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Abstract: Fatigue tests have been conducted on an advanced disc Ni-based superalloy (Low 

Solvus, High Refractory (LSHR) alloy) at 650 oC in air under three-point bend loading to 

investigate the role of orientation-dependent grain boundary oxidation in crack initiation and 

early propagation. It is found that crack initiation occurs mainly from bulged grain boundary 

oxides, and cracks then predominantly propagate along the oxidised grain boundaries. These 

bulged oxides are extremely enriched in Co and preferentially form at the boundaries 

between high and low Schmid factor grains which are inclined normal to the applied tensile 

stress direction. Meanwhile, relatively flat/thin Ni/Ti/Al-rich oxide complexes also form at 

other grain boundaries, but they appear to be much less detrimental in fatigue crack initiation 

and propagation compared with the grain boundary bulged Co-rich oxide complexes. 
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1. Introduction: 

   Powder metallurgy Ni-based superalloys are widely used for aeroengine turbine disc 

application due to their exceptional strength properties at elevated temperatures, good fatigue 

and creep performance as well as excellent corrosion and oxidation resistance. However, 

oxidation enhanced fatigue crack initiation and propagation at elevated temperatures in air 

has been commonly observed in turbine disc superalloys under dwell fatigue testing 

conditions [1-10]. Generally, it is considered that enhanced crack initiation is mainly caused 

by oxide cracking and/or slip band cracking due to reduced slip reversibility resulting from 

the absorption of oxygen at the slip band/matrix interface [11]. It is also reported that the 

dissolution of the grain boundary (GB) carbides due to oxide formation promoted 

intergranular crack initiation and thereby was associated with a shorter fatigue lifetime in the 

disc superalloys [12]. The enhanced crack propagation associated with intergranular fracture 
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is usually ascribed to decohesion/reduction in cohesion strength of GBs ahead of the crack tip 

due to dynamic embrittlement [13-15] or GB oxide/matrix-oxide interface cracking caused by 

stress assisted grain boundary oxidation (SAGBO) [5, 16-18].  

    Extensive studies on SAGBO have shown that the most common oxides observed in the 

disc alloys are oxides of Ni, Cr, Nb, Ti and Al [3, 16, 17, 19-21], as well as Co-rich oxides in 

those superalloys with relatively high Co content such as RR1000 [18]. These oxide 

complexes usually possess a layered structure which consists of a thermodynamically 

unstable central layer of NiO/CoO, a thermodynamically stable intermediate layer of Cr2O3 

and a marginal layer of Al2O3/TiO2 [3, 16, 18]. Moreover, study of isothermal oxidation 

and/or cyclic oxidation in disc alloys at elevated temperatures also shows similar oxide layers 

at surfaces which usually consist of an external Cr2O3 layer and an internal Al2O3 layer [12, 

22]. Formation of such oxides at/or ahead of the crack tip and/or at specimen surface mostly 

depends on the composition of the investigated disc alloys and environmental conditions such 

as O2 partial pressure. As suggested by Molins et al. [3], the enhanced fatigue crack 

propagation in Inconel 718 results from the formation of intergranular Ni oxide nuclei rather 

than protective chromia at the crack tip. By increasing the content of Cr in the matrix or 

reducing the O2 partial pressure, it is possible to promote formation of chromia and thereby 

suppress the detrimental effect of oxidation. The formation of oxides is also related to the 

accumulated strain during cyclic loading which is closely related to grain orientation as it 

may influence the local slip system activity and slip transmission across a GB [23]. The 

higher accumulated strain is usually associated with a greater number of dislocations and 

vacancies produced during the deformation process, which can facilitate the diffusion of the 

oxide-forming elements and accelerate oxide formation.  

