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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF HUMAN AND SOCIAL SCIENCES

Mathematical Sciences

Doctor of Philosophy

ADVANCED NUMERICAL METHODS FOR NEUTRON STAR INTERFACES

by John Christopher Muddle

This thesis investigates advanced numerical methods for neutron star interfaces. Neutron

star binary mergers are considered a strong source of gravitational waves. However,

accurate gravitational wave templates are required to detect them. In turn, these

templates require accurate numerical neutron star models.

Neutron star interiors are thought to consist of several different regions, which are

separated by thin transition layers. Millmore and Hawke developed a framework that

approximates these transitions as infinitely thin interfaces and allows one to incorporate

them into a numerical neutron star model. As modern neutron star models, used to

calculate gravitational wave templates, include a magnetic field, we have extended the

framework of Millmore and Hawke to incorporate a magnetic field. We show that this

extension introduces a new physical effect that facilitates the redistribution of angular

momentum within the star. This redistribution could lead to a change in the time taken

for the merged neutron stars to collapse into a black hole.

We have also developed a new approximate solution to the multi-material Riemann

problem called the multi-material Riemann Ghost Fluid Method (mRGFM). This

method allows the combination of two different systems of hyperbolic conservation laws

across an interface. We demonstrate that this approach is capable of correctly capturing

the locations of strong shock waves. Strong shock waves will develop during the chaotic

merger phase.

Finally, we have presented the first coupling between a fluid interior and a vacuum

exterior for a toy star. This result can mimic the surface of a star. Current simulations

approximate the surface of a neutron star with an unphysical atmosphere. We use the

mRGFM to apply realistic boundary conditions at the surface.
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Chapter 1

Introduction

This thesis introduces advanced numerical methods that can be used to build and

evolve a relativistic multi-component neutron star model. These new methods make

it possible to construct a neutron star model that includes a neutron star’s internal

structure and magnetic field. Including these physical features within a model

will improve the accuracy of gravitational-wave templates calculated from numerical

simulations. Accurate gravitational-wave templates are essential to detect gravitational

waves directly, using laser interferometers.

Hulse and Taylor were the first to detect gravitational waves indirectly. They were

awarded the 1993 Nobel Prize in Physics for this discovery [85, 171]. This indirect

detection came from observing the binary pulsar PSR B1913+16. A pulsar is a rotating

neutron star that emits beams of electromagnetic radiation from its magnetic poles.

These beams rotate about the neutrons star’s spin axis like a lighthouse. The detected

signal is a pulse, hence the name pulsar. Binary systems, such as the one containing

the Hulse-Taylor pulsar, are strong candidates for the first direct gravitational wave

detection.

Directly detecting a gravitational wave is only possible if the gravitational-wave power

produced by a system is sufficiently large. The gravitational-wave power emitted

from a binary system is proportional to the total mass of the system divided by the

separation to the fifth power [115]. A neutron star can have a mass between 1M�
and 3M�, with a typical mass of 1.4M� [98]. A neutron star’s radius cannot be

measured directly, but it is possible to approximate it from the star’s mass and an

appropriate equation of state (EOS). A consequence of this is that radius estimates

can vary from 6km to 15km, depending on the EOS; the canonical radius is 12km [98].

A binary system’s separation can decrease to tens of kilometres due to a neutron star’s

compactness. Therefore, a binary system, containing a compact object, will produce a

large amount of gravitational-wave power prior to coalescing due to the small separation

and large total mass of the system.

1
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A neutron star’s exact components are unknown, but they are predicted to include

nuclei, free nucleons, free electrons, quarks, kaons and other strange matter [98].

Its internal structure is complex and exotic due to its diverse constituents and

compactness. It is predicted to have a stratified interior analogous to the Earth; each

layer has a distinct physical character. Transitions between layers are complex and

represent a phase transition in the physical matter. These transitions can have a physical

size on the order of centimetres, such as the Ekman layer, which is the viscous boundary

between the star’s elastic crust and its fluid core [9].

A binary’s merger phase is highly chaotic and relativistic; only a numerical

simulation will accurately reproduce a system’s dynamics. The first general-relativistic,

numerical, double neutron star binary system simulation was performed by Shibata

and Uryū in 1999 [161]. Since then, more sophisticated and complex simulations

have been performed resulting in increasingly accurate gravitational-wave templates.

However, modern numerical simulations are unable to resolve transitions between layers

precisely due to a lack of computational power. Millmore and Hawke have developed a

fully general-relativistic framework that approximates these transitions as infinitely thin

interfaces [114]. The work presented in this thesis builds upon and extends their work.

Including these interfaces, within binary neutron star simulations, will lead to new and

exciting results.

This thesis also aims to extend Millmore and Hawkes work by including a magnetic field.

Neutron star observations have suggested that a neutron star’s magnetic field strength

is enormous. One can approximate a pulsar’s magnetic field strength from its observed

pulse. If a pulsar’s magnetic field is assumed to be dipolar, a reasonable approximation

[144], one can show that the surface magnetic field strength squared, B2, is proportional

to the spin period, P , multiplied by its derivative with respect to time, Ṗ [105],

B2 ∝ PṖ . (1.1)

Since their discovery, hundreds of pulsars have been observed. Their magnetic fields

have been approximated to be between 108G [144] and 1015G [52], with a typical value

of 1012G [98]. As a comparison, a neutron star’s magnetic field is up to six orders of

magnitude stronger than the strongest pulsed source on Earth [32].

The following paragraphs outline the remainder of the introduction and motivation.

Firstly, the majority of this chapter will explore a neutron star’s complex and varied

interior. It will detail the different layers and transitions that occur between a star’s

centre and exterior. Currently, these transitions are absent from modern numerical

simulations. The work presented in this thesis will enable their inclusion along with a

magnetic field.
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Secondly, this introduction briefly examines the reasoning behind and the implications

of including general relativity within a neutron star model. It will also explore the

experiments that aim to detect gravitational waves directly from neutron stars.

Finally, the chapter discusses current simulations in numerical relativity. This section

will outline some approaches to splitting space and time to allow numerical integration.

Binary black hole simulations will be considered next, because they have acted as a

forerunner. It will then examine the brief history of neutron star simulations and

summarise the current status.

Neutron stars are the most extreme, exotic and exciting astronomical objects.

General relativity is a well-tested physical theory that is on a par with quantum

mechanics. Numerical relativity is a young and active research area that will pave

the way for the direct detection of gravitational waves and a new era of multi-messenger

astronomy. These three reasons have motivated us to develop the numerical methods

presented in this thesis.

1.1 Neutron Stars

Neutron stars present a unique opportunity to explore the extremes of condensed matter

and magnetic fields. They are among the most exotic and complex phenomena in the

Universe. They contain roughly one and a half times the Sun’s mass within a volume

that is fourteen orders of magnitude smaller. They also possess the strongest known

magnetic fields within the Universe. The work presented in this thesis will lead to

better neutron star simulations and therefore a better understanding of their physical

counterparts.

The existence of neutron stars was first predicted by Baade and Zwicky in 1934, based on

their supernova population analysis [15]; this prediction was made just after Chadwick’s

discovery of the neutron in 1932 [35]. They predicted that as a star’s nuclear fuel ran

out it would produce a supernova, which would leave a remnant containing a neutron

star. Hewish et al. first discovered a pulsar in 1967 [78]. The pulsar they observed

emitted a pulse with a frequency of 0.747Hz. Gold then proposed in 1968 that the

newly discovered pulsar was a rotating neutron star [67]. He based his proposal on the

idea that no other theoretical or known astronomical object could possess such a short

periodicity. To date, observations have led to the identification of over two thousand

neutron stars [126].
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1.1.1 Neutron star formation

Neutron star formation is key to understanding why neutron stars possess such extreme

physical properties. Stellar evolution suggests that a neutron star is formed from a

supernova, just as Baade and Zwicky had proposed. Two of the youngest observed

neutron stars, the Crab pulsar and the Vela pulsar, are both contained within their

supernova remnants; the Crab’s supernovae was observed by ancient astronomers

[97, 142, 166]. A supernova occurs, when the progenitor star can no longer maintain

hydrostatic equilibrium after its nuclear fuel has run out. The star can no longer produce

enough thermal pressure to counteract its self-gravity. What happens to the progenitor

next is primarily determined by its mass.

If the progenitor’s mass is between 1M� < M . 8M� [157], then the gravitational

pressure within the core is large enough to facilitate the production of heavier elements

up to oxygen. At this point, the gravitational pressure dominates and the core collapses

to form a white dwarf; material expelled during the collapse, between 0.1M� and 1M�,

is believed to form planetary nebulae. The electron degeneracy pressure, due to the Pauli

exclusion principle, prevents the white dwarf from further collapse. The Pauli exclusion

principle states that two fermions cannot occupy the same quantum state at the same

time. Therefore, the electrons form a Fermi gas that exerts a pressure that counteracts

the gravitational pressure. In 1931, Chandrasekhar calculated the maximum mass that

can be supported by degenerate, relativistic electrons to be approximately 1.44M� [37].

If a white dwarf exceeds this mass through some mechanism such as accretion, it will

collapse into a neutron star or a black hole.

If the progenitor’s mass is greater than eight solar masses, M > 8M�, then the

gravitational pressure in the centre is large enough to facilitate the production of

heavier elements up to nickel. An inert iron-nickel core will form within the progenitor.

As before, the electron degeneracy pressure will prevent the core from collapsing.

Once the Chandrasekhar limit has been breached, the core continues to collapse and

the outer layers fall inwards, reaching relativistic velocities. Inside the core, electrons

and protons fuse to form neutrons and neutrinos through inverse beta decay,

p+ e− → n+ νe. (1.2)
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Neutrons are also fermions and are subject to the Pauli exclusion principle like electrons.

Therefore, a degeneracy pressure forms that halts the core collapse producing a neutron

star. This sudden halting causes the core to bounce, which creates a shock wave

that propagates away from the core. The shock wave becomes optically transparent

to the neutrinos produced in the core and stalls [59]. The shock leaves an entropy

profile behind that is convectively unstable. If this region can gain enough energy,

a successful supernova explosion can occur; this is known as a Type II supernova.

The mechanism that restarts the shock is currently unknown. Some possible mechanisms

involve neutrinos, rotation, convection and magnetic fields [98].

The final scenario happens when the neutron degeneracy pressure can no longer prevent

a neutron star’s core collapsing to a black hole. The collapse occurs when the mass

of the core exceeds the Tolman-Oppenheimer-Volkoff limit, which is analogous to the

Chandrasekhar limit [122].

1.1.2 Neutron star structure

Having discussed neutron star formation, the next section will focus on a neutron star’s

internal structure. It will concentrate on a neutron star that has reached what can be

considered an equilibrium state. A neutron star’s density is of the order of the nuclear

density due to its compactness. The nuclear density, ρN = 2×1014g cm−3, is the density

of the atomic nucleus [157]. A neutron star’s density is believed to vary from 0.5ρN at

the surface to 10ρN at its core [98].

Another important variable to consider is the temperature within the neutron star.

Neutron stars have an internal temperature in the range of 106 – 108K [6]. This is below

the star’s Fermi temperature, TFermi ≈ 1012K [6]; the Fermi temperature corresponds

to the energy difference between the highest and the lowest occupied quantum state.

As a consequence of star’s temperature being below its Fermi temperature, the EOS

can be approximated to be a function of the density alone and is barotropic [145].

In reality, this is a simplification that is not true during the merger phase of a neutron

star binary, but one can gain a good understanding of the internal structure without

considering temperature dependent EOSs .
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Outer Core
Inner Crust

Outer Crust

Atmosphere
H, He, C, N, O, Fe, Ni

Surface

Ocean

Mantle

Inner Core

Figure 1.1 – A representative cross-section of a neutron star with the important layers
labelled. The labels list the constituents of each layer with π for pions,
κ for kaons, and Z for ions. The checker-board pattern indicates where there
is a crystalline structure. The question marks indicate that the constituents
of the core could contain exotic states of matter. A black line marks the
transition region between two layers.

It is currently not possible to probe a neutron star’s internal structure via its

electromagnetic signals. In the future, gravitational waves will allow researchers to

constrain the EOS and determine the star’s interior structure. For now, researchers must

use their best theoretical models to develop a picture of the interior. The majority of

models assume that a neutron star has a stratified interior with distinct layers, separated

by transition bands [98]. In order of decreasing density, these regions are the inner core,

outer core, mantle, inner crust, outer crust, ocean and atmosphere. This structure is

visible in Figure 1.1. The regions in the figure differ in constituents and structure,

e.g. the crust contains a crystalline lattice, while the core is fluid. In Figure 1.1,

the transition between one region to the next is represented by a black line.

The star’s physical properties change significantly over a short distance at these

transitions. The Ekman layer which is the transition between the crust and the outer

core has a thickness of ≈ 1− 10cm [9].
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1.1.2.1 Atmosphere

The neutron star’s atmosphere is the outermost layer and has a thickness of

approximately 1cm. It is a layer of plasma that produces the star’s thermal

electromagnetic spectrum [138]. The plasma consists of charged atoms, molecules and

ions. The atmosphere’s effective temperature is Teff ∼ 106K. The effective temperature

is the temperature of a black body with the same luminosity per surface area.

The atmospheric density is approximately 106g cm−3. This is several orders of

magnitude lower than the interior density.

1.1.2.2 Ocean

Along with the atmosphere, the ocean is sometimes referred to as an envelope. The major

constituents of the ocean are nuclei and degenerate electrons. As the name suggests,

the ocean is in a liquid phase and it has a thickness of approximately 10cm [138].

The ocean plays an important role in the transport and release of thermal energy from

the star’s surface [98].

1.1.2.3 Crust

Like the Earth, a neutron star is believed to have a solid crust. The crust’s depth is

approximately 1km and is subdivided into several regions: outer crust, inner crust and

mantle. Due to the effect of gravity, it becomes energetically favourable for inverse beta

decay, given by equation (1.2), to occur. As a result, 90% of the nucleons are neutrons

[36]. These neutron-rich nuclei populate the outer crust and form a crystalline lattice

that behaves physically like elastic matter.

The transition from the outer to the inner crust occurs at a depth of about 300m at

the “neutron drip” density of 4× 1011gcm−3. At this density, neutrons dissociate from

the nuclei [29]. These free neutrons form a neutron fluid, which permeates the nuclear

lattice and could be in a superfluid state [25].

As the density within the crust approaches the nuclear density, the nuclei separate

into neutrons and protons. This separation is called the “pasta” phase or the mantle,

which is the transition from the inhomogeneous crust to the homogeneous core [126].

It is called the “pasta” phase due to the shape of the nuclear lattice as it transitions;

the 3D lattice becomes 2D lines and finally 1D slabs. Its thickness is of the order of

metres [137]. After the mantle, the transition from crust to core is complete.
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1.1.2.4 Core

The core contains the majority of a neutron star’s volume and mass; as much as 99%.

It is usually split into two distinct regions: inner and outer core. The latter is believed

to consist of two main components: superfluid neutrons and superconducting protons

[11]. The density within the outer core can reach twice the nuclear density.

As the density increases beyond 2ρN, the outer core transitions into the inner core.

The inner core is the region theorists are most uncertain about and is represented

by question marks in Figure 1.1. The density within the inner core is predicted to

reach up to approximately 10ρN at the centre, well beyond any laboratory experiment.

At densities this high, species of matter could be exotic and quite literally strange.

One such exotic species of matter are hyperons: hyperons are baryons with at least one

strange quark. There could also be kaons and pions; these are mesons that could form

Bose condensates [25]. Within the core there could also be deconfined quarks [138].

Whether the inner core exists and contains these exotic forms of matter is dependent on

the EOS. Its existence requires the neutron star’s central density to exceed 2ρN, which is

determined by the neutron star’s compactness (M/R). Accurate measurements of mass

and radius through electromagnetic and gravitational radiation will constrain the EOS.

1.1.3 Neutron star exterior and magnetic field

This section will examine a neutron star’s exterior and its magnetic field. It will follow

the description of a pulsar’s magnetic field given by Goldreich and Julian [68].

As mentioned earlier, neutron stars can have magnetic fields up to 1015G [144], with a

typical magnetic field strength of 1012G. These are the strongest known magnetic fields

in the Universe. A neutron star’s magnetic field is believed to be approximately dipolar

like the Earth’s magnetic field as shown in Figure 1.2. The light cylinder, represented by

the dashed lines in Figure 1.2, is the maximum distance at which a particle can co-rotate

with the star without exceeding the speed of light. Field lines passing through the light

cylinder become more radial and enter a region known as the wind zone.

A neutron star’s exterior is not a vacuum, but contains charged particles. The particles

form a force-free plasma; this means that the Lorentz force is zero. There are two

processes that lead to this plasma formation. Firstly, charged particles can only travel

along field lines. In young, hot neutron stars, protons and electrons flow outwards.

In colder, older stars, only the electrons can leave, creating a potential gap.

Secondly, when the potential reaches a critical voltage, electron-positron pair creation is

energetically possible. The electrons flow back to the star and the positrons flow away,

completing the circuit. We will primarily focus on the region close to the neutron star

within the light cylinder.
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Figure 1.2 – A diagram of the magnetic field configuration of a neutron star where the
field lines are red. The magnetic field is dipolar near the star and radial
beyond the light cylinder. The dashed lines indicate the light cylinder.
In this diagram, the field was aligned with the axis of rotation, but in general
this will not be the case and is not true for any observed pulsar.
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1.1.4 Classes of neutron stars

This final subsection will examine the different types of neutron star that exist.

It will focus on these three: pulsars, magnetars and millisecond pulsars. Figure 1.3

shows that each of these three types occupies a different region in the period derivative

against period plot. The figure illustrates the location of every known pulsar that has

a measured period derivative and period in the ANTF pulsar catalogue, to date [108].

The figure also indicates the characteristic magnetic field from equation (1.1) and the

characteristic age which is given by

τ =
P

2Ṗ
, (1.3)

where τ is the characteristic age [53]. Figure 1.3 shows that the majority of pulsars have

a period of one second, while magnetars are much younger and have a longer period.

Millisecond pulsars have the shortest and most stable periods and are usually found in

a binary.

1.1.4.1 Pulsars

Hewish et al. detected the first pulsar in 1967 [78]. A pulsar emits beams of

electromagnetic radiation from its magnetic poles. Due to its rotation, detectors see

this as a pulse. The emitted radiation can be in several different frequency bands at the

same time: radio, optical, X-ray and gamma. The majority of pulsars are slowing down

due to magnetic breaking and this is characterised by a braking index,

n =
νν̈

ν̇2
, (1.4)

where n is the braking index, ν is the frequency of the pulsar and dots indicate derivatives

with respect to time [52]. The braking index describes the motion of the pulsar in the

Ṗ vs P diagram. Espinoza et al. investigated the braking indices of young pulsars and

showed their periods to be increasing [52]. Recently, work has been done to improve the

braking index calculation to include the effect of a superfluid interior [81]. Some pulsars

have extremely regular periods; they could replace atomic clocks in the future [82].
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Ṗ vs P

Pulsars
Binary Pulsars
Magnetars

Figure 1.3 – A Ṗ vs P plot of pulsars from the ANTF catalogue [108]. The figure shows
three different classes of neutron star: magnetars in the top right, ordinary
pulsars in the middle and binary pulsars in the bottom left. Millisecond
pulsars have the shortest and most stable periods, 1.4ms . P . 30ms [105],
and are usually found in a binary. The plot also indicates the characteristic
age and magnetic field. As a pulsar spins down, its magnetic field strength
decreases.
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1.1.4.2 Magnetars

Magnetars, located in the top right of Figure 1.3, are predicted to have the strongest

magnetic fields in the known Universe of around 1014− 1015G. Their existence was first

proposed by Duncan and Thompson in 1992 as the source of soft gamma-ray repeaters

[49].

The first magnetar observation came by accident in 1979, when several satellites

detected a gamma-ray signal. The source was determined to within two-arc-seconds

precision and coincided with a supernova remnant in the Large Magellanic Cloud [49].

After the initial burst of gamma rays, there were twenty more bursts with a period of

eight seconds. As well as soft gamma-ray repeaters, magnetars have been proposed as

the source of anomalous X-ray pulsars [75]. Thus far, only twenty-eight magnetars have

been observed [121].

1.1.4.3 Millisecond pulsars

The third class of neutron stars are the millisecond pulsars that occupy the bottom

left of the figure. The majority of millisecond pulsars are in a binary system.

Although believed to be much older than normal pulsars due to their weak magnetic

fields, they spin much faster. They have periods in the range 1.4ms . P . 30ms [105].

This spin-up is due to matter accreting onto the star from its stellar partner [105].

Accretion can also reduces the strength of the pulsar’s magnetic field; one suggested

reason is that the magnetic field is buried by the accreting matter [52, 180].

1.2 General Relativity

One of the primary goals of this research is that, with a more accurate neutron star

model, researchers will be able to produce more accurate gravitational-wave templates.

Gravitational waves are a manifestation of a relativistic theory of space and time;

realistic models should be built using relativity. Not only is relativity needed for

gravitational waves, but for modelling the star itself; a neutron star is a highly relativistic

object. Its compactness warps space-time to such an extent that light emitted from the

star’s far side is visible from its near side. The maximum mass limit of a neutron star is

a relativistic effect; there exists no such limit in a Newtonian theory. This section will

explore the results that led Albert Einstein to formulate his theory of relativity.
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At the beginning of the twentieth century, the need for an alternative explanation of

gravity was evident; Newton’s theory of gravitation could not explain several observed

phenomena. One such example, at the time, was a deviation between the classical

prediction and the observed rate of Mercury’s perihelion precession [45]. In response to

the need for an alternative description, Einstein developed his theory of general relativity

over several years; this culminated in “Die Feldgleichungen der Gravitation” published

in 1915 [50], in which he presented his field equations. One of Einstein’s early successes

was solving Mercury’s precession problem described above: general relativity added a

correction, which accounted for the deviation [45].

The theory of general relativity couples space and time into a single manifold that is often

referred to as space-time. The curvature of space-time is deformed by the presence of

mass-energy; in the limit of zero mass-energy, space-time tends towards a Minkowskian

manifold, which is flat [45]. The curvature of space-time determines the motion of a

mass within it. In flat space, special relativity determines the dynamics of a particle.

This new description of gravity allows physics in the strong-field regime to be explored,

i.e. black holes and neutron stars.

1.2.1 Relativistic notation

Throughout this work, equations are given in geometric units: Newton’s gravitational

constant G, the speed of light c and the solar mass M� are set to one unless specifically

stated,

G = c = M� = 1. (1.5)

Tensors are a relativist’s primary tool; throughout this text, different tensor indices are

used. Greek indices such as µ and ν correspond to a four-vector (µ = 0, ..., 3), such as the

four-velocity uµ. Roman indices such as i and j correspond to space-like quantities with

(i = 1, ..., 3), such as the velocity vi. Throughout this thesis, the Einstein summation

convention is used as well as a flat metric with a signature of (−1, 1, 1, 1).

1.2.2 Gravitational waves

One of the key predictions from Einstein’s field equations is the emergence of

gravitational waves: these are ripples in the space-time curvature [91]. They provide a

mechanism for energy loss from a system and once detected will form a new branch of

astronomy. The most promising sources of detectable gravitational waves are massive

compact objects such as black holes and neutron stars, but even these only produce

minute fluctuations in the space-time curvature at Earth. These waves carry energy

known as gravitational radiation and travel at the speed of light [157]. They carry

information about their source that is not accessible from electromagnetic radiation.
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1.2.2.1 Linearised gravitational waves

Gravitational waves can be derived in the weak-field limit by linearising the Einstein

field equations about a small perturbation hµν in the background space-time metric g
(B)
µν

[115]. A more detailed derivation can be found in Gravitation by Misner, Thorne and

Wheeler [115].

The Einstein field equations are

Gαβ = Rαβ −
1

2
gαβR, (1.6a)

Gαβ = 8πTαβ, (1.6b)

where Gαβ is the Einstein tensor, Rαβ is the Ricci tensor, gαβ is the metric, R is the Ricci

scalar and Tαβ is the stress-energy tensor. The Einstein field equations demonstrate the

coupling between the space-time Gαβ and the matter given by Tαβ.

The analysis of these equations can be simplified by making some physical assumptions

about the system; the wave’s wavelength λ is much less than the radius R of the

background space-time curvature,

λ� R. (1.7)

The metric’s, gµν , deviation from the background metric, g
(B)
µν , determines the

perturbation, hµν , due to the gravitational waves. The background metric, g
(B)
µν , gives a

measure of the curvature. It can be calculated by averaging the metric, gµν , over many

wavelengths,

g(B)
µν = 〈gµν〉, (1.8)

where g
(B)
µν is a solution to the averaged Einstein field equations.

The full metric is the sum of the average background metric and the metric perturbation,

gµν = g(B)
µν + hµν . (1.9)

A coordinate system has been chosen such that |hµν |� 1.

The Einstein field equations (1.6) can be expanded in powers of hµν and then linearised.

The Riemann tensor is given by,

Rαβγδ =
1

2
(hαδ,βγ − hβδ,αγ − hαγ,βδ + hβγ,

α
δ), (1.10)

where a comma indicates a partial derivative to the indices that follow.
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The Ricci tensor and scalar can then be derived from the Riemann tensor by contracting

on the first and third index and then finding the trace,

Rαβ =
1

2
(hεβ,αε − hαβ,εε − hεε,αβ + hαε,

ε
β), (1.11)

R = −(�h− hαβ,αβ), (1.12)

where � = ∂µ∂µ is the d’Alembertian operator and �h = hµµ,α
α. The linearised

equations are then substituted into the Einstein field equations (1.6) and simplified by

replacing the metric perturbation with the trace-reversed metric perturbation,

h̄µν ≡ hµν −
1

2
g(B)
µν h. (1.13)

With this substitution the Einstein tensor is given by

Gµν = −1

2
[h̄µν,α

α + g(B)
µν h̄αβ,

αβ − h̄µα,να − h̄να,µα]. (1.14)

Imposing Lorenz gauge hµν ,
ν = 0, without loss of generality, on the equation above

(1.14) gives a wave equation for the metric perturbation,

�h̄µν = −16πTµν . (1.15)

Phase

Figure 1.4 – The effect of a gravitational wave on a ring of free masses. The two
polarisations are shown with plus shown above cross.
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1.2.2.2 Quadrupole formula

The solution to the perturbation wave equation (1.15) can be solved by a retarded

Green’s function,

h̄µν(t,x) = 4

∫
Tµν(t′ = t− |x− x′|,x′)

|x− x′| d3x′. (1.16)

If we assume that the source is moving slowly, v � c, then the energy density is

dominated by the mass distribution. The solution to the Green’s function can be given

in terms of the second time derivative of the quadrupole mass moment. This solution is

called the quadrupole formula,

h̄ij(t, r) =
2

r
Ïij(t− r), (1.17)

where r = |x− x′|. The quadrupole mass moment is given by

Iij ≡
∫
ρxixj d3x, (1.18)

where Iij is the quadrupole mass and ρ is the mass density. This result is most commonly

given in terms of the reduced quadrupole moment,

-Iij ≡
∫
ρ

(
xixj −

1

3
r2δij

)
d3x, (1.19)

and in transverse-traceless gauge is equal to

h̄TT
ij (t, r) =

2

r
-̈ITT
ij (t− r). (1.20)

One can calculate the gravitational wave polarisation from the quadrupole formula

(1.20). A gravitational wave has two polarisations: cross and plus. The name of each

polarisation is due to the effect they have on a ring of free masses. Figure 1.4 shows

these effects.
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1.2.3 Tests of general relativity

General relativity’s validity has been tested numerous times since its formulation.

As mentioned previously, the first proof of its validity was provided by its ability to

predict the orbit of Mercury correctly, by including the precession of its perihelion [45].

Further validation came from the indirect detection of gravitational waves.

1.2.3.1 Indirect detection of gravitational waves

Researchers have not yet detected gravitational waves directly [91], but indirect evidence

of their existence has been found. Hulse and Taylor [85, 171] received the 1993 Nobel

Prize in Physics for showing that the rate of decrease in the orbital separation of the

binary pulsar PSR1913+16 matched the rate predicted by the loss of energy through

gravitational wave emission [171] to within 0.4%. Recent measurements [184] have

continued to show agreement, as shown in Figure 1.5.

1.2.3.2 Ground-based detectors

Gravitational waves have, thus far, eluded all attempts made to detect them.

A major reason is that gravitational waves couple weakly with matter [153].

However, they have a distinct advantage over electromagnetic waves as an observational

tool. Electromagnetic radiation scatters many times on its way to Earth,

but gravitational waves arrive in their original state [153].

It is easy to understand the methods used to detect gravitational waves by understanding

how the waves affect “free masses.” As shown in Figure 1.4, gravitational waves produce

a tidal force on a system of particles. Gravitational waves change all proper distances

by the same ratio [157]. The proper length is the distance between two points that

is the same for all observers; it is therefore an invariant quantity. As a consequence,

two or more masses are required to observe this effect.

Since their prediction, there has been an effort to detect gravitational waves directly with

ground-based detectors. The first ground-based detectors were developed by Weber in

1968 [183]. They consisted of two large aluminium cylinders, one with a diameter of

0.61m and the other one of 0.20m, and both had a length of 1.52m, separated by a

distance of 2km. These detectors are only capable of detecting gravitational waves with

a large amplitude such as those produced by a supernova within the Milky Way.
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Figure 1.5 – The orbital decay of the binary system compared to the prediction from
general relativity. This plot is from the 2010 paper by Weisberg et al. [184].
The prediction from general relativity is correct to 0.2%.

The most promising type of ground-based detector is a large Michelson interferometer.

There are several detectors located around the Earth: three in The United

States of America (Advanced LIGO), one in Germany (GEO-HF), one in Italy

(Advanced VIRGO) and one in Japan (KAGRA). These interferometers have arm

lengths of several kilometres, held at near vacuum. Current detectors use a laser-based

system to measure the distance between two “free masses.” They hope to measure a

quantity known as the gravitational strain [157],

h =
∆L

L
, (1.21)

where the gravitational strain is h and the proper length travelled by the laser in the

interferometer is L.
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As mentioned above, gravitational waves interact weakly with matter and therefore

the gravitational strain, given in the strain equation (1.21), is tiny for all gravitational

waves. Not only is it tiny in terms of magnitude, but it is also tiny compared to the noise

generated by objects near the detector and thermal noise in the detector; overcoming

this is a major problem for the detectors and analysis algorithms.

The gravitational strain can be estimated by using the flux formula (1.22), which relates

luminosity to the time variation of the strain, and this is exact for the gravitational

waves that bathe the Earth [6],

|ḣ|2=
4

r2

dE

dt
, (1.22)

where E is the luminosity radiated from the source, which is a distance r away.

This formula gives an estimate for the strain, which can be parametrised to give a

value based on a typical source,

h ≈ 5× 10−22

(
E

10−3M�c2

)1/2( t

1ms

)−1/2( f

1kHz

)−1( r

15Mpc

)−1

. (1.23)

The strain estimate in equation (1.23) is calculated for a typical source at 15Mpc.

This distance is chosen so that the estimate includes sources from the Virgo cluster.

Including the Virgo cluster increases the number of astronomical events that astronomers

expect to observe over a year [6].

The interferometers work in the frequency range of 10Hz − 10kHz. This means that

they are sensitive to binary mergers of neutron stars that are a promising source of

gravitational waves [10]. Several factors limit the sensitivity of the detector: quantum

shock noise, thermal noise and seismic noise [134].

Figure 1.6 shows the detector sensitivities. Several distinct features are visible within

the sensitivity curves: there is a steep drop-off in sensitivity around 1Hz for all

detectors followed by a shallow descent towards the maximum sensitivity. To the right

of the maximum sensitivity, there is a shallow decrease in sensitivity above 200Hz.

The shallower reductions in sensitivity correspond to seismic activity at a low frequency

and thermal noise above 100Hz. Gravity-gradient noise prohibits ground-based detection

below 1Hz [134].

The review article by Pitkin et al. [134] gives more information about sources of noise

and ground-based detectors.
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Figure 1.6 – A sensitivity curve of current and future ground-based detectors. The least
sensitive detectors are those based on Weber’s design. The most sensitive
detectors are projected to be built within the next 50 years. This plot
was produced for the Gravitational Wave International Committee Road-map
[112].

1.3 Numerical Relativity

A neutron star’s extreme compactness means that any model will have to consider the

effect of general relativity. The equations of general relativity are non-linear and, in

general, their solution requires the use of numerical techniques. Some exact solutions

do exist, but these are for particular cases only. This section will briefly explain some

of the techniques used in numerical relativity.

The equations of general relativity presented earlier (1.6) are fully covariant.

Covariance means that the equations make no distinction between time and space.

There exist, however, situations that require the separation of space and time; for

example, the dynamical evolution of a neutron star binary system from a set of initial

data.
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There are several different formalisms to split space and time. These are usually

named after how they split the four dimensions. One category is the “3+1” formalism,

which splits space-time into a three-dimensional space-like surface and an orthogonal

time-like surface. Arnowitt, Deser and Misner first developed this method and it

is referred to as the ADM formalism [115]. The majority of modern simulations

use the BSSN formalism of Baumgarte, Shapiro, Shibata and Nakamura [24, 158].

The development of BSSN from the ADM formalism has allowed long-term,

stable evolutions. Another alternative is the “2+2” formalism of d’Inverno that splits

space-time into two space-like two-surfaces and their orthogonal time-like two-surface

elements [46]. We will focus on “3+1” formalisms, as the majority of the neutron star

binary evolutions use this formalism.

The “3+1” formalism foliates space-time into a set of non-intersecting space-like

hyper-surfaces [2]. This formalism gives two kinematic variables, the lapse and the

shift, which describe the coordinate evolution between two surfaces. The lapse function

α describes the advance of the proper time along a time-like unit vector normal to the

surface. The shift function βi represents the motion of coordinates with respect to the

previous time slice. The general metric of this formalism, written as a line element, is

ds2 = −(α2 − βiβi)dx0dx0 + 2βidx
idx0 + γijdx

idxj , (1.24)

where γij is the 3-metric associated with the current hyper-surface. The book by

Alcubierre gives an excellent introduction to numerical relativity [2].

When there is matter present, such as in a binary system, the stress-energy tensor Tµν

is non-zero [115]. The divergence of the stress-energy tensor has to vanish and defines

a set of equations that evolve the dynamic variables within the system. We will focus

on these evolution equations, as the gravitational background of a single neutron star

can be approximated to be fixed. This approximation is a reasonable one to make,

because matter is weakly coupled to space-time. In a binary system, the space-time

will need to be evolved and several community-maintained codes exist for this purpose,

e.g. The Einstein Toolkit [104]. The next chapter will focus on the matter evolution

equations.
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1.3.1 Black-hole simulations

Researchers have successfully calculated complete gravitational-wave waveforms for

double black-hole binary inspirals. These waveforms cover the whole evolution, including

the inspiral, merger and ringdown to a single black hole [79]. The waveform calculation

requires numerical simulations for the violent non-linear merger and ringdown phases.

There are three main approaches that cover a large parameter space of masses. They are

the effective-one-body formalism [17, 18], the self-force approach [22] and fully general-

relativistic, dynamical simulations [79]. The last approach is the most similar to a

neutron star binary simulation and was first demonstrated by Pretorius in 2005 [140].

This approach works best for systems with a comparable mass ratio [74].

1.3.2 Neutron star simulations

Neutron star numerical simulation is a relatively young and active research

area. Researchers have produced many different and interesting simulations.

Scenarios, which have been simulated, include: core-collapse supernova [125],

oscillation modes [94, 95, 132], pulsar glitches [163] and double neutron star binaries

[18, 19, 63, 146]. We are primarily interested in the inspiral and merger of a double

neutron star binary system.

To calculate the gravitational wave signature from a double neutron star binary

system, researchers use numerical simulations when the gravitational wave time-scale

is comparable to the dynamical time-scale of a few milliseconds. Up to this point, the

inspiral can be modelled by a post-Newtonian approximation. The post-Newtonian

approximation adds general-relativistic correction terms to Newtonian gravity [30].

