The University of Southampton
University of Southampton Institutional Repository

Water mass conversion, fluxes and mixing in the Scotia Sea diagnosed by an inverse model

Water mass conversion, fluxes and mixing in the Scotia Sea diagnosed by an inverse model
Water mass conversion, fluxes and mixing in the Scotia Sea diagnosed by an inverse model
An inverse box model of the Scotia Sea is constructed using hydrographic, tracer, and velocity data collected along the rim of the basin during the Antarctic Large-Scale Box Analysis and the Role of the Scotia Sea (ALBATROSS) cruise. The model provides an estimate of the time-mean three-dimensional circulation as the Antarctic Circumpolar Current (ACC) crosses the region. It concurrently solves for geostrophic and wind-driven Ekman transports across the boundaries of the basin, air–sea-driven diapycnal fluxes, and ‘‘interior’’ diapycnal fluxes below the ocean surface. An increase is diagnosed in the ACC volume transport from 143 +- 13 Sv (Sv = 10^6 m^3 s^-1) at Drake Passage to 149 +- 16 Sv on leaving the Scotia Sea, supplied by the import of 5.9 +- 1.7 Sv of Weddell Sea Deep Water (WSDW) over the South Scotia Ridge. There is a lateral redistribution of the transport, primarily in response to a topographically induced branching of the 70–80 Sv polar front (PF) jet and an increase in the transport associated with the Subantarctic Front (SAF) from 31 +- 7 to 48 +- 4 Sv. A vertical rearrangement of the transport also occurs, with differences O(2 Sv) in the transports of intermediate and deep water masses. These volume transport changes are accompanied by a net reduction (increase) in the heat (freshwater) flux associated with the ACC by 0.02 +- 0.020 PW (0.020 +- 0.017 Sv), the main cause of which is the cooling and freshening of the Circumpolar Deep Water (CDW) layer in the Scotia Sea. The model suggests that the Scotia Sea hosts intense diapycnal mixing in the ocean interior extending 1500–2000 m above the rough topography of the basin. Despite these model results, no evidence is found for a significant diapycnal link between the upper and lower classes of CDW (and hence between the ‘‘shallow’’ and ‘‘deep’’ cells of the Southern Ocean meridional overturning circulation). On the contrary, the boundary between Upper and Lower CDW separates two distinct regimes of diapycnal mixing involving volume fluxes of 1–3 Sv. Whereas in the denser waters topographic mixing is important, in lighter layers air–sea-driven diapycnal volume fluxes are dominant and diapycnal transfers of heat and freshwater are mainly effected by upper-ocean mixing processes. The model indicates that the ventilation of the deep ACC in the Scotia Sea is driven primarily by isopycnal exchanges with the northern Weddell Sea and to a lesser extent by diapycnal mixing with WSDW. The model reveals the existence of a mesoscale eddy-driven overturning circulation across the ACC core involving an isopycnal poleward transport of 8 +- 1 Sv of CDW and an equatorward transport of intermediate water of the same magnitude. This circulation induces a cross-ACC poleward heat flux of 0.022 +- 0.009 PW and an equatorward freshwater flux of 0.02 +- 0.01 Sv. Adequately scaled, the former compares favorably to measurements of the cross-stream eddy heat flux by moored current meters and floats in the ACC and to budget estimates of the circumpolar cross-ACC heat flux.
0022-3670
2565-2587
Naveira Garabato, A.C.
97c0e923-f076-4b38-b89b-938e11cea7a6
Stevens, D.P.
9b78fd18-9ea2-409d-b78f-61ac70555905
Heywood, K.J.
4eeebe72-3857-4729-8d6a-7ece46d37cd5
Naveira Garabato, A.C.
97c0e923-f076-4b38-b89b-938e11cea7a6
Stevens, D.P.
9b78fd18-9ea2-409d-b78f-61ac70555905
Heywood, K.J.
4eeebe72-3857-4729-8d6a-7ece46d37cd5

Naveira Garabato, A.C., Stevens, D.P. and Heywood, K.J. (2003) Water mass conversion, fluxes and mixing in the Scotia Sea diagnosed by an inverse model. Journal of Physical Oceanography, 33 (12), 2565-2587. (doi:10.1175/1520-0485(2003)033<2551:AMSOTC>2.0.CO;2).