    Although the role of SAGBO in oxidation enhanced fatigue crack initiation and 

propagation in turbine disc superalloys has been extensively examined and recognized, most 

of these studies were based on the post-test observation of the fracture surface along with a 

focus on the thickness of the oxide layer. The dependence of the formation and evolution of 

GB oxides on grain orientation (which is associated with deformation process) and their role 

in subsequent crack initiation and propagation are not clear. In addition, the detrimental 

oxides formed under cyclic loading are diverse due to the complex compositions of turbine 

disc superalloys and studies regarding the nature of GB oxides are limited, especially in the 

more recently developed turbine disc alloys, such as the Low Solvus, High Refractory (LSHR) 

alloy developed by NASA. The LSHR alloy combines the low solvus of ME3 brought about 
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by the high Co content and the high refractory element content of Alloy 10 [24]. The 

comparatively high Co content lowers the solvus temperature to allow more flexible solution 

heat treatment and increases the strength by increasing mechanical twining during 

deformation at elevated temperatures due to the low stacking fault energy [25, 26]. In this 

study, fatigue tests were conducted on the LSHR alloy at 650 oC, with a particular focus on 

studying the influence of the orientation-dependent GB oxide formation on fatigue crack 

initiation and propagation processes 

2. Materials and experimental procedures 

    Supersolvus heat treated LSHR alloy with an average grain size of 16.7µm was provided 

by NASA. The composition (in wt.%) of the LSHR alloy is: 20.7Co, 12.5Cr, 3.5Ti, 3.5Al, 

4.3W, 2.7Mo, 1.6Ti, 1.5Nb, 1.5Ta, 0.05Zr, 0.03C, 0.03B, bal. Ni. Two fatigue tests were 

conducted on polished plain bend bar specimens (4mm×4mm×53mm) under three-point 

loading on an Instron hydraulic testing machine in air at 650 oC. A trapezoidal 1-1-1-1 

loading waveform with a load ratio of 0.1 was employed for the fatigue tests. This 

incorporates a 1s loading ramp from minimum load up to maximum load, a 1s dwell at 

maximum load, a 1s unloading ramp from maximum load down to minimum load, and a 1s 

dwell at minimum load. The applied maximum load was 1500 N, which is predicted to 

achieve a maximum strain of 0.8% at the top central surface of the specimen based on an 

elastic-plastic finite element simulation. One test was interrupted at regular intervals, and the 

specimen cooled and then examined under optical microscopy (OM) to observe crack 

evolution. The comparison test was run continuously to the same number of cycles to 

produce similar cracking levels as observed in the interrupted test.  

    A JEOL JSM 6500F field emission gun scanning electron microscopy (SEM) equipped 

with an Oxford Instruments Energy dispersive X-ray spectrometry (EDS) and INCA analysis 

system was employed to examine GB oxidation at an acceleration voltage of 15kV. EDS 

analysis of composition across GBs was conducted to reveal the degree of GB oxidation and 

to assess possible oxides formed. This EDS measurement was based on the library standards 

and quantification algorithms employed in the Oxford Inca software system. The interval 

between two EDS analysis points was 1 µm. Electron backscatter diffraction (EBSD) was 

conducted using HKL Channel 5 software provided by Oxford Instruments to reveal the 

dependence of GB oxidation on grain orientation. A step size of 1 µm and a grain boundary 

tolerance angle of 2o were employed for EBSD mapping. After EBSD indexing, the three 



4 
 

Euler angles (𝜑ଵ, ∅, 𝜑ଶ) of the grains of interest were extracted to determine the rotation 

matrix g which connects the sample coordinates and crystal coordinates using following 

equation [23]: 