It is valid, when Newtonian gravity is dominant, but relativistic effects are important

to the system’s evolution.

The first general-relativistic binary system simulation, consisting of two neutron stars,

was done by Shibata and Uryū in 1999 [161]. Their system contained equal mass neutron

stars with a simple polytropic EOS. A polytropic EOS approximates an ideal gas and

the next chapter will examine the approximation’s validity.

Since 1999, researchers have developed more sophisticated and complex simulations, such

as unequal mass binary systems [19, 160]. These simulations showed that the amount of

gravitational wave power produced by the system was highly dependent on the system’s

total mass. Recent simulations have included the merger of neutron stars in a binary

system, which lead to the formation of a magnetar-like star [61]. Others have considered

the electromagnetic and gravitational-wave signals from a binary merger [128, 129].
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1.4 Plan of Thesis

This thesis consists of eight chapters: introduction, developing a physical model,

mathematical theory, numerical methods, multi-model interface methods, single-model

results, multi-model results and discussion. The introduction has focused on the three

key areas that underpin the background physics and the development of the field of

research. Building on the introduction, the next chapter will take a more detailed

approach and focus on the approximations taken in relation to a neutron star. It will

also detail the approximations for which the model will be valid. The third chapter will

look at the mathematical theory required for the multi-model approach. The fourth

chapter considers the numerical methods associated with solving systems of non-linear,

hyperbolic, partial differential equations. The fifth chapter validates the numerical

algorithms used to solve the single-model problems and demonstrate the convergence of

these methods. The sixth chapter contains the majority of the novel work and explains in

detail the advanced numerical methods developed including the multi-material Riemann

Ghost Fluid Method (mRGFM). The seventh chapter contains new and exciting results

arising from the advanced interface methods presented in chapter six. Finally, chapter

eight serves to discuss and conclude what has preceded it.





Chapter 2

Developing a Physical Model

2.1 Introduction

When designing a model, one wishes to be as accurate and true to the object as one

can be. Starting from the basis that the laws of physics are universal, one would wish

to include all mankind’s understanding of the physical world. This, however, would

be a complicated and prolonged task. Therefore, as sane human beings, one must

make assumptions and approximations about the object that one is trying to model to

reduce its complexity. This chapter aims to explain the assumptions and approximations

made, when constructing a numerical model of a neutron star within a binary system

undergoing merger.

Neutron stars are highly complex and exotic objects. The first assumption one could

make, when modelling a neutron star, is about its composition. It is sensible to

assume that the composition of a neutron star consists entirely of observed fundamental

particles: quarks and leptons. The overwhelming majority of neutron star models have

made this assumption and we will as well.

Our primary interest is modelling a neutron star that is in a coalescing binary system.

There are three key stages during the coalescing: inspiral, merger and post-merger.

The important physical length-scales and time-scales for each of these stages is different.

It is, therefore, important to consider each stage individually.

25
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2.2 Pre-merger Neutron Stars

Firstly, a neutron star within a binary system that is close to merging shall be considered.

Based on current models of stellar evolution, it is believed that such a star would be

older than 108years [159]. As a consequence of its age, it would be cold; its physical

temperature would be significantly below its Fermi temperature [9]. It can, therefore,

be approximated to have a temperature of absolute zero. This approximation has strong

implications on the phases of matter and the interactions that occur within a neutron

star.

Another intensive quantity that fundamentally determines the composition of a neutron

star is its density. The density profile of a neutron star is not tightly constrained.

As a result, a large number of EOSs exist. The majority of the methods demonstrated in

this thesis are EOS independent. This variability arises, because the strong interaction

at low temperatures and high densities is not well understood. As a result, different

strange and exotic phases of matter have been predicted to exist within the core of a

neutron star. Some of the phases predicted are free quarks, colour-flavour-locked quark

matter and quark-gluon plasma. Recent observations of pulsar masses have begun to

constrain these exotic phases of nuclear matter. They would be ruled out entirely,

if the mass of the Black-Widow pulsar is shown to be 2.4M�, as current observations

are suggesting [179].

The characteristic pre-merger time-scale is the orbital period. As a first approximation,

Kepler’s third law can be used to approximate the orbital period of the binary.

The law states that the square of the orbital period is proportional to the cube of the

semi-major axis. The maximum separation before merger is on the order of kilometres.

Such a small separation is due to the compactness of the neutron star. Then, the

characteristic time-scale pre-merger is of the order of milliseconds.

The temperature profile of a neutron star is not expected to change over a characteristic

time-scale, because the production of neutrinos will be at a minimum, close to merging

[188]. Therefore, temperature changes can be ignored.

The pre-merger characteristic length-scale is the diameter of a neutron star, which is of

the order of kilometres. Therefore, interactions at shorter length-scales can be neglected.

As a result, interactions amongst individual particles can be ignored, because they have

mean-free paths that are orders of magnitude smaller than the characteristic length-

scale. Quantum interactions can also be neglected, because their de Broglie wavelengths

are even smaller [8]. Both these points mean that the continuum approximation is valid

and the star’s interior is within the hydrodynamical regime. Therefore, the interior of a

neutron star can be modelled as a fluid.
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2.2.1 Fluid model

The advantage of the fluid model is that one can ignore the quantum dynamics of

each particle, because they are averaged out by the substantial number of particles;

this makes the fluid model consistent with general relativity [8]. Fluid models do not

consider the individual trajectories and momenta of each particle; they consider a fluid

element instead. A fluid element can be considered as a virtual box, where the number

of particles contained inside is constant. The size of a fluid element compared to the

entire neutron star is infinitesimal, but it still contains a large number of particles

proportional to the Avogadro constant. The fluid model is only valid, if the total number

of fluid elements is far greater than the number of particles they contain and their size

is significantly smaller than the object they form.

In the fluid model, microscopic particle interactions are captured by macroscopic effects

such as viscosity, heat transfer and shear stress. In the Navier-Stokes equations,

these effects can lead to a change in the momentum of the fluid. The ratio between

inertial and viscous forces is known as the Reynolds number. For a pre-merger neutron

star in a binary system, the Reynolds number is much larger than unity, Re � 1.

Peralta et al. [133] gave a value of the Reynolds number for the outer core of

Re = 1.67× 108

(
ρn

1015g cm−3

)−1( T

108K

)2( Ω

102rad s−1

)
, (2.1)

where Ω is the angular velocity. Therefore, in a neutron star close to merger, inertial

forces dominate viscous forces. This means that the effects of shear viscosity and bulk

viscosity on the momentum of the fluid are negligible.

Within a neutron star, heat is transported by neutrons and electrons [16], but the heat

conductivity of protons is negligible [57]. As the neutron star being considered is old

and cold, large temperature gradients will not be present and the heat flux will be small.

Therefore, heat transport can also be neglected within the fluid model.

A fluid experiences a shear stress, when it flows along a boundary. The no-slip condition

means that the fluid moves at the same velocity as the boundary. Away from the

boundary the fluid travels at the bulk velocity. Shear stresses develop between the

bulk and the boundary. The length-scale that this occurs on in a neutron star is tiny

compared to the characteristic length-scale pre-merger. Therefore, the model can neglect

the contribution from the shear stresses in the fluid. These assumptions lead to the

conclusion that a pre-merger neutron star can be approximated by a perfect fluid.
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One major advantage of these simplifications is that the perfect fluid approximation of

the Navier-Stokes equations, the Euler equations, has a fully relativistic counterpart.

The relativistic Euler equations are the conservation of baryon number, conservation of

momentum and conservation of energy. The following equations can be used to evolve

the fluid forward in time. The conservation of baryon number is

∇µ (nuµ) = 0, (2.2)

where ∇µ is the covariant derivative, n is the baryon number density and uµ is the

four-velocity of the fluid. The rest-mass density ρ0 is defined as

ρ0 =
∑
(i)

n(i)m(i), (2.3)

where m(i) is the mass of the baryon labelled i. Hence, the conservation of rest-mass

density is defined as

∇µ(ρ0u
µ) = 0. (2.4)

The conservation of energy and momentum is given by

∇µTµν = 0, (2.5)

where Tµν is the stress-energy tensor. The stress-energy tensor for an ideal fluid is given

by

Tµν = ρ0hu
µuν + pgµν , (2.6)

where h is the specific enthalpy, p the pressure and gµν is the space-time metric.

The enthalpy is a measure of the total energy of a fluid element; it is the sum of the

internal energy and the work done by the fluid element on its environment. The specific

enthalpy is the intensive equivalent and the general-relativistic version is

h =
H

ρ0
= 1 + ε+

p

ρ0
, (2.7)

where ε is the specific internal energy of the fluid. These are the equations of motion for

a relativistic, perfect fluid in a curved space-time. They do not form a closed system;

an equation of state is required to do so. Throughout this work, an ideal equation of

state will be used.
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2.2.2 Magnetic field

As mentioned earlier, a neutron star possesses a magnetic field that penetrates its

interior. The magnetic field can be added to the fluid model by considering a

charged fluid. The stress-energy tensor for a charged fluid includes an electromagnetic

contribution. Maxwell’s equations and Ohm’s law are also required to close the system.

The stress-energy tensor is

Tµν = ρ0hu
µuν + pgµν +

1

µ0

[
FµλF νλ −

1

4
gµνF λδFλδ

]
, (2.8)

where Fµν is the Faraday tensor and µ0 is the magnetic permeability of free space.

The Faraday tensor is an anti-symmetric rank-two tensor and therefore obeys the relation

∇σFµν +∇µFνσ +∇νFσµ = 0. (2.9)

The divergence of the Faraday tensor is required to calculate the divergence of the

stress-energy tensor. The divergence of the Faraday tensor is

∇µFµν = 4πjν , (2.10)

where jµ is the four-vector current. Splitting the four-vector current into time and space

components gives

jµ =
(
cσ, J i

)
, (2.11)

where σ is the charge density, c the speed of light, and J i is the usual space-like current.

The two equations (2.9), (2.10) given above, relating to the Faraday tensor, are Maxwell’s

equations in tensor form.

2.2.3 Maxwell’s equations

Maxwell’s equations are required to close the system of equations for a charged fluid.

They also describe how the electric field E and the magnetic field B evolve in time.

The usual form of Maxwell’s equations can be recovered by relating the Faraday tensor

to the four-vector potential Aµ,

Fµν = ∇µAν −∇νAµ. (2.12)

The four-vector potential is

Aµ =
(
φ,Ai

)
, (2.13)

where φ is the electric potential and Ai is the vector potential. Although some

implementations do use the vector potential formalism, we will use the vector fields.



30 Chapter 2 Developing a Physical Model

Therefore, the vector fields Ei and Bi must be recovered from the Faraday tensor,

Eα = −uβFβα, (2.14a)

Bα = −uβ
(

1

2
εαβγδF

γδ

)
, (2.14b)

where εαβγδ is the totally anti-symmetric four-tensor. The time-components of covariant

electric and magnetic fields (2.14) are zero. Maxwell’s equations can be written in their

differential vector field form,

∇iEi =
σ

ε0
, (2.15)

∇iBi = 0, (2.16)

εijk∇jEk = −∂B
i

∂t
, (2.17)

εijk∇jBk = µ0J
i +

1

c2

∂Ei

∂t
, (2.18)

where ε0 is the permittivity of free space and c =
1√
µ0ε0

.

As mentioned above, Maxwell’s equations are useful, because they govern how the

electromagnetic field evolves, but they do not explain how the electromagnetic field

impacts on the dynamics of the charged fluid. It is the Lorentz force that describes how

a charged fluid element moves in an electromagnetic field. The relativistic Lorentz force

can be calculated

fνL = jµF
µν = σEν − ενµργjµuρBγ +

1

c
uν(jµB

µ). (2.19)

The Lorentz force governs how a charged particle moves within an electromagnetic field.

By taking the Newtonian limit and only considering spatial terms, the regular form of

the Lorentz force is recovered,

f iL = σEi + εijkJjBk. (2.20)

2.2.4 Ohm’s law

The last equation that is required to close the system of equations (2.5) to evolve the

charged fluid is Ohm’s law. Ohm’s law gives the relation amongst the current, the fluid

and the electromagnetic field.
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Andersson has derived a generalised Ohm’s law for resistive, general-relativistic

magnetohydrodynamics [7] from a multi-fluid approach [8]. He considered a two-fluid

system, consisting of a proton fluid and an electron fluid. The multi-fluid approach

describes the macroscopic properties of the combined fluid, using the individual fluxes

and momenta. The Newtonian equivalent is given in the Appendix A.1. After a lengthy

calculation, the Newtonian Ohm’s law is

Ei + εijkv
jBk = η

(
ρ

neeρp

)2

Ji, (2.21)

where ρ is the combined fluid density, ρp is the proton density, e is the electric charge of

a single electron, ne is the number density of electrons and η is the resistivity. As well

as an Ohm’s law, a momentum equation for the macroscopic fluid is obtained,

ρ(∂t + vj∇j)vi +∇ip = εijkJ
jBk. (2.22)

The next section will use these results to obtain the equations of ideal

magnetohydrodynamics (MHD). The MHD equations were first derived in a Newtonian

framework, which we will follow.

2.2.5 Towards ideal magnetohydrodynamics

This section will introduce the approximations and assumptions made to arrive at the

equations of ideal MHD. The ideal MHD equations, as the name suggests, are an

idealisation of the actual physical scenario they approximate. The key assumption is that

the resistivity of the fluid tends to zero. Hence, the conductivity tends towards infinity

and the fluid behaves as a perfect conductor. As a consequence, magnetic reconnections

cannot occur, which means that magnetic field lines cannot reconnect, even if it is

energetically favourable to do so. Within the interior of a neutron star close to merger,

it is expected that magnetic reconnections do not have a significant physical effect on

the dynamics. Their significance is quantified by the magnetic Reynolds number, which

is analogous to the fluid Reynolds number defined in equation (2.1). The magnetic

Reynolds number is a measure of the coupling between the fluid flow and the magnetic

field,

Rm =
µ0lv

η
, (2.23)

where l is a characteristic length and v is a characteristic velocity of the fluid.

The resistivity of an old pulsar is tiny [180]. Therefore, the magnetic Reynolds number

is much larger than unity and one can ignore resistive effects within a neutron star before

merger.
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The first approximation, when taking the ideal MHD limit, is that the displacement

current can be ignored in the Ampère-Maxwell equation (2.18). This is a reasonable

approximation, because the change in the electric field with respect to time is expected

to be small compared to the speed of light within the characteristic time-scale.

The Ampère-Maxwell equation is now in the original form given by Ampère.

This form gives the true current in terms of just the magnetic field,

1

µ0
εijk∇jBk = Ji. (2.24)

The Ohm’s law (2.21) can be written in terms of the electric and magnetic fields only,

Ei = −εijkvjBk + λεijk∇jBk, (2.25)

where λ ∝ η contains the resistivity and other fundamental constants.

Substituting the curl of the electromagnetic Ohm’s law (2.25) into the Maxwell-Faraday

equation (2.17), allows the Maxwell-Faraday equation to be rewritten without any

reference to the electric field. This is known as the induction equation,

∂Bi
∂t

= εijk∇j
(
εklmvlBm

)
+ λ∇j∇jBi. (2.26)

The final step is to take the resistivity to zero, i.e. η → 0, to recover the ideal MHD

equations. This gives the evolution equation for the magnetic field in the ideal MHD

limit,

∂tBi = εijk∇j(εklmvlBm). (2.27)

Substituting Ampère’s law (2.24) for the current in the momentum equation (2.22) gives

ρ(∂t + vj∇j)vi +∇ip =
1

µ0

[
Bj∇jBi −

1

2
∇i
(
BjB

j
)]
. (2.28)

2.2.5.1 Flux freezing

One of the key results from taking the ideal MHD limit is that the magnetic field lines

are tied to the fluid. As a consequence, the magnetic flux is zero and matter will only

flow along field lines. This result can be shown by combining the evolution equation for

the magnetic field (2.27) and the conservation of mass equation,

∂ρ

∂t
+∇i(ρvi) = 0. (2.29)
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This results in the material derivative of magnetic field divided by the density equalling

zero,
D

Dt

(
Bi

ρ

)
≡ d

dt

(
Bi

ρ

)
+ vj∇j

(
Bi

ρ

)
= 0, (2.30)

where vi is the velocity field. This result means that the quantity Bi/ρ evolves in the

same manner as the separation between two points in the fluid; the field lines are tied

to the fluid.

2.2.6 General-relativistic, ideal magnetohydrodynamic equations

The ideal MHD limit can be applied to the stress-energy tensor for a charged fluid (2.8).

If the interior fluid of a neutron star is assumed to be an ideal charged fluid that is a

perfect conductor, then it has a stress-energy tensor given by [58, 62]

Tµν = ρ0h
∗uµuν + p∗gµν − bµbν , (2.31)

where the pressure is the sum of the gas pressure and the magnetic pressure, given by

p∗ ≡ p+ b2/2. (2.32)

Lichnerowicz was the first to introduce the covariant magnetic field [101]. It was

presented in the following form by Anile [12, 13],

bµ ≡
{
WviBi,

Bj

W
+WviBiv

j

}
, (2.33)

where W is the Lorentz factor defined as

W ≡ 1√
1− vivi

. (2.34)

The covariant magnetic field, bµ, is orthogonal to the fluid four-velocity. This ensures

that the electric field is zero in the plasma’s rest-frame [20],

bµuµ = 0. (2.35)

The enthalpy also gains a term proportional to the magnetic pressure and is

h∗ ≡ h+ b2/ρ0. (2.36)
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With these definitions, the evolution equations for general-relativistic ideal MHD are

given by [62]

∇µ (ρ0u
µ) = 0, (2.37)

∇µTµν = 0, (2.38)

∇µ (bµuν − uµbν) = 0. (2.39)

The final equation (2.39) is the tensor form of Maxwell’s equations in the ideal MHD

limit.

2.2.7 Neutron star exterior

The exterior of a pre-merger neutron star is not a true vacuum, but consists of a

rarefied low-density plasma [68]. In this region, the magnetic pressure dominates the

gas pressure. The plasma beta parameter parametrises the ratio between these two

pressures,

βm ≡
p

pm
=

2pµ0

B2
. (2.40)

Therefore, a small plasma beta parameter indicates a magnetically dominated regime.

Goedbloed and Poedts [66] characterise the plasma state by several properties. A plasma

is an ionised gas, where the majority of electrons have separated from the molecules

and atoms, leaving a gas of predominately positive ions and electrons. Chen describes a

plasma as “a quasi-neutral gas of charged and neutral particles, which exhibits collective

behaviour” [38]. It is this collective behaviour that this section will examine.

The Saha equation can be used to estimate the ratio of ions to neutral particles.

The ratio of ions to neutral particles is approximately ni/nn ≈ 2×1015, when considering

the ionisation energy of hydrogen [66]. This ratio is similar for a neutron star exterior

with a temperature of T ≈ 108K and a total number density of n ≈ 1018m−3 [28].

Therefore, the plasma around a neutron star is highly ionised.

The characteristic time-scale of the pre-merger phase is of the order of milliseconds with

a typical orbital frequency of Ω ≈ 1.5rad/ms [19]. Therefore, particle collisions can be

ignored, as they occur on a time-scale that is much longer [66]. As a result, the Coulomb

interaction dominates in the exterior of a neutron star. This results in charge particles

behaving collectively i.e. a plasma.
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There are several choices available to model this region: ideal MHD, force-free and

electro-vacuum. Starting in reverse order, the electro-vacuum model describes the

exterior as a complete vacuum, permeated by an electromagnetic field. In electro-vacuum

the stress-energy tensor is given by

Tµν =
1

µ0

[
FµλF νλ −

1

4
gµνF λδFλδ

]
, (2.41)

where the Faraday tensor still obeys the anti-symmetric property (2.9). The divergence

of the Faraday tensor is no longer sourced by the current as in (2.10). Instead the

divergence is now zero,

∇µFµν = 0. (2.42)

Although the Faraday tensor is an exact solution to the Einstein field equations, it does

not take into account the possibility of current sheets. Current sheets are believed to

form at the equatorial plane of a rotating neutron star. Palenzuela has observed this

phenomenon in the simulation of an aligned rotator [127].

The force-free formalism is the mass-less approximation of ideal MHD. This formalism

is a good approximation, when the electromagnetic energy dominates the rest-mass

energy. The stress-energy tensor is the same as in the electro-vacuum case (2.41).

The key difference is that the covariant derivative of the Faraday tensor is once again the

current (2.10). This is constrained, however, by the fact that the Lorentz force vanishes

in the force-free approximation [68],

FµνJ
ν = 0. (2.43)

The system of evolution equations in the force-free limit is [93],

∂Bi

∂t
+ εijk∇jEk = 0, (2.44)

∂Ei

∂t
− εijk∇jBk = −J i. (2.45)

One significant difference between the exterior and the interior is that the positive

charges in the exterior are positrons. The positron is the anti-particle of the electron and

has the same mass. The previous Ohm’s law, calculated for a proton-electron plasma,

does not apply here. In the force-free limit, the current is now wholly dependent on the

electromagnetic field. Presented here is the version given by Komissarov [93],

J i = ∇rEr
[
εijkEjBk
BlBl

]
+
Blε

lmn∇mBn − Elεlmn∇mEn
BrBr

Bi. (2.46)
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The first part is the component normal to the magnetic field and comes from the

vanishing of the Lorentz force. The second part is the component parallel to the

magnetic field and comes from the fact that the electric field and the magnetic field

are perpendicular. The advantage of using force-free over ideal MHD comes from its

simplicity.

Finally, the majority of simulations, that include a magnetic field, use the equations of

ideal MHD to simulate the exterior [5, 63, 146, 147]. The advantages of this approach

are that only one system of equations has to be evolved and one does not need to impose

boundary conditions at the surface. However, Paschalidis et al. [131] have developed an

alternative approach that couples an ideal MHD interior to a force-free exterior at the

surface, but have neglected the back reaction from the exterior field.

2.3 Merger and Post-merger Phase

The characteristic length-scale during merger and post-merger decreases significantly.

It is expected that important physical effects will now occur on length-scales of

centimetres compared to kilometres in the pre-merger phase. The majority of

the assumptions and approximations made in the previous section do still hold.

However, new effects on shorter length-scales must now also be considered.

2.3.1 Merger phase

The time-scale anticipated for the merger phase is of the order of tens of microseconds

[159]. Therefore, the effects of viscosity and heating can still be assumed to be negligible.

Interfaces are still necessary due to the lack of computational resolution.

During the turbulent merger phase, one phenomenon that is important are shock waves.

Strong shock waves will be produced when the stars coalesce. The pressure ratio across

a strong shock is of the order of a hundred. Such strong shocks are known to cause

problems with the numerical methods that include interfaces [102, 152]. The mRGFM

described in this thesis can handle strong shocks (see Chapter 7).

Another important effect is that regions of the neutron star’s interior will behave

differently to one another. It is also expected that interactions at the interfaces will

affect the overall dynamics of the system. The interfaces, although important, are

expected to be physically thin and tiny compared to the star. The expected length-scale

of one such interface, the Ekman layer, was calculated by Andersson et al. to be between

one and ten centimetres [9].
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Including interfaces within a neutron star binary simulation is important, if one wishes

to calculate an accurate gravitational-wave template. The physical behaviour of these

interfaces can be approximated by infinitely thin interfaces with boundary conditions.

The framework was developed by Millmore and Hawke [114]. The addition of interfaces

does not change the underlying evolution equations. Therefore, interfaces can be added

to the initial data without changing the dynamics in the pre-merger phase.

During this period the topology of the regions within a neutron star will distort and

merge. It is important that any numerical method developed is capable of capturing

this topology change. The advanced numerical methods developed in this thesis are

capable of dealing with large topology change.

2.3.2 Post-merger phase

The period after merger is highly complex and dynamic. Current simulations show that

there are three possible outcomes of a binary neutron star merger:

1. The remnant collapses and becomes a black hole on a dynamical time-scale.

2. The remnant forms a hyper-massive neutron star that then proceeds to collapse

after several dynamical time-scales into a black hole.

3. The remnant forms a stable neutron star.

The outcome of the merger is determined by the masses of the objects within the binary

system. The effect of the magnetic field on the outcome is uncertain. To determine

the significance of the magnetic field, better numerical simulations are required that

accurately model the transition from interior to exterior and possibly include resistive

effects. First results have indicated that including the magnetic field leads to the

development of new instabilities [5].

Baiotti et al. [19] showed that for a high-mass system with M = 2.982M�, the system

collapsed to a black hole within 3ms for a polytropic EOS. A polytropic EOS is one,

where the pressure, p, and the volume, V , follow this relation

pV n = C, (2.47)

where n is the polytropic index and C is a constant. Physically, this means that the

entropy of the system does not change. For a low-mass system with M = 2.681M�, the

system collapses to a black hole after 16ms for the same EOS.
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The duration and dynamics of this period are not well understood and form a key area

of research. Simulations of this period can be improved by better initial data, which

will come from more accurate pre-merger and merger simulations. These in turn can be

obtained by better observations, physical and numerical models.

2.4 Beyond Developing a Physical Model

This chapter has outlined the relevant physical approximations and assumptions that

are made when modelling a neutron star. It has been shown that the interior of a

neutron star pre-merger can be approximated to be a single, ideal, charged, relativistic

fluid. This means that the equations of relativistic, ideal magnetohydrodynamics are

suitable to model this part of the star. Externally, the force-free system of equations is

suitable to evolve the exterior plasma region of the star. Both of these systems can be

written in conservation law form, which is essential to correctly capture the location of

shock waves that will be produced during merger. The equations of relativistic, ideal

magnetohydrodynamics, however, are non-linear and will need to be solved numerically.

To do this, an understanding of the mathematics that underpin these systems of

equations is required. The next chapter will develop the idea of characteristic fields

that propagate information in the systems. It will also consider the solution to the

Riemann problem, which forms an essential part of the mRGFM and the numerical

methods used to evolve these systems of equations.

The later chapters will build upon the idea of using interfaces to separate distinct

physical models and develop methods to implement this. Key to these techniques is

the solution to the Riemann problem and the next chapter examines that in detail.



Chapter 3

Mathematical Theory

This chapter discusses the mathematical background of the evolution equations. It first

considers the differential and weak forms of a conservation law. Next, it examines the

Riemann problem and its solution for the advection equation and Burgers’ equation.

Then, the solution of a general linear system is considered. This solution is an

important component of the mRGFM. Finally, the chapter discusses each system

of evolution equations separately. The order is as follows: Euler equations, special

relativistic hydrodynamics, ideal magnetohydrodynamics and special relativistic, ideal

magnetohydrodynamics.

The evolution equations are systems of non-linear, hyperbolic, partial differential

equations written in conservation law form and are used to simulate the dynamics of a

neutron star binary merger. During the merger phase, strong shocks and discontinuities

will develop. We will use the conservation law form, because its weak form is valid for

non-smooth data such as shock waves and discontinuities.

The solution to the Riemann problem is an essential part of this work.

A Riemann problem is a conservation law with a single discontinuity in its initial

data. These discontinuities can occur physically as shock waves and phase transitions.

They can also be created by applying the finite volume method to discretise the numerical

data. The exact solution of a Riemann problem can be used to test the accuracy of the

numerical methods. Its approximate solution, on the other hand, can be used to develop

numerical methods. The Riemann problem and its solution form an essential part of

the mRGFM. Therefore, it is important to understand its solution for each system of

conservation laws.

39
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This chapter then reviews the different systems of equations, in order of increasing

complexity, that have been used to test the mRGFM. It starts with the Euler equations,

which are the Newtonian evolution equations for a perfect fluid. Next, it considers the

equations of special relativistic hydrodynamics that demonstrate how the Lorentz factor

changes the solution of the Riemann problem. Including a magnetic field makes the

solution to the Riemann problem more complicated. Therefore, the Newtonian, ideal,

magnetohydrodynamical equations are also discussed. Lastly, these two physical effects

are combined and the equations of special relativistic, ideal magnetohydrodynamics are

considered.

3.1 Conservation Laws

Conservation laws form the basis of several physical models. They are exact for various

physical quantities such as momentum, mass-energy, and charge. This chapter will

demonstrate that the conservation law form is essential for correctly evolving systems

with discontinuities. They are the basis of our physical models.

Strong shock waves will be produced, when a neutron star binary system coalesces.

These shock waves are discontinuities that propagate within the medium, e.g. the fluid

core. Discontinuities are also expected to occur at the boundaries of layers and models

must take this into account. Thus far, only the differential form of a conservation law

has been presented (2.5). The differential form is no longer valid in the presence of a

discontinuity. Therefore, a weaker integral form is needed. This section will give the

weaker integral form for a general conservation law.

As stated previously, a conservation law naturally arises, when a physical quantity

is conserved over the whole domain for any given period. Therefore, the amount of

a conserved quantity leaving a volume must equal the amount entering that volume;

hence, it must be balanced by the associated flux. This statement can be represented

mathematically by the following surface integral∮
Σ
fµn̂µ dΣ = 0, (3.1)

where Σ is the surface of the volume, fµ is the flux and n̂µ is the unit-normal to the

surface. By applying the divergence theorem to the equation above, assuming that the

flux is sufficiently differentiable, it can be shown that∫
V
∇µfµ dV = 0, (3.2)

where V is the volume of integration and ∇µ is the covariant derivative. This equation

states that the derivative of the flux with respect to time is balanced by the divergence

of the flux.
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For the particular case of baryon number conservation, the surface integral would be∮
Σ
nuµn̂µ dΣ = 0. (3.3)

By applying the divergence theorem to the equation (3.3), one obtains∫
V
∇µ(nuµ) dV = 0. (3.4)

This conservation law states that no baryons are created or destroyed within a closed

volume.

The integral form of a conservation law is valid for non-smooth data. Therefore, the

conservation law formalism is appropriate for situations with shocks and discontinuities.

The weaker integral formulation will form the basis of our physical models.

Splitting space and time is required to evolve a conservation law forward in time.

Performing a 1 + 1 split on the covariant equation (3.2) gives

∂tq(x, t) + ∂xf(q(x, t)) = 0, (3.5)

where q(x, t) is the conserved variable and f(q(x, t)) is the flux term. For a vector of

conserved variables, the weaker integral form is

d

dt

∫ x2

x1

q(x, t) dx = f(q(x1, t))− f(q(x2, t)). (3.6)

From this point onwards, only the weak integral form will be considered and differential

forms imply integral forms.

There are many weak solutions of the integral form (3.6). These multiple solutions arise

from the fact that significant physical effects such as viscosity and heating have been

ignored in the regions of shocks. To select the correct weak solution, a physical law is

required. For the specific case when one is considering a fluid, this physical law is the

second law of thermodynamics.

In some situations, a source term is needed to balance the conservation law.

These equations are called balance-law equations. In Newtonian hydrodynamics, gravity

is included by adding a source term. Source terms can also be required when the

geometry of space-time is not flat or non-cartesian coordinates are used. Finally, sources

can also be added to equations to prevent constraint violations. The balance-law form

is
d

dt

∫ x2

x1

q(x, t) dx = f(q(x1, t))− f(q(x2, t)) +

∫ x2

x1

s(q(x, t)) dx, (3.7)

where s(q(x, t)) is the vector of source terms.
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3.1.1 Riemann problem

A conservation law with discontinuous initial data is known as a Riemann problem.

More formally, the Riemann problem is a conservation law with initial data given by

two states qL and qR that are separated by a discontinuity. Here, the bold font refers

to a vector with the subscript indicating the location of the state with respect to the

discontinuity; L = left and R = right. The initial data is composed of the two states

separated by a single discontinuity,

q(x, 0) =

{
qL(x, 0) if x < 0,

qR(x, 0) if x > 0.
(3.8)

The solution to the Riemann problem consists of N waves separating N + 1 constant

states for a system of size N . These waves can be discontinuous or rarefied depending

on the physical situation. A discontinuous wave can be a shock, contact or rotational

wave depending on the physical states. If the wave is rarefied, then it is a rarefaction

wave. The solution to the Riemann problem is self-similar and can be written in terms

of a single independent variable,

ξ =
x

t
. (3.9)

This means that the waves admitted from the Riemann problem follow lines of

ξ = constant.

For some systems, an exact analytic solution to the general Riemann problem is not

known. However, for particular systems, such as the ones considered in this thesis, the

Riemann problem can be solved to arbitrary accuracy. The Riemann problem for the

linear advection equation, for example, does have an exact solution and will be examined

next.

3.1.2 Advection equation

The advection equation is a size one conservation law,

∂tq(x, t) + ∂x(vq(x, t)) = 0, (3.10)

where ∂a indicates the partial derivative with respect to a and v is the constant velocity

of the system. It can also be written in primitive form,

∂tq(x, t) + v∂xq(x, t) = 0. (3.11)

The advection equation (3.10) given above is a quasi-linear, partial differential equation

(PDE); it can be solved by using the self-similarity property of the Riemann problem.
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Figure 3.1 – The profile of the advected quantity q(x, t) is unchanged as it is translated
along with a velocity v. The blue dash-dot lines show the characteristics with
gradient v.

Consider the advection equation (3.10) with Cauchy initial data [100]

q(x, 0) = q0(x), (3.12)

defined on the domain

−∞ < x <∞, t ≥ 0. (3.13)

The solution to the advection equation with this initial data is

q(x, t) = q0(x− vt), (3.14)

for t ≥ 0.

This solution is demonstrated in Figure 3.1. In the figure, the profile of q has

not changed as it is advected along. Also shown are the characteristics that have

gradient v. As this system is linear, all the characteristics have the same slope.

The solution follows the characteristic lines and, because they are all parallel, the solution

does not change.

The advection equation (3.10) can also be solved using the method of characteristics

[100, 120]. Characteristics determine the information propagation in a differential

equation. The characteristics can be obtained by first transforming the partial

differential equation into an ordinary differential equation and expanding it using the

chain rule,
d

ds
q(x(s), t(s)) =

∂q

∂t

dt

ds
+
∂q

∂x

dx

ds
= 0. (3.15)



44 Chapter 3 Mathematical Theory

Comparing the ordinary differential equation (3.15) with the primitive advection

equation (3.11), one can equate the total derivates,

dt

ds
= 1, (3.16a)

dx

ds
= v, (3.16b)

dq

ds
= 0. (3.16c)

The solutions to these ordinary differential equations are called the characteristic curves

and as s varies, they form a solution surface. The solutions to (3.16) are as follows

t = s+ t0, (3.17a)

x = vs+ x0, (3.17b)

q = q0. (3.17c)

As t0 = 0, the second differential equation can be rewritten as

x = vt+ x0. (3.18)

Therefore, the characteristic equations are straight lines in the x− t plane with gradient

v as shown in Figure 3.1.

3.1.3 Inviscid Burgers’ equation

A more complicated conservation law is the inviscid Burgers’ equation. It is a basic

approximation to the equations of Newtonian hydrodynamics because it demonstrates

the development of shocks and rarefactions associated with generic, smooth initial data

for non-linear conservation laws. The inviscid Burgers’ equation is a size one, non-linear

PDE and has the form

∂tq(x, t) + ∂x

(
1

2
q(x, t)2

)
= 0. (3.19)

This can be written in primitive form as

∂tq(x, t) + q(x, t)∂xq(x, t) = 0. (3.20)
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Figure 3.2 – The solution to the inviscid Burgers’ equation at three different times for the
dotted profile q(x, t). The points a and b separate as their characteristics
have different slopes. This results in a rarefaction wave. The points c and d
converge to form a shock wave; at this point the diagram is an approximation
as non-linear effects become important. The blue dash-dot lines represent the
characteristics. The light dashed lines show where the points have moved to.

Comparing the primitive form of Burgers’ equation (3.20) to the primitive form of the

advection equation (3.11), one can see that the conserved quantity q(x, t) will be advected

along with velocity q(x, t). Figure 3.2 shows the effect of Burgers’ equation. This figure

tracks four points (a, b, c, d) as the profile q(x, t) is evolved forward in time. It shows that

the points a and b separate to form a rarefaction wave. A rarefaction forms, because

their characteristics, shown in blue, diverge. The points c and d converge to form a

shock wave. At this point, the characteristics cross and more information is required to

show the correct solution; the Rankine-Hugoniot conditions (see Equation (3.23)).
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Figure 3.3 – A rarefaction wave. The characteristics diverge at a rarefaction wave. The
rarefaction wave is bounded by the characteristic speeds either side.

