase boundary. The processes dur-
ing discharge are illustrated and the pictures below showing concentration of
Lithium as a function of r for different times. The dark region represents the
Lithium-rich region and the bright region represents the Lithium-poor region.

As current is passed during discharge, an electrochemical reaction occurs at the surface
of the particle in which lithium is intercalated and is then transported to the interior.
Further insertion of Lithium forms a new phase that results in a shell of a Lithium-rich
phase enclosing the Lithium-poor phase. As the electrode is discharged further, more
Lithium is inserted and transported towards the particle centre which leads to a shrink-

ing core phenomenon as depicted by Figure [5.1

Fick’s second law is use to describe the diffusion in the lithium-rich shell as

oc 0%ct  2Dp; oct

s _ .
ot g2 r¥  or*’

s*(t) <1t < (5.1)

where ¢} is the concentration of the intercalated Lithium in the solid, Dy, is the diffusion

coefficient of Lithium in the solid, t* is time and r* is the radial coordinate. Boundary
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and initial conditions on the above problem are as follows

C:’(t*:o) = Ceq (5.2)
_p,, %% e (5.3)
Li or " ag - .

where ag is the radius of the particle. The reaction current, G* at the surface is given
by a Butler Volmer equation. We note that, for the Lithium to be inserted into the
particles, G* has to be negative and G* = 0 when ¢, reaches ¢z (Cmaq 18 the maximum
lithium concentration in the electrode material). The position of the unknown interface

r* = s*(t*) is evaluated from a mass balance condition at the interface, written as

C: rr=s*(t*) T Ceq (54)
ds*(t*) act
v — - D, % : :
(ceq = c0) =g Ll W >

Here cq is the concentration at the interface in the Lithium-rich phase, while ¢g is the

concentration throughout the lithium poor phase so that
cs = ¢, for r* < s(t") (5.6)

where ¢y = 0.02¢;44 is the concentration of the Lithium-poor phase [84].

When the core is consumed, then the whole electrode is uniformly in one phase, thus
the boundary condition ([5.5) is replaced by

oct
D;,—= =0 5.7
Ligpx =0 (5.7)

We note that the problem described above is for battery discharge. As the battery
is charged we might expect a similar free boundary problem, however it is not clear

whether the free boundary will be stable.

Nondimensionalisation = We non-dimensionalize the above system as follows:
™ =agr, &= ceq+ (Cmaz — Ceq)Cs, s* =aps, t*=71t, G*=GoG (5.8)

and choosing the time scale for the problem to be

Ceq — €0 CL%

T=— ,
Cmax — Ceq DLi
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Thus the dimensionless problem of "shrinking core” diffusion model (5.1)-(5.7) is as

follows

dc 10 Oc
LA (i P 1
ot r2 or <T 87") ' (5-10)
Ocy Ocs
or r=1 QG7 or r=0 0’ (5 )
cS‘r:s(t) = 07 (512)
ds Ocg
— = - (5.13)
dt 8T T‘*S(t)
csli=o = 0. (5.14)
with
cs = -0, if o <s(t). (5.15)

The dimensionless parameters @ and T are defined by

0-— aoGo v _ Cea—Co
(Cmaz - Ceq)DLi Cmax — Ceq

(5.16)

The parameters used in the model are listed in Table [5.1] The reaction rate switches off

when cg reaches 1 which motivates us to write

G, if cs <1
G=10" (5.17)
0, if cs = 1.

where (G1 is constant. The electrode variables for LiFePOy4 electrode are listed in Table
Based on those values, the size dimensionless parameter T is T ~ 20. We note
that, @ depends upon the typical reaction rate Gg which varies at different discharge
currents. For example, if the cell is discharged at 1C discharge current (I = 13Am™2),
the typical reaction rate is Gy ~ 3 x 107 which gives Q ~ 0.4, and at 5C discharge
rate, Q ~ 2. Thus, the size of Q can be fairly approximated to be O(1).

Parameter Value Units Reference
Radius of particle, ag 5x 1077 m [84]
Maximum concentration in LiFePOy, ¢z 20950 molm ™3 [23]
Concentration of the Lithium-rich phase, c¢q | 0.9525¢ma, | molm™3 [23]
Concentration of the Lithium-poor phase, ¢y | 0.02¢mez | molm™3 [23]
Lithium diffusivity, Dr,; 8x 10718 | m2s! [84]

Table 5.1: Parameter values used in the model.
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5.2.1.1 Solution Procedure

The moving boundary problem is solved using the Landau transformation [84] to make

the coordinates fixed by substituting

_r—= s(t)
1—s(t)

X (5.18)

into ((5.10)-(5.13]). Therefore, we obtain the conservative form of ¢s across a fixed domain
(0 < s(t) < 1) as the following

(1= 5(6)) + s(O)x = 1)L~ s(0) 52 5+ (1= 5(6) + (1)1 = s(8)* 57
—27(1 - s(t))gij + (1= s(t) + s(t)]gQXC; (5.19)
cs = Oatt=0 (5.20)
ey = 0 (5.21)
‘?;; = a-smea (5.23)

The porous electrode model is solved with spatial discretization along the r coordinate
with finite difference technique. Note that the solution for (5.19)-(5.23) is for the region
s(t) < r < 1. In order to plot the result within the r-coordinate (in which 0 < r < 1)

and to see the moving phase boundary, we rescale the solution as follows

&, = (C’"‘” L P > (5.24)

Cmazx Cmazx

which gives

0.02, if  0<r<s(t)
és=1<0.9525,  if  r=s(t) (5.25)
0.9525 < ¢5 < 1, it s(t) <r <s(t)

Here, ¢; = 0.02 is the dimensionless concentration in the Lithium-poor region (r < s(t),
¢s = 0.9525 is the dimensionless concentration at the free boundary (r = s(¢)) and ¢; = 1

is the dimensionless maximum concentration.

Figure [5.2] presents a sketch of the lithium ion concentration profiles inside a LiFePOy
particle during discharge. The phase between Lithium rich ¢; = 0.9525 and Lithium
poor ¢, = 0.02 are separated by a phase boundary which moves toward the center of a

particle as the intercalation process proceeds which r = s(t) is where the position of the
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phase boundary and s(t) is a function of the discharge time. Note that s(0) = 1 is the

initial position of the phase boundary.

0.9525
0.9

0.8 b

A

increasing

Figure 5.2: The lithium concentration profiles in solid particle during dis-
charge where Q@ = 1 and T = 20. The vertical lines indicate the po-
sition of the phase boundary. When the surface concentration reaches 1,
the reaction rate ceases hence stop the discharge. The times plotted are
t =0.01,0.02,0.03,0.04,0.05, - - -.

5.2.1.2 Asymptotic solution of shrinking core diffusion

Here we look for an asymptotic solution to (5.10))-(5.13) with @ = O(1) and in the
physically relevant limit Y > 1. Expanding in power of 1/Y as follows

1 1
Cs = Cq0 + 7651 + oy s(t) = so + 751 + ... (5.26)

we obtain the following leading order problem

1 a 28050 .
Csoly—sy = 0, (5.28)
Ocso
= = 2
o =96 (5:20)
dSO . 6030
&= o (5.30)
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Solving the system ([5.27)) to (5.29) yields the solution

cs0 = QG (1 - 1) (5.31)

sg T

Now we make use of the solution to solve (5.30) with initial condition s¢(0) = 1 gives us

the free boundary behaviour which is

so = (—3QGt +1)1/3 (5.32)

At the next order O(1/7Y), the system is

8c50 10 28081
=2 5.
ot r2 Or (T or )’ (5.33)
8650 8651
sl|p= = 0, = 0, 5.34
¢ 1’7“—51 Tl or r=sg or r=1 ( )
dsi Jcs1 82050
— = —_— 5.35
dt or |,—g, 1 or2 r—so (5:35)

Substituting (5.31)) into (5.33]) with boundary conditions ([5.34]), we obtain the next order

solution

1/r* 1 & 1)\ Q%G? G
— (= o 1) Q6 (5.36)
2 T 2 S0 80 84
The solution ((5.36|) leads us to find the next order solution of the free boundary interface
(5.35)) with s1(0) = 1 which is

S1

s3 <(—1 + 59Gt) QG

-2 = + QG) (5.37)

Summary. In summary the solid concentration and the free boundary interface take

the form

2 2 22
CS:QG<1_1>+11<T+1_80_1>QG _31Qf+0<1), (5.38)

so T T3\ 2 r 2 S0 sg 5§ T2
2 ((-14+50Gt)QG
so = (—3QGt +1)'/3, L= % <( + Scjf )Q + QG> . (5.39)
0

Figure[5.3|shows that the asymptotic with two term demonstrates a good agreement with
the numerics except at later time, it underestimates the solution. From the equation
above, we highlight that as the interface approaches zero then 1/sy becomes a large

number and the asymptotic solution breaks down.
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Figure 5.3: The comparison of lithium concentration profiles in solid particle
during discharge (Q = 1, T = 20) between the numerics and asymptotic so-
lutions (see —). The solid lines represent numerics, and dash lines
represent asymptotic solutions.

5.2.2 Phase-field model

In recent years, other phase behaviour has been demonstrated experimentally [2], 26, [17]
hence the ”shrinking core” theory remains questionable. For example, Bazant et al.
[40, 10I] has predicted the phase behaviour theoretically using a Cahn-Hilliard phase-
field model in isotropic nanoparticles with boundary condition for reaction kinetics based
on local chemical potential differences and concentration gradient contributions [40].
They found that intercalation phase boundaries move along planes of fast ionic diffusion

which agrees with the ”domino cascade” model by Delmas et al. [26].

In 2011, Bai et al. [5] have extended the model for reaction limited intercalation in
anisotropic nanoparticles. The phase separation is neglected in the y-direction ([010]
direction) due to fast diffusion along this axis that causes the bulk concentration equi-
librates quickly. Bai [5] proposed that phase separation could occur at low currents
while at large currents, the particle fills homogeneously, hence suppress phase separa-
tion. Thus, the theory suggests that phase separation does not occur during normal
battery operation which can be explained the high-rate capability of LiFePOy4. The
transition from fully phase separation to no phase separation is captured in the simula-
tion for filling at different currents are shown in Figure . At low current, the phase
separation is clearly appear and at slightly above the critical current, phase separation

is hardly visible.
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Further analysis has been done by Bazant et al. [63] in investigating the dynamics
of interparticle mosaic instability in phase separating electrodes during discharge and
charge. At low currents, the model assumes the nanoparticles (which have large surface
area per volume ratios) fill preferentially, hence no phase separations occur within the
individual nanoparticles. While at high current, the current density is more homoge-
neous throughout the electrode hence the phase separation is suppressed in individual
particles. Furthermore, the diffusion time of lithium in the particles is much faster than
the transport time of Lithium ions in the electrolyte. Hence, they used Fick’s diffusion

model for the transport of lithium in the particles.

~ ==

Figure 5.4: Phase boundary morphology that occurs between FePO, (black
regions) and LiFePOy (grey regions) as discharge rate is increased. From left
to right; (a) -=0.001, (b) £=0.01, (c) £=0.033, (d) {-=0.05. Reprinted from

[63].