𝒈 = ቎
𝑐𝑜𝑠𝜑ଵ𝑐𝑜𝑠𝜑ଶ − 𝑠𝑖𝑛𝜑ଵ𝑠𝑖𝑛𝜑ଶ𝑐𝑜𝑠∅ 𝑠𝑖𝑛𝜑ଵ𝑐𝑜𝑠𝜑ଶ + 𝑐𝑜𝑠𝜑ଵ𝑠𝑖𝑛𝜑ଶ𝑐𝑜𝑠∅ 𝑠𝑖𝑛𝜑ଶ𝑠𝑖𝑛∅
−𝑐𝑜𝑠𝜑ଵ𝑠𝑖𝑛𝜑ଶ − 𝑠𝑖𝑛𝜑ଵ𝑐𝑜𝑠𝜑ଶ𝑐𝑜𝑠∅ −𝑠𝑖𝑛𝜑ଵ𝑠𝑖𝑛𝜑ଶ + 𝑐𝑜𝑠𝜑ଵ𝑐𝑜𝑠𝜑ଶ𝑐𝑜𝑠∅ 𝑐𝑜𝑠𝜑ଶ𝑠𝑖𝑛∅

𝑠𝑖𝑛𝜑1𝑠𝑖𝑛∅ −𝑐𝑜𝑠𝜑1𝑠𝑖𝑛∅ 𝑐𝑜𝑠∅
቏        (1) 

By converting the loading direction from the sample coordinates to crystal coordinates using 

the rotation matrix and the following equation [23],  

Lcrystal = gLsample  (2),   

where L is a vector that represents the loading direction, 

it is possible to determine the Schmid factor of the 12 primary slip systems (i.e. {111}<110>) 

in each grain of interest [23]. 

3. Results  

    Fig. 1 shows the crack evolution in the region (top central surface) which experiences 

maximum elastic stress in the interrupted test. It was found that cracks preferentially initiated 

at the GBs adjacent to the edge of the specimen due to stress concentration at this region, 

although the very early stages of crack initiation were not captured. After crack initiation, no 

substantial crack propagation phase was observed during the majority of the fatigue life, but 

discrete GB oxide cracking can be discerned as indicated by the arrows. On further cycling of 

the specimen, significant crack coalescence occurred along the oxidised GBs within ~100 

cycles of the end of fatigue life. As shown in the SEM image, the crack paths are 

predominantly intergranular, and bulged oxides can be seen at GBs adjacent to the main 

crack path. Similar oxides can also be found along the crack path, although they are much 

less evident, which is probably associated with oxide fragmentation during cracking.  

    More detailed examination of GB oxides in the interrupted test is presented in Fig.2. Figs.2 

(a) and (b) show most of the oxides on the top central surface form at GBs inclined normal to 

the applied tensile stress (which may be expected to experience the maximum opening stress) 

although a few oxides were also observed to form at GBs inclined parallel to the tensile stress 

direction. In addition, occasional slip band oxidation and cracking can be observed within 

certain grains. A close-up of the GB oxides is shown in the inset image in Fig.2 (a), which 
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shows the crystallographic morphology of the bulged GB oxides as well as oxide particles 

within grains. It is interesting to note that not all the GBs inclined normal to the tensile stress 

direction are decorated with bulged oxides, indicating that GB character (or grain orientation) 

may also influence oxide formation. Bulged GB oxide cracking is indicated by the arrows as 

shown in Fig.2 (b) along with a close-up shown in the inset image showing how cracks 

propagate along GBs with bulged oxides. The bulged GB oxide ahead of a crack tip appears 

to be intact, indicating that the oxide formation occurs prior to crack initiation and crack 

initiation itself occurs via bulged oxide cracking. Moreover, it is found that some GBs are 

partly decorated with bulged oxides. Ahead of the bulged oxides, the GB seems to be 

decorated with much thinner/flatter oxides, which indicates a possible transition from these 

thin/relatively flat oxides to the wide/bulged oxides.  

 

Fig.1 Crack field evolution at the top central surface in the interrupted test at 650oC observed 

under OM and SEM. The colouration within the grains is caused by oxidation. The arrows 

indicate discrete GB oxide cracking.  
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Fig. 2 (a) secondary electron image and (b) backscatter electron image of GB oxidation and 

cracking in the LSHR alloy; compositional profile across grain boundary (c) with bulged 

oxides and (d) without bulged oxides from EDS analysis. EDS analysis regions are 

highlighted by yellow lines shown in (a). A close-up of GB bulged oxides is inserted in (a) 

and a close-up of GB oxide cracking is inserted in (b). The compositional profiles of Al with 

a rescaled y axis are inserted into (c) and (d) respectively.  

    Fig.2 (c) shows the concentration variation of Ni, Co, Cr, Ti and Al tracking across a GB 

with a bulged oxide analysed by EDS. “0”   in   the   graph   indicates   the   location   of   the GB. 

Significant enrichment of Co and slight enrichment of Cr, along with a depletion of other 

metallic elements exist at the GB region, indicating that the bulged GB oxide is mainly a Co-

rich oxide complex. Fig.2 (d) presents the compositional profile across a GB with a thin/flat 

oxide. A depletion of Co and Cr is observed, whilst an enrichment of Ni, Ti and Al at the GB 

region is identified, although the extent of this enrichment is not as significant as that of Co at 

the GB with a bulged oxide. This qualitative variation of the GB compositional profile 

indicates that the GBs without bulged Co-rich oxide complex are decorated with a Ni/Ti/Al-

rich oxide complex. Additionally, it is found that the content of Al is lower than its original 
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content either at GBs or within grains and the content of Cr is relatively higher than its 

original content within grains, this is believed to be associated with the formation of an 

internal alumina layer and an outer layer of chromium oxide as observed in Ni-based 

superalloys [12, 18, 22, 27-29]. However, it should be noted that point out that the elements 

in the regions nearby and underneath the GB oxides may also contribute to the composition 

of the GB oxides due to the relatively large electron beam size used for EDS analysis and the 

large activation volume. The depletion of Ni at a GB with bulged oxides may not be able to 

rule out the existence of GB Ni oxides as the enrichment of Co in a constant activation 

volume usually corresponds to a depletion of the matrix element (i.e. Ni). Moreover, the Ni 

oxide and Co oxide have the same crystal structure and similar lattice parameter, and they are 

apt to form a single-phase solid solution oxide scale [18, 30]. Similarly, the depletion of Co 

and Cr in the Ni/Al/Ti-rich oxide complex may not be able to rule out the existence of Co and 

Cr oxides in the thin/flat GB oxides. In this paper therefore the bulged Co-rich oxide complex 

and the thin/flat Ni/Ti/Al-rich oxide complex are purely phenomenological definition based 

on  the  morphology  and  the  “apparent”  composition  of  GB  oxides.      

    Fig.3 illustrates the dependence of the GB oxidation and cracking on grain orientation in 

the LSHR alloy. The region containing crack paths and GB oxides on the top central surface 

was chosen for EBSD mapping as shown in Fig.3 (a). The grain orientation of the chosen 

area is shown in Fig.3 (b), exhibiting many twins. The Schmid Factor (SF) map was derived 

from the grain orientation map by considering the direction of applied tensile stress as 

parallel to the length direction of the specimen. As shown in Fig.3 (c), crack paths appear to 

preferentially locate at the boundaries of high SF grain/low SF grain. Similarly, it is found the 

bulged oxides also tend to form at high SF grain/low SF grain boundaries as indicated by the 

arrows in Fig. 3 (a) and (c).  

    Figs. 3(d) and (e) shows the maximum SF of the grains neighbouring bulged GB oxides in 

the regions highlighted in Fig. 3(a). It can be found that the formation of bulged GB oxides is 

associated with the large difference in SF between grains (as indicated by the arrows), rather 

than simply a high SF value, as bulged GB oxides are also observed at the boundary of grains 

with a low SF. The dependence of bulged GB oxide formation on the difference of the SF 

may indicate that the oxidation process is related to the strain localisation, because 

dislocations are expected to pile up at boundaries of grains with a large difference in SF as a 

result of the hindrance of slip transmission (plastic and elastic incompatibility) at these 

regions [23, 31]. The higher dislocation density associated with higher local strain can 



8 
 

provide short-circuit paths for the diffusion of oxide-forming elements, and thereby it 

accelerates the oxide formation. In addition, the formation of oxides within slip bands shown 

in Fig.2 (a) is further evidence that the formation of oxides is indeed related to the local strain. 