3.1.3.1 Rarefaction wave

A rarefaction wave occurs, when the characteristics between two points or emanating

from the same point diverge. Figure 3.3 shows a rarefaction fan and the diverging

characteristics. This is true for a conservation law with a convex flux function [173].

Burgers’ equation has a convex flux as do the equations of hydrodynamics. The entropy

does not change across a rarefaction wave for the Euler equations.

The entire solution between two constant states qL and qR is

q(x, t) = qL if
x− xL

t
≤ λL, (3.21a)

λ(q) =
x− xL

t
if λL <

x− xL

t
< λR, (3.21b)

q(x, t) = qR if
x− xR

t
≥ λR, (3.21c)

where λ is the characteristic wave speed.

The solution is smooth between the two ends of the rarefaction fan. The solution

described above is a physical solution, however, there exists a non-physical but

mathematically possible solution called a rarefaction shock. The rarefaction shock is

non-physical as it is unstable and violates the entropy condition [173].
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Figure 3.4 – The characteristics pin to the shock wave. The shock wave travels at a velocity
determined by the Rankine-Hugoniot relations. All quantities change across
a shock wave.

3.1.3.2 Shock wave

Burgers’ equation given by (3.19), when solved using the method of characteristics, gives

some interesting results. From the primitive version of Burgers’ equation (3.20), it is

easy to see that its characteristic curves are given by

x = q(x, t)t+ x0. (3.22)

Therefore, the gradients of the curves are determined by the function q(x, t) and this

means that the curves can have different gradients. The possibility then arises that the

characteristics intersect and a shock wave is formed [83]. The physical interpretation is

that the function q(x, t) describes the speed of particles in the fluid; a shock forms when

the faster particles catch up with the slower ones [120]. Once the characteristics cross,

the shock wave forms and the current approach breaks down. Another method must be

used to determine the states either side of a shock wave.

When a conservation law has a discontinuity, the Rankine-Hugoniot conditions must be

used. These conditions ensure conservation across a discontinuity. For a general system

of conservation laws (3.5) with a solution, these conditions are

vs[[q]] = [[f(q)]], (3.23)

where q is the conserved quantity, f(q) is the flux and vs is the shock speed.
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The notation [[·]] indicates the difference in a quantity across the discontinuity,

[[q]] = q{b} − q{a}, (3.24)

where the subscript {a} is the state in front of the wave and {b} is the state behind the

wave. For the specific case of the inviscid Burgers’ equation (3.19), calculated using the

Rankine-Hugoniot conditions (3.23), the shock speed is

vs =
1

2

(
q{a} + q{b}

)
. (3.25)

Another important reason for considering the conservation law form over any other, such

as the primitive one, is that only the correct conservation form captures the physical

shock wave speed. Consider a conservation law with the same primitive form as the

inviscid Burgers’ equation (3.20), but a different conservation form,

∂t

(
1

2
q(x, t)2

)
+ ∂x

(
1

3
q(x, t)3

)
= 0. (3.26)

Using the Rankine-Hugoniot conditions (3.23), the shock speed for this equation is

vs =
2

3

q3
{b} − q3

{a}
q2
{b} − q2

{a}
. (3.27)

This shock speed is different from the shock speed for the inviscid Burgers’ equation

(3.25). Therefore, the original conservation form (3.19) is the only version that

accurately captures the shock wave speed. The primitive form, on the other hand,

does not uniquely determine the correct conservation law form. A physical principle

must be used to correctly determine the corresponding conservation law form.

3.1.3.3 Lax’s entropy condition

Lax’s entropy condition determines if a shock wave speed is physically admissible

and sets a unique weak solution. The entropy condition states that for a genuinely

non-linear field the shock speed vs must lie between the characteristics. Consider a

shock wave between a state q{a} and a state q{b}, where the state {a} is in front of the

wave and state {b} is behind. For the shock to be physically admissible, the following

condition must hold for the shock speed

λ
(
q{b}

)
> vs > λ

(
q{a}

)
. (3.28)
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3.2 Linear Systems

So far, only PDE systems of size one have been considered. However, the equations of

ideal magnetohydrodynamics form a size eight system of PDEs [34]. The next logical

step is to consider linear systems. Linear systems are the simplest systems of equations.

They also form an essential component of the mRGFM. Next, we will calculate the

general solution for a linear system based on the work of Roe [149].

Consider a linear system of conservation laws of size N with a vector of conserved

variables q,

∂tq +A(q)∂xq = 0, (3.29)

where A(q) is the N ×N Jacobian matrix, ∂f/∂q.

Through a reformulation, the Riemann problem can be solved by transforming into a

new set of variables, the characteristic variables. These variables are constant along

characteristics.

To transform the system of equations into characteristic variables, one must first

calculate the left and right eigenvectors, l(i) and r(i) respectively, of the matrix A.

The eigenvectors are orthogonal, l(i) · r(j) = δij , and have eigenvalues λ(i). It shall be

assumed that they span the whole space. Here δij is the Kronecker delta function,

δij =

{
1 if i = j,

0 if i 6= j.
(3.30)

One can then calculate the characteristic variables w(i),

w = Lq, (3.31)

where L is the matrix of l(i). The linear system of equations (3.29) can be rewritten in

terms of the characteristic variables (3.31) giving

∂tw + Λ∂xw = 0, (3.32)

where Λ is the diagonal matrix containing the eigenvalues λ(i). As a result of this

transformation, the system of N equations is decoupled. Each equation forms an

advection equation with velocity v = λ(i) for the w(i) column vectors.



50 Chapter 3 Mathematical Theory

Figure 3.5 – The solution to the Riemann problem is defined by regions separated by the
characteristics.

The solution to the Riemann problem can then be given in terms of the characteristic

variables using the results for the advection equation in Section 3.1.2. The solution in

two different but equivalent forms is

w(t, x) = wL +

j∑
i=1

(
l(i) ⊗∆w

)
r(i), (3.33a)

w(t, x) = wR −
N∑

i=j+1

(
l(i) ⊗∆w

)
r(i), (3.33b)

where ∆w = wR −wL and j is defined by λ(j) ≤ x

t
≤ λ(j+1) as shown in Figure 3.5.

The solution for the conserved variables q can be determined from the characteristic

solution,

q = Rw(i), (3.34)

where R is the matrix of r(i). A system of non-linear equations will be considered next,

specifically, the Euler equations.



Chapter 3 Mathematical Theory 51

3.3 Newtonian Hydrodynamics - The Euler Equations

The Euler equations are the low-velocity, Newtonian limit of the hydrodynamical

equations presented earlier in (2.2) and (2.5). In conservation law form, they are

∂tρ+ ∂i
(
ρvi
)

= 0, (3.35)

∂tSj + ∂i
(
ρvivj + δijp

)
= 0, (3.36)

∂tE + ∂i
(
[E + p] vi

)
= 0, (3.37)

where ρ is the density, vi is the velocity, p is the pressure, Si = ρvi is the momentum

and E is the total energy. The total energy for an ideal gas is the sum of the internal

energy and the kinetic energy. It is defined as

E = ρε+
1

2
ρvivi, (3.38)

where ε is the specific internal energy. The enthalpy in the low-velocity limit is defined

as

h̃ = ε+
p

ρ
. (3.39)

This allows one to determine a set of primitive variables u, which can be used to calculate

all other quantities. The set of primitive variables used are

u = [ρ, vi, ε]. (3.40)

On the other hand, the conserved variables are

q = [ρ, Si, E ]. (3.41)

An EOS must be specified to close this system of equations.

In Chapter 2, it was shown that the fluid within the interior of a neutron star can be

approximated as an ideal fluid. Therefore, an appropriate EOS to use in Newtonian

hydrodynamics is the gamma-law EOS. The gamma-law EOS relates the pressure to

the density and the specific internal energy. It is given by

p = (γ − 1)ρε, (3.42)

where γ is the ratio of the specific heat capacities and is constant for each model.
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Figure 3.6 – The wave structure for the one-dimensional Riemann problem in Newtonian
hydrodynamics. There are four constant states separated by three waves.
The middle dashed-wave is a contact wave. The remaining waves can either
be a shock wave or a rarefaction wave depending on the initial conditions.

Earlier it was stated that a physical principle is required to determine the correct physical

solution to the Riemann problem. In the case of the Euler equations [173], this is the

second law of thermodynamics,
ds

dt
≥ 0, (3.43)

where s is the entropy. For a macroscopic system, the second law of thermodynamics

states that the entropy within a closed system must either stay the same or increase

with time.

As explained previously, the solution to the one-dimensional Riemann problem will

consist of N waves for N conserved variables. There are three conserved variables

in Newtonian hydrodynamics in one dimension. Therefore, the solution to the Riemann

problem consists of four distinct states separated by three waves. Figure 3.6 shows this

solution structure.

Figure 3.6 shows four constant states, {qR,q
∗
R,q

∗
L,qL}, separated by three waves

{W←, C,W→}. The middle dashed-wave, labelled C, is known as the contact wave.

The characteristics at a contact wave are parallel, because a contact wave is a linear

wave. The remaining waves, {W←,W→}, can either be shock wave or rarefaction waves.

In Newtonian hydrodynamics, the type of the wave W is determined by the change in

the pressure across the wave. Therefore, we have

W =

R, p∗{b} < p{a},

S, p∗{b} > p{a},
(3.44)

where R is a rarefaction wave and S is a shock wave.
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3.3.1 Euler characteristics

The characteristic structure of the Euler equations is essential for the mRGFM and the

solution to the Riemann problem. The first step is to calculate the Jacobian matrix

A(q) =


∂f1

∂q1
. . .

∂f1

∂qN
...

. . .
...

∂fN

∂q1
. . .

∂fN

∂qN

 . (3.45)

This Jacobian matrix for the Euler equations is [173]

A(q) =



0 1 0 0 0

γ̂
(

1
2v

2 + h̃
)
− v2

x − a2 (3− γ)vx γ̂vy γ̂vz γ̂

−vxvy vy vx 0 0

−vxvz vz 0 vx 0
1
2vx

[
(γ − 3)

(
1
2v

2 + h̃
)
− a2

]
1
2v

2 + h̃+ γ̂v2
x γ̂vxvy γ̂vxvz γvx


,

(3.46)

where γ̂ = (1− γ) and a is the speed of sound in a fluid that is defined as

a2 =

(
∂p

∂ρ

)
s

. (3.47)

For the gamma-law EOS the speed of sound is

a2 =
γp

ρ
. (3.48)

Then, using the characteristic equation |A− λ| = 0, the eigenvalues are

λ(−) = v − a, λ2,3,4 = vx, λ(+) = v + a. (3.49)

The right eigenvectors are

r(−) =



1

vx − a
vy

vz
1

2
v2 + h̃− va


r(+) =



1

vx + a

vy

vz
1

2
v2 + h̃+ va


, (3.50a)

r(2) =



1

vx

vy

vz
1

2
v2


, r(3) =


0

0

1

0

vy

 , r(4) =


0

0

0

1

vz

 . (3.50b)
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Figure 3.7 – A contact wave with characteristics parallel to the contact wave. The contact
wave travels at the fluid velocity. Only the density can jump across the
contact wave.

3.3.2 Euler contact wave

A contact wave separates two distinct states and the characteristics either side are

parallel to the wave. As a result, no material flows across a contact wave. Figure 3.7

shows a contact wave with parallel characteristics. A contact wave travels with the fluid

velocity.

In Newtonian hydrodynamics, the normal velocity and the pressure cannot jump across

the wave. Only the density and the tangential velocity components can change across

the wave. The jump conditions across the wave are

[[v∗x]] = 0, (3.51a)

[[p∗]] = 0, (3.51b)

[[ρ∗]] 6= 0, (3.51c)

[[v∗y ]] 6= 0, (3.51d)

[[v∗z ]] 6= 0. (3.51e)

The contact wave will be exploited in the development of the mRGFM as it is the only

wave consistent with an interface. This is because no matter crosses a contact wave,

which is also true at an interface.



Chapter 3 Mathematical Theory 55

3.3.3 The exact solution of the Euler Riemann problem

An exact solution to the Riemann problem for the Euler equations can be found if the

initial states qL,qR are known. The states q∗L,q
∗
R can be determined by using the shock,

rarefaction and contact relations. An implicit equation that is dependent on the star

state pressure can be used to solve the Riemann problem [173].

The key is that the pressure and normal velocity are constant across the contact wave,

(3.51a) and (3.51b). From the jump conditions, an implicit equation for the pressure p∗

can be calculated. The implicit equation is

F(p∗,qL,qR) ≡ F←(p∗,qL) + F→(p∗,qR) + ∆v = 0, (3.52)

where ∆v = vR − vL and

Fx(p∗,qx) =


(p∗ − px)

(
Ax

p∗ +Bx

)1/2

p∗ > px,

2ax

γx − 1

[(
p∗

px

)(γx−1)/(2γx)

− 1

]
p∗ < px,

(3.53)

where x indicates the left state L or the right state R. This solution has been extended

so that the EOS can vary between the left and right states. Therefore, the contact can

also represent an interface between two different fluids and the ratio of the specific heat

capacities is fluid dependent and is labelled γx. The constants Ax and Bx are defined

in the Appendix (B.10) and (B.11), respectively. The case distinction given above is

equivalent to one given previously by (3.44) to determine the type of the wave.

Once the pressure p∗ has been obtained, the velocity in the states q∗L,q
∗
R can be

determined from (B.12) or (B.19). Across a shock, the density is given by (B.8). For a

rarefaction, the density is given by (B.16), due to the adiabatic nature of a rarefaction

wave.

If one of the waves in the solution is a shock wave, then the Rankine-Hugoniot conditions

can be applied to calculate its speed,

vs =
ρ{b}v{b} − ρ{a}v{a}

ρ{b} − ρ{a}
. (3.54)

However, if the wave is a rarefaction wave, then the Riemann invariant (B.14) can be

used to determine the velocity and the speed of sound in the wave. Due to the adiabatic

nature of the rarefaction wave, the pressure and density can be obtained from (B.18)

and (B.17), respectively.
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The exact solution of the Euler Riemann problem in one dimension can be solved

numerically. This framework can be extended to all the following systems. The next

section will investigate the effect of relativity on the solution structure.

3.4 Special-Relativistic Hydrodynamics

A relativistic numerical model is required to evolve a neutron star binary inspiral.

Only special relativity will be considered in this work. However, Millmore and Hawke

[114] demonstrated that the original ghost fluid method could easily be extended to

general relativity. Therefore, this section will examine the equations of special relativistic

hydrodynamics. These are the dynamic equations of motion for a relativistic fluid in a

Minkowskian space-time. The Minkowskian line element in Cartesian coordinates is

ds2 = −dt2 + dx2 + dy2 + dz2, (3.55)

with the metric gµν given by

gµν =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 . (3.56)

In the Minkowskian space-time, the covariant derivative reduces to the partial derivative

as the Christoffel symbols vanish,

∇µ → ∂µ. (3.57)

The four-velocity uµ in special relativity is written as

uµ = W (1, vi)T , uµ = W (−1, vi), (3.58)

where W is the Lorentz factor (2.34) and vi is the three-velocity of the fluid. Using the

four-velocity definition (3.58) and the covariant derivative in special relativity (3.57),

the conservation of the rest-mass density can be rewritten as

∂t (ρW ) + ∂i
(
ρWvi

)
= 0. (3.59)

Defining the rest-mass density in an Eulerian frame as

D = ρW, (3.60)

the rest-mass density conservation law reads as

∂tD + ∂i
(
Dvi

)
= 0. (3.61)
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The total energy density, E , measured in the Eulerian frame can be defined as

E = ρhW 2 − p, (3.62)

where the specific enthalpy was defined earlier (2.7). The momentum, Si, in the Eulerian

frame is defined as

Si = ρ0hW
2vi. (3.63)

The momentum and the total energy density can be related by

Si = (E + p) vi. (3.64)

The time component of the conservation of the stress-energy tensor, calculated from

(2.6), gives

∂µT
µ
t = ∂tT

t
t + ∂iT

i
t = ∂tE + ∂i

[
(E + p) vi

]
= 0. (3.65)

Given the form above, one has a conservation law for the total energy density.

However, in the low-velocity limit, the density contribution to the energy dominates

and the energy density tends to the rest-mass density in the Eulerian frame.

Numerically, this can lead to errors occurring in calculating the total energy density.

Therefore, to avoid these errors, the total energy density is rescaled by removing the

contribution from the rest-mass density leaving a kinetic dominated term τ ,

τ ≡ E −D. (3.66)

A new conservation law can be found for this new variable by subtracting the rest-mass

density conservation law (3.61) from the total energy density conservation law (3.65) to

give

∂tτ + ∂i
[
(τ + p) vi

]
= 0. (3.67)

Additionally, the spatial components of the conservation of the stress-energy tensor give

∂µT
µ
j = ∂tT

t
j + ∂iT

i
j = ∂tSj + ∂i

(
Sjv

i + δijp
)

= 0. (3.68)

The conserved variables in special relativistic hydrodynamics are

q = [D,Sj , τ ] , (3.69)

whereas the primitive variables are

u = [ρ, vj , ε] . (3.70)

The fluxes are

f (i) =
[
Dvi, Sjv

i + δijp, (τ + p) vi
]
. (3.71)
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Figure 3.8 – The wave structure solution of the Riemann problem for special relativistic
hydrodynamics has three distinct waves separating four states. The two non-
linear waves are separated by the contact wave.

3.4.1 Special relativistic hydrodynamics characteristics

As in the Newtonian case, the characteristic information can be found by transforming

the system of conservation laws into quasi-linear form by calculating the Jacobian.

The addition of the Lorentz factor makes the calculation of the characteristic information

more complicated. The three-dimensional eigenvalues and eigenvectors for special

relativity were first calculated by Mart́ı and Müller [111]. There are five waves in

the special relativistic Riemann fan; two are non-linear and three are degenerate.

Their eigenvalues are

λ2,3,4 = vx, (3.72)

λ± =
1

1− v2a2

(
vx
(
1− a2

)
± a
√

(1− v2)[(1− v2a2)− v2
x(1− a2)]

)
, (3.73)

where v =
√
vivi .

The addition of relativity leads to a frame dependent effect on the characteristic

velocities. In the laboratory frame, an asymmetry occurs in the characteristic velocities;

the magnitudes of the left and right going characteristic velocities are different.

Figure 3.8 shows the structure of the Riemann fan. As you can see, it is similar to

the Newtonian case. However, in the frame of the contact the symmetry is restored.

Another key effect introduced by the addition of relativity is that, through the Lorentz

factor, the wave structure of the solution can be changed by varying the tangential

velocities [4, 148].
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The eigenvectors of special relativistic hydrodynamics are

r(−) =


1

hWA−λ−
hWvy

hWvz

hWA− − 1

 , r(+) =


1

hWA+λ+

hWvy

hWvz

hWA+ − 1

 , (3.74a)

r(2) =



1

W
vx

vy

vz

1− 1

W


, r(3) =


Wvy

2hW 2vxvy

h
(
1 + 2W 2vyvy

)
2hW 2vyvz

2hW 2vy −Wvy

 , r(4) =


Wvz

2hW 2vxvz

2hW 2vyvz

h
(
1 + 2W 2vzvz

)
2hW 2vz −Wvz

 ,

(3.74b)

where

A± =
1− v2

x

1− vxλ±
. (3.75)

3.4.2 Special relativistic hydrodynamics contact wave

The contact wave in special relativistic hydrodynamics behaves exactly the same as its

Newtonian counterpart. The characteristics at the contact are parallel, as shown in

Figure 3.7, and are given by the normal velocity in the star state,

λ2,3,4 = v∗x. (3.76)

At the contact, only the density and the tangential components of the velocity can jump

between the two star states q∗L,q
∗
R. The pressure and the normal velocity are constant

across the two states. Therefore, the jump conditions at the contact are

[[v∗x]] = 0, (3.77a)

[[p∗]] = 0, (3.77b)

[[ρ∗]] 6= 0, (3.77c)

[[v∗t ]] 6= 0, (3.77d)

where the subscript t indicates the tangential components y and z.
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3.4.3 Transformation from conserved variables to primitive variables

The transformation from conserved variables q to primitive variables u is complicated

by relativity. The Lorentz factor couples the variables in a non-trivial way. Unlike in

Newtonian hydrodynamics, there is no analytical transformation from the conserved

variables to the primitive variables. However, there are many possible ways of

transforming the conserved variables to the primitive variables; see the review article by

Mart́ı and Müller [111]. The recovery of the primitive variables can be performed by a

single variable root find on the pressure. The equation that the root find is performed

on is [109]

(γ − 1)

[
τ +D (1−W ) + p

(
1−W 2

)
W 2

]
− p = 0. (3.78)

A standard root finder can be used with an initial guess provided by the arithmetic

average of the maximum and minimum values of the pressure [109],

pmax = (γ − 1)τ, (3.79)

pmin =
√
SiSi − τ −D. (3.80)

Once the pressure has been recovered, the normal velocity can be obtained from

the momentum energy equation (3.64). The Lorentz factor can then be determined,

leaving a simple calculation of the density from the Eulerian rest-mass density (3.60).

Finally, the specific energy can be calculated from the EOS.

3.5 Newtonian Ideal Magnetohydrodynamics

One of the major objectives of this thesis is to extend the framework developed by

Millmore and Hawke [114] to include a magnetic field component. Before this can be

achieved, the fluid model must be extended to a charged fluid. In Appendix A.1, the

low-velocity equations of ideal magnetohydrodynamics (MHD) are derived from a multi-

fluid perspective. Here, they are presented in conservation law form starting with the

continuity equation

∂tρ+ ∂i(ρv
i) = 0. (3.81)

The continuity equation is unchanged from the addition of the magnetic field, Bi.

However, the momentum equation is modified. The fluid is subject to an additional

magnetic pressure pm, which can be added to the gas pressure p to form a new total

pressure

p∗ = p+ pm = p+
1

2
B2, (3.82)

where B2 = BiBi.
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The fluid is also subject to a tension, which acts to straighten magnetic field lines.

This results in a stress tensor

σij = ρvivj + δijp
∗ −BiBj . (3.83)

Therefore, the momentum conservation law is given by

∂tSj + ∂iσ
i
j = 0. (3.84)

The conservation of energy equation gains a Poynting flux like term has the form

∂tE + ∂i

[
(E + p∗) vi −Bi

(
Bkvk

)]
= 0, (3.85)

where the total energy density is defined as

E = ρε+
1

2

(
ρv2 +B2

)
. (3.86)

Finally, as well as the evolution equations for the fluid, there are equations that govern

the magnetic field components. These come from the induction equation and have the

form

∂tBj + ∂i
(
viBj −Bivj

)
= 0. (3.87)

3.5.1 Ideal MHD characteristics

The number of waves in the ideal MHD Riemann problem is eight, as there are

eight conserved variables. In the one-dimensional problem, this results in seven waves

separating eight constant states. However, the evolution equation associated with the

normal magnetic field in one-dimension reduces to

∂xB
x = 0. (3.88)

The wave associated with the normal magnetic field is advected with the fluid and a

degeneracy occurs at the contact. Figure 3.9 shows the wave structure.

There are four wave types in ideal MHD: fast, slow, Alfvén and contact. The fast and

slow waves are both genuinely non-linear and can be either shock or rarefaction waves.

They are similar to their hydrodynamical counterpart but have characteristic velocities

fast and slower than a sound wave. They also differ from each other in how they treat

the tangential components, see Torrilhon [175]. The contact wave behaves in a similar

manner to the contact wave in hydrodynamics. The Alfvén waves are linear, rotational

discontinuities. This means that the magnitude of the tangential components, Bt, can

change across the wave and the orientation of the tangential field can rotate.
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Figure 3.9 – The ideal MHD Riemann problem in one dimension, admits seven waves
separated by eight constant states. There are four types of waves: fast,
Alfvén, slow and contact. The Alfvén and the contact waves are linearly
degenerate, whilst the fast and slow waves are genuinely non-linear. The
Alfvén waves are rotational discontinuities.

The characteristics of ideal MHD are

λ−f = v − cf , λ−a = v − ca, λ−s = v − cs, (3.89)

λ4,5 = v, (3.90)

λ+
s = v + cs, λ+

a = v + ca, λ+
f = v + cf , (3.91)

where cf,s are the fast and slow magneto-sonic velocities and ca is the Alfvén velocity.

From the most negative to most positive they are ordered

λ−f ≤ λ−a ≤ λ−s ≤ λ4 = λ5 ≤ λ+
s ≤ λ+

a ≤ λ+
f . (3.92)

The fast(+) and slow(-) magneto-sonic velocities are defined as

cf,s =

√√√√1

2

[
B2

ρ
+ a2

]
±
√

1

4

[
B2

ρ
+ a2

]2

− a2
B2
x

ρ
. (3.93)

The Alfvén velocity is defined as

ca =

√
B2
x

ρ
. (3.94)

It should be noted that the eigenvalues of ideal MHD are not distinct in certain

situations. Therefore, the system of equations is only weakly hyperbolic. This means

that degeneracies can occur and two or more eigenvalues are the same.
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Powell et al. [139] gave a set of eigenvectors that remain independent when a degeneracy

occurs. The degeneracy is dealt with by following the renormalisation of Roe and Balsara

[150], which is based on the work of Brio and Wu [34]. The eight right eigenvectors are

r(f±) =



ραf

ραf (vx ± cf )

ρ (αfvy ∓ αscsβxβy)
ρ (αfvz ∓ αscsβxβz)

0
√
ρ αsaβy√
ρ αsaβz

ραf

(
v2

2
± vxcf +

a2

γ − 1

)
+ αs (βyvy + βzvz) (

√
ρ a± ρcsβx)


, (3.95a)

r(s±) =



ραs

ραs(vx ± cs)
ρ (αsvy ∓ αfcfβxβy)
ρ (αfvz ∓ αfcfβxβz)

0

−√ρ αfaβy
−√ρ αfaβz

ραs

(
v2

2
± vxcs +

a2

γ − 1

)
+ αf (βyvy + βzvz) (

√
ρ a± ρcfβx)


, (3.95b)

r(a±) =



0

0

−βz
√
ρ2

2

βy

√
ρ2

2
0

±βz
√
ρ

2

∓βy
√
ρ

2

0



, r4 =



1

vx

vy

vz

0

0

0

v2

2


, r5 =



0

0

0

0

1

0

0

Bx


, (3.95c)

where

βx = sgn (Bx) , βy =


By
Bt

if Bt > 0,

1√
2

if Bt = 0,
βz =


Bz
Bt

if Bt > 0,

1√
2

if Bt = 0,
(3.96)
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where Bt =
√
B2
y +B2

z and

αf =



sinφ if c2
f − c2

s = 0,

0 if a2 − c2
s = 0,√

a2 − c2
s

c2
f − c2

s

if c2
f − a2 = 0,√

a2 − c2
s

c2
f − c2

s

otherwise,

αs =



cosφ if c2
f − c2

s = 0,√√√√c2
f − a2

c2
f − c2

s

if a2 − c2
s = 0,

0 if c2
f − a2 = 0,√√√√c2

f − a2

c2
f − c2

s

otherwise.

(3.97)

Finally

φ = arctan

( B√
ρ − ca
|Bx| − a

)
. (3.98)

3.5.2 Ideal MHD shock jump conditions

In the frame of a discontinuous wave, the mass flux can be defined from the first Rankine-

Hugoniot condition [175] as

Q ≡ ρvx. (3.99)

This allows the remaining Rankine-Hugoniot conditions to be written as

Q2 [[V ]] +

[[
p+

1

2
B2
t

]]
= 0, (3.100a)

Q [[vt]]−Bx [[Bt]] = 0, (3.100b)

Q [[VBt]]−Bx[[vt]] = 0, (3.100c)[[
γ

γ − 1
pV +

1

2
Q2V 2 +

(
V − B2

x

2Q2

)
B2
t

]]
= 0, (3.100d)

where V =
1

ρ
is the specific volume.
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3.5.3 Ideal MHD contact wave

As in the case of hydrodynamics, the contact wave does not allow any mass flow across

it. The addition of the magnetic field does not change the situation at the contact wave

significantly. All the variables, including the magnetic field, are continuous and identical

across the contact wave except the density, if there exists a magnetic field normal to the

interface,

[[v∗∗∗i ]] = 0, (3.101a)

[[B∗∗∗i ]] = 0, (3.101b)

[[p∗∗∗]] = 0, (3.101c)

[[ρ∗∗∗]] 6= 0. (3.101d)

However, if the normal magnetic field is zero then these are the jump conditions at the

contact wave

[[v∗∗∗x ]] = 0, (3.102a)[[
p∗∗∗ +

B2∗∗∗

2

]]
= 0, (3.102b)

[[v∗∗∗t ]] 6= 0, (3.102c)

[[B∗∗∗t ]] 6= 0, (3.102d)

[[ρ∗∗∗]] 6= 0. (3.102e)

3.5.4 Ideal MHD Alfvén wave

The addition of the magnetic field results in a second type of linear wave to the solution

of the Riemann problem: the Alfvén wave. These waves were first proposed by Alfvén

in 1942 [3] for an incompressible fluid; one of constant density. Their existence was

confirmed by Lundquist in 1949 and their velocity matched that proposed by Alfvén

[107]. The Alfvén waves are shear waves caused by the tension in the magnetic field

lines.

If one applies the condition of constant density to the Rankine-Hugoniot conditions,

the jump conditions for an Alfvén wave are obtained. Across an Alfvén wave several

quantities do not jump. These are

[[ρ]] = 0, [[p]] = 0, [[Bt]] = 0, [[vx]] = 0, [[Bx]] = 0. (3.103)

Only the individual tangential components can change across an Alfvén wave

[[vt]] = ± 1√
ρ

[[Bt]] , (3.104)
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Figure 3.10 – When the normal component of the magnetic field is zero, the wave solution
to the one-dimensional Riemann problem consists of a fast wave either side
of a contact wave.

where ± indicates the direction of travel.

3.5.5 Ideal MHD degeneracies

Unlike the one-dimensional Euler equations, the one-dimensional equations of ideal MHD

are not always strictly hyperbolic. This means that for certain values of the magnetic

field degeneracies can occur. This is the case, when two or more waves have the same

characteristic velocity.

The first such case occurs, when the normal magnetic field is zero and the tangential

magnetic field is non-zero,

Bx = 0, Bt 6= 0. (3.105)

When this happens, the Alfvén characteristic velocity is zero. Both Alfvén waves and

both slow waves coincide with the contact wave. This is because the Alfvén wave is a

shear wave that travels transversely along the magnetic field line. This cannot happen

if there is no normal magnetic field. The resulting wave structure is made up of the fast

waves shown in Figure 3.10.

The second degeneracy occurs, when there is no tangential magnetic field and the speed

of sounds is equal to the Alfvén velocity,

Bx 6= 0, Bt = 0, a = ca. (3.106)



Chapter 3 Mathematical Theory 67

Figure 3.11 – A degeneracy occurs, when the tangential magnetic field is zero and the
speed of sound is equal to the Alfvén velocity. The resulting wave solution
to the one-dimensional Riemann problem consists of an Alfvén wave either
side of a contact wave.

At this point, the characteristic speeds of the fast and slow waves coincide with the

Alfvén wave. The resulting wave structure contains an Alfvén like wave either side of a

contact wave and is shown in Figure 3.11.

The final degeneracy is observed, when the tangential components of the magnetic field

are zero and the Alfvén velocity does not equal the speed of sound,

Bx 6= 0, Bt = 0, a 6= ca. (3.107)

There are two possible solutions to the conditions above. The Alfvén velocity is larger

than the speed of sound or smaller. In the first case, the fast waves become degenerate

with the Alfvén velocity. In the second case, the slow waves become degenerate with

the Alfvén velocity,

ca =

{
cf if ca > a,

cs if ca < a.
(3.108)

The resulting wave structure has two waves either side of the contact which is shown in

Figure 3.12 and Figure 3.13.

3.6 Special Relativistic Magnetohydrodynamics

As with special relativistic hydrodynamics, the addition of relativistic effects complicates

the solution to the Riemann problem. This thesis will only consider solutions on flat

space-time with a Minkowskian metric (3.55). Therefore, the relations for the Lorentz

factor (2.34) and the four-velocity (3.58) are still valid.
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Figure 3.12 – A degeneracy occurs, when the tangential magnetic field is zero and the
speed of sound is equal to the Alfvén velocity. The resulting wave solution
to the one-dimensional Riemann problem consists of a fast wave and an
Alfvén wave either side of a contact wave.

Figure 3.13 – A degeneracy occurs, when the tangential magnetic field is zero and the
speed of sound is equal to the Alfvén velocity. The resulting wave solution
to the one-dimensional Riemann problem consists of an Alfvén wave and a
slow wave either side of a contact wave.
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As in Newtonian, ideal MHD, the continuity equation is not affected by the addition of

the magnetic field and has the same form as in special relativistic hydrodynamics (3.60).

However, the stress-energy tensor gains a contribution from the magnetic field and in

the ideal limit is given by

Tµν = ρh∗uµuν + p∗gµν − bµbν , (3.109)

where b2 = bµbµ and the pressure p∗ is defined as

p∗ = p+ b2/2. (3.110)

The enthalpy h∗ is given by

h∗ = h+ b2/ρ. (3.111)

The covariant magnetic field is

bµ ≡
{
W (viBi),

Bj

W
+W

(
viBi

)
vj
}
, (3.112)

where W is the Lorentz factor. The momentum conservation law, as in ideal MHD,

gains a shear stress related to the magnetic field,

∂tSj + ∂i

(
Sjv

i + δijp
∗ − bj

Bi

W

)
= 0. (3.113)

The conservation of energy equation also gains a Poynting like term,

∂tτ + ∂i

(
[τ + p∗] vi − b0B

i

W

)
= 0. (3.114)

The momentum and energy have been extended by contributions from the magnetic

field and are

Si = ρh∗W 2vi − b0bi, (3.115)

τ = ρh∗W 2 − p∗ −
(
b0
)2 −D, (3.116)

where D is the rest-mass in an Eulerian frame. Finally, the magnetic evolution equation

is the same as in ideal MHD,

∂tB
j − ∂i

(
viBj − vjBi

)
= 0. (3.117)
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The vector of conserved variables is

q =
[
D,Si, τ, Bi

]T
, (3.118)

and the primitive variables are

u =
[
ρ, vi, ε, Bi

]T
. (3.119)

3.6.1 SRMHD characteristics

The derivation of the characteristic structure of the special relativistic, ideal MHD

(SRMHD) equations was performed by Anile [13]. As with ideal MHD, Anile showed

that there are seven waves separating eight constant states in the solution to the

one-dimensional Riemann problem. The analysis was performed on the set variables

ũ = (uµ, bµ, p, s)T, where s is the specific entropy. Following the presentation by Antón

et al. [14], the characteristic velocities are given by

CA2D2N4 = 0, (3.120)

where

D = CA2 − B2, (3.121)

N4 = ρh

(
1

a2
− 1

)
A2 −

(
ρh+

b2

a2

)
A2G+ B2G, (3.122)

C = ρh+ b2, (3.123)

A = uµφµ, (3.124)

B = bµφµ, (3.125)

G = φµφµ, (3.126)

and φµ = (−λ, 1, 0, 0). The contact wave is given by A = 0, while the Alfvén waves are

given by D = 0. Both cases have an analytical solution and the contact wave speed is

λcontact = vx. (3.127)

As with the special relativistic, hydrodynamical equations in the laboratory frame, the

characteristic velocities are Lorentz contracted, but the symmetry is restored in the

frame of the contact. The Alfvén wave speeds are given by

λ±a =
bx ±

√
CWvx

b0 ±
√
CW

. (3.128)



Chapter 3 Mathematical Theory 71

Figure 3.14 – The wave solution to the one-dimensional, special relativistic, ideal MHD
Riemann problem. It shows that there are seven waves separating eight
constant states as in the Newtonian case.

However, the magneto-sonic waves are obtained by solving

N4 = 0, (3.129)

which is a quartic equation that must be solved numerically.

The wave structure for special relativistic, ideal MHD is given in Figure 3.14. It shows

that in the typical case there are seven waves separating eight states. The eigenvalues for

special relativistic, ideal MHD, like Newtonian, ideal MHD, are not distinct in certain

situations. This means that the system of equations is weakly hyperbolic. It also

implies that the system is susceptible to the same degeneracies. The degeneracy is

frame independent and, therefore, will affect the right and left going waves equally.
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The conserved eigenvectors are calculated by multiplying a set of covariant eigenvectors

given by Antón et al. [14] by a Jacobian. These eigenvectors are based on the ones

calculated by Anile [13] and are required by the mRGFM. They are given in the

Appendix D.1. The matrix to calculate the conserved eigenvectors, for an ideal fluid, is

∂q

∂ũ
=



ρ 0 0 0 0 0

AWvx AW 0 0 −2b0W 2vx − bx 2bxW 2vx − b0
AWvy 0 AW 0 −2b0W 2vy − by 2bxW 2vy

AWvz 0 0 AW −2b0W 2vz − bz 2bxW 2vz

2AW 0 0 0 −2b0W 2 − b0 2bxW 2 − bx
by 0 −b0 0 −uy 0

bz 0 0 −b0 −uz 0

0 0 Wρ
γp

−Wρ
γ

2byW 2vx 2bzW 2vx TW 2vx −ρ
γ W

2vx

2byW 2vy − b0 2bzW 2vy TW 2vy −ρ
γ W

2vy

2byW 2vz 2bzW 2vz − b0 TW 2vz −ρ
γ W

2vz

2byW 2 − by 2bzW 2 − bz TW 2 − 1 −ρ
γ W

2

W 0 0 0

0 W 0 0


, (3.130)

where
γ2p+ γρ− ρ
γp(γ − 1)

= T .

3.6.1.1 SRMHD contact and exact solution

The jump conditions at the contact wave in SRMHD are the same as the Newtonian

case given in Subsection 3.5.3.

[[v∗∗∗i ]] = 0, (3.131a)

[[B∗∗∗i ]] = 0, (3.131b)

[[p∗∗∗]] = 0, (3.131c)

[[ρ∗∗∗]] 6= 0. (3.131d)

The exact solution to the Riemann problem for SRMHD was calculated by Giacomazzo

and Rezzolla [62]. Their exact solver requires accurate initial guesses for the majority of

the variables in the states either side of the contact. They then use the jump conditions

at the contact to constrain their solution. It has been used in this thesis to validate the

numerical methods for the SRMHD equations.
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3.6.2 SRMHD degeneracies

Similar to Newtonian, ideal MHD, the SRMHD system of equations is weakly hyperbolic.

It is susceptible to several different degeneracies. Antón et al. [14] describe three different

degeneracies. Type I occurs when B = 0 and has the same effect as the ideal MHD case

when Bx = 0. As a result of B = 0, the Alfvén and slow waves propagate with the

contact wave,

λ−a = λ−s = λcontact = λ+
s = λ+

a . (3.132)

The wave structure is the same as in Figure 3.10. This is where the match with ideal

MHD ends. Type II degeneracy is similar to Newtonian, ideal MHD, but can only affect

one side of the Riemann fan. The Alfvén and slow waves or Alfvén and fast waves

propagate at the same velocity,

λ−f = λ−a or λ−a = λ−s or λ+
s = λ+

a or λ+
a = λ+

f . (3.133)

Type II’ degeneracy occurs when

ca =

√
b2

C . (3.134)

This degeneracy results in both the slow and fast waves coinciding with the Alfvén wave

on one side of the Riemann fan,

λ−f = λ−a = λ−s or λ+
s = λ+

a = λ+
f . (3.135)

In the case where the tangential magnetic field vanishes, the usual Newtonian behaviour

returns to the second and third degeneracies.

3.6.3 SRMHD conserved to primitive

As in the case of special relativistic hydrodynamics, the addition of relativistic

effects means that there exists no analytical method of inverting the conserved

variables of special relativistic MHD into the primitive variables. Several

different approaches have been developed and six have been summarised by

Noble et al. [119]. We have implemented the “2D” method of Noble et

al. and the “1D” method of Del Zanna et al. [42]. It was found that

the Del Zanna method was more robust and it is our preferred method.

The method is a one-dimensional root find which calculates the variables v2 and Ω,

where Ω is defined as

Ω = W 2(ρ+ ρε+ p̄). (3.136)

Variables with an asterisk are the previous known values and those with a bar are

guesses.
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• Calculate a guess for the density from D and W ,

ρ̄0 =
D

W
. (3.137)

• Calculate p̄ from the equation of state and the primitive variables,

p̄ = |ε∗ρ∗|(γ − 1). (3.138)

• Calculate Ω from a combination of the previously values of the primitive variables

and the conserved ones,

Ω = W 2 (ρ̄0 + |ε∗ρ∗|+ p̄) . (3.139)

• Calculate scalar quantities from the conserved variables, B2 = BkBk, Π = SkBk

and S2 = SkSk.

• Check that the value for Ω is large enough so that v2 < 1; Ω must satisfy this

inequality,

Ω2
(
S2 −B4

)
>
[
Ω3
(
Ω + 2B2

)
−Π2

(
2Ω +B2

)]
. (3.140)

• Calculate v2 from Ω,

v2 =
Ω2S2Π2

(
B2 + 2Ω

)
Ω2 (B2 + Ω)2 . (3.141)

• Next, we perform a root find following the methods outlined by Dumbser et al.

[48] and Del Zanna et al. [43], which returns values for v2 and Ω.

• The primitive variables can be reconstructed from Ω and v2 following the method

outlined in Noble et al. [119].

3.7 Summary

This chapter has introduced the general form of a conservation law and considered the

Riemann problem in one dimension. These concepts are fundamental for the numerical

methods introduced in the numerical methods chapter, Chapter 4. They also form the

bedrock of the mRGFM.

The equations of Newtonian hydrodynamics, special relativistic hydrodynamics, ideal

MHD and special relativistic, ideal MHD have been given along with the solution

structure for each case. Understanding the structure and the conversion between

variables is essential in the development of the interface method and will be explored in

more detail in the interface conditions chapter, Chapter 6.
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Numerical Methods

This chapter focuses on the numerical methods and techniques that have been used

to solve the evolution equations presented in the previous chapter. These evolution

equations are non-linear systems of hyperbolic conservation laws or balance laws.

Many numerical methods exist to solve these sets of equations and this chapter will

now present the techniques utilised in this thesis.

There are many advantages to solving systems of equations numerically, but this

also introduces numerical errors to the solution. A balance must be made between

reducing these numerical errors and the computational cost of the numerical method

used. The numerical methods used in this thesis also require the discretisation of

the domain. The discretisation of a continuum model will obviously introduce some

error, but it is expected that through increased resolution these errors will reduce.

Numerical methods with higher accuracy can also be used to reduce error.

Therefore, selecting the right combination of numerical method and resolution for the

amount of computational resources available is a key part of any numerical simulation.

This thesis requires a general approach to numerically solve systems of non-linear

partial differential equations (PDEs). Many techniques have been developed to solve

these equations numerically. Four of the most commonly used techniques are: finite

volume [173], finite difference [96, 100], spectral methods [69, 86] and smoothed particle

hydrodynamics [64, 117]. Choosing the appropriate method depends on the physical

situation one is trying to simulate; each has its advantages and disadvantages.

75



76 Chapter 4 Numerical Methods

Smoothed particle hydrodynamics is a Lagrangian method where the coordinate

system moves with the fluid, and was originally developed for astronomical problems.

One of the major advantages of this approach is that the conservation of mass is perfectly

maintained within the system. However, spurious pressure forces on particles can occur

in the region of a shock wave. Therefore, this approach is unsuitable for our problem

[58]. Spectral methods are applicable for systems with smooth data that require high

accuracy. However, non-linear systems of equations are expected to develop non-smooth

regions, which means that spectral methods are not useful for our purposes. It is

this non-smooth behaviour that ultimately determines are choice of numerical method.

Finite volume methods have been especially developed to deal with this non-smooth

behaviour. Although more computationally expensive, the benefit gained when dealing

with shocks means that the finite volume approach will be used in the following.

4.1 Finite Volume Methods

Chapter 3 showed that the evolution equations of interest can be written in conservation

or balance law form,
∂

∂t
q(x, t) +

∂

∂x
f(q(x, t)) = s(q(x, t)), (4.1)

where q is an arbitrary state vector, f is the flux vector and s the source vector.

This section will only consider “1 + 1” dimensional equations. However, these methods

can be easily extended to higher dimensions. Many of the techniques and methods

described in this chapter can be found in [173], [96] and [100].

Chapter 2 developed a set of evolution equations for a continuum model. These equations

must be solved numerically; this requires a discretisation of the physical and numerical

domain. This discretisation is done by splitting the spatial domain into small volumes.

In the one-dimensional case, these volumes become cells of width ∆x. Figure 4.1 shows

such a cell. They are labelled Ii, where i ∈ [1, N ] and N is the number of cells.

The location x at the centre of the cell is denoted xi. The domain of a cell xi is[
xi−1/2, xi+1/2

]
, where xi±1/2 = xi ± 1

2∆x.

The time domain is split into “levels” that are separated by a time-step ∆t.

Each “level” is denoted tn, where tn+1 = tn + ∆t, and t0 is the initial time.

The resolution of a numerical simulation is determined by the values ∆x and ∆t.

Each cell is filled with the vector q̂ni , which is the integral average of the state vector

q(tn, x) within the cell. The integral average is defined as

q̂ni =
1

∆x

∫ xi+1/2

xi−1/2

q(tn, x)dx. (4.2)
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Figure 4.1 – The numerical domain is split into cells Ii, where i ∈ [1, N ] for N cells.
The integral average is defined at the cell centre xi. The Riemann problem
needs to be calculated at the boundary xi±1/2. The width of a cell is ∆x.

4.2 Time Integration and Stability

4.2.1 Method of lines

The method of lines allows one to approximate a system of PDEs by a set of ordinary

differential equations (ODEs). The method of lines is outlined in detail in the book by

Schiesser [154]. Converting to a set of ODEs is useful, because stable numerical methods

for solving ODEs are plentiful and easy to implement.

The method of lines replaces the spatial boundary problem with an approximation at

each point. This leaves an initial value problem at each point that is only dependent

on time. Applying the method of lines to the general weak form of the PDE (4.1) with

s = 0 and discretising in space only, one gets

d

dt
q̂i(t) =

1

∆x

[
f(q(t, xi−1/2))− f(q(t, xi+1/2))

]
. (4.3)

The equation (4.3) is an ODE for q̂i and to solve it the fluxes f must be known.

These fluxes can be approximated by inter-cell fluxes F̂i±1/2. Determining these inter-

cell fluxes can be done in many different ways and will be considered in Section 4.4.
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4.2.2 Stability

It is important that the numerical method used to integrate the ODE is stable.

A stable numerical method does not introduce unphysical oscillations that are

unbounded. One measure of stability that is commonly used is the total variation,

(TV ). The TV for a discretised vector is

TV (q̂n) =

∞∑
i=−∞

|q̂ni+1 − q̂ni |, (4.4)

where the supremum means that all possible samples from the domain are included.

If the TV does not increase from one time step to the next, then the time integrator is

strong stability preserving (SSP),

TV
(
q̂n+1

)
≤ TV (q̂n) . (4.5)

This is also a fundamental property of the exact solution of a scalar, non-linear

conservation law. The total variation is a decreasing function in time [173].

Therefore, this thesis uses SSP time integrators such as the third order Runge-Kutta

method introduced in Section 4.2.3 to mimic the behaviour of the exact solution.

A total variation diminishing (TVD) method is one that does not increase to TV through

spatial reconstruction. This is important to consider in the presence of discontinuities.

It is crucial to avoid the appearance of unphysical oscillations due to the Gibbs

phenomenon. These oscillations can occur, when reconstructing across a discontinuity.

This thesis uses weighted, essentially, non-oscillatory (WENO) methods that obey a

weaker condition, but allow higher-order reconstruction [162]. The condition is that the

variation can increase by the grid spacing to some power r,

TV
(
q̂n+1

)
≤ TV (q̂n) +O [(∆x)r , (∆t)r] . (4.6)

In the limit as ∆t→ 0,∆x→ 0 the WENO method approaches the SSP condition. For

more details on stability see the book by Laney [96].
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4.2.3 Runge-Kutta methods

Having converted the system of PDEs to a set of ODEs, using the method of lines, the

Runge-Kutta methods [70] can be used to integrate the ODEs in time. The ODE has

the form
d

dt
û = −F̂(û). (4.7)

The Runge-Kutta methods have been chosen, because they are of high order and simple

to implement. The third order method, used in this thesis, is SSP; see Gottlieb et al.

[71] for a review of high order SSP discretisation. The third order method is

û(1) = ûn + ∆tF̂(ûn), (4.8)

û(2) =
1

4

(
3ûn + û(1) + ∆tF̂(û(1))

)
, (4.9)

ûn+1 =
1

3

(
ûn + 2û(2) + 2∆tF̂(û(2)

)
. (4.10)

These methods are useful for systems of equations that are non-stiff. The ones in this

thesis are non-stiff. However, source terms in the resistive MHD code of Dionysopoulou

et al. [47] cause stiffness and they use the implicit-explicit Runge-Kutta method of

Pareschi et al. [130].

4.2.4 The CFL condition

The Courant-Friedrichs-Lewy (CFL) condition states that the numerical domain of

dependence must include the PDEs’ domain of dependence. This is a necessary condition

for stability, but not sufficient [39].

It ensures that all of the information required to update a point has time to propagate

to that point. If this is not allowed to happen, oscillations within the solution can occur

and lead to instabilities. This condition can be defined in terms of the Courant number

CFL,

CFL =

∣∣∣∣c∆t∆x

∣∣∣∣ ≤ 1, (4.11)

where c is the maximum characteristic speed of the system. Fewer integration steps are

required, when the Courant number is closer to one. An important process is determining

what value to set the Courant number. Reducing the total number of steps decreases

the total numerical error because each step introduces numerical error. However, setting

the Courant number too high could lead to an unstable numerical method. We use a

typical value of CFL = 0.5.
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4.2.5 The Lax-Wendroff theorem

Chapter 3 expressed the evolution equations in conservation or balance law form.

By using a numerical method that is conservative, one can guarantee that the position

of any discontinuity is correctly captured throughout the evolution. With a conservative

method, the exact location of a discontinuity is not known but its location is contained

within a region; this is known as shock capturing.

This property can be observed by considering the ODEs (4.3) on an arbitrary domain

[xA, xB]. For a conservative method, the fluxes f̂i+1/2 = f̂(i+1)−1/2 are equal. This means

that the sum across the entire domain is

d

dt

B∑
i=A

q̂i =

B∑
i=A

1

∆x

(
f̂i−1/2 − f̂i+1/2

)
=

1

∆x

(
f̂A−1/2 − f̂B+1/2

)
. (4.12)

Therefore, if a discontinuity exist within the domain [xA, xB], conservation still holds.

The Lax-Wendroff theorem states that a conservative method that converges to a

consistent solution in the limit ∆x→ 0 and ∆t→ 0 will converge to a weak solution of

the system of equations [99]. It is important that a solution of the evolution equations

converges to a weak solution, because, along with the physical law, this ensures it

converges to the correct solution.

4.3 Spatial Reconstruction to the Cell Boundary

Using the method of lines, the system of PDEs was converted to a set of ODEs (4.3).

To solve these equations between the times tn and tn+1 = tn+∆t, one needs to calculate

the inter-cell fluxes. The inter-cell flux can be approximated by the solution of the

Riemann problem at the cell boundary. This procedure requires several steps to be

performed. The average states at the centre of the cells need to be reconstructed at the

boundary. This reconstruction gives the initial data for the Riemann problem that needs

to be solved subsequently. The method chosen has a big impact on the overall accuracy

of the finite volume method. However, as with the majority of numerical calculations,

there is a trade-off between accuracy and computational time.

The exact solution of the Riemann problem usually requires a numerical root-finding

algorithm. Therefore, the exact solution is computationally expensive and would not be

suitable to use at every cell boundary. An alternative is to use approximate solutions

that are usually analytic and require significantly less computational power.
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Solving the approximate Riemann problem using reconstructed values was pioneered

by Godunov [65]. Methods that follow this reconstruction approach are known

as Godunov-type methods. Many different varieties have been developed to do

this reconstruction. Several of them can be found in the book by LeVeque [100].

The simplest reconstruction is piecewise, linear reconstruction of the cell average to the

boundary. This reconstruction was the original method of Godunov. The reconstructed

variables at xi+1/2 are

q̄−i+1/2 = q̂i, q̄+
i+1/2 = q̂i+1. (4.13)

These reconstructed values give the left and right states to the Riemann problem,

q̄−i+1/2 = q̄L, q̄+
i+1/2 = q̄R. (4.14)

The inter-cell flux f̄i+1/2 can then be calculated from these reconstructed values by

exactly or approximately solving the Riemann problem at the boundary.

The method proposed by Godunov is a first order, convergent, conservative method.

However, higher-order methods exist. By performing higher-order conservative

reconstruction, one can increase the global order of convergence. This approach

is collectively known as high-resolution shock-capturing (HRSC) methods. Godunov

showed that high-order reconstruction leads to oscillations for non-linear features [65].

Where smooth data exists, HRSC methods reconstruct data at orders as high as the

numerical methods allow. At non-linear features, HRSC methods reduce to first order

so that they do not introduce non-physical oscillations. Therefore, this thesis will use

WENO methods, because they offer accuracy up to any order.

4.3.1 Essentially non-oscillatory reconstruction

The WENO method used in this thesis is constructed from the weighted sum of

ENO reconstructed variables. The first implementation of an ENO reconstruction was

performed by Harten et al. in 1987 [77]. This section follows the procedure outlined by

Shu in 1998 [162].

The approach of the ENO methods is to choose a stencil of r cells that minimises the

possibility of a discontinuity being included within the reconstruction. The ENO scheme

can be made conservative by reconstructing the integral average, which is essential to

accurately capture the location of non-linear features.
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The following procedure describes the reconstruction of a scalar function V at the cell

xi with k order accuracy. Starting from the cell xi, add more cells to the stencil until

there are r cells. When adding a cell to the stencil, one chooses between the cells at

the edge of the stencil. The cell with the smallest divided difference and hence the least

oscillatory is added to the stencil. The divided differences are given in Shu [162] and

Laney [96].

The values at the boundary are given by

q̄i+1/2 =

k−1∑
j=0

cr,jqi−r+j , q̄i−1/2 =

k−1∑
j=0

cr−1,jqi−r+j . (4.15)

Where cr,j and cr−1,j are constants for an structured grid and are given by Shu [162] for

low orders. For extremely high orders see Gerolymos et al. [60].

4.3.2 Weighted essentially non-oscillatory reconstruction

The WENO method of reconstruction is the primary reconstruction method that is used

in this thesis. The WENO method utilises a convex combination of all possible ENO

reconstructions for a cell Ii that can be constructed using an ENO method [88, 103]. The

major reason this thesis uses the WENO method is that it is smoother than the ENO

approach. The WENO method also allows a higher-order of accuracy. It maximises the

order of accuracy for the amount of information available.

The WENO procedure starts by calculating boundary values from all possible stencils,

q
(r)
i+1/2 =

k−1∑
j=0

cr,jqi−r+j , r = 0, . . . , k − 1. (4.16)

The final boundary value is given by a convex combination of the calculated boundary

values,

q̄i+1/2 =
k−1∑
r=0

ωrq
(r)
i+1/2, (4.17)

where ωr are the weights. For stability and consistency, they are defined as

ωr ≥ 0,

k−1∑
r=0

ωr = 1. (4.18)

The procedure for calculating the weights is given in the paper by Shu [162].

The weights allow the properties of the ENO methods to be maintained, while increasing

the accuracy of the method for the same total information.
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Torrilhon showed that standard second order reconstruction methods converge to the

wrong solution for several ideal MHD tests [176]. These reconstruction methods did

eventually converge to the correct solution, but only for extremely high resolutions.

More recently, Torrilhon and Balsara have shown that WENO methods, although

exhibiting the same non-uniform convergence, converge to the correct solution for coarser

grids and at a quicker rate [177].

4.4 Approximate Riemann Solvers

Finite volume methods use the solution to the Riemann problem to determine the inter-

cell fluxes. This means that a high resolution numerical simulation will require the

solution to a large number of Riemann problems. The exact solution to the Riemann

problem is computationally expensive and not always available as for example in the

case of general relativistic elasticity [72]. It is, therefore, not appropriate to solve the

Riemann problem exactly at each cell boundary.

Several approximate solvers have been developed that approximate the solution to

the Riemann problem analytically. Obtaining an analytical approximate solution is

computationally cheaper. A large number of approximate solvers are described in the

book by Toro [173]. This section will discuss the approximate solvers used in this work.

4.4.1 Lax-Friedrichs flux

One of the methods used in this thesis is Lax-Friedrichs flux. While not developed as an

approximate Riemann solver, it is a limit of the Harten-Lax-van Leer (HLL) solver [76].

The Lax-Friedrichs flux is used, because it is a very stable method [100]. The method is

based on the assumption of two waves propagating with speed ±α. The inter-cell flux

is defined as

f̂(q̄) =
1

2
[f (q̄L) + f (q̄R) + α {q̄L − q̄R}] , (4.19)

where L,R indicate quantities that have been reconstructed to the boundary, where

the flux is being calculated and α is the magnitude of the maximum wave speed across

the whole domain. Typically this method uses zeroth-order reconstructed values and is

derived from the following update equation

qn+1
i = qni +

∆t

∆x

[
fni−1 − fni

]
. (4.20)

Using our high-order reconstruction and the diffuse Lax-Friedrichs scheme means that

we can obtain high accuracy while maintaining stability.
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Figure 4.2 – The solution structure of the HLLD approximate Riemann solver for the
equations of ideal magnetohydrodynamics.

4.4.2 HLLC and HLLD approximate Riemann solvers

The HLL [76] approximate Riemann solver is similar to the Lax-Friedrichs approach

above in that it approximates the solution of Riemann problem to consist of two waves

and three constant states. Toro et al. [174] introduced a new approximate Riemann

solver, based on the HLL solver, that restored the contact wave, hence it was named

the HLLC approximate Riemann solver. The approximate solution consisted of four

states separated by three waves, the correct amount for the equations of Newtonian

hydrodynamics.

The HLLD solver was introduced by Miyoshi and Kusano [116] and introduces

two more waves to the HLLC solver to account for the Alfvén waves in the ideal

magnetohydrodynamics equations. This is based upon the assumption that the normal

velocity is constant across the solution. This means that slow shocks cannot form.

The resulting solution structure is shown in Figure 4.2.

The procedure is outlined in full by Miyoshi and Kusano [116]. Their results show

that the HLLD approximate Riemann solver is able to resolve sharp features that other

approximate solvers smear out. Another advantage of the HLLD solver is that it is

positively conservative. This means it will always produce physical states from physical

inputs.
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4.5 Dimensional Splitting

So far, this thesis has only considered the solution to “1 + 1” dimensional equations.

The methods presented are extendable to higher dimensions. Dimensional splitting will

be used to extend to higher dimensions [168]. To use this technique, one must write the

system of equations with state vector q and spatial coordinates x = (x1, x2, x3)T in the

form

∂tq + ∂x1f(q,x) + ∂x2g(q,x) + ∂x3h(q,x) = s(q,x). (4.21)

All of the systems of equations considered so far can be written in the form presented

above (4.21). Therefore, one can reconstruct each spatial derivative using the techniques

described in the reconstruction Section 4.3.

The update term is obtained in each direction by calculating the inter-cell fluxes at the

appropriate cell edge,

F = f̂i−1/2,j,k − f̂i+1/2,j,k, (4.22)

G = ĝi,j−1/2,k − ĝi,j+1/2,k, (4.23)

H = ĥi,j,k−1/2 − ĥi,j,k+1/2, (4.24)

where these quantities are evaluated for all (xi, yj , zk). The right-hand side of the

Runge-Kutta update is then determined from the sum of the fluxes

F̂ = (F + G +H) . (4.25)

When using dimensional splitting, one must be careful to ensure that the CFL condition

(4.11) is still maintained. This can be ensured by considering the maximum wave-speed

in all directions.

4.6 Divergence of the Magnetic Field

When dealing with a charged fluid, care must be taken to ensure that the magnetic field

is non-divergent. The no-monopole Maxwell equation, first introduced in the physical

model chapter (2.16), states that the divergence of the magnetic field Bi is zero,

∇iBi = 0. (4.26)
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However, numerically it is extremely difficult to maintain a quantity at zero.

Even for initial data that is physically correct, small errors can develop due to numerical

approximations. The problem is that the constraint is not controlled directly, but via

evolution equations that control the field itself. Brackbill and Barnes showed that a small

numerical error can lead to a non-physical force that can produce significant errors [33].

In an Eulerian frame, this error results in fluid transport across magnetic field lines,

which is not possible in the ideal approximation [41].

The appearance of numerical monopoles is a major problem in charged fluid simulations.

As a result, several different numerical schemes have been developed to prevent

catastrophic failure by reducing or removing the errors or both. Tóth has reviewed

seven different schemes that are compatible with finite volume methods [178].

This thesis has implemented three different methods to deal with the appearance of

monopoles. This section will review the three methods: Powell’s method, divergence

cleaning and constrained transport.

4.6.1 Powell method

Powell et al. [139] developed an 8-wave method that augments the conservation laws

into a balance form that reduces the effect of monopoles by adding source terms.

This results in a new set of evolution equations. This was implemented for the Newtonian

methods. Presented here is the Newtonian version

∂t (ρvi) + ∂j

(
ρviv

j + δji p
∗ −BjBi

)
= −

(
∂kB

k
)
Bi, (4.27)

∂tE + ∂j

(
(E + p∗) vj −Bj

(
vkBk

))
= −

(
∂kB

k
)
Blv

l, (4.28)

∂tBi + ∂j
(
viBj − vjBi

)
= −

(
∂kB

k
)
vi. (4.29)

A relativistic version has been developed [90, 92], but it has not been implemented in

this thesis. As the Powell method only works well for situations, where there are no

strong shocks [178], it is not suitable for modelling the neutron star merger scenario.
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4.6.2 Divergence cleaning

The second method implemented was the divergence cleaning method of Dedner et

al. [41]. This method has proven to be successful in special relativistic ideal MHD.

It introduces a non-physical scalar field ψ that is used to damp the divergence of the

magnetic field. The addition field is given by

∂tψ + ∂iB
i = − ψ

c2
p

, (4.30)

where cp is a free parameter. The addition of this field also changes the magnetic flux

equation (3.87) to

∂tB
i + ∂j

[(
vjBi − viBj

)
+ δijψ

]
= 0. (4.31)

This is the method used in the multi-model approach as it propagates any divergences

away from the interface boundaries.

4.6.3 Constrained transport

The final method implemented was used for both Newtonian and special relativity. It is

a constrained transport method developed by Sriskantha and Ruffert [165], based on the

method of Balsara and Spicer [21]. They modified the method of Balsara and Spicer to

work with a dimensionally split code; see Section 4.5. The constrained transport method

can maintain a divergence free code for single-model evolution to machine precision.

However, it is not suitable for multi-model simulations that produce a divergent magnetic

field when defining the interface boundary conditions.

The constrained transport approach was first developed by Evans and Hawley [54].

They used Faraday’s law (2.17) to determine how the magnetic field changes in time.

Their original method uses a staggered grid and was not implemented in this thesis as

it would have required a major change in the numerical model.

Balsara and Spicer developed a constrained transport method that also used a staggered

grid. They calculated the update to the face centred values of the magnetic field using

the electric field at the edge of the cell. This electric field can be obtained from the

magnetic fluxes. This allowed them to maintain a solenoidal magnetic field up to a

discretisation error. Tóth took their algorithm and produced a cell centred version

[178].

Sriskantha and Ruffert [165] modified Tóth’s algorithm in such a way that the magnetic

field at cell centres could be updated in a partially dimensionally split way. This allowed

us to use a constrained transport method without modifying our code significantly.
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They implemented a method that recalculates the update term in

Bn+1
i = Bn

i + ∆Bi. (4.32)

The update term is calculated in a dimensionally-split approach. The x-direction update

is as follows

∆Bi,j+1
x = ∆Bi,j+1

x − 1

8

∆t

∆y

(
f̂
i+1/2,j
7 − f̂ i−1/2,j

7

)
, (4.33a)

∆Bi,j−1
x = ∆Bi,j−1

x +
1

8

∆t

∆y

(
f̂
i+1/2,j
7 − f̂ i−1/2,j

7

)
, (4.33b)

∆Bi,j
y = ∆Bi,j

y +
1

4

∆t

∆x

(
f̂
i+1/2,j
7 + f̂

i−1/2,j
7

)
, (4.33c)

∆Bi,j+1
y = ∆Bi,j+1

y +
1

8

∆t

∆x

(
f̂
i+1/2,j
7 + f̂

i−1/2,j
7

)
, (4.33d)

∆Bi,j−1
y = ∆Bi,j−1

y +
1

8

∆t

∆x

(
f̂
i+1/2,j
7 + f̂

i−1/2,j
7

)
. (4.33e)

The y-direction update is as follows

∆Bi,j+1
y = ∆Bi,j+1

y − 1

8

∆t

∆x

(
ĥ
i,j+1/2
6 − ĥi,j−1/2

6

)
, (4.34a)

∆Bi,j−1
y = ∆Bi,j−1

y +
1

8

∆t

∆x

(
ĥ
i,j+1/2
6 − ĥi,j−1/2

6

)
, (4.34b)

∆Bi,j
x = ∆Bi,j

x +
1

4

∆t

∆y

(
ĥ
i,j+1/2
6 + ĥ

i,j−1/2
6

)
, (4.34c)

∆Bi,j+1
x = ∆Bi,j+1

x +
1

8

∆t

∆y

(
ĥ
i,j+1/2
6 + ĥ

i,j−1/2
6

)
, (4.34d)

∆Bi,j−1
x = ∆Bi,j−1

x +
1

8

∆t

∆y

(
ĥ
i,j+1/2
6 + ĥ

i,j−1/2
6

)
. (4.34e)

The equations can be extended to the 3-dimensional case by adding a z-directional

update term and calculating the ∆Bz term in the previous updates.
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Single-model Results

Before developing and discussing the advanced numerical methods for neutron star

interfaces, it is important that the numerical methods presented in the previous chapter

are validated. Throughout this thesis, the solution of the Riemann problem has

formed an integral part. The approximate solution makes Godunov-like methods viable.

The linear solution will be used to construct the mRGFM. Finally, the exact solution

can be used to demonstrate the validity of numerical methods.

A set of standard tests has been developed to test the validity of the numerical methods

[20, 110, 111, 151, 164]. These standard tests, in one dimension, are collectively

known as shock tube tests. They can be used to test the limits of the numerical

methods implemented. This chapter will present standard shock tube tests for each

of the systems of conservation laws considered previously: Newtonian hydrodynamics,

ideal magnetohydrodynamics, special-relativistic hydrodynamics and special-relativistic,

ideal magnetohydrodynamics. All the shock tube tests implement outflow boundary

conditions.

These standard tests allow one to compare approximate results to exact solutions.

The shock tube tests are one of the few examples where exact solutions are known for

special-relativistic hydrodynamics and special-relativistic, ideal magnetohydrodynamics.

An exact solver for special-relativistic hydrodynamics was developed by Pons et al.

[136]. We have built our own solver based on their approach. An exact solver for

special-relativistic, ideal magnetohydrodynamics was developed by Giacomazzo et al.

[62]. We have used this solver to construct the exact solutions for special-relativistic,

ideal magnetohydrodynamics.

It is also important to demonstrate the convergence of the chosen spatial reconstruction

method. The WENO method introduced in Section 4.3.2 provides high-order

convergence for smooth initial data [162]. Therefore, to test our WENO implementation,

a sinusoidal profile will be advected through one time period with periodic boundary

conditions and compared to its initial data.

89
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After testing the numerical methods in one dimension, it is important to validate

the methods in two dimensions. The addition of a second spatial dimension creates

new numerical effects. Maintaining the non-divergence of the magnetic field becomes

extremely important. The Orszag-Tang test [123] will be used to demonstrate that the

numerical methods can prevent and reduce the appearance of a divergent magnetic field.

This test uses periodic boundary conditions. Shock tube tests in two dimensions will

also be used to validate the numerical methods.

5.1 One-dimensional Results

5.1.1 WENO convergence

The WENO method of spatial reconstruction should converge, for smooth data, at an

order of (2r − 1), where r is the size of the stencil used [162]. Therefore, a WENO(r)

reconstruction with r = 2 should converge at third order. Gerolymos et al. [60]

have demonstrated that the WENO method is convergent up to seventeenth order.

However, to achieve these results, they implemented a time-integrator of equal order.

We have implemented the Runge-Kutta method up to fourth order. Therefore, only

results for WENO2 and WENO3 are presented.

To calculate the convergence rate for the WENO method we used a sinusoidal profile,

which was advected for one period with periodic boundary conditions. Therefore, after

one period the exact solution is identical to the initial data. The point-wise error is

calculated,

Ei = |ai − ei|, i = 1, . . . , N, (5.1)

where Ei is the error, ai is the approximate solution, ei is the exact solution and N is

the total number of points. The infinity norm is calculated by

||E||∞= ∆x ·max (E1, E2, . . . , EN ) , (5.2)

where ∆x is the cell width. The logarithms of the norms are plotted against the

logarithm of the cell widths in Figure 5.1. The gradient of the line-of-best-fit determines

the order of convergence.

We have compared the norms for resolutions between 0.1 and 0.01. Figure 5.1 shows

that the WENO methods implemented in this thesis are convergent and converge at

the expected rate. The WENO2 method has a convergence rate of 2.72. The WENO3

method’s convergence rate is limited by the fourth order Runge-Kutta time-integrator

to 4.00.
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Figure 5.1 – This log-log plot shows that the WENO2 implementation has a convergence
rate of 2.72, which is close to the expected third-order convergence. The
WENO3 method should be fifth-order convergent. However, the results
are limited by the fourth-order Runge-Kutta time integrator. Both tests
compared a sinusoidal profile, which had been advected through one period
with the initial data.

5.1.2 Newtonian hydrodynamics

Throughout this chapter, standard Riemann shock tube tests will be used to demonstrate

the validity of our numerical methods. Therefore, we will start by presenting the

standard shock tube test developed by Sod [164]. This test has been chosen, because

its solution contains all three possible waves in Newtonian hydrodynamics: rarefaction,

shock and contact discontinuity.

This initial data is given in Table 5.1. The Riemann problem, located at x = 0, is

defined on the domain −0.5 ≤ x ≤ 0.5. The fluid is an ideal fluid with γ = 1.4.

The total time is T = 0.25.
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Test name: Sod shock tube

ρ vx vy vz p γ

left 1
0 0 0

1
1.4

right 0.125 0.1

Total time: 0.25

Table 5.1 – Initial conditions for the Sod test [164]. The Riemann problem, located at
x = 0, is defined on the domain −0.5 ≤ x ≤ 0.5. The fluid is an ideal fluid
with γ = 1.4. The total time is T = 0.25.

The results are given in Figure 5.2. Two resolutions are shown, 200 and 800 cells, with

50 cells plotted for clarity. All of the expected waves are present and their locations

have been correctly captured. A subplot of the density, containing the contact wave,

exhibits the smearing associated with single-model methods. The subplot of the pressure,

containing the shock wave, demonstrates that the method converges with increased

resolution. We can quantify the convergence rate by running the test over a range of

resolutions, N = 100 to N = 1000. Figure C.1 shows that the density converges at a

rate of 0.98. This is because the density contains discontinuities.