Record type: Article

Abstract

An inverse box model of the Scotia Sea is constructed using hydrographic, tracer, and velocity data collected along the rim of the basin during the Antarctic Large-Scale Box Analysis and the Role of the Scotia Sea (ALBATROSS) cruise. The model provides an estimate of the time-mean three-dimensional circulation as the Antarctic Circumpolar Current (ACC) crosses the region. It concurrently solves for geostrophic and wind-driven Ekman transports across the boundaries of the basin, air–sea-driven diapycnal fluxes, and ‘‘interior’’ diapycnal fluxes below the ocean surface. An increase is diagnosed in the ACC volume transport from 143 +- 13 Sv (Sv = 10^6 m^3 s^-1) at Drake Passage to 149 +- 16 Sv on leaving the Scotia Sea, supplied by the import of 5.9 +- 1.7 Sv of Weddell Sea Deep Water (WSDW) over the South Scotia Ridge. There is a lateral redistribution of the transport, primarily in response to a topographically induced branching of the 70–80 Sv polar front (PF) jet and an increase in the transport associated with the Subantarctic Front (SAF) from 31 +- 7 to 48 +- 4 Sv. A vertical rearrangement of the transport also occurs, with differences O(2 Sv) in the transports of intermediate and deep water masses. These volume transport changes are accompanied by a net reduction (increase) in the heat (freshwater) flux associated with the ACC by 0.02 +- 0.020 PW (0.020 +- 0.017 Sv), the main cause of which is the cooling and freshening of the Circumpolar Deep Water (CDW) layer in the Scotia Sea. The model suggests that the Scotia Sea hosts intense diapycnal mixing in the ocean interior extending 1500–2000 m above the rough topography of the basin. Despite these model results, no evidence is found for a significant diapycnal link between the upper and lower classes of CDW (and hence between the ‘‘shallow’’ and ‘‘deep’’ cells of the Southern Ocean meridional overturning circulation). On the contrary, the boundary between Upper and Lower CDW separates two distinct regimes of diapycnal mixing involving volume fluxes of 1–3 Sv. Whereas in the denser waters topographic mixing is important, in lighter layers air–sea-driven diapycnal volume fluxes are dominant and diapycnal transfers of heat and freshwater are mainly effected by upper-ocean mixing processes. The model indicates that the ventilation of the deep ACC in the Scotia Sea is driven primarily by isopycnal exchanges with the northern Weddell Sea and to a lesser extent by diapycnal mixing with WSDW. The model reveals the existence of a mesoscale eddy-driven overturning circulation across the ACC core involving an isopycnal poleward transport of 8 +- 1 Sv of CDW and an equatorward transport of intermediate water of the same magnitude. This circulation induces a cross-ACC poleward heat flux of 0.022 +- 0.009 PW and an equatorward freshwater flux of 0.02 +- 0.01 Sv. Adequately scaled, the former compares favorably to measurements of the cross-stream eddy heat flux by moored current meters and floats in the ACC and to budget estimates of the circumpolar cross-ACC heat flux.

This record has no associated files available for download.

More information

Published date: 2003

Identifiers

Local EPrints ID: 37571
URI: http://eprints.soton.ac.uk/id/eprint/37571
ISSN: 0022-3670
PURE UUID: 0339326e-bc20-4ff9-af41-68036f3bf8d9
ORCID for A.C. Naveira Garabato: ORCID iD orcid.org/0000-0001-6071-605X

Catalogue record

Date deposited: 25 May 2006
Last modified: 16 Mar 2024 03:48

Export record

Altmetrics

Contributors

Author: D.P. Stevens
Author: K.J. Heywood

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×