   
Fig.3 (a) Morphology of GB oxidation and cracking in the LSHR alloy observed under OM; 

(b) grain orientation map; (c) colour-coded SF map of the region shown in (a), crack paths 

are outlined on the SF map by green lines; (d) and (e) maximum SF of the grains of interest 

highlighted at the bottom and top shown in (a) respectively, the GBs with bulged oxides are 

indicated by the green arrows; and (f) SF distribution of grains neighbouring the crack paths 

and bulk materials.  
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    The distribution of the maximum SF of grains neighbouring the crack paths and ~800 

grains in the bulk material are presented in Fig. 3 (f). It shows that most of the grains in the 

bulk material have slip systems associated with the relatively high SF (>0.43) under the 

applied load conditions, and takes on a unimodal distribution. Conversely, a weak bimodal 

distribution of the SF of grains neighbouring the crack paths is observed, which is probably 

related to the fact that the cracked grain boundaries are associated with grains of differing SF. 

The weak trend of the bimodal distribution indicates that the GB oxidation and cracking may 

not necessarily require a very large difference in SF between neighbouring grains. 

4. Discussion     

    As shown in the EBSD analysis, the formation of bulged Co-rich GB oxide complex and 

GB cracking are closely associated with grain orientation, although it might be argued that 

the formation of the bulged GB oxide complex could be related to GB cracking and 

subsequent oxygen ingress into the cracked GBs. However, the continuous observation of 

crack evolution and the observed intact bulged oxide complex ahead of the crack tip on the 

specimen surface (shown in Figs. 1 and 2) indicate that the formation of a bulged oxide 

complex occurs prior to GB cracking. In addition, the observed layered oxide intrusion ahead 

of a propagating crack tip in a similar disc alloy RR1000 and the intact oxide tip along with 

cracked oxide wake which was found at a secondary crack tip in the LSHR alloy (by 

metallographic sectioning the fracture surface after long fatigue crack growth test) further 

verify that GB oxidation occurs prior to GB cracking [7, 18].  

    In fact, the  difference  in  the  morphology  and  “apparent”  composition  between   the bulged 

Co-rich oxide complex and thin/flat Ni/Ti/Al oxide complex at GBs can be rationalised by 

the difference in the accumulated local plastic strain brought about by grain misorientation. 

According to studies conducted on RR1000 by Foss et al. [28] and Karabela et al. [20], the 

applied load does not influence the oxidation products, but enhances the oxidation processes. 

Thus,  the  difference  in  the  morphology  and  “apparent”  composition  between  bulged  Co-rich 

oxide complex and thin/flat Ni/Ti/Al oxide complex at GBs may only reflect the difference in 

the extent of GB oxidation rather than the difference in the nature of GB oxides. Although the 

analysis of the composition of GB oxides conducted in this study is preliminary and the 

structure of these GB oxides needs further investigation, it is reasonable to assume that 

layered oxides form, i.e. thermodynamic unstable oxides such as CoO and NiO at the surface 

and thermodynamic stable oxides such as Cr2O3, TiO2 and Al2O3 at the subsurface. Such 
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layered oxides are usually observed in stressed and unstressed disc alloys RR1000 and ME3 

[12, 18, 20, 28], so may also form in the LSHR alloy due to the similarity in alloying 

composition and the comparable/equivalent test conditions. At the beginning of the fatigue 

loading process at elevated temperature, non-selective oxidation can occur at the specimen 

surface, and thereby Ni and Co oxidise rapidly and form a continuous single-phase solid 

solution scale due to their abundance in the alloy and the same crystal structure of NiO and 

CoO [18, 30]. Meanwhile, strain accumulates at boundaries between high and low SF grains 

[31]. Due to the formation of the surface Ni/Co oxide layer, internal oxidation (i.e. selective 

oxidation of Cr, Ti and Al) starts to occur, particularly along GBs due to the relatively high 

density of dislocations and vacancies which are expected to accelerate the diffusion of oxide-

forming elements, as a consequence of the reduced oxygen partial pressure at the interface of 

surface oxide layer/alloy matrix. Since the strain accumulation is greatest at boundaries 

between high and low SF grains (which is in turn associated with high stored strain energy 

and high defect density), this further accelerates the internal oxidation process at these grain 

boundaries via enhancing inward diffusion of oxygen, producing an abundance of Ni and Co 

by consuming Ti and Al (which is accompanied by dissolution  of  γʹ  precipitates).  With the 

inward diffusion of oxygen during internal oxidation, a counter-current transport of oxygen 

vacancies or other metallic elements (cations) is expected to occur [28, 32, 33].  Therefore, it 

is reasonable to infer that the abundant Ni and Co then migrate outward to form Ni/Co oxides 

at surface GBs by short-circuit diffusion along these strain-accumulated grain boundaries, 

resulting in the apparent bulged height at surface GBs. For those GBs with less strain 

accumulation, the relatively thin/flat oxide complex therefore forms. 

      On the basis of the present findings, it seems that SAGBO is the most likely mechanism 

for oxidation enhanced short fatigue cracking in the LSHR alloy. Compared with the studies 

of isothermal oxidation/cyclic oxidation for the disc alloys, the oxidation under (cyclic) stress 

exhibits a greater discrepancy between grain boundary and grain interior [12, 22]. The grain 

boundary oxidation is much more significant than that in the grain interior. The main oxide 

contributing to the oxidation enhanced short crack cracking is believed to be a bulged GB 

Co-rich oxide complex. The formation of the bulged GB Co-rich oxide complex appears to 

be related to both the local accumulated strain at GBs and grain misorientation. Although 

intergranular crack initiation and propagation are commonly observed in turbine disc alloys 

due to oxidation (e.g. intergranular crack initiation and propagation in ME3 due to formation 

of Cr2O3/Al2O3/TiO2 and the Ni oxides in In 718) [3, 16], the fatigue cracking associated with 
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formation of apparent Co-rich oxide complex is much less common, which is probably 

related to the comparatively high content of Co in the LSHR alloy. In addition, studies that 

have been conducted to reveal the oxidation ahead of a crack tip or underneath the fracture 

surface in high temperature fatigue tests or during sustained load tests of turbine disc 

superalloys [5, 17, 19, 20] rarely show the existence of such apparent GB Co-rich oxides 

except for Kitaguchi’s   work   on   RR1000 [18]. The observed bulged GB Co-rich oxide 

complex and the cracking occurring in this kind of oxide complex suggest that the oxidation 

of Co under cyclic load at elevated temperatures may be an important issue in these newer 

disc alloys and may accelerate crack initiation and propagation, especially in high Co-

containing disc alloys, such as the LSHR alloy investigated in this study as well as RR1000 

and TMW-4M3 [18, 25, 26].  

5. Conclusion 

    In summary, following conclusions can be made based on the aforementioned results and 

discussion: 

1. Plentiful crack initiation mainly occurs at bulged GB Co-rich oxide complexes at 

650oC in the LSHR alloy due to oxide cracking. Cracks subsequently propagate along 

oxidised GBs and exhibit significant crack coalescence at the final stages of fatigue 

life.  

2. Formation of bulged GB Co-rich oxide complexes is closely related to the strain 

localisation which is associated with grain orientation and applied stress. The 

boundaries of high SF grain/low SF grain are preferential site for formation of bulged 

Co-rich oxide complexes.  

3. A thin/flat Ni/Ti/Al-rich oxide complex is also found to form at GBs, but it appears to 

be much less detrimental for fatigue crack initiation and propagation.  
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