5.1.3 Special-relativistic hydrodynamics

5.1.3.1 Special-relativistic Sod shock tube

Standard Riemann shock tubes are one of the few types of problems in special-relativistic

hydrodynamics that have an exact solution. Therefore, we can continue to use them to

validate our numerical methods. Relativistic equivalents of the standard Newtonian

shock tubes test exist [110, 111] and we will use the same Sod test as before. Its initial

data is given in Table 5.2. The Riemann problem, located at x = 0, is defined on the

domain −0.5 ≤ x ≤ 0.5. The fluid is an ideal fluid with γ = 1.4. The total time is

T = 0.4. The results are given in Figure 5.3.
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Figure 5.2 – Newtonian Sod test results. Two resolutions are shown: 200 and 800 cells.
However, only 50 cells are shown for clarity. All three waves are present
and correctly located. A subplot of the density, containing the contact
wave, exhibits the smearing associated with single-model methods. Using
multi-models methods removes this smearing completely. The subplot of the
pressure, containing the shock wave, demonstrates that the method converges
with increased resolution. The results are plotted at T = 0.25.

Test name: Special-relativistic Sod shock tube

ρ vx vy vz p γ

left 1
0 0 0

1
1.4

right 0.125 0.1

Total time: 0.4

Table 5.2 – Initial conditions for the relativistic Sod shock tube given by Mart́ı and Müller
[110]. The Riemann problem, located at x = 0, is defined on the domain
−0.5 ≤ x ≤ 0.5. The fluid is an ideal fluid with γ = 1.4. The total time is
T = 0.4.
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Figure 5.3 – Results for the Sod test for special-relativistic hydrodynamics given by Mart́ı
and Müller [110]. Two resolutions are shown: 200 and 800 cells. However,
only 50 cells are shown for clarity. All three waves are present and correctly
located. A subplot of the density, containing the contact wave, exhibits the
smearing associated with single-model methods. The subplot of the pressure,
containing the shock wave, demonstrates that the method converges with
increased resolution. The results are plotted at T = 0.4.

In Figure 5.3 two resolutions are shown, 200 and 800 cells, with 50 cells plotted for

clarity. All of the expected waves are present and their locations have been correctly

captured. This subplot demonstrates the difference between the Newtonian and the

relativistic versions. The shock wave has propagated a shorter distance compared to

the Newtonian case due to Lorentz contraction. The subplot of the pressure, containing

the shock wave, also demonstrates that the method converges with increased resolution.

This is quantified in Figure C.2 where we see that the test converges at linear order.

Again, like the Newtonian case, this is due to the discontinuities. The same resolutions

were used as the previous test. The velocities in this test are too low to be considered

in the relativistic regime. A more extreme test will be discussed next: the blast wave.



Chapter 5 Single-model Results 95

5.1.3.2 Blast wave

The blast wave is a relativistic test originally considered by Norman and Winkler

[186]. Here, we present the version given by Mart́ı and Müller [111]. The initial

conditions contain a large pressure jump over several orders of magnitude that results in

a strong shock and relativistic velocities. The initial conditions are given in Table 5.3.

The Riemann problem, located at x = 0, is defined on the domain −0.5 ≤ x ≤ 0.5.

The fluid is an ideal fluid with γ = 5/3. The total time is T = 0.4.

Test name: Special-relativistic Blast wave

ρ vx vy vz p γ

left 1
0 0 0

1000
5/3

right 0.125 0.01

Total time: 0.4

Table 5.3 – Initial conditions for the special-relativistic blast wave problem presented by
Mart́ı and Müller [111]. The Riemann problem, located at x = 0, is defined
on the domain −0.5 ≤ x ≤ 0.5. It contains a pressure jump of five orders of
magnitude. The fluid is an ideal fluid with γ = 5/3. The total time is T = 0.4.

The test was chosen, because strong shock waves will be created during a neutron star

merger. Therefore, our numerical methods must be able to accurately capture the

location of such discontinuities. The large pressure jump in the blast wave’s initial

conditions produces a strong shock wave and relativistic velocities. The density is shown

in Figure 5.4 and the velocity and pressure are given in Figure 5.5.

Two resolutions are shown, 200 and 800 cells, with 50 cells plotted for clarity. All of the

expected waves are present and their locations have been correctly captured. The density

plot 5.4 demonstrates that high resolution is required to approximate the state between

the contact and the shock. Although not considered in this thesis, the use of adaptive

mesh refinement would resolve such situations [27]. The velocity and pressure plot 5.5

exhibits the extreme nature of this test. The maximum velocity is 0.9604 in geometric

units, which equates to a Lorentz factor of 3.59. We can quantify the convergence rate

by running the test over a range of resolutions, N = 100 to N = 1000. Figure C.3

shows that the density converges at a rate of 1.16. This is because the density contains

discontinuities.
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Figure 5.4 – Results for the blast wave test [111]. Two resolutions are shown: 200 and
800 cells. However, only 50 cells are shown for clarity. All three waves are
present and correctly located. The second figure shows the contact and the
shock wave. It demonstrates that high resolution is required to capture the
state between. The results are plotted at T = 0.4.

5.1.4 Newtonian ideal magnetohydrodynamics

We will now test our methods for a charged fluid in the presence of a magnetic field.

Again, a set of standard tests has been developed and they can be found in the paper by

Ryu and Jones [151]. Here, we present their second test, because its solution contains

all seven waves: fast, Alfvén, slow and contact discontinuity. The initial conditions are

given in Table 5.4. The Riemann problem, located at x = 0, is defined on the domain

−0.5 ≤ x ≤ 0.5. The fluid is an ideal fluid with γ = 5/3. The total time is T = 0.2.

Results are shown in Figure 5.6.
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Figure 5.5 – Results for the blast wave test [111]. Two resolutions are shown: 200 and 800
cells. However, only 50 cells are shown for clarity. All the waves are present
and correctly located. The subplot of the pressure shows that the method
converges with resolution. The results are plotted at T = 0.4.

Test name: Ryu & Jones 2A

ρ vx vy vz p Bx By Bz γ

left 1.08 1.2 0.01 0.5 0.95
2
√

4π
3.6/
√

4π
2/
√

4π 5/3
right 1 0 0 0 1 4/

√
4π

Total time: 0.2

Table 5.4 – The initial conditions for the Ryu and Jones test 2A [151]. The initial
conditions are given in Table 5.4. The Riemann problem, located at x = 0, is
defined on the domain −0.5 ≤ x ≤ 0.5. The fluid is an ideal fluid with γ = 5/3.
The total time is T = 0.2.
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Figure 5.6 – Results for the Ryu and Jones 2A with initial data given in Table 5.4. Two
resolutions are shown, 200 and 800 cells, with 50 cells plotted for clarity. All
of the expected waves are present and their locations have been correctly
captured. A subplot of the density, containing the contact wave, exhibits the
smearing associated with single-model methods. In this particular test, the
Alfvén and the slow velocity are very similar in magnitude. As a result, the
200 cell solution does not fully capture the state between the two waves. The
800 cell solution does capture it, as shown in the subplots. The results are
plotted at T = 0.2.
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Two resolutions are shown, 200 and 800 cells, with 50 cells plotted for clarity. All of the

expected waves are present and their locations have been correctly captured. A subplot

of the density, containing the contact wave, exhibits the smearing associated with single-

model methods. In this particular test, the Alfvén and the slow velocity are very similar

in magnitude. As a result, the 200 cell solution does not fully capture the state between

the two waves. The 800 cell solution does capture it, as shown in the subplots. We can

quantify the convergence rate by running the test over a range of resolutions, N = 100

to N = 1000. Figure C.4 shows that the density converges at a rate of 0.99. This is

because the density contains discontinuities.

5.1.5 Special-relativistic, ideal magnetohydrodynamics

Next, we consider a shock tube test for special-relativistic, ideal magnetohydrodynamics.

A set of standard tests have been devised by Balsara [20] with exact solutions given by

Giacomazzo and Rezzolla [62].

We will consider a moderate blast wave test that has initial data given in Table 5.5.

The Riemann problem, located at x = 0, is defined on the domain −0.5 ≤ x ≤ 0.5. The

fluid is an ideal fluid with γ = 5/3. The total time is T = 0.4. Results are given in

Figures 5.7 and 5.8.

Test name: Balsara blast wave

ρ vx vy vz p Bx By Bz γ

left
1 0 0 0

30
5

6 6
5/3

right 1 0.7 0.7

Total time: 0.4

Table 5.5 – The initial conditions for the moderate blast wave problem of Balsara [20].
The Riemann problem is defined on the domain −0.5 ≤ x ≤ 0.5 with the jump
at x = 0.0.; for a single relativistic ideal magnetohydrodynamics model with
γ = 5/3 and for a total time of T = 0.4.

This test was chosen, because it combines a charged fluid and a blast wave. However,

as only the tangential magnitude changes across the Riemann problem, there will be no

rotation waves.



100 Chapter 5 Single-model Results

x

0.25

0.75

1.25

1.75

2.25

2.75

3.25

ρ

exact
200
800

Fast and Slow shock

x

-0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

vx

Slow rarefaction

-0.5 -0.4 -0.3 -0.2 -0.1 -0.0 0.1 0.2 0.3 0.4 0.5
x

15

25

35

45

55

65

75

p∗

Figure 5.7 – The solution to the Riemann problem of the second blast test of Balsara
[20]. Two resolutions are shown, 200 and 800 cells, with 50 cells plotted
for clarity. All of the expected waves are present and their locations have
been correctly captured. High resolution is required to accurately capture
the states between the waves. This is demonstrated in the subplot of the
density. The subplot of the velocity exhibits a common problem with this
test. Balsara showed that with higher resolution the problem reduces, but
due to the conservative nature of the methods used the other states will be
accurate for lower resolutions [20]. Our results show agreement with the exact
solution and Balsara’s results. The results are plotted at T = 0.4.



Chapter 5 Single-model Results 101

-0.50 -0.25 0.00 0.25 0.50
x

-0.25

-0.23

-0.21

-0.19

-0.17

-0.15

-0.13

-0.11

-0.09

-0.07

-0.05

-0.03

-0.01

0.01

0.03

0.05

vy

exact
200
800

-0.50 -0.25 0.00 0.25 0.50
x

0.8

1.2

1.6

2.0

2.4

2.8

3.2

3.6

4.0

4.4

4.8

5.2

5.6

6.0

By

Figure 5.8 – The solution to the Riemann problem of the second blast test of Balsara [20]
for the y components of the velocity and magnetic field. Due to the symmetric
nature of the tangential components, the solution for the z components are
identical. Two resolutions are shown, 200 and 800 cells, with 50 cells plotted
for clarity. All of the expected waves are present and their locations have
been correctly captured. High resolution is required to accurately capture
the states between the waves. Again, the convergence problem of the slow
wave is visible. The results are plotted at T = 0.4.
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Two resolutions are shown, 200 and 800 cells, with 50 cells plotted for clarity.

All of the expected waves are present and their locations have been correctly captured.

Again, high resolution is required to accurately capture the states between the waves.

This is demonstrated in the subplot of the density in Figure 5.7. The subplot

of the velocity shows the tail of the rarefaction undershooting the exact solution.

Balsara showed that with higher resolution the problem reduces, but due to conservative

nature of the methods used, the other states will be accurate for lower resolutions [20].

Our results show agreement with the exact solution and Balsara’s results. The second

figure includes the y-component of the velocity and magnetic field. All of the expected

waves are present and their locations have been correctly captured. High resolution is

required to accurately capture the states between the waves. Again, the convergence

problem of the slow wave is visible. We can quantify the convergence rate by running

the test over a range of resolutions, N = 100 to N = 1000. Figure C.5 shows that the

density converges at a rate of 1.06. This is because the density contains discontinuities.

In this section, we have shown that our numerical methods produce approximate

solutions to Riemann problems that converge to the exact solution for the different

systems of equations. We can, therefore, be confident that our numerical methods

should produce accurate results for systems, where no exact solution exists.

5.2 Two-dimensional Problems

In the numerical methods chapter 4.5, we demonstrated that our numerical methods

can be easily extended to higher dimensions. We will first consider Sod’s shock tube

in two dimensions with the Riemann problem located along the diagonal. We will

also show that our numerical methods can prevent a divergent magnetic field from

occurring. The Orszag-Tang vortex [123] is a well known test of divergence prevention.

Without divergence cleaning, the test fails to complete or produces incorrect results.
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5.2.1 Shock tubes

First, we consider the standard shock tube of Sod that was presented previously in

Subsection 5.1.2. The Riemann problem is located along the diagonal, y = −x, on the

domain −0.5 ≤ x, y ≤ 0.5. The fluid is an ideal fluid with γ = 1.4. The total time is

T = 0.25. The initial data is given in Table 5.6.

Test name: Sod shock tube 2D

ρ vx vy vz p γ

left 1
0 0 0

1.0
1.4

right 0.125 0.1

Total time: 0.25

Table 5.6 – Sod shock tube in two dimensions [164]. The Riemann problem is located at
x + y = 0 and defined on the domain −0.5 ≤ x, y ≤ 0.5. The fluid is an ideal
fluid with γ = 1.4. The final time is T = 0.25.

Results are shown for the density on the whole domain in Figure 5.9 and for density,

velocity and pressure along a diagonal slice perpendicular to the Riemann problem

in Figure 5.10. The density figure shows the solution the Riemann problem in two

dimensions for 800 x 800 cells. The solution matches the one-dimensional result along

the line y = x. Away from this line, the outflow boundary conditions at the corners,

have produced inflowing waves, changing the solution there. Therefore, we consider a

slice along the y = x line and plot the results for the density, velocity and pressure

for comparison against the exact solution in Figure 5.10. The figures show that the

two-dimensional results have good agreement with the original one-dimensional, exact

solution. The velocity is the magnitude of the individual components.

We have demonstrated that our numerical methods can be extended to higher dimensions

by considering the standard Sod shock tube on a two-dimensional grid. The results

obtained match well with those obtained in one dimension.
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Figure 5.9 – The final density profile for the two-dimensional Sod test [164]. The solution
shows 800 x 800 cells. The results along the line y = x show good agreement
with the one-dimensional results. The results are plotted at T = 0.25.

5.2.2 Orszag-Tang vortex test

In the numerical methods chapter we discussed the problem of maintaining zero

divergence of the magnetic field, see Section 4.6. One of the standard tests used

to examine one’s numerical scheme is the vortex problem of Orszag-Tang [123].

Relativistic and Newtonian versions of the test exist and we will use both of them to

demonstrate our code’s ability to deal with the turbulent flow in magnetohydrodynamics.
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Figure 5.10 – The density, velocity magnitude and pressure for the two-dimensional Sod
test [164] along the y = x line. Two resolutions are shown, 200 and 800 cells,
with 50 cells plotted for clarity. All of the expected waves are present and
their locations have been correctly captured. The results agree well with the
one-dimensional, exact solution. The results are plotted at T = 0.25.

5.2.2.1 Newtonian ideal magnetohydrodynamics

Sriskantha and Ruffert [165] provide the initial conditions for the Newtonian Orszag-

Tang vortex test. The initial conditions are given in Table 5.7. The boundary conditions

are periodic with a domain of 0.0 ≤ x, y ≤ 1.0. The fluid is a perfect fluid with γ = 5/3.

The final time is T = 0.5.
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Test name: Newtonian Orszag-Tang

ρ vx vy vz p Bx By Bz γ

25

36π
− sin(2πy) sin(2πx) 0.0

5

12π

− sin(2πy)√
4π

sin(4πx)√
4π

0 5/3

Total time: 0.5

Table 5.7 – The initial conditions for the Orszag-Tang [123] as given by Sriskantha and
Ruffert [165]. A constant density and pressure are defined across the domain
0.0 ≤ x, y ≤ 1.0. Velocity vortices are positioned at the centre and the corners.
The magnetic vortices are located (0.5, 0), (0.25, 0.5), (0.75, 0.5), (0.5, 1.0) and
the corners.

The initial conditions are defined across the whole grid with velocity vortices at the

centre and corners, which can be seen in Figure 5.11, and magnetic vortices at (0.5, 0),

(0.25, 0.5), (0.75, 0.5), (0.5, 1.0) and the corners. This is shown in Figure 5.12.

Results for the density, gas and magnetic pressure are shown in Figures 5.13, 5.14, 5.15

and 5.16.

By inspection, these results agree with those presented by Sriskantha and Ruffert [165].

This is a standard test of the divergence constraint in magnetohydrodynamics. To

achieve the correct results, the divergence of the magnetic field must remain as small as

possible. Typically, for smooth data the divergence can be kept to machine precision.

However, in extreme tests with large shocks, such as this one, the divergence of the

magnetic field can only be contained to 10−4 away from shocks. Failure to control the

divergence will result in this test failing and not maintaining 180◦ rotational symmetry.

The divergence cleaning method we have implemented ensures this by reducing the

impact of the divergence of the magnetic field by advecting it out of the numerical

domain and damping it.

The density plot, in Figure 5.13, shows a colour map between 0.05 and 0.5 along with

forty contour lines linearly spaced between those values. Steep density gradients indicate

the location of the waves. The pressure plot, in Figure 5.14, is a colour map between

0.02 and 0.6 along with forty contour lines logarithmically spaced between those values.

Steep pressure gradients indicate the location of shock waves. The magnetic pressure

plot, in Figure 5.15, is a colour map defined logarithmically between 1.0× 10−6 and 0.3

along with forty contour lines logarithmically spaced between those values. The regions

with the largest magnetic pressure correspond to regions of low density and pressure.

They are surrounded by large density and pressure gradients.
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Figure 5.11 – The initial velocity vector field for the Orszag-Tang test. The colour
corresponds to the velocity magnitude. The boundaries are periodic.
Vortices can be seen at the corners and (0.5, 0.5). The results are plotted at
T = 0.5.

Figure 5.16 shows the divergence of the magnetic field for a resolution of 800 x 800. The

divergence of the magnetic field is minimised by using the divergence cleaning method.

The boundary conditions for the divergence cleaning method go to zero. Close to shock

waves, the divergence can be high. However, once the shock has moved away from that

region, the divergence cleaning method reduces it, which results in stable evolution.

5.2.2.2 Special-relativistic Orszag-Tang

The divergence of the magnetic field is as much of a problem is special relativity as it is in

a Newtonian simulation. We will use a relativistic Orszag-Tang test to demonstrate the

robustness of our numerical methods. The initial data for this test, from Beckwith and

Stone [26], is given in Table 5.8. The boundary conditions are periodic with a domain

of 0.0 ≤ x, y ≤ 1.0. The fluid is a perfect fluid with γ = 5/3. The final time is T = 1.0.
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Figure 5.12 – The initial magnetic vector field for the Orszag-Tang test. The colour
corresponds to the magnetic field magnitude. The boundaries are periodic.
Vortices can be seen at (0.5, 0), (0.25, 0.5), (0.75, 0.5), (0.5, 1.0) and the
corners. The results are plotted at T = 0.5.

Results for the density, gas and magnetic pressure and divergence of the magnetic field

are shown in Figures 5.17, 5.18, 5.19 and 5.20.

Test name: Relativistic Orszag-Tang

ρ vx vy vz p Bx By Bz γ

25

36π
−0.5 sin(2πy) 0.5 sin(2πx) 0

5

12π

− sin(2πy)√
4π

sin(4πx)√
4π

0 5/3

Total time: 1.0

Table 5.8 – The initial data for the relativistic Orszag-Tang test as given by Beckwith and
Stone [26].
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Figure 5.13 – This plot for the Orszag-Tang test shows the density at the final time. The
results compare well with those given by Sriskantha and Ruffert [165]. The
resolution is 512 x 512 with 40 contours spaced linearly between 0.09 and
0.5. Steep density gradients indicate the location of the waves. The results
are plotted at T = 0.5.

These result are comparable, by inspection, to those published by Beckwith and Stone

[26]. To achieve the correct results, the divergence of the magnetic field must remain

as small as possible. Typically, for smooth data the divergence can be kept to machine

precision. However, in extreme tests with large shocks, such as this one, the divergence of

the magnetic field can only be contained to 10−4 away from shocks. Failure to control the

divergence will result in this test failing and not maintaining 180◦ rotational symmetry.

The divergence cleaning method we have implemented ensures this by reducing the

impact of the divergence of the magnetic field by advecting it out of the numerical

domain and damping it.
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Figure 5.14 – This plot for the Orszag-Tang test shows the gas pressure at the final time.
The results compare well with those given by Sriskantha and Ruffert [165].
The resolution is 512 x 512 with 40 contours spaced logarithmically between
0.03 and 0.6. Steep pressure gradients indicate the location of shock waves.
The results are plotted at T = 0.5.

The density plot, in Figure 5.17, shows a colour map between 0.05 and 0.5 along with

forty contour lines linearly spaced between those values. Steep density gradients indicate

the location of the waves. The pressure plot, in Figure 5.18, is a colour map between

0.02 and 0.6 along with forty contour lines logarithmically spaced between those values.

Steep pressure gradients indicate the location of the shock waves. The magnetic pressure

plot, in Figure 5.19, is a colour map defined logarithmically between 1.0× 10−6 and 0.3

along with forty contour lines logarithmically spaced between those values. The regions

with the largest magnetic pressure corresponds to regions of low density and pressure.

They are surrounded by large density and pressure gradients.
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Figure 5.15 – This plot for the Orszag-Tang test shows the magnetic pressure at the final
time. The results compare well with those given by Sriskantha and Ruffert
[165].The resolution is 512 x 512 with 40 contours spaced logarithmically
between 1.0× 10−8 and 0.4. The regions with the largest magnetic pressure
correspond to regions of low density and pressure. They are surrounded by
large density and pressure gradients. The results are plotted at T = 0.5.

Figure 5.20 shows the divergence of the magnetic field for a resolution of 800 x 800. The

divergence of the magnetic field is minimised by using the divergence cleaning method.

The boundary conditions for the divergence cleaning method go to zero. Close to shock

waves, the divergence can be high. However, once the shock has moved away from that

region, the divergence cleaning method reduces it, which results in stable evolution.

In this section, we have demonstrated that our numerical methods can be extended to

higher dimensions. We have also shown that our numerical methods are robust and

minimise the divergence of the magnetic field in the presence of strong shock waves.
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Figure 5.16 – This plot for the Orszag-Tang test shows the divergence of the magnetic field
at the final time. The results compare well with those given by Sriskantha
and Ruffert [165]. The resolution is 800 x 800. The divergence of the
magnetic field is minimised by using the divergence cleaning method. The
boundary conditions for the divergence cleaning method go to zero. Close
to shock waves, the divergence can be high. However, once the shock has
moved away from the region, the divergence cleaning method reduces, such
that, stable evolution can occur. The results are plotted at T = 0.5.
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Figure 5.17 – This plot shows the final density for the special-relativistic Orszag-Tang test.
This result is comparable to those published by Beckwith and Stone [26].
The resolution is 800 x 800 with 40 contours spaced linearly between 0.05
and 0.5. Steep density gradients indicate the location of the waves. The
results are plotted at T = 1.0.
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Figure 5.18 – This plot shows the final pressure for the special-relativistic Orszag-Tang
test. This result is comparable to those published by Beckwith and Stone
[26]. The resolution is 800 x 800 with 40 contours spaced logarithmically
between 0.03 and 0.6. Steep pressure gradients indicate the location of shock
waves. The results are plotted at T = 1.0.
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Figure 5.19 – This plot, for the relativistic Orszag-Tang, test shows the magnetic pressure
at the final time. This result is comparable to those published by Beckwith
and Stone [26]. The resolution is 800 x 800 with 40 contours between
spaced logarithmically 1.0 × 10−6 and 1.0. The regions with the largest
magnetic pressure correspond to regions of low density and pressure. They
are surrounded by large density and pressure gradients. The results are
plotted at T = 1.0.
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Figure 5.20 – This plot for the Orszag-Tang test shows the divergence of the magnetic
field at the final time. The results compare well with those published by
Beckwith and Stone [26].The resolution is 800 x 800. The divergence of the
magnetic field is minimised by using the divergence cleaning method. The
boundary conditions for the divergence cleaning method go to zero. Close
to shock waves, the divergence can be high. However, once the shock has
moved away from the region, the divergence cleaning method reduces, such
that, stable evolution can occur. The results are plotted at T = 1.0.



Chapter 6

Advanced Neutron Star Interface

Methods

This chapter introduces the majority of the novel work presented in this thesis. It will

describe the advanced numerical methods for neutron star interfaces. This will include

techniques to locate and construct a Riemann problem at an interface between two

models. It will then give several different approaches to solving the interface Riemann

problem, including our mRGFM. Next, numerical methods for tacking the interfaces and

ensuring that matter models do not overlap will be given. Finally, the fast marching

method of extrapolation will be described. All of these combined will allow one to

construct multi-component models for neutron stars.

In the majority of neutron star binary simulations a neutron star is approximated to be

a single (charged) fluid with an EOS that varies with radius. As shown in Chapter 2,

the single-model is an excellent approximation, when the separation of the neutron stars

is large. However, the approximation is no longer valid once the neutron star begins

to merge with its companion. Physical effects, which are important on a much shorter

length-scale than the radius of the star, will begin to affect the dynamics of the system.

These effects will be important in the transition boundaries between distinct regions,

such as the interface between the crust and the outer core. These effects will impact on

the gravitational wave signal from a neutron star merger. It is therefore important that

these transition boundaries are included in the numerical simulations.

117
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It is also important to develop a proper treatment of the surface, where the density goes

to zero. At this point, the ideal, magnetohydrodynamical approximation fails and is no

longer valid for the exterior. In this region, the approximation must be replaced by a

low density plasma. Recent simulations [47, 127, 128] have used a general-relativistic,

resistive magnetohydrodynamics code developed by Palenzuela [127]. They adopt a

general Ohm’s law, which is a function of density, to approximate the transition from

the interior to the exterior of a neutron star. This thesis will describe an approach to

accurately capture the surface

Including a proper treatment of the surface and internal interfaces can be achieved

by implementing and extending the framework developed by Millmore and Hawke

[114]. Their approach extends the original Ghost Fluid Method (oGFM) of Fedkiw

et al. [55] to include relativistic effects. They also utilised a captured boundary

approach with the boundary location given by the zero contour of a level set function.

Finally, they approximated the solution to the multi-material Riemann problem at

the interface by replacing it with two single-material Riemann problems: one for

each system of equations. Ghost cells were used so that the two individual Riemann

problems gave the same results as if the full multi-material Riemann problem had been

solved. Their framework was limited to fluid matter models only. We will extend this

approach to any matter model that is in conservation or balance law form, such as

special-relativistic, ideal magnetohydrodynamics.

Firstly, to achieve this, the Millmore and Hawke framework has been extended to include

a magnetic field in the Newtonian formalism. In this case, all components of the velocity

and magnetic field are continuous across the interface. Next, the relativistic case with

a magnetic field is considered. Finally, a general framework is developed that allows

one to combine any number of matter models in conservation or balance law form.

An equivalent method was developed by Schoch et al. [155] following a rarefaction-

shock approach. Our method uses Roe’s linear approximation to the Riemann problem

and is equivalent to their approach for certain situations. However, ours is a more

general method that is extendable to relativity. This method is called the multi-material

Riemann Ghost Fluid Method (mRGFM).

Before the mRGFM can be presented in full, the captured boundary approach must be

described. This will be done by explaining the advantages that the captured boundary

approach has over tracked boundary conditions. Secondly, the general Ghost Fluid

Method will be discussed in two dimensions and the extension to higher dimensions

demonstrated.
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Following on from this, the oGFM of Fedkiw et al. [55] will be examined in detail. The

oGFM has several problems associated with it and is not consistent in the presence of

strong shocks. These problems can be overcome by using the modified Ghost Fluid

Method (mGFM) of Liu et al. [102], which approximates the multi-material Riemann

problem with an all-shock solution. Variants of the original mGFM have gone on to

include rarefaction waves and solve the full problem. However, the modified approach

is limited to interfaces, where the matter models are of the same type, e.g. fluid-fluid

interfaces.

These limitations have led us to the development of the mRGFM that allows one to

combine any two hyperbolic systems of conservation laws that represent a matter model

at a single interface. The mRGFM will be given in full detail for a general system

of hyperbolic conservation laws. It will then be specialised for each of the system of

equations that have been presented in this thesis (see Sections 3.3, 3.4, 3.5 and 3.6).

Finally, a method for capturing the surface of a star will be given. This method can

replace the use of the “atmosphere” in numerical simulations.

6.1 Multi-material Boundary Conditions

Let us consider the situation, where there are multiple matter models defined on a

numerical domain, Ω ⊂ M4, that is contained within the space-time M4. The space-

time is split into subdomains, Ωi, that intersect only at common boundaries, ∂Ωi, where

i ∈ {1, 2, . . . , N} for N subdomains. Inside each subdomain is a single matter model

with a single matter four-velocity uµ. This follows the framework of Millmore and

Hawke [114]. Figure 6.1 demonstrates this idea. It shows a two-dimensional, numerical

domain Ω, bounded by the black line, split into three subdomains. These subdomains

have common boundaries, which can be split into separate portions, Γi,j = ∂Ωi ∩ ∂Ωj .

Each subdomain Ωi has a boundary ∂Ωi represented by a dashed line. The boundary

Γ1,2 is terracotta. The boundary Γ2,3 is dark blue. The boundary Γ1,3 is dark green.

There are two questions that determine how one imposes the boundary conditions at

the interface. Firstly, how does one determine the location of the boundary? Secondly,

how does one impose the correct data at the boundary?
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Figure 6.1 – The two-dimensional numerical domain Ω, bounded by the black line, is split
into three subdomains. Each subdomain Ωi has a boundary ∂Ωi represented
by a dashed line, where i ∈ {1, 2, 3}. The boundary Γ1,2 is terracotta. The
boundary Γ2,3 is dark blue. The boundary Γ1,3 is dark green.

First of all, we will answer how the location of the boundary is determined. Here, we list

two approaches that have been developed for boundary tracking. The first is the tracked

boundary approach. This is a Lagrangian method, where the coordinates move with the

fluid. The second is the captured boundary approach that uses an implicit function to

give the location of the boundary. During the merger phase there will be large topology

changes and large shear stresses on the fluids. This can lead to situations, where the

tracked boundary method fails: coordinates could cross one another. The captured

boundary approach, on the other hand, does not fail in these circumstances. For this

reason, we will use the captured boundary approach.

Now, we turn our attention to the question of how to impose the boundary conditions

at the interface. Again, two different approaches have been developed. The Volume-of-

Fluid (VOF) approach uses the exact location of the boundary to determine the data

near the boundary. It splits cells next to the interface into the different materials. This

VOF method is excellent at conserving mass across the interface. However, it is difficult

to calculate the curvature of the interface [87]. The surface curvature is required to

calculate the surface tension, which could be important when determining the boundary

conditions at the surface [106]. The Ghost Fluid Method, on the other hand, extends a

material beyond the boundary with ghost cells. This is demonstrated in Figure 6.2, which

shows the ghost cells of the purple volume extending beyond the numerical boundary;

this will be discussed in detail in Section 6.1.1. The number of ghost cells depends on

the spatial reconstruction method. Enough ghost cells must be filled, such that the

reconstruction can be completed for the real cells closest to the interface.
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Figure 6.2 – The light purple cells are the ghost cells that are to be filled with data. The
red line indicates the physical location of the interface. Its numerical location
is given by the white line.

The key point to remember is that the ghost cells are filled in a way to ensure that the

flux entering a real cell from a ghost cell simulates the effect of the material across the

interface. These ghost cells are then filled with data to ensure the correct boundary

conditions. The Ghost Fluid Method’s advantage is its simplicity. It does not change

the underlying integrating method and each cell is treated the same. Therefore, for ease

of implementation we have used the Ghost Fluid Method. The Ghost Fluid Method,

along with a captured boundary approach, allows surface tension and potentially other

effects to be included [106, 143, 155].

6.1.1 Captured boundary approach

The captured boundary approach will be used to locate the physical boundaries. The

location of the physical boundary, ∂Ωi, is given by the zero level set of a scalar function,

φi, where i ∈ {1, 2, . . . , N}. Losasso et al. [106] give several advantages of using N level

sets for N volumes for physical simulations over the minimal number of N level sets

for 2N volumes. Therefore, we will use N level sets, φi, to locate the boundaries of N

separate volumes, Ωi. Level sets will be discussed in more detail in the next Subsection

6.1.2.
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Figure 6.3 – This figure shows the captured boundary approach. The physical interface,
shown in red, bisects several numerical cells. The numerical matter models
on either side of the interface must be contained within grid cells. Therefore,
the physical interface’s location is captured by a numerical boundary given
by the white line along the cell faces.

Each point within the numerical domain has an associated real physical model. The

model m at the point is given by

φm < φi ∀i 6= m. (6.1)

For the model to be physical, the level set must be less than or equal to zero at the

point,

φm ≤ 0. (6.2)

This implies that there is only one physical model at each point.

Figure 6.3 shows how the captured boundary approach works. The physical interface,

shown in red, bisects several numerical grid points. The matter models on either side

of the interface must be contained within grid cells. Therefore, the physical interface’s

location is captured by a numerical boundary given by the white line along the cell faces.

Because the physical boundary is captured, a small change in its location can lead to a

large change in the numerical boundary. Figure 6.4 shows this effect. A small shift in

the physical interface has led to a significant change in the white, numerical boundary

when compared to Figure 6.3. The orange model has increased in size by six numerical

cells; each new cell contains an asterisk.
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Figure 6.4 – A small shift in the physical interface has led to a significant change in the
white, numerical boundary when compared to Figure 6.3. The orange model
has increased in size by six numerical cells, indicated by an asterisk in each
new cell.

The interface between two matter models can be viewed as a Riemann problem with the

interface located at the physical boundary. The curvature of the interface and higher

derivatives of the (generalised) Riemann problem could be important. This is especially

true for regions where the spatial derivative of the density is large, for example at the

surface of a neutron star. Although not considered explicitly in this thesis, the methods

introduced are extendable to include such quantities.

It will be assumed that the boundary is planar at each point, where the boundary

conditions must be specified. Therefore, the normal of the boundary can be calculated.

This is a purely local operation and the normal is calculated by

n̂m =
∇φm
|φm|

, (6.3)

where φm is the level set associated with the model of the point at which the normal is

being calculated. The normal can then be used to perform an appropriate coordinate

transformation so that the one-dimensional Riemann problem along this normal can

be solved. It is the solution to this Riemann problem that determines the data at the

interface.
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6.1.2 Level set methods

Level set methods allow one to track sharp features [124, 156]. A level set function is

a scalar function that is defined across the whole numerical domain, x. All level set

functions in this thesis are denoted φi, where i is the model number. The zero contour

of a level set function, φi(x) = 0, tracks the interface between the model i and all other

models. The vector of level set functions at a point determines the real physical model

at that point as given in equation (6.1). As stated previously, there are N level sets for

N models.

Two of the main reasons the level set approach has been chosen are its proven

record in relativity and multi-material simulations. Specifically, it has been used to

capture the location of event and apparent horizons in black hole simulations [44, 172].

More over, level set methods have been widely employed alongside Ghost Fluid

Methods [1, 23, 56, 169]. Alternative methods for tracking sharp features do exist.

These alternative methods include particle level set techniques [51, 124], volume-of-fluid

methods [80, 118, 185] or phase-field methods [167].

The level set approach is the ideal candidate to locate the interface in the captured

boundary approach. In addition to the two reasons given above, the level set approach

is also well suited for large topology changes. This is because only the precise location

of the zero contour must be maintained to determine the interface position. The level

set approach, when coupled with a signed distance function, allows one to accurately

determine the distance to the interface and implement the method of Sambasivan and

Udaykumar [152].

One of the most important aspects of the level set method is it initialisation. The level

set zero contour must correspond to the physical location of the interface. It is then

vital that the evolution of the level set zero contour matches the interface. The first of

these is fairly simple for the test situations we have considered in this thesis. However,

for a full neutron star merger simulation in “3 + 1” dimensions this may not be a simple

task. For the majority of test cases, we can describe the shape of the contour and then

subtract the interface location. So in the case of a one-dimensional problem, the level

set functions with a single interface located at x0 are given by

φ1(x) = x− x0, φ2(x) = −(x− x0). (6.4)
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Determining the physical evolution of the level set requires one to consider the physical

behaviour of the material at the interface. The physical condition imposed at the

boundary is that there is no matter transfer across the interface; this means there

is no diffusion across the interface. This approach has been chosen for conceptual

and implementation simplicity. Therefore, it is a requirement of this approach that

the normal velocity must be continuous across the interface. However, the evolution

equations can be augmented to allow for transfer, melting and shattering. This relaxes

the no-diffusion condition and will allow for a more realistic neutron star, binary

simulation. As well as the no-diffusion condition, another requirement is that the

interface is stable. This means that there must be a pressure balance across the interface.

