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Abstract. Provenance is a record that describes the people, institutions,
entities, and activities involved in producing, influencing, or delivering a
piece of data or a thing. In particular, the provenance of information is
crucial in deciding whether information is to be trusted. PROV is a recent
W3C specification for sharing provenance over the Web. However, prove-
nance records may expose confidential information, such as identity of
agents or specific attributes of entities or activities. It is therefore essen-
tial for confidential information to be obscured before sharing provenance.
This paper describes PROV-GTS, a provenance graph transformation sys-
tem, whose principled definition is based on PROV properties, and which
seeks to avoid false independencies and false dependencies. PROV-GTS is
shown to preserve graph integrity, to be terminating and to be confluent.

Keywords: Provenance - PROV model - Privacy - Anonymization -
Graph transformation

1 Introduction

Provenance is a record that describes the people, institutions, entities, and activ-
ities involved in producing, influencing, or delivering a piece of data or a thing [1].
Provenance is crucial to validate the quality of data and to enable the reusability
of data. It has been used in a variety of domains, including scientific workflow [2],
healthcare [3], sensor networks [4], and access control [5]. For example, full prove-
nance of medical decisions enriches medical history captured in health records
and enables scientists to find the cause of diseases and care providers to improve
health services [3]. Overall the provenance of information is essential to decide
whether information is to be trusted [1].

However, provenance may include confidential information, such as agents
identities, time information, specific attributes of, and relations between, entities,
activities and agents. Such a confidential information must be obscured before
exposing provenance, but this presents challenges given the graphical nature of
provenance and associated graph inference [6]. Indeed, deleting a node or an
edge containing confidential information may affect what can be inferred from a
© IFIP International Federation for Information Processing 2015

C.D. Jensen et al. (Eds.): IFIPTM 2015, IFIP AICT 454, pp. 109-125, 2015.
DOI: 10.1007/978-3-319-18491-3_8



110 J. Hussein et al.

graph. For instance, if a — b and b — ¢ for some transitive relation, confidential
information in b, and subsequent deletion of b, will prevent us from inferring
a — c¢. Such a problem is being referred to as false independency [7] since the
transformed graph may lead us to believe that a and ¢ are unrelated (in the sense
that one has no influence over the other [1]). Likewise, one needs to ensure that
a transformed provenance graph does not enable the inference of nodes or edges
that cannot be inferred from the original graph, a problem referred to as false
dependency [8]. The problems of false dependency and independency have not
been considered together by previous work on provenance privacy protection [5,9],
but should critically be addressed in order to maintain the usefulness of prove-
nance in establishing trust of data.

The model of provenance we adopt is the recently standardized PROV, aimed
at sharing provenance information over the Web [6,10]. The richness of PROV
requires a principled approach to defining a graph transformation and formal-
ising its properties. To address the problem of false (in)dependency, we have
established that, when a node needs to be deleted, we need to consider not only
the edges incident to that node, but also the edges between its adjacent nodes.
To do so, graph transformation rules need to be equipped with a variety of graph
rewriting capabilities, such as negative application conditions (NAC) [11] and
nested constraints [12].

The aim of this paper is to propose PROV-GTS, a provenance graph trans-
formation system that prevents false dependencies by creating nodes and edges
according to the semantics of PROV. Concretely, the contributions of the paper
are threefold: (7) A principled definition of transformation rules that is based on
the properties of PROV such as its inference rules. (i) An approach to avoiding
false independencies and false dependencies in the transformed graph. (iii) The
system termination and confluence shows that the rules are parallel-independent
(no inconsistency and all critical pairs are safe).

In Sect. 2, the most relevant approaches found in the literature are presented.
The intuition of our approach to deleting nodes in PROV model is described in
Sect. 3. In Sect. 4 the formal definition of graph transformation used in PROV-
GTS is presented followed by the construction of the transformation rules in
Sect. 5. The issue of inconsistency is resolved in Sect. 6. Nested graph predicate
and the properties of PROV-GTS are presented in Sects.7 and 8, respectively.
Finally, we provide the conclusion and future work in Sect. 9.

