

1

10/02/15

2 **Genetics and Prognostication in Splenic Marginal Zone Lymphoma:**
3 **Revelations from Deep Sequencing**

4

5 **Running Title: The clinical significance of gene mutations in SMZL**

6 Marina Parry^{1,*}, Matthew JJ Rose-Zerilli^{1,*}, Viktor Ljungström^{2,*}, Jane Gibson³, Jun Wang⁴,
7 Renata Walewska⁵, Helen Parker¹, Anton Parker⁵, Zadie Davis⁵, Anne Gardiner⁵, Neil McIver-
8 Brown⁵, Christina Kalpadakis⁶, Aliki Xochelli⁷, Achilles Anagnostopoulos⁸, Claudia Fazi⁹, David
9 Gonzalez de Castro¹⁰, Claire Dearden¹⁰, Guy Pratt¹¹, Richard Rosenquist², Margaret Ashton-
10 Key¹, Francesco Forconi¹, Andrew Collins¹², Paolo Ghia⁹, Estella Matutes¹³, Gerassimos
11 Pangalis¹⁴, Kostas Stamatopoulos^{7,8}, David Oscier^{1,5}, Jonathan C Strefford¹

12 ¹Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK, ²Department of
13 Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden,

14 ³Centre for Biological Sciences, University of Southampton, Southampton, UK, ⁴Centre for Molecular
15 Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK. ⁵Department of
16 Pathology, Royal Bournemouth Hospital, Bournemouth, UK, ⁶Department of Hematology, School of
17 Medicine, University of Crete, Heraklion, Greece, ⁷Institute of Applied Biosciences, Center for
18 Research and Technology, Thessaloniki, Greece, ⁸Hematology Department and HCT Unit, G.

19 Papanicolaou Hospital, Thessaloniki, Greece, ⁹Division of Molecular Oncology, Department of Onco-
20 Haematology, IRCCS Istituto Scientifico San Raffaele, Fondazione Centro San Raffaele, Università Vita-

21 Salute San Raffaele, Milan, Italy, ¹⁰Haemato-oncology Unit, Division of Molecular Pathology, Institute
22 for Cancer Research, Sutton, UK, ¹¹School of Cancer Studies, University of Birmingham, Birmingham,
23 UK; Department of Haematology, Heart of England NHS Foundation Trust, Birmingham, UK, ¹²Genetic
24 Epidemiology and Bioinformatics, Faculty of Medicine, University of Southampton, UK,

25 ¹³Haematopathology Unit, Hospital Clinic, Barcelona University, Villarroel, Barcelona, Spain,

26 ¹⁴Department of Hematology, Athens Medical Center, Athens, Greece.

27 * These authors contributed equally to this manuscript

28 Correspondence to: Prof Jonathan C Strefford, Cancer Genomics, Cancer Sciences, Somers Cancer
29 Research Building, Southampton General Hospital, Tremona Road, Southampton SO16 6YD. Tel: 44
30 23 8079 5246. E-mail: JCS@soton.ac.uk

31 Text word count: 3777

32 Abstract word count: 186

33 Number figures/tables: 3/3

34 Number references: 39

35

36 Statement of Translational Relevance

37 This multinational study identifies genomic and immunogenetic factors with prognostic significance
38 in splenic marginal zone lymphoma (SMZL), a rare B cell non Hodgkin's lymphoma. Genomic
39 mutations in *TP53*, *KLF2*, *NOTCH2* and *TNFAIP3* were found collectively in over 40% of cases and 13%
40 utilised IGHV genes with no somatic hypermutation (SHM). *TNFAIP3* mutations were associated with
41 an increased risk of high grade transformation. IGHV genes lacking SHM, *KLF2* and *NOTCH2*
42 mutations were associated with shorter time to first treatment, while *TP53* and *MYD88* mutations
43 were predictors of short and long overall survival, respectively. In contrast to cytogenetic and FISH
44 data, *NOTCH2* and *TP53* mutations remained independent factors of outcome in multivariate
45 analyses which included the established prognostic markers: anaemia and thrombocytopenia.
46 Genomic and immunogenetic data have the potential to aid diagnosis, and influence the timing and
47 choice of treatment in SMZL.

48

49 **Abstract**

50 **Purpose:** Mounting evidence supports the clinical significance of gene mutations and immunogenetic
51 features in common mature B-cell malignancies.

52 **Experimental Design:** We undertook a detailed characterization of the genetic background of splenic
53 marginal zone lymphoma (SMZL), using targeted re-sequencing and explored potential clinical
54 implications in a multinational cohort of 175 SMZL patients.

55 **Results:** We identified recurrent mutations in *TP53* (16%), *KLF2* (12%), *NOTCH2* (10%), *TNFAIP3* (7%),
56 *MLL2* (11%), *MYD88* (7%) and *ARID1A* (6%), all genes known to be targeted by somatic mutation in
57 SMZL. *KLF2* mutations were early, clonal events, enriched in patients with del(7q) and *IGHV1-2*04* B-
58 cell receptor immunoglobulins, and were associated with a short median time-to-first-treatment
59 (0.12 vs. 1.11 yrs; $P=0.01$). In multivariate analysis mutations in *NOTCH2* (HR 2.12, 95%CI 1.02-4.4,
60 $P=0.044$) and 100% germline *IGHV* gene identity (HR 2.19, 95%CI 1.05-4.55, $P=0.036$) were
61 independent markers of short time-to-first-treatment, while *TP53* mutations were an independent
62 marker of short overall survival (HR 2.36, 95% CI 1.08-5.2, $P=0.03$).

63 **Conclusion:** We identify key associations between gene mutations and clinical outcome,
64 demonstrating for the first time that *NOTCH2* and *TP53* gene mutations are independent markers of
65 reduced treatment-free and overall survival, respectively.

66

67 **Introduction**

68 Splenic marginal zone lymphoma (SMZL) is a rare chronic B-cell lymphoproliferative disorder that
69 predominantly affects elderly patients and involves the spleen, bone marrow, and usually the
70 peripheral blood (1). The diagnosis is based on a combination of clinical, morphological,
71 histopathological and immunophenotypic data, that serve to distinguish it from other splenic
72 lymphomas (1). Additional distinctive biological features of SMZL include a remarkable bias to the
73 expression of clonotypic B-cell receptors (BcR) utilizing the *IGHV1-2*04* gene and frequent deletions
74 of chromosome 7q (2,3). The median survival of SMZL is around 10 years; 70% of patients require
75 treatment for progressive, symptomatic disease and 5-10% undergo transformation into large B-cell
76 lymphoma. Response rates to splenectomy, single agent Rituximab and Rituximab plus
77 chemotherapy are high but approximately 40% of patients develop progressive disease within 5
78 years (4,5).

79 Easily measured, non disease-specific, parameters such as haemoglobin, platelet count, LDH, serum
80 albumin and the presence of extrahilar lymphadenopathy have prognostic significance in
81 multivariate analysis for overall survival and have led to the introduction of scoring systems and a
82 prognostic index (6-8). In contrast, the value of biomarkers to predict outcome is much less clear.
83 Unmutated immunoglobulin heavy variable (*IGHV*) genes, karyotypic complexity, *TP53* loss/mutation
84 alone or in combination with del(8p), and del(14q) have all been suggested to have an adverse
85 prognostic significance in univariate analyses but none have been confirmed in multivariate analyses
86 (3,9-13). Candidate gene screening and more recently, whole genomic or whole exomic sequencing
87 (WES) studies in small patient cohorts have identified recurrent mutations of genes involved in
88 NOTCH, BcR, Toll-like receptor (TLR) and NF- κ B signaling pathways, chromatin remodelling and the
89 cytoskeleton (14-17). However, targeted resequencing of larger patient cohorts has resulted in
90 conflicting data on the incidence and prognostic significance of *NOTCH2* mutations while little is
91 known about the clinical significance of other gene mutations (14,15).

92 These observations highlight the need for larger studies to determine a more comprehensive picture
93 of the clinical significance of gene mutations in SMZL. Accordingly, using a targeted re-sequencing
94 approach, we screened for mutations in the largest cohort of well-characterised SMZL cases
95 published to date [n=175] and identified a number of gene mutations that contribute to reduced
96 outcome in SMZL. Most notably we demonstrate for the first time that previously known gene
97 mutations (*NOTCH2* and *TP53*) are independent markers of poor survival.

98 **Material and methods**

99 **Patients and samples**

100 **Table 1** describes our cohort of 175 SMZL patients from eight centres across Europe, all meeting
101 established diagnostic criteria (18). The mean time from diagnosis to sampling was 3.2 years (0-24,
102 SD = 4.7). Mantle cell lymphoma (MCL) was excluded in CD5+ve cases using FISH and conventional
103 cytogenetics. Splenic lymphoma/leukemia unclassifiable (SLLU) was precluded either by splenic
104 histopathology or by omission of SLLU-variant cases with distinctive cytology, such as those with
105 splenic diffuse red pulp lymphoma (SDRL). Each transformation event was diagnosed histologically.
106 Informed patient consent was obtained according to the declaration of Helsinki and the study was
107 ethically approved by the local REC.

108 DNA was extracted from either peripheral blood [n=135], bone marrow [n=22], spleen [n=17] or
109 lymph nodes [n=1]. Germline DNA was obtained from buccal cells or sorted T cells [n=25]. The
110 Sequential DNA samples from 9 cases either diagnosed as clonal lymphocytosis of marginal-zone
111 origin (19) [CBL-MZ, n=1] or SMZL [n=8] (mean of 4.3 yrs between samples, **Supp Table 1**) were
112 evaluated to investigate the clonal evolution of key gene mutations.