Based on the above works, we came to the conclusion that when the particles of the
electrode materials are sufficiently large, the particles tend to phase separate into their
different stable phases generating interfaces, and that the ”shrinking core” model may
still provide an appropriate description. But for nanosized particles, phase separation is
suppressed . In Chapter 8, we consider cathode composed of nanosized LiFePO4 particles
and note that since the diffusion timescales within the particles are small in comparison
o those in the electrolyte the actual behaviour in the particles is unimportant. This
motivates us to use a simple model for lithium transport in the electrode particles and
incorporate this into a battery model in order to simulate the discharge curves in a
LiFePOy4 half-cell.

5.3 More than two phases

Certain material exhibit multiple phases a common example being graphite [76] 35].
However, the diffusion of lithium in graphite (Li;Cg) is not well understood and still
under investigation, but some work has been done to model the diffusion and intercala-
tion of lithium into the electrode material. Roscher has reported that graphite exhibits
three or more phases (probably five) that can be inferred from several potential plateaus
in the equilibrium potential curve of graphite [76]. Recently, Ferguson and Bazant [35]
developed a predictive theory i.e a free energy model for three phases graphite. They
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have approximated only the three phases at x ~ 0, z ~ 1/2, and = ~ 1, as z in Li,Cg
varies from 0 to 1. The comparison between simulation and experiment shows a good
agreement. To date, this is the only model that has demonstrated the diffusion in the
solid material for more than two phase transformations. However when there are many
phases a nonlinear diffusion model may actually provide a very good phenomenologi-
cal description of the behaviour. This is demonstrated in Chapter 7 where we show
good agreement to experimental discharge curves in a graphite half-cell using a lithium

concentration dependent diffusivity.

5.4 Diffusion equation in the spherical coordinate

In this section the solid phase is assumed to comprise of identical spherical particles of a
predetermined size and diffusion in the radial direction is assumed to be the predominant
mode of transport. In Li,Cg, we are motivated to neglect the phase transformations
since no phase field model is able to adequately describe these phase transformations.
Furthermore, it is common to model lithium transport in the electrode particles by
diffusion equations (in fact typically linear diffusion) [37, 28 [72] especially for graphite.

A generic diffusion model for lithium transport in a spherical electrode particles is

oc 1 0 9 oc
S — * D* * S 540
ot*  r*2or* (T s(e5) 87“*) (5.40)
subject to the
oct oct
= = —Di(ch)— =G". 41
Gir. =0 Die)gE|  =a (5.41)

where the last condition specifies the lithium flux on the particle surface r = a in terms

of the reaction rate G.

Current density in the electrode We highlight that, in dilute electrolyte model,
the potential in the electrode particles is taken to be constant (see Section 2.3) in as-
sumption that the electronic conductivity in the electrode particles is large. However,
in true battery behaviour this potential may varies across the length of the cell. In this

section, we discuss the addition of this parameter into the model.

The total current density, j;,, is conserved in the two phases (electrolyte and electrode

matrix phase) so that

Jiot = 3" +Js (5.42)
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where j* is the current density in the electrolyte and j¥ is current density in the electrode

matrix. The current flowing in the solid phase is usually modelled by Ohm’s Law

" 09:
Js = —0s &Ci (5.43)
where current conservation in the matrix is given by
973 .
61‘8* = —Fb,G". (5.44)

Here o, is the conductivity of intercalated Lithium in the solid phase and qu is the

solid potential. These couple to particle equations that describe the concentration of

lithium within single electrode particles at position z* and the electrolyte equations

0
4.47)-(4.4%). Note that (5.44) is to ensure that total current conservation Jtot _ 0

oxr*

>k

since ai = Fb,G*.
or*

5.5 Summary

Electrode materials such as Li,FePO,4 and Li,Cg exhibit phase transformations dur-
ing the intercalation reactions at the solid phase. Phase transitions usually appear as
plateaus in the open circuit potential of the materials as a function of lithium concen-
tration in the material. The ”shrinking core” model was initially considered the phase-
separating mechanism in LiFePO,4 material. However, recently it has been demonstrated
experimentally that the behaviour is not an accurate representation of the phase change
in electrode nanoparticles. From experimental observation, the orientation of the mov-
ing phase boundary in LiFePOy4 crystal is one dimensional and the particle is most likely
to be either fully intercalated or fully deintercalated. Furthermore, in nano-structured
electrodes the intercalation reaction occurs predominantly at the particle surface, and
can be approximated by fast diffusion in the solid where the particles are sufficiently
small (refer to Chapter 8). Analysis of phase separation models leads to the conclusion
that the phase transformation is extinguished [63] at the high reaction rates which occur
in normal battery operation. Only at very small currents in large particles should phase

separation play a major role.

For the Li,Cg, up until now, there is no phase transition model that can adequately
describe its multiple phase transitions. Therefore, it is usual to describe (de)intercalation
of Lithium in the solid by a nonlinear diffusion equation (see Chapter 7). Previous
works [see [37], [85],[72]] have been fitted to the experimental data assuming only linear
diffusion in the electrode particle (although as we shall show this leads to disparities

between the experimental data and the model).



Chapter 6

Numerical Procedure

6.1 Introduction

Modelling of battery systems involves the solution of complicated systems of equations
that incorporate the electrochemical kinetics and the transport phenomena in the elec-
trolyte and within the electrode particle. Analytical solutions in such system are avail-
able for several limiting cases. Doyle and Newman [3I] obtained analytical solutions
in the following cases: (i) when transport in the electrolyte phase is limiting (assumes
constant diffusion coefficient in the electrolyte and fast diffusion in the solid phase); (ii)
when diffusion in the solid phase is limiting (assumes the electrolyte concentration is
uniform and the reaction occurs uniformly throughout the electrodes), and; (iii) when
ohmic losses in the reaction zone dominate (assumes fast diffusion in the electrolyte
and electrode particles). Darling and Newman [25] used Laplace transforms to obtain
analytical solutions for the short time behaviour of a one-dimensional lithium ion cell.
Doyle’s [28] approach to describing the transport of lithium in the solid phase is to as-
sume linear diffusion and to use the Duhamel’s superposition integral [45] to obtain the

solution.

Numerical methods are more flexible. The simplest, and most common, numerical ap-
proaches are based on finite difference approximations. For example, Newman’s BAND
subroutine which is written in FORTRAN [60] has been used for simulating batteries. It
is a routine for solving a set of n coupled, linear, second order differential equations and
is suitable for solving initial boundary value problems which are formulated as matrix
equation using finite difference method [56]. White [94] provides an extension of the
BAND subroutine for solving nonlinear finite difference equations. The inefficiencies of
this subroutine is that the coefficient matrices have to be supplied to the subroutine ev-
ery time BAND is called [9]. The battery model simulations in ([31], [25]) incorporate a
single particle size with the same surface area across the electrode. However, these works

by Newman and his co-workers ([31], [25]) use a finite number of particles which is not
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self-consistent with the homogenisation averaging procedure used to derive electrolyte
equations. In [85], Newman and Srinivasan use a two particle size distributions in order
to achieve good comparison between their model and experiment. Recently, Farrell et al.
[23] incorporate two particle sizes with constant diffusion in the solid in their three scales
battery model simulation and discretised the system of equations using a finite volume
method. They solved the resulting nonlinear system of differential-algebraic equations

using an implicit differential-algebraic solver.

The system of partial differential equations, describing the evolution of: (i) concentration

gradients of lithium ions in the electrolyte (c¢*) ; (ii) the electrolyte potential (¢*) (see

(4.47))-(4.48)); (iii) the concentration of lithium ions in the solid (¢¥) (see (5.40)-(5.41)),
and; (iv) the solid potential (¢*) (see (5.43)-(5.44)) in time and space are certainly not

trivial to deal with even using numerical techniques. The main source of this difficulty
is the coupling of the solid and electrolyte phases via the (de-)intercalation reaction rate
equation, G*(c*, o A:, ct), (see ) This reaction rate is applied on a continuum basis
across each electrode, i.e. at each and every station in z (distance through the electrode)
we assume that there is a representative particle in which lithium is transported by
diffusion. This, combined with our assumption that the transport in each particle is
radially symmetric, means that ¢ has a 2D spatial dependency (i.e ¢& = ci(a*,r*,t*))
where r* is the radial position within a given particle. Thus, the complexity of the system
increases when the number of stations in = (and hence the number of representative

particles) increases.

Here, we elect to find approximate numerical solutions to the dimensionless systems
(7.16)-(7.25)), using the method of lines (MOL). In order to help the discussion of the
method we shall assume here that the diffusion coefficient in the electrolyte D(c), the
conductivity x(c), and the diffusion of Lithium in the solid Dg(cs) are all constant.
However, the same procedures can be applied to the more general model —
with some relatively minor modification. The MOL methodology essentially converts a
system of PDEs into a (large) coupled system of (in some sense equivalent) ODEs by
approximating spatial derivatives using finite difference approximations. The resulting
system of ODEs can then be evolved forward in time using standard ODE solvers.
Note that the numerical techniques discussed in this chapter will be applied later in the
thesis to the dimensionless half cell model of an anode (see Chapter 7) and a cathode
(see Chapter 8). However, we stress that they can readily be adapted for use in other

scenarios.

The resulting scheme provides a fast and numerically efficient of solving the model. The
complete discharge simulation with n = 100 spatial points in x and r, is able to deal
with internal boundary layers and runs in less than one minute. This scheme could for
example fairly easily be generalised to ellipsoidal shaped particles or to particles whose

size distribution depends upon x.
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In §6.2, we demonstrate the MOL approach using the simple example of linear diffusion
within a spherical particles. Then, in §6.3, we discuss some of the subtleties of applying

the technique to our half cell model of an anode.

6.2 Method of Lines

The MOL is the central approach used in the numerical methods developed in this
work. The power of this technique is that it allows one to decouple the spatial and
temporal discretisation processes. It enables us to convert partial differential equations
(PDEs) into a large set of ordinary differential equations (ODEs) that are approximate
the PDEs. To demonstrate the MOL technique we consider the following example of
the linear diffusion equation in a ‘slab’ geometry with an insulating boundary condition
at x = 0 and a specified outward flux of u at z = 1. Initially the concentration of u is

taken to be unity. We write

ou  0%u
o 6.1
ot 0x? (6.1)
with boundary conditions and initial condition
ou
-0 = 1 — =—1; 6.2
U’x—(] ) Oz - ) ( )
u|t:0 = 1. (63)

First, we introduce a set of points in space, x; for ¢ = 0,...,n , at which the spatial
derivatives in equation will be approximated using finite differences. For ease, we
take this spatial grid to be uniform, i.e. we take x; =i x dx where dx = 1/n. However,
one could easily generalise to a non-uniform spatial grid if, for example, a higher spatial
resolution is required in given parts of the spatial domain. We also introduce the fol-
lowing notation for the values of u at each of the points on the spatial grid: u|z—z;, = u;.
The second order spatial derivative, at each points z;, can then be approximated by the

central difference

82u ~ Ui41 — 2’LLZ + Uj—1

ox?|,_. da?
<

(6.4)

Employing this approximation at each of the points x; converts the PDE (/6.1) into the
following set of n coupled ODEs

du; _ wit1 — 2u; + Ui
dt dx? ’

i=1,2,---n. (6.5)
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At both ends, we discretise the boundary conditions (6.2)) as follows

up =1, at =0 (i=1),

Uptl = Up—1 — 20, at =1 (i=n). (6.6)

so that when we substitute the last into (6.5]), with ¢ = n, we can eliminate the fictitious
point n + 1 to obtain

dup, — 2(up—1 — up) 2

— = - — 6.7
dt dx? ox (67)
The system of equation (6.5)) can then be written in form
B 10 0 o ] w ] (0]
Uy 1 -2 1 .0 ... U
d 1 1
il - — 6.8
i 522 "5 (6:8)
Up—1 e e 1 =2 1 Up—1 0
| un | e 2 =2 |y | -2
or more concisely as
ou
— =B 6.9
5 utg (6.9)

where B is the differentiation matrix and g is the source vector. This system can then be
solved with an appropriate time integration method. In this work, the systems of ODEs
arising from the MOL will be solved using an existing adaptive initial value problem

solver, namely the Matlab routine odelbs.

6.3 Development of sparse matrix for the system

The dimensionless system — which we give in the next chapter is a coupled
system of non-linear reaction-diffusion equations describing the discharge of a half cell
anode. Note that in order to easily illustrate the method, we take the concentration
dependant variables, D(c), k(c) and Ds(cs) in the system to be constant and equal to 1
and all the dimensionless parameters to be 1 but that a similar procedure can be applied
to the real system with some minor modifications. The full system involves PDEs for
diffusion in the solid - which has a 2D spatial dependacy; i.e. it is dependant
on both z and r, where 0 < x < 1 is the position through the electrode and 0 < r <1

is the radial position within a particle.

We begin by setting up n equally spaced grid points across the spatial variable z. At
each of these stations in x we also consider a representative spherically symmetric solid

particle which is discretised using m grid points in the radial position within the particle,
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r. We introduce dz = 1/n and ér = 1/m so that our discretisation points are located at
x; = ix0x and rj = jxdr. At each of the (n xn) discretisation points spatial derivatives
in the system — (or (m x m) in the system ) are approximated using
the central finite difference method. For example, spatial derivatives in x of a generic

dependant variables u are approximated using equation (6.4). Carrying out this process
on the system ([7.16))-(7.21)) will lead, as we shall show, to

du
Ma = Au + f(x,t). (6.10)

Here, w(31m)nx1 is the solution vector, M ((31m)nx(3+m)n) 18 the time-dependent mass
matrix, A(34m)nx(3+m)n) 18 the differentiation matrix and F((3+m)nx1) 18 the source
vector account for the reaction terms and the subscripts give the size of the matrices.
The diagonal entries of the mass matrix are such that M;; = 1 if the i-th equation is a
PDE and M;; = 0 if the i-th equation is an ODE. Note that each of it’s elements are

constant. We now discuss construction of the matrices M, u, A, and f for our system

of PDEs ([7.16)-(7.25)) if we discretised with n grid points.

6.3.1 The development of the solution vector u

The equation system consists of electrolyte concentration, ¢, electrolyte potential, ¢E,
clectrode potential, ¢, (which are functions of z and ¢) and concentration of Lithium in
the electrode particles, és (which is a function of r,x and ¢). The solution vector w of

Ci, qu-, gZ;Si and é;z (where the subscript ¢ denotes the solution for the particle at x = iz
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and the superscript j gives the radial position such that r = jér) is formed as follows

\

]
Solution for ¢;
Cn
n )
b1
: Solution for ¢;
: ,
(bsl
: Solution for g
Psn
v el \ (6.11)
sl
: Solution for particle 1 6{;1 (j=1,---,m)
¢
Solution for particles 2,--- ,n — 1, 6:7% (i=2,---,n—1,7=1,---,m)
Con
Solution for particle n, . (j=1,---,m)
éTL
=S ((3+m)nx1)

In order to make the assembles of the matrix ODE system more transparent we shall
split the system into its constituent parts (equations for (I) electrolyte concentration,
(IT) electrolyte potential, (III) solid potential and (IV) lithium concentration in the

electrode particles) in §6.3.2 - §6.3.5 before showing how to assemble the equations in

the form (6.10) in §6.3.6.

6.3.2 The development of matrices for electrolyte concentration, c

The equation for the electrolyte concentration, ¢ in ([7.16)) is a time dependent PDE, and

hence the mass matrix for this particular equation is

Me=|: + 0 0 (6.12)
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The discretisation of ¢ (7.16)), with boundary conditions (7.19| (a))-(7.20 (b)), by central
difference (6.4)) gives the following differentiation matrix

1 0 0
1 -2 1
1 :
ACZ@ R P . (6.13)
1 -2 1

(nxmn)

The reaction terms in the equation is written in matrix form as

G(Cl, éﬁv ¢E1 - (551)
G(CZa égéu ¢2 - ¢82)
fe= : (6.14)
G(Cn—lv é:zn—l)’ an—l - és(nfl))
G(CTM é?}w ¢n - ¢Sn)

(nx1)

Summary The discretisation of (7.16)) can thus be represented by the matrix system

du.
M2 = A, + £, (6.15)
dt
where
C1
C2
U, = : (6.16)
Cn—1
n / (nx1)

~

6.3.3 The development of matrices for electrolyte potential, ¢

The electrolyte potential equation, (ﬁ in 1' is an ODE in x, hence the mass matrix

is zero matrix
(0] (6.17)

The discretisation of ¢ (7.17) with boundary conditions (7.19(b))-(7.20{a)) by central
difference (|6.4)), gives a differentiation matrix that is identical to A.. The matrix for the

reaction terms in the equation follows the matrix that identical to f..
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It follows that subsystem of ODEs approximating the electrolyte potential equation

(7.17)) is given by

du&)
where
1
0p)
u(z; = (6.19)
an—l
n (nx1)

6.3.4 The development of matrices for the electrode potential, ngSS

The solid potential equation, gﬁs in 1D is an ODE in z, and hence the mass matrix is

zero matrix
[O]nn- (6.20)

The discretisation of ¢, (7.18) with boundary conditions (7.21{(a)-(b)) by central differ-
ence (6.4) gives

-2 2 0

1 -2 1
1 .
1 -2 1

2 =2

(nxmn)
The reaction terms matrix in the equation is also identical to that f. matrix (6.14]).

It follows that the subsystem of ODEs approximating the electrode potential equation
(7.18) is
du ¢;

[0]—,

2 = A(Z)S’u,dgs + f. (6.22)
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where

Q}sl
¢s2
uq; = . (6.23)

(Z)s(nfl)
Psn ) (1)

6.3.5 The development of matrices for concentration in the electrode
particles, c;

As noted earlier, the concentration in the solid has 2D spatial dependacy (that is ¢s is
a function of both r and x), hence the construction of the matrix of equations approxi-
mating this variable is more complex than for the other variables. We define C;Z where
the superscript j denotes radial position in the particle, and the subscript ¢ denotes the
position of the particle in the electrode (that is r; = jor, x; = idx). This discretisation
is such that at each grid point 7 in x there is one representative particle, which means if

we take n grid points in z, there are n particles.

In order to make the discretisation of ¢y much simpler, we introduce the new variables
¢s defined rescale by és = c¢gr, so that (7.23)-(7.24) can now be rewritten (on setting
Q =1 and D,(¢és) =1 as discussed previously)

0¢s 0 [ 0¢s

= — .24
ot or (87") ’ (6:24)
élr=0 = 0, (%"S - c>

Let consider a particle at position = idxz. The equation above is a PDE, in which
¢s depends on ¢t and hence the mass matrix is similar to M. (6.12) but of different

dimensions

=—-G. (6.25)
r=1
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92
The discretisation of (6.24))-(6.25) using the central difference (6.4) gives
-2 2 0
1 -2 1
1
S T 1

2 —2(1-bx))

We note that, the reaction rate equation appears only at the solid particle surface, r = 1
which is at j = m (by boundary condition (6.25)). The matrix for reaction equation for

particle at position z = idx is in the form

0
0
2
= : 6.28
fpz 51_ . fori=1,2,"',n ( )
0

G(Chég?(bi - ¢sz) mx1

It follows that the subsystem of ODEs approximating (6.24)-(6.25)) for ¢ at position

x = idx, is given by

duy;
Mcs?pl = Acsupi + fp’i (629)
where
Csi
Up; = : 6.30
b ’ fori=1,2,---,n ( )
em—t
St
~m
i / (mx1)
The system of solid concentration for all n particles is thus represented by
du,,
MPW = Apup + fp (631)
where
M. -
MCS
M, = (6.32)
M. :
MCS

- (mnxmn)
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and the differentiation matrix for all the n particles is given by the block tri-diagonal

matrix

A= | . (6.33)

ACS

[ 1 (ramscmn)

and the source vector matrix for all the n particles is given by

.fpl
.fp2
fp= : : (6.34)
f p(n—1)
Fon

(mnx1)
6.3.6 The development of A, M and f

Combining all the matrix elements of all variables for (7.16)-(7.21), we write (6.12])-
(6.21)),(6.32), (6.33) and (6.34) in the full matrix system (6.10) such that

M, - - . Ay
O .. .« .. au “ e Al “ e .« ..
R u
0 ... Ot Y DI
M, Ce e A

f1| System for electrolyte concentration c

f1| System for electrolyte potential )

n (6.35)

f1| System for solid potential qgs

fp| System for solid concentration ¢

where the size of the vector M and A are ((3 +m)n x (34 m)n) and vector u is in the
form ((6.11]).

6.4 odel5s

Owing to the fact that our system of equations contains both PDEs and ODEs the
mass matrix M is clearly singular. This means that we must use a differential-algebraic
solver. Here, we use the odel5s solver in MATLAB which is particlarly suitable for

solving systems of DAEs (differential-algebraic equations). odel5s uses the backward
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differentiation formulas which means it is an implicit scheme, with an adaptive time-
step and it is also efficient at solving problems that are stiff [79]. However, our system
is so large system. For example, takes n = m = 100 results in 10300 coupled DAEs.
If odelbs attempts to compute all 10300-by-10300 entries in the Jacobian of Au + f
any standard desktop computer will simply run out of memory (RAM) and take an
impractical amount of time to obtain convergence. Since there is no information on
the Jacobian, the routine has to calculate the full Jacobian, numerically. However, one
can avoid this situation by explicitly telling the solver that the Jacobian only contains
2650 nonzero entries — substantially less than the 10300x 10300 possible nonzeros the

finite-differencing code attempts to compute. We can achieve this in two different ways:

1. Provide a Jacobian matrix or a routine to calculate the Jacobian if the Jacobian is

not constant. We set the 'Jacobian’ option in the odeset structure to the matrix.

2. Provide a Jacobian pattern so that the routine is able to avoid expensive calls to
the rate of change function. A Jacobian pattern is a sparse matrix of ones (only
appear where the Jacobian is non-zero) and zeros. We set the "Jpattern’ option in

the odeset structure to the matrix.

For this study, we adopt the second option by specifying the sparsity pattern of Jacobian
matrix. By doing so, the efficiency of the solver is greatly improved. The sparsity
structure for the system of ODEs Au+ f (6.35]) with n = m = 100 is shown in Figure

Providing the sparsity pattern can drastically reduce the computational time needed.

Convergence The error tolerance for this problem is set to be 10~®. The code is
assessed for convergence by taking double the number of grid points and seeing whether
the results obtained are similar to those computed with n = 100. And also by refining
the error tolerance to 107% and seeing whether the results obtained are similar to those
computed with error tolerance 10~®. Hence, we believe that the numerical accuracy is

good and reliable.
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6.5 Summary

By using finite difference approximations of the space derivatives, i.e. using a constant
step space discretisation grid, initial value problems were consisting of a large system of
coupled ordinary differential equations (ODEs) in time. MATLABs built-in solver for
ODE-systems, odelds, was employed to solve the problems. The procedure we describe
offers an efficient, robust and versatile means of simulating the whole system that al-
lows for much simpler coding of the underlying equations than alternative simulation
procedures. The MOL technique is especially well-suited to simulating stiff (and hence
difficult to solve) equations. It is well known that explicit solvers for parabolic PDEs
are limited by a stability criterion that requires small time steps are taken. However,
odelbs is designed to solve systems of differential equations using an implicit method
and so overcomes this difficulties. Furthermore, the solver employs variable time step
length in the integration, increasing calculation speed and accuracy significantly. The
resulting numerical method provides a fast and efficient way of calculating solutions to

multiscale battery problems such as described in Chapter 4,7, and 8.



Chapter 7

The Half cell Anode

7.1 Introduction

The battery model (4.47)-(4.49)) and (5.40))-(5.44]) describes the transport process within

the full cell battery which consists of current collectors, negative electrode, separator

and positive electrode. This model can also be used to describe half-cells which are used
to conduct fundamental research on Lithium battery electrodes. The present study is

conducted on a graphite anode half cell system.

In order to verify the resulting model is capable of representing the true behaviour of the
electrochemical dynamics in the battery system, we compare our results to experimental
galvanostatic discharge currents obtained in [85] for a half cell graphite anode. The
objectives of the study are to assess the performance of the anodic material and to
establish guidelines for their optimization by using the phenomenological moderately
concentrated electrolyte model discussed in Chapter 3. The results allow an assessment

of the effects of transport, and can be used to evaluate the performance of the system.

7.2 The half cell anode model

The transport model in the liquid electrolyte phase and in the solid phase of the half
cell anode is identical to that for the full cell described in — and —
(5.44]), respectively. The model for the half-cell anode simulates the region between the
negative electrode current collector (z* = 0) and the separator (z* = L) where L is
the thickness of the electrode as shown in Figure We assume that the separator
is extremely thin. During discharge, Lithium diffuses in the electrode particles to the
solid electrolyte interface where it undergoes a charge transfer reaction. The Lithium
ions emitted by this reaction, then diffuse in the electrolyte towards the separator and

lithium electrode. For the anode half-cell, the concentration at the separator (z* = L) is

97
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the initial electrolyte concentration (¢p) and the flux of electrolyte concentration is zero
at z* = 0. Furthermore, we initially take the electrolyte and electrode are in a state of
equilibrium where ¢*|._y = co and ¢§|«_y = Csmaa corresponding to a fully charged
half cell anode. Here cg 4, is the maximum concentration of intercalated lithium in the
graphite electrode. The electrolyte current density at the separator is equal to the total
current flowing in the cell divides by its area, j*|,«—;, = —I*/A. On the other boundary
at the current collector, j*|,«—¢9 = 0. Since the total current in the cell is conserved
(see (5.42)), the boundary conditions on the current density in the solid matrix phase
follow directly from those on the electrolyte current. That is all the current at the
separator is in the electrolyte phase and all the current is in the solid matrix phase at the
current collector. The equations and boundary conditions for electrolyte concentration
c*, electrolyte potential gZ;* and electrode potential gZ;: in the half-cell anode can thus be

summarized as follows

woct 0 . L act alﬂj 0 s
€ ( )(%* = 3 <D(c VB(z )896*) A F + (1 = t3)bes ()G, (7.

. . T | .
AR T R LT
gii = _Fbet(x*)GZ7 where ]: = —O0s gii (7

oc* »

85[? 0 = 07 c ‘x*:L = 007 (74)
Y .

] |m*:0 - O ] |q;*:L - A (75)
- I -

js|x:O = _27 Jslgr=1 = 0 (76)

g = c0, Colprmo = Cmax (7.7)

where I* is the total charge flowing across the surfaces of the electrode particles and A
is the cross-sectional area of electrode. It remains to specify the reaction rate G, and

pose equations for lithium concentration c} in the electrode particles.

We note that in modelling graphite anode, film resistance or the solid electrolyte interface
(SEI) layer resistance (R.) has been considered by Doyle [28] to estimate the ohmic drop
across the solid electrolyte interface (SEI) layer covering the graphite particles. Here, it is
assumed that the voltage drop in graphite anodes is dominated by Lithium intercalation
and the resistance of the SEI layer [48], 53]. In order to account for the latter effect, we
modify the standard overpotential term in the Butler Volmer equation by adding
a voltage drop which is linearly proportional to the reaction current [59]. The modified

Butler-Volmer equation has the form

Fn* Fn*
* \1/2¢.6  \1/2 _om\1/2 _n . n
G, ko(c*) 2(chlrv=ag) " (Crmaz — C5) (exp ( 5 T> exp (2 T>> (7.8)

1)

9)

3)
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where
77>k = QB* - ng + U:q(czlr*:ao) + FGZRE- (7-9)

Here G7 is the lithium flux out of the surface of the particle per unit surface area and

R, is the reciprocal of the surface conductance per unit area (and has units Qm?).

Conservation of Lithium in a single spherical active material particle of radius a is

described by the diffusion equation

o 1 8 [, act
s _ *2 [y (o* s 1
ot*  r*2or* (r S(CS)8T*> (7.10)
oct
s = 11
or* r*=0 0’ (7 )
*( % 86: * k % i G
_DS(CS)(?T‘* =G,(c", cs]r*:ao 0" — oF) (7.12)
r*=ag

Equation — is applied on a continuum basis across the anode giving c} a
2D spatial dependacy (i.e ¢ = cki(z*,r*,t*)) where x* is the particle position, r* is
the radial position within a particle and ¢* is time. The other equations in the model
— depend only upon the solid lithium concentration ¢} at the particle surface

through —.

7.3 Nondimensionalisation

The full problem for the half cell is specified by equations (7.1)) - (7.12). We note some

remarks below before nondimensionalising.

Remarks.

e (G} the surface reaction rate is defined so that it is positive if lithium is being
released from the particle into the electrolyte (i.e. discharge of an anode) and
is negative if lithium is being inserted into the particle from the electrolyte (i.e.

charge of an anode).

e We assume that all electrode particles are identical with radius ag so that, a(z*) =
ap and the volume fraction, €,(z*) are constant. We take the permeability factor

to be given by the Bruggeman relation [36] so that
B=¢l? (7.13)

The BET surface area be; (by considering a periodic cube contains one spherical

particle of radius a where the particle just touches its neighbours) is the surface
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area of the spherical particle divided by the volume of the periodic cube such that

Surface area of particle 477@% oo

bet (7.14)

~ Volume of periodic cube  8aj 2a0°

Electrochemical cells are constructed such that the distance between the current collec-
tors is small in comparison to the other dimensions of the cell. Let us take the area of
each of the planar current collectors to be A, the typical current density is Jo = I*/A, it
follows that the magnitude of typical current by JoA, L is the thickness of the electrode
and ag is the radius of particle.We nondimensionalize the half-cell system — as

follows:

I* ~ JyA, x* ~ L, r* ~ a, a* ~ ag, c* ~ ¢
J
G~ €5 ~ Cmas j ~Jdo,  Di~Dygy  V~Ti,
b LF 1)
F260D0 ’
~— t* ~ D~D bet ~ b i~
K (1 — t+)RT7 70, 05 et et Js 05

V* = Ueq,O + VOVa Ueq* = Ueq,O + VOUeqa QE* ~ Vo, (;AS: = Ueq,O + VOQZA)S

Here, ¢q is the initial concentration of Lithium ions in the electrolyte, ¢pq. is the maxi-
mum concentration of intercalated lithium in the electrodes, Vj is the typical potential
drop across the cell and Dy is a typical diffusivity in the electrolyte, Dy is the typical
diffusivity of Lithium in the solid, 7y is the typical timescale for discharge of the cell. An
estimate for the volume of the electrode is LA, and it follows that the number of moles
of intercalated lithium is of O(e,csLA). The latter are consumed at a rate JoA/F and

so the typical timescale for discharge of the cell is

LFcpaz
T = )

Jo

this leads to the following dimensionless problem

Q Oc _ 0 oc
Nt T ox (D(C)ax> FGe Omesd o
95 _
a(]j‘ - ay
) A%_Q(l_to)alog(c) 0<z<l1 (7.17)
J= T ox + Ox ’
m . 0<z<1 (7.18)
Dos
Js=—0
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Oc

- =0 la=0 =0 7.19

o o ) ]|$—0 ) ( )
@95:1 = 0, 0‘53:1 =1, j’ac:l = _I_a (7.20)
jS’x:O = _j7 jS’z:l =0, (is =0 = V (721)

A~ ~ A
G, = Tcl/Q(cs)l/Q(l — 05)1/2 [exp (—2(¢ — @5+ Ueq(cs|r=1) + RBGG))
A~ o A
—exp <2(¢ — ¢s + Ueq(cs’T:1> + ReGa)>] ) (7'22)
dcs 10 9 ey

865 acs
Dg(cs)—— = - as = 24
(es) 5, . QG |, 0 (7.24)
C|t:0 = 1, Cs|t:0 =1. (725)

in which the dimensionless parameters in the system are defined by

LJy(1 — F 2D e
I — J()( t+>’ ) = V()’ N: agl/o : Re: J()R
Do F'cy RT Dy L? Vobet L (7.26)
T — betkcmaxCOL Q . a()JQ o — J()L ’
B Jo ’ B betLchamD507 B asVo

Discussion of dimensionless parameters In the above equations, I' measures the
ratio of the actual ion flux to the maximum sustainable flux of ions in the electrolyte; N
is the ratio of the timescale for diffusion of intercalated lithium into a particle to that for
diffusion of lithium ions across the electrode; © measures the ratio of the typical voltage
in the problem to the typical voltage drop across the solid due to Ohmic losses from
current flows through the electrode; T gives the ratio of the exchange current density to
the typical current density at the surface of an electrode particle; A gives the ratio of a
typical voltage drop across cell to the thermal voltage (and is roughly 39 if we assume
that the equilibrium potential drop in graphite across electrode Vj is about 1V); the
ratio of the timescale for diffusion of intercalated lithium into a particle to timescale for
intercalation into a particle (as determined by the current density) is given by Q. We
have chosen to nondimensionalise the applied current so that the dimensionless variable
I is of order O(1). Thus, Jy is determined by Jy = I*(I)/A where I is the dimensionless

discharge current.
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7.4 Model - experimental comparisons for the natural graphite

electrode

We compare our results to experimental data for a natural graphite anode half-cell
taken from [85]. The electrolyte used is 1M lithium hexafluorophosphate (LiPFg) in 1:1
EC:DEC electrolyte. According to the literatures, the transport properties for a graphite
anode vary by several orders of magnitude depending on the electrode materials being
used. Table lists the parameter values from different authors for three parameters
which vary significantly, namely diffusion coefficient in the electrode particles, reaction

rate constant and exchange current density.

Parameter Value Units Reference
-t — 1078 [91],[87]
Lithium diffusivity in solid, D*(c}) | (0.1 <y < 0.95) m2s~!
03 - 107™ [102]
(0.05 <y < 0.95)
14 — 107 [99]
(0 <y <0.3)
10712 [85]
Reaction rate constant, k 10~ m2Smol ~0-5571 [72]

1071° [15]

Exchange current density, g 3615 Am™2 Eg

Table 7.1: The values suggested in literature for the properties of graphite anode
for Lithium-ion cells.

The diffusion coefficient of Lithium within carbonaceous materials Dg(cs) is critical
to determining the charge/discharge characteristics [38]. The values for the diffusion
coefficients change with the Lithium fraction y in Li,Cg. Lithium intercalates into
natural graphite up to a composition of y = 1 (fully intercalated) and giving a capacity
of 372mAh/g while for petroleum coke it is only possible to intercalate up to about
y = 0.5 [87, 62]. Chabot et al. [I5] found that the lithium diffusivity in the active
241

material of natural graphite is between 3.9 x 10~ up to about 3.9 x 10~ 3m in

high performance materials.

We remark that the units of the reaction rate constants vary with the forms of the
Butler-Volmer equation being used. Thus, extra care should be taken in determining
the value of the reaction rate constant. We now look at the exchange current density
which relates to the reaction rate constant in . The values of this parameter, taken
from two different sources, differ by a fraction of 10. Large value may corresponds to a
highly reversible charge-transfer process at the surface of insertion compounds. These
comparisons show that we have to be extra careful in order to extract the correct data

for the transport properties.
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Parameter Value Units \ Reference
Electrolyte Parameters
Diffusivity of Lithium ions, Dy 2.6 x 10°10 m?s! [32]
Electrode thickness, L 5x 1075 m [85]
Volume fraction, ¢, 0.4764 - -
Initial salt concentration, cg 1000 molm =3 [85]
Transference number, ¢4 0.363 - [32]
Electrode Parameters
Reaction rate constant, k 3x 10712 | m?2mol=92s~1 [85]
Diffusion coefficient in the solid, Dy 9 x 10714 m2s~! 185]
Particle radius, ag 1.1x107° m [85]
Conductivity in the solid, o 100 Sm~! 185]
Maximum concentration in the solid, ¢z 18000 molm ™3 [85]
Other Parameters
Faraday constant, F 96487 Cmol ™1 [23]
Universal gas constant, R 8.3144 Jmol K1 [23]
Temperature, T 298 K [23]
SEI layer resistance, R, 2.5 x 1072 Qm? 185]

Table 7.2: Parameter values used in the model.

The electrode specific information used in this work is listed in Table In [85] 28],
the contact resistance R, is used as a fitting parameter at different discharge currents.
In the nondimensionalisation, we take Vi = 1Volt to be the typical cell voltage, Jy to
be 13Am~2 (corresponding to a 1C discharge), the dimensionless parameters calculated
from the parameter values listed in Table are

I' ~0.026, X~ 38.9, N ~ 421, Re~T7x107°
(7.27)
T ~017, Q~0.214, ©~6.5x107°

We note that R, is small, hence the dimensionless reaction rate equation (7.22)) can be
approximated to
A
2

Ga ~ TYe(eo) ?(1 —ce)'/? [exp ( (¢ — s + Ueq(cspl)))

—exp (50— b+ Ugledr) ). (729

and this significantly reduces the difficulty of the numerical procedure.

We take the diffusivity in the electrode particles Ds(cs) to be constant and equal to
that used by Doyle and Fuentes [32] in whose results gave reasonable agreement to ex-
perimental data from [85]. We note however, that a concentration-dependant diffusion
coefficient is reported by some authors ([87],[49],[102]). The conductivity in the elec-
trolyte, x(c*), and the diffusion coefficient, D(c*) were fitted to experimental data by
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Riemers [90] and are given by equations (3.72) and (3.71)), respectively. Here, the equi-
librium potential has been reported by Thomas [89] (determined at a very low discharge
rate C'/25) and fitted to the equation

UZ,(y) = 0.124 4 1.5exp(—70y) — 0.0351 tanh (34(]_8;86>
—0.0045 tanh (%.11013 ) — 0.035 tanh <y;_8599> — 0.0147 tanh <yo__0§f>
—0.102 tanh (WL) — 0.022tanh (W} — 0.011 tanh <w>
+0.0155 tanh (m) (7.29)

where y represents the amount of lithium intercalated in the formula Li,Cg¢ and U, is
measured in Volts. The expression, however, is not fitted to the equilibrium potential
curve shown in [85]. This may be due either to a typographical error or a mistake during
the fitting process. Therefore, to reduce the degree of error, we extract the experimental
equilibrium potential data ourselves and fitted to the interpolation approximation using
Matlab (this is plotted by a dashed curve in Figure .

7.4.1 Results and Discussions

The experimental data used for the comparison was reported by Shim and Striebel [81].

The parameters used in the model in order to compare to the experimental results are

listed in Table [7.2

Figure|7.1|shows the comparison between experimental and model discharge curves. The
model compares reasonably well to the experimental data, especially at early stages of
the discharge. However, the potential is seen to underestimate the finishing potential
drop especially at high discharge rate. This could be related to the assumption that
the lithium diffusion coefficient in the electrode particles Dy is constant. The diffusivity

data in [91] suggests that Ds(cs) is a fairly rapidly decreasing function of c.
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Figure 7.1: The comparison of model-experimental data for the graphite half
cell discharge curve at different currents. Solid lines represent the numerical
results and symbols represent experimental data at various discharge currents.
The dashed curve represents our fit to the equilibrium potential curve.
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Figure 7.2: The dimensionless concentration profiles of the intercalated Lithium
in the solid at different positions across the cell for the discharge rate 1C. The
profiles are measured at t* = 104s, 208s, 312s,416s, 520s.
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The important factors for optimizing the performance of the cell are good utilization of
the active electrode material and good transport properties in the electrolyte. Figure
[7-3] shows the concentration of Lithium ions in the electrolyte, the concentration of
lithium at the particle surface across the spatial variable x and the electrolyte and
solid potentials. As time increases, the results illustrate that electrolyte concentration,
¢ increases only a very slightly from its initial concentration (see Figure (a)). In
addition, the electrolyte potential (ﬁ only changes by a very small amount (see Figure
(b)). These variables do not appear to significantly alter the half-cell discharge.
Notably the (;AS values are very small compared to the potential in the electrode g%s, thus
the Butler Volmer equation predominantly depends upon the concentration in
the solid and the solid potential (ﬁs. Figure (d) shows the solid potential profile is
approximately uniform and constant across the electrode as the dimensionless parameter
© (appearing in (7.18))) is extremely small. This allows us to approximate the electrode
potential by ¢s = @, (t) (i-e. it is independent of space). We thus conclude the charge-

discharge behaviour is limited by the solid-state transport and intercalation of lithium.

To demonstrate the dependence of the solid-phase concentration profiles on distance
across the electrode in more detail, the lithium concentration profiles ¢s (at 1C discharge
rate) in the electrode particles at different positions (z = 0,0.2,0.6,1) are shown in
Figure The particle closest to the current collector at x = 0 is discharged very
slightly faster than the particle nearest the separator. However, the concentration at
different positions x are almost identical (see Figures (c) and. The profiles show
that the concentration in the solid is driven to zero as time increases. The abrupt loss
of capacity in Figure occurs as Cglp—1 is zero, and hence the Lithium remaining in

the particles in 0 < r < 1 is effectively inaccessible after this time.

7.4.1.1 An approximation solution

Based on the discussion above, we now approximate the functions ¢, ¢s and cs|,—1 as

functions of time only and (ﬁ ~ 0. If we integrate 1D from z =0 to x = 1 and apply

the boundary conditions (7.19(b)) and ((7.20)c)) we get
=1
/ Godr = —1 (7.30)
=0

where
_ 1/2 1/2 Ao n
Go = TYe(eglr=1)"2(1 — cslr=1) exp —5(—@ + Ueq(Cslr=1))

—exp @(—és + Ueq(cs,qzl))ﬂ (7.31)
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Since G, depends only on functions of time, it is also spatially independent and the
integration in ([7.30]) is thus trivial and yields on substituting for G, from ([7.31)

I
_TC( CS‘T:l)l/Z(l - cs’r=1)1/2

~ ~

— exp =2 (= + Uugleshar)) ) = exp 2 (s + Uealeshr)) ) - (7.32)
(-3 ) (3

We can simplify ((7.32)) by noting that the term in the exponential is dominated by

the dA)S — Ueq (because the size of dA) is an order 1073) and by using the trigonometric

exp(x) — exp(—2)
2

hyperbolic identity sinh(z) = , to obtain

(A . I
—2sinh (2(Ueq(08‘r—l) - ¢s)> = _TC(Cs’rzl)l/Q(l — Cs),q) /2 (7.33)

which gives an approximate solution for <ZA>S

. . 2 I
S t) = Ue slr=1) — ¥ inh 7.34
6u0) = ey = Fancsin e ) 730

The analytic solution ([7.34) requires information about cg|,_; which is determined by
solving the diffusion equation (7.23)) - (7.24) for a single representation particle. On
solving for ¢s|,—1 and substituting in (7.34), we can use (7.21{c)) to determine V' (t)

V(t) = os(t). (7.35)

Summary To summarise a very good approximation of the solution may be calculated
by solving for ¢,(r,t) from - ([7.24)). The result of this calculation is used to obtain
Cs|r=1 which is then substituted into ([7.34]) to obtain the voltage of the electrode qgs(t)
and hence the potential drop V(t), from across half cell.

The comparison between these approximate discharge curves and discharge curves cal-
culated by solution to the full model is shown in Figure [7.4 The results show very
good agreement. In summary a simple model, in which the limiting effect is lithium
diffusion within the electrode particles provides an extremely good approximation of the

discharge.

7.4.1.2 Concentration-dependent of diffusion coefficient

In what follows we use the approximation discussed above to reduce the cost of compu-
tational run time. Since the assumption of constant diffusion coeflicient in the electrode

particles underestimates the drop in cell voltage as the cell discharges, we investigate
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Figure 7.4: The comparison of analytic-numerical solution for the graphite
half cell discharge curves at different currents. Solid lines represent the ana-
lytic solutions and symbols represent the numerical solution. The dashed curve
represents the equilibrium potential curve.

the effects of non-linear diffusion on the problem. The values of diffusion for the same
materials, reported by different literatures vary by several orders of magnitude. Conduc-
tion in graphite is strongly dependent upon the degree of crystallinity. As the fraction
(let say f) of amorphous phases (fraction of crystalline phases, 1 — f) increases, and

diffusivity increases [68].

