Buchnev, O., Wallauer, J., Walther, M., Podoliak, Nina, Kaczmarek, M., Zheludev, N.I. and Fedotov, V.A. (2014) Liquid crystal metamaterials for THz and IR applications. Workshop on Soft Matter: Analysis, Applications and Challenges, Korea, Republic of. 18 - 21 Mar 2014.
Abstract
Metamaterials are artificially structured electromagnetic media that are designed to manipulate light in ways no natural materials can. They have rapidly advanced over the past few years and are now expected to have major impact across the entire range of technologies where electromagnetic radiation is used, ranging from RF and microwave antennas to photonics and nanophotonics.
One of the important steps towards practical application of the metamaterials is the implementation of an efficient active control over their optical response. This can be achieved by hybridising the fabric of these man-made photonic materials with naturally available functional media. Among such media liquid crystals possess arguably the largest and most broadband optical nonlinearity, while their properties can be readily controlled by light, temperature, electric and magnetic fields. Here we experimentally demonstrate active planar metamaterials - artificially structured thin metal films loaded with liquid crystals, where the resonant response can be dynamically controlled both in terms of its magnitude and wavelength using externally applied electric field. The electric control has been implemented for THz and near-IR metasurfaces by engaging for the first time the in-plane switching of liquid crystals at micro- and nano-scale.
Full text not available from this repository.
More information
Identifiers
Catalogue record
Export record
Contributors
University divisions
- Current Faculties > Faculty of Engineering and Physical Sciences > School of Physics and Astronomy > Quantum, Light and Matter Group
School of Physics and Astronomy > Quantum, Light and Matter Group - Faculties (pre 2018 reorg) > Faculty of Physical Sciences and Engineering (pre 2018 reorg) > Optoelectronics Research Centre (pre 2018 reorg)
Current Faculties > Faculty of Engineering and Physical Sciences > Zepler Institute for Photonics and Nanoelectronics > Optoelectronics Research Centre (pre 2018 reorg)
Zepler Institute for Photonics and Nanoelectronics > Optoelectronics Research Centre (pre 2018 reorg) - Faculties (pre 2018 reorg) > Faculty of Physical Sciences and Engineering (pre 2018 reorg) > Physics & Astronomy (pre 2018 reorg) > Quantum, Light & Matter Group (pre 2018 reorg)
Current Faculties > Faculty of Engineering and Physical Sciences > School of Physics and Astronomy > Physics & Astronomy (pre 2018 reorg) > Quantum, Light & Matter Group (pre 2018 reorg)
School of Physics and Astronomy > Physics & Astronomy (pre 2018 reorg) > Quantum, Light & Matter Group (pre 2018 reorg)
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.