113 **Haloplex Re-sequencing and Sanger validation**

114 189 DNA samples from 175 SMZL cases were analysed with Haloplex Target Enrichment system
115 (Agilent Technologies) that enriched 2.39 Mb of genomic DNA for the coding regions of 49 genes
116 known to be targeted by somatic mutations in SMZL, and an additional 719 genes with a postulated
117 role in the pathophysiology of SMZL or other chronic B-cell lymphoproliferative disorders (**Supp**
118 **Methods and Supp Table 2**). Independent analysis was performed by the University of Southampton
119 and Uppsala University to allow the identification of high-confidence variants in our cohort (**Supp**
120 **Methods**).

121 Using conventional Sanger sequencing, we validated 86 variants identified in a number of genes
122 using the experimental conditions and primers described in **Supp Table 3**. Furthermore, we
123 independently screened *NOTCH2* exon 34 in 145/175 SMZL, using primers from Rossi et al (14).

124 **Statistical analysis**

125 Statistical analysis was performed using SPSS (v20). Time-to-first-treatment (TTFT), Event-free (EFS)
126 and Overall survival (OS) as defined in the **Supp Methods**. Our cohort has 81% power to detect an
127 Overall Survival 0.5 Hazard Ratio associated with *NOTCH2* mutations present in 26% of patients (as
128 observed (14)). Results were determined to be statistically significant at the 5% level.

129

130 **Results**

131 **Overview of re-sequencing data**

132 The mean re-sequencing depth across our gene panel was 297-fold (range 129-702). More than 85%
133 of all bases were covered at >50-fold. The analysis described herein, focuses on the biological and
134 clinical importance of key recurrently mutated genes (**Figure 1A**) known to be somatically acquired in
135 SMZL based on previously published data (14-17,20-22). For our data on other gene mutations,
136 whilst many are annotated in the COSMIC database they could not be confirmed as somatically
137 acquired due to the lack of patient germ-line material and were not taken forward for analysis
138 (Detailed in **Supp Table 4**). This lack of germ-line material is not unexpected in an international
139 retrospective cohort of rare tumours such as SMZL.

140 In our cohort, we identified recurrent mutations, at suitable frequency for accurate clinical
141 correlations, in *TP53* [n=26 cases], *KLF2* [n=21], *MLL2* [n=20], *NOTCH2* [n=17], *TNFAIP3* [n=13],
142 *MYD88* [n=12], *ARID1A* [n=10], *NOTCH1* [n=10] and *CREBBP* [n=9] (**Figure 1A and B, Supp Figure 1**).
143 For validation, we employed Sanger sequencing and confirmed the presence of 86/86 selected
144 variants in these genes and we showed 99% concordance between our Haloplex and Sanger
145 sequencing of *NOTCH2* exon 34 (**Supp Table 5**). Furthermore, the Haloplex analysis of paired
146 tumour/normal DNA samples [n=14], showed the presence of somatically acquired mutations in
147 these genes [n=77] and, critically, no germ-line variants were identified in the genes we focus on
148 herein (**Supp Table 6**). Therefore, our analytical data supports the somatic origin of mutations within
149 these recurrent genes.

150 **Mutation patterns and evolution**

151 To obtain insight into the genomic context of these gene mutations, we submitted our data to two
152 analytical packages. Firstly, we searched for pairwise gene correlations and mutually exclusive
153 relationships between our 'known somatic' mutated genes using the mutation relation test (MRT,
154 Genome Music) (23). There are 11 and 13 significant MRT co-occurring and mutually exclusive
155 relationships between mutated genes, respectively (considering only relationships with $P < 0.001$,
156 **Figure 1C**), that demonstrated the following classes of gene mutation relationships: (1) a single and
157 distinct independent gene mutation event, such as *MYD88*, where a mutation is invariably observed
158 as an isolated event; (2) the presence of cancer drivers that have many mutually exclusive
159 relationships, such as *NOTCH2*, *TP53* and *TNFAIP3*, and (3) a group of genes such as *KLF2* and *ARID1A*
160 that have more co-occurring relationships, thus suggesting a synergistic function to promote
161 tumorigenesis.

162 Secondly, we studied clonal evolution in SMZL, by differentiating between early, clonal events, and
163 later, subclonal mutations. In order to do this, we initially performed integrative analysis of our
164 Haloplex re-sequencing and SNP6 copy number data from our seven published WES SMZL cases (17),
165 employing the ABSOLUTE algorithm (24) (**Supp Figure 2**). Using this approach, all our initial cases
166 harboured a diploid genome, so we extended this analysis to include an additional 38 samples
167 without copy number data but with purity information available from FACS analysis. Using this
168 approach we were able to classify clonal or subclonal mutation in *KLF2*, *NOTCH2*, *TP53*, *CREBBP* and
169 *TNFAIP3* (**Figure 2A and 2B**).

170 To extend this single time-point bioinformatics analysis, we also analysed a second DNA sample
171 preceding or subsequent to SMZL diagnosis in 9 patients. For this analysis, we again only focused on
172 variation in genes known to be targeted by somatic mutations in SMZL. We identified 12 variants,
173 and after accounting for tumour purity, these data are outlined in **Supp Table 1 and Figure 2C**. Whilst
174 the number of mutations per case was insufficient for comprehensive analysis, the following
175 observations could be made: 1) 3 patients harboured mutations that remained fully clonal over the
176 two timepoints (*ARID1A* [n=1] and *CREBBP* [n=2]) which supports the ABSOLUTE data for these
177 genes, 2) 6 cases contained seven mutations where the normalized VAF increased over time,
178 supporting the hypothesis that these genes are important in driving the disease, including four
179 patients with *TP53* mutations that acquire a deletion of 17p (isochromosomes 17q) at the second
180 timepoint (**Figure 2C**), and 3) three patients displayed either a mutation that became undetectable at
181 timepoint 2 (*TNFAIP3* and *NOTCH2*), or one that remained at a low VAF (*NOTCH2*, 0.04% allele
182 frequency), even with a concomitantly emerging *TP53* mutation (**Supp Table 1**).

183 **Biologically significant mutations in SMZL**

184 *KLF2*, or Krüppel-like factor 2, mutations were detected in 21/175 cases (12%, **Figure 1A**) and were
185 distributed across the entire protein, with a cluster in the C2H2 domain (C terminus). A Q24X variant
186 was identified in three patients, suggesting the presence of mutation hotspots. Mutations were often
187 (43%) stop-gains or frame-shift variants (**Figure 1B**), suggesting an impact on protein function. All
188 mutations tested were somatically acquired (n=9). From our ABSOLUTE analysis, all 11 mutations
189 were defined as clonal (**Figure 2B**), and other recurrently mutated genes present in these cases were
190 estimated to have lower CCFs than *KLF2* (e.g. *NOTCH2* and *TNFAIP3*, **Figure 2B**). *KLF2* mutations were
191 significantly associated with del(7q) (53% vs. 11%; P=0.001), *IGHV1-2*04* gene usage (50% vs. 7%;
192 P<0.001), and gene mutations including *NOTCH2*, *TNFAIP3* and *ARID1A* (all P<0.001). Together, these
193 observations suggest that the potential cell survival advantage provided by an early *KLF2* mutation
194 allows the acquisition of additional functionally synergistic gene mutations to promote
195 tumourigenesis (**Figure 1C**).

196 We independently screened *NOTCH2* by Haloplex (mean gene coverage of 572-fold) and direct
197 Sanger sequencing of exon 34, and identified 18 mutations in 17 patients, a frequency of 10% in our
198 cohort (**Figure 1A**). We manually examined the *NOTCH2* sequence reads and found no evidence of
199 any additional mutations below the resolution of our variant calling algorithm. As expected, the
200 mutations were nonsense [n=9], frameshift [n=7] and missense [n=2] principally targeting the TAD
201 and PEST domain encoded by exon 34 (**Figure 1B**). Several of our mutations (R2360*, R2400*) have
202 been previously reported to result in over-expression of the Notch2 protein and active signalling (14).
203 *NOTCH2* mutations were classified as sub-clonal or clonal (**Figure 2A**). We also identified *NOTCH1*
204 mutations [n=10], several of which were truncating frameshift indels [n=2, P2514fs*4] or stopgain
205 mutations [n=2] in exon 34.

206 We identified recurrent mutations in *MYD88* [12/175 cases, 7%] and *TNFAIP3* [13/175 cases, 7%],
207 genes involved in Toll-like receptor and NF- κ B signalling. Of the 12 *MYD88* mutations, 7 and 2 were
208 the gain-of-function L265P or S219C variants, respectively (25). Mutations in *MYD88* were single and
209 distinct events, mutually exclusive from mutations in *TP53* and *NOTCH2*. Twenty-one *TNFAIP3*
210 mutations were identified in 13 patients (**Figure 1B**), 15 of which would result in truncation of the
211 A20 protein. One of these mutations (E361X) has been shown to abrogate the ability of A20 to
212 negatively regulate NF κ B-signalling (26). Mutations co-existed with *KLF2* ($P<0.001$) mutations but
213 showed a reverse association with *NOTCH2* ($P<0.001$) and *TP53* ($P<0.001$).

214 Mutations of *TP53* and *ARID1A*, both involved in cell cycle control and DNA damage response, were
215 identified in 26/175 (16%) and 10/175 (6%) patients, respectively. We defined 28 missense [n=18],
216 nonsense [n=5], frameshift [n=2] and splicing [n=3] *TP53* mutations, largely annotated in COSMIC
217 (27/28, **Figure 1B**), in 26 patients who tended to have deletions of 17p ($P=0.003$) and a complex
218 karyotype ($P<0.001$, **Figure 1C**). Finally, we confirm our previous study by demonstrating recurrent
219 mutations in *CREBBP* [n=9] (17). All our *CREBBP* mutations appear to be early genetic events as they
220 were classified as fully clonal (**Figure 2A**) akin to the situation in follicular lymphoma (27); two of our
221 mutations were the Y1450C variant previously identified in DLBCL, which has been shown to
222 compromise the protein's ability to acetylate BCL6 and p53 (28).

223 **Clinical significance of mutations in SMZL**

224 Initially we looked for associations between gene mutations and clinical and laboratory features
225 measured routinely in clinical practice (**Figure 3A**). Patients with *KLF2* and *NOTCH2* mutations were
226 at higher risk of receiving treatment including splenectomy (OR=4.51, 95%CI 1.68-12.10; $P=0.002$ &
227 OR=1.16, 95%CI 1.08-1.25; $P=0.007$). Histological evidence of transformation to large B-cell
228 lymphoma was reported in 19/175 (11%) patients; these patients were more likely to have 100%
229 germline IGHV gene identity (40% vs. 10%, $P=0.04$) and exhibited a significantly shorter overall

230 survival (9.0 vs 16.5 yrs; $P=0.04$) in comparison to non-transformed cases. The only mutated gene
231 associated with transformation was *TNFAIP3* (32% vs. 4%, $P=0.002$).

232 Follow-up outcome data were available for 164, 117 and 169 patients for TTFT, EFS and OS,
233 respectively. First, we demonstrated the clinical relevance of our cohort by testing for the prognostic
234 significance of previously documented clinical and laboratory features (**Table 2**). We then performed
235 univariate analysis of the gene mutations against TTFT, EFS and OS (**Table 2**). Genes associated with
236 reduced TTFT were; 1) *KLF2* (HR 1.93, 95%CI 1.16-3.32, $P=0.01$) where wild-type and mutant patients
237 exhibited median TTFT of 1.11 and 0.12 years, respectively, and 2) *NOTCH2* (HR 2.13, 95%CI 1.26-
238 3.58, $P=0.003$) where wild-type and mutant patients exhibited median TTFT of 0.94 and 0.09 years,
239 respectively (**Figure 3B and C**). Gene mutations associated with shorter EFS included *TP53* (HR 2.17,
240 95%CI 1-4.74, $P=0.05$) with median EFS of 3.11 and 0.98 years for wild-type and mutated patients,
241 respectively. Finally, we tested the impact of gene mutations on OS and showed reduced survival for
242 *TP53* (HR 2.16, 95%CI 1.05-4.42, $P=0.032$) mutations with a median OS of 12.21 and 16.03 years for
243 mutant and wild-type cases, respectively, and the reverse for *MYD88* mutated individuals (HR 0.04,
244 95%CI 0.01-2.48, $P=0.02$) (**Figure 3D and E**).

245 ***NOTCH2 and TP53 mutations were independent risk factors for reduced TTFT and OS***

246 Those gene mutations shown to be associated with reduced outcome in univariate analysis were
247 tested using multivariate Cox proportional hazard analysis. Along with the presence of gene
248 mutations, other variables included in the analysis were age at diagnosis, haemoglobin levels,
249 platelets and lymphocyte counts. We developed these models for TTFT, EFS and OS as they
250 permitted the relative prognostic value of gene mutations to be assessed in a large, informative
251 group of patients in the context of the most available clinical data (**Table 3**). Our multivariate EFS
252 model identified age at diagnosis, lymphocyte count and low platelet count as independent risk
253 factors, however *TP53* became non-significant in this analysis. We show that in addition to
254 haemoglobin levels, both *NOTCH2* (HR 2.12, 95%CI 1.02-4.4, $P=0.044$) and 100% germline *IGHV* gene
255 identify (HR 2.19, 95%CI 1.05-4.55, $P=0.036$) are independent risk factors for TTFT. Furthermore, we
256 show that the presence of *TP53* mutation is an independent risk factor for OS (HR 2.36, 95%CI 1.08-
257 5.20, $P=0.03$).

258

259 **Discussion**

260 The primary aim of this study was to determine the clinical significance of somatically acquired gene
261 mutations in SMZL, identified in the current and previously reported studies (14-17,22). Notably, we
262 were able to identify key associations between gene mutations and clinical outcome, demonstrating
263 for the first time that *NOTCH2* and *TP53* gene mutations are independent markers of poor outcome.
264 The main strengths of the present study were the cost-effective resequencing approach which
265 enabled screening of a large number of candidate genes at high sequencing depth and, most
266 importantly, the size of the cohort in a rare lymphoma, enabling us to overcome limitations befalling
267 previous studies evaluating the clinical significance of clinical and genetic biomarkers in SMZL.
268 Indeed, the lack of a treatment naïve clinical trial cohort, historical use of splenectomy for diagnosis,
269 inclusion of non-splenectomised cases who might have SLLU and the indolent nature of the disease,
270 where in an elderly population many patients die from unrelated causes, all underline the need for
271 caution in interpreting outcome data in SMZL. We sought to minimize the effect of these factors in a
272 number of ways: (1) by confining the study to centres with expertise in SMZL, we could ensure expert
273 diagnostic review especially for cases diagnosed prior to the currently-accepted diagnostic criteria,
274 (2) treatments included a limited range of modalities, predominantly splenectomy, alkylating agents
275 and rituximab, and splenectomy was considered to be a therapy regardless of the indication (**Supp**
276 **Table 7**), and (3) the use of multiple survival endpoints enabled the impact of prognostic markers on
277 disease biology as well as the overall survival of an elderly patient cohort to be assessed.
278 In addition to confirming the presence of mutations in *TP53*, and in genes involved in NOTCH, BcR,
279 TLR, NF-κB signaling and in chromatin modifiers (14-17,22), we identified recurrent heterozygous
280 inactivating mutations in *KLF2*, a member of the Krüppel-like family of transcription factors with roles
281 in cell differentiation, proliferation, activation and trafficking (29), in 12% of analyzed cases. *KLF2* was
282 included in our re-sequencing experiments due to reanalysis of our published WES data (17), that
283 showed evidence of mutations in 4/7 cases in spite of the low sequence read-depth present at this
284 locus. During the preparation and submission of this manuscript, two studies independently
285 identified recurrent *KLF2* mutations in SMZL, at a frequency higher than in our study (22,30), which is
286 likely to be a reflection of the patient cohort analyzed in our current study, as we identified a lower
287 frequency of del(7q) and *IGHV1-2*04* in our cohort, compared to other large studies (3,22).
288 Interestingly, in mice, *KLF2* deficiency is associated with a failure to maintain B-1 B cells, expansion of
289 the marginal zone B-cell pool and expression of marginal zone characteristics by follicular B cells (31-
290 33). These observations may reasonably be considered as indicating a role of *KLF2* mutations in the
291 natural history of SMZL, an argument also supported by their significant enrichment among SMZL
292 cases with clonotypic BcR utilizing the *IGHV1-2*04* gene. This alludes to acquisition and/or selection

293 of *KLF2* mutations in a context of particular signaling via specific BCRs with distinctive
294 immunogenetic features, similar to what has been observed in other B-cell malignancies, most
295 notably in stereotyped subsets of CLL (34). In 11 cases we were able to study the clonal architecture
296 of *KLF2* mutations: in each case the *KLF2* mutations were clonal and were associated with other
297 subclonal mutations, often involving other clinically significant genes such as *NOTCH2* and *TNFAIP3*.
298 The invariable association of clonal *KLF2* mutations with other mutations involving different
299 pathways, and deletions of 7q suggests that the former may have a pro-survival function and
300 additional mutations may be necessary for disease progression. It will be of interest to determine the
301 incidence of *KLF2* mutations and genomic complexity in cases of clonal B-lymphocytosis of marginal-
302 zone origin (CBL-MZ) (19), especially in those cases progressing to SMZL.

303 Consistent with the role of the NOTCH2-Delta-like 1 ligand pathway in normal marginal zone
304 development (35), and the previously reported finding of *NOTCH2* mutations in SMZL (14,15), we
305 found recurrent mutations in exon 34 of *NOTCH2* in 10% of cases. This compares to an incidence of
306 21% (14), 25% (15) and 7% (16) in previously reported series, probably reflecting differences in
307 sample size and cohort composition. We also detected recurrent mutations in other NOTCH pathway
308 genes including *NOTCH 3* and *4* and *SPEN*. However, their role in the pathogenesis of SMZL is unclear
309 so we have not focused on them specifically.

310 We evaluated the prognostic significance of somatically acquired mutations on TTFT, EFS and OS.
311 Short TTFT was associated with mutations in *KLF2*, *NOTCH2* and *ARID1A*; short EFS with mutations in
312 *TP53*; and, short OS with mutations in *TP53*, whereas *MYD88* mutations were associated with a
313 longer OS. Although the study by Rossi *et al* indicated that *NOTCH2* mutations were associated with a
314 prolonged 5-year OS and progression-free survival following first line treatment (14), our data based
315 on a substantially larger cohort shows that *NOTCH2* mutation are linked to reduced outcome, an
316 observation corroborated by Kiel *et al* who also noted an association with shorter time from
317 diagnosis to either relapse, transformation or death, albeit in a much smaller cohort of SMZL cases
318 [n=46] (15). Additional studies of larger patient cohorts will be required to validate the clinical
319 importance of *NOTCH2* mutations. Cases with a *MYD88* mutation exhibited longer OS and
320 comparable clinical and laboratory features to other cases with SMZL apart from a higher incidence
321 of low level IgM paraproteins, detected in 8/9 cases with available data. The poor prognostic
322 significance of *TP53* mutations is consistent with previously reported data on *TP53* abnormalities.

323 Our multivariate analysis demonstrated for the first time in SMZL that both genetic and
324 immunogenetic parameters retained prognostic significance in a model that included age,
325 haemoglobin, platelet count and lymphocyte count. We chose to base our multivariate analysis on
326 the study of Salido *et al*, as this is the only large study to include base-line clinical variables with
327 chromosomal features (3). While the independent prognostic significance of age, anaemia and

328 thrombocytopenia were expected and consistent with many previous studies, the biological basis for
329 the impact of a lymphocyte count of $< 4 \times 10^9/l$, noted in an early (36) but not in more recent studies
330 (3,37), requires further investigation. Interestingly, our study suggests that gene mutations, such as
331 those targeting *NOTCH2* and *TP53* have more clinical utility than cytogenetic features, such as
332 karyotypic complexity, 14q aberrations and *TP53* deletions that did not retain prognostic significance
333 in previous reports (3). Specifically, *NOTCH2* and truly unmutated *IGHV* genes (but not unmutated
334 *IGHV* genes using a 98% cut-off) were independent markers of TTFT and *TP53* of OS. Given the
335 historical use of splenectomy to both diagnose and treat SMZL patients, our associations with TTFT
336 should be considered with a note of caution.

337 Since transformation to a high grade lymphoma is usually associated with resistance to treatment
338 and very poor survival, we were also interested to see if any genomic abnormalities were associated
339 with an increased risk of transformation, as noted for *NOTCH1* mutations in CLL (38). In our study,
340 *TNFAIP3* mutations together with truly unmutated clonotypic *IGHV* genes were all found at a higher
341 frequency in cases that subsequently transformed. Further studies comparing the genomic landscape
342 of paired chronic phase and clonally-related transformed samples, as performed in CLL and FL
343 (27,39), will be required to determine the drivers of transformation.

344 In summary, we show that gene mutations and immunogenetic features have prognostic significance
345 in a large and well-characterized cohort of patients with SMZL. Additional studies will be required to
346 confirm our findings and to determine the functional consequences of these mutations, the
347 incidence and importance of copy number and epigenetic abnormalities in gene silencing and the
348 clinical value of mutation screening in the differential diagnosis and management of SMZL.

349 **Acknowledgements**

350 The authors gratefully acknowledge all patients who contributed to this study. The authors would
351 also like to thank Professor Nick Cross for help during the preparation of this manuscript.

352 **Grant Support**

353 This work was funded by Leukaemia and Lymphoma Research, the Kay Kendall Leukaemia Fund,
354 Cancer Research UK, Wessex Medical Research, the Bournemouth Leukaemia Fund, the Swedish
355 Cancer Society and the Swedish Research Council.

356 **Authorship contributions**

357 MP wrote the paper, performed research and analysed the data, MRZ performed research, analysed
358 the data, performed statistical analysis and wrote the paper, VL analysed and interpreted the data,
359 JG analysed and interpreted data, JW analysed and interpreted the data, RW collected, analysed and
360 interpreted data, HP performed research and analysed the data, AP performed research, ZD
361 performed research, AG performed research, CK collected, analysed and interpreted data, ES
362 collected, analysed and interpreted data, AX collected, analysed and interpreted data, CF collected,
363 analysed and interpreted data, DGdC collected, analysed and interpreted data, CD collected,
364 analysed and interpreted data, GP collected, analysed and interpreted data, RR analysed the data,
365 MAK collected, analysed and interpreted data, FF collected, analysed and interpreted data, AC
366 performed statistical analysis, PG collected, analysed and interpreted data, EM collected, analysed
367 and interpreted data, GP collected, analysed and interpreted data, KS collected, analysed and
368 interpreted data, DO designed the research, collected, analysed and interpreted data, and wrote the
369 paper, JCS designed the research, analysed the data and wrote the paper.

370

371 The authors declare no conflict of interests.

372 **References**

373 1. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al. WHO Classification of Tumours of
374 Haematopoietic and Lymphoid Tissues, Fourth Edition. Lyon, France: World Health Organization; 2008.

375 2. Bikos V, Darzentas N, Hadzidimitriou A, Davis Z, Hockley S, Traverse-Glehen A, et al. Over 30% of patients with
376 splenic marginal zone lymphoma express the same immunoglobulin heavy variable gene: ontogenetic implications.
377 Leukemia 2012;26(7):1638-46.

378 3. Salido M, Baró C, Oscier D, Stamatopoulos K, Dierlamm J, Matutes E, et al. Cytogenetic aberrations and their
379 prognostic value in a series of 330 splenic marginal zone B-cell lymphomas: a multicenter study of the Splenic B-Cell
380 Lymphoma Group. Blood 2010;116(9):1479-88.

381 4. Kalpadakis C, Pangalis GA, Angelopoulou MK, Sachanas S, Kontopidou FN, Yiakoumis X, et al. Treatment of splenic
382 marginal zone lymphoma with rituximab monotherapy: progress report and comparison with splenectomy. Oncologist
383 2013;18(2):190-7.

384 5. Lenglet J, Traullé C, Mounier N, Benet C, Munoz-Bongrand N, Amorin S, et al. Long-term follow-up analysis of 100
385 patients with splenic marginal zone lymphoma treated with splenectomy as first-line treatment. Leuk Lymphoma
386 2014;55(8):1854-60.

387 6. Montalbán C, Abraira V, Arcaini L, Domingo-Domenech E, Guisado-Vasco P, Iannitto E, et al. Risk stratification for
388 Splenic Marginal Zone Lymphoma based on haemoglobin concentration, platelet count, high lactate dehydrogenase level
389 and extrahilar lymphadenopathy: development and validation on 593 cases. Br J Haematol 2013;159(2):164-71.

390 7. Montalban C, Abraira V, Arcaini L, Domingo-Domenech E, Guisado-Vasco P, Iannitto E, et al. Simplification of risk
391 stratification for splenic marginal zone lymphoma: a point-based score for practical use. Leuk Lymphoma 2013:[Epub ahead
392 of print].

393 8. Arcaini L, Lazzarino M, Colombo N, Burcheri S, Boveri E, Paulli M, et al. Splenic marginal zone lymphoma: a
394 prognostic model for clinical use. Blood 2006;107(12):4643-9.

395 9. Algara P, Mateo MS, Sanchez-Beato M, Mollejo M, Navas IC, Romero L, et al. Analysis of the IgV(H) somatic
396 mutations in splenic marginal zone lymphoma defines a group of unmutated cases with frequent 7q deletion and adverse
397 clinical course. Blood 2002;99(4):1299-304.

398 10. Gruszka-Westwood AM, Hamoudi RA, Matutes E, Tuset E, Catovsky D. p53 abnormalities in splenic lymphoma
399 with villous lymphocytes. Blood 2001;97(11):3552-8.

400 11. Fresquet V, Robles EF, Parker A, Martinez-Useros J, Mena M, Malumbres R, et al. High-throughput sequencing
401 analysis of the chromosome 7q32 deletion reveals IRF5 as a potential tumour suppressor in splenic marginal-zone
402 lymphoma. Br J Haematol 2012;158(6):712-26.

403 12. Hockley SL, Else M, Morilla A, Wotherspoon A, Dearden C, Catovsky D, et al. The prognostic impact of clinical and
404 molecular features in hairy cell leukaemia variant and splenic marginal zone lymphoma. Br J Haematol 2012;158(3):347-54.

405 13. Rinaldi A, Mian M, Chigrinova E, Arcaini L, Bhagat G, Novak U, et al. Genome-wide DNA profiling of marginal zone
406 lymphomas identifies subtype-specific lesions with an impact on the clinical outcome. Blood 2011;117(5):1595-604.

407 14. Rossi D, Trifonov V, Fangazio M, Bruscaggin A, Rasi S, Spina V, et al. The coding genome of splenic marginal zone
408 lymphoma: activation of NOTCH2 and other pathways regulating marginal zone development. *J Exp Med* 2012;209(9):1537-
409 51.

410 15. Kiel MJ, Velusamy T, Betz BL, Zhao L, Weigelin HG, Chiang MY, et al. Whole-genome sequencing identifies
411 recurrent somatic NOTCH2 mutations in splenic marginal zone lymphoma. *J Exp Med* 2012;209(9):1553-65.

412 16. Martínez N, Almaraz C, Vaqué JP, Varela I, Derdak S, Beltran S, et al. Whole-exome sequencing in splenic marginal
413 zone lymphoma reveals mutations in genes involved in marginal zone differentiation. *Leukemia* 2014:[Epub ahead of print].

414 17. Parry M, Rose-Zerilli MJ, Gibson J, Ennis S, Walewska R, Forster J, et al. Whole exome sequencing identifies novel
415 recurrently mutated genes in patients with splenic marginal zone lymphoma. *PLoS One* 2013;8(12):e83244.

416 18. Matutes E, Oscier D, Montalban C, Berger F, Callet-Bauchu E, Dogan A, et al. Splenic marginal zone lymphoma
417 proposals for a revision of diagnostic, staging and therapeutic criteria. *Leukemia* 2008;22(3):487-95.

418 19. Xochelli A, Kalpadakis C, Gardiner A, Balaikas P, Vassilakopoulos TP, Mould S, et al. Clonal B-cell lymphocytosis
419 exhibiting immunophenotypic features consistent with a marginal zone origin: is this a distinct entity? *Blood* 2013:[Epub
420 ahead of print].

421 20. Rossi D, Deaglio S, Dominguez-Sola D, Rasi S, Vaisitti T, Agostinelli C, et al. Alteration of BIRC3 and multiple other
422 NF-κB pathway genes in splenic marginal zone lymphoma. *Blood* 2011;118(18):4930-4.

423 21. Novak U, Rinaldi A, Kwee I, Nandula SV, Rancoita PM, Compagno M, et al. The NF- κ B negative regulator
424 TNFAIP3 (A20) is inactivated by somatic mutations and genomic deletions in marginal zone lymphomas. *Blood*
425 2009;113(20):4918-21.

