
D. Biswas 
Faculty of Physical Sciences and Engineering, University of Southampton, United Kingdom, SO17 1BJ 
Email: db9g10@ecs.soton.ac.uk 
K. Maharatna 
Faculty of Physical Sciences and Engineering, University of Southampton, United Kingdom, SO17 1BJ 
Email: km3@ecs.soton.ac.uk, Telephone: +44(0)2380599322 
 

 

Abstract: In this paper we present a carry-save arithmetic (CSA) based Coordinate Rotation Digital Computer 

(CORDIC) engine for computing eight fundamental time domain statistical features. These features are used commonly 

in association with major classifiers in remote health monitoring systems with an aim of executing them on a node of 

Wireless Sensor Network (WSN). The engine computes all the eight features sequentially in 3n clock cycles where n is 

the number of data samples. We further present a comparative analysis of the hardware complexity of our proposed 

architecture with an alternate architecture which does not use CORDIC (instead uses standalone array multiplier, 

divider, square rooter and logarithm converter). The hardware complexity of the two architectures presented in terms of 

full adder count reflects the effectiveness of using CORDIC for the given application. The engine was synthesized using 

the STMicroelectronics 130 nm technology library and occupied 205K NAND2 equivalent cell area and consumed 1nW 

dynamic power @ 50 Hz as estimated using Prime time. Therefore, the design can be applicable for low-power real-

time operations within a WSN node. 
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1 Introduction 
 

Sensor Network (WSN) has revolutionized the modern world, facilitating novel applications like remote health 

monitoring [1, 2] using pervasive battery-powered sensors for real-time multimodal data acquisition and analysis. The 

fundamental requirement for the sensor nodes in such a system is low power operation to prolong the battery life of the 

sensors owing to its resource constrained nature. The major components of these systems include computationally 

intensive steps like feature extraction from the data acquired by the sensors and its classification and therefore 

traditionally, these are carried out off-line on mainframe computational facilities. However, for continuous monitoring 

scenario like motion detection, cardiac monitoring etc., these two steps need to be performed within the sensor node 

itself for compensating the significant energy required at the radio front-end of the sensors for continuous data 

transmission [2].  

Typical features required for the major classes of classification problems that are relevant to remote monitoring 

scenario are: mean (µ), root mean square (rms), standard deviation (σ), index of dispersion (D), kurtosis, skewness, 

absolute difference and information entropy [3]. These features are extracted from long data series using 

computationally intensive statistical techniques. Since the energy consumption is proportional to the arithmetic 

complexity, implementation of such processes in a WSN node consumes a significant amount of energy, affecting the 

battery life. Therefore, it is a major roadblock when performing these operations in a WSN framework [2]. Therefore, it 

is of paramount importance to develop a low-power strategy for feature extraction and classification in the resource 

constrained environment of WSN.  

Most of these features require the basic arithmetic operations like addition, subtraction, multiplication, division, 

square root and logarithm for successful computation. Amongst these arithmetic operations, division, square root and 

logarithm require special attention for low power implementation. With the recent advances in VLSI, several effective 

low-power design techniques have been proposed which include the non-restoring algorithm for division [4] and square 

root calculations [5] and the piecewise-polynomial approximation for logarithm calculation [6]. These algorithms 

provide a good trade-off between accuracy and hardware complexity and hence have been widely employed in digital 

signal processing (DSP) applications.  

In terms of functional forms most of the features mentioned above have similarities to the different transcendental 

functions realizable using CoOrdinate Rotation Digital Computer (CORDIC) algorithm. CORDIC is a well-researched 

area and several specialized architectural implementations [7]-[12] of it have been proposed over the years which can be 

utilized for processing algorithms in low-power WSN nodes. Therefore, in this paper we propose the design and 

implementation of a CORDIC-based low-power engine for computing eight common statistical features that are not 

only used in the classification problems but also for statistical analysis of large data set representing physical 

phenomena. The primary motivation for using the CORDIC algorithm is to explore its different transcendental 

functions and compute the complex arithmetic operations reusing the same architecture which can be implemented at 

low-cost with basic shift-add operations of the form a ± b.2-i [7].  

