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Abstract: The current state of art in the literature indicates that linear visual receptive 

fields are Gaussian or formed based on Gaussian kernels in biological visual systems. In 

this paper, by employing hypotheses based on the anatomy and physiology of vertebrate 

biological vision, we propose a neural circuitry possessing Gaussian-related visual 

receptive fields. Here we therefore present a plausible circuitry system matching the 

characteristic properties of an ideal visual front end of biological visual systems and then 

present a condition under which this circuit demonstrates a linear behavior to model the 

linear receptive fields observed in the biological experimental data. The objective of this 

study is to understand the hardware circuitry from which various visual receptive fields 

in biological visual system can be deduced. In our model, a nonlinear neural network 

communicating with spikes is considered. The condition under which this neural network 

behaves linearly is discussed. The equivalent linear circuit proposed here employs some 

anatomical and physiological properties of the  early biological visual pathway to derive 

the visual receptive field profiles for linear cells such as neurons with isotropic 

separable, non-isotropic separable and non-separable (velocity-adapted) Gaussian 

receptive fields in the LGN and striate cortex. In the model presented here, the theory of 

transmission lines for linear distributed electrical circuits are employed for two 

dimensional transmission grids to model cell connectivities in a neural layer. The model 

presented here leads to a formulation similar to the Gaussian scale space theory for the 

transmission of visual signals through various layers of neurons. Our model therefore 

presents a new insight on how the convolution process with Gaussian kernels can be 
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implemented in vertebrate visual systems. The comparison of the numerical simulations 

of our model presented in this paper with the data analysis of receptive field profiles 

recorded in the biological literature demonstrates a complete agreement between our 

theoretical model and experimental data. Our model is also in good agreement with the 

numerical results of the Gaussian scale space theory for the visual receptive fields. 

Keywords: Gaussian Filtering; Neural Layers, Visual Receptive Fields, Linear Cells, 

Nonlinear Neural Networks 

1. Introduction 

The concept of receptive fields is initially introduced to explain reflexes produced by a 

stimulus in the somatosensory area of a body surface (Sherrington 1906). This notion is then 

extended in (Hartline 1938) to light stimuli to specify visual receptive fields, as a visual field 

region in which if visual stimuli are presented, the cell corresponding to the receptive field, 

responds. “ON” and “OFF” sub-regions within visual receptive fields are then discovered by 

Kuffler (1953). The orientation tuning of neurons in the primary visual cortex is then 

uncovered by Hubel and Wiesel who characterize the neurons’ responses in the primary 

visual cortex (V1) by considering the cells’ responses to the polarity of visual stimuli (Hubel 

and Wiesel 2005). Later DeAngelis et al. (DeAngelis et al. 1995; DeAngelis and Anzai 2004) 

employ receptive field mapping techniques based on white noise stimuli to characterize the 

neurons’ responses in the joint space-time domain. The spatio-chromatic and spatio-chroma-

temporal responses are then described by Conway and Livingstone (2006). A spatio-temporal 

energy model for motion perception is also developed in (Adelson and Bergen 1985) by 

exploiting oriented filters in the space-time domain. Spatio-temporal receptive fields are also 

modelled in (Young et al. 2001) by using Gaussian derivatives over a joint space-time 

domain. In fact, biological experiments quantitatively indicate that the linear visual receptive 

fields are well-modelled as mainly Gabor kernels, differences of Gaussians and Gaussian 



derivatives. The receptive fields as Gaussian related kernels in biological vision are 

considered as tools for canonical neural computations of the brain as suggested by 

physiological and behavioural evidence (Carandini and Heeger 2012). 

On the other hand, scale space theory has been developed to provide a general framework for 

early visual operations in any universal visual front end (see e.g. Weickert et al. 1999; 

Lindeberg 2011). Gaussian kernel and its family are derived by postulating a set of 

mathematical properties (axioms) which an early visual system is expected to possess (see 

e.g. Weickert et al. 1997; Florack 1997; ter Haar Romeny 2003). In (Florack et al. 1992), it is 

demonstrated that the class of admissible scale-space kernels can be confined by including 

semi-group, scale invariance and rotational symmetry properties. The separability of a kernel 

in Cartesian coordinates then leads to Gaussian scale space. Gaussian scale space is also 

introduced for temporal data in (Koenderink 1988) and further investigated in (Florack 1997; 

ter Haar Romeny et al. 2001). A time-recursive space time separable spatio-temporal scale 

space model is then developed in (Lindeberg and Fagerstrom 1996). A Poisson scale space 

formulation which does not possess the property of the non-enhancement of local exterma, is 

also investigated in (Duits et al. 2004). Gaussian scale space framework is also employed in 

(Lindeberg 2011; Lindeberg 2013) to present 1) a continuous time-causal scale-space model, 

2) a time recursive update mechanism, 3) a parameterization of the spatio-temporal filters 

with respect to image velocity and image deformation and 4) convincing results from the 

scale-space models determined by a set of structural constraints for an idealized vision 

system. Early biological visual systems possessing the mathematical properties suggested in 

Gaussian scale space theory, are also well known to be associated with the Gaussian related 

kernels. It is noted that Gaussian scale space theory has been developed in a mathematical 

setting for any general early visual system which possesses a set of mathematical properties. 

The hypothesis is that since the early biological visual system enjoys these mathematical 



properties, it should also possess Gaussian related kernels. The fact that the numerical results 

of the kernels derived in the Gaussian scale space framework are in agreement with linear 

receptive fields in vertebrate early visual systems (Lindeberg 2011; Lindeberg 2013), 

confirms this hypothesis. However, no anatomical, and nor physiological assumptions for 

early biological visual systems are considered for the derivations of the Gaussian related 

kernels in a Gaussian scale-space setting.  

In this paper, a model based on distributed electrical circuits is proposed to formulate 

electrical connectivity of neurons in retina and other following neural layers as two 

dimensional distributed linear circuits in the visual pathway. Neurons in a given layer send 

trains of spikes to neurons in the next layer through their axons, if their membrane potential is 

greater than a certain threshold. In such a scenario, according to classical rectification model 

(Granit et al. 1963; Carandini and Fester 2000), low pass signals (membrane potentials) in a 

neuron is linearly associated with the firing rate of neurons, if the potential is above a certain 

threshold. It is important to notice that the input of any single neuron in a given layer is 

connected both directly to the output of the corresponding neuron in the previous layer and 

indirectly to the outputs of all other neurons in the previous layer through the conductive 

sheet. The circuit proposed here is nonlinear in nature. We therefore present a condition 

under which this circuit behaves linearly. A linear electrical circuit equivalent to this 

nonlinear neural circuitry is proposed in this paper to facilitate the derivations of the visual 

receptive fields. In such an equivalent linear circuit, a neuron in a given layer is directly 

connected to its counterpart in the next layer so that the membrane potential of a neuron is 

directly and linearly affected by the membrane potential of the corresponding neuron in the 

previous layer.  Our contributions in this paper are as follows:  

1) Here we propose an electrical circuit, based on the anatomy and physiological properties 

of early visual systems to model the neural connectivity in this visual path. 



2) In contrast with Gaussian scale space frameworks, linearity is not one of our assumptions. 

Our model is hence nonlinear in nature. We therefore show here that this nonlinear system 

behaves like a linear one under some certain conditions.  

3)  Here we demonstrate that the within-dendritic-network processes produce the Gaussian 

aspect of the visual receptive fields. This is in contrast with the previous work (see e.g 

(von Seelen et al. 1987; Dinse and von Seelen 1981; Krone et al. 1986)) in the literature 

where the Gaussian distributed synaptic connections are considered the reason for the 

Gaussian aspect of the visual receptive fields. 

4)  In our numerical results, it is demonstrated that non-isotropic-elongated receptive fields 

are better matched with the receptive fields of a group of isotopic Gaussian neurons rather 

than with a single neuron possessing a non-isotropic-elongated Gaussian receptive field. 

5)  In our model, we show that the effects seen in the causal temporal smoothing of spatio-

temporal (separable and non-separable) receptive fields are produced by the neuron’s 

axons behaving like transmission lines. It is demonstrated here that these cascaded neural 

axons, also proposed in a simultaneous and independent research in (Lindeberg 2015) as a 

serially coupled first order integrators, produce numerical results very similar to the 

biological recordings. 

6)  Last but not least, as mentioned before, we have here started with a small set of 

hypotheses based on the anatomy and physiology of the early biological visual system. 

Gaussian related kernels are then derived  to describe the behaviour of the visual receptive 

fields of cells in this visual system. This is in contrast with the scale-space framework 

where a set of mathematical axioms (requirements) for a visual system is the base for 

scale-space theory. It is important to notice that in our derivation, no axiom from Gaussian 

scale space framework is used. From the standpoint of the philosophy of science, this is 

important and interesting. Gaussian scale-space formulation has been developed in a 



mathematical setting (mathematical world) starting with some general (mathematical) 

properties for a universal visual system. Yet, this formulation connects nicely with a 

biological visual system in our physical world (see Penrose 2004, section 1.4 for 

discussions on mathematical and physical worlds) through the comparison between the 

numerical results of the theory and biological experiments.  On the other hand, only 

anatomical and physiological assumptions (in the physical world) are made in this paper  

in our model. Our numerical results are also in good agreement with biological 

experiments. Finally we also show here that our model which is based on physical-

biological assumptions is in good agreement with the completely mathematically derived 

Gaussian scale-space theory.      

The rest of this paper is structured as follows. In section 2, the model proposed here is 

described and its mathematical formulation and applications in vertebrate early visual 

processing are discussed. In section 3, the properties of our model as an ideal biological 

visual system are investigated and the numerical results of our model are presented. In this 

section, we also theoretically demonstrate that our model meets the structural requirements of 

scale space theory. Finally conclusions are drawn in section 4.  

 

2. Model for Early Visual Pathway 

2.1. Model Hypotheses 

Our model for early visual pathway presented in this paper is based on four main 

hypotheses based on the anatomy and physiological properties of biological visual 

systems. We describe these hypotheses in this section and explain our rationales behind 

them.  

1) Our first assumption here is that early visual processing is performed by a number of 

neural layers connected serially together. Our hypothesis that the visual information 



passes through a series of neural layers before the visual signals reach the visual 

cortex is supported by the fact that retina itself consists of four distinctive neural 

layers (four sets of synapses) as follows (Caceci 1998): Ganglion cell layer, Inner 

nuclear layer consisting of horizontal, bipolar and amarine cells, photoreceptors layer 

containing rod and cone cells and retinal pigment epithelium consisting of cuboidal 

cells. These four retinal layers are then followed by a few neural layers in LGN. 

Again in the striate cortex, our assumption is that the visual signal is transmitted 

through a number of serially cascaded layers of neurons. 

2) Our second assumption here is that we model any layer of neurons in early biological 

vision starting from retina’s photoreceptors as a two dimensional distributed 

conductive grid conducting dendritic potentials in two dimensional conductors 

consisting of resistors, and capacitors. In fact, this conductive grid consists of millions 

of dendritic spines inter-connected together through dendrite membranes (Baer and 

Rinzel 1991). A layer of neurons in early visual pathway therefore is connected to the 

previous layer through dendritic spine heads which are also interconnected through 

the dendrites. We therefore model these connectivities within a layer of neurons as a 

two dimensional distributed conductive grid. The membrane dendritic potentials are 

transmitted from neurons in one layer to those in the next layer in the form of the 

transmission of spike pulses. Here, we generalize the theory of transmission lines 

(Skilling 1979) to continuous two dimensional grid conductors. The dendritic spine 

heads are characterized with high input resistance (Baer and Rinzel 1991). In our 

investigation here, we further assume that these neural layers modelled with 

electrically conductive layers in the retina have similar and analogous electrical 

structures but they may possess different electrical parameters.  

3) Neural layers are rotationally symmetric. This is to say that by rotating a layer, the 



electrical properties of the layer remain unchanged along a certain orientation.     

4) Our final assumption is that the distance between neighboring neurons is negligible in 

comparison with the dimensions of the visual field in the retina or any neural layer.   

2.2 Model Derivation 

A simplified two dimensional block diagram of the neural connectivity proposed here is 

shown in figure (1-top) (for a three dimensional view of these series of neural layers, see 

figure (16-top)). Horizontal lines in figure (1-top) represent conductive grids. As shown 

in this figure, every neuron is connected by some dendrites to a conductive grid 

consisting of the interconnected dendrites of neurons of this layer. The axons of these 

neurons are then connected to the conductive grid of the next layer. The signals taken by 

dendrites in figure (1-top) from the conductive grid to a neuron could be summed 

together or subtracted before it is fed to a neuron. An example of a neural grid 

representing a single layer is shown in figure (1-bottom). In this figure, a black circle 

represents a neuron whose dendrites are connected to those of other neurons through the 

grid.  It is important to note that the input of a single neuron is both directly connected to 

the output of one neuron in the previous layer (see figure (1-top)) and indirectly 

connected to the outputs of all other neurons in the previous layer through the conductive 

grid (see figure (1-bottom)). As explained later in this paper, the contribution of all 

indirectly connected neurons is mathematically determined by a convolution between the 

signals in their axons and the impulse response of the conductive grid. Let us now focus on 

one of the aforementioned layers of neurons. One portion of the conductive grid of a 

typical neural layer consisting of four neurons is shown in figure (2). As shown in this 

figure, dendritic potentials at layer l represented by ),,,( ltyxu  are conducted through 

resistors, and capacitors. In this figure, voltages )1,,,( -ltyxv  are assumed to come from 

dendritic spine head voltages taken from (the axons of neurons of) the previous layer 



(layer l-1). The model parameters are as follows: 

xlR and ylR = cytoplasmic resistivity of dendrite per unit length for layer l    

xlC and ylC = membrane capacities per unit length for layer l 

xlG and ylG = conductance across dendritic membrane in unit length for layer l 

As shown in this figure, spine heads in layer l are modelled as electrical amplifiers with high 

input impedances, low output impedances and gains of lA . More details of such amplifiers 

are shown in figure (3). It is reported in the literature (see e.g. (Miller et al. 1985; Segev and 

Rall 1988)) that spine heads are active circuits and amplify spikes. This behaviour of spine 

heads guarantees that the transmission of spikes is maintained through all layers in the 

biological visual pathway. Therefore in steady state, the visual signal is passed through spine 

heads with no attenuation. 

As a result, the steady state of spine heads is modelled as an electrical amplifier. Before we 

write the equations for the two dimensional transmission grid, let us write the relationship 

between RNRRltZyxv ­³³ +3:),,,,( and RNRRltyxu ­³³ +2:),,,(  (see figure (3)) 

by using the model of an electrical amplifier for spine heads, where Z is the length of the 

axon connecting two consecutive layers at location (x,y) in the visual field. By considering 

the Kirchhoff Voltage Law (KVL) in left and right loops in figure (3), we can write: 
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where oi and olR are the output current going into the transmission grid per unit length and the 

output resistance of the ampli fier. 

Let us now consider the Kirchhoff Current Law (KCL) for linear circuits in the node with the 

voltage u(x,y,t,l) in figure (2):  
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where t, oxi and oyi  are time, x and y components of the output current oi respectively. As 

shown in figures (1-bottom) and (2), xD  and yD are small distances between two 

neighbouring neurons in x and y directions. xlC and ylC  are considered very small and hence 

ignored here, therefore equations (2) and (3) can be written  as two difference equations, i.e.: 

( )xiuGltyxxiltyxi oxxlxx D+=D+- ),,,(),,,(      (4) 

( )yiuGltyyxiltyxi oyylyy D+=D+- ),,,(),,,(      (5) 

We also write KVLs between nodes with voltages ),,,( ltyxu  and ),,,( ltyxxu D+  as well as 

),,,( ltyxu  and ),,,( ltyyxu D+ : 

xxl xiRltyxxultyxu D=D+- ),,,(),,,(       (6) 

yyl yiRltyyxultyxu D=D+- ),,,(),,,(       (7) 

To consider boundary conditions, let us assume that the boundary coincide with a line 

parallel to y axis. In this case, on the boundary 0=xi and equation (6) is simplified as: 

0),,,(),,,( =D+- ltyxxultyxu        (8) 

Similarly for a boundary parallel to x axis, the boundary condition is: 

0),,,(),,,( =D+- ltyyxultyxu        (9)  

In general, the boundary condition for a boundary with any orientation is 

0),),sin(),cos((),,,( =D+D+- ltyyxxultyxu qq  (Neumann boundary condition), where 

x
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=)tan(q  and jninn yx

CCC
+=  is the normal unit vector to the boundary.  

Due to the rotational symmetry (our third assumption) in the conductive grid with respect to x 

and y axes in figure (2), we assume D=D=D yx , lylxl GGG == , lylxl RRR == and 
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difference equation: 
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Let us now take a two dimensional Z transform from both sides of difference equation (10) to 

calculate the transfer function 
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The transfer function ),( yx zzHD  with respect to radian frequencies [ )pp,, -ÍWW yx  is 

written as: 
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In figure (4), the transfer function H is plotted for [ )pp,-ÍWx , 0=Wy ,

12 =+=
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 and 1  and ,1.0 ,01.0=D . As shown in this figure, the smaller the 

value of D, the closer the transfer function H gets to the Fourier transform of a modified 

Bessel function of the second kind and zero degree. In the following theorem, we prove that 



the transfer function ),( yx
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eeH
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D  approaches the Fourier transform of a modified Bessel 

function of the second kind and zero degree, as 0­D . 

Theorem 1: The transfer function ),( yx
jj

eeH
WW

D  of equation (13) approaches the Fourier 

transform of a modified Bessel function of the second kind and zero degree as 0­D . 

The proof of this theorem is presented in Appendix A. 

According to one of our aforementioned assumptions (assumption 4), the distance between 

two neighbouring neurons is negligible in comparison with the dimensions of the visual field, 

i.e. 0­D . The result of theorem 1 (see equation (A-4)) indicates that the transfer function 

DH with respect to frequencies xw and yw of continuous two dimensional visual signals can 

be written as the Fourier transform of  a modified Bessel function of the second kind and zero 

degree (Mahmoodi 2012; Mumford and Shah 1989), if 0­D , i.e.: 
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where 
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GRb +=2  are the parameters associated with layer l.  By D

approaching zero, the conductive grid approaches to a conductive sheet. This conductive 

sheet corresponding to the l
th
 layer whose transfer function with respect to the coordinates x 

and y of the retina’s visual field is given in equation (14), is a model for the dendrites of all 

neurons of the l
th
 layer. These neurons are also connected to the dendrites (modelled by 

another conductive sheet) of the next layer of neurons through their axons as shown in figure 

(1-top). Let us now model the axons with a transmission line along the axis z as shown in 

figure (5). The differential equation describing this transmission line can be written as: 

0
2

2

=
µ

µ
-+

µ

µ

z

v
vGR

t

v
CR zzzz         (15) 



 where RNRRv ­³³ +3:  is the potential of the axon membrane and 

zR = cytoplasmic resistivity of axon per unit length  

zC  = membrane capacities of axon per unit length  

zG  = conductance across axon membrane per unit length 

The impulse response of the axon can then be calculated by solving equation (15) for 

)(td  as the input to provide the impulse response RRRvh ­³ +: as follows: 
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In equation (16), z could be interpreted as the time scale parameter of the time smoothing 

kernel. Equation (16) in spatial frequency domain is also written as: 
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where zw is the spatial frequency corresponding to the spatial variable z. Equation (17) 

is similar to the temporal discrete model with the truncated exponential first-order 

integrators in a work done simultaneously and independently in (Lindeberg 2015). From 

equation (17), it is therefore concluded that neural axons behaving like transmission 

lines are the electrical circuitries in biological vision to provide the exponential first 

order kernels (integrators) proposed in (Lindeberg 2013, Lindeberg 2015). In fact in our 

model, the serially coupled first order kernels discussed in (Lindeberg 2015) are 

achieved by considering the fact that the neural layers and therefore their axons are 

cascaded. However the difference between our work discussed here and the work 

presented in (Lindeberg 2015) is that the motivation behind equation (17) is the anatomy 

and structure of biological visual systems in vertebrate and the way the neurons are 

spatially arranged to transmit the visual signal from retina to visual cortex, whilst the 

inspiration for the cascaded first order integrators proposed in (Lindeberg 2015) is to 



investigate time-causal spatio-temporal receptive fields with discrete temporal scale 

levels.   

2.3  Neural Spikes 

It is well known that a neuron transmit a signal by sending spikes through its axon to another 

neuron. In our model, the neurons of one layer send spikes to those of the next layer to 

transmit visual signals to other layers towards the visual cortex. However no spike is 

exchanged among the neurons within the same layer, since the neurons associated with a 

certain layer are connected through dendrites and not axons. In this paper, we exploit the 

simple and classic rectification model in which firing rate is zero for membrane potentials 

below a certain threshold and grows linearly with membrane potentials over the threshold 

(e.g. see (Granit et al. 1963; Carandini and Fester 2000)). Here, we therefore demonstrate 

how a nonlinear system of neurons communicating with spikes through axons can be 

approximated as a linear system for low pass signal transmission under a certain condition. 

Since axons behave like a transmission line, spikes modelled here as Dirac delta functions 

(impulses) need to be transmitted via axons. As a result, the output signal at the end of the 

transmission line (axon) has the general form of temporal impulse response of the line (axon) 

for a single spike (impulse) as derived in equation (16). This temporal impulse response for 

some certain values of the parameters is shown in figure (11-top row-left column). As can be 

seen from this figure and equation (16), this temporal impulse response is a low pass signal. 

This implies that the axon modelled as a transmission line behaves like a low pass filter. Such 

a low pass filter removes medium to high frequency components of the train of spikes 

(impulses) generated by the neuron in the previous layer, so that the signal reached to the 

dendrites of the next layer is a low pass signal whose maximum amplitude is proportional to 

the number of spikes (impulses) generated by the neuron of the previous layer. This low pass 

signal is also affected by the low pass signals reached to the neighbouring neurons, so that the 



low pass signals reached to neurons in this neighbourhood are also filtered by low pass filter 

(14). Then a particular neuron in this layer fires spikes according to the potential (low pass 

signal) it senses in its dendrites. In theorem 2, under some certain condition, we demonstrate 

that the number of spikes a neuron fires in a given layer depends on the number of spikes it 

receives through its dendrites. In the following theorem, T and s are defined as the average 

and standard deviation of the time intervals between consecutive spikes in a train of spikes 

sent by a neuron through its axon so that the average firing rate of a train of spikes is 
T

1
.  

Theorem 2: if neuron A sends a train of N spikes with an average T and standard deviation 

s of the time intervals of its train of spikes for a certain static visual signal  through its axon 

to neuron B, the potential sensed by neuron B in its dendrites is proportional to N, provided 

that all time intervals between two consecutive spikes is too small with respect to the time (t) 

taken for the signal to reach neuron B. 

The proof is presented in Appendix B. 

According to the result of theorem 2, the axon of a neuron in layer l-1 is connected to a 

neuron in layer l, if the neuron in layer l-1 fires N  spikes, the potential on the neuron at the 

end of the neuron’s axon in layer l will be proportional toN (see figure (5)), i.e.: 
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where ),( tzvh  is given in equation (16) and 
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On the other hand, according to classical rectification model for neural firing rates (Granit et 

al. 1963; Carandini and Fester 2000), if )1,,,( -ltyxu  is greater a certain threshold, then  

NKltyxu  )1,,,( =-          (19) 

where K  is a constant. From equations (18) and (19), it is therefore easy to see that potential 

)1,,,( -ltyxu  is linearly proportional to potential ),,,,( ltzyxv , i.e.: 



)1,,,(),(),,,,( -= ltyxutzkvltzyxv h        (20) 

where k is also a constant. 

The limit  between linearity and nonlinearity of the visual system in our model depends on 

how small or large the time intervals between consecutive spikes is with respect to the time 

that neural spikes take to reach to the next layer from the current layer. If these time intervals 

are large enough then relations between the input potentials of a layer with the input 

potentials of the next layer will become nonlinear. In such cases the whole visual system 

behaves like a nonlinear system. 

By using equations (14), (17), and (20), the transfer function of a neuron whose dendrites and 

axon are connected to the conductive sheets of layer l-1 and layer l respectively with respect 

to spatial frequencies xw , yw , zw and time t is written as: 
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Let us now assume that the visual path consists of n cascaded layers whose transfer functions 

are given by ),,,,( ltL zyx www  in the above equation. The transfer function of n cascaded 

layers denoted by nL :1  can therefore be written in equation (21).  

( )
( ) ö

ö

÷

õ

æ
æ

ç

å

++ö
ö
÷

õ
æ
æ
ç

å
-öö

÷

õ
ææ
ç

å
-

G
= P

=

-

lyx

l
n

tzz

z

z

z

n

zz

n

zyxn
b

a

CR

t

C

tG

nCR

t
tL

22
1

21

:1 expexp
)(

,,,
ww

w
www  (21) 

where Gis the gamma function. Our assumption in (21) is that the axons of different layers 

have the same parameters zC , zR and zG . However it is straightforward to verify that even if 

the axons of different layers have different line parameters, transfer function (21) will still 

have a similar form but with different parameters in exponential terms. It is noted that the 

first part of transfer function (21) is due to n cascaded axons which are equivalent to the n 

serially coupled temporal first order kernels proposed in (Lindeberg 2015).   



In theorem 3, we prove that if the number of cascaded layers approaches infinity, the Green 

function of the system of n cascaded neural layers approaches a Gaussian function with 

respect to x, y, and z.  

Theorem 3: For 1>NÍ" lbl  where N is the set of the Natural numbers, the transfer 

function in (21) approaches a Gaussian transfer function as n (the number of cascaded 

layers) approaches infinity. 

A proof for theorem 3 is presented in Appendix C. 

The similarities and differences between theorem 3 and Tikhonov regularization (Nielsen et 

al. 1997) are interesting. In this paper, the Gaussian kernel is resulted from two facts: 1) a 

single layer of neurons behaves like a conductive sheet and 2) neural layers are cascaded 

from retina to visual cortex to transmit the visual signal from eyes to brain. However no 

regularization, or optimisation is employed here to derive the Gaussian kernel. On the other 

hand, the Gaussian kernel derived from Tikhonov regularization is the result of the 

optimization of an energy functional (Nielsen et al. 1997). In this regularization framework, 

further constraints such as scale invariance, semi-group and non-negativity properties are also 

required to result in a Gaussian kernel as the optimal solution of the Tikhonov optimization 

problem. It is also interesting to note that the constraint of semi-group property in Tikhonov 

regularization can be considered equivalent to the assumption of cascaded layers in our 

model. Further, the transfer function derived in (14) already enjoys the scale-invariance and 

non-negativity properties. In other words, scale-invariance and non-negativity properties are 

inherent in our model due to the electrical (physical) properties of conductive layers.  

By taking spatial inverse Fourier transform from equation (C-9) with respect to x, y, and z and 

their spatial frequencies, transfer function (21) in the spatio-temporal domain for a large n 

can be written as: 
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where -1F is the three dimensional inverse Fourier transform and 
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And A is a constant and defined in Appendix C as: 
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K(x,y) is also the modified Bessel function of the second type and zero degree. 

2.4 Some Numerical Considerations for Our Model 

We notice that for small values of n, ),( yxKn is the repeated convolutions of n modified 

Bessel functions of the second kind and zero degree. However according to theorem 3 for 

large values of n, ö
÷

õ
æ
ç

å
+- )(exp~),( 22 yx

n

b

n

b
yxK ii

n . The result of theorem 3 is in complete 

agreement with the biological recordings of retinal cells (see e.g. (Enroth-Cugell and Robson 

1966; Young 1987)). 

In practise, as low as six consecutive layers of neurons can result in a kernel very close to a 

Gaussian kernel. Here, we attempt to show that ),( yxKn  in (22) is close to a Gaussian kernel 

even with a limited number of layers. The kernel obtained from the output of the l
th
 layer is 

compared with an equivalent Gaussian kernel associated with the corresponding layer in 

frequency domain in figure (6). In this experiment, we allow the parameter lb  in equation 

(21) for each layer to vary slightly in comparison with other layers by sampling its values 



from a Gaussian distribution with a certain mean and standard deviation (in this experiment, 

the mean value and standard deviation are chosen as unity and 0.2 respectively). A varying 

parameter lb  indicates that the neural layers are not identical however they have similar 

electrical structures. In figure (6), a cross section of the kernels are plotted for illustration 

purposes and the comparison has been made for layers l = 1, 2, 3, 4, 5 and 6. As shown in 

this figure, the difference between the two kernels for the first layer is significant. However 

as l increases, the difference between the two filters becomes lower and lower so that for the 

6
th
 layer, the difference between the two filters is almost negligible. In this figure, the kernel 

obtained from the network of neurons is plotted with the dotted curve and the Gaussian 

kernel for the corresponding layer is drawn with the dashed curve. 

The Euclidean distance between the two kernels in frequency domain for various values of 

layers between unity and one hundred is also plotted in figure (7). As can be seen from this 

figure, the differences between the two kernels are negligible when the number of layers, l, is 

more than six. In this experiment, lb is again allowed to vary slightly from a layer to the next 

one according to a Gaussian distribution with a unity mean and a standard deviation of 0.1. 

In the next experiment, the spatial part of the filter derived in equation (21) is implemented 

for six layers and the case where ll ba =  is sampled from a Gaussian distribution with the 

mean and standard deviation of unity and 0.1 respectively. The results are shown in figure 

(8). Figure (8-left) depicts the original image and the filtered image calculated by using 

kernel (21) is shown in figure (8-middle). The image filtered by the equivalent Gaussian 

kernel of equation (C-9) with n=6 is also presented in figure (8-right). The difference 

between the two filtered images per pixel for the first ten layers is plotted in figure (9), for the 

case where la  and lb  randomly vary from a layer to the next, as considered in the previous 

experiments. 



As can be seen from these figures, by increasing the number of layers, the image filtered by 

using transfer function (21) approaches an image filtered by a Gaussian kernel given in (C-9) 

with n equal to the number of layers.  

In figure (10), we compare the Laplacian of Gaussian (figure (10-left)) with the Laplacian of 

spatial kernel ),( yxKn for n=6 (six neural layers) as shown in figure (10-middle). As 

reported in (DeAngelis et al. 1995), an example of a biologically recorded spatial receptive 

field profile of an LGN cell is also presented in figure (10-right). 

Figure (11) depicts the time casual kernel (impulse response) computed by using equation 

(16) and its regular first and second derivatives. For comparison, the time causal kernel 

proposed by Lindeberg in (Lindeberg 2011; Lindeberg 2013) and its regular first and second 

derivatives are also shown in this figure. This figure demonstrates the resemblance of the 

time causal kernel calculated here by modelling the neural axons based on a transmission line 

with the time causal kernel proposed in (Lindeberg 2011; Lindeberg 2013). The first and 

second derivatives with respect to logarithmic and power law time transformation are also 

presented in figures (12) and (13) respectively. As can be seen from these figures, the first 

regular derivative of the time causal kernel calculated here has two peaks and one interior 

zero crossing. This is similar to the first regular derivative of the time causal kernel proposed 

in (Lindeberg 2011; Lindeberg 2013). It is also noted that for the first temporal derivatives of 

both kernels, the first peak is the strongest similar to the biologically recorded temporal 

response of “non-lagged cells” in LGN as shown in figure (14-left) (DeAngelis et al. 1995). 

For the second regular and power law time transformed derivatives, the first peak is also 

dominant in both time causal kernels, whereas the second peak in both kernels is strongest in 

their second logarithmic time transformed derivatives similar to the biologically recorded 

response of “lagged cells” in LGN as shown in figure (14-right) (DeAngelis et al. 1995). 

Figure (15) also compares the time-causal spatio-temporal kernels proposed in (Lindeberg 



2011; Lindeberg 2013) and the time-causal spatio-temporal kernels derived here based on our 

electrical model of the visual pathway. The similarity of shapes of these kernels with each 

other and with the biologically recorded spatiotemporal receptive profiles of lagged and non-

lagged LGN cells shown in figure (14) (DeAngelis et al. 1995), is noticeable and interesting. 

Our numerical results depicted in figure (15) are also confirmed by the numerical results 

presented in a more recent work by Lindeberg (see figure (2) in Lindeberg 2015). 

3. Structural Properties of our Neural Model  

As discussed in section 2, the model we propose here for the early visual pathway, consists of 

a series of neural layers with electrical properties behaving linearly. These neural layers are 

connected in series. Theorem 3 proved in section 2 is exploited here to describe such a 

network of neurons.  

3.1  Diffusion and Convolution 

For small values of D, difference equation (10) is approximated by the following partial 

differential equation: 

),,,,(),,,(),,,(2 ltZyxvaltyxubltyxu ll -=Ð      (25) 

where Z and t are the length of the axon connecting two layers and the time after which the 

visual signal has reached the l
th
 layer and 
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By using equation (18), equation (25) is written as: 
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By assuming that the visual signal has reached layer l at time t, let us denote ),,,( ltyxu with 
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, by assuming that 



1=Dl , equation (25) can be interpreted as a discrete-time version of a continuous diffusion 

equation, in which +ÍRl  denotes the thl  layer: 

l

lyxu
blyxu l

µ

µ
=Ð

),,(
),,(2          (26) 

It is important to notice that l in equation (26) is the layer number which behaves similar to 

the scale parameter in scale space formulation and therefore equation (26) is in complete 

agreement with the scale space theory for ideal biological vision systems. From equation 

(26), we therefore conclude that the initial image on the retina is smoothed by using a 

diffusion type process as it is propagated through the cascaded neural layers. According to 

our model, this is how the convolution operation (with a Gaussian filter) is implemented in 

biological visual systems. The solution of equations (25) or (26) is a series of Gaussian 

kernels with various scales. These equations therefore indicate that a Gaussian kernel with a 

certain scale is associated with each layer and the scale of the Gaussian kernel increases as 

the visual signal propagates toward visual cortex. As a result, biological visual systems 

access a multi-scale Gaussian kernel measurements.  

By using our model, it is therefore straightforward to explain that the convolution of the 

initial signal of the visual field on retina with a Gaussian kernel is due to the electrical 

properties of the transmission sheets associated with the neural layers and the fact that these 

layers are connected in series as explained in section 2. 

3.2  Agreement with Scale Space Theory  

The model presented here is based on four biological related hypotheses. We therefore need 

to verify if our model is in agreement with the Scale space theory. In this subsection, we 

demonstrate that our model represented by the equations derived in section 2 meets the scale 

space structural requirements of an idealized visual front end as described in (Lindeberg 

2013). The requirements discussed here are associated with a) static image data over a spatial 

domain b) time-dependent image data over a spatio-temporal domain. 



a) Static image data over a spatial domain 

For the static image data which are independent of time, the scale space structural 

requirements are of our model operating linearly as follows: 

a-i) Linearity and Convolution Structure: 

Equation (22) represents the Green function of the visual system characterized by our model 

when it behaves linearly. A time-independent form of equation (22) has the following general 

structure: 

),(~),( yxKyxh n           (27) 

where ),( yxKn is defined in equation (24). When our system meets the linearity condition in 

theorem 2, it is straightforward to verify that this system is a linear one and it is easy to 

conclude from equations (10), (14) and (24) that ),( yxKn is a convolution transformation. 

a-ii) Image Measurements at Different Scales 

The time-independent Green function of our model for ideal biological visions is of the form 

of equation (27). With a large number of cascaded layers, n, ),( yxKn  is approximated as a 

2D Gaussian filter (see theorem 3 for more details), i.e.: 
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where ib  is a model parameter defined in Appendix C. It is numerically demonstrated in 

section (2) (see figure (6) and the related text for further details) that even with n as low as 

six layers, ),( yxKn  is a good approximation of a Gaussian filter. If a new layer is cascaded to 

the aforementioned n cascaded layers, according to theorem 3, the system of n+1 cascaded 

layers has a Green function approximated as a Gaussian function, i.e.: 
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The kernel related to the (n+1)
th
 layer is a modified Bessel function of the second kind and 

zero degree. However since n and therefore n+1 is a large number, then according theorem 3, 

),(1 yxKn+ is approximated as Gaussian kernel as written in equation (29). By comparing 

equations (28) and (29), it is easy to conclude that every layer in a system of cascaded layers 

can provide an image measurement for a scale proportional to the total number of previous 

cascaded layers. It is noted that this scaling parameter is positive because the number of 

layers is always a positive number. Our model of biological vision in this paper is 

characterized with discrete number of layers, i.e. NÍn . However if one aims to extend this 

model for continuous variable +ÍRn  (as investigated in (Lindeberg 2013)), then it is 

straightforward to see from equation (28) that ),( yxKn  approaches to identity operation for 

small values of n, i.e.: 

),(),( lim
0n

yxyxKn d=
­

   +ÍRnfor      

where ),( yxd  is a delta Dirac function. 

a-iii) Semigroup and cascaded properties 

For any NÍm and large values of NÍn , it is straightforward to conclude from theorem 3 

(similar to the discussion in (a-ii )) that  

),(*),(),( yxKyxKyxK mnmn =+        (30) 

Equation (30) is also correct for positive continuous real values of m and n, i.e. for any 

+ÍRnm,  (positive valued scales are fully investigated in (Lindeberg 2011; Lindeberg 

2013)). Equation (30) indicates that filters ),( yxKn form a semigroup with respect to 

convolution. It is also easy to infer from (30) that the transformation (convolution) between 

two different layers 1m and 1n with 11 nm >  and 11 nm - being a large positive value, obeys a 

cascaded property. Therefore our model of biological vision possesses a multi-scale 

representation as indicated in section 3.1. 



a-iv) Infinitesimal generator 

Obviously for discrete values of neural layers used in our model, equation (25) is considered 

as an infinitesimal generator. For continuous values of neural layers on the other hand, 

equation (26) is regarded as infinitesimal generator. 

a-v) Smoothing property: non-enhancement of local exterma 

Given that infinitesimal generator of transformed (convolved) visual signals is diffusion 

equation (26) and following theorems 6 in (Lindeberg 2011), it is by sufficiency implied that 

),( yxKn  (even for small values of n) satisfying diffusion equation (26) possesses the non-

enhancement of local exterma. It is also straightforward to prove directly (without theorem 6 

in (Lindeberg 2011)) that kernels ),( yxKn  possess the property of the non-enhancement of 

local exterma. 

a-vi) Rotational Symmetry 

It is clear that ),( yxKn  for any NÍn  is a rotational symmetric filter. 

b) Time-dependent image data over a spatio-temporal domain 

Let us finally consider the spatial image data changing over time. The most important 

requirement for a time dependent image data belonging to a biological visual system is time 

causality. From equation (16) and figure (11-top row), it is obvious that the time impulse 

response of our model of an ideal biological vision system is time causal. It is also noted that 

parameter z in equation (16) can be interpreted as time scaling parameter of our time 

smoothing kernel. 