Modelling of concentration-dependent diffusivity in graphite by Verbrugge and Koch [91]
given good agreement to their experimental data . The non-linear diffusion equation
that they use to model their data was calibrated from data provided by Takami [87]
for which the diffusion coefficient changes (exponentially) by two orders of magnitude
(1071 — 9 x 107""m?2s~!) as the fractional occupancy y, in Li,Cg, varies between 0
to 1. Levi and Aurbach [49] and Zhang [102] reported that the diffusion coefficient of
graphite is between 10714 —10713m2s~!. These inconsistencies probably result from the
different crystal structure and of their samples [87,[49]. Figurecompares the diffusion

coefficients with respect to composition of y in Li,Cg reported by these different authors.

Using the data provided by Verbrugge and Koch [91] in our model, results in an over
prediction of the cell potential (see Figure . At the beginning of discharge the
particles are filled with intercalated lithium, and the diffusion coefficient is low. Toward
the end of discharge, the intercalated lithium concentration is lower, and the diffusion

coefficient rises. Because the intercalated lithium concentration is lowest at the particle
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Figure 7.5: Experimental data of composition-dependant diffusion coefficient by
Zhang et al. [102] and Verbrugge et al. [91]. The solid lines and dots are fitting
to the experimental data by Verbrugge et al. and Zhang et al. respectively.

surface and highest at the center of the particle, the diffusion coefficient is always largest
at the particle surface and smallest at the center of the particle. The large difference
magnitude of Dy and the slow diffusion of lithium in the lithium rich region near the
centre of the particle results in lithium depletion occurs near the surface (r = 1) in a
short time as shown in Figure and hence to ¢ at the surface being driven to zero
after a relatively short time. By using the less extreme data of Zhang [102] and Levi [49]
for the diffusion coefficient we obtain results that accurately describe the experimental
data. Comparison between discharge curves calculated using the diffusion coefficient
obtained from fitting to the data from [91] and from [102] is made in Figure

Based on the above analysis, we use the diffusion coefficient given by Zhang for the
model comparison to the discharge curve given by Srinivasan and Newman [84]. The

following equation was used to fit to the data measured by Zhang [102]
Dy(cs) =7 x 10714(1 4+ 1.5 exp(—8¢s)) (7.36)

where the dimensionless c¢s is the composition of y in Li,Cg. The results are then
compared with the experimental data and are shown in Figure [7.§ at various discharge
rates, where excellent agreement is seen. Since the particle surface concentration is
homogeneous across the electrode (see Figure (c)), we simulate for one particle

instead of many particles.

The abrupt loss of capacity at 3C' discharge rate caused by the depletion of Lithium
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Figure 7.6: The concentration of Lithium within the electrode particle with
diffusion coefficients from fitting to the data from Verbrugge et al. [91] as
shown in Figure at 3C discharge rate. The profiles are measured at
t* = 15s,30s, 455, 60s, 75s.
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Figure 7.7: Discharge curves plot with the diffusion coefficient data given by
Verbrugge et al. (red) and Zhang et al. (blue) at 3C' discharge rate. The large
difference magnitude of Ds(cs) (see Figure results in lithium depletion at
the surface in a relatively short time (see Figure .

in active material at the particle surface is shown in Figure [7.9] As expected, a higher
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Figure 7.8: The comparison of non linear diffusion coefficient-experimental data
for the graphite half cell discharge curves at different currents. The curves are
obtained by analytic approximation solution where the diffusion equation
in the solid (see —) is solved numerically. The nonlinear diffusion co-
efficient (the fitting to the data from Zhang et al. [102]) is given by equation
. Solid lines represent the analytic solutions and symbols represent ex-
perimental data at various discharge currents. The dashed curve represents the
equilibrium potential curve.

current density leads to a lower utilization of active material and therefore lower capacity.

7.5 Summary

The battery model has been verified in predicting the cell potential and assessing the
battery performance, especially at initial stages of discharge. The assumption of a con-
stant diffusion coefficient Dy for Lithium in the electrode particles, underestimated the
voltage increase that occurs close to the end of the discharge. The numerical results show
that the limiting factor for the lithium carbide half cell performance is the solid state
diffusion in the electrode particles. The numerical results also show that the electrolyte
phase has a negligible effect on the half cell discharge and that the electrode particles
discharge almost synchronously. This allowed us to derive an analytic approximation
for the potential drop V'(t) across the cell. The influence of concentration-dependant
diffusion of lithium in the electrode particles is clarified and our results give a much
more accurate comparison to experimental data than that achieved by Newman and

Srinivasan [84].



Chapter 7 The Half cell Anode 113

t* increasing

Figure 7.9: The dimensionless concentration of Lithium within the elec-
trode particle at 3C discharge rate where Dg(cs) is calculated using data
from Zhang et al. [102] (see formula (7.36))). The profiles are measured at
t* = 30s, 60s, 90s, 120s, 150s.






Chapter 8

Half cell cathode

8.1 Introduction

In the previous chapter we demonstrated that the model accurately predicts the cell
voltage for a half cell graphite anode for a range of discharge rates. In this chapter,
we investigate the ability of the model to predict the behaviour of a half-cell cathode.
The cathode materials commonly used in lithium ion batteries are LiCoOs, LiMnO4
and LiFePOy4. The present study will consider the LiFePO, cathode half-cell. The
nature of the rate limitations within composite electrodes of LiFePQ, is complicated.
Initially, they were attributed to the poor electronic conductivity, which resists electron
transport within the particles. However, the electronic conduction network has been
improved with carbon coating resulting in a substantial increase in the use of LiFePOy4 as
a cathode materials nowadays [33], 43]. Ion transport has been improved by controlling
the composition and the structure of the composite electrode. This can for example
be achieved by using carbon black, as a binder, and leaving some open porosity for the
electrolyte [46]. LiFePOQy is a phase separating material, as evidenced by its flat discharge
curve characteristics (the potential is almost independent of degree of discharge until

the particle is fully discharged [65] at which point it drops abruptly).

Srinivasan and Newman [84] modelled Lithium transport in cathode particles by a two-
phase ”shrinking core” model and compared results of their mathematical model to
their own experiments. Their model showed reasonable agreement to the experimental
data where the particles were assumed to be distributed between two sizes. Farrell and
Dargaville [23] have embedded a shrinking-core based model on a three-scale battery
model which again compares reasonably to the experimental data of Srinivasan and
Newman [84]. The transport limitations in the solid was found to be the main factor
of capacity loss. However, in their further work [24], they state that a ”shrinking core”
model is not an accurate description of the phase transformation in LiFePO,4 and remarks

that the good agreement between the ”shrinking core” model and the experimental

115



116 Chapter 8 Half cell cathode

discharge curves [84] is obtained because the electrical resistance (in the solid particles)
and electrolyte resistance (in the thick, 62um cathodes), limit the discharge rather than
lithium transport within the cathode particles [24].

Owen et al. [46] found that the performance of LiFePOy in a composite nano-structured
electrode is significantly improved by carbon coating and inferred that Lithium diffusion
in the solid is not limiting for nanoscale electrode particles. In their modelling of this
problem (which is quite simplistic), at a high discharge rate, they assumed that the elec-
trolyte resistance restricts the discharge as each electrode particle is either fully charged
or discharged and solid state limitations are negligible. This led them to conclude that at
high discharge rates the electrolyte diffusion limits the cell discharge as a consequence of
electrolyte depletion in certain regions of the cell halting discharge. Here, we investigate
a nanostructured electrode such as that considered by Owen et al. [46] and compare our
results to their experiments. We model diffusion of Lithium in the electrode particles by
a linear diffusion equation with a very large diffusivity claiming that since diffusion in
the nanoparticles is not rate limiting, the choice of diffusion model does not significantly
affect our results. We could have, of course, used an infinitely fast diffusion model (such

as postulated in Richardson et al. [74]) without materially affecting the result.

8.2 Transport data and parameter values used in the sim-

ulation

The diffusion timescale of Lithium across a solid electrode particles is extremely fast
in comparison to the diffusion timescale of Lithium ions (in the electrolyte) across the
entire width of the cell provided particle sizes are less than 1um (hence we take Dj to
be constant). The cell is filled with 1M LiPFg in 1:1 EC:DMC electrolyte. The half-cell
cathode model is similar to that given in (4.47))-(4.49) and (5.43))-(5.44]) for the full cell.
Here z* = 0 denotes the position of the separator and z* = L. that of the cathodic

current collector (thickness of cathode). Hence, the battery model for half-cell cathode

is

oc* 0 oc* ot j*
o(x” = D(c* -t 1— " et Gy 1
Qa5 = g (DB ) - G+ (- Gt (8.)
81‘* - Fbet(x )ch
. . dd*  2RT o 0log(c)*
where j* = B(:c);-@(c)(ax* 5 (1 t+)7ax* (8.2)
ajs _ Ly L 09}
Bt Fb,(z*)G:, where j; = —0s e (8.3)
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oc*
Flprzog = co, . =0, (8.4)
‘ aLU z*=L,
" =0, oy, =0, (8.5)
x*=0
% . I*
]S *=0 07 ]s x*=L, = _Z (86)

Note that the half cell potential, V*, is usually modelled by the expression

V= §52|x*:Lc - Qg*

x*=0 — RCI* (87)

This comprises two parts: the potential difference between the electrode (where it con-
tacts the current collector) and the electrolyte at the separator; and the ohmic drop
at the current collector electrode interface caused by contact resistance, R.. Since we
set the potential, ¢* at the separator to be zero (see (8.5(a))), and hence the half cell

potential becomes

V* = ¢¥|geep, — ReI*. (8.8)

The solid state diffusion of Lithium in the spherical cathode particles is modelled by the

diffusion equation

oc; Dy 0 [ ,,0c
otr 2 9rx (r 87’*) (8.9)
oct
p = 1
8’]”* 0 0’ (8 O)
80: k(K % 7 x e
587“* r*=a(x*) N GC(C ’ CS‘T*:‘I(x*) ’¢ - QSS) (811)

Here 7* is distance from the centre of the particle, a(x*) is the radius of the spherical
electrode particles as a function of position x in electrode, ¢} is the solid concentration
and G is the flux (per unit area) of Lithium out from the surface of the particle which is
determined by the reaction rate at the particle surface which in turn is usually described

by the following Butler-Volmer equation

oy oy
* *\1/2/ * 1/2 * 1/2
G2 = 1o(e") (e ) emar = i) (030 (50 ) = o0 (5 ) ) (812

where the overpotential 7* = ¢* — QASZ‘ + Uz, (s

re—a(z+))- Ge is defined so that during
discharge, it is negative as Lithium is inserted into the cathode particles from the elec-
trolyte. In order to simulate discharge we take the initial concentration in the electrode

particles to be small, that is
Csler=0 = ¢s0 (8.13)

where ¢ = 0.02¢42 (see, for example [84]).