The engine proposed here could be used for computing a stand-alone or a sequence of features depending on the 

application. The fundamental mathematical processes of the above mentioned features have been formulated in terms of 

CORDIC and its optimized implementation strategy has been adapted by analyzing their shared computational stages. 

The engine is implemented in STMicroelectronics 130 nm CMOS technology with a supply voltage of 1.08V and 

occupies 4 mm2 Silicon area after layout (2-input NAND equivalent – 205K). The application area we consider is that of 

human activity recognition where a sampling frequency of up to 50 Hz is deemed sufficient for capturing the kinematic 

information of  the subjects [3] [13] . The designed engine has a dynamic power consumption of 1nW@50 Hz making it 



 
 

amenable for low-power WSN.  

The rest of the paper is structured as follows:  a brief review of CORDIC fundamentals is described in Section 2 and 

the theoretical formulation of the features in terms of CORDIC rotation is described in Section 3. Section 4 describes 

the architectural design of the proposed feature extraction engine. The implementation and performance evaluation of 

the designed engine has been discussed in Section 5. Finally, a discussion is presented in Section 6. 

 

2 CORDIC Fundamentals 
 

CORDIC is an iterative algorithm for computing different transcendental functions using 2D vector rotation by 

employing the following iterative equation: 
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where, [xj, yj]T, zj and σj ϵ {1, -1} are the intermediate result vector, the residual angle and the direction of vector 

rotation at the j-th iteration stage respectively; αj is the pre-defined angle of rotation at each j-th iteration stage             

{= tan-1(2-j)} which add up to make the final target angle of rotation θ; µ ϵ {1, 0, -1} being the coordinate of rotation – 

circular, linear and hyperbolic respectively. Given an input vector [x0   y0]T, in different coordinate system, CORDIC 

operates in two modes viz. rotation (z0 →0) and vectoring (y0 →0), for computing a series of transcendental functions as 

shown in Table 1. For a detailed survey of CORDIC please refer to [7]. These forms of the transcendental functions, 

more specifically, those generated by the vectoring operation of CORDIC in different coordinate systems could be 

adapted for computing the target features as described in Section 3. For convenience, we use the operators Vecc, Vecl 

and Vech to represent vectoring operation of CORDIC in circular, linear and hyperbolic coordinate system respectively. 

 
Table 1 Generalized CORDIC algorithm in three co-ordinate systems 

µ ROTATION MODE (Z0 →0) VECTORING (Y0 →0) 
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3 CORDIC Formulation of Features 
 

In our formulation, the input dataset is represented by dsi, where i ϵ {0, 1, 2…n-1} and di is the output of vectoring 

CORDIC operation on ds(i-1) data sample. With this convention the formulation of the eight target statistical features in 

terms of CORDIC operation is described below.  

 

3.1 Mean (µ)  
 

The mean represents the average of a number of data samples calculated by accumulating n samples and dividing the 

resultant by n. If n = 2m, where m is an integer, the final division can be achieved by m bit right shift of the result. 

 

3.2 Root mean square (rms)  
 

The rms is a measure of the signal energy normalized by the number of samples and is given by: 
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In terms of the operator Vecc, rms computation could be represented as: 
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Physically, (3) means that dsi are fed in the y input of the CORDIC while the x-component of the output is fed back to 

the x-component of its input. Therefore at every clock cycle as the new data sample dsi arrives the computed x-

component of the CORDIC is given by: 
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After every complete CORDIC operation the x-component of the output is scaled with the scale factor K. If 

uncompensated, feeding back this result into the x-component of the CORDIC input will result in accumulation of this 

scale factor corresponding to each dsi and therefore (4) will not hold true. To avoid this problem, after every complete 

CORDIC operation (comprising of N stages) with a set of input data, the scale factor compensation step needs to be 

invoked before feeding this output to the x-input of the CORDIC for the next iteration. With this scale factor 

compensation step in place, after n number of operations the final result at the x output of the CORDIC needs to 

multiplied with 1/√n to obtain the true result of rms. However since n is a fixed number the value of 1/√n could be pre-

computed and finally multiplied with the CORDIC output using a reduced complexity fixed-number multiplier or 

multiplier-less shift-and-add technique.  