3.3  Elongated Non-Isotropic Receptive Fields 

 Figure (16-top) depicts a three dimensional view of the cascaded neural layers proposed 

here. Vertical planes in this figure correspond to neural layers. Figure (16-middle) shows the 

neural configuration of one of the vertical planes of figure (16-top). The network of neurons 



depicted in this figure represents a neural layer covering the visual field with x and y 

coordinates. 

The spatial response of a neuron summing three neurons shown in red in figure (16-middle) 

produces non-isotropic elongated (affine Gaussian) kernels. As an example, the spatial 

impulse response of these three neurons can be written as:  

( ) ( ) ( )( )),(),(),(),( D+++D-= yxKyxKyxKyxh
xxnxnxnn     (31) 

where D and n are the distance between two neighbouring neurons in figure (16-middle) and 

n is the layer number of the neural layer shown in figure (16-middle). Function ( ) ),( yxK
xn  in 

(31) is the first derivative (with respect to x) of the n repeated convolutions of the modified 

Bessel function of the second type and zero degree. Such a response is numerically simulated 

and shown in figure (17-left). The directional derivative (along x direction) of the spatial 

response of a Gaussian kernel with 3=
x

y

s

s
is also depicted in figure (17-middle). An example 

of the biologically recorded spatial receptive profile of a simple cell with strong directional 

preference is also shown in figure (17-right) (DeAngelis et al. 1995). The similarity between 

figures (17-left) and (17-right) is noticeable. The spatio-temporal response of such a 

separable neuron is also modelled by: 

),(),(),,( tzvyxhtyx ttn=k         (32) 

where ),( yxhn and ),( tzv  are given in equations (31) and (16). The 2D spatial response given 

by equation (32) for three different times is shown in figure (18-top). Our results show a 

close resemblance to the recorded data presented in (DeAngelis et al. 1995) as depicted in 

figure (18-bottom).  

3.4 Motion Selectivity of Simple Cells in Striate cortex 

It is well known that motion selectivity and perception is realized in visual cortex. In fact, 

most cortical neurons are quite sensitive to stimulus velocity (DeAngelis et al. 1995; 



DeAngelis and Anzai 2004). It is rather straightforward to extend our model discussed in 

previous sections to also include motion selectivity. Figure (16-bottom) shows a neural 

configuration placed on the horizontal plane of figure (16-top). Each horizontal line is a 1D 

representation of a neural layer shown as a vertical plane in figure (16-top) and the flow of 

visual signal is from the bottom of figure (16-bottom) to the top (or from the outside of the 

page to inside of it in figure (16-top)). In this figure, neural axons shown as vertical lines in 

figure (16-bottom) in a layer, are connected to the dendrites of another neuron in the same 

location of the visual field in the next layer. Each single neuron on such a network is 

characterized with isotropic kernels in space and separable kernels in space-time as discussed 

in previous sections. A linear combination of some of these neurons on a single layer also 

results in a neuron with a non-isotropic separable spatio-temporal response as demonstrated 

in section 3.3. 

A neuron summing the spatio-temporal responses of some diagonal non-isotropic separable 

neurons (shown in red circles in figure (16-bottom)) in this neural configuration produces a 

velocity-adapted non-separable spatio-temporal response which motion selective neurons in 

visual cortex are associated with. By changing the slope of the configuration of these 

diagonal neurons (shown in blue circles in figure (16-bottom) as another example), the linear 

combination of these neurons (shown in blue colour) produces another non-separable spatio-

temporal response adapted to a different velocity. The spatio-temporal 1+2D response 

produced by summing the response of these separable non-isotropic neurons can be written 

as: 
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where D and tare shift in x direction and time delay between two neighbouring red neurons 

in figure (16-bottom). Further, )(tP  is a rectangular function and ),( yxhn and ),( tzvtt are 



also calculated from equations (31) and (16) respectively. It is noted that the temporal 

impulse response produced by the axons of the neurons in layers n-1, n and n+1 (i.e. the red 

neurons in figure (16-bottom)) in equation (23) are approximated as a rectangular function for 

simplicity and ),( tzvtt  is the second derivative of temporal impulse response for the axon of 

the neuron (not shown in figure (16)) summing the red neurons in figure (16-bottom). 

Figure (19-top) presents the simulated 1+2D spatio-temporal response of a velocity adapted 

non-isotopic neuron for three different times. The results shown in this figure closely 

resemble the recorded spatio-temporal receptive profile of a velocity adapted neuron reported 

in (DeAngelis et al. 1995) as shown in figure (19-bottom).  

Figure (20-top) shows the spatio-temporal 1+1D responses, xxth  (see equation(22)) of three 

separable neurons such as the red neurons in figure (16-bottom) for 9.1=zzCR , 01.0=
z

z

C

G
, 

4002=zCR zz , 400=m  with layer numbers n=10, 11 and 12 in equation (22). Our numerical 

results in figure (20-top) is closely similar to the recorded 1+1D spatiotemporal receptive 

profile of a separable neuron reported by DeAngelis et al. (1995), as presented in figure (20-

bottom). Figure (21-left) shows a velocity-adapted non-separable spatio-temporal 1+1D 

response produced by summing the three separable isotropic spatio-temporal 1+1D responses 

shown in figure (20-top). The velocity-adapted spatio-temporal response shown in figure (21-

left) closely resembles the spatio-temporal receptive profile recorded in (DeAngelis et al. 

1995) as shown in figure (21-right). The spatio-temporal separable 1+1D responses, xth , of 

three simple cells in the striate cortex with a configuration similar to that shown in red in 

figure (16-bottom) is also depicted in figure (22-top). An example of a recorded 

spatiotemporal receptive profile is also depicted in figure (22-bottom) as reported in 

(DeAngelis et al. 1995) to show the similarity between the result of our model and the 

biologically recorded data. As shown in figure (23-left), a velocity-adapted non-separable 



spatio-temporal 1+1D response closely resembling the spatio-temporal receptive profile of a 

simple cell in the striate cortex as shown in figure (23-right) and reported in (DeAngelis et al. 

1995) is produced by summing the three separable spatio-temporal 1+1D responses shown in 

figure (22-top). In a more recent and simultaneous work as ours, Lindeberg proposes serially 

coupled integrators for discrete time-causal smoothing kernels whose numerical results (see 

figure(2) in (Lindeberg 2015)) confirm our numerical results presented in figures (21) and 

(23).    

4. Conclusion 

Previous works in the literature demonstrate that Gaussian-related kernels are used in 

biological visual systems. In a mathematical setting, Gaussian related kernels are derived for 

universal visual systems in the Gaussian scale space theory. However no comprehensive 

model based on biological hypotheses for visual systems is presented to show how a set of 

neurons produces Gaussians-related kernels.  

A plausible neural circuitry matching an ideal visual front end of a biological visual system 

based on distributed electrical circuits is proposed here to model receptive fields in linear 

cells. In other words, this study presents a more detailed view of a plausible hardware for an 

ideal front end of a biological visual system. We have analytically demonstrated that our 

model behaves linearly under some certain condition. We have also explored the properties of 

our hardware model under the linear condition. Fundamental distributed electrical equations 

for conductive grids lead to a suggestion that an ideal visual front end of a biological visual 

system forms a kernel approximating a Gaussian kernel and its derivatives to process images 

taken from sensory cells in retina.  

Our formulation also demonstrates that convolution with Gaussian kernels is implemented by 

using a diffusion equation as visual signals are propagated through cascaded layers of 

neurons in a biological visual system. Such cascaded layers therefore provide image 



measurements at various scales. Here it is demonstrated that cascaded neural layers with the 

transfer functions of the type of a modified Bessel function of the second kind and zero 

degree is equivalent to a Gaussian kernel with a certain standard deviation proportional to the 

number of cascaded layers. A model combining some isotropic cells, is also presented here to 

produce the spatial response of non-isotopic simple cells. Separable and non-separable 

(velocity adapted) non-isotropic simple cells are also successfully modelled here. Our 

numerical results obtained from our model are in complete agreement with both recorded 

biological data and numerical results obtained from the scale space theory. 