426 22. Piva R, Deaglio S, Famà R, Buonincontri R, Scarfò I, Bruscaggin A, et al. The krüppel-like factor 2 transcription
427 factor gene is recurrently mutated in splenic marginal zone lymphoma. *Leukemia* 2014:[Epub ahead of print].

428 23. Dees ND, Zhang Q, Kandoth C, Wendl MC, Schierding W, Koboldt DC, et al. MuSiC: identifying mutational
429 significance in cancer genomes. *Genome Res* 2012;22(8):1589-98.

430 24. Carter SL, Cibulskis K, Helman E, McKenna A, Shen H, Zack T, et al. Absolute quantification of somatic DNA
431 alterations in human cancer. *Nat Biotech* 2012;30(5):413-21.

432 25. Ngo VN, Young RM, Schmitz R, Jhavar S, Xiao W, Lim KH, et al. Oncogenically active MYD88 mutations in human
433 lymphoma. *Nature* 2011;470(7332):115-9.

434 26. Honma K, Tsuzuki S, Nakagawa M, Tagawa H, Nakamura S, Morishima Y, et al. TNFAIP3/A20 functions as a novel
435 tumor suppressor gene in several subtypes of non-Hodgkin lymphomas. *Blood* 2009;114(12):2467-75.

436 27. Okosun J, Bödör C, Wang J, Araf S, Yang CY, Pan C, et al. Integrated genomic analysis identifies recurrent
437 mutations and evolution patterns driving the initiation and progression of follicular lymphoma. *Nat Genet* 2014;46(2):176-
438 81.

439 28. Pasqualucci L, Dominguez-Sola D, Chiarenza A, Fabbri G, Grunn A, Trifonov V, et al. Inactivating mutations of
440 acetyltransferase genes in B-cell lymphoma. *Nature* 2011;471(7337):189-95.

441 29. Pearson R, Fleetwood J, Eaton S, Crossley M, Bao S. Kruppel-like transcription factors: A functional family. *Int J
442 Biochem Cell Biol* 2008;40:1996-2001.

443 30. Clipson A, Wang M, de Leval L, Ashton-Key M, Wotherspoon A, Vassiliou G, et al. KLF2 mutation is the most
444 frequent somatic change in splenic marginal zone lymphoma and identifies a subset with distinct genotype. Leukemia
445 2015:[Epub ahead of print].

446 31. Hart GT, Wang X, Hogquist KA, Jameson SC. Krüppel-like factor 2 (KLF2) regulates B-cell reactivity, subset
447 differentiation, and trafficking molecule expression. Proc Natl Acad Sci U S A 2011;108(2):716-21.

448 32. Hoek KL, Gordy LE, Collins PL, Parekh VV, Aune TM, Joyce S, et al. Follicular B cell trafficking within the spleen
449 actively restricts humoral immune responses. Immunity 2010;33(2):254-65.

450 33. Hart GT, Peery SL, Hamilton SE, Jameson SC. Cutting edge: Krüppel-like factor 2 is required for phenotypic
451 maintenance but not development of B1 B cells. J Immunol 2012;189(7):3293-7.

452 34. Strefford JC, Sutton LA, Baliakas P, Agathangelidis A, Malčíková J, Plevova K, et al. Distinct patterns of novel gene
453 mutations in poor-prognostic stereotyped subsets of chronic lymphocytic leukemia: the case of SF3B1 and subset #2.
454 Leukemia 2013;27(11):2196-9.

455 35. Saito T, Chiba S, Ichikawa M, Kunisato A, Asai T, Shimizu K, et al. Notch2 is preferentially expressed in mature B
456 cells and indispensable for marginal zone B lineage development. Immunity 2003;18(5):675-85.

457 36. Troussard X, Valensi F, Duchayne E, Garand R, Felman P, Tulliez M, et al. Splenic lymphoma with villous
458 lymphocytes: clinical presentation, biology and prognostic factors in a series of 100 patients. Groupe Français
459 d'Hématologie Cellulaire (GFHC). Br J Haematol 1996;93(3):731-6.

460 37. Parry-Jones N, Matutes E, Gruszka-Westwood AM, Swansbury GJ, Wotherspoon AC, Catovsky D. Prognostic
461 features of splenic lymphoma with villous lymphocytes: a report on 129 patients. Br J Haematol 2003;120(5):759-64.

462 38. Algrin C, Brisou G, Beldjord K, Mounier N, Berger F, Baseggio L, et al. Prognostic Impact Of Somatic NOTCH2
463 Mutation In Splenic Marginal Zone Lymphoma Blood - ASH Abstracts 2013;122(21):4247.

464 39. Fabbri G, Khiabanian H, Holmes AB, Wang J, Messina M, Mullighan CG, et al. Genetic lesions associated with
465 chronic lymphocytic leukemia transformation to Richter syndrome. J Exp Med 2013;210(11):2273-88.

466 40. Landau DA, Carter SL, Stojanov P, McKenna A, Stevenson K, Lawrence MS, et al. Evolution and impact of subclonal
467 mutations in chronic lymphocytic leukemia. Cell 2013;152(4):714-26.

