Protein interactions limit the rate of evolution of photosynthetic genes in cyanobacteria.

Shi, Tuo, Bibby, Thomas S., Jiang, Lin, Irwin, Andrew J. and Falkowski, Paul G. (2005) Protein interactions limit the rate of evolution of photosynthetic genes in cyanobacteria. Molecular Biology and Evolution, 22, (11), pp. 2179-2189. (doi:10.1093/molbev/msi216).


Full text not available from this repository.


Using a bioinformatic approach, we analyzed the correspondence in genetic distance matrices between all possible pairwise combinations of 82 photosynthetic genes in 10 species of cyanobacteria. Our analysis reveals significant correlations between proteins linked in a conserved gene order and between structurally identified interacting protein scaffolds that coordinate the binding of cofactors involved in photosynthetic electron transport. Analyses of amino acid substitution rates suggest that the tempo of evolution of genes encoding core metabolic processes in the photosynthetic apparatus is highly constrained by protein-protein, protein-lipid, and protein-cofactor interactions (collectively called "protein interactions"). These interactions are critical for energy transduction, primary charge separation, and electron transport and effectively act as an internal selection pressure governing the conservation of clusters of photosynthetic genes in oxygenic prokaryotic photoautotrophs. Consequently, although several proteins within the photosynthetic apparatus are biophysically and physiologically inefficient, selection has not significantly altered the genes encoding these essential proteins over billions of years of evolution. In effect, these core proteins have become "frozen metabolic accidents."

Item Type: Article
Digital Object Identifier (DOI): doi:10.1093/molbev/msi216
Keywords: cyanobacteria, photosynthesis, coevolution, bioinformatics, gene order, protein-protein interactions
ePrint ID: 37556
Date :
Date Event
13 July 2005e-pub ahead of print
November 2005Published
Date Deposited: 23 May 2006
Last Modified: 16 Apr 2017 22:02
Further Information:Google Scholar

Actions (login required)

View Item View Item