2 Previous Work

Provenance graph transformations have been mainly used in two broad domains:
provenance access control and scientific workflow run provenance. A provenance
access control language has been proposed in [5] based on integrity criteria which
reduces the original query entered by a user and deletes the paths that are in the
original query but not in the reduced query. In [9], data, module, and structural
privacy in scientific workflow have been examined. A module clustering app-
roach has been proposed by creating new composite modules from the old ones
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preventing the visibility of private information while preserving completeness.
However, clustering may require adding new dependencies which are not part of
the original graph thus breaching the validity of the provenance information by
adding false dependencies.

The issue of false dependencies has been solved in the following research works.
However, the proposed approaches, by deleting extra information other than the
sensitive nodes, have not been able to avoid false independency. A redaction-based
graph grammar [13] for rewriting provenance graph replaces two or more nodes
and the edges connecting them with a new node and applies node relabelling as
necessary to hide sensitive information. The paper [14] shows how a variety of
user requests such as abstracting, anonymizing, or hiding nodes may lead to
provenance policy violations such as false dependencies, false independencies,
or cyclic graphs. The paper suggests inventing new non-functional nodes when
it is necessary and maintaining the essential relationships.

The approach proposed in [7,15] performs abstractions on provenance graphs
by replacing a graph chunk by one node while avoiding adding false dependen-
cies to the graph. In [16] an abstraction model has been proposed using node
grouping. It replaces a set of sensitive nodes by a single node. The approach
avoids cycles and invalid relations otherwise a set of nodes will be extended such
that sink nodes in the set are of the same type, entity or activity. Finally the
system replaces the set by a new node of the same type as the sink node.

3 Deleting Nodes in the PROV Model

PROV [10] defines a notion of graph, formed of nodes and edges, each equipped
with an identifier and optionally decorated by attributes. Figure 1 illustrates the
nodes and edges of the core PROV data model; they include three node types -
entity, activity, and agent - and seven edge types which are wasDerivedFrom
(der), wasGeneratedBy (gen), used (use), wasInformedBy (info), wasAttribut-
edTo (attr), wasAssociatedWith (asso), and actedOnBehalfOf (del). We use the
abbreviated labels of these edges throughout this paper to refer to them.

In the proposed system, the sensitive parts of the provenance graph are spec-
ified by a set of restricted nodes. Confidentiality levels will be used to represent
plain (1, restricted 1 | and anonymous nodes. The full description of these
notations will be provided in Sect. 4.

The goal of our proposed approach is to obscure the confidential information
by removing the restricted nodes. If a node cannot be deleted then it will be

(*mm'@ @ dor @ e gen
@ [

Nodes: .{“mm. Relations: use

agent @ B ) Q del @

Fig. 1. Core PROV data model
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Fig. 2. A provenance graph
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Fig. 3. Node anonymization

replaced by a less sensitive anonymous node. There are two reasons why we
prefer removing nodes over anonymization. First, the topology of the graph can
be used by an attacker, who has prior knowledge on the content of the graph,
to infer the hidden identity and attributes of the nodes [17]. Second, if we only
anonymise, then it is possible to have a graph redundant and useless nodes,
which could have been removed.

However, deleting restricted nodes may result in omitting non-relevant infor-
mation. For example, the implicit info edge between activities ag and as, in
Fig. 2, disappears as a consequence of deleting es. Since this relation can be
inferred, we need to ensure that we create the edge info between az and as
before deleting es.

If the relations cannot be inferred then the node will be anonymized. In
Fig. 3(b), no relation between e; to ez can be inferred; therefore, deleting the
restricted activity a; will cut the path between e; and ey as shown in Fig. 3(a).
Instead, a; will be anonymized as illustrated in Fig.3(c). Node anonymization
is carried out by obscuring the node’s id and deleting all its attributes [18].

4 PROV Graph Transformation System (PROV-GTS)

Algebraic graph transformation approaches rely either on two gluing diagrams,
referred to as double-pushout approach (DPO) [19], or one gluing diagram,
referred to as single-pushout approach (SPO). SPO is capable of removing nodes
and their incident edges from the graph, including dangling edges [20]. Algebraic
approaches can be extended by additional application conditions, such as exis-
tence and non-existence of certain nodes and edges [21], