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1. Introduction
The concept of receptive fields is initially introduced to explain reflgxesiucedby a
stimulusin thesomatosensorgrea of a bog surface(Sherrington 1906)This notion is then
extended inHartline 1938)o light stimuli to specify visual receptive fieldssa visual field
region in whichif visual stimuli are presented, tlell corresponding to the receptive field,
responds! ON” and -fe@dagwithingisudl receptive fieldare therdiscoveredy
Kuffler (1953) The orientation tuning of neurons in the primary visual cortex is then
uncovered by Hubel and Wiesel whtbaracterizethe neurons r e s im ¢he prenary
visual cortex (V1oy consi dering the cell s’ r éshelons e s
and Wiesel 2005) ater DeAngelist al. (DeAngeliset al. 1995 DeAngelis and Anzai 2004)
employ receptive field mapping techniques based on white noise stimuli to characterize the
neur ons’ r e s p on dirmesdomain. Thelsmatiojramiatic and spatiahcoma
temporalresponsgare then described by Conway and Livingst@®06) A spatiotemporal
energy model for motion perception is also develope@Auntelson and Bergen 198%y
exploiting oriented filters in the spatiene domainSpatiotemporal receptive fields are also
modelled in(Young et al. 2001) by using Gaussian derivatives over a joint sgaoe
domain.In fact, biological experiments quantitatively indicate tthe linear visualreceptive

fields are well-modelled asmainly Gaborkernels differences ofGaussiaa and Gaussian



derivatives The receptive fields as Gaussian related kernels in biological vision are
considered as tools for canonical neural computations of the brain as suggested by
physiological and behavioural evidence (Carandini and Heeger 2012).

On the other handcale space theory has been developed to provide a general framework for
early visual operationsn any universalvisual font end(see e.g. Weickerét al. 199;
Lindeberg 2011) Gaussian kernel and its family axerived by postubting a set of
mathematical properties (axiomghich an early visual system is expected to possess (see
e.g. Weickeret al. 1997 Florack 1997; ter Haar Romeny 200 (Floracket al. 1992), it is
demonstrated that the class of admissible sxdee kernels can berdined by including
semigroup, scale invariance and rotational symmetry propefftes.eparability of a kernel

in Cartesian coordinates then leads to Gaussian scale space. Gaussian scale space is also
introduced for temporal data in (Koenderink 1988y éurther investigated in (Florack 1997,

ter Haar Roment al. 2001). A timerecursive space time separable sp&imporal scale

space model is then developed in (Lindeberg and Fagerstrom 1996). A Poisson scale space
formulation which does not possehs property of the neanhancement of local exterma, is

also investigated in (Duitst al. 2004).Gaussian scale space framework is also employed in
(Lindeberg 2011; Lindeberg 2013) to present 1) a continuousdamsal scalspace model,

2) a time recuige update mechanism, 3) a parameterization of the sggattiporal filters

with respect to image velocity and image deformation and 4) convincing results from the
scalespace models determined by a set of structural constraints for an idealized vision
sysem. Early biological visual systemgossessing the mathematical properties suggested in
Gaussian scale space theayealsowell known tobe associated witlthe Gaussiarrelated
kernels It is notedthat Gaussian scale space theory has been developed in a mathematical
setting for any general early visual systesmch possesssa set of mathematical properties.

The hypothesisis that since the early biological visual systemjoysthese mathematical



properties, it should also possess Gaussian related kerhel$act that the numerical results

of the kernelgderivedin the Gaussian scale space framework are in agreement with linear
receptive fields in vertebrate early visual systems (Lindeberg 20itdelherg 2013),
confirms thishypothesis However, no anatomical, and nor physiologieasumptiondor

early biological visual systems are considered for the derivations of the Garelsizal
kernebkin a Gaussian scakpace setting.

In this paper, amodel based on distributed electrical circuits is proposeébrmulate
electrical connectivity of neurons iretina and otherfollowing neural layersas two
dimensional distributed linear circuiis the visual pathwayNeurons in a given layesend

trains of spikes to neuroms the next layer through their axons, if their membrane potential is
greater than a certain threshold. In such a scenario, according to classical rectification model
(Granitet al. 1963; Carandini and Fester 2000w pass sigals (membrane potentials) in a
neuron is linearly associated withe firing rate of neuronsif the potentiais above a certain
threshold.It is important to notice that the input of any single neuron in a given layer is
connected botldirectly to the autput of the corresponding neuron in the previous layer and
indirectly to the outputs of all other neurons in the previous layer through the conductive
sheet.The circuit proposed here is nonlinear in nati&e thereforepresent a condition
under which tfs circuit behaves linearlyA linear electrical circuit equivalent to this
nonlinear neural circuitrys proposed in this papéo facilitate the derivations of the visual
receptive fields. In such an equivaldmear circuit, a neuron in a given layés directly
connected to its counterpart the next layeso thatthe membrane potential of a neuron is
directly and linearly affected by the membrane potential of the corresponding neuron in the
previous layer.Our contributions in this paper are adduls:

1) Here we propose an electrical circuit, based on the anatomy and physiological properties

of early visuakystems tanodel the neural connectivity in this visual path.



2) In contrast with Gaussian scale space frameworks, linearity is not one agsumptions.

Our model ishencenonlinearin nature. We therefore show here that this nonlinear system
behaves like a linear one under some certain conditions.

3) Here we demonstrate that the witldandriticnetwork processes produce the Gaussian
aspect of the visual receptive fields. This is in contrast with the previous work (see e.g
(von Seelen et al. 1987; Dinse and von Seelen 1981; Krone et al) ir986¢ literature
where the Gaussian distributed synaptic connections are considered the reason for the
Gaussian aspect of the visual receptive fields.

4) In our numerical results, it is demonstrated that-isotropicelongated receptive fields
are better matchedith the receptive fields of a group of isotopic Gaussian neurons rather
than with a single neuron possessing aisoiropicelongated Gaussian receptive field.

5) In our model, we show that the effects seen in the causal temporal smoothing of spatio
tempoal (separable and nenepar abl e) receptive fields ar
axons behaving like transmission lines. It is demonstrated here that these cascaded neural
axons, also proposed in a simultaneous and independent research in (Lindeberg 2015) as
serially coupled first order integrators, produce numerical results very similar to the
biological recordings.

6) Last but not leastas mentioned beforewe have here started with a small set of
hypotheses based on the anatomy and physiology of thel®aldgical visual system.
Gaussian related kernels are then deritedescribe the behaviour of thisual receptive
fields of cells in this visual system. This is in contrast with the sjadee framework
where a set of mathematical axioms (requiretslefor a visual system is the base for
scalespace theory. It is important to notice that in our derivation, no axiom from Gaussian
scale spacé&rameworkis used. From the standpoint of the philosophy of science, this is

important and interesting. Gaugsiacalespace formulation has been developed in a



mathematical setting (mathematical world) starting with some general (mathematical)
properties for a universal visual system. Yet, this formulation connects nicely with a
biological visual system in our physical worl@dee Penrose 2004, section 1.4 for
discussions on mathematical and physical worltispugh the comparison between the
numerical results of the theory and biological experimer®n the other hand, only
anatomical and physiological assumptions (in the physical world) are made in this paper
in our model Our numerical results are also in good agreement with biological
experiments. Finally wealso show here that our model which is based on physical
biological assumptions is in good agreement with the completely mathematically derived
Gaussiancalespace theory.
The rest of this paper is structured as follows.section 2, the model proposed here is
described andts mathematical formulatiorand applications in vertebratearly visual
processing ar@liscussedIn section 3,the properties of our model asn ideal biological
visual system arevestigatedand the numerical results of our model are preseirtethis
section, weaalsotheoretically demonstrate that our model mée¢ structural requirements of

scale space thearkinally conclusions are drawn in section 4.

2. Model for Early Visual Pathway
2.1. Model Hypotheses
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el ectricalt hpe o peeyatinicensaandgfeerdg & rd eerntt aitn o n
4HOur final assumption is that the distance
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2.2 Model Derivation
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(I alyleThmo d e | parameters are as foll ows:

RianB,= cytopkaswsotfc Wietnfdri tefperllaget | ength
Ch,an@,= membrane capacfibdbrelbager unit I ength

GyanG@G,=conducatcamcses dendritic Mmembitayerin uni

As shown in this figure, spine headslayer| are modelled as electrical amplifiers with high

input impedances, low output impedances and gaing oMore details of suclamplifiers

are shown irfigure (3. It is reported in the literature (see gMiller et al. 1985; Segev and

Rall 1988) that spine heads are active circuits and amplify spikieis. behaviour of spine
heads guarantees that the transmission of spikes is maintained through all layess in t
biological visualpathway Therefore in steady state, the visual signal is passed through spine
heads with no attenuation.

As a result, the steady state of spine heads is modelled as an electrical arBphfier.we

write the equations for the two dimensional transmisgjiod, let us write the relationship
betweenv(x,y,Z,t,1):R*3 R*3 N- Rand u(x,y,t,1):R*3 R"3 N- R (see figure (3))

by using the model of an electrical amplifier for spine Beadere Zis the length ofthe
axonconnecting two consecutive layers at locatigy)(in the visual field By considering

the Kirchhoff Voltage Law (KVL) in left and right loops figure (3, we can write:

| = Uyt Qv(x, Y, Z,t,1) D

wherei, and R ,arethe output current going into the transmissioid per unit lengtrand the

output resistance of the airfper.
Let us nowconsider the Kirchhof€CurrentLaw (KCL) for linear circuitan the node with the

voltageu(x,yt,l) in figure (2:

i (% y,1,1) = G DxuU(x, y,t,1) +i (x+Dx, y,t,1) +CX|DXL:IEX +i_,Dx @)



i, (%, ,t,1) = G, Dyu(x, y,t,1) +i, (% y+ Dy, t.1) +Cy,Dy%+ioyDy 3)

wheret, i

170X

and i,, are time,x andy components of the output currentrespectively.As
shown in figures I-botton) and (2), Dx and Dyare small distances between two
neighbouring neurons wandy directions.C, and C,, are consideretdery small and hence
ignored hergthereforeequations (2) and (3) can be writtastwo difference equations, i:e.

i (6 Y61 - i (x+Dx,y, 1) = (G u+i,, )Dx (4)

i, (Y.t - i, 0y + Dyt 1) = (Gu+ig, Joy (5)

We also write KVLs between nodes with voltag€s, y,t,1) and u(x+Dx, y,t,l) as well as
u(x, y,t,1) andu(x,y+Dy,t,1):

u(x, y,t,1) - u(x+Dx, y,t,1) = R,Dxi, (6)

u(x, y,t,1) - u(x,y +Dy,t,1) =R, Dyi, (7

To consider boundary conditions, let us assume that the boundary coincide with a line
parallel toy axis. In this case, on the boundgry Oand equation (6) is simplified as:

u(x y,t,1) - u(x+Dx, y,t,1) =0 (8)

Similarly for a boundary parallel toaxis, the boundary conditias:

u(x y,t,1) - u(x,y+Dy,t,I) =0 9)

In general, the boundary condition for a boundary with aagientation is

u(x, y,t,1) - u(x+Dxcos@),y +Dysin(@),t,1) =0 (Neumann boundary conditign\where

n ~ - .
tan@g) =— and = nd +n, j is the normal unit vector to the boundary
n

Due to therotationalsymmetry(our third assumptionj theconductivegrid with respect tx

and y axes in figure (3, we assumeDx=Dy=D,G, =G, =G, R, =R, =Rand



iOX:ioy:I—E. Therefore from equations(1), (4), and (5), we can write the following

difference equatian

u(x+Dx,y,t,1)- 2u(x y,t,1) +u(x- Dx vy,t,l)+u(x,y+Dy,t,l)- 2u(x y,t,1)+u(x y- Dy,t,l)

i DZ%RG, + B8yl =- DRAV(x Y. Z,t.]) (10)
C R, + R,

Let us now take a two dimensional Z transform from both sides of difference equ#)iom (

U(z,,2,t,)
calculate the transfer function
X’ yyZ1t7|)
_RAD
U(z,,z,,t,l
HD(Zx'Zy):V(( X th)l) — Rol _ _ (11)
Z ) ) b )
x %y z,-2+z'+z,-2+z7)} - F%RGl R‘%DZ
G

The transfer functionH,(z,,z,) with respect to radian frequenmeNx,Wyl' [ p,p) is

written as:
_RAD
Ho (M ™) = R, ; (12)
ij_2+e-ij+ei 2+e @RG +I§O|§Dz
Or
_RAD
H (e o) = i _ (13
2(cosw,) - 1)+ 2[cosw,) - 1)- BRG nzﬁf
¢ I

In figure @), the transfer functionH is plotted for W, i [ p,p), W, =0,

'T%A =2RG +§O =1 and D=0.01,0.1 and1. As shown in this figure, the smaller the
| |

value of D, the closer the transfer functidth gets to the Fourier transform ofraodified

Bessel function of the second kind and zero degree. In the following theorem, we prove that



the transfer functiorH , (e’ ,ejWy) approacheshe Fourier transform of modified Bessel
functionof the second kind and zero degrageD- O.

Theorem 1: The transfer functiorH , (e’ ,ejwy) of equation(13) approacheghe Fourier
transform of anodifiedBessel function of the second kind and zero deagd2- O.

The proof of this theorem is presentedippendixA.

According to one of our aforementioned assumpti@ssumptiord), the distance between
two neighbouring neurons regligiblein comparison with the dimensions of the visual field,
i.e. D- 0. The result otheorem 1(see equatiofA-4)) indicates that the transfer function
Hwith respect to frequencies; and w, of continuous two dimensionaisual signals can

be written as the Fourier transform afmodified Bessel function of the second kind and zero

degree(Mahmoodi 2012; Mumford and Shah 1989)D- O, i.e.:

R
U(M/X’WY’t'l) - R0| - a'| (14)
V(WX,Wy,Z,t,I) M/E+M/§+2R‘G| +i W§+M/)2/+b|
R,
where g, = A R and b =2RG, +i arethe parameters associated with layeBy D

| |
approaching zero, the conductive grid approaches to a conductive sheetofithistive
sheetcorresponding to thE" layer whosetransfer function with respect to the coordinates
andyof t he r efieldis gversin eguatioifl4),lis a model for the dendrites of all
neurons of thd™ layer. These neurons aralso connected to the dendritémodelled by
another conductive sheat) thenext layer of neurons through thaxors as shown irfigure
(1-top). Let us now model thexors with a transmission line along the axisasz shown in

figure (). Thedifferentialequationdescribingthis transmission line can be written as:

2

chz% RGyv- EY =0 (15

2



wherev: R*3 R"3 N - R is the potential of thaxonmembrane and

R= cytopl asmiacx@grersi sniitviltegngthh
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In equation(16), z could be interpreted as the time scale parameter of the time smoothing

kernel.Equation(16) in spatial frequency domais also written as

4 Gtd a wta

1 ~
vV, (w,,t) = e expaR —- 1
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2.3 Neural Spikes

It is well known that neurontransmit a signal by sending spikes through its @wamother
neuron In our model, the neurons of one layer send spikes to those of the next layer to
transmit visual signals to other layers towards the visual coHexvever no spike is
exchanged amonthe neurons within the same layer, since the neurons associated with a
certain layerare connected through dendritésd not axonsln this paper, we exploithe

simple and classic rectification model in which firing rate is zero for memlpatentias

bdow a certain threshold and grows linearly wittembranepotentiat over the threshold

(e.g. segqGranitet al. 1963 Carandini and Festeét000). Here we thereforedemonstrate

how a nonlinear system of neurons communicating with spikes through axons can be
approximatedhs a linear system ftow passsignal transmission undarcertain condition.

Since axons behave like a transmission line, spikes modediexhs Dirac delta functions
(impulses) need to be transmitted via axons. As a result, the output signal at the end of the
transmission line (axon) has the general forrteafporalimpulse response of the line (axon)

for a single spike (impulseys derived irequation {6). This temporalimpulse response for
some certain values of the parameters is shown in figurefildowleft columr). As can be

seen from this figure and equati¢lo), thistemporalimpulse response is a low pass signal.
This implies thathe axon modelled astransmission line behaves like a low pass filter. Such

a low pass filterremovesmedium to high frequency components of the train of spikes
(impulses) generated by the neuron in the previous layer, so that the signal reached to the
dendrites of the next layer is a low pass signal whose maximum amplitude is proportional to
the number of spikes (impulses) generated by the neuron of the previoud hagdow pass

signal is also affected by the low pass signals reached to the neigighoeuronsso that the



low pass signalseached to neurons this neighbourhoodrealsofiltered by low pass filter

(14). Then a particular neuron in this layer fires spikes according to the potential (low pass
signal) it senses in its dendrités.theorem 2 under some certain condition, \demonstrate

that he number of spikes a neurbres in a givenlayerdepends on the number of spikes
receiveshrough its dendritesn the following theoremT and s are defined as the average

and standard deviation of the time intervals between consecutive spikes in a train of spikes

sent by a neuron through its axon so that the average firing rate of a train of sékes is

Theorem 2: if neuron A sends a train of spikeswith an averagd and standard deviation
s of the time intervals of its train of spikes for a certain static visual sitimalughits axon
to neuron B, the potential sensed by neuran Bs dendritess proportional ta\, provided
thatall time intervas betweentwo consecutive spikds too small with respect to thane (t)
takenfor the signal to reach neuron B.

The proof is presented Ayppendix B

According to the result ofheorem 2the axon ofa neuron in layet-1 is connected t@
neuron in layet, if the neuron in layel-1 fires N spikes, the potential aime neurorat the

endof theneuron axonin layer! will be proportional to\ (see figure (5))i.e:
V(% Y,z t,1) =V, (z)N{1+(2a+D)T +as?) (19

2
wherey, (z,t) is given in equation1) and a = % - Rf% .

z

On the other hand, according to classreatification model for neural firing rat¢&ranit et
al. 1963 Carandini and Fester 2000) u(x, y,t,l - 1) is greater a certain threshotten
ux,y,t,I - ) =K N (19

where K is a constant-rom equationsl@) and (9), it is thereforeeasy to see that potential

u(x, y,t,l - 1) is linearly proportional to potentie(x, y, z,t,1), i.e.:



V(X Y, zt,1) = kv, (z,t)u(x y,t,1 - 1) (20

wherek is also a constant.

The limit between linearity and nonlinearity tie visual system ilmur modeldepends on

how small or large the time intergdbetween consecutivapikes iswith respect to the time
thatneural spikesaketo reach to the next layer from the current lajfethesetime intervas

are large enough then relations between the input potentials of a layer with the input
potentials of the next layer will become nonlinelar.such cases the whole visual system
behaves like a nonlinear system.

By using equationgl4), (17), and(20), the trassfer function of a neuron whose dendrites and
axonare connected to the conductive sheets of Iakfeaind layei respectivelywith respect

to spatial frequenciew, , w,, w, a n d tisiwnt@nas:

L(w,,w,,w,,t,1) = U tl) _a o G2, 4 wit g
x1 Wy ¥zt U(VVX,Wy,t,l'l) RZCZ(M/)?"-M/;"'Q) Xp? Cz gexp? RZCZ@

Let us now assume that the visual path consistscakcadedayers whose transfer functions

are givenby L(w,w,,w,,t,1) in the above equationThe transfer function of cascaded

layersdenoted byL,, can therefore be writtein equation(21).

" 4 Gtg 4 witgrd a 0
L. \w,,w,,w,,t)]= - expE ——BeXpR —— & Q (21
b RC.yanm E c, 7% Rpﬁ'iémfwfymg

where Gis the gamma functiorOur assumption i§21) is thatthe axors of different layers
have the samparameter€,, R,and G, . However it is straightforwartb verify thateven if
the axors of different layers have different line parameters, transfer fun@inwill still
havea similar formbut with different parametelis exponential termdt is noted that he
first part of transfer function2Q) is due to n cascaded axons which agquivalent to then

serially coupled temporal first order kernels proposed in (Lindeberg 2015).



In theorem 3we prove that if the number o&scadedayers approadas infinity, the Green
function of the system of cascadecheural layers approaches a Gaussian functidh
respect t, y, andz

Theorem 3: For "I N b >1 where N is the set of the Natural numbethe transfer

function in (21) approaches a Gaussian transfer function agthe number of cascaded
layers)approaches infinity.

A proof fortheorem 3s presented id\ppendix C

The similarities and differences between theorem 3 and Tikhonov regularization (Mielsen
al. 1997) are interestingn this paper, he Gaussian kerné resulted from twdacts 1) a
single layer of neurons behaves like a conductive sheet and 2) tegna are cascaded
from retina to visual cortex to transmit the visual signal freyes to brainHoweverno
regularization, or optimisatiois employed here to derive the Gaussian ke@althe other
hand, the Gaussian kernel derived from Tikhonov ragahktion is the result of the
optimization of an energy functional (Nielsenal.1997). In this regularization framework,
further constraints such as scale invariance, -ggmip and nomegativity properties are also
required to result in a Gaussiarnrikel as the optimal solution of the Tikhonogtimization
problem.It is also interesting to note thttte constraint of sengroup property in Tikhonov
regularization can be considered equivalenth® assumption otascaded layers in our
model. Further, the transfer function derived 1d)(already enjoys the scailevariance and
norrnegativity properties. In other wordscaleinvariance and nenegativity properties are
inherent in our model due to the electrif@tysical) properties of conductive lager

By taking spatial inverse Fourier transform from equaf{éi®) with respect t, y, andz and
their spatial frequenciedransfer function21) in the spatietemporal domairfor a largen

can bewritten as:



h(x,y,zt) = F Ly, (g, m,,)) = Aq;yn(z,t)Kn(x,y) (22)

(4mn)2

where F lis the three dimensionalverseFourier transform and

L}
2

t & Gtd a RC,Z°Q

yn(z’t)_ £ (23)
R zﬁxp? 2 9

Ko ¥) = B Goplyf 5<$ 3 y K0 (24)

And Ais a constant and defined Appendix Cas:

Oa
A 1=1
o P ~
%+a fk(el,ez,...,eng
g k=1 -

K(x,y) is also the modified Bessel function of the second type and zero degree.
2.4 Some Numerical Considerations for Our Model

We noticethat for small values ofi, K (X,y)is the repeatedonvolutiors of n modified

Bessel functions of theecondkind and zero degreé¢loweveraccording totheorem 3for
b &b .2, 20 o

large values oh, K, (X, y) ~—expae —(Xx°+y-)o. The result oftheorem 3s in complete
n n +

agreement with the biological recordings of retinal cells (sedEngoth-Cugell and Robson
1966; Young 198%)

In practise, as low asix consecutive layers of neurons can result keanelvery close to a
Gaussiarkernel Here, we attempt to show th&t (x,y) in (22) is close to a Gaussi&ernel
evenwith a limited number of layers. THernelobtained from the output of tH8 layer is
compared with an equivalent Gausskarnel associated with the corresponding layer in

frequency domain ifigure 6). In this experiment, we allow the parameberin equation

(212) for each layer to vary slightly in comparison with other layers by sampling its values



from a Gaussian distribution with a certain mean and standard deviation (in this experiment,
the mean value and standard deviation are chosen as unity and 0.2 relspegtivarying

parameterb indicates that the neural layers are not identical however they have similar

electrical structures. Ifigure 6), a cross section of theernelsare plotted for illustration
purposes and the comparison has been made for layets 2, 3, 4, 5and6. As shown in

this figure, the difference between the tkernelsfor the first layer is significant. However
asl increases, the difference betweea to filters becomes lower and lower so that for the
6" layer, the difference between the two filtersisiostnegligible. In this figure, th&ernel
obtained from the network of neurons is plotted with the dotted curve and the Gaussian
kernelfor thecorresponding layer is drawn with the dashed curve.

The Euclidean distance between the teonelsin frequency domain for various values of
layersbetween unity and one hundred is also plottefigure (7). As can be seen from this
figure, the difference between the twkernelsare negligible when the number of laydrss

more than sixIn this experimentp, is again allowed to vary slightly from a layer to the next
one according to a Gaussian distribution with a unity mean atahdard deviation of 0.1.

In the next experimentthe spatial part of thdilter derived inequation(21) is implemented

for six layers andhe case wher@, =b is sampled from a Gaussian distribution with the
mean and standard deviation of unity and 0.1 respectively. The results are sHaunein

(8). Figure @-left) depicts the original image and the filtered image calculated by using
kernel (21) is shown infigure @-middlg. The image filtered by the equivalent Gaussian
kernel of equation(C-9) with n=6 is also presented ifigure @-right). The difference
between the two filtered images per pixel for the first ten layers is plottegine (), for the

case wherea, and by randomlyvary from a layer to the next, asnsidered in the previous

experiments



As can be seen from these figures, by increasing the number of layers, the image filtered by
using transfer functiof21) approaches an image filtered by a Gauskeanelgiven in (G9)

with n equal to the number of layers

In figure (10), we compare theaplacian of Gaussian (figura@left)) with the Laplacian of

spatial kernel K (x,y)for n=6 (six neural layers) as shown figure (1O-middle. As

reported in(DeAngeliset al. 1995) an example of a biologically recorded spatial receptive
field profile of an LGN cell is also presentedfigure (LO-right).

Figure (11) depicts the time casual kernel (impulse response) computed by using equation
(16) and its regular first and secondrigatives. For comparison, the tinwausalkernel
proposed by Lindeberg ifLindeberg 2011Lindeberg 2013and its regular first and second
derivatives are also shown in this figure. This figure demonstrates the resemblance of the
time causakernel calculated here by modelling the neural ax@s®d ora transmission line

with the timecausalkernel proposed irfLindeberg 2011; Lindeberg 2013)he first and
second derivatives with respect to logarithmic and power law time transformatics@
presented in figures 2] and (3) respectively. As can be seen from these figures, the first
regular derivative of the timeausalkernel calculated here has two peaks and one interior
zero crossing. This is similar to the first regular derivativéheftimecausakernel proposed

in (Lindeberg 2011lLindeberg 2013)lt is also noted that for the first temporal derivatives of
both kernels, the first peak is the strongest similar tobib&ogically recordedtemporal
respons+4é agfgetdn aabl bd skown iidigure (14-left) (DeAngeliset al. 1995)

For the second regular and power law time transformed derivatives, the first peak is also
dominantin both time causal kernela/hereas the second peaakboth kernelss strongest in

their second logarithmic time transformed derivatives similar tobtbigically recorded
response of “l agged figeré (Msight) (DeAngeliGdt al.4395) s h o wn

Figure (B) also compares the timeausal spatiwemporal kernels proposed (hindeberg



201Z% Lindeberg 2013and the timecausal spatiwemporal kernels derived here based on our
electrical model of the visual pathway. The similarity of shapes of these kernels with each
other and with théiologically recordedspatiotemporal receptive profiles of lagged and-non
lagged LGN cells shown ifigure (14) (DeAngeliset al. 1995) is noticeable and interesting.
Our numerical results depicted in figure (1 also confirmed by the numerical results
presentedn a more recent work by Lindeberg (see figure (2) in Lindeberg 2015).
3. Structural Properties of our Neural Model
As discussed in section 2, the model we proposefbetbeearlyvisual pathwaygconsists of
a seriesof neural layerswith electricalpropertiesbehaving linearly These neural layers are
connected in seried’heorem 3proved in section 2s exploited here to describe such a
networkof neurons

3.1 Diffusion and Convolution
For small values ofD, difference quation(10) is approximatedoy the following partial

differential equation

Pu(x, y,t,1) =bu(x y,t,1) - av(x,y,Z,t,1) (25)
whereZ andt are the length othe axonconnecting two layerandthe time after which the

visual signal has reached tdayerandb = 2R G, +iandaI A— R

R, R

By using equatior18), equation(25) is written as:

o ~ 2~
P2U(x v.t.1) = VD) - u(x, y,l -1 a Gto a RC,Z°Q
u(x, y,t,1) =bu(x y,t,1) - a > ptRZGZemég c gexpé@ 4t g

By assuming thate visual signal has reached layait timet, let us denoteau(x, y,t,l) with

u(x y,l). For the case wherg, RG

g xp% § b, by assuming that
9mre 0



D =1, equation(25) can be interpreted as a discrétae version of a continuousffiision

equation, in whicH I R* denotes thé™ layer.

p2u(x,y,) =h w (26)

It is important to notice thdtin equation(26) is the layer number which behaves similar to
the scale parameter in scale space formulation and therefore eqi2@iaa in complete
agreement witlthe scale space theorpr ideal biological vision system$&rom equation
(26), we therefore conclude that thmitial image on the retina is smoothég using a
diffusion type procesasit is propagated through tlmscadedeurallayers.According to
our model, this is how the convolution operation (with a Gaussian filter) is implemented in
biological visual systemsThe solution of equationf5) or (26) is a seriesof Gaussian
kernelswith various scales. These equations therefore atelithat a Gaussidernelwith a
certain scale is associated with each layer and the scale of the G&esselincreases as
the visual signal propagates toward visual cort&g.a result, biological visual system
access a mukscale Gaussiakernelmeasurements
By using our model,tiis therefore straightforward to explathat the convolution of the
initial signal of the visual fieldon retinawith a Gaussiarkernel is due tothe electrical
properties of the transmission sheets associated with the neural layers and the fact that these
layers are connected seriesas explained in section 2.

3.2 Agreement with Scale Space Theory
The model presented here is based on foupnbichl related hypotheses. We therefore need
to verify if our model is in agreement with the Scale space théorthis subsection, we
demonstrate that our model represented by the equations derived in section 2 meets the scale
space structural requirements of an idealized visual frontasrdescribedin (Lindeberg
2013) The requirements discussed here are adeacwaitha) static image data over a spatial

domainb) time-dependent image data over a sp&timporal domain



a) Static image data over a spatial domain
For the static image data which are independent of time, the scale space structural
requirements aref our model operating linearlys follows:
a-i) Linearity and Convolution Structure
Equation(22) represents the Green function of the visual systearacterized bgpur model
when it behaves linearhA time-independent form aéquation(22) has the following general
structure:
h(x,y) ~ K, (x,y) (27)
where K, (X, y) is defined inequation(24). When our system meets the linearity condition in

theorem 2 it is straightforward to verify thahis system is a linear onand it is easy to

conclude from equationd@), (14) and(24) that K (X, y) is a convolution transformation.

a-ii) Image Measurements at Different Scales
The timeindependent Green function of our model for ideal biological visieg the form

of equation(27). With a large numbeof cascaded layers, K, (x,y) is approximated as a

2D Gaussian filter (setheorem JFor more details), i.e.
- hz (_ B2 2 ) 2
Ko (6 Y) = ek 50¢ +y) (28
o

where b is a model prameterdefinedin Appendix C It is numericallydemonstrated in
section (2) (seéigure (6) and the related text for further detailbat even witm as low as
six layers,K, (x,y) is a good approximation of a Gaussian filtta new layer is cascaded to

the aforementioned cascaded layergccording tatheorem 3the system oh+1 cascaded

layers has a Green function approximated as a Gaussian function, i.e.:

Kpalt )~ el 2506 ) @9



The kernel related to th@+1)™ layer is a modified Bessel function of the second kind and
zero degree. However sinnend therefore+1 is a large number, then according theorem 3,
K...(X, y)is approximated as Gaussian kernel as written in equa®@n By comparing
equationg28) and(29), it is easy to conclude that every layer in a system of cascaded layers
can provide an image measurement for a scale proportional to the total number of previous
cascadedayers It is noted that this scaling parameterpissitive because the number of
layers is always goositive number. Our model of biological vision in this paper is
characterized with discrete number of layers, me.N . However if one aims to extend this
model for continuous variableni R* (as investigated ir(Lindeberg 2013) then it is
straightforward to see from equati@B) that K, (x,y) approacheso identity ogration for

small values ohf, i.e.:

Ii_rrg) K,(xy)=d(xy) for nl R

where d(x, y) is a delta Dirac function.
a-iii) Semigroup and cascaded properties
For anymi Nand large values ofl N, it is straightforward to concludeom theorem 3

(similar to the discussion imai)) that

Knm(X Y) = K (X, 9)* Ko (X Y) (30

Equation (30) is also correct for positive continuousreal values ofm and n, i.e. for any
mni R* (positive valued scales aréully investigated in(Lindeberg 2011;Lindeberg
2013). Equation (30) indicates that filtersK (x,y)form a semigroup with respect to
convolution.It is also easy to infer fror(B0) that the transformation (convolution) between
two different layersm and n,with m >n, and m - n being a larggositivevalue, obeys a

cascaded propertyTherefore ourmodel of biological vision possesses multiscale

representatioas indicated in section 3.1



a-iv) Infinitesimal generator
Obviously Dr discrete values of neural layers used in our model, equa&pis considered
as an infinitesimal generator. For continuous valokseural layers on the other hand,
equation(26) is regarded as infinitesimal generator.

a-v) Smoothing property: neanhancement of local exterma
Given that infinitesimal generator of transformed (convolved) visual signals is diffusion
equation(26) and following theorems 6n (Lindeberg 2011)it is by sufficiencyimplied that

K,(Xy) (even for small values af) satisfying diffusion equatio26) possessethe non

enhancement of local extermiais also straightforward to prove directly (without theorem 6

in (Lindeberg 2011)thatkernels K, (X, y) possess thproperty of thenonenhancement of

local exterma.
a-vi) Rotational Symmetry

It is clear thatK_(x,y) for any ni N is a rotational symmetric filter.

b) Timedependent image data over a spagmporal domain
Let us finally consider thespatial image datachanging over timeThe most important
requirement fom time dependent image datalonging to a biological visual systamtime
causality.From equation(16) and figure (11-top row), it is obvious that théime impulse
response of our model of an ideal biological vision system isdamsal It is also noted that
parameterz in equation(16) can be interpreted as time scaling parameter of our time
smoothing kernel.