Any instability that develops, within the interface, will be visible up to a point, which

is resolution dependant. Beyond this point the validity of the results are questionable.

The velocity constraint implies that the interface is advected with the material velocity.

This means that the level set is Lie-dragged with the four-velocity of the fluid

Luφ = 0. (6.5)

On a Cartesian grid with zero shift, this can be written as

∂φ

∂t
+ vi

∂φ

∂xi
= 0. (6.6)

The advection equation is a non-conservative PDE. However, we have no need for

a conservative form as we do not expect non-linear behaviour or discontinuous data.

This is because we are only interested in the zero contour of the level set. Away from

this the level set can be non-smooth. We only need to ensure that the level set in a

region around the zero contour maintains smoothness.

As part of the captured boundary approach, we require a method of measuring the

distance from the interface. If we use a signed distance function as a level set, we can

determine the distance from the interface. This requires that the level set maintains this

property away from the zero contour.

We therefore need some method of maintaining the signed distance function property

and resetting the level set. We do this by reinitialising the level set away from the

interface. Reinitialisation selects a band of points around the zero contour and then

uses these to fill all of the points away from the band by extrapolation. This employs

the fast marching method that is described in Section 6.6.
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6.1.2.1 Projection method

Due to numerical errors, two level sets can disagree on the location of an interface. This

can occur in two different scenarios. There is no level set less than zero at a point: a

“vacuum” state exists. Alternatively, there are two level sets less than zero: an “overlap”

exists. To project out these errors, the minimum level set φm and the “next smallest”

level set with φm < φn < φi ∀i 6= m,n, must be determined. A physical state can then

be recovered by subtracting the arithmetic average of φm and φn from all level sets φi.

This approach was developed by Losasso et al. [106]. In our simulations, this method

has proven to be stable and consistent.

6.2 Multi-material Riemann Problem

For all the multi-material Riemann problems considered, the interface will correspond

to a contact wave. As stated earlier in Subsection 3.3.2, a contact wave is a linearly

degenerate wave that is advected along with the model velocity, vn̂m, in the direction

of the normal. Therefore, the solution to the Riemann problem also determines the

velocity of the interface.

In this work, we follow the approach of Sambasivan and Udaykumar [152] and label the

points closest to the interface as interface points. In our definition of interface points, we

include all real and ghost points that neighbour the interface. These are the points that

are updated by the solution of the Riemann problem. The Riemann problems associated

with the interface points are solved one at a time. We recommend splitting the interface

points into two heaps of real and ghost points. This allows one to treat them differently

in the future. The points in each heap are solved in an order determined by their distance

to the interface. This distance is equal to the value of its associated level set at that

point. It should be noted that this is only true, if the level set is a signed distance

function. This was discussed in Section 6.1.2. However, before solving this Riemann

problem, the state either side of the interface must be acquired to determine the initial

data. The next subsection will describe the approach of Sambasivan and Udaykumar

and its advantages, when dealing with strong shocks.

It should be noted that the captured boundary approach, described above, is non-

conservative. The solution from one side of the interface does not necessarily equal

the solution on the other side of the interface. This is because a separate Riemann

problem is calculated for each interface point. However, it is expected that this error

will reduce with resolution.
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Figure 6.5 – The green cell is the interface point that will be updated using the solution of
the multi-material Riemann problem. The Riemann problem is defined along
the normal calculated at the green cell. The normal is calculated from the
level set associated with the real model of the green cell. The normal is a
normalised vector that points towards the interface.

6.2.1 Multi-material Riemann problem initial data

We wish to solve the multi-material Riemann problem at the interface to determine the

data to fill the interface points. After selecting an interface point to update, the normal

is calculated using equation (6.3) from the level set associated with the real model at

that point. It is along this normal, at the boundary, that the multi-material Riemann

problem must be solved. Therefore, a suitable coordinate transformation is performed to

rotate into the coordinates normal to the boundary. Figure 6.5 demonstrates this idea.

The figure shows the green interface cell, which will be updated with the solution of

the multi-material Riemann problem. From the level set associated with the green

interface cell, the normal is calculated and represented by the black, dashed line.

The normal vector is perpendicular to the interface and always points away from the

ghost cells.

Strong shocks will occur during the merger of a neutron star. Therefore, the numerical

method used to approximate the multi-material Riemann problem must be consistent

and robust in the presence of strong shocks. Sambasivan and Udaykumar [152] has

suggested that the initial data for the multi-material Riemann problem should come from

cells that are away from the interface. They showed that by following this approach,

methods that approximated the Riemann problem consistently, would correctly capture

the location of strong shock waves. Therefore, this thesis will follow this approach and

the initial data for the left and right states will be determined from cells that are away

from the interface.
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Figure 6.6 – The initial data is constructed from the 2D cells either side of the interface
along the normal. The cells are determined by the ends of the black
dotted lines, which have equal length from the physical interface. A convex
combination of the brown cells gives the state for the orange model. A convex
combination of the purple cells gives the state for the light purple model.

They recommend that the states are a distance 1.5∆x away; this is to ensure that

updated points from the previous time integration do not contaminate the initial data.

However, we have found that in the presence of a magnetic field, a distance of 1.0∆x

is preferred. In this case, the numerical error associated with the divergence of the

magnetic field is reduced. It should be noted that, this is not a local operation and

its impact in relativity has not been considered. Because the normal can be along any

direction, the exact point 1.0∆x from the interface will generally be located away from

the centre of a cell. Therefore, the state will be constructed from the 2D cells nearest

this point via convex interpolation, where D is the number of dimensions.

Figure 6.6 demonstrates the procedure of Sambasivan and Udaykumar using the green

interface cell from Figure 6.5. The initial data is constructed from the 2D cells either

side of the interface along the normal. The cells are determined by the ends of the black

dotted lines, which have equal length from the physical boundary. A convex combination

of the brown cells gives the state for the orange model, whereas a convex combination

of the purple cells gives the state for the light purple model.

Complex topologies such as “finger like” lobes can be present; this could result in the

opposite state being constructed from cells that have the same real model as the interface

cell. If this situation occurs, then a fallback, which is outline in the next subsection 6.2.2,

is used. This could result in fewer cells being used to construct the state. These cells

may also be located closer or further away from the interface. It should be noted that

for every multi-material Riemann problem that is solved, only the real data is used to

form the initial states.
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6.2.2 Initial data fallback

There are several situations where the method for determining the initial data given

previously can fail. One such example is when a thin, finger-like lobe forms. Such a

lobe can have a thickness of a single numerical cell. Therefore, a point can neighbour

an interface on two sides. In this case, the calculation of the normal would proceed as

before. However, when the states are located 1∆x away from the centre of the cell, they

will both be located in different model to point located in lobe. We need one of the

states to be associated with the real model of the lobe cell. We know which model this

is, so we can look at the four nearest cells, to the state location, to see if any of them

match the real model of the lobe cell. If any do then the fallback uses them to construct

the state. However, if none of these cells match then the surrounding twelve cells are

searched. All cells that match the real model are used. At this point some accuracy is

lost and it is recommended that the resolution should be increased. Considering a ring

of cells was chosen because it does not prioritise any direction.

6.2.3 Algorithm to approximate the multi-material Riemann problem

Having constructed the initial data for the multi-material Riemann problem we go

ahead and solve it using one of the following methods: the original GFM, the modified

GFM or our mRGFM method. The solution to the multi-material Riemann problem is

approximated by two single-material, individual Riemann problems that give the same

solution in the real cells as if the multi-material Riemann problem has been solved. This

concept is shown in Figure 6.7. This figure explains how the multi-material Riemann

problem at the top is split into two single-material Riemann problems. In this particular

situation, on the left-hand side the real material is an uncharged fluid and on the right-

hand side the real material is a charged fluid. The total number of Riemann problems

that must be solved across two points neighbouring the interface is four; two for each

material, one for the real and ghost point. The real and ghost Riemann solutions differ,

because their initial states could differ. This is due to possible differences in the normal

and distance to the interface at each point.

When updating a point, care must be taken so that the Riemann problem across the

interface is the same for all models at that point. The sign of the normal magnetic field

in relativity breaks the symmetry in the solution to Riemann problem. Therefore, in

this case the normal maxgnetic field direction determines which state is the left state

and which is the right state. For all other systems considered in this thesis this is not

required and the model of the point is chosen as the left state.
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=

+

Real Ghost

Real

RealReal

Ghost

Figure 6.7 – The multi-material Riemann problem solution can be split into two separate
single-material Riemann problems. The ghost data is chosen so that the wave
structure in the real material is the same as if we had solved the multi-material
Riemann problem. On the left-hand side the real material is an uncharged
fluid and on the right-hand side the real material is a charged fluid.
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There exist many different methods to approximate the solution of the Riemann problem

at the interface. These Ghost Fluid Methods will be discussed in detail in Section 6.3.

For now, we will assume that the solution is known.

Once we have solved the multi-material Riemann problem, the solution consists of two

star states either side of the contact wave, one for the purple model and one for the

orange model. The new state that corresponds to the material that is being updated,

replaces the data at the green cell. However, the green cell is not immediately updated.

The solution is stored, because the green cell could be used to construct the initial data

for another Riemann problem.

To summarise, the algorithm and assumptions are as follow. For each level set φi

associated with a model i:

1. Locate the boundary ∂φi and store the location of every point that neighbours it.

The real interface points are cells where φi ≤ 0 and they neighbour a point where

φi > 0. Ghost interface points are cells where φi > 0 and they neighbour a point

where φi ≤ 0.

2. For each interface point:

(a) Find the normal n̂i using equation (6.3).

(b) Determine the real models either side of the interface located 1.0∆x away

using equation (6.1). The model associated with the left Riemann state must

be model i. The right state can be any other model apart from i.

(c) Locate the 2D cells that are 1.0∆x away from the interface location along the

normal as demonstrated in Figure 6.6. The models in each of the cells must

match the models from the previous step. If this is not the case, a fallback

must be used.

(d) Construct the two states by interpolating the data associated with the real

model at those 2D cells to the points 1.0∆x away from the interface. These

states form the new initial data states. Remember that model i is always the

left state.

(e) Perform a coordinate transformation into the direction of the normal.

(f) Solve the multi-material Riemann problem with the initial data.

(g) Undo the coordinate transformation back to original direction.

(h) Store the left star state next to the contact. This will be used to update the

interface point.

3. Once every Riemann problem associated with an interface point has been

calculated, the stored values can be used to update the interface points.
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4. The ghost cells that are not interface points must now be filled. We use the fast

marching method described in Section 6.6.

Figure 6.8 attempts to graphically demonstrate the algorithm described above at a single

point. The green cell is a real interface point for the purple model. The normal indicated

by the black, dashed line aligns the multi-material Riemann problem. The models at

the end of the black line are calculated using equation (6.1). The dark purple square are

the cells used to construct the data from the purple model. This forms the left state,

when updating the green cell. The brown square are the cells used to construct the

data from the orange model. This forms the right state. The states are rotated into

the direction along the normal. Once the Riemann problem has been solved, the left

star state is stored to update the real green cell for the purple model. The blue cell

is a ghost interface point for the orange model located at the same point as the green

cell. The normal, indicated by the black dashed line, aligns the multi-material Riemann

problem. The models at the end of the black line are calculated using equation (6.1).

The dark purple square are the cells used to construct the data from the purple model.

This forms the right state, when updating the blue cell. The brown square are the cells

used to construct the data from the orange model. This forms the left state. The states

are rotated into the direction along the normal. Once the Riemann problem has been

solved, the left star state is stored to update the blue ghost cell for the orange model.

We must now determine how to solve the multi-material Riemann problem. The first

method considered is the oGFM of Fedkiw et al. [55]. This was one of the first methods

to use captured boundaries and ghost cells. It led to a collection of methods being

developed which are referred to as Ghost Fluid Methods.
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6.3 Ghost Fluid Methods

The methods described in this section can be used to solve the multi-material Riemann

problem described in the previous section.

6.3.1 Original GFM

The oGFM of Fedkiw et al. [55] was developed to reduce oscillations at a material

interface in an Eulerian scheme. Using a level set function, they determined the exact

subcell location of the material interface. Each material within the problem is defined

over the entire numerical domain. They then defined a set of ghost cells for each material.

The ghost cells for one material correspond to another material’s real cells, such that

there exists only one real material for each numerical cell, but there could be many ghost

cells. It is through these ghost cells that information flows across the material interface.

The ghost cells extend the material into the volume of the neighbouring material.

They are evolved forward in time along with the real cells using the standard methods.

Their data determines the evolution of the real cells at the boundary.

At the interface, Fedkiw et al. approximated the solution to the multi-material Riemann

problem in a similar manner to Davis [40]. This approximation reduced the solution of

the Riemann problem to a single wave: a contact wave. The jump conditions across

a contact wave are then applied across the interface to fill the corresponding ghost

cells. This approach is much simpler than the algorithm depicted in Subsection 6.2.3.

Only the ghost cells are updated and this is not limited to those neighbouring the

interface. However, it has been shown to fail for strong shocks.

In the simple case of Newtonian hydrodynamics, using just a contact wave results in the

pressure and the normal velocity being copied from the real material cells to the ghost

cells of the other material and vice versa. This means that the blue cell in Figure 6.8

would get its new pressure and velocity from the green cell. This is because across the

contact wave the pressure and normal velocity are continuous.

The oGFM makes the assumption that the entropy and the tangential velocities are

constant across the interface. This assumption results in the entropy and tangential

velocity being extrapolated, at zeroth order, from the closest real cell of a material

across the interface into the same material’s ghost cells that are being filled. This means

that the blue cell in Figure 6.8 would get its new entropy and tangential velocity from

the first orange cell along the normal. The density can then be recovered from the

entropy, EOS and the other values in the ghost cell.
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Interface

Material 1

Material 2

Figure 6.9 – The oGFM approximates the multi-material Riemann problem by considering
only a contact wave solution. Each material has real cells (boxed) and ghost
cells across the interface. The ghost cells are filled with the pressure and
normal velocity from the real cell in the same physical location. This matches
the jump conditions at the contact. The entropy of the real cell closest to the
interface is copied into the ghost cells of the same material.

This process is summarised in Figure 6.9. The figure shows two numerical arrays defined

on the same numerical grid that have been separated into real and ghost cells based upon

the location of the material interface. The pressure and the velocity of material 1 is

copied into the ghost cells of material 2 and vice versa. The entropy and the tangential

velocity of the last real cell of material 1 is copied into the ghost cells of material 1.

Again, the same is true for material 2.

Although it was a good starting point, the oGFM suffers from several issues.

As mentioned previously, the isentropic fixing leads to the constant extrapolation of the

entropy. This is inconsistent with the idea that a shock wave can impact on an interface

as one would expect a jump in the entropy. In the original paper by Fedkiw et al.,

they dismissed this problem, because they stated that this jump would occur instantly.

However, Liu et al. [102] showed algebraically that the oGFM was inconsistent and that

this problem could not be ignored.
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6.3.2 Modified GFM

The mGFM addresses some of the issues the oGFM has. Developed by Liu et al.

[102], the mGFM approximates the solution of the Riemann problem by considering an

all-shock solution. This means that in the case of Newtonian hydrodynamics both non-

linear sound waves are shocks. To approximate the solution to the Riemann problem,

an iterative method is used. The following two equations have to be solved, which are

derived from the jump conditions at a shock wave,

p∗ − pi−1

WL
+
(
v∗n − vni−1

)
= 0, (6.7a)

p∗ − pi+2

WR
−
(
v∗n − vni+2

)
= 0, (6.7b)

where

W 2
L = ρ∗Lρi−1

p∗ − pi−1

ρ∗L − ρi−1
, (6.8a)

W 2
R = ρ∗Rρi+2

p∗ − pi+2

ρ∗R − ρi+1
, (6.8b)

where n indicated a quantity normal to the interface and i indicates the location of the

cell and the interface is located between i and i+1. Quantities marked with a superscript

∗ are the updated values. Assuming a gamma-law EOS, the densities at the interface

are given by

ρ∗L =


γL

γL − 1
p∗ − 1

2
(p∗ − pi−1)

γL

γL − 1
pi−1 +

1

2
(p∗ − pi−1)

 ρi−1, (6.9a)

ρ∗R =


γR

γR − 1
p∗ − 1

2
(p∗ − pi+2)

γR

γR − 1
pi+2 +

1

2
(p∗ − pi+2)

 ρi+2. (6.9b)

Once the states across the shock waves have been calculated, the modified GFM updates

the ghost cells and the density in the closest real cell. The modified GFM procedure is

shown in Figure 6.10. This figure shows the ghost cells for each material being updated

by the corresponding star state.

The mGFM correctly captures the location of strong shock waves [187]. However, this

solution to the multi-material Riemann problem is numerically expensive. It is also only

suitable for materials described by systems of equations that have the same hyperbolic

structure.
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Interface

Material 1

Material 2

Figure 6.10 – The mGFM approximates the solution of the multi-material Riemann
problem to only consist of shock waves. Once the star states have been
found using an iterative method they are copied to the ghost cells. The
mGFM also updates the cell closest to the interface by copying the density
from the star state.

The interface Ghost Fluid Method (iGFM) of Hu and Khoo [84] uses the mGFM but

solves two Riemann problems at the boundary. The real Ghost Fluid Method (rGFM)

of Wang et al. [181] is similar to the iGFM but updates the interface boundary point as

well, just as we do in our captured boundary approach.

6.3.3 Multi-material Riemann Ghost Fluid Method

The final method of approximating the multi-material Riemann problem we will consider

is one based on Roe’s linear approximation to the general Riemann problem. We have

developed this method to extend the advantages of the modified method to situations,

where the materials are not of the same conservation law type.

We remind ourselves of Roe’s approximate solution to the Riemann problem for a single-

material [173]. By linearising the system of conservation laws, one can decouple the

system of equations. This was done in Chapter 3.2 and we use those results here (3.33a),

(3.33b).
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The solution at space-time point (t, x), where λ(j) ≤ x/t ≤ λ(j+1), is given by either of

w(t, x) = wL +

j∑
i=1

(
l(i) ⊗∆w

)
r(i), (6.10a)

w(t, x) = wR −
N∑

i=j+1

(
l(i) ⊗∆w

)
r(i), (6.10b)

where ∆w = wR −wL. We will write this solution in the less explicit form

w(t, x) = wL +

j∑
i=1

Cir
(i), (6.11a)

w(t, x) = wR −
N∑

i=j+1

Cir
(i), (6.11b)

which will be used later.

We now consider the multi-material problem. To be explicit with the notation, we

assume that we have two models Mx, where x ∈ {L,R} labels the left or right state.

We assume that each model has Nx waves on either side of the contact that forms the

interface between the two models. In addition, we assume that there exist precisely

NL +NR compatibility conditions linking the two models. These are relations that must

apply at the interface; for simplicity, we will assume that these are algebraic relations.

As an explicit example, consider the cases of Newtonian hydrodynamics and ideal

magnetohydrodynamics as shown in Figure 6.7. For Newtonian hydrodynamics, there

are Nx = 1 waves on either side, and two compatibility conditions (continuity of

pressure and normal velocity) as shown in the bottom part of Figure 6.7 and given

in the equations (3.51a) and (3.51b). For Newtonian ideal magnetohydrodynamics,

there are Nx = 3 waves on either side, and six compatibility conditions (continuity

of pressure, all velocity components, and tangential magnetic field components) as

shown in the middle of Figure 6.7 and given in the equations (3.101a), (3.101b) and

(3.101c). The condition on the normal magnetic field is automatically achieved. For ideal

magnetohydrodynamics coupled to Newtonian hydrodynamics, there are NL + NR = 4

waves and four compatibility conditions (continuity of pressure and normal velocity and

vanishing of the tangential magnetic field components on the MHD side) as shown in

the top third of Figure 6.7.
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It is not possible to write down a Roe-type solution to the multi-material Riemann

problem directly using the recipe above. There exists one problem of principle, which

is that the definition of the initial data jump ∆w makes no sense (as wL,R correspond

to different models). Another problem is the difficulty of defining a sensible linearised

state w̄x at which to evaluate the matrix A (or its extension Ax in the multi-material

case). It is usual to set w̄x to some “average”, w̄ ≡ w̄(wL,wR), of the left and right

states – for simplicity this is often the arithmetic average. In the multi-material case

this clearly makes no sense.

An alternative approach is as follows. Assume that each model Mx satisfies the linearised

equation

∂twx + Āx∂xwx = 0, (6.12)

for some choice of linearisation state w̄x, i.e. Āx = Ax(w̄x). Also assume that we

have chosen the variables wx so that the first NL +NR variables are precisely those to

which the algebraic compatibility conditions apply, i.e. for hydrodynamics the first two

variables in wx will be the pressure and the normal velocity. Then we assume that the

solution next to the interface can be written in the form

w?
L = wL +

NL∑
i=1

C
(L)
i r

(i)
L , (6.13a)

w?
R = wR −

NR∑
j=1

C
(R)
j r

(j)
R . (6.13b)

By our choice of variables, the first NL +NR components of these equations must match

across the interface (because the compatibility conditions are assumed to take the form

∆wj = 0, where j = 1, . . . , NL + NR). Therefore, we have NL + NR equations of the

form

0 = wR −wL =

NR∑
j=1

C
(R)
j r

(j)
R +

NL∑
i=1

C
(L)
i r

(i)
L , (6.14)

which follow from the first NL + NR components of equations (6.13) (carefully

interpreted) containing NL +NR unknowns C
(x)
i,j . This defines a linear system for these

unknowns, which we assume has a unique solution. Given the solution, we can then use

all components of equations (6.13) to construct the interface states required.
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Interface

Material 1

Material 2

Update Real Point

Figure 6.11 – When updating a real point, the left state is given by the same model as
the real point. The point is then updated with the left star state q∗

L.

The only remaining question is the choice of w̄x required to construct Āx from which

the eigenvectors follow. The simplest choice would be w̄x = wx. However, it may be

that this is not a good approximation. Another approach would be iterative. Set

w̄(0)
x = wx, (6.15a)

w̄(n+1)
x =

1

2
(wx + w?

x) , (6.15b)

where w?
x results from the above procedure with w̄x = w̄

(n)
x . We would then iterate

until ‖w̄(n+1)
x − w̄

(n)
x ‖ is less than some tolerance. In practice, linearising about wx is

adequate to approximate the multi-material Riemann problem for the cases we have

considered.

Once the star states have been calculated, we follow the captured boundary algorithm

6.2.3 and update the appropriate cells. When updating a real point, the algorithm is

represented by Figure 6.11. When updating a ghost point, the algorithm is represented

by Figure 6.12. The no-iteration algorithm presented here can be seen as an alternative

derivation of the method of Schoch et al. [155] and we will now describe their approach.



Chapter 6 Advanced Neutron Star Interface Methods 141

Interface

Material 1

Material 2

Update Ghost Point

Figure 6.12 – When updating a ghost point, the left state is given by the same model as
the ghost point. The states are flipped so that this is the case. The point is
then updated with the left star state q∗

L.

6.3.4 Rarefaction-shock approach

Schoch et al. [155] have developed a new approximate solution to the multi-material

Riemann problem based on a rarefaction-shock approach. This approach was developed

to simulate interfaces between solid and liquid boundaries in explosives.

Their approach makes the assumption that the waves connecting the states in the

Riemann problem are rarefaction-shocks. In comparison, we assume that the waves

are a linear approximation to shock waves. Along a characteristic wave exists a set of

invariant quantities, which travel at the characteristic velocity. These invariants can be

obtained from the following relations

l(i) · dw = 0, (6.16)

where l(i) are the left eigenvectors associated with the characteristic λ(i). These give

a set of relations that connect the state in front of the wave to the state behind.

In the mRGFM, these are equivalent to the coefficients Ci given in equation (6.11).

The two methods differ when applies the updating procedure given in equation (6.15).

Another advantage of the mRGFM is that the right eigenvectors are easier to calculate

analytically than the left.
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6.4 mRGFM Fluid Interfaces

6.4.1 Newtonian hydrodynamics

We now present the explicit equations for the mRGFM solution to the multi-material

Riemann problem for two materials. First, we will consider the case where both materials

are governed by the equations of Newtonian hydrodynamics. The conserved variables

are q = (ρ, ρvj , E)T with fluxes f (n) = (ρvn, ρvjv
n + pδnj , (E + p)vn)T , where n is the

direction normal to the interface. The compatibility conditions are

[[p]] = 0, (6.17a)

[[vn]] = 0. (6.17b)

Rotate the coordinates so that x is the normal direction and that y, z are appropriate

orthogonal directions. We choose to write the system using the variables w = (p, vj , ρ)T .

Applying the linearisation to give equation (6.12), the matrix Āx has the explicit form

Ax(w̄x) =


vxx ρxa

2
x 0 0 0

ρ−1
x vxx 0 0 0

0 0 vxx 0 0

0 0 0 vxx 0

0 ρx 0 0 vxx

 , (6.18)

where the x indicates the left or right linearised state. There is one non-linear wave

either side of the contact with eigenvalue vxx ± ax. The unnormalised right eigenvector

is

r̄(±)
x =



a2
x

±ax

ρx

0

0

1


. (6.19)

Thus, the linear system to solve will be given by the equations

pR − pL = C
(R)
1 a2

R + C
(L)
1 a2

L, (6.20a)

vxR − vxL = C
(R)
1

aR

ρR
− C(L)

1

aL
ρL
. (6.20b)
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It follows that

C
(R)
1 =

ρR

aR

∆p+ ρLaL∆v

ρRaR + ρLaL
, (6.21a)

C
(L)
1 =

ρL

aL

∆p− ρRaR∆v

ρRaR + ρLaL
, (6.21b)

where ∆w = wR−wL. The star state for the left-hand side can then be calculated using

Roe’s linear approximation (6.13a) with the coefficient (6.21b) and the right eigenvector

(6.19) for the left going wave,

p∗ = pL +
ρL

aL

∆p− ρRaR∆v

ρRaR + ρLaL
· a2

L, (6.22a)

vx∗ = vxL −
ρL

aL

∆p− ρRaR∆v

ρRaR + ρLaL
· aL

ρL
, (6.22b)

vy∗L = vyL, (6.22c)

vz∗L = vzL, (6.22d)

ρ∗L = ρL +
ρL

aL

∆p− ρRaR∆v

ρRaR + ρLaL
· a2

L. (6.22e)

The right state can be calculated in the same way, but we focus on the left one because

this is all that is needed in the captured boundary approach.

6.4.2 Newtonian, ideal magnetohydrodynamics

We shall now consider the case where the two materials are both governed by the

equations of Newtonian, ideal magnetohydrodynamics. The conserved variables are

q = (ρ, Sx, Sy, Sz, E,Bx, By, Bz)
T . (6.23)

From the contact jump conditions (3.101a), (3.101b) and (3.101c) the set of variables at

the contact should be

w = (p, vx, vy, vz, By, Bz, ρ)T . (6.24)

The number of variables has reduced by one, because the divergence of the magnetic

field ensures that Bx cannot jump. However, due to numerical errors and the way that

the initial data is chosen, the normal magnetic field may change across the contact.
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Therefore, we fix the contact normal magnetic field to an arithmetic average of the left

and right state. The matrix Āx is

Ax(w̄x) =



vxx pxγx 0 0 0 0 0

ρ−1
x vxx 0 0

By
x

ρx

Bz
x

ρx
0

0 0 vxx 0 −B
x

ρx
0 0

0 0 0 vxx 0 −B
x

ρx
0

0 By
x −Bx 0 vxx 0 0

0 Bz
x 0 −Bx 0 vxx 0

0 ρx 0 0 0 0 vxx



. (6.25)

The following eigenvectors are based on those given by Powell et al. [139] and Sriskantha

and Ruffert [165],

r̄(f±)
x =



αx
fγxpx

±αx
fc

x
f

∓αx
sc

x
sβxβ

x
y

∓αx
sc

x
sβxβ

x
z

√
ρx α

x
saxβ

x
y

√
ρx α

x
saxβ

x
z

ρxα
x
f



, r̄(s±)
x =



αx
sγxpx

±αx
sc

x
s

±αx
fc

x
fβxβ

x
y

±αx
fc

x
fβxβ

x
z

−√ρx α
x
faxβ

x
y

−√ρx α
x
faxβ

x
z

ρxα
x
s



, r̄(a±)
x =



0

0

±βz

∓βy

−βx
zβx
√
ρx

βx
yβx
√
ρx

0



, (6.26)
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where

βx = sgn (Bx) , βx
y =


Bx
y

Bx
t

if Bx
t > 0,

1√
2

if Bx
t = 0,

βx
z =


Bx
z

Bx
t

if Bx
t > 0,

1√
2

if Bx
t = 0,

(6.27)

and

αx
f =



sinφ if cx
f

2 − cx
s

2 = 0,

0 if a2
x − cx

s
2 = 0,√

a2
x − cx

s
2

cx
f

2 − cx
s

2
if cx

f
2 − a2

x = 0,√
a2

x − cx
s

2

cx
f

2 − cx
s

2
otherwise,

αx
s =



cosφ if cx
f

2 − cx
s

2 = 0,√√√√ cx
f

2 − a2
x

cx
f

2 − cx
s

2
if a2

x − cx
s

2 = 0,

0 if cx
f

2 − a2
x = 0,√√√√ cx

f
2 − a2

x

cx
f

2 − cx
s

2
otherwise.

(6.28)

Finally

φ = arctan


|B|x√
ρx
− cx

a

|Bx| − ax

 , Bx
t =

√
Bx
y

2 +Bx
z

2 . (6.29)

Due to the complex nature of these eigenvectors, several alternative approaches can

be used to calculate the coefficients CL,R. One alternative is to calculate the left

eigenvectors and take the dot product between them and the difference vector

Cx
(i) = l(i)x ·∆w. (6.30)

The left eigenvectors can be calculated numerically from the right eigenvectors or

analytically. Another alternative is to calculate the coefficients by solving the linear

system (6.14) numerically. This is our preferred method, because it works for all systems

and doesn’t require the calculation of the left eigenvectors, which usually involves a

matrix inversion.

6.4.2.1 Degeneracies

The eigenvectors, given previously, have been specifically formulated to remain unique

in the presence of degeneracies. However, in formulating the compatibility conditions,

we made the assumption that the degeneracy that occurs when the normal magnetic

field is zero is not present (3.102). This restores the full set of compatibility conditions

(3.101). This assumption is made on the basis that any small perturbation away from

this state will remove the degeneracy.
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6.4.3 Special-relativistic hydrodynamics

The equations of special-relativistic hydrodynamics present a new difficulty in our

formulation. The right eigenvectors of the matrix Āx are difficult to compute, even

using computer algebra. A solution exits, if one can calculate the right eigenvectors of

the matrix J = ∂f(q)/∂q. These eigenvectors were given in equations (3.74). We give

them again for ease of reading,

r(−)
x =



1

hxWxAx
−λ

x
−

hxWxv
x
y

hxWxv
x
z

hxWxAx
− − 1


, r(+)

x =



1

hxWxAx
+λ

x
+

hxWxv
x
y

hxWxv
x
z

hxWxAx
+ − 1


, (6.31)

where Wx is the Lorentz factor (2.34), hx is the specific enthalpy (2.7) and Ax
± is defined

in equation (3.75). The right eigenvectors r̄x for the variables w̄x can be calculated by

multiplying the eigenvectors given above by the matrix

Jx =

(
∂qx

∂w̄x

)−1

. (6.32)

Therefore,

r̄±x = Jxr±x . (6.33)

6.4.4 Special-relativistic magnetohydrodynamics

Obtaining the right eigenvectors, derived from the interface variables w̄x, for the

equations of special-relativistic, ideal magnetohydrodynamics proved quite difficult. The

previous method of calculating the matrix Jx (6.32) could not be computed using

computational algebra. However, Balsara calculated a mapping from the covariant

eigenvectors to the primitive right eigenvectors. This mapping can be used to transform

from the eigenvectors r̃ given by Antón et al. [14], defined in Appendix D.1, to interface

eigenvectors r̄.
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r̄ix =



r̃ix(9)

− vxx
Wx

r̃ix(1) +
1

Wx
r̃ix(2)

− vyx
Wx

r̃ix(1) +
1

Wx
r̃ix(3)

− vzx
Wx

r̃ix(1) +
1

Wx
r̃ix(4)

byxr̃ix(1)− b0xr̃ix(3)−Wxv
y
x r̃ix(5) +Wxr̃

i
x(7)

bzxr̃
i
x(1)− b0xr̃ix(4)−Wxv

y
x r̃ix(5) +Wxr̃

i
x(8)

r̃ix(9)

a2
x

− ρ1+γx
x

γxpx
r̃ix(10)



, (6.34)

where (n) indicates the component of the covariant eigenvector and the index i indicates

the eigenvector, i.e. fast, slow and Alfvén.

6.5 mRGFM Surfaces

So far, only interfaces between two fluids with the same underlying hyperbolic system

have been discussed. At the surface of a neutron star, the interface will be between a

fluid and vacuum or a charged fluid and a plasma. This section will give the first steps to

constructing the mRGFM approach for a surface. It will consider the surface interface

for a toy star between a Newtonian fluid and a vacuum in one dimension. To construct

the surface, we must augment the Euler equations to include a gravitational source term.

We follow the approach of Price [141] and add source terms that are proportional to the

position in the domain. The source term takes the form

s =


0

−ρx

−ρvxx

 , (6.35)

where x is the physical location. With this source term, the initial density and pressure

profile of the star is defined as

ρ0(x) =
(
1− x2

)
, (6.36a)

p0(x) =
ρ

(
0γ − 1)

4(γ − 1)
, (6.36b)

where γ = 2.
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Figure 6.13 – This Riemann fan demonstrates the wave structure at a surface interface
between Newtonian hydrodynamics and a vacuum state.

6.5.1 Surface jump conditions

The wave structure at the surface consists of one hydrodynamical wave and no waves

on the vacuum side. Figure 6.13 demonstrates this structure. Following the mRGFM

approach, there can only be one compatibility condition at the surface. Physically at the

surface with vacuum, the pressure and density must go to zero. However, that implies

two conditions. Therefore, the current interface variables w̄ = [p, vx, ρ]T are unsuitable.

We can, however, use the property that the fluid is barotropic and replace the density

with the specific entropy, which is finite at the surface. The specific entropy is defined

as

K =
p

ργ
. (6.37)

Using the new set of interface variables w̄ = [p, vx,K]T , the coefficient and right

eigenvector are now

CL =
p

γ − 1

2γ K

1

2γ
√
γ

, r̄ =

−p1 + γ

2γ √γ K
−1

2γ , 1, 0


T

. (6.38)

To prevent numerical problems arising with negative or extremely small values, we set

a pressure floor of 1.0× 10−30. All the other variables can be determined from this floor

and the velocity. This floor is significantly lower than the atmospheres currently used

in numerical simulations [47, 141].
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Upwind

Downwind

Figure 6.14 – The fast marching method works by marching away from the interface in
an upwind or downwind direction. The points in the heap are those with
squares. The accepted points have crosses. It is from these points the heap
points are updated by extrapolation.

6.6 Fast Marching Method

Two different situations exist, where we wish to extrapolate data away from the interface,

the extrapolation of ghost cells away from the interface and the reinitialisation of the

level set. To perform both of these tasks we use the fast marching method [124, 156].