 

3.3 Standard Deviation (σ)  
 

σ represents the variation of the data samples from the mean and is expressed as: 
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As can be seen from the functional similarity of (2) and (5) the formulation shown in (3) can be reformulated for 

computing σ in terms of CORDIC operation as:  
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Similar to the rms computation here the x component of the CORDIC output needs to be multiplied with the pre-

computed value of 1/√n to obtain the true value of σ which again can be achieved by a reduced complexity fixed-

number multiplier or shift-and-add technique. Like rms, here also the scale factor compensation step needs to run after 

each complete CORDIC operation. 

 

3.4 Index of Dispersion (D)  
 

It is a normalized measure of the dispersion of a data distribution, expressed as: 
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In terms of CORDIC operation D may be formulated as: 
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Referring to Table 1, setting µ and σ as the x0 and y0 inputs to the CORDIC operating in vectoring mode in linear 

coordinate, the output will result in (σ/µ). This output is then multiplied with σ to obtain the desired value of D using a 

multiplier.  

 

3.5 Kurtosis 
 

Kurtosis is a normalized measure of the dispersion of a data distribution, as expressed in (9) and re-framed in (10): 
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For each sample (dsi - µ), the operator Vecl  produces the output [(dsi-µ)/σ] when (dsi - µ) and σ are set as the x0 and y0 

inputs to the CORDIC. Two squaring circuits and an accumulator module are then used followed by multiplying it with 

the pre-computed value of 1/n to achieve the desired value of kurtosis as shown in Fig. 1: 



 
 

 

Fig. 1 Architecture for computation of kurtosis 

 

3.6 Skewness 
 

Skewness is a measure of the alignment of the probability distribution of a real valued random variable to one side of 

the mean and mathematically defined as: 
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Exploiting the functional similarity of (9) and (11), the overall architecture for computing skewness is shown in Fig. 2.  

 

 
Fig. 2 Architecture for computation of skewness 

 

3.7 Absolute Difference (abs. diff)  
 

It is the absolute difference between the maximum value and the minimum value of a signal and is given by: 

 

. (max( ) min( ))si siabs diff abs d d= −          (12) 

 

This computation does not need a CORDIC operation and can be achieved by using a minimum and maximum 

detection circuit as shown in Fig. 3 and then taking the absolute difference of the values corresponding to them.  

 

 

Fig. 3 Architecture for computing maximum and minimum values of a signal 

 

 



 
 

3.8 Information Entropy  
 

Information entropy is a measure of the randomness present in a signal represented by [14]: 
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To compute it, the histogram plot representing the distribution of data sample is first divided into a number of bins and 

then the probability distribution is computed by counting the number of samples (frequency of observations) in each 

bin.  

 

 

Fig. 4 The selected bins from normal distribution of data samples 

 

For ease of implementation we applied an approximation where the signal dsi, is divided into four bins (bink, where k 

ϵ {0, 1, 2, 3}) between the minimum and maximum values of the signal as shown in Fig. 4 considering a Gaussian 

distribution as an example. In hardware, the bin thresholds could be computed by simple add-shift mechanism. The 

architecture for computing the probability of the signal in each of the four bins is illustrated in Fig. 5. A comparator 

logic is used to find out the appropriate bin in which each sample dsi belongs and accordingly for each of the bins a 

sample counter is used to compute the total number of samples lying in it. The sample count in each bin is multiplied 

with the pre-computed value of 1/n to calculate the probability of data samples p(bink). 

 

 

Fig. 5 Architecture for computing the probability of each bin of the signal 

 



 
 

The logarithm of the respective probability for each bin can be calculated using the CORDIC operator Vech represented 

as: 

 

[ ]( )ln ( ) (1 ( )) (1 ( )) T
k h k k

z
p bin Vec p bin p bin= + −         (14) 

 

It should be noted that CORDIC computes the natural logarithm (base e), which is further multiplied with a constant 

scale factor to obtain log2 (base 2). Therefore altogether four CORDIC operations are needed for computing logarithm 

of the probability corresponding to the four bins. Accordingly (13) could be realized using the block diagram shown in 

Fig. 6: 

 

 
Fig. 6 Architecture for computation of information entropy 

 

4 Architecture and Evaluation 
 

From the foregoing section it is clear that the actual CORDIC operation is needed only for six features out of the eight 

considered here (except for the µ and abs. diff). Typically CORDIC is implemented in two ways: iterative and 

pipelined. The iterative CORDIC architecture utilises a single implementation of (1) and computes the final result in b 

iterations where b is governed by the required accuracy and the word-length. Therefore, b clock cycles are required for 

completion of one CORDIC operation. The pipelined architecture overcomes this problem by exploiting the identical 

nature of the CORDIC iterations (shift/add operations) and mapping them onto a pipelined architecture. The first output 

of a N-stage pipelined CORDIC is obtained after N clock cycles and thereafter the outputs will be generated at each 

clock, helping in achieving a high throughput and is therefore the most popular approach for CORDIC implementation. 

The equations (3) and (5) suggest a tight computing recursion, which indicates a computing loop in the corresponding 

signal flow graph (c.f. Fig. 7). Any attempt to pipeline the computing node in the loop would lead to inaccurate result 

and therefore, in this particular application, the mathematical formulations described in section 3 cannot be realized 

using the pipelined CORDIC approach. A slow down process, which inserts N-1 (where N is the pipelined stages) null 

inputs to every two valid inputs, to obtain the correct result. Without loss of generality, this can be explained by the 

following example. For pipelined design, this means a poor hardware utilization ratio (only 1/N). We consider a 4-stage 

pipelined CORDIC for computing rms with a dataset of 8 samples, {ds0,…,ds7}. A cycle-by-cycle snapshot of the 

process, is presented in Fig. 7, where xi/p, yi/p are the x and y component of the CORDIC input and xo/p is the x-

component of the output, dsi is the input data sample, di is the CORDIC output of the ds(i-1) data sample. In this 

operation, the final target operation is given by: 
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Fig. 7 Pipelined architecture for a 4-stage CORDIC for computing rms on a data stream having eight samples 

 

It is clearly evident from Fig. 7 that the expression in (15) cannot be computed using this pipelined architecture. 

Moreover, if extra registers are used to store the intermediate result of each pipeline stage, it would nullify the 

advantage of the pipelined architecture and result in increased complexity in the control mechanism and the associated 

hardware. On the other hand, although the mathematical form in (15) can be realized using iterative CORDIC, the 

overall time required will be significantly high and hence the throughput suffers. Therefore, to overcome this problem a 

unit latency design, which coalesce all iterations into one computing stage (clock cycle), is adopted in this paper. We 

use carry-save arithmetic (CSA) technique enabling a complete CORDIC operation in one clock cycle [15]. Since, the 

delay of one CSA adder is equivalent to one carry propagation, for an N-stage CSA-CORDIC, the overall propagation 

delay for computing one complete operation is equivalent to N number of carry propagation delay (equivalent to an N-

bit ripple carry adder) and therefore,  is achievable in one clock cycle. Accordingly we have employed a CSA-based 

CORDIC in our proposed design. 

 

4.1 Architecture  
 

The overall architecture of the statistical feature computation engine is shown in Fig. 8. In principle, it consists of a 

CSA-based CORDIC module, a subtractor, an accumulator, a probability estimator (as shown in Fig. 5) and a multiply-

squaring-accumulate unit. In order to maintain an acceptable level of accuracy (in our case 16-bit) we implement the 

CORDIC with 24-bit datapath following the principles described in [9]. A 2-bit mode signal (01: circular, 00: linear 

and 10: hyperbolic) is used to enable CORDIC operation in different coordinate systems. A control counter is used to 

input the appropriate data (dsi - for rms, (dsi -µ) - for σ and (dsi -µ), µ and σ - for D, kurtosis, skewness) to the CORDIC 

module at appropriate clock cycle.  