For future work, it is interesting to extend this framework to explain the behaviour of 

nonlinear cells by employing nonlinear electrical elements as well as by exploring the 

properties of our proposed visual system under nonlinear conditions. Another interesting 

question to be addressed as a future work is that whether it is possible to model higher level 

visual algorithms such as segmentation and recognition implemented by biological vision 

systems by considering neural connectivities as linear/nonlinear electrical circuits. 

5. Appendices: 

Appendix A: Proof of theorem 1 

Proof: Let us write transfer function (13) as: 
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The transfer function DH approaches zero for any 0̧Wx or 0̧Wy  as 0­D . Because as 

0­D , the term 
( )

2

1)cos(

D

-Wx in the denominator of transfer function (A-1) approaches 

infinity for any 0̧Wx . This is also true for the term 
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1)cos(

D

-Wy
. However for the values 



of both xW and yW  very close to zero, the terms 
( )

2

1)cos(

D

-Wx  and 
( )

2

1)cos(

D

-Wy
 in (A-1) 

become undetermined. To evaluate these terms for small values of xW , yW  and D, we 

expand )cos( xW  and )cos( yW  with respect to xW and yW  respectively by using the Taylor’s 

series. Therefore the terms 
( )

2
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-Wx  and 
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 are written as: 
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Since xW and yW are very close to zero, we can ignore terms 
2

4

24D

Wx  and 
2

4

24D

Wy
and the higher 

orders of xW and yW  in (A-2) and (A-3). Therefore the transfer function (A-1) is 

approximated as: 
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where 
D

W
= x

xw  and 
D

W
=

y

yw  are spatial frequencies of continuous signals, i.e. in rad/(unit 

length). Transfer function (A-4) is the Fourier transform of a modified Bessel function of the 

second kind and zero degree. 

 

Appendix B: Proof of theorem 2 

Proof: Neuron A sends a train of spikes (Dirac delta functions) through its axon to Neuron B 

by placing this train of spikes on its axon (a transmission line). Therefore the signal on the 

input of the transmission line is: 
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The impulse response of this axon with length z, is given in equation (16). Therefore the 

response of the transmission line (axon) to this train of spikes at z is as follows: 
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where ),( tzvh  is given in (16). 

Let us now consider the response of the transmission line (axon) to the single spike )( nTt-d  

at z: 
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Given that nT is too small, ),( nh Ttzv -  is approximated as: 
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By re-arranging the above equation, one can write: 
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where 
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zCR
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G
a zz

z

z -=  and t is the time that takes for the signal to reach the dendrites of 

neuron B through the axon of neuron A. The potential will increase in the dendrites of neuron 

B by summing the potential until neuron B starts firing spikes to discharge the potential of its 

dendrites. Therefore the increase in the potential of the dendrites in neuron B due to the 

signal reached to neuron B through the axon of neuron A given in (B-2), and by using 

equation (B-4), can be approximated as: 
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By assuming that 1<<naT  equation (B-5) can be approximated as: 
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Appendix C: Proof of theorem 3 

Proof: The transfer function of n cascaded layers of neurons is written as: 
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 Let us now assume that ib  is the smallest value among lb  for {}il -NÍ" .  Therefore any lb  

can be written as: 

lil bb e+=    10 << le      

where le is a real positive small number. Our second assumption that various neural layers 

have similar electrical properties means that le values are small in comparison with ib . 

Transfer function (C-1) can then be rewritten as: 
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where 121 ,..., +nfff  are polynomial functions of 1e, 2e ,…, ne so that  

nnf eeeeee +++´ ...),...,,( 21211  

nnnf eeeeeeeee 13221212 ...),...,,( -+++´  

nnnnf eeeeeeeeeeee 12432321213 ...),...,,( --+++´  

Χ 

nnnnnf eeeeeeeee 12321211 ...),...,,( --+ ´  

Due to small values associated with le, only the first few nf s in the denominator of (C-2) 

(with low n values) have more significant values. The remaining of nf s becomes negligible 

as n increases. Therefore transfer function (C-2) is approximated as: 
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where nP<<. By approaching n to infinity, it is straightforward to see 
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- 2222 wwww .  Therefore transfer function (C-3) is approximated as: 

( )

( )

( )

( )

( )

î
î
î

ý

î
î
î

ü

û

î
î
î

í

î
î
î

ì

ë

ö
ö
ö
ö
ö
ö
ö

÷

õ

æ
æ
æ
æ
æ
æ
æ

ç

å

ö
÷

õ
æ
ç

å
+

ö
ö

÷

õ

æ
æ

ç

å
+ö

ö

÷

õ

æ
æ

ç

å
+ö

ö
÷

õ
æ
æ
ç

å

ö
ö

÷

õ

æ
æ

ç

åP

=

î
î

ý

î
î

ü

û

î
î

í

î
î

ì

ë

ö
ö
ö
ö
ö

÷

õ

æ
æ
æ
æ
æ

ç

å

ö
÷

õ
æ
ç

å
+++

P

ö
ö

÷

õ

æ
æ

ç

å
-ö

ö
÷

õ
æ
æ
ç

å
-º

ä

ä

=

G

=

G-

=

=

P

k

nk

n

i

y

i

x

CRbn

a

P

k

nk

n

iyx

CRn

a

zz

z

z

zn

zyxn

f
bb

fb
CR

t

C

tG
ttL

n
zzi

l

n

l

n
zz

l

n

l

1

21

22

)(

1

21

22

)(
2

1

:1

),...,,(11

                              

),...,,(1

expexp),,,(

1

1

eee
ww

eeeww

w
www

 

           (C-4)   

The term 

n

i

y

i

x

bb ö
ö

÷

õ

æ
æ

ç

å
+ö
ö
÷

õ
æ
æ
ç

å
+ö
ö
÷

õ
æ
æ
ç

å
1

22
ww

in the denominator in equation (C-4) can be expanded by 

using binomial series: 

( )

( )

ää
==

G

-

ö
ö

÷

õ

æ
æ

ç

å

ö
ö
÷

õ
æ
æ
ç

å
+ö

ö
÷

õ
æ
æ
ç

å
öö
÷

õ
ææ
ç

å
ö
÷

õ
æ
ç

å
+

ö
ö

÷

õ

æ
æ

ç

åP
ö
ö
÷

õ
æ
æ
ç

å
-öö

÷

õ
ææ
ç

å
-

=

=

n

k

k

i

y

i

x
P

k

nk

CRbn

a

zz

z

z

zn

zyxn

bbk

n
f

CR

t

C

tG
t

tL

n
zzi

l

n

l

0

22

1

21

)(

2
1

:1

),...,,(1

expexp

),,,(

1

ww
eee

w

www    (C-5) 

where 
)!(!

!

knk

n

k

n

-
=öö
÷

õ
ææ
ç

å
. 



Let us set 
ö
ö

÷

õ

æ
æ

ç

å

ö
ö
÷

õ
æ
æ
ç

å
+ö

ö
÷

õ
æ
æ
ç

å
=

22

i

y

i

x

bb
nX

ww
. Therefore equation (C-5) is rewritten as: 

( )

( )

( )

( )

ää

ää

==

G

-

==

G

-

-
ö
÷

õ
æ
ç

å
+

ö
ö

÷

õ

æ
æ

ç

åP
ö
ö
÷

õ
æ
æ
ç

å
-öö

÷

õ
ææ
ç

å
-

=

öö
÷

õ
ææ
ç

å
ö
÷

õ
æ
ç

å
+

ö
ö

÷

õ

æ
æ

ç

åP
ö
ö
÷

õ
æ
æ
ç

å
-öö

÷

õ
ææ
ç

å
-

=

=

=

n

k
k

kP

k

nk

CRbn

a

zz

z

z

zn

n

k
k

kP

k

nk

CRbn

a

zz

z

z

zn

zyxn

n

X

knk

n
f

CR

t

C

tG
t

n

X

k

n
f

CR

t

C

tG
t

tL

n
zzi

l

n

l

n
zzi

l

n

l

01

21

)(

2
1

01

21

)(

2
1

:1

)!(!