468

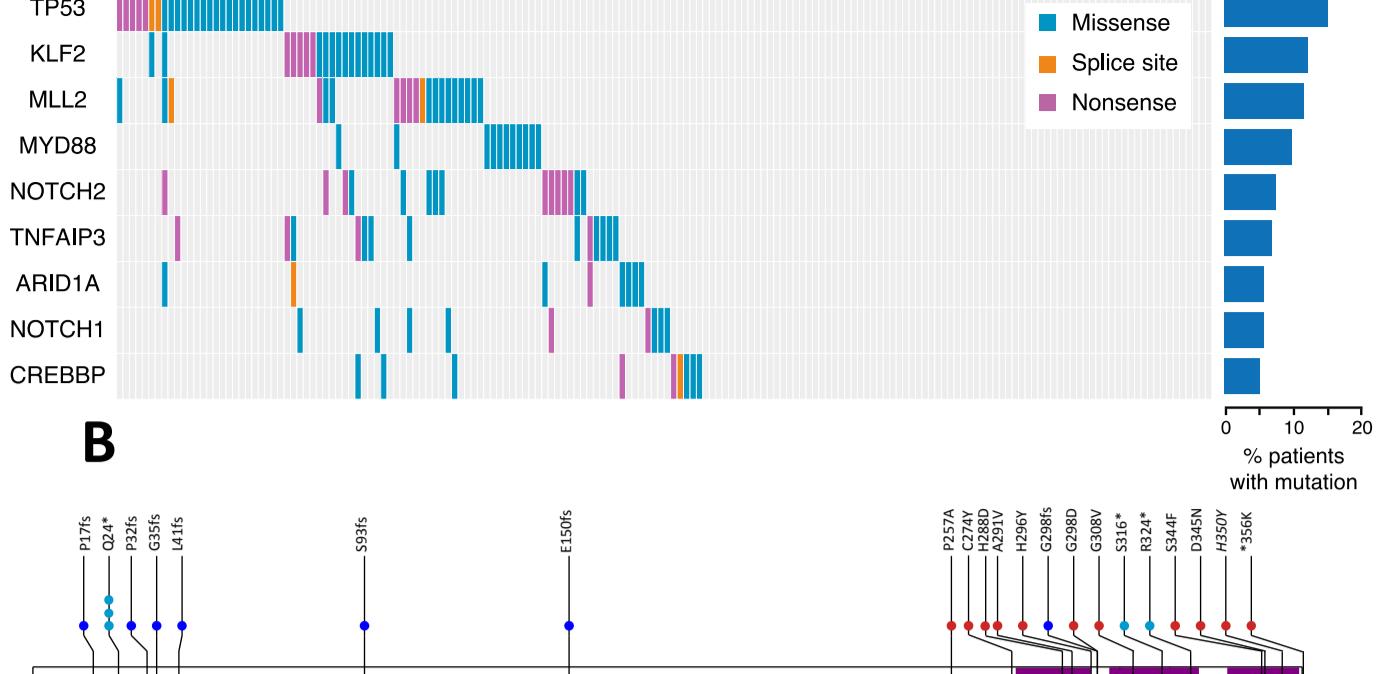
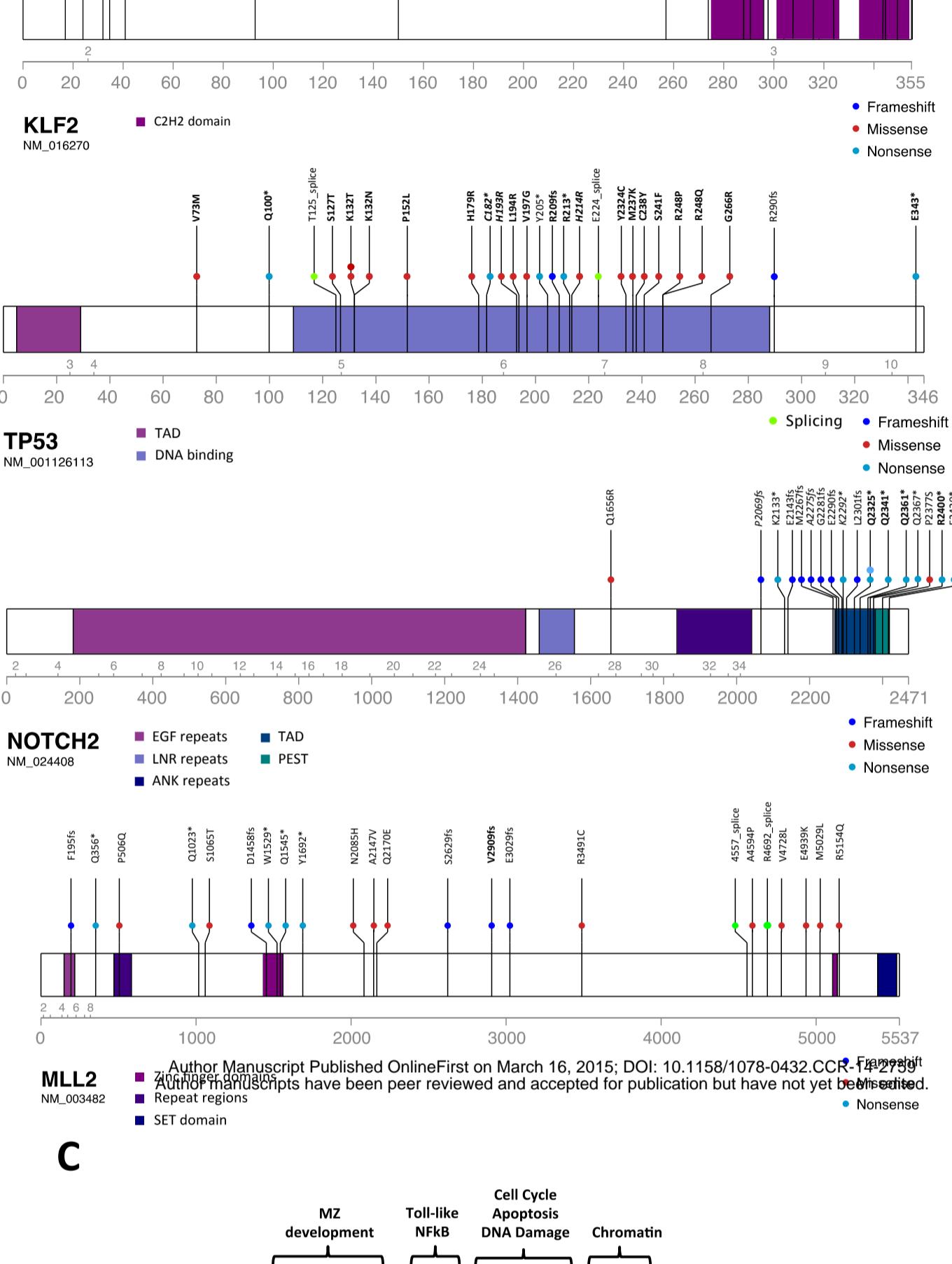
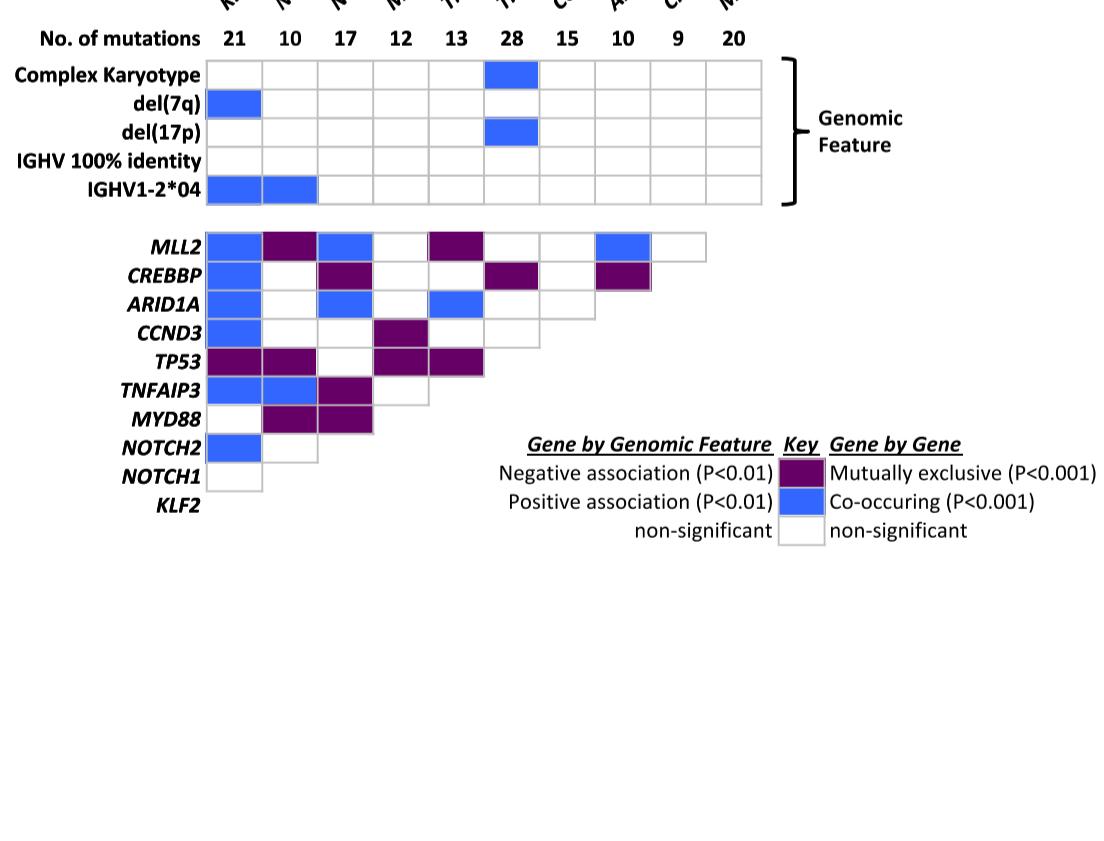
469