3.3 Elongated Non-lIsotropic Receptive Fields
Figure (B-top) depicts a three dimensional view of the cascaded neural layers proposed
here. Vertical planes in this figure correspond to neural lalfggare (B-middle shows the

neural configuratiorof one of the vertical planes of figure6fiop). The network of neurons



depicted in this figure representsnaural layer covering the visual field withx and y
coordinates.

The spatial response of a neuron summilmgee neuronsshownin redin figure (16-middle
produces notisotropic elongated (affin€&saussian)kernels As an example, hie spatial

impulseresponse of these three neurons can be written as:
h () = (K,), (6 y- D) +(K, ), (x ) +(K,,), (x y+ D)) (3D)
where D andn are the distance between two neighbouring neurofigure (16-middle and

nis the layer number of the neural layer showfigare (16-middle. Function(K.,), (x, y) in

(32) is the first derivative (with respect % of the n repeated convolutions of the modified
Bessel function of the second type and zero de§esh a responss numerically simulated

and shown infigure (17-left). The directional derivative (along direction) of the spatial

s
response of a Gaussikarnelwith s—y =3is also depicted ifigure (17-middlg. An example

of the biologically recordedspatialreceptive profile of a simple cell with strong directional
preference is also shownfigure (17-right) (DeAngelis et al. 1995)The similarity between
figures (17-left) and (7-right) is noticeable. The spatietemporal response ofuch a

separable neuron édsomodelledby:
k(% y,t) = h, (x, y)vy (2. 1) (32
where h, (X, y)and v(z,t) are given in equation81) and(16). The 2D spatialresponse given

by equation(32) for three different timess shown infigure (18-top). Our results show a
closeresemblanceo therecordeddata presented i(DeAngelis et al. 19953s depicted in
figure (18-botton).

3.4 Motion Selectivity of Simple Cells in Striate cortex
It is well known that motion selectivity and perception is realized in visual cortex. In fact,

most cortical neurons are quite sensitive to stimulus veld@Angelis et al. 1995



DeAngelis and Anzai 2004)t is rather straightforward to extend our model discussed in
previous sections to also include motion selectiviigure (B-botton) showsa neural
configuration placed on the horizontal plane of figuré-tdp). Each horizontal line is a 1D
representation of a neural laygmtown as a vertical plane in figures{iop) andthe flow of
visual signal is from the bottom &fure (16-botton) to thetop (or from the outside of the
page to inside of it in figure Gttop)). In this figure neuralaxors shown as vertical lines in
figure (16-botton) in a layer, are connected tdhe dendrites oénotherneuron in the same
location of the visual field inthe next layer Each single neuron on such a network is
characterized witlisotropickernelsin space andeparabléernelsin spacetime as discussed

in previous sectionsA linear combination of some of these neuroamsa single layegalso
results in a neuron with a nesotropic separable spatiemporalresponse aslemonstrated

in section3.3.

A neuron summinghe spatietemporal responses sbme diagonahor-isotropic separable
neurons(shownin red circlesin figure (16-botton)) in this neural configuration produces a
velocity-adapted norseparablespatictemporal response which motion selective neurons in
visual cortex are associated witBy changing the slope athe configuration ofthese
diagonal neurongshownin blue circlesin figure (16-botton) as another examplethe linear
combinationof these neurons (shown in blaelour) produces another neseparable spatio
temporal response adapted to a different velocitye spatietemporal 1+2D response
produced by summing the response of these separablisotropicneurons can be written
as:

az2(t

K(x 1) = %“(x D.y)PS f”+[§°+h( y)P 5‘%+20+hﬂﬂ( +Dy)F>(2‘t 0, ) 8. (21

where D and ¢ are shift inx direction and time delay betweémo neighbouring red neuren

in figure (16-botton). Further, P (t) is a rectangular function anb,(x, y)and v, (zt) are



also calculated from equati®r{31) and (16) respectively It is noted thatthe temporal
impulse response produced tne axons of the neurons in layerd, nandn+1 (i.e. thered
neurons irfigure (16-botton)) in equation(23) areapproximated aa rectangular function for

simplicity and v, (z,t) is thesecond derivative demporalimpulse response for the axon of

the neuror{notshown infigure (16)) summing the red neuronsfigure (16-bottomn).

Figure (L9-top) presents the simulated 1+2D spatmporal response of a velocity adapted
nortrisotopic neuron for three diffent times. The results shown in this figure closely
resemble theecordedspatioctemporalreceptive profileof a velocity adapted neureaported

in (DeAngeliset al. 1995)as shown irigure (19-bottom).

Figure @0-top) shows the spatitemporal 1+1D responsds,, (see equatiof22)) of three

separable neurons such as the red neurofigure (16-bottom) for R,C, =1.9, % =0.01,

z

R,C,z* =400, m=400 with layer numbers=10, 11and12in equation(22). Our numerical

results in figure Z0-top) is closely similar tathe recorded1+1D spatiotemporal receptive
profile of aseparableneuron reported bpeAngeliset al. (1995) as presented in figur@@
bottorm). Figure (2-left) shows a velocibadapted norseparable spatitemporal 1+1D
response produced by summing the three sepasaitepicspatictemporal 1+1D responses
shown infigure 20-top). The velocityadapted spatitemporal response shownfigure (21-
left) closely resembles the spattemporal receptiveprofile recordedin (DeAngeliset al.

1995)as shown irfigure (21-right). The spatietemporal separable 1+1D responskes, of

threesimple cellsin the striate cortexwith a configuration similar to that shown in red in
figure (16-botton) is also depicted in figure (2-top). An example ofa recorded
spatiotemporal receptive profiles also depicted infigure (2-botton) as reported in
(DeAngeliset al. 1995) to show the similarity between the result of our model and the

biologically recorded dataAs shown infigure (23-left), a velocity-adapted noiseparable



spatictemporal 1+1D response closeéBsemblingthe spatietemporalreceptive profile of a
simple cell in thestriate cortexas shown irdigure (23-right) and reportedh (DeAngeliset al.
1995)is produced by summing theree separable spatiemporal 1+1D responses shown in
figure (2-top). In a more recent and simultaneous work as ours, Lindeberg proposes serially
coupled integrators for discrete tirnausal smoothing kernels whose numerical results (see
figure(2) in Lindeberg 2015)) confirm our numerical results presented in figures (21) and
(23).