!
),...,,(1

expexp

                         

),...,,(1

expexp

),,,(

1

1

eee

w

eee

w

www

   (C-6) 

By approaching n to infinity, ),,,(:1 tL zyxn www in (C-6) approaches to the following function: 
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  (C-7) 

The denominator in equation (C-7) is the Taylor series for an exponential function, i.e., 

equation (C-7) can be rewritten as: 
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By replacing X with 
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where 
nt

CR
b zz

z = . 

Repeated convolutions exploited in this theorem, can also be found in the central limit 

theorem (CLT) (Papoulis 1962). However regarding the CLT and this theorem, there are 

some issues we need to notice: 

1) CLT is established in a statistical setting; however theorem 3 is proved in a 

completely deterministic framework. 

2) CLT is accomplished by adding a large number of iid random variables; however 

theorem 3 is concluded as a result of the KVL and KCL equations derived from 

consecutive neural layers characterized with some linear electrical properties. 

3)  Probability distribution functions corresponding to the appropriate random variables 

are convolved together in CLT. However the electrical impulse response of each 

neural layer is convolved with the impulse responses of other neural layers in early 

visual system according to theorem 3.  

4) In CLT, the probability distribution functions can be a wide range of admissible 

functions. However due to the conditions imposed by the electrical properties (KCL 



and KVL equations) of neural layers, modified Bessel funtions are the only kernels 

acceptable in theorem 3.  
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Fig (1): (top) Two dimensional block diagram of some small part of two typical layers of 

our model (bottom) A model of neural configuration for a single layer. The black spots 

represent the neurons which are connected to the neighbouring neurons through dendrites 

forming a two dimensional grid 
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Fig (2): An electrical circuit modelling the retina by using a transmission (conductive) grid 

representing a neural layer  

 

 

 

 

 

 

  

Fig (3): A model of a simple electrical amplifier for spine heads  
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Fig (4): The transfer function H calculated in equation (20) for 0=yw ,
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Fig (5): Axon modelled by a transmission line connecting two consecutive layers of dendrites   
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Fig (6): The filter obtained from the l
th 

layer (dotted curve) is compared in frequency domain 

with a Gaussian filter (dashed curve) for the corresponding layer for a) l=1 b) l=2 c) l=3 d) 

l=4 e) l=5 f) l=6 
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Fig (7): The Euclidean difference between the filter obtained from the l
th
 layer and the 

Gaussian filter in frequency domain for various values of l   

 

 

Fig (8): The filtered image in the 6
th
 layer (left) original image (middle) image filtered by 

equation (21) (right) image filtered by an equivalent Gaussian filter. 

 

 

Fig (9): The difference between the two filtered images (by Gaussian filter and equation (10)) 

for the first ten layers 



 

 

Fig (10): (Left) The Laplacian of a Gaussian over a spatial domain (middle) The Laplacian of 

),( yxKn for n= 6 (right) An example of a spatial receptive profile of an LGN cell as 

described in DeAngelis et al. (1995). 

  



 

 

Fig (11): (top row: from left to right) Time causal smoothing kernel 
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Fig (12): (Top row: from left to right) Time casual kernel 
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Fig (13): (Top row: from left to right) Time casual kernel 
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Fig (14): Examples of spatiotemporal receptive field profiles of nonlagged (left) and a lagged 

(right) LGN cells as stated by DeAngelis et al. (1995). 

  



 

 

Fig (15): Space-time separable kernels (upper left) Time-causal spatio-temproal kernel 

),;();(),;,( dtft tsxgstxh txxtxx ¡¡ =  with 3.0=s and 17=t  (lower left) Time-causal spatio-

temporal kernel ),;();( dtf tsxgh ttxxttxx ¡¡¡¡=  with 3.0=s  and 25=t , (upper right) Time-

causal spatio-temporal kernel ( ) ( ) ),;();(),;,( dtyt tsxKstxh
tnxxntxx ¡¡ = with 12002 =zCR zz , 

015.0=
z

z

C

G
, 4.0=ib  and n=6 (lower right) Time causal spatio-temporal kernel 

( ) ( ) ),;();(),;,( dtyt tsxKstxh
ttnxxnttxx ¡¡¡¡ = with 12002 =zCR zz , 005.0=

z

z

C

G
, 4.0=ib  and 

n=6  For the time-causal kernels, the temporal derivatives have been computed based on the 

transformed temporal derivative operator t

k

t t µµ¡~  here with 2
1=k . 



 

 

 

Fig (16): (top) Three consecutive layers of the neural network configuration in our model, the 

black circles, black lines and red lines represent neurons, dendrites and axons respectively 

(middle) A model for a non-isotropic neuron in space corresponding to one of the vertical 

planes in figure (16-top) (bottom) A model for motion selective neurons corresponding to the 

gray horizontal plane in figure (16-top)  
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Fig (16) (continued): (top) Three consecutive layers of the neural network configuration in 

our model, the black circles, black lines and red lines represent neurons, dendrites and axons 

respectively (middle) A model for a non-isotropic neuron in space corresponding to one of 

the vertical planes in figure (16-top) (bottom) A model for motion selective neurons 

corresponding to the gray horizontal plane in figure (16-top)  
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Fig (17): First order directional derivative along x direction (left) of a non-isotropic elongated 

filter combined by three isotropic neurons for 130=m , n=10, and d=10, (middle) of a non-

isotropic elongated Gaussian with 3=
x

y

s

s
, (right) an example of the receptive field profile of 

a simple cell with strong directional preference as reported in (DeAngelis et al. 1995) 

  



 

 

T=36ms                         T=110ms                           T=210ms 

 

 

Fig (18): (top) Spatio-temporal response of a non-isotopic separable elongated neuron shown 

in figure (16-top) for dy =10, n=10, 9.1=zzCR , 001.0=
z

z

C

G
, 4002 =zCR zz  and 130=m  

(bottom) Examples of spatiotemporal receptive profile of a separable non-isotropic neuron as 

reported by DeAngelis et al. (1995). 

  



 

 

T=24ms                             T=73ms                               T=140ms 

 

 

Fig (19): (top) Spatio-temporal response of a non-isotopic velocity adapted neuron shown in 

figure (16-bottom) for dx =10, dy =10, n=10, 9.1=zzCR , 001.0=
z

z

C

G
, 4002 =zCR zz  and 

130=m  (bottom) Examples of spatiotemporal receptive field profile of a non-separable 

(velocity adapted) non-isotropic neuron as reported by DeAngelis et al. (1995). 

  



 

 

 

 

 

Fig (20): (top) Spatio-temporal responses xxth  of three neurons with a configuration similar to 

those shown as the red neurons in figure (16-bottom) with separable filters, (bottom) An 

example of the 1+1D spatiotemporal receptive profile of a neuron reminiscent of a first-order 

derivative in time and a second-order derivative in space as reported by DeAngelis et al. 

(1995). 

  



 

 

 

Fig (21): (left) Velocity-adapted non-separable 1+1D spatio-temporal response produced by 

summing the three separable spatio-temporal responses shown in figure (20-top) (right) the 

spatiotemporal receptive profile in tilted space-time as reported in (DeAngelis et al. 1995). 

  



 

 

 

 

 

Fig (22): (top) Spatio-temporal responses xth  of three neurons with a configuration similar to 

that shown as the red neurons in figure (16-bottom) with separable filters, (bottom) An 

example of spatiotemporal receptive field profile of a simple cell in the striate cortex 

reminiscent of a first order derivative in space and a first derivative in time as reported in 

(DeAngelis et al. 1995) 

  



 

 

 

 

Fig (23): (left) Velocity-adapted non-separable 1+1D spatio-temporal response produced by 

summing the three separable spatio-temporal responses shown in figure (22-top), (right) An 

example of biologically recorded spatiotemporal receptive field profile of a simple cell as 

reported in (DeAngelis et al. 1995). 

 


