

Fabrication and aero dynamic levitation of chalcogenide glass spheres

K. Khan¹, T. Farmer², B. Gholipour¹, V. Leonard¹, D. Hewak¹, and A.C. Barnes²

¹Optoelectronics Research Centre, University of Southampton, United Kingdom

²H H Wills Physics Laboratory, University of Bristol, United Kingdom

kk1g10@orc.soton.ac.uk

Spheres of gallium-lanthanum sulphide (GLS) and gallium lanthanum sulphite (GLSO) have been produced by laser irradiation on a copper hearth. Although similar fabrication techniques have been applied to oxide glasses, the technique has been overlooked for the production of chalcogenide glasses due to the perceived problem of the volatility of the chalcogens. In this work, glass microspheres of GLS/GLSO have been fabricated by laser irradiation of micron size irregular shaped glass particles on a Cu plate. In this material we found that evaporation of sulphur was not substantial as it appears to be more strongly chemically bound [1]. In addition to this method we have also established that it is possible to form larger spheres (mm diameter) of GLSO by aerodynamic levitation and laser heating using a CO₂ laser (10.6 μm wavelength). Our studies involve overheating and supercooling of liquids and melts, outgassing analysis, high temperature resistivity measurements, and crystallization/structural studies [1-3]. In both fabrication methods the glasses could be melted and re-vitrified with low sulphur mass loss. We conclude that the production of glass spheres by laser irradiation[4] from irregular shaped starting material on a substrate using the wetting principle has substantial benefits for making microspheres and nanospheres.

References

1. Barnes, A.C., et al., *Liquid-liquid phase transition in supercooled yttria-alumina*. Physical review letters, 2009. **103**(22): p. 225702.
2. Barnes, A., K. Whittle, and J. Enderby, *A determination of the electronic conductivity of aerodynamically levitated high temperature liquid metals and semiconductors by contactless methods*. Journal of Non-Crystalline Solids, 2002. **312**: p. 299-304.
3. Weber, J., *The Containerless Synthesis of Glass*. International Journal of Applied Glass Science, 2010. **1**(3): p. 248-256.
4. Kieu, Q. and V.P. Veiko. *Laser fabrication of optical microspheres*. 2004.