4. Conclusion
Previous works in the literature demonstrate that Gausgsiated kernels are used in
biological visual systemdn a mathematical setting, Gaussian rel&iechels are derivetbr
universal visual systemi the Gaussian scale spatteeory. Howeverno comprehensive
model based on biological hypotheses for visual systems is presented to show how a set of
neurons producsgGaussianselated kernels.
A plausibleneural circuitrymatchingan ideal visual front end of diological visual system
based on distributed electrical aiits is proposedhere to model receptive fields linear
cells. In other words, this study presents a more detailed view lafusiple hardware for an
ideal front end of a biological visual systelVe have analytically demonstrated that our
model behaves linearly under some certain conditié® have also explored the properties of
our hardware model under the linear conditibBandamental distributed electrical equations
for conductivegridslead to a suggestion that &ealvisual front end of diological visual
systemforms a kernelapproximating a Gaussiderneland its derivatives to process images
taken from sensory celis retina
Our formulation also demonstrates tobahvolution withGaussiarkernelsis implemented by
using a diffusion equation agsual signalsare propagated through cascaded layers of

neurons ina biological visual system.Such cascaded layers thieme provide image



measuremestat various scalesdere it isdemonstratethat cascadeadheural layerith the
transfer functions of the type of rodified Besselfunction of the second kind and zero
degree is equivalent ®nGaussiarkernelwith a certain standard deviation proportional to the
number of cascaded layefsmodelcombiningsome isotropic cells, is also presented here
produce the spatial response mdrrisotopic simple cells Separable and neseparable
(velocity adapted) noisotropic simple cells are alssuccessfullymodelled here. Our
numerical results obtained from our model are in complete agreement with both recorded
biological data and numerical results obtained frobendcale space theory.
For future work, it is interesting to extend this framework to explain the behaviour of
nonlinear cellsby employing nonlinear electrical elements as well asekploring the
properties of our proposed visual system under nonlineaditons Another interesting
guestion to be addressed as a future work is that whether it is possible to model higher level
visual algorithms such as segmentation and recognition implemented by biological vision
systems by considering neural connectgtas linear/nonlinear electrical circuits.

5. Appendices:

Appendix A: Proof oftheorem 1

Proof: Let us write transfer functiof13) as:

_RA
H, (e, e") = L 2 5 (A-1)
2cost,)- 1), 2cost)-1) &, . R @
D’ D? ?R ! Ro|8

The transfer functiorH, approaches zero for an/, , Oor W, , 0 as D- 0. Because as

5

D- 0, the term%

in the denominator of transfer functidi-1) approaches

cosW,) - 1)
D

infinity for any W, , 0. This is also true for the ter . However forthe values



- coS -1
of both W, and W, very close to zero, the ter cos@&/x) 1) and (*V)) in (A-1)

become undetermined.o evaluate these terms for small vale#sW,, W, and D, we

expandcos{V,) and cos@,) with respect tol, andW, r especti vely by wusin

cos)-1) __ (cos@,)- 1)
> and 0

series. Therefore the ter arewritten as:
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orders of W,and W, in (A-2) and (A-3). Therefore the transfer functiofA-1) is

approximated as:
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length) Transfer functior{A-4) is the Fourier transform of modified Bessel function of the

second kindand zero degree .
Appendix B: Proof of theorem?2

Proof: Neuron A sends a train of spikes (Dirac delta functions) through its axon to Neuron B

by placing this train of spikes on its axamtfansmission line)Therefore the signal on the

input of the transmission line is:



w (t) = a at-T,) (B-1)

n=1
The impulse response of this axon with lengths given in equation1@). Therefore the

response of the transmission line (axon) to this train of spikess as follows:

w,(zt) =5 v,(2t- T,) (B-2)

n=1
wherev, (zt) is given in (6).

Let us now consider the response of the transmission line (axon) to the single/($pike)

atz
1 1 4 G(t )8 & RCZ 8
(2.t T)"\/ (-T,)RC, & 8%4@ T8

Gi v e nT,itchaaa svpiath T,),is approximated as:

;%T_”Geéwﬁea&cz%-r_éo 83
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v, (zt-T) ==
By re-arranging the above equation, one can write:

T
Vo(zt- Tp) =V, (21) eXp(aTn)+§“Vh(Z,t) exp(@T,) (B-4)

wherea=—% G, Rjt: andt is the time thatakes forthe signalto reachthe dendrites of

z

neuron B through the axon of neuronThe potential will increase in the dendrites of neuron

B by summing the potential until neuron B starts firing spikes to discharge the potential of its
dendrites.Therefore theincrease in the potential of the dendrites in neuron B due to the
signal reached to neuron B through the axon of neuron A giveB-R),(and by using

equation(B-4), can be approximated as:

w,(zt) =v,(z t)a exp@T,) + h(2t t)aT exp@T,) (B-5)

n=1 n=1



By assuming thaaT, < 4 equation B-5) can be approximated as:

N v, (zt) X 3 N »
WO(Z,t) ° Vh(z1t)a (1+aTn)+ 2t a. Tn (1+aTn) _Vh(zit)a (1+ (a+1)Tn +aTn )

n=1 n=1 n=1

Or
W, (2,8) =V, (2 )N+ N@+)T + Na(s 2 +T )= Ny, (z 1)L+ (2a+ DT +as?)

(B-6)

Appendix C: Proof oftheorem 3

Proof: The transfer function af cascaded layers of neuronsmigtten as:

Ly (W, W, W, 1) = —————expg —- gexp% wt NQP L %ﬁ‘ 1 8
T EmRE,) T CFE RC, A 0+, B + g+,
a 1 o
gwf +u; +b, %
(CD
Let usnow assume thah, is the smallest value amorig for " I N- {i}. Therefore any

can be written as:
b =b+e O<e <1
where g is a real positivesmall number.Our secondassumption that various neural layers

have similar electrical properties means tlgtvalues are smalin comparison with. .