The main idea behind the fast marching method is to construct the data using only

upwind or downwind values. From the band of points around the zero level set, one

can construct all the ghost and positive level set points using only upwind points and

all the negative level set points using downwind points. The algorithm works by firstly

locating all the interface points. The data points are not updated. Next, all the points

that neighbour an interface point are added to a heap. These points are ordered in

the heap based on their distance from the zero contour. They are then updated by an

extrapolation from their neighbours that have already been updated. Once a point is

updated, the next point is added to the heap. Figure 6.14 shows the basic idea behind

the fast marching method. The fast marching method works by marching away from

the interface in an upwind or downwind direction. The points in the heap are those with

squares. The accepted points have crosses. It is from these points the heap points are

updated by extrapolation. The heap approach is an efficient method of updating points

in order of distance away from the interface [124, 156].
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6.7 Level Set Numerical Methods

The section discusses the numerical methods required to evolve the level set forward in

time. The advection equation for the level set function (6.6) is a specific example of a

more general class of equations, the Hamilton-Jacobi equations [124]. A Hamilton-Jacobi

equation has the general form
∂φ

∂t
+H(∇φ) = 0. (6.39)

The level set Hamiltonian is

H(∇φ) = vi
∂φ

∂xi
. (6.40)

Many techniques have been developed to solve Hamilton-Jacobi equations; we will use a

Lax-Friedrich approach that is described in [124]. The evolution equation can be written

as a set of ODEs so that we can use standard Runge-Kutta methods to integrate the

equations. The Hamiltonian for the level set can be given by the approximation

H(∇φ) = Ĥ
(
φ−x , φ

+
x , φ

−
y , φ

+
y , φ

−
z , φ

+
z

)
, (6.41)

where φ±i is an approximation to the upwind and downwind derivatives in the i-direction.

For the Lax-Friedrich scheme, we have implemented this Hamiltonian for each level-set

(6.42)Ĥ = H

[
1

2

(
φ−x + φ+

x

)
,
1

2

(
φ−y + φ+

y

)
,
1

2

(
φ−z + φ+

z

)]
− α̂x

[
1

2

(
φ+
x − φ−x

)]
− α̂y

[
1

2

(
φ+
y − φ−y

)]
− α̂z

[
1

2

(
φ+
z − φ−z

)]
,

where α̂i are dissipation coefficients. For the advection equation, these have the simple

form

α̂i = |vi|. (6.43)

To determine the upwind and downwind derivatives, we use the WENO scheme for

derivatives given by Shu [162].
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6.8 Summary

In this chapter, we have presented the algorithm one should follow, when applying a

ghost fluid method for neutron star interfaces. This method is based on the work of

Sambasivan and Udaykumar [152] and Losasso et al. [106]. This is a general procedure

that can use any approximate solver for the multi-material Riemann problem.

We have presented three different approximate solvers to the interface Riemann problem.

One of those is the new mRGFM that has many advantages over the other two. It is

a general method that can approximate the solution to the multi-material Riemann

problem for any two systems of hyperbolic conservation laws that match its criteria. It

is also consistent and robust in the presence of strong shocks.

We are now in the position to validate our numerical methods against standard tests.

This will be done in the next chapter.





Chapter 7

Multi-model Results

We have now reached the point in this thesis where we can combine all of the different

numerical methods. This will allow us to demonstrate our extension to the framework

of Millmore and Hawke [114]. As before, we will use standard tests from the literature

to validate our numerical methods. However, this chapter will be more focused on

two-dimensional results.

Firstly in Subsection 7.1.1, we will consider a one-dimensional shock tube test that

contains a helium slab and two interfaces. Secondly in Subsection 7.1.2, we present a

test that demonstrates the failure of the original Ghost Fluid Method of Fedkiw et al. [55]

to correctly capture the location of the shock wave. This test was developed by Hu and

Khoo [84]. Thirdly in Subsection 7.1.3, we validate the mRGFM’s ability to combine two

different systems by simulating a star’s surface. Using the toy star described by Price

[141], we show that our method produces a stable surface by considering the maximum

absolute velocity at each time step. These results also show that the crossing time of a

wave in our toy star is close to the predicted result.

Finally, we will give a series of results depicting a “helium” bubble in a two-

dimensional shock tube. We present results for Newtonian hydrodynamics, ideal

magnetohydrodynamics and special-relativistic, ideal magnetohydrodynamics. The first

special-relativistic bubble tests were performed by Millmore [113].

The Newtonian test in Subsection 7.2.1, once again, demonstrates the benefit of the

mRGFM over the oGFM. We also examine the effectiveness of the captured boundary

approach’s ability to deal with a large topology change in Subsection 7.2.2.

153
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For the magnetohydrodynamical tests in Subsection 7.2.3, we present the first

demonstration of the Ghost Fluid approach with a magnetic field in two dimensions.

Using different magnetic field strengths, we simulate a bubble test with a Mach 1.22

shock wave. The results show that the vorticity is no longer tied to the surface of the

bubble as in the hydrodynamical case. The vorticity can be propagated away; this will

have interesting effects on the dynamics in a neutron star. Last of all in Subsection

7.2.4, we give results for special-relativistic, ideal magnetohydrodynamics. A detailed

analysis of the dynamics will be presented. Again, this is the first time such a result has

been discussed.

7.1 One-dimensional Tests

Starting in one dimension, we will consider the slab test of Wang et al. [182], the strong

shock test of Hu and Khoo [84] and the toy star of Price [141]

7.1.1 Helium slab test

The slab test is a one-dimensional shock tube with a helium slab located at

−0.1 ≤ x ≤ 0.1 with air either side. The test domain is −0.5 ≤ x ≤ 0.5. At the

left boundary, a shock wave is located at x = −0.25. The helium slab is an ideal fluid

with γ = 5/3. The air is also an ideal fluid with γ = 1.4. The initial data is given in

Table 7.1. This test was developed by Wang et al. [182].

Test name: Wang helium slab

Domain ρ vx vy vz p γ

x ∈ [−0.5,−0.25] 1.3765 0.3948 0 0 1.57 1.4

x ∈ [−0.25, 0.1] 1 0 0 0 1 1.4

x ∈ [−0.1, 0.1] 0.138 0 0 0 1 5/3

x ∈ [0.1, 0.5] 1 0 0 0 1 1.4

Total time: 0.3 level set: φ(x) = |x|−0.1

Table 7.1 – The initial conditions for the Wang helium slab test [182].
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Figure 7.1 – The results for the Wang test plotted against a high-resolution solution for
800 points. The density, velocity and pressure are shown. All three Ghost
Fluid Methods accurately capture the location of the interfaces and the other
waves.

The results for this test are shown in the Figure 7.1. The density, normal velocity and

pressure are plotted for 800 points. The approximate solutions are plotted against a

high-resolution solution with only 50 points used for clarity. It is observed that all three

approximate solutions obtained from the GFMs agree with the high-resolution solution.

These results show that our numerical methods can accurately approximate the solution

to a multi-model shock tube problem in one dimension for weak shocks.
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7.1.2 Strong shock test

Part of the motivation for deriving the Roe approximation in Chapter 6 was that the

oGFM did not capture the location of a strong shock wave after it had interacted with

an interface. This was shown to be true by Liu et al. [102]. We will now compare the

performance of the oGFM, the mGFM and the mRGFM in the presence of a strong

shock. The test we will use is test 2A of Hu and Khoo [84]. The initial data is given

in Table 7.2 and is defined on the domain −0.5 ≤ x ≤ 1.0, with the Riemann problem

located at x = 0. The material on the left is helium with γ = 5/3 and the material on

the right is air with γ = 1.4.

Test name: Strong shock test

Domain ρ vx vy vz p γ

x ∈ [0.0, 0.5] 3.984 27.355 0 0 1000 5/3

x ∈ [0.5, 1.0] 0.01 0 0 0 1.0 1.4

Total time: 0.01 level set: φ(x) = x

Table 7.2 – The initial data for Hu and Khoo test 2A [84].

The results of this test are shown for 300 points in Figure 7.2 and 800 points in Figure

7.3. Figure 7.2 demonstrates that all three methods approximate the exact solution

well. However, only the mRGFM correctly captures the location of all three waves. This

is especially evident in the capturing of the shock wave in the velocity plot. Figure 7.3

focuses on the region of the contact and the shock wave. It clearly shows that the oGFM

and mGFM do not capture the location of the shock illustrated by the yellow squares

and blue triangles in the region 0.7 ≤ x ≤ 0.75. They also struggle to correctly capture

the contact wave. The mRGFM, on the other hand, shows improvement and manages

to correctly capture the shock and contact locations.

7.1.3 Toy star vacuum surface

In Section 6.5, we discussed the coupling of Newtonian hydrodynamics to a pure vacuum

state via the mRGFM. Here, we present our results for the toy star test based on the

work of Price [141]. The initial conditions for this test are given in Table 7.3. The test

is defined on a domain 0 ≤ x ≤ 1.2 with the surface located at x = 1. The boundary at

x = 0 has reflection boundary conditions. The fluid is an ideal fluid with γ = 2.
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Figure 7.2 – Density, velocity and pressure plots for the 2A test of Hu and Khoo [84].
It contains the approximate solution for the oGFM, mGFM and mRGFM
and the exact solution. The results show that the oGFM and mGFM fail to
correctly capture the location of the shock and contact.
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Figure 7.3 – The results for density, velocity and pressure are shown for the 2A test of Hu
and Khoo [84]. This plot focuses in on the region containing the interface
and the shock wave. Only the mRGFM has correctly captured the location
of both waves. The mGFM shows some improvement over the oGFM.
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Test name: Toy star

ρ vx vy vz p γ

interior
(
1− x2

)
0 0 0

(
1− x2

)
4

2

Total time: 100 level set: φ(x) = x− 1

Table 7.3 – The initial data for the toy star test. The surface of the star is located at x = 1
and the domain is 0 ≤ x ≤ 1.2. The fluid is an ideal fluid with γ = 2.

When using the mRGFM, we employ the compatibility condition that the pressure must

vanish. The coefficient and eigenvector in equation (6.38) can then be used to calculate

K and vx. However, the pressure is now zero. Therefore, we use a pressure floor of

1.0× 10−30. This allows us to recover a value for the density.

The initial data given above provides a static toy star. However, due to numerical errors

from the evolution of the star and applying the captured boundary approach, the star

begins to oscillate. The results in Figure 7.4 show that the maximum absolute value

of the normal velocity decreases over time. It also demonstrates that this approach is

stable and can be evolved for a long period of time. The results were sampled at intervals

of T = 0.1.

The large spikes in the normal velocity in Figure 7.4 occur when the oscillation reaches

the surface. The speed of sound is a =
√

(1− x2)/8 . The characteristic crossing time

can be calculated by the following equation

τ =

∫ 1

0
a−1 dx. (7.1)

The characteristic crossing time for an oscillation is τ = 4.44. The spikes in the maximum

velocity occur with a period of T ≈ 4.8. The error is approximately 9%, which could be

due to the rate of sampling and the discretisation of the domain.
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Figure 7.4 – The maximum absolute value of the normal velocity decreases over time. The
results were sampled at intervals of T = 0.1.

7.2 Two-dimensional Bubble Tests

In two dimensions, we have focused on bubble tests for several reasons. Primarily,

the topology of the bubble changes significantly with pinching and break up occurring.

Therefore, these tests form a strong test for the robustness of our numerical methods.

These tests have also been performed experimentally and our results can be compared

both to published numerical simulations and experimental data. The first numerical tests

where performed by Hu and Khoo [84]. Their test was based on the experiment of Bourne

and Field [31]. Other experimental results have been obtained by Haas and Sturtevant

[73]. Finally, there are lots of simulations being performed in this area forming a useful

source of information. It should be noted that the bubble test is symmetric about the

y = 0 line. Any deviation away from symmetry is due to numerical error.
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Figure 7.5 – This figure is taken from the paper by Haas and Sturtevant [73]. It shows a
helium bubble after a 1.22 Mach shock has passed through. The bubble is
surrounded by air at normal atmospheric pressure.

7.2.1 Newtonian hydrodynamics Mach 1.22 bubble test

For the first bubble test, we will use the initial data of Hu and Khoo [84]. We have

chosen this test as experimental results exist. The experiment was performed by Haas

and Sturtevant [73] and their results are shown in Figure 7.5. The figure shows a helium

bubble after a 1.22 Mach shock has passed through. The bubble is surrounded by air at

normal atmospheric pressure. The initial data that we have used is given in Table 7.4.

The test is defined on a domain −75 ≤ x ≤ 325,−44.5 ≤ y ≤ 44.5. The bubble’s centre

is located at (175, 0) and it has a radius of 25. A Mach 1.22 shock wave is located at

x = 210. The Mach number is the ratio of the velocity to the speed of sound,

M =
vs
a
. (7.2)

The test is evolved until T = 300. The boundary conditions at the top and bottom

of the domain behave like solid walls. The left and right boundaries have outflowing

boundary conditions.
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Figure 7.6 – The initial conditions for the Newtonian hydrodynamics bubble test of Hu
and Khoo [84] with a Mach 1.22 shock wave. The shock wave is located to
the right-hand side of the bubble. The top plot shows the pressure and the
Schlieren split along the line of symmetry. The top portion is the density
and the bottom portion is the Schlieren. The vorticity is plotted over the
Schlieren. The bottom plot shows the pressure and the normal velocity split
along the line of symmetry. The top portion shows the pressure and the
bottom shows the velocity. The plots show the entire domain.

Test name: Newtonian hydrodynamics bubble Mach 1.22 shock wave

Region ρ vx vy vz p γ

pre-shocked air 1 0 0 0 1 1.4

post-shocked air 1.3764 -0.394 0 0 1.5698 1.4

helium bubble 0.138 0 0 0 1 5/3

Total time: 300 level set:φ(x, y) = 25−
(

(x− 175)2 + y2
)1/2

Table 7.4 – The initial data for the Newtonian hydrodynamical bubble test. The bubble’s
centre is located at (175, 0) and it has a radius of 25. A Mach 1.22 shock wave
is located at x = 210 and the domain is −100 ≤ x ≤ 325,−44.5 ≤ y ≤ 44.5.

The initial state can be seen in Figure 7.6. The resolution for all these plots is 800×178.

The top portion of the figure is split along the line of symmetry. The split separates the

density and the Schlieren plots. The vorticity is plotted over the top of the Schlieren

plot. However, there is zero vorticity in the initial data. The zero contour of the level

set is shown as a black line.
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The density is plotted with an inverted, spectral colour map with high density given by

red colours. A Schlieren plot is a measure of the density gradients and is plotted with a

X-ray colour map. The Schlieren are defined as

S = |∇2ρ|, (7.3)

where ∇2 is the Laplace operator and the numerical factor is added so that the logarithm

of the Schlieren can be taken. The vorticity is calculated from the curl of the velocity,

ωi = εijk∇jvk, (7.4)

and we plot the z-component with a difference colour map. The bottom portion of

the figure shows the pressure and the velocity magnitude, again split along the line of

symmetry. The pressure is plotted with an inverted, spectral colour map and is the top

portion of the bottom plot. The velocity is plotted with a hot-desaturtrated colour map

and is the bottom portion of the bottom plot.

Figure 7.7 shows the density, S, vorticity, pressure and velocity magnitude at T = 10.

The shock wave has propagated to the left and has interacted with the bubble’s surface.

It has been transmitted through the surface and is travelling faster within the lower

density helium bubble. It has also been reflected by the bubble’s surface and a right

propagating rarefaction wave has formed, seen as the lighter pressure region near the

interface. Additionally, vorticity has formed at the surface of the bubble behind the

shock wave.

In Figure 7.8 at T = 28, the shock wave has exited the bubble and continued to propagate

to the left. It has also reflected off the front of the bubble and a wave has started

propagating to the right. This wave is most clearly seen in the velocity magnitude. The

part of the shock wave that remained outside and propagated in air has continued to

about half way across the bubble. The high pressure region between the original shock

and the first reflected wave has reached the solid boundaries. The vorticity has spread

all along the surface, but it has reduced in magnitude.

The results in Figure 7.9 at T = 70 show that the waves reflected off the solid boundaries

have interacted with the bubble. This has produced vorticity at the surface, which has

resulted in the surface of the bubble curling up. A region of high-velocity magnitude

has developed behind the bubble, while the top and bottom of the bubble are almost

stationary.

In Figure 7.10 at T = 100, the waves that reflected off the solid boundaries have crossed

each other and are now propagating to the opposite boundary. The surface of the bubble

has continued to curl up; the vorticity has increased from the previous plot, Figure 7.9.

Local regions of high vorticity magnitude are forming on the inside surface of the “lobe”

structures. This is distorting the surface.
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Figure 7.7 – mRGFM at T = 10. The shock wave has propagated to the left and has
interacted with the bubble’s surface. It has been transmitted through the
surface and is travelling faster within the lower density helium bubble. It has
also been reflected by the bubble’s surface and a right propagating rarefaction
wave has formed, seen as the lighter pressure region near the interface.
Additionally, vorticity has formed at the surface of the bubble behind the
shock wave.

Figure 7.8 – mRGFM at T = 28. The shock wave has exited the bubble and continued to
propagate to the left. It has also reflected off the front of the bubble and a
wave has started propagating to the right. This wave is most clearly seen in
the velocity magnitude. The part of the shock wave that remained outside
and propagated in air has continued to about half way across the bubble.
The high pressure region between the original shock and the first reflected
wave has reached the solid boundaries. The vorticity has spread all along the
surface, but it has reduced in magnitude.
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Figure 7.9 – mRGFM at T = 70. The waves have reflected off the solid boundaries and
have interacted with the bubble. This has produced vorticity at the surface,
which has resulted in the surface of the bubble curling up. A region of high
velocity magnitude has developed behind the bubble while the top and bottom
of the bubble are almost stationary.

Figure 7.10 – mRGFM at T = 100. The waves that reflected off the solid boundaries have
crossed each other and are now propagating to the opposite boundary. The
surface of the bubble has continued to curl up; the vorticity has increased
from the previous plot. Local regions of high vorticity magnitude are forming
on the inside surface of the “lobe” structures. This is distorting the surface.
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Figure 7.11 – mRGFM at T = 180. The bubble has broken up into three distinct pieces.
Two regions of high vorticity magnitude have formed a finger-like regions.
All the strong waves have propagated away from the bubble or cancelled
each other out.

Figure 7.12 – This figure compares the mRGFM results with those obtained using the
oGFM and mGFM by comparing their respective interface locations at each
time. The mRGFM level set contour is black, the mGFM’s is blue and the
oGFM’s is red. The mRGFM and mGFM produced such similar results
that any difference cannot be distinguished by eye. However, the oGFM’s
results vary quite significantly from the results of the other two. The left
most image shows that the oGFM interface has not split, while the other
interfaces have.

In Figure 7.11 at T = 180, the bubble has broken up into three distinct pieces. Two

regions of high vorticity magnitude have formed finger-like regions. All the strong waves

have propagated away from the bubble or cancelled each other out.

The results presented above were all obtained using the mRGFM. Figure 7.12 compares

these results with those obtained using the oGFM and mGFM by comparing their

respective interface locations at each time step. The mRGFM level set contour is black,

the mGFM’s is blue and the oGFM’s is red. The mRGFM and mGFM produced such

similar results that any difference cannot be distinguished by eye. However, the oGFM’s

results vary quite significantly from the results of the other two. The left most image

shows that the oGFM interface has not split, while the other interfaces have.
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The results presented in this subsection agree with those presented by Hu and Khoo

[84]. However, they are not exactly the same due to use of different numerical methods.

We have used the higher-order WENO reconstruction. Our results also agree with those

produced by Haas and Sturtevant [73].

7.2.2 Newtonian hydrodynamics Mach 40 bubble test

To demonstrate the capability of our numerical methods to deal with strong shocks, we

will consider Mach 40 shock wave impacting on a helium bubble. This test has been

chosen because this strong shock disrupts the interface significantly. Therefore, our

methods must be robust enough to enable stable evolution. The initial data that we

have used for the mRGFM is given in Table 7.5.

The test is defined on a domain 0 ≤ x ≤ 300,−45 ≤ y ≤ 45. The bubble’s centre

is located at (250, 0) and it has a radius of 25. A Mach 40 shock wave is located at

x = 280. The Mach number is the ratio of the shock velocity to the speed of sound.

The boundary conditions at the top and bottom of the domain behave like solid walls.

The left and right boundaries have outflow boundary conditions and the test is run for

T = 5. The resolution is 1200 x 360.

Test name: Newtonian hydrodynamics bubble Mach 40 shock wave

Region ρ vx vy vz p γ

pre-shocked air 1 0 0 0 1 1.4

post-shocked air 5.98130841 -39.4158816 0 0 1866.5 1.4

helium bubble 0.138 0 0 0 1 5/3

Total time: 5 level set: φ(x, y) = 25−
(

(x− 250)2 + y2
)1/2

Table 7.5 – The initial data for the Newtonian hydro bubble test. The bubble’s centre is
located at (250, 0) and it has a radius of 25 . A Mach 40 shock wave is located
at x = 280 and the domain is −0 ≤ x ≤ 300,−45 ≤ y ≤ 45

The initial state is similar to Figure 7.6. However, the maximum values have changed.

Figure 7.13 shows that the shock wave has already exited the bubble after T = 1. The

strength of the shock wave has resulted in a large build up of density ahead of the bubble.

The bubble has also been severely flattened. Features seen in the lower resolution run,

given in Figure E.1, are more distinct, such as, the indent in the tails.
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Figure 7.13 – The shock wave has already exited the bubble at T = 1. The strength of the
shock wave has resulted in a large build up of density ahead of the bubble.

Figure 7.14 – mRGFM at t = 2. The bubble’s surface has become distorted. The
results are symmetric, which demonstrates that our numerical methods are
symmetric.

In Figure 7.14 the bubble’s surface has become distorted. It should be noted that the

results are symmetric about the y = 0 line. This demonstrates that our numerical

methods are symmetric. In comparison to Figure E.2, the distortion of the bubble’s

interface is much more intricate but still similar.

Figure 7.15 shows that the bubble’s surface has continued to curl up and become

distorted. Finger-like regions have developed and regions have separated off. As

explained in Subsection 6.2.1, our numerical method will begin to rely on a fallback

mechanism, due to a lack of resolution. These fallbacks ensure that two different models

are always used in the multi-material Riemann problem. Numerical errors introduced

by these fallback mechanisms could be prevented by using adaptive mesh refinement. In

comparison to Figure E.3, the distortion of the bubble’s interface is much larger. The

lower resolution figure shows no separation.

In the final plot, shown in Figure 7.16, the bubble has continued to break up. The

bubble is still symmetric which has been lost in Figure E.4.
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Figure 7.15 – mRGFM at T = 3. The bubble’s surface has continued to curl up and
become distorted. Finger-like regions have developed. As explained in
Subsection 6.2.1, our numerical method will begin to rely on fallback
mechanisms, due to a lack of resolution.

Figure 7.16 – mRGFM at T = 5. The bubble has continued to break up. However, the
results are still symmetric

7.2.3 Vorticity propagation

We now turn our attention to bubble tests with charged fluids and different magnetic

field strengths in the presence of a 1.22 Mach shock. The magnetic field is aligned along

the x-axis going left to right. The initial conditions for these tests are given in Table

7.6. The domain is defined as 0 ≤ x ≤ 220,−50 ≤ y ≤ 50 with the shock located at

x = 210. The resolution in these tests are 220× 100. Final time is T = 180.
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Test name: Ideal magnetohydrodynamics bubble test

Region ρ vx vy vz p By Bz γ

pre-shocked air 1 0 0 0 1 0 0 1.4

post-shocked air 1.3764 -0.394 0 0 1.5698 0 0 1.4

helium bubble 0.138 0 0 0 1 0 0 5/3

Total time: 180 level set: φ(x, y) = 25−
(

(x− 175)2 + y2
)1/2

Bx = −
√

2/βm

Table 7.6 – The initial data for the Newtonian magnetohydrodynamics bubble test with
βm = [1000, 100, 10, 1, 0.1]. The bubble’s centre is located at (150, 0) and it has
a radius of 25. A Mach 1.22 shock wave is located at x = 210 and the domain
is 0 ≤ x ≤ 220,−50 ≤ y ≤ 50.

We have performed five different tests with a varying plasma beta parameter, βm, defined

in equation (2.40). The values of the parameter are βm = [1000, 100, 10, 1, 0.1]. We have

taken samples every T = 15 and plotted them in Figure 7.17. The left column is

hydrodynamically dominated with βm = 1000. The columns then vary by powers of ten

down to βm = 0.1. The samples show the density in the top and the vorticity below. The

key result from these tests is that as the plasma beta parameter approaches unity, the

vorticity is propagated away with a greater velocity from the bubble. The vorticity is

propagated via the Alfvén waves. This means that during the merger phase of a neutron

star binary system, vorticity that develops at interfaces will be propagated away. This

provides a mechanism to redistribute angular momentum throughout the star; a process

that is absent with a single, perfect, non-charged fluid. This will have an effect on the

dynamics of the system and therefore the gravitational wave template.

7.2.4 Special-relativistic magnetohydrodynamics

This test incorporates the mRGFM with the captured boundary approach, special

relativity and a magnetic field. The initial conditions for the test are given in Table

7.7. This test has a plasma beta parameter of βm = 1000. This means that the test is

dominated by hydrodynamical interactions. The bubble’s centre is located at (150, 0)

with a radius of 25. The Mach 1.5 shock wave is located at x = 178 and the domain is

0 ≤ x ≤ 180,−50 ≤ y ≤ 50. The final time is T = 300. The Mach number in relativity

is [89],

M =

vs√
1− v2

s
a√

1− a2

. (7.5)
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Figure 7.17 – The left column is hydrodynamically dominated with βm = 1000. The
columns then vary by powers of ten down to βm = 0.1. The rows indicate
different times starting at T = 15 and increasing in jumps of T = 15. The
samples show the density in the top and the vorticity below. Each test uses
a 1.22 Mach shock and a resolution of 220× 100. The key result from these
tests is that as the plasma beta parameter approaches unity, the vorticity is
propagated away with a greater velocity from the bubble. The vorticity is
propagated via the Alfvén waves.
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Test name: Special-relativistic magnetohydrodynamics bubble βm = 1000

Region ρ vx vy vz p By Bz γ

pre-shocked air 1 0 0 0 1 0 0 1.4

post-shocked air 1.9697 -0.3759 0 0 2.6383 0 0 1.4

helium bubble 0.138 0 0 0 1 0 0 5/3

Total time: 300, level set: φ(x, y) = 25−
(

(x− 150)2 + y2
)1/2

, Bx = −0.0044

Table 7.7 – The initial data for the special-relativistic magnetohydrodynamics bubble test
with βm = 1000. The bubble’s centre is located at (150, 0) and it has a radius
of 25. A Mach 1.5 shock wave is located at x = 178 and the domain is
0 ≤ x ≤ 180,−50 ≤ y ≤ 50.

The following Figures 7.18, 7.19, 7.20 and 7.21 contain ten snapshots taken at intervals

of T = 30. The first five plots are given in the left column and the latter five in the right

column.

Figure 7.18 shows the density plotted in the top half of each section with a spectral

colour map. The density scale is located at the left of the picture and runs between

0.138 and 2.5. Vorticity and Schlieren are plotted in the bottom half of each section.

Figure 7.19 shows the pressure plotted in the top half of each section with a spectral

colour map. The pressure scale is located to the left of the plots and runs between 1

and 4. The velocity magnitude is plotted in the bottom half of each snapshot with a

hot-desaturated colour map. The velocity scale is located to the left of the pots and

runs between 0 and 1.

Figure 7.20 shows the x-component of the velocity plotted in the top half of each section

with a hot-desaturated colour map. The vx-scale is located to the left of the plots and

runs between −1 and 0. The bottom of each plot shows the y-component of the velocity

using a difference colour map. The scale is to the left of the plots and runs between

−0.2 and 0.2.

Figure 7.21 shows the x-component of the magnetic field plotted in the top half of each

section with a hot-desaturated colour map. The Bx scale is located to the left of the

plots and runs between −1 and 1. The bottom of each plot shows the y-component of

the magnetic field using a difference colour map. The scale is to the left of the plots and

runs between −0.4 and 0.4.

At time T = 30, the shock wave has hit the bubble and has propagated half way through.

Vorticity has been produced at the bubble’s surface due to the interaction with the shock.



Chapter 7 Multi-model Results 173

Figure 7.18 – This figure contains ten snapshots taken at intervals of T = 30 for the
special-relativistic, ideal, magnetohydrodynamical bubble test with a 1.5
Mach shock wave. The first five are in the left column and the second five
in the right column. The density is plotted in the top half of each section
with a spectral colour map. The density scale is located to the left of the
plots and runs between 0.138 and 2.5. Vorticity and Schlieren are plotted
in the bottom half of each section.
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Figure 7.19 – This figure contains ten snapshots taken at intervals of T = 30 for the
special-relativistic, ideal, magnetohydrodynamical bubble test. The first five
are in the left column and the second five in the right column. The pressure
is plotted in the top half of each section with a spectral colour map. The
pressure scale is located to the left of the plots and runs between 1 and 4.
The velocity magnitude is plotted in the bottom half of each snapshot with
a hot-desaturated colour map. The velocity scale is located to the left of the
plots and runs between 0 and 1.
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Figure 7.20 – This figure contains ten snapshots taken at intervals of T = 30 for the
special-relativistic, ideal, magnetohydrodynamical bubble test. The first
five are in the left column and the second five in the right column. This
figure shows the x-component of the velocity plotted in the top half of each
section with a hot-desaturated colour map. The vx-scale is located to the
left of the plots and runs between −1 and 0. The bottom of each plot shows
the y-component of the velocity using a difference colour map. The scale is
to the left of the plots and runs between −0.2 and 0.2.
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Figure 7.21 – This figure contains ten snapshots taking at intervals of T = 30 for the
special-relativistic, ideal, magnetohydrodynamical bubble test. The first
five are in the left column and the second five in the right column. This
figure shows the x-component of the magnetic field plotted in the top half
of each section with a hot-desaturated colour map. The Bx-scale is located
to the left of the plots and runs between −1 and 1. The bottom of each plot
shows the y-component of the magnetic field using a difference colour map.
The scale is to the left of the plots and runs between −0.4 and 0.4.
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The compression of the back-side of the bubble and the shock interaction has created a

region of tangential velocity behind the shock. Inside of the bubble, the fluid is flowing

away from the centre. Behind the bubble, the tangential velocity is flowing towards the

y = 0 line. The motion of the bubble’s surface goes across magnetic field lines. This

causes magnetic stresses to build, which produce the magnetic field changes.

In the second snapshot at T = 60, the shock wave has begun to exit the bubble. Regions

of large vorticity are located either side of the surface. A region of low velocity magnitude

has developed at the top and bottom of the bubble. This is where the bubble surface

aligns with the magnetic field. The fluid flow can be seen in the vy plot. The interface is

dragging the fluid around and thus the magnetic field, which leads to an area of positive

Bx forming at the top and bottom. This picture continues in the snapshots T = 90 and

T = 120.

Between T = 120 and T = 180 the back of the bubble overtakes the lobes that have

developed; the kidney shape forms. This occurs because the surface at the back of the

bubble is perpendicular to the magnetic field. This means that the magnetic field does

not oppose the motion of the bubble. A new region of negative Bx develops as the fluid

flows from the lobes towards the back. Between these times, the reflected shock waves

from the boundaries cross the centre of the bubble. This produces a feature at the back

of the bubble as the density and pressure increase. These processes described in this

section continue to distort the bubble until the end of simulation.

Some key differences can be seen between the results presented by Millmore [113].

The vorticity is not tied to the surface. However, the effect is reduced in relativity

compared to the results presented in Figure 7.17. This is related to the relativistic length

compression seen between Newtonian and special-relativity by Millmore [113]. The lobes

are more extended in the magnetohydrodynamical case compared to the hydrodynamical

one due to the magnetic field resisting the motion at the top and bottom.

7.3 Summary

In this chapter, we have presented a selection of results that have demonstrated that

the mRGFM is a suitable method for implementing in a neutron star simulation. First,

we demonstrated that the mRGFM reproduces the results of Hu and Khoo [84] and it

matches the other approximate solvers in the weak shock regime. Second, a strong shock

test was performed, which demonstrated the failing of the oGFM of Fedkiw et al. [55]

compared to the numerically expensive mGFM and our analytic mRGFM. Thirdly, we

considered the mRGFM in two dimensions. Once again, it matched the results obtained

by using the mGFM.
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We have also demonstrated that the captured boundary approach based on the work

of Sambasivan and Udaykumar [152] combined with the mRGFM is capable of dealing

with large topology change. This is essential as the merger of a binary system is a highly

chaotic process.

We have shown that the mRGFM allows on to combine Newtonian hydrodynamics to a

pure vacuum state. This is the first time that such a result has been achieved. Using the

approach described in Section 6.5, we have produced results for the toy star developed

by Price [141]. The results in Figure 7.4 demonstrate that our method is stable.

Finally, we have extended the framework of Millmore and Hawke [114] to incorporate a

magnetic field. We present results in two dimension for the first time in both Newtonian

and special-relativistic, ideal, magnetohydrodynamics. These results show that the

vorticity can be propagated away from the surface. The rate that this happens at

is dependant on the strength of the magnetic field. This result has implications for

the calculation of gravitational wave templates for neutron star binary inspiral. This

mechanism facilitates the redistribution of angular momentum throughout the star. This

redistribution could change the length of time between the merger of the stars and

their collapse to a black hole because current simulations use the ideal perfect fluid

approximation for the entire star. In this approximation, there is no mechanism to

redistribute angular momentum.



Chapter 8

Discussion

The direct detection of gravitational waves from a binary neutron star system requires

accurate gravitational wave templates. To determine these gravitational wave templates,

one must perform numerical simulations of binary neutron star inspirals and mergers.

Current simulations do not include a neutron star’s internal, stratified structure and

the transitions between these layers. However, these transitions and layers will become

important during the merger phase. Building upon the work of Millmore and Hawke

[114], this thesis has continued to address this omission. In this thesis, we have focused

on the inclusion of the magnetic field in these transitions by developing a method

of combining different systems of equations that approximate different regions of a

star. This has led to the development of a framework for including a proper vacuum

surface of a neutron star. Our results indicate that this framework produces stable

evolutions. We have also demonstrated that the magnetic field facilitates the propagation

of vorticity away from interfaces. This provides a mechanism for redistributing angular

momentum throughout a star during merger. Such a process will qualitatively change

the gravitational wave template, by e.g. changing the time for black hole formation from

remnant collapse.

The majority of the original work in this thesis can be found in Chapter 6 and Chapter

7. Chapter 6 starts by describing the captured boundary approach. This approach

combines many different ideas present in the literature [55, 124, 152, 156]. We follow the

method given by Sambasivan and Udaykumar and describe our algorithm in detail [152].

The captured boundary approach sets up the multi-material Riemann problem that can

be used to determine the data either side of an interface [114]. It starts by determining

the location of the initial data for the multi-material Riemann problem. This is done by

following the algorithm outlined in Subsection 6.2.3.
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Once the initial data has been given, the multi-material Riemann problem can be solved.

This thesis introduces a new approach to solve the multi-material Riemann problem

called the multi-material Riemann Ghost Fluid Method (mRGFM). This approach has

several key advantages over current methods:

• It allows two different hyperbolic systems of equations to be combined across an

interface.

• It is capable of handling strong shock waves.

• It also imposes the physical compatibility conditions.

• It can be used in a relativistic framework.

Chapter 7 begins with a set of validation results that demonstrate that the validity of

the captured boundary approach and the mRGFM. The first test results show that this

framework converges to a high-resolution solution for the helium slab test of Wang et

al. [182]. This test contains two interfaces that contain a helium slab surrounded by

air and the results are presented in Figure 7.1. The second test highlights the ability

of the mRGFM to correctly capture the location of strong shocks while also revealing

the failure of other standard methods. This test was developed by Hu and Khoo [84] to

demonstrate the failure of the oGFM to correctly capture the location of strong shock

waves. The results are shown in Figures 7.2 and 7.3. The third test combines Newtonian

hydrodynamics and a pure vacuum state. This is the first time that such a result has

been achieved. Using the approach described in Section 6.5, we have produced results

for the toy star developed by Price [141]. The results in Figure 7.4 demonstrate that

our method is stable. The problem was evolved for a large number of time steps and the

maximum absolute value of the velocity normal to the surface decreased. Oscillations

develop in the star due to numerical error. The crossing time for an oscillation in our

model is close the expected value based on the initial conditions.