For computing µ, dsi are initially stored in the register bank ‘Data Store’ from where they are sequentially passed to 

the accumulator and finally after n number of clock cycles, the result is multiplied by the pre-computed value of 1/n.  

For rms computation, in the first cycle the raw samples ds0 and ds1 are fed into the x and y inputs of the CORDIC 

(Vecc mode–01, shown in blue in Fig. 8). The subsequent x-component of the output of the CORDIC is fed back into its 

x input and the next sample ds2 into the y input of the CORDIC and this process is repeated for n number of clock cycles 

while the end result is multiplied by the pre-computed value of (1/√n) to achieve the desired rms value. 

For computing σ; µ is subtracted from dsi using a subtractor and is fed into the CORDIC module to compute the 

resulting expression 
1 2( ( )
0

n
dsi

i
µ

−
−∑

=
which is multiplied by (1/√n) to obtain the true value of σ at the end of 2n clock 

cycles.  



 
 

For computing Dispersion (D) the values µ, σ are used as inputs to the CORDIC (Vecl mode–00, shown in red in Fig. 

8) to compute (σ/µ) in one cycle which is multiplied by σ to obtain D.  

Each sample (dsi -µ) and σ are used as inputs to the CORDIC (Vecl) to generate the expression [(dsi-µ)/σ]  which is 

used for calculating Kurtosis and Skewness in n cycles as shown previously in Fig. 1 and 2. Hence, 3n clock cycles are 

required for computing the Kurtosis and Skewness. 

 

Counter
Data Store

Subtractor

X Y

dsi  
i=0...n-1

dsi

Mode  Coordinate-system
   01                 Circular
   00                 Linear
   10                 Hyperbolic
Counter  Mode  Feature
0-n               01        rms
(n+1)-2n      01        σ
2n+1            00        D
(2n+1)-3n   00        kurt 

         skew

Accumulator
mean(µ)

CSA based CORDIC

Probability 
estimation

1+p(bink) 

1/n

dsi -µ

dsi 

std(σ)

1-p(bink) 
010010

mode

s

s

s

i0

i1

i0

i1

Multiply, Squaring and 
Accumulate Unit

Computed featuresMultiply – rms, σ, D
Squaring & MAC – kurt, skew, 

          inf. entropy 
  

 
Fig. 8 Architectural overview of the CORDIC operation  

 

For computing the information entropy, first the values p(bink) is computed for each bin using the probability 

estimation block and then a pair of adder and subtractor are used for computing [1- p(bink)] and [1+ p(bink)] which are 

used as inputs to the CORDIC (Vech mode–10, shown in green in Fig. 8) and thereby computing ln[p(bink)] at every 

clock cycle. Finally, the result is multiplied with a constant scale factor (for computing log2) and p(bink) and 

accumulated using a MAC unit as shown in Fig. 6. 

In our implementation we considered a signal having 256 data samples. Following the procedure described above the 

µ and rms are computed in 256 (n) clock cycles while the σ computation takes 512 (2n) clock cycles altogether. The 

value of σ is used to compute D in the 513-th (2n+1) cycle and Kurtosis and Skewness are generated in the 768-th (3n) 

cycle. Information entropy is independent of the other features and requires 4 clock cycles as the logarithm of the 

probability of each bin is computed in one CORDIC operation. 

 

4.2 Hardware complexity analysis of proposed architecture 
 

We present a hardware complexity analysis considering a generalized word-length b of the N-stage CORDIC module 

for a single iteration. The hardware resource for one iteration of CORDIC can be reused for multiple iterations (for 

example, rms computation), applicable for all three modes of operation. We present the complexity in terms of the total 



 
 

number of full adders (FA) used. It is important to note here that we have only considered those features which employ 

the CORDIC module and have not included (1/√n) or (1/n) in our estimation since it can pre-computed. The 

mathematical operations with respect to the computation of the features is summarised in Table 2. 