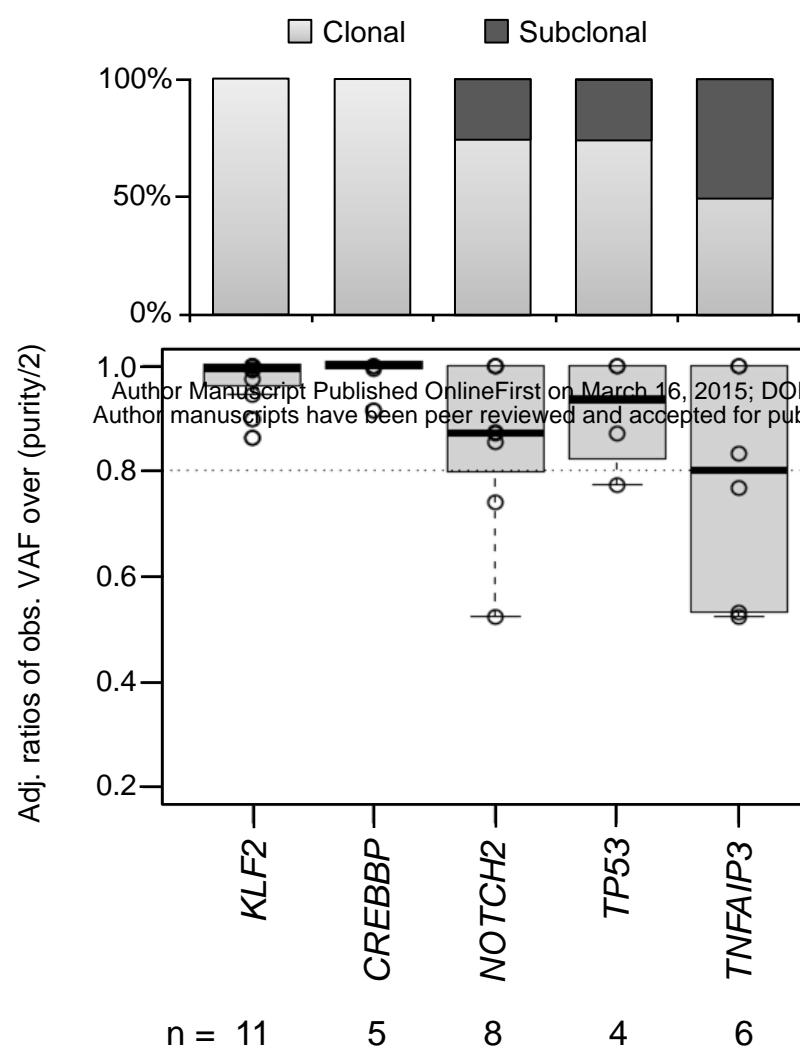
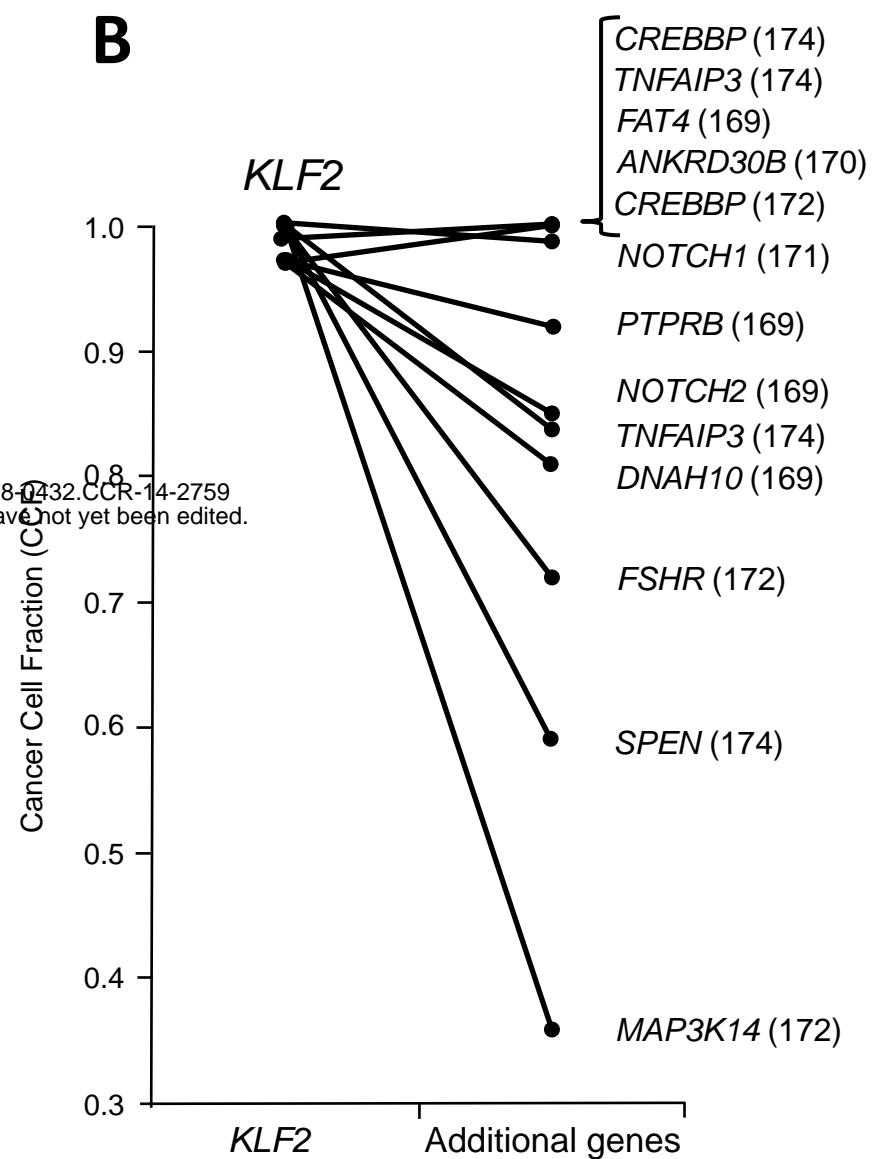
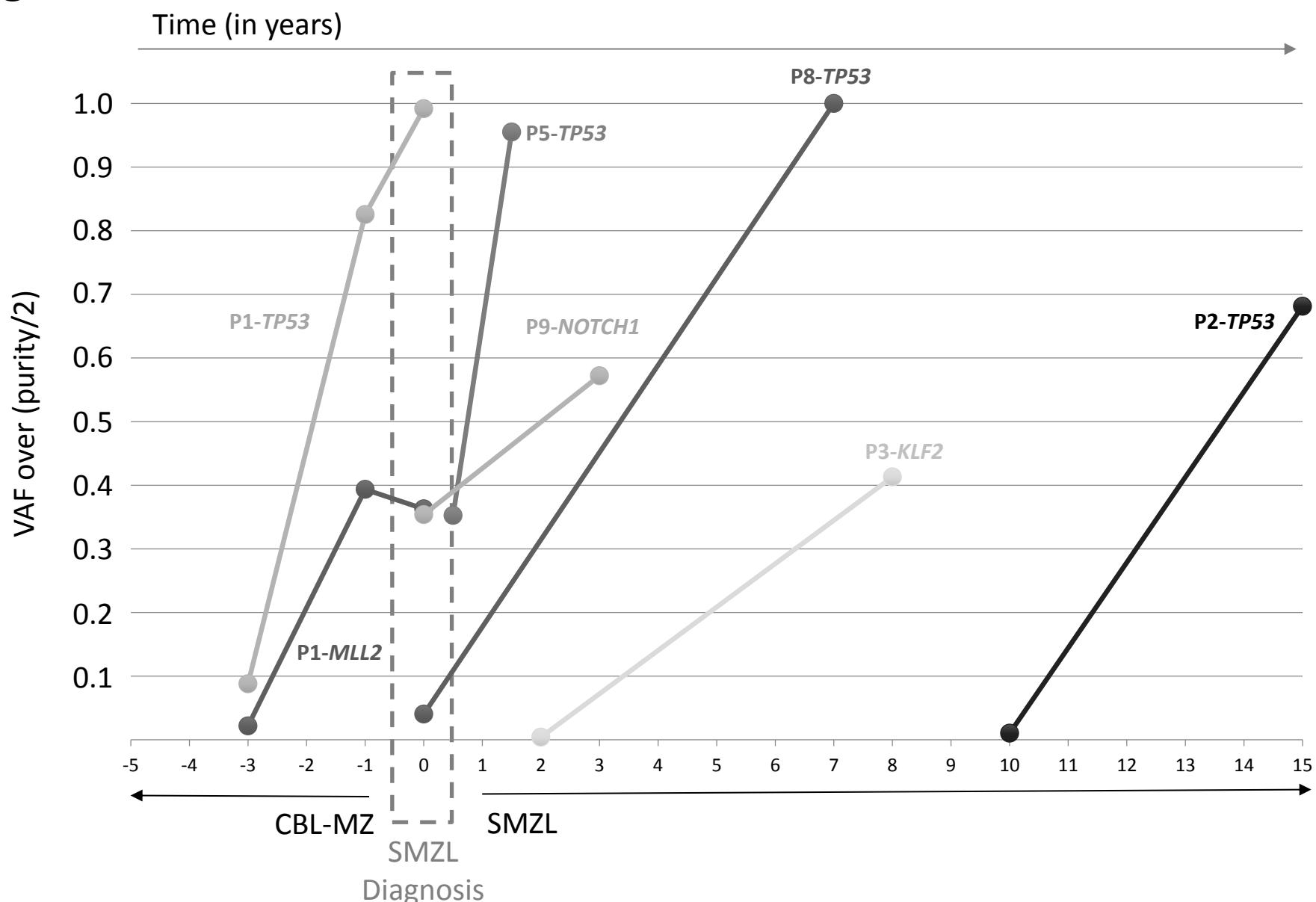
470 **Figure 1. Distribution of recurrent gene mutations across patients, gene mutation maps and gene**
471 **by gene associations for 175 SMZL cases.**

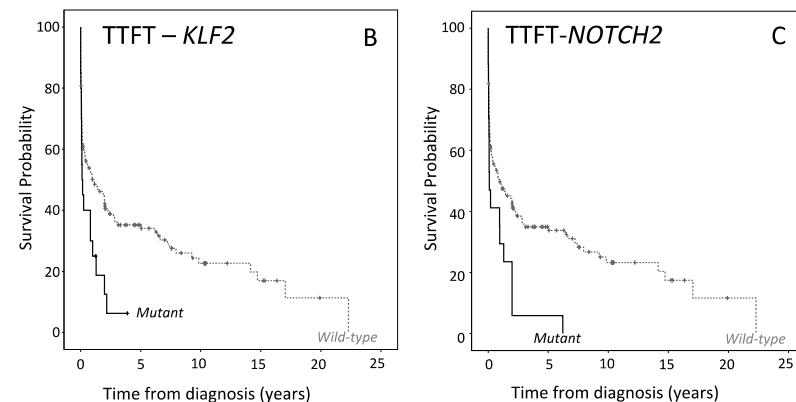
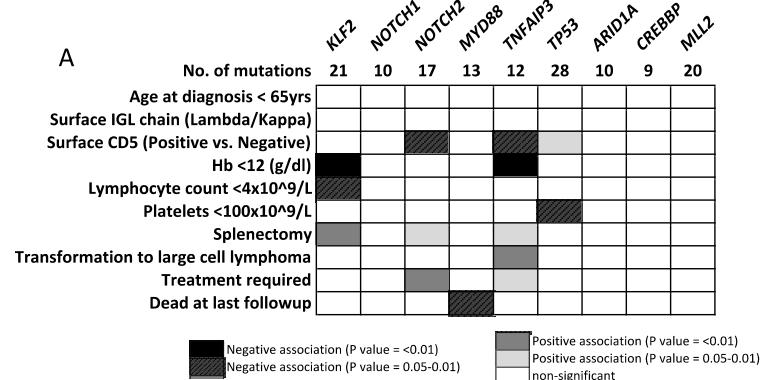
472 (A) Heatmap of the distribution of gene mutation in our cohort

473 (B) Schematic diagram of the protein targeted by key mutations in SMZL, with their key functional
474 domains. The symbols and colour denote the type of mutation. Mutations annotated in COSMIC v68
475 database are in bold text.

476 (C) Associations between genetic and immunogenetic features of our SMZL cohort. Shows the
477 pairwise associations amongst significantly mutated genes, genetic and immunogenetic features
478 (labelled as 'Genomic Feature') across 175 SMZL cases. Genes are annotated within key pathways
479 known to be important in the pathogenesis of mature B-cell malignancies. The number of mutations
480 (n) for each gene mutation in the analysis is shown. An association is shaded based on the
481 significance and only gene by genomic feature (top matrix) and gene by gene (bottom matrix)
482 associations with a p-value of <0.01 (Chi-squared/Fisher's exact test) or <0.001 (Mutation Relation
483 Test, Genome MuSiC analysis) are included, respectively.