We then consider a set of two-dimensional, multi-material tests called “bubble” tests.

These are shock tubes that contain a helium bubble and are based on the test of Hu

and Khoo [84]. Experimental results have been obtained in the laboratory by Haas and

Sturtevant [73].

The first test compares three different approximate Riemann solvers: oGFM, mGFM

and mRGFM. The results for this test are shown in Figures 7.7, 7.8, 7.9, 7.10 and 7.11.

The results in Figure 7.12 show that the mRGFM method matches the mGFM, but

the oGFM produces different results. These results resemble those found by Haas and

Sturtevant [73] in their laboratory experiments. The mGFM is based on an all-shock

approximation and is more accurate than the oGFM method. However, the mGFM

requires one to perform a root find on the pressure, which is numerical expensive.
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The second test was designed to highlight the ability of the captured boundary approach

to deal with large topological changes. A Mach 40 shock wave is used to disrupt the

surface of the bubble. The test continues to evolve after the bubble has separated in

several smaller pieces. The results for this test are shown in Figures E.1, E.2, E.3 and

E.4.

The third test examines a bubble in the presence of a magnetic field aligned with the

x-axis using the mRGFM. This is the first time that such a result has been presented.

We run several different tests with a varying magnetic field strength. This magnetic field

strength is determined by the plasma beta parameter (2.40). The plasma beta parameter

βm takes the values [1000, 100, 10, 1, 0.1]. The results are plotted in Figure 7.17 and show

an interesting physical effect. In the hydrodynamical bubble tests, vorticity develops at

the surface of the bubble. This causes the surface to deform. However, in the presence

of a magnetic field, the vorticity can be propagated away from the surface. The rate

that this happens at is dependant on the strength of the magnetic field. A stronger

field leads to a quicker propagation velocity, because the vorticity is propagated with

the Alfvén velocity. This result has implications for the calculation of gravitational wave

templates for neutron star binary inspiral. The mechanism facilitates the redistribution

of angular momentum throughout the star. This redistribution could change the length

of time between the merger of the stars and their collapse to a black hole because

current simulations use the ideal perfect fluid approximation for the entire star. In this

approximation, there is no mechanism to redistribute angular momentum. We also find

that the divergence cleaning method is best suited to simulations with interfaces in the

presence of a magnetic field.

The fourth test presents the first bubble test performed in special-relativistic, ideal

magnetohydrodynamics. The results in Figures 7.18, 7.19, 7.20 and 7.21 show the same

compression as demonstrated by Millmore for special-relativistic hydrodynamics [113].

However, the vorticity has still detached from the surface of the bubble. The mRGFM

was used in this test. In the relativistic case, the divergence of the magnetic field, due

to the presence of the interface, requires careful consideration of the parameters used.

We have been unable to reproduce results for βm < 1 shown in Figure 7.17, due to the

strength of the magnetic field. However, in the context of neutron stars, this regime is

not very important due to the extreme densities.
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8.1 Conclusions

This thesis has demonstrated for the first time the multi-material Riemann Ghost

Fluid Method. The major advantage of the mRGFM, compared to other approximate

Riemann solvers, is that it can combine different systems of hyperbolic partial differential

equations where a set of appropriate compatibility conditions exists. These compatibility

conditions equate the physical continuity conditions at a contact wave. The mRGFM

explicitly imposes these conditions at the interface between two materials. It also is

capable of handling strong shock waves where other methods fail.

We have also demonstrated the application of the general Ghost Fluid Method to a two-

dimensional system with a magnetic field for the first time. This has been achieved in

both the Newtonian and special-relativistic regimes. We have observed that the vorticity,

normally associated with the surface in hydrodynamical simulations, is propagated away

from the surface along the magnetic field lines.

Finally, this thesis has proposed a proper treatment of the stellar surface that utilises

the mRGFM. By applying this approach to the toy star problem of Price [141], we have

demonstrated that our approach is stable and for the first time couples a hydrodynamical

interior to a vacuum exterior.

Incorporating the first two developments into the framework of Millmore and Hawke [114]

and utilising the captured boundary approach of Sambasivan and Udaykumar [152], one

will be able to include interfaces into a neutron star model with a magnetic field. This

is the obvious extension of this work. Using this model in a binary merger simulation

will produce new and interesting results. This is because the vorticity propagation

provides a mechanism for the redistribution of angular momentum within the system.

This redistribution will lead to a change in the time of collapse into a black hole. This

is the most notable extension of this work.

Another extension is to include a proper surface treatment into neutron star simulation

with a magnetic field. This requires the coupling of an ideal magnetohydrodynamical

interior to a force-free, electro-vacuum or pure vacuum exterior. The current approach

would first need to be extended to higher dimensions and special-relativity before

adding a magnetic field. The extension to three dimensions is simple and Millmore

has shown that the extension to general-relativity can be done [114]. As well as the

physical quantities jumping at the surface, the derivates of these quantities also change

discontinuously. Incorporating this into the solution via the derivative Riemann problem

may be necessary.

The overriding aim would be to combine these two extensions together to give an

accurate neutron star model. This model can then be used to calculate gravitational

wave templates with higher accuracy.
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Appendix A

Ohm’s Law from a Multi-Fluid

Approach

A.1 Newtonian Resistive Multi-Fluid

The following calculation is based on the relativistic one presented by Andersson [7].

The multi-fluid approach treats each individual particle species as a fluid.

Starting from the particle fluxes nµx , the individual species’ current can be defined as

jµx = qxn
µ
x , (A.1)

where jµ is the current and qx is the charge. The four-vector flux associated with the

species x is

nµx = nxu
µ
x , (A.2)

where uµx is the four-velocity and nx the number density of the species x. It should

be noted that x is a label and not an index. The total current is the source of the

electromagnetic field and the sum of the individual species’ currents,

jµ =
∑

x

jµx . (A.3)
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The chemical potential – the amount of energy required to add a particle to the system

– is modified by the addition of the electromagnetic field,

µ̄µx = µµx + qxA
µ, (A.4)

where Aµ is the four-vector potential. We wish to work in the low velocity limit, therefore

we can define the charge density as

σ =
1

c

∑
x

nxq
xWx ≈

1

c

∑
x

nxq
x, (A.5)

where Wx is the individual particle Lorentz factor and approximately equal to one in the

low velocity limit. We can calculate the spatial components of the total charge current

in the low velocity limit,

ji =
∑

x

jix =
1

c

∑
x

nxq
xWxv

i
x ≈

1

c

∑
x

nxq
xvix =

1

c
J i. (A.6)

Equations (A.1) to (A.6) contain all the ingredients required to see how the momentum

equation for charged fluids differs from the Euler equations. Taking the multi-fluid

momentum equation from Andersson and Comer [8], we balance the equation with the

Lorentz force in the multi-fluid approach,

ρx(∂t + vjx∇j)vx
i + ρx∇iµ̃x = fx

i . (A.7)

The Lorentz force in the multi-fluid picture is given by

fx
i = nxq

x(Ei + εijkv
j
xB

k). (A.8)

This is very similar to the single-fluid Lorentz force given previously (2.20).

A.1.1 Proton-electron plasma

This derivation will focus on the particular case, where the charged fluid is a proton-

electron fluid. The label (x) will be replaced with (e) for the electron and (p) for the

proton. In this specific case, the charge density σ (A.5) becomes

σ =
e

c
(np − ne). (A.9)

The total current can be defined in terms of the proton and electron fluids using the

current equation (A.6),

J i = e(npv
i
p − nev

i
e). (A.10)
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The work in this thesis concerns a single-fluid model, which must be recovered from the

multi-fluid approach. This can be done by defining two velocities, the transport velocity

vi and the velocity difference wi = vip−vie. The transport velocity gives the bulk motion

of the fluid and is defined by

ρvi = ρpv
p
i + ρev

e
i , (A.11)

where ρ = ρp + ρe is total density. These relations can be combined to replace the

individual fluid velocities,

vip = vi +
ρe

ρ
wi, (A.12)

vie = vi − ρp

ρ
wi. (A.13)

Two different momentum equations can be obtained by substituting the proton velocity

(A.12) and the electron velocity (A.13) into the momentum equation (A.7). By

adding the proton momentum equation to the electron momentum equation, an average

momentum equation can be calculated. A difference momentum equation can also be

derived by subtracting the electron momentum equation from the proton one. The

average equation is given by

ρ(∂t + vj∇j)vi + wi∇j
(
ρpρe

ρ
wj
)

+ ρpw
j∇jwi +

ρpρe

ρ
wj∇jwi +∇ip

= e(np − ne)(Ei + εijkv
jBk) + e

neρe

ρ

(
1 +

me

mp

)
εijkw

jBk. (A.14)

The gradient of the pressure ∇ip has been substituted in above and is given by

∇ip = ρp∇iµ̃p + ρe∇iµ̃e. (A.15)

The difference equation is given by

(∂t + vj∇j)wi + wj∇jvi +

(
ρe − ρp

ρ

)
wj∇jwi − wiwj∇j

(
ρp

ρ

)
+∇i(µ̃p − µ̃e)

=
e

mpme
(me +mp)(Ei + εijkv

jBk) +
e

ρ

1

mpme
(meρe −mpρp)εijkw

jBk. (A.16)

Rewriting the current J i in terms of the difference and average velocities gives

J i = e(np − ne)vi +
e

ρ
npne(mp +me)w

i. (A.17)

In an old, cold neutron star, the bulk fluid is expected to be charge neutral. This is a

sensible approximation to make, because any charged regions have had enough time to

attract particles of the opposite charge neutralising the charged region.
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This approximation can be mathematically expressed by setting np = ne. In this

approximation, the charge density (A.9) is zero. Therefore, from Gauss’s law (2.15)

the divergence of the electric field is also zero

∇iEi = 0. (A.18)

Taking the divergence of Ampere’s law (2.18) reveals that the divergence of the current

vanishes as well, because the divergence of the curl is identically zero,

∇iJ i = 0. (A.19)

Several other approximations will be made. The first is that the electron mass can

be ignored: when compared to the proton mass, the electron mass is much smaller;

mp � me. Secondly, it will be assumed that the velocity difference, wi, is small. This

means that quadratic and higher-order terms in the velocity difference can be ignored.

These approximations greatly simplify the average and difference momentum equations,

ρ(∂t + vj∇j)vi +∇ip = εijkJ
jBk, (A.20)

Ei + εijkv
jBk = −me

e

[
(∂t + vj∇j)wi + wj∇jvi +∇i(µ̃p − µ̃e)−

1

ρe
εijkJ

jBk

]
. (A.21)

The current equation can also been simplified to

Ji =
eneρp

ρ
wi. (A.22)

So far, the multi-fluid approach has not included any form of friction between different

particle species. A phenomenological force can be used to represent the interaction

f e
i = η(vp

i − ve
i ) = −fp

i , (A.23)

where η is the coefficient of resistivity. The addition of this resistive force does not

change the average equation, but adds a new term to the difference equation. The

difference equation now takes the form

Ei + εijkv
jBk − η

(
ρ

neeρp

)2

Ji = −me

e
[. . .], (A.24)

Ignoring the right-hand side, one recovers the generalised Ohm’s law (2.21).
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Exact Solvers

The following sections contain information required to construct the exact solution to

the Riemann problem for Newtonian hydrodynamics, special-relativistic hydrodynamics

and ideal magnetohydrodynamics.

B.1 Newtonian Hydrodynamics Wave Solutions

To construct the exact solution to the one-dimensional Riemann problem in Newtonian

hydrodynamics, one must be able to calculate the states behind the non-linear waves

and combine them at the contact wave. The resulting system requires a root find on the

pressure. This is given in equation (3.53). This section will first consider a shock wave

and then a rarefaction wave. These relations come from the book by Toro [173].

B.1.1 Solution across a shock wave

In the case where the state in front of the wave, q{a}, is known, the state behind the

wave, q{b}, can be calculated from the Rankine-Hugoniot conditions (3.23). This is

most easily done in the frame of the shock. The following calculation assumes that the

pressure, p{b}, is known a priori. From the state q{a}, one can calculate the primitive

variables u{a} and the pressure p{a}. For the specific case of the Euler equations, this is

a simple analytic operation. The next step is to perform a Galilean transformation into

the shock frame. This gives a set of transformed velocities

v̂{a,b} = v{a,b} − vs. (B.1)
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In the shock speed frame, the Rankine-Hugoniot conditions are

ρ{a}v̂{a} = ρ{b}v̂{b}, (B.2a)

ρ{a}v̂
2
{a} + p{a} = ρ{b}v̂

2
{b} + p{b}, (B.2b)

v̂{a}
(
Ê{a} + p{a}

)
= v̂{b}

(
Ê{b} + p{b}

)
. (B.2c)

We then define the mass flux Q as

Q ≡ ∓ρ{a}v̂{a} = ∓ρ{b}v̂{b}, (B.3)

where the sign changes for the wave direction. Here, the minus sign indicates a right

going wave and the positive sign a left going wave. Rearranging the momentum flux

(B.2b) in terms of the mass flux (B.3) gives

Q = ±
p{b} − p{a}
v̂{b} − v̂{a}

, (B.4)

This can be rewritten in terms of the state velocities using the transformed velocity

relation (B.1) to give

Q = ±
p{b} − p{a}
v{b} − v{a}

. (B.5)

Rearranging in terms of the unknown v{b} gives

v{b} = v{a} ±
p{b} − p{a}

Q
. (B.6)

Using the definition of the mass flux (B.3), the momentum flux (B.5) can be rewritten

in terms of the unknown density ρ{b} to give

Q2 = ±
p{b} − p{a}
1

ρ{a}
− 1

ρ{b}

. (B.7)
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The energy flux (B.2c) can be rewritten in terms of the unknown density by using the

EOS to give

ρ{b} = ρ{a}


(
γx − 1

γx + 1

)
+

(
p{b}
p{a}

)
(
γx − 1

γx + 1

)(
p{b}
p{a}

)
+ 1

 , (B.8)

where the label x can be used to construct an exact solver for the multi-model problem by

using the EOS associated with the left or the right state of the contact wave. Substituting

the energy flux (B.8) into the momentum flux (B.7) removes the explicit dependence on

the post-shock density by giving a relation for the mass flux

Q =

(
p{b} +B{a}

A{a}

)1/2

, (B.9)

where

A{a} =
2

(γx + 1)ρ{a}
, (B.10)

and

B{a} =
γx − 1

γx + 1
p{a}. (B.11)

Finally, the unknown velocity v{b} (B.6) can be expressed entirely in terms of known

quantities,

v{b} = v{a} ±
(
p{b} − p{a}

) [ A{a}
p{b} +B{a}

]1/2

. (B.12)

Hence, all other unknown quantities for the state q{b} can be calculated.

B.1.2 Rarefaction wave

Next, consider the rarefaction wave in the one-dimensional Euler equations. Again,

consider two states q{a} and q{b}, separated by a rarefaction wave, where the state q{a}
and the pressure p{b} are known. The rarefaction wave is bounded by the characteristics

ξ{a} = v{a} ± ax{a}, ξ{b} = v{b} ± ax{b}. (B.13)

An example of a rarefaction wave is given in the Figure 3.3. The figure shows

a rarefaction wave bounded by the blue characteristics. Between the waves the

characteristics diverge to fill the gap created by the diverging waves.
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A rarefaction wave for the Euler equations is adiabatic, which means that the entropy

does not change across it. As well as the entropy, other quantities known as Riemann

invariants are constant across a rarefaction wave. For the Euler equations the second

Riemann invariant is

r2 = vn ∓
2ax

γx − 1
, (B.14)

where as before vn is the normal velocity, ax is the speed of sound and γx is the ratio

of specific heat capacities for the EOS x. Equating the Riemann invariant (B.14) either

side of the wave results in the relation

v{b} = v{a} ±
2

γx − 1
(ax{b} − ax{a}). (B.15)

We can use the fact that a rarefaction wave is adiabatic to rewrite the unknown speed

of sound ax
{b} in terms of known quantities. For an ideal fluid with constant entropy,

the following relation holds

p ∝ ργx . (B.16)

The speed of sound obeys a similar relation,

ax ∝ ρ(γx−1)/2. (B.17)

Hence, a relation between the pressures and the speed of sound is given by

p{b} = p{a}

(
ax{b}
ax{a}

)2γx/(γx−1)

. (B.18)

This can be used in the velocity relation (B.15) to determine the unknown velocity v{b}
from known quantities

v{b} = v{a} ±
2ax{a}
γx − 1

[(
p{b}
p{a}

)(γx−1)/(2γx)

− 1

]
. (B.19)
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B.2 Special-relativistic Hydrodynamics

We now turn our attention to finding the exact solution to the Riemann problem from

special-relativistic hydrodynamics. The x-direction is normal to the Riemann problem.

These relations come from Pons et al. [135].

B.2.1 Shock wave

When considering a shock wave, one uses the Rankine-Hugoniot conditions to determine

the shock speed from the jump in the variables. Taub derived the relativistic Rankine-

Hugoniot conditions [170] and they are

[[ρuµ]]nµ = 0, [[Tµν ]]nν = 0, (B.20)

where nµ is the unit normal to a space-time slice. The unit normal in the lab frame

with a shock speed vs is

nµ = Ws(−vs, 1, 0, 0), (B.21)

where Ws is the Lorentz factor associated with the shock speed vs.

As in the Newtonian case, it is assumed that the state in front of the shock q{a} and the

pressure in both states is known. In this section, we will follow the description given by

Font [58]. As before, we use the Rankine-Hugoniot condition of the continuity equation

to determine the mass flux across the shock

Q ≡Wsρ0,{a}v
x
{a}(vs − vx{a}) = Wsρ0,{b}v

x
{b}(vs − vx{b}). (B.22)

The Rankine-Hugoniot conditions (B.20) can be rewritten in terms of the conserved

variables (3.69) to give

[[vx]] = − Q

Ws

[[
1

D

]]
, (B.23a)

[[p]] =
Q

Ws

[[
Sx

D

]]
, (B.23b)[[

Sy

D

]]
= 0, (B.23c)[[

Sz

D

]]
= 0, (B.23d)

[[vxp]] =
Q

Ws

[[ τ
D

]]
, (B.23e)

where D is the rest-mass density in an Eulerian frame (3.60), Si is the momentum (3.63)

and τ is the kinetically dominated energy (3.66).
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The jump conditions on the tangential momenta (B.23c), (B.23d) imply that the

tangential velocities do not change across a shock.

Using the relation between the momentum and the total energy density (3.64), one can

give the velocity behind the shock as

vx{b} =

[
h{a}W{a}vx{a} +

Ws

(
p{b} − p{a}

)
Q

]

h{a}W{a} +
(
p{b} − p{a}

)(Wsv
x
{a}

Q
+

1

ρ0,{a}W{a}

) , (B.24)

where h is the specific enthalpy defined in equation (2.7). The tangential velocities

behind the shock can be derived from the momentum jump conditions (B.23c), (B.23d)

to give

vy,z{b} = h{a}W{a}v
y,z
{a}

 1−
(
vx{b}

)2

h2
{b} +

(
h{a}W{a}v

y,z
{a}

)2


1/2

. (B.25)

This requires the enthalpy behind the shock, h{b}, which can be found by solving a

quadratic equation derived from the Taub adiabat for an ideal EOS [109],

(B.26)

[
1 +

(γx − 1)
(
p{a} − p{b}

)
γxp{b}

]
h2
{b} −

[
(γx − 1)

(
p{a} − p{b}

)
γxp{b}

]
h{b}

+

[
h{a}

(
p{a} − p{b}

)
ρ{a}

− h2
{a}

]
= 0.

This quadratic equation produces two enthalpies, one positive and physical, the other

negative and unphysical. Finally, the shock speed is also required and it can be derived

from the Rankine-Hugoniot conditions,

vs =

ρ2
{a}W

2
{a}v

x
{a} ± |Q|

√
Q2 + ρ2

{a}W
2
{a}

(
1− vx2

{a}

)
ρ2
{a}W

2
{a} +Q2

. (B.27)
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B.2.2 Rarefaction wave

As in the Newtonian case, a rarefaction wave is bounded by the characteristics λ± (3.73).

As before, it will be assumed that the state in front of the wave q{a} and the pressure

p{b} behind the wave are known. The velocity in the rarefaction wave is given by the

solution to the following ODE

dvx

dp
= ± 1

ρ{a}h{a}W 2
{a}a{a}

[
1 + g

(
λ±, vx{a}, v

t
{a}
)]−1/2

, (B.28)

where vt{a} =

[(
vy{a}

)2
+
(
vz{a}

)2
]1/2

and

g(λ±, vx{a}, v
t
{a}) =

(
vt{a}

)2 (
λ2
± − 1

)
(

1− λ±vx{a}
)2 . (B.29)

The tangential velocity magnitude is given by

vt{b} = h{a}W{a}v
t
{a}

 1−
(
vx{b}

)2

h2
{b} +

(
h{a}W{a}vt{a}

)2

 . (B.30)

To find the exact solution at the contact, a root find can be performed on the pressure.

B.3 Ideal MHD

These relations as well as those given for the Alfvén wave in Subsection 3.5.4 allow one

to construct an exact solver in Newtonian, ideal magnetohydrodynamics. The following

relations are given by Torrilhon [175].
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B.3.1 Shock waves

When the density jumps, i.e. [[ρ]] 6= 0, a shock wave occurs. The momentum Rankine-

Hugoniot condition (3.100b) shows that the tangential magnetic field divided by the

density is parallel to the tangential velocity. The magnetic Rankine-Hugoniot condition

(3.100c) illustrates that the tangential magnetic field is parallel to the tangential velocity.

The jump in density means that tangential magnetic field is collinear. Therefore, the

Rankine-Hugoniot conditions for a shock are as follows,

Q2 [[V ]] +

[[
p+

1

2
B2
t

]]
= 0, (B.31a)

Q2 [[VBt]]−B2
x[[Bt]] = 0, (B.31b)

1

γx − 1

[[
p

ρ

]]
+

1

2
(p{a} + p{b}) [[V ]] +

1

4
[[V ]] ([[Bt]])

2 = 0. (B.31c)

Following the approach of Torrilhon [175], the Rankine-Hugoniot conditions can be

rewritten in terms of dimensionless quantities

V̂ =
V{b}
V{a}

, p̂ =
p{b}
p{a}

, B̂t =
B
{b}
t√
p{a}

, v̂t =
v
{b}
t

ax{a}
. (B.32)

These dimensionless quantities are chosen, because they behave well as the normal

magnetic field goes to zero, Bn → 0. The Rankine-Hugoniot conditions for a shock

wave now read

p̂− 1 + γxM
2
x{a}

(
V̂ − 1

)
+

1

2

(
B̂2
t −A2

)
= 0, (B.33a)

γxM
2
x{a}

(
V̂ B̂t −A

)
−B2

(
B̂t −A

)
= 0, (B.33b)

1

γx − 1

(
p̂V̂ − 1

)
+

1

2

(
V̂ − 1

)
(p̂+ 1) +

1

4

(
V̂ − 1

)(
B̂t −A

)2
= 0, (B.33c)

where the three parameters are

A =
B
{a}
t√
p{a}

, B =
Bn√
p{a}

, Mx{a} =
vn
ax
. (B.34)

B.3.1.1 Fast shock wave

The fast shock in ideal MHD is very similar to the shock waves in hydrodynamics. In the

limit as the magnetic field approaches zero, B → 0, the fast wave speed cf approaches

the speed of sound a.
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The solution to the Riemann problem is given by the intersection of the Hugoniot curve

and the Rayleigh line [175]. The Hugoniot curve is the curve in the pressure-volume

phase space given by the energy Rankine-Hugoniot condition (B.33a). The Rayleigh

line is the line in the pressure-volume phase space given by the momentum Rankine-

Hugoniot condition (B.33c). The tangential magnetic field can be rewritten in terms of

the parameters A,B,Mx{a} and the specific volume V̂ ,

B̂t(V̂ ,M{a}, A,B) = A
γxM

2
x{a} −B2

γxM2
{a}V̂ −B2

. (B.35)

This implies that the Hugoniot curve and the Rayleigh line can be written in terms of

the parameters A,B,M{a} and V̂ . Solving for the pressure gives

p̂Ray = 1− γxM
2
x{a}

(
V̂ − 1

)
− 1

2

[A γxM
2
x{a} −B2

γxM2
x{a}V̂ −B2

]2

−A2

 , (B.36)

p̂Hug =

V̂ − γx + 1

γx − 1
+

1

2

(
V̂ − 1

)(
A−

[
A
γxM

2
x{a} −B2

γxM2
x{a}V̂ −B2

])2

1− γx + 1

γx − 1
V̂

. (B.37)

These equations are combined to form a cubic equation for the specific volume V̂ , which

must be solved numerically. The valid solution lies in the interval
(
V̂min, 1

)
, where V̂min

is defined as

V̂min =


γx − 1

γx + 1
,

B2

γxM2
x{a}

<
γx − 1

γx + 1
,

B2

γxM2
{a}

,
B2

γxM2
x{a}

>
γx − 1

γx + 1
.

(B.38)

The pressure and the tangential magnetic field magnitude can then be calculated from

the specific volume.

B.3.1.2 Slow shock wave

The slow shock wave exhibits a different behaviour to that of the fast shock wave.

Quantities such as the pressure do not vary monotonically with the speed of the fluid as

they do with a fast wave. This means that the approach taken for the fast wave is not

valid. Instead, the tangential magnetic field will be used as a parameter in the Hugoniot

curve and Rayleigh line. The Mach number will be replaced by

Mx{a}
(
V̂ , B̂t, A,B

)
=

√
B2

γx

B̂t −A
B̂tV̂ −A

. (B.39)
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The Hugoniot curve and Rayleigh line can be equated to form a quadratic equation for

the specific volume V̂ ,

aV̂ 2 + bV̂ + c = 0, (B.40)

where the coefficients (a, b, c) are given by

a =
B̂t
2

(
4

γx

γx − 1
+
(
B̂t −A

)2
+
γx + 1

γx − 1

(
A2 − B̂2

t

))
− γx + 1

γx − 1
B2
(
B̂t −A

)
, (B.41)

b =
γx

γx − 1

(
A
(
B̂2
t −A2

)
+ 2B2

(
B̂t −A

)
− 2

(
B̂t +A

))
, (B.42)

c =
2γx

γx − 1
A−

(
A2 +B2

) (
B̂t −A

)
. (B.43)

The two solutions V̂ +, V̂ − are found using the quadratic formula. Only V̂ + is valid

at all times and lies in the range
[
(γx + 1) (γx − 1)−1 , 1

]
. This approach requires the

tangential magnetic magnitude of state {b} to be known.

B.3.2 Rarefaction wave

If a rarefaction wave occurs, then both the fast and the slow waves can be determined

from the solution of a system of ordinary differential equations for the primitive variables

u replacing the specific energy with the pressure. The ordinary differential equations are

parametrised by the variable s. The integration parameter has the range s = (0, send)

where send is defined as

send =

{
smaxtanh(−ψf ) fast rarefaction,

−ψs slow rarefaction.
(B.44)

smax is defined as the point, where the magnitude of the tangential magnetic field is zero

and ψf,s are path variables that are used as part of the root finding process. Positive

values of ψ indicate a shock and negative values indicate a rarefaction. The equations

for the density and pressure can be integrated to give

ρ(s) = ρ{a}e
−s, (B.45)

p(s) = p{a}e
−γs. (B.46)
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The remaining primitive variables are acquired by solving the following ordinary

differential equations

dvx(s)

ds
= ∓cs,f (s), (B.47)

dvt(s)

ds
=

cs,f (s)(
ca(s)

cs,f (s)

)2

− 1

Bt(s)

Bn
, (B.48)

dBt(s)

ds
=

Bt(s)(
ca(s)

csf (s)

)2

− 1

. (B.49)

These equations are solved numerically.

A root find then needs to be performed on the path variables, the angle of rotation at

both Alfvén waves and the pressure and normal velocity. For the shock waves the path

variables have the following effectψf , vs = cf + ψf ,

ψs, B
{b}
t = A− ψs.

(B.50)





Appendix C

Convergence Results

This chapter presents convergence results for the single model, one-dimensional tests

in Chapter 5. All tests have used ten resolutions between N = 100 and N = 1000

and calculated the order of convergence using the infinity norm (5.2). The third order

Runge-Kutta time integrator and the third order WENO method are used.

The first test considered is the Euler Sod test, with initial data given in Table 5.1. The

order of convergence was calculated to be 0.98. The convergence results are plotted in

Figure C.1.

The next we considered the special-relativistic shock tube, with initial data given in

Table 5.2. The order of convergence was calculated to be 1.00. The convergence results

are plotted in Figure C.2.

The special-relativistic, blast wave test was considered next, with initial data given in

Table 5.3. The order of convergence was calculated to be 1.16. The convergence results

are plotted in Figure C.3.

The ideal MHD, shock tube test was considered, with initial data given in Table 5.4.

The order of convergence was calculated to be 0.99. The convergence results are plotted

in Figure C.4.

Finally, the special-relativistic, ideal MHD, shock tube test was considered. The initial

data was given in Table 5.5. The order of convergence was calculated to be 1.06. The

convergence results are plotted in Figure C.5.

All of test achieved the expected level of convergence for solutions that contain

discontinuities.
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10−3 10−2

∆x

10−4

10−3

E
rr

or

Sod order 0.98

Sod

Figure C.1 – Newtonian Sod convergence results. Ten resolutions are used between: 100
and 1000 cells. The rate of convergence obtained is 0.98. This sub-linear
convergence is due to the presence of two discontinuities in the density.
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10−3 10−2

∆x

10−4

10−3

E
rr

or

Sod order 1.00

Sod

Figure C.2 – SR Sod convergence results. Ten resolutions are used between: 100 and 1000
cells. The rate of convergence obtained is 1.0. This linear convergence is due
to the presence of two discontinuities in the density.
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10−3 10−2

∆x

10−2

10−1

E
rr

or

Sod order 1.16

Sod

Figure C.3 – SR blast convergence results. Ten resolutions are used between: 100 and 1000
cells. The rate of convergence obtained is 1.16. This above-linear convergence
is due to the presence of two discontinuities in the density close together. This
feature is hard to resolve at low resolution and this results in a higher error.



Appendix C Convergence Results 205

10−3 10−2

∆x

10−3

10−2

E
rr

or

Sod order 0.99

Sod

Figure C.4 – MHD convergence results. Ten resolutions are used between: 100 and 1000
cells. The rate of convergence obtained is 0.99.
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10−3 10−2

∆x

10−3

10−2

E
rr

or

Sod order 1.06

Sod

Figure C.5 – SRMHD blast convergence results. Ten resolutions are used between: 100
and 1000 cells. The rate of convergence obtained is 1.06.



Appendix D

Special-relativistic

Magnetohydrodynamics

The eigenvectors provided in this section can be used to construct the conserved

eigenvectors and the interface eigenvectors.

D.1 Covariant Eigenvectors

Anton et al. [14] provide a set of covariant eigenvectors that remain independent. The

covariant variables are based on those calculated by Anile [13].

ũ = (uµ, bµ, p, s)T . (D.1)

The entropy eigenvector is

re = (0µ, 0µ, 0, 1)T , (D.2)

and the Alfvén eigenvector is

r̃±a =
(
f1α

µ
1 + f2α

µ
2 ,∓
√
C (f1α

µ
1 + f2α

µ
2 ) , 0, 0

)T
, (D.3)

where

f1,2 =


g1,2√
g2

1 + g2
2

if normal or Type I degeneracy,

1√
2

if Type II or Type II’,
(D.4)

αµ1 = W (vz, λvz, 0, 1− λvx) , (D.5)

αµ2 = −W (vy, λvy, 1− λvx, 0) , (D.6)

C = ρh+ b2, (D.7)
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and

g1 =
1

W

(
By +

λvy

1− λvxB
x

)
, (D.8)

g2 =
1

W

(
Bz +

λvz

1− λvxB
x

)
. (D.9)

The magnetosonic eigenvector is

r̃±m = (dµ, Lµ, C, 0)T . (D.10)

Its components depend on wether the wave’s velocity is closer or further away to the

Alfvén velocity. The components are

dµ =


− AC

ρha2 (G+A2)
(φµ +Auµ)−

(B
A

)±
m

1

ρ

bµt
bt

if closer,

A

ρha2 (G+A2)
(φµ +Auµ)−

(B
A

)±
m

Gbtµ

ρh (ρhA2 − b2G)
if further away,

(D.11)

Lµ =


−
(B
A

)±
m

C

ρh
uµ −

(
1 +

A2

G

)
bµt
bt

if closer,(B
A

)±
m

1

ρh
uµ −

(
1 +

A2

G

)
Gbµt

ρh (ρhA2 − b2G)
if further away,

(D.12)

C =

−
(
G+A2

)
a2

A2 − (G+A2) a2
bt if closer,

−1 if further away,

(D.13)

where

A = uµφµ, (D.14)

G = φµφµ, (D.15)

φµ = (−λ, 1, 0, 0) , (D.16)

bµt
bt

=
(f1α12 + f2α22)αµ1 − (f1α11 + f2α12)αµ2√(
α11α22 − α2

12

) (
f2

1α11 + 2f1f2α12 + f2
2α22

) , (D.17)

α11 = αµ1α1µ, (D.18a)

α22 = αµ2α2µ, (D.18b)

α12 = αµ1α2µ, (D.18c)
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and

bµt = C1α
µ
1 + C2α

µ
2 , (D.19)

C1 =
g1α12 + g2α22

α11α22 − α2
12

W (1− λvx) , (D.20)

C2 = −g1α11 + g2α12

α11α22 − α2
12

W (1− λvx) , (D.21)

bt =
√
bµt btµ , (D.22)

bµt
ρhA2 − b2G =


bµt

ρhA2 − b2G if not Type II’,

0 if Type II’,

(D.23)

finally, (B
A

)m
±

= ∓
√(

ρh+
b2

a2

)
− ρh

(
1

a2
− 1

)
A2

G
. (D.24)





Appendix E

Mach 40 Newtonian Bubble:

Lower Resolution

The results presented in this chapter can be used to compare against those presented in

Subsection 7.2.2. This resolution in this section is 600 x 180 and the initial conditions

are given in Table 7.5.

Figure E.1 shows that the shock wave has already exited the bubble after 1s. The

strength of the shock wave has resulted in a large build up of density ahead of the

bubble. The bubble has also been severely flattened. The vorticity compared to Figure

7.8 is an order of magnitude higher.

Figure E.1 – The shock wave has already exited the bubble at T = 1. The strength
of the shock wave has resulted in a large build up of density ahead of the
bubble. The bubble has also been severely flattened. The vorticity compared
to Figure 7.8 is an order of magnitude higher.
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Figure E.2 – mRGFM at T = 2. The bubble’s surface has become distorted due to the
vorticity. The results are symmetric, which demonstrates that our numerical
methods are symmetric.

In Figure E.2 the bubble’s surface has become distorted due to the vorticity. It should

be noted that the results are symmetric about the y = 0 line. This demonstrates that

our numerical methods are symmetric.

Figure E.3 shows that the bubble’s surface has continued to curl up and become

distorted. Finger-like regions have developed. As explained in Subsection 6.2.1, our

numerical method will begin to rely on fallback mechanism, due to a lack of resolution.

These fallbacks ensure that two different models are always used in the multi-material

Riemann problem. Numerical errors introduced by these fallback mechanisms could be

prevented by using adaptive mesh refinement.

In the final plot, shown in Figure E.4, the bubble has started to break up. The numerical

errors mentioned in Figure E.3 are now clearly noticeable. The bubble is no longer

symmetric as shown by the zero contour of the level set.
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Figure E.3 – mRGFM at T = 3. The bubble’s surface has continued to curl up and become
distorted. Finger-like regions have developed. As explained in Subsection
6.2.1, our numerical method will begin to rely on fallback mechanisms, due
to a lack of resolution.

Figure E.4 – mRGFM at T = 5. The bubble has started to break up. The numerical
errors mentioned in Figure E.3 are now clearly noticeable. The bubble is no
longer symmetric.
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