 
Table 2 Arithmetic operations required in the proposed Cordic based architecture 

Features CORDIC Multiplication Addition/Subtraction Accumulator Squaring 
rms 1     

σ 1  1   

D 1 1    

kurtosis 1  1 1 2 

skewness 1 1 1 1 1 

inf. entropy 1 1 5 1  

 

• rms – CORDIC, 

• σ - 1 subtractor for computing (dsi -µ) and CORDIC, 

• D – CORDIC and 1 multiplier for multiplying (σ/µ) with σ, 

• kurtosis – 1 subtractor for computing (dsi -µ), CORDIC, 2 squaring units and 1 accumulator block, 

• skewness - 1 subtractor for computing (dsi -µ), CORDIC, 1 squaring unit, 1 multiplier and 1 accumulator block 

• inf. entropy - 3 adder/subtractor for calculating the bin thresholds for computing the respective probabilities of 

each bin, 2 adder/subtractor for calculating the inputs [1- p(bink)] and [1+ p(bink)] for computing log2p(bink), hence 5 

add/sub operations in total. We can consider 2 adder/subtractors in total which can be used for computing both the 

inputs to the CORDIC and also the bin thresholds. Moreover we need CORDIC, 1 multiplier and accumulator for 

multiplying log2p(bink) and p(bink) for computing the information entropy as shown in Fig. 6.  

As mentioned in the architectural implementation, the features rms, σ, D and kurtosis/skewness are computed 

sequentially, due to their functional dependencies. However, kurtosis and skewness can be computed in parallel and the 

computation of inf. entropy is independent of any of the above features. In view of this operational sequence, one can 

reuse majority of the arithmetic components thereby saving hardware. Considering such resource sharing, the optimal 

list of hardware components required for computing all the six mentioned features are:  

• the CORDIC module can be reused for computing all the features based on their formulation and architecture 

as mentioned in section 3, 

• 1 subtractor is required for computing (dsi -µ) for the features: σ, kurtosis, skewness. We can reuse this 

subtractor in the computation of inf. entropy (requiring 2 add/sub operations), thereby requiring 1 additional 

adder/subtractor. 

• 1 multiplier can be reused for D, skewness and inf. entropy, 

• 2 accumulator blocks are needed since the computation of kurtosis and skewness takes place in parallel and can 

be reused for inf. entropy. , 

• 3 squaring units are needed for kurtosis and skewness.  

For the sake of convenience, we consider 2 squaring units as 1 multiplier, therefore we require 2.5 multipliers in total 

(1 + 1.5 squaring unit). A conventional array multiplier (CAM) requires b(b - 2) FA, b half adders (HA) and b2 AND 

gates [16]. Considering, 2 HA as 1 FA and 4 AND gates as 1 FA [16] (due to transistor count and area), we can reduce 

the total gate count of a CAM to (1.25b2 – 1.5b) FA. Hence, for 2.5 multipliers we need Amult = 2.5(1.25b2 – 1.5b) FA, 

where (A*) represents the total number of FA’s in each circuit.  

We consider an accumulator block to comprise of a FA (we do not consider any registers associated with the 



 
 

accumulator, since we are concerned with the mathematical operations only). A b-bit Ripple carry adder/subtracter 

(RCA) requires b full adders (FA). Therefore in total we require Aadd/sub = 4b FA (2 adder/subtractors + 2 accumulators). 

 A N stage b-bit CORDIC implemented using Carry-Save Arithmetic (CSA) requires 6Nb FA. For our case, N=16, 

hence the CORDIC module requires ACORDIC = 96b FA. Therefore the total gate count for the implementation of these 

six features (let us name it as archt1) in terms of FA count is Aarcht1 = (3.125b2 + 96.25b) FA. Hence, for a 24-bit 

datapath, Aarcht1 = 4110 FA. 