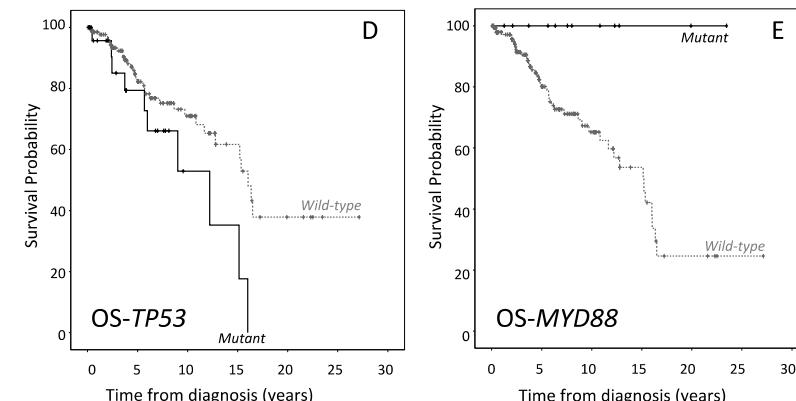



484 **Figure 2. Clonal distribution and temporal analysis of gene mutations in SMZL.**




485 (A) Shows the distribution of the estimated proportion of tumour cells harbouring a mutation in 45
486 patients, based on the availability of purity information. Genes are displayed from left to right
487 showing genes displaying more clonal and subclonal mutations, respectively, by using a binomial
488 distribution based on the alternative allele read count, the total read count from cancer cells and an
489 expected variant allelic fraction (VAF) of 0.45. For each gene, the bone-and-whisker plots show the
490 adjusted ratio of observed VAF divided by the 50% of the purity estimate derived from CD19+ FACS
491 data. The number of cases (n) for each gene mutation in the analysis is shown (bottom). (B) Shows
492 the presence of clonal *KLF2* mutations in five SMZL patients with matched deep re-sequencing and
493 SNP6 data available. No *KLF2* gene deletions were identified by SNP6 copy number data analysis. For
494 each cases the cancer cell fraction (CCF) derived with the ABSOLUTE algorithm is shown for the *KLF2*
495 variant and co-occurring mutations. This approach estimates the cancer cell fraction (CCF)
496 harbouring a mutation by correcting for sample purity and local copy number changes, where
497 mutations are classified as clonal if the CCF was >0.95 with a probability >0.5, and subclonal
498 otherwise (40). (C) Temporal re-sequencing analysis of sequential time points in cases showing clonal
499 expansion of gene mutations (7 of 12 mutations in 9 patients). The Y-axis shows the VAF for a given
500 mutation after accounting for tumour purity.



501 **Figure 3. The clinical significance of gene mutations in SMZL.**

502 (A) Shows the associations between the presence of gene mutations and clinical features. Where
503 possible genes are annotated within key pathways known to be important in the pathogenesis of

504 mature B-cell malignancies. The number of mutations (n) for each gene mutation in the analysis is
505 shown. An association is shaded based on the significance and only associations with a p-value of
506 <0.05 are included (Chi-squared/Fisher's exact test). (B) and (C) show KM plots for time to first
507 treatment for patients with *KLF2* and *NOTCH2* mutations, respectively. (D) and (E) show overall
508 survival KM plots for patients with *TP53* and *MYD88* mutations, respectively. For each KM Plot, the
509 grey and black lines identify the wild-type and mutated patient groups, respectively. The P values are
510 derived from Kaplan-Meier analysis with a log-rank test and median survival times with 95%
511 confidence intervals.


A**B****C**

A**B****C**

	KLF2	Sur. (yrs)	95% CI	Events	P-value
Wild-type	1.11	0.0-2.28	100	100	0.01
Mutated	0.12	0.0-0.24	18	18	

	NOTCH2	Sur. (yrs)	95% CI	Events	P-value
Wild-type	0.94	0.0-2.03	101	101	0.003
Mutated	0.09	0.0-0.22	17	17	

	TP53	Sur. (yrs)	95% CI	Events	P-value
Wild-type	16.03	14.6-17.43	33	33	0.032

	MYD88	Sur. (yrs)	95% CI	Events	P-value
Wild-type	43			43	0.02

Table1: Patient Characteristics

Variable	Definition	N	%
Number of Patients	SMZL diagnosis	175	100%
Age at Diagnosis	mean (range)	68 (36-90)	
<i>IGHV genes</i>	<i>IGHV1-2*04</i>	16	13%
	not <i>IGHV1-2*04</i>	108	87%
del(7q) status from karyotype	del(7q)	17	19%
	normal	74	81%
Surface CD5 FACS result	CD5+	40	27%
	CD5-	108	73%
WBC	mean (range) ($\times 10^9/L$)	20 (0.5-158)	
Hb	<12 g/dl	73	44%
	≥ 12 g/dl	93	56%
Lymphocyte count	$<4 \times 10^9/L$	41	27%
	$\geq 4 \times 10^9/L$	110	73%
Platelets $<100 \times 10^9/L$	$<100 \times 10^9/L$	30	18%
	$\geq 100 \times 10^9/L$	134	82%
high-risk FISH results	del(17p)	10	33%
	normal	20	67%
Splenectomy	YES	55	34%
	NO	109	67%
Transformation to large cell lymphoma	YES	19	17%
	NO	91	83%
TTFT status	treated (inc. Splenectomy)	122	74%
	Untreated	42	26%
Event-Free Survival status	Event (Death, transformation, 2nd Tx)	52	44%
	No Event	65	56%
Status (Alive or Dead at last followup)	Dead	43	25%
	Alive	126	75%

Footnote: Complex Karyotype was defined as ≥ 2 cytogenetically-visible clonal alterations; Tx: treatment

Table 2: Univariate survival analysis of recurrently mutated genes

	Variable	Description	Total	Events	Median (yrs)	95% CI	HR	95% CI	P-value
TTF1	<i>KLF2</i>	mutated	20	18	0.12	0.0-0.24	1.93	1.16-3.23	0.01
		unmutated	140	100	1.11	0.0-2.28			
	<i>NOTCH2</i>	mutated	17	17	0.09	0.0-0.22	2.13	1.26-3.58	0.003
		unmutated	143	101	0.94	0.0-2.03			
	<i>Hb</i>	<12 g/dl	70	63	0.1	0.04-0.17	2.75	1.87-4.02	<0.001
		>12 g/dl	84	51	2.73	0.0-7.14			
	<i>Lymphocytes</i>	<4 x 10 ⁹ /l	40	33	0.15	0.07-0.24	1.76	1.16-2.68	0.007
		>4 x 10 ⁹ /l	101	69	1.43	0.50-2.37			
	<i>IGHV identity</i>	100%	12	11	0.14	0.0-0.38	2.06	1.07-3.74	0.027
		< 100%	78	50	1.98	0.98-2.99			
EFS	<i>TP53</i>	mutated	15	8	0.98	0.04-12.22	2.17	1.00-4.74	0.05
		unmutated	84	32	3.11	2.35-6.20			
	<i>Age</i>	>65 yrs	53	26	6.82 ^a	4.45-9.20	2.09	1.07-4.08	0.028
		<65 yrs	45	14	12.69 ^a	9.19-16.18			
	<i>Platelet count</i>	< 100 x 10 ⁹ /l	19	11	2.92	2.03-3.80	1.99	0.98-4.02	0.052
		> 100 x 10 ⁹ /l	78	28	6.91	4.47-9.34			
OS	<i>TP53</i>	mutated	26	10	12.21	5.28-19.14	2.16	1.05-4.43	0.032
		unmutated	134	33	16.03	14.64-17.43			
	<i>MYD88</i>	mutated	12	0	- ^b	- ^b	- ^c	- ^c	0.02^d
		unmutated	148	43	-				
	<i>Age</i>	>65 yrs	103	37	10.36 ^a	9.0-11.76	6.37	2.55-15.87	<0.001
		<65 yrs	56	6	22.65 ^a	19.38-25.91			
	<i>Hb</i>	<12 g/dl	68	24	9.01	2.90-15.12	2.69	1.45-4.99	0.001

Footnote: Log-Rank P-values. ^a Mean survival value as median not reached. ^b No events in *MYD88* mutated cases and median survival times not presented, follow-up time ranged from 1.25 to 19.9 years. ^c HR and 95% CI cannot be reliable calculated as there are no events in *MYD88* mutated group. ^d Log-Rank P-value for Chi-squared value reported for the *MYD88* OS Kaplan-Meier analysis (See Figure 3E).

Table 3: Multivariate survival analysis of recurrently mutated genes

Variable	TTFT		
	HR	95% CI	P-Value
Hb<12g/dl	2.28	1.32-3.96	0.003
IGHV 100% identity	2.19	1.05-4.55	0.036
NOTCH2	2.12	1.02-4.40	0.044
EFS			
	HR	95% CI	P-Value
Plts<100x10⁹L	3.75	1.68-8.41	0.001
Lymphocytes <4x10⁹L	0.41	0.17-0.96	0.04
Age at diagnosis <65yrs	0.45	0.21-0.96	0.038
OS			
	HR	95% CI	P-Value
Hb<12gdl	2.18	1.12-4.23	0.02
Lymphocytes <4x10⁹L	2.35	1.11-4.97	0.03
Age at diagnosis <65yrs	0.09	0.03-0.27	<0.001
TP53	2.36	1.08-5.20	0.03

Footnote: TTFT Multivariate: 83 cases with 56 events; 92 cases with missing data. EFS Multivariate: 82 cases with 35 events; 93 cases with missing data. OS Multivariate: 134 cases with 38 events; 38 cases with missing data. Backwards-step regression was employed, including the following clinical variables (Hb<12gdl, Plts<100x10⁹L, Lymphocytes <4x10⁹L, Age at diagnosis <65yrs) and the representative gene status variables significantly associated with treatment, event and survival outcome in univariate analysis (Table 2). The TTFT model also included IGHV 100% identity, KLF2 and NOTCH2 mutation status. EFS and OS also included TP53 mutation status. Variables removed from the backwards-step regression are not shown.

Clinical Cancer Research

Genetics and Prognostication in Splenic Marginal Zone Lymphoma: Revelations from Deep Sequencing

Marina Parry, Matthew J Rose-Zerilli, Viktor Ljungström, et al.

Clin Cancer Res Published OnlineFirst March 16, 2015.

Updated version	Access the most recent version of this article at: doi: 10.1158/1078-0432.CCR-14-2759
Supplementary Material	Access the most recent supplemental material at: http://clincancerres.aacrjournals.org/content/suppl/2015/03/18/1078-0432.CCR-14-2759.DC1.html
Author Manuscript	Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts	Sign up to receive free email-alerts related to this article or journal.
Reprints and Subscriptions	To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org .
Permissions	To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org .