118 Chapter 8 Half cell cathode

We assume that all electrode particles are identical with radius ag so that, a(z*) = ap
and the volume fraction, €,(x*) are constant. We take the permeability factor to be
given by the Bruggeman relation [36] so that

B=¢? (8.14)

v

The BET surface area b.; (by considering a periodic cube contains one spherical particle
of radius a where the particle just touches its neighbours) is the surface area of the
spherical particle divided by the volume of the periodic cube such that

Surface area of particle 477@% o

bey (8.15)

~ Volume of periodic cube 8a8 N 27(10'

8.2.1 Nondimensionalisation

The nondimensionalisation for half cell cathode system is identical to that discussed in

Section 7.4 with the exception that now

J()CLO
* L G* ~ .
z Cy bet,OLCF (8 16)
For other scaling, refer (7.15). The nondimensionalisation leads to the following system

of dimensionless equations

Q Jc 0 Oc
Ze - — | BD(e)Z= T 1 .1
N,eq, T o (B (c) 8:1:) + Db G, O<z< (8.17)
aj
a — be cy
Ox i@
B “ )\%_2(1_15)61%(0) 0<z<l1 (8.18)
J= Fn ¢ ox o ’
88]8 — _beth
* . 0<z<l (8.19)
. 10¢s
15770 bx
C‘:)::O = 1, ¢B|x:0 =0, js|g;:() =0, (820)
oc

I
<>
\
s
~i

= 0, fle=1=0, Jslyoy=—1, s (8.21)
xT

or|,_, =1

clico = 1, cslimo = 0.02. (8.22)
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A~ A A
Ge = Y 2(e)V?(1 = c,)'/? [exp <—2(¢ — s + Ueq(cs|T:1)))
A~ o -
— €Xp (2(¢ - ¢s + Ueq(csyrl))>:| ) (823)
Odcg . 10 Qacs
Q7 = 7‘287“<T ar>’ O<r<1, 0<z<l1 (8.24)
805 865
= —_ Cs == .2
or |, QG or |, 0 (8:25)

where the dimensionless parameters in the above system are defined by

r— LJo(1 —ty) \_ FVy _ a2 Do . R.JyA
D[)FC[) ’ RT ’ D30L2’ % (826)
T — betkcmazC()L Q _ a()Jo o— J(]L
Jo ’ bet LF CnazDso ’ osVo ‘

For the interpretation of the dimensionless parameters above, we refer to Section 7.4.

Parameter Values The parameters used in the model are listed in Table The

2571 based on the value calculated by

electrolyte diffusion is taken to be at 107 ''m
Owen [46], which is one order magnitude lower to the diffusion coefficient of pure LiPFg
solution reported at 107'm2s~! by Riemers et al. [90]. This result suggests that the
tortuosity and porosity of the composite electrode structure (where the particle sizes
< 1lum) is responsible for the slower effective diffusion coefficient in the electrolyte
([46],[70]). Values for the lithium diffusion coefficient in LiFePOy4 have been reported by
Prosini to range from 1076 — 107 m?2s~! [71]. Srinivasan and Newman [84] takes the
value (107¥m?2s™1) for the lithium diffusion coefficient. In the simulation, we took it to
be the largest value presented by Prosini et al. [71] which is 10~ 4m?2s~!. However, if we
chose it to be 10719m?2s~1, we obtain the similar results. The equilibrium potential used
in this model is fitted to the experimental discharge curve data provided by Srinivasan
and Newman [84] where the cell is discharged at a very slow rate. The equilibrium

potential curve is plotted in Figure [8.1] where the equation is given by

U, (cs) = 3.114559 + 4.438792 arctan(—T71.7352 ¢, + 70.85337)
—4.240252 arctan(—68.5605 ¢; + 67.730082). (8.27)

*

Cs

Ueq is measured in Volts and ¢ is the composition of y in Li,FePOy (here ¢, =
Cmazx
and is dimensionless).

The conductivity, x(c*) and the effective diffusivity, D(c) were fitted to the experimental
data of Riemers et al. [90] and are given by equation (3.72)) and (3.71)).
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Figure 8.1: The equilibrium potential of the LiFePOy electrode as a function
of ¢s (the state of discharge, ¢s = ¢;/cmaz) (see equation (8.27))).
Parameter Value \ Units \ Reference
Electrolyte Parameters
Diffusivity of Lithium ions, Dy 2.6 x 1071 m2s~1 [46]
Electrode thickness, L. 6.2 x 107 [84]
Volume fraction, ¢, 0.4764 - -
Initial salt concentration, cg 1000 molm =3 [84]
Transference number, ¢9 0.3 - [46]
Electrode Parameters
Reaction rate constant, k 3x 10712 | m* mol =055~ [85]
Diffusion coefficient in the solid, Dy 9x 1071 m2s! [1]
Particle radius, ag 5x 1078 m [46]
Conductivity in the solid , o 5x 107! Sm~! [54]
Maximum concentration in the solid, ¢z 18805 molm ™3 [46]
Other Parameters
Faraday constant, F 96487 Cmol ™1 [23]
Universal gas constant, R 8.3144 Jmol K1 [23]
Temperature, T 208 K [23]
Cross-sectional area of cathode , A 1x107* m? [23]
Weight of LiFePOy, w 7.6 x 1073 g [23]
Density of LiFePOy, p 3.6 gem™3 [23]
Contact resistance, R, 6.5 x 1073 Q [23]

Table 8.1: Parameter values used in the model for LiFePO,4 half-cell cathode.

Following the parameter values listed in Table the size of dimensionless parameters

listed in (8.26)) are given by

I' =0.6242, A =T7.88,

T = 30,

0=3x10"9,

N =27x10"%,

0 =0.21.

(8.28)
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The values are calculated at 1.6C discharge rate in which the discharge current is Jy =
17Am~? which is taken to be the base case in the simulation (I = 1) and we assume
the potential drop across electrode Vy = 2 Volt. To run the simulation for the other
discharge currents, all the dimensionless parameters remain the same except I. For
example; the discharge current Jo = 34Am~2, we set I = 2 (the ratio of the discharge

current to the base discharge current).

Numerical Procedure The numerical procedure implemented here is identical to

that discussed in Chapter 6 and will not be repeated here.

8.3 Model-experimental comparison

In this section, we attempt to validate the results from the model developed in Chapter
3.3 with experimental data from Owen et al. [46]. We choose to validate against the
data from [46] for several reasons. Firstly, the cathodes used by their experiments
are nanostructured (size particles < 1um) and secondly they are discharged at very
high rates. This allows us to investigate the effects of electrolyte depletion on the
discharge curves. The experimental results still show significant capacity even at very
high discharge rates; for instance at 1110 mA/g (8C) the capacity of 28 mAh/g (20%
of the total capacity) is achieved. The LiFePOy pellets are 3wt% carbon coated, which
gives increased electrical conductivity of the LiFePO4 material on the particle scale
and means that electrical conductivity (in the solid phase) is not thought to be limiting.
The nanostructuring of the electrode means that transport of Lithium in the solid at the
individual particle scale is very rapid and hence phase separation is negligible. The state
of discharge is defined by reference to the maximum capacity (140mAhg=!) obtained

during a very slow discharge rate C/7.

Discharge current
C-rate | mAg~! | mAecm ™2

0.3C 42 0.39
0.81C 112 0.86
1.6C 224 1.7
3.2C 448 3.39

7.93C | 1110.2 7.44

Table 8.2: The discharge current rates in mAg~! and mAcm ™2 units.

The results from the model compare very well to experimental data given by Owen
et al. [46] (see Figure B.2)). The rate of current discharge for each discharge curve is
listed in Table The abrupt loss of capacity as the discharge rate increases is due
to the depletion of the electrolyte near the end of discharge (see Figure . Although

we remark that the smoothing of the real data curves for very large discharge rates
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(8C) in comparison to the model prediction may be because we have taken the (solid)
resistance of the electrode to be small in our model (see Figure . The electrolyte de-
pletion prevents the active material in the solid being discharged in those region in which
the electrolyte has become depleted. Furthermore, when the electrolyte concentration
approaches zero, the electrolyte conductivity drops (see Figure , significantly ham-
pering discharge. Figure [8.3| shows how the electrolyte concentration approaches zero
during discharge. Rapid depletion of Lithium ions in the electrolyte for the large value
of dimensionless parameter I' (appearing in (8.17))). Simultaneous with this electrolyte
depletion, the Lithium intercalation process at particle surface increases very fast and
gradually becomes saturated with lithium (see Figure . Figure shows that two
regions appear, one in which the electrode particles are fully discharged (full of lithium)
and one in which they are not. The current tends to flow into the particles nearest the
separator until they are completely discharged (full of lithium), causing the reaction to
occur preferentially at the front of the electrode. Following this, a layer of discharged
material then progressingly penetrates further into the electrode until all the underlying
electrode material eventually becomes saturated. The discharge is thus limited both in
the depletion region, due to the low lithium ion concentration, and in the saturation
region where the particles are discharged. As these regions approach each other during
the discharge, the electrode reaction becomes confined to a narrowing zone (see Figure
, until it finally becomes impossible to discharge the electrode further.

The solid concentration across the electrode shown in Figure |8.4(a)| and [8.4(b)| are dis-

charged at the rates 0.8C' and 3.2C respectively. The curves represent the state of
discharge of the cell with the corresponding discharge voltage plotted in Figure[8.:2] The
concentration curve at the last time step; this is at the position where c first drops to
zero. The profiles of the lithium concentration in the electrode particles at different
position are plotted in Figure These show that the particles discharge uniformly,
because diffusion of lithium in the particle is rapid compared to the diffusion of lithium

ions (in the electrolyte) across the electrode.

At higher discharge current (8C'), the low rate of transport in the electrolyte phase (see
Figure is the main factor causing the sharp drop of cell potential at a low value of
electrode utilization. The concentration gradient is much steeper than the concentration
profile at 3.2C (see Figure . The electrolyte concentration goes to zero quite near
the current collector, making electrode particles far from the separator impossible to

access, and causing the reaction front to stop close to the separator as shown in Figure

B3

We emphasize here, other solid state models [84] [R5, 23] explain the loss of capacity
by saturation of the phase transformation. It was suggested that for thin electrodes
containing large particles (about 1 — 5um) of active material the effect of particle size,
solid state diffusion becomes increasingly significant compared to the limitation of elec-
trolyte diffusion in the electrolyte phase [46]. In this work, the LiFePO, electrode is
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Figure 8.2: The comparison of model with the experimental data for the
LiFePOy4 half cell discharge curves at different currents. Solid lines represent the
analytic solutions and symbols represent experimental data at various discharge
currents.

nano-structured and it is this that ensures that diffusion in the particle is not important
due to the short diffusion timescale across a particle (lithium diffusion in the particles

can be important in electrodes manufactured with large LiFePOy particles).