 

4.3 Hardware complexity analysis of non-CORDIC architecture  
 

Now let us consider an alternative architecture (archt2) for computing the same six features (rms, σ, D, kurtosis, 

skewness and inf. entropy), also summarized in Table 3. In this architecture we consider a Ripple carry adder (RCA), 

conventional array multiplier (CAM), non-restoring iterative cellular square rooter (SQRT), non-restoring array divider 

(NAD) and multiplicative normalization based logarithm [17] as the arithmetic components for implementing the 

fundamental mathematical operations. As in the proposed CORDIC based design (archt1), we do not consider (1/√n) or 

(1/n) in our estimation. 

 
Table 3 Arithmetic Operations Required in Non-Cordic Based Architecture 

Features Division Multiplication Addition/Subtraction Square root Accumulator Squaring 
rms    1 1 1 

σ   1 1 1 1 

D 1 1     

kurtosis 1  1  1 2 

skewness 1 1 1  1 1 

inf. entropy  1 9  1  

 

• rms – 1 squaring unit, 1 SQRT and 1 accumulator, 

• σ - 1 subtractor for computing (dsi -µ), 1 squaring unit, 1 SQRT and 1 accumulator, 

• D – 1 NAD and 1 CAM, 

• kurtosis – 1 subtractor for computing (dsi -µ), 2 squaring units, 1 NAD and 1 accumulator block, 

• skewness - 1 subtractor for computing (dsi -µ), 1 squaring unit, 1 NAD,  1 CAM and 1 accumulator block, 

• inf. entropy - 3 adder/subtractor for calculating the bin thresholds for computing the respective probabilities of 

each bin. For computing the logarithm of each bin, log2p(bink) we need 2 variable shifters, a 4:2 adder, a 3:2 adder, a 

carry propagate adder (CPA), selection module, 2 multiplexers, a look-up table (LUT) and 4 registers [17]. A 4:2 adder 

corresponds to 3b FA, a 3:2 adder can be realized by 2b FA and a b-bit CPA requires b FA, hence requiring 6b FA in 

total. In addition, we require 1 CAM for multiplying the probability of each bin, p(bink) with its logarithm log2p(bink). It 

is important to mention here that we are considering one iteration of the logarithm computation. In the end, we use an 

accumulator block for adding the product [p(bink)* log2p(bink)] for each bin.      

We can reuse most of the components keeping in view the sequential nature of the feature computation with an 

exception for kurtosis and skewness which are computed in parallel after computing σ and the computation of inf. 

entropy is independent of the other features. Therefore the optimal list of hardware components required for the 

computing the six features are: 

• 1 SQRT can be reused for rms and σ, 

• 1 subtractor is required for computing (dsi -µ) for the features: σ, kurtosis, skewness and 1 adder for computing 

the bin thresholds for inf. Entropy.  



 
 

• For computing logarithm, considering, m iterations for computing logarithm, we require m6b FA. For the sake 

of convenience, we consider m=16 (similar to the stages in CORDIC), thereby we require 96b FA.   

• 2 accumulator blocks are needed since the computation of kurtosis and skewness takes place in parallel, they 

can be reused for rms, σ and inf. entropy, 

• 1 CAM can be reused for D, skewness and inf. entropy, 

• 3 squaring units required for kurtosis and skewness which are computed in parallel, one of the squaring units 

can be reused for rms and σ. 

• 2 NAD for kurtosis and skewness, one of which can be reused for computing D. 

Therefore, we require 2.5 multipliers in total (1 + 3/2 squaring unit), hence Amult = 2.5(1.25b2 – 1.5b) FA. The total 

count for adder/subtractor, Aadd/sub = 100b FA (2 adder/subtractor + 2 accumulators + 96b FA). A b×b NAD requires 

0.5×b(3b - 1) FA and 0.5× b(3b - 1) XOR gates. One b-bit SQRT requires 0.125×b(b + 6) FA and XOR gates [16]. 

Therefore, the total FA count: ANAD = (4.5b2 – 1.5b) FA, ASQRT = (0.1875b2 – 1.125b) FA. The total gate count for 

computing these six features using an alternate architecture (archt2) in terms of FA count is Aarcht2 = (7.8125b2 + 

93.625b) FA. Hence, for a 24-bit datapath, Aarcht2 = 6747 FA.  