Transfer functior{C-1) can then be rewritten as:
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where f,, f,,...f ,, arepolynomialfunctions ofe, e, , ...e, so that

f.(e,e,...e) g+e +..+e,
f,(e,6,...) ee t+tee+..+e e,
f.(e,6,,...6,)" eee+eee +..+e ,6 6,
X

fn+1(el'82""’en), 616263"'en-26n-len

Due to small values associated wih only the first few f_ s in the denominator ofC-2)

(with low n values) haveanoresignificant values. The remainireg f_ s becomesegligible

asn increasesTherefore transfer functiofC-2) is approximated as:
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(C-3
where P< . By approaching n to infinity, it is straightforward to see

(WX2 +u +h )n'j ° (Wf +uj +h )n. Thereforetransfer functior(C-3) is approximated as:
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The term %8 +&=f8 +10 in the denominatorin equation (C-4) can be expanded by
using binomial series:
o GO & Wit %(M/ g
exp? C. gexp? RC, +Q G (BRC,)" 9
Lln( y1 z1t) = o 5 2.,,,k (C_S)
%+a f.(e.e,...6e )ﬁ'r'1 an ofxg +éWy§ 0
c k=1 R —Ik:oé%i; = %—9
ang nl
wheregg §=

E?; kKi(n- k)!'
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Let us setX = n%g + —y8 8 Therefore equatio(C-5) is rewritten as:
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By approaching to infinity, L, (w,,w,,w,,t)in (C-6) approaches to the following function:
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The denominator in equatiofC-7) is the Taylor series for an exponential function

eqguation(C-7) can be rewritten as:
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, i.e.,
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By replacingX with n%%g + —y§ 8, we arrive at the following equation:
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Repeated convolutions exploited this theorem can also be found in the central limit
theorem (CLT)(Papoulis 1962)However regarding the CLT arttis theorem there are
some issues we need to notice:

1) CLT is established in a statistical setting; howeteeorem 3is proved in a
completely deterministic framework.

2) CLT is accomplished by adding a largemer of iid random variables; however
theorem 3is concluded as a result of the KVL and KCL equations derived from
consecutive neural layers characterized with some linear electrical properties.

3) Probability distribution functions corresponding to the appate random variables
are convolved together in CLT. However the electrical impulse response of each
neural layer is convolved with the impulse responses of other neural layers in early
visual system according tbeorem 3

4) In CLT, the probability digibution functions can be a wide range of admissible

functions. However due to the conditions imposed by the electrical properties (KCL



and KVL equations) of neural layemsodified Besselfuntions are the onlykernels

acceptable itheorem 3
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Fig():(top Two di mensi onal bl ock diagram of some
our m(bottoe)l A model of neural configuration for a single layer. The black spots
represent the neurons which are connected to the neighbouring neurons through dendrites

forming a two dimensional grid
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Fig (3): A model of a simple electrical amplifier for spine heads
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Fig (4): The transfer function H calculated in equation(20) for w,

%:23@ +%=1and D=0.01,0.1,and 1.
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Fig (6): The filter obtained from thE"layer (dotted curve) is compared in frequency domain
with a Gaussian filter (dashed curve) for the corresponding layer fed d)) I=2 c) 1=3 d)
=4 e)I=5f) I1=6
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Fig (8): The filtered image in thé™ layer (left) original image(middle image filtered by
equation(21) (right) image filtered by an equivalent Gaussian filter.
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Fig (10): (Left) TheLaplacianof a Gaussian over a spatial domaimiddle) The Laplacian of
K, (x y)for n= 6 (right) An example of a spatial receptive profile of an LGN cell as

described irDeAngeliset al.(1995)
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(Lindeberg 2011)
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Fig (14): Examplesof spatiotemporal receptive field profiles of nonlagged)(and a lagged
(right) LGN cells as stated by DeAngelis et(@995.



Fig (15): Spacetime separable kernelsugper lefy Time-causal spatictemproal kernel
N (X, 1,8,1) = 0, (X 9)f, (t;¢,0) with s=0.3and ¢t =17 (lower lef) Time-causalspatio
temporal kernelh,,. =9,.(x9)f, (t;7,d) with s=0.3 and ¢ =25, (upper righ) Time-
causalspatietemporal kernelhm(x,t;s,z‘)=(Kn)xx(x; s)(yn)“(t;z‘,d)with R,C,z° =1200,

G, =0.015, b =04 and n=6 (lower righy) Time causal spatitemporal kernel

z

e (% 155,2) = (K, (69 o) (67, @) with  R,C,z* =1200, %:0.005, b =04 and

z

n=6 For the timecausal kernels, the temporal derivatives have been computed based on the
transformed temporal derivative operator ~t“y, here withk = %.
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Fig (16): (top) Three consecutive layers of the neural network configuration in our ntbdel
black circles black lines and red line®presenineurons, dendrites and axons respectively
(middle A model for a nofisotropic neuron in space corresponding to one of the vertical
planes in figure (@-top) (bottorr) A model for motion selective neurons corresponding to the
gray horizontal plane in figer(16-top)
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Fig (16) (continued: (top) Three consecutive layers of the neural network configuration in
our model, the black circles, black lines and red lines represembns, dendrites and axons
respectively ihiddle A model for a norisotropic neuron in space corresponding to one of
the vertical planes irfigure (16top) (botton) A model for motion selective neurons
corresponding to the gydnorizontal plane in figu (16top)



Fig (17): First order directional derivative alomglirection (eft) of anon-isotropic elongated
filter combined by three isotropic neurons for=130, n=10, andd=10, (middle of a non

isotropic elongated Gaussian wi§I§:3, (right) an example of the receptive field profile of
a simple cell with strong directional preference as reportéideAngelis et al. 1995)



Fig (18): (top) Spatietemporal response of a n@sotopic separable elongated neuron shown

in figure (16-top) for y,=10, n=10, RC, =1.9, (é— =0.001,R,C,z* =400 and m=130

(botton) Examples of spatiotemporal receptive profile of a separablesetiopic neuron as
reported byDeAngelis et al(1995.



Fig (19): (top) Spatietemporal responsef a nonrisotopic velocity adapted neuron shown in

figure (16-botton) for x,=10, y,=10, n=10, RC, =1.9, % =0.001, R,C,z* =400 and

z

m=130 (bottom) Examples of spatiotemporal receptive field profile of a-separable
(velocity adapted) noeisotropic neuron as reported BgAngelis et al(1995)



Fig (20): (top) Spatietemporal responses,,, of three neuronwith a configuration similar to
thoseshown as the red neurons figure (16-botton) with separabldilters, (botton) An
example of the 1+1D spatiotemporal receptive profile of a neuron reminiscefitstfader
derivative in time andax seconebrder derivative inspaceas reported bypeAngelis et al.
(1995)



Fig (21): (left) Velocity-adapted norseparable 1+1D spatiemporal response produced by
summing the three separable spagimporalresponses shown figure (20-top) (right) the
spatiotemporal receptive profiie tilted spaceime as reported ifDeAngelis et al. 1995)



Fig (22): (top) Spatietemporal responses,, of three neurons with a configuration similar to

that shown as the red neuronsfigure (16-botton) with separable filters(bottor) An
example of spatiotemporal receptive field profile of a simple cell in the striate cortex
reminiscent of a first ordederivative in space and fast derivative in timeas reported in
(DeAngelis et al. 1995)



Fig (23): (left) Velocity-adapted norseparable 1+1D spatiemporal response produced by
summing the three separable spatimporal responses shownfigure (2-top), (right) An
example ofbiologically recordedspatiotemporal receptive field profile of a simple sl
reportedn (DeAngelis et al. 1995)