8.4 The effects of parameter variations on the discharge of

a nanostructured half-cell cathode

In this section, we examine the effects of parameter variations specifically the solid
conductivity on the discharge of a nanostructured half-cell cathode. Here we take other
parameters to remain the same (refer Table for the parameter values) and vary the
solid conductivity taking it to be larger, slightly lower and significantly lower than the
maximum conductivity of the electrolyte (Kmqz). The maximum conductivity of the
electrolyte (LiPFg) can be extracted from Figure (see Section 3.4), and iS Kyey =
L1AV - tm~L

The study is useful in analysing the discharge of a nanostructured cathode and provides
guidance for its design. Here we simulate the distribution of current density in the solid
and in the electrolyte, solid concentration and the distribution of reaction rate at the
particle surface across half-cell cathode at 1.6C' discharge rate. Note that the plots are
all dimensionless. The results are shown for three different ratios of the solid electrical

conductivity ratios os to the maximum conductivity in the electrolyte k4. These
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Figure 8.3: The concentration of solution in the electrolyte across the electrode
at (a) 0.8C and (b) 3.2C discharge rate. The profiles are measured at (a)
t* = 303s, 7855, 1178s, 15715, 1963s and (b) t* = 162s, 325, 487s, 585s, 650s.

ratios are defined as follows: Case (a) 05 = 10Km4z; Case (b) 05 = 1072k 425 Case (c)

s = 10" *Kmaz-

Figure shows the solid concentration at the electrode particle surfaces (i.e 7 = 1
is dimensionless units) for different times. With o5 = 10k, the particles close to
the separator are the first to discharge fully as shown in Figure This indicates
that the rate of intercalation in particles in this region is greater than that elsewhere.
In Figure the ratio of conductivity of the solid and electrolyte phase is o5 =

10" 2Kymqz and the intercalation waves move from both separator and current collector.
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Y

t* ihcreasing:

Figure 8.4: The concentration of Lithium in the solid at the electrode
particle surfaces as a function of position in the electrode at (a) 0.8C
and (b) 3.2C discharge rate. The profiles are measured at (a) t* =
393s, 7855, 11785, 1571s,1963s and (b) t* = 162s, 325s,487s, 5855, 650s.

When the conductivity ratio is os = 10™%knae, the intercalation wave moves in from
the current collector (see Figure [8.10(c))) in reverse to the direction of propagation in
Figure [8.10(a)l This figure demonstrates that current tends to flow into particles near

the current collector until they are completely discharged.
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Figure 8.7: The concentration of solution in the electrolyte across the electrode
at 8C discharge rate. The profiles are measured at t* = 33s, 48s, 58s, 62s, 65s.

Figure 8.8: The concentration of Lithium in the solid at the electrode particle
surfaces as a function of position in the electrode at 8C' discharge rate. The
profiles are measured at t* = 33s, 48s, 58s, 625, 65s.
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It is clearly seen that in Case (a), the electrolyte depletion near the current collector
region stops the discharge before the cell can fully discharge as shown in Figure
In Case (b), the discharge proceeds for much longer but eventually ends, as for Case
(a), when the electrolyte near the current collector becomes depleted as shown in Figure
On the other hand, for Case (c), the cell voltage drops very significantly (see
Figure as the intercalation wave propagates in from current collector because the
resistance in the electrode is so high that current flow to the unlithiated particles near
the separator causes a large ohmic loss as shown in Figure In Figure we
plot the discharge curves for all 3 cases; Case (a) is limited by electrolyte depletion,
Case (c) is limited by the high solid resistance while the intermediate case (Case (b))
has a significantly better discharge curve than either of the others. In some sense this is
rather surprising as it suggests that making the conductivity of the electrode too good

actually limits its performance.

Figure shows that the diffusion of lithium in the solid is not important in Case
(a) (see Figure |8.12(a))) and Case (c) (see Figure [8.12(b)) as the particles discharge

uniformly within the solid particles. In Case (b), although it shows that the profiles are
not uniform (see Figure [8.12(c)|), the profiles only change by a very small amount and
do not significantly affect the discharge.
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the cell is discharged for the 3 different cases. The cell is discharged at 1.6C.
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Figure shows the distribution of current density in the solid (js) and in the elec-
trolyte (j) across the cathode in the 3 different cases. For o3 = 10k;qz, the current
density profiles propagate in from the separator (see Figure|8.13(a)). In Figure [8.13(b)]
for 0y = 1072Knae, the current density profiles propagate in from both separator and
current collector and for o5 = 10 4K0z (see Figure, the current density profiles
propagate in from the current collector. Figure shows the reaction rate distribu-
tion across the cathode in the 3 different cases. The reaction rate peaks move from
the separator towards the current collector in Case (a) (see Figure while the
trend is reversed in Case (c) (see Figure . In Case (b), the peaks can be seen to
propagate in from both separator and current collector (see Figure )

Figure [8.15] shows the curves for the current density in the electrolyte when the cell is
discharged at 1.6C' for 400s under different conductivity ratios in the solid and electrolyte
phases. When o5 = 10K,42, the crucial region of the current distribution is near the
separator. The current drops in this region indicate that the current travels only a
short distance from separator before being intercalated in the electrode particle. When
0s = 1072k qe, the current distribution is more uniform; showing that a significant
numbers of Lithium ions are intercalated in the regions near the separator and near the
current collector. However, when o, = 10™*K,42, the significant drop in current occurs
near the current collector. As the conductivity in the solid is very small, it is difficult

for current to travel far from current collector.
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Figure 8.15: Distribution of the dimensionless electrolyte current density (j)
across the electrode when the cell is discharged at 1.6C' for 400s with different
conductivity ratios in the solid (os) and electrolyte (Kmaqz) phases.

Figure [8.16] shows the distribution of reaction rates when the cell is discharged at 1.6C
for 400s for the three different cases. For Case (a) 05 = 10Kmqz, the peak in reaction

rate occurs near the separator ; for Case (b) o5 = 10" 2Kmaz, the reaction peaks occur
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at both the separator and the current collector; and, for Case (c) o5 = 10 *Kqz, the

reaction peak occurs near the current collector.
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Figure 8.16: The dimensionless reaction rate across cathode when the cell is
discharged at 1.6C for 400s with different conductivity ratios in the solid (o)
and electrolyte (Kmaz) phases.

8.5 Summary

A half cell model is presented for a LiFePO,4 cathode. The model treats the electrolyte
using moderately concentrated solution theory. The simulation results presented in this
chapter compare well to the experimental data from Owen et al. [46] across a range of
discharge rates. We show that at high discharge rates, the ionic diffusivity in the LiPFg
electrolyte limits the discharge of a the half cell as a result of the formation of lithium

depleted regions in the electrolyte.

In this study, we also investigate the effects that varying the ratio of conductivity in the
solid to that the maximum conductivity in the electrolyte has on discharge. The results
show that if the ratio is large, the current distribution propagate in from the separator;
if the ratio is slightly low, the current distribution propagate in from both the separator
and current collector; and if the ratio is very low, the current distribution propagate
in from the current collector. Interestingly, the best discharge curve is obtained for the
intermediate value of the conductivity ratio between electrolyte and solid phases (1072)
as shown in Figure High solid conductivity leads to electrolyte depletion while low
solid conductivity results in high resistance in the solid and a poor discharge curve.
This study may have bearing on the efficient design of electrodes for high discharge

applications.



Chapter 9

Conclusions and Future Works

9.1 Conclusions

A general introduction to the electrochemical process occurring in a battery was pre-
sented in Chapter 1 together with a review of battery modelling over the past few decades

including the framework set out by Newman [59].

In Chapter 2, we discussed solutions to a detailed model of a lithium-ion battery based
on a dilute electrolyte model and fast diffusion in the electrode particles. The extremely
small size of electrode particles led us to use the homogenisation battery model derived
n [74]. We derived quasi static asymptotic solutions to this homogeneous model based
on flat discharge curves for the electrode materials. These asymptotic solutions were

found to compare favourably to numerical solutions.

Interaction between ions in more concentrated solutions leads to non-ideal behaviour
and in Chapter 3 we discuss an electrolyte model for moderately concentrated electrolyte
(based on the Stefan Maxwell equations) that was originally presented in [60]. We note
a source of confussion is the factor premultiplying the concentration term in Ohm’s law
is accounted for by the fact that potentials in this model are measured with respect to a
lithium electrode rather than the absolute potential. The transport properties appear-
ing in the model are then fitted to experimental data. Homogenisation techniques are
applied to the electrolyte model in a battery and it is shown how to derive a macro-
scopic model parameter (the porosity) that accounts for the microscopic structure of the
electrodes. Hence the model could be used to compare the cell performance of different

microstructures with different shapes and sizes of particle.

In Chapter 5, we discussed the modelling of electrode particle of graphite anode par-
ticles (LiCg) and Lithium iron phosphate (LiFePOy) cathode particles. The models

described are based on diffusion equations for lithium in the electrode particles. So for
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example the multiple phase transition that occur as lithium intercalate in LiCg are de-
scribed by a nonlinear diffusion model (as shown in Chapter 7) which provides a good

phenomenological description of the behaviour.

A numerical procedure based on the method of lines (MOL) was developed in Chapter 6
to solve the multiscale battery problem consisting of macroscopic electrolyte equations
and microscopic diffusion equations for lithium transport in the electrode particles. This
procedure is discussed. The MOL technique is well-suited to relatively stiff equations
and works by converting the set of PDEs into a large set of coupled ODEs system. An
implicit differential algebraic solver; namely odelbs is used to solve this large system of
ODEs. The resulting code is fast, efficient and stable. Furthermore, it can be readily
adapted for use in more complicated scenarios; such as electrodes with different sizes

and shapes of particle.

The model was verified against experiment in Chapters 7 and 8. In Chapter 7, we
discussed the half cell discharge on an LiCg anode. This is limited by diffusion of
lithium in the electrode particles. In order to accurately reproduce the discharge curves
we needed to account for the strong dependence of diffusivity within the particles on
lithium concentration. An analytic asymptotic solution for the potential drop V across
the cell was derived in the limit that the diffusion timescale in the electrolyte is small
in comparison to the lithium diffusion timescale in the electrode particles. In this limit,

it is shown that the electrode particles discharge synchronously.

In Chapter 8, we formulated a model for nanostructured LiFePO,4 half cell cathode in
which we assumed that the diffusion within the electrode particles is sufficiently fast that
discharge is limited solely by the electrolyte and the conductivity of the electrode. The
numerical results of this model compared very favourably against real data from a half
cell LiFePO, cathode measured by Owen et al. [46]. We then investigated how varying
the electrode conductivity in the simulation affected the discharge curves (see Figure
. We found that the best discharge curve was obtained at an intermediate values
of the electrolyte conductivity. This seems to be because the discharge is affected by
electrolyte depletion if the conductivity in the solid is large and by high solid resistance
if the conductivity in the solid is too small. We believe that the results may prove useful

in electrode design.
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9.2 Future works

The research can be further developed in a number of ways;

The effect of different sizes of particles In this study, we assume that the elec-
trode particles are all spheres of uniform sizes. However, in actual batteries, the particles
may be of different sizes (and of shapes) and hence will encounter different diffusion and
surface reaction rates. The model remains unchanged, except that different size particles
may have different BET surface area if they are packed similarly. However, lithium diffu-
sion in large particles is slower than in small particles, and this may lead to nonuniform
current distribution. Our numerical procedure is capable of simulating this problem
with only minor modifications. Thus, it would be interesting to investigating the effect

of varying the distribution of particle sizes in space upon the cell performance.

The effect of changes in particle shape and packing upon cell performance
Here we have always assumed the electrode particles to be spherical in order to simplify
the theoretical treatment. To date, no comprehensive numerical investigation has been
performed to investigate the effects of changes in particle shape and packing upon cell
performance. Once again the numerical procedure gives here should be capable of be-
ing adapted to non-spherical particles although this involves the introduction of extra
dimensions. So for example a general ellipsoidal particle requires treatment in those
spatial directions 71, 79,73 but one with an axis of symmetry only requires treatment in

two spatial; directions r; and rs.
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