It is important to note here that for the complexity analysis, we did not consider the selection module, 2 multiplexers, 

a look-up table (LUT) and 4 registers used in logarithm computation. We also leave out the variable shifters since it 

cannot be ascertained. This is similar to our assumptions for the proposed CORDIC based design where we did not 

consider the comparator and counter logic for computing the probability of each bin p(bink).  

We present a comparative analysis in Fig. 9, for both the architectures (archt1 – CORIC based, archt2 – without 

CORDIC, considering m = 8, 12 and 16 in logarithm computation), varying the word-length, to show the number of FA 

being used for computing the six features. This clearly shows the effectiveness of our proposed CORDIC based feature 

computation engine in terms of hardware complexity which is further prominent with an increase in word-length. 

To the best of our knowledge there is no unified architecture or design for computing the statistical features 

considered in our study. Therefore, for the alternate architecture (archt2 – without CORDIC) we consider a Ripple carry 

adder (RCA), conventional array multiplier (CAM), non-restoring iterative cellular square rooter (SQRT), non-restoring 

array divider (NAD) and multiplicative normalization based logarithm to compute the required features and provided a 

hardware complexity analysis in terms of basic arithmetic operations i.e. full adder (FA) counts. This complexity 

analysis presents a more objective reflection of the qualitative difference between the two architectures. Hence in the 

next section we present the synthesis and verification results for only our proposed CORDIC based design. 

  

 
Fig. 9 Comparison of hardware complexity for a CORDIC and non-CORDIC based architecture for feature extraction, showing variation in the 

number of full adders (FA) required with change in word-length 

 



 
 

5 Synthesis and Verification 
 

The architecture was coded using Verilog as the HDL. To verify its functional correctness we randomly generated five 

datasets of 256 samples in the range of -20 to +20, and computed the target features using Matlab. The Verilog output 

on the same dataset are then compared with the Matlab results and the average errors are calculated as shown in Table 

4. It is evident that the average error may become significant for the features particularly involving higher-order terms 

even when the accuracy of the CORDIC itself is set high. To achieve higher accuracy, therefore, adjusting the datapath 

width for the MAC unit may be necessary depending on the error tolerance of an application. 

 
Table 4 Average error between Matlab and RTL simulation 

Features Average Error 

Mean 0 

Absolute Diff 0 

RMS O(2-8) 

Standard Deviation O(2-10) 

Index of Dispersion O(2-11) 

Kurtosis O(2-8) 

Skewness O(2-12) 

Entropy O(2-12) 

 

The design was synthesized using STMicroelectronics 130-nm technology library with a supply voltage of 1.08V and 

a clock frequency of 50 Hz. The 2-input NAND gate equivalent cell area of the synthesized design was 205K. The 

dynamic power was calculated with the synthesized design using Prime time and is 1nW@50 Hz. Although the design 

was synthesized at 50 Hz, the functionally verified upper range of frequency it is capable of running is 75 MHz.  Since 

the application area we consider is that of human activity recognition where these time domain features are generally 

extracted from kinematic data sampled at very low frequencies (20 ~ 50 Hz) from body-worn inertial sensors, we 

synthesize our design at 50 Hz. However its functionality was verified at higher clock frequencies (up to 75 MHz) for 

high speed applications. The core layout consumes 4 mm2 silicon area and is shown in Fig. 10. 

 

 
Fig. 10 Core chip layout   

 

 

 



 
 

6 Discussion 
 
In this paper we have designed and implemented a CORDIC based engine for computing eight time-domain statistical 

features fundamental in remote monitoring applications involving classification. The engine computes all the eight 

features sequentially in 3n clock cycles and could also be utilized for stand-alone feature computation.  

Our analysis shows that the engine is power efficient and therefore may be implemented within a sensor node for on-

board feature extraction. It also shows that specifically for the features involving higher-order terms the accumulation of 

arithmetic error may be significant and therefore an appropriate trade-off between the accuracy and word-length is 

required depending on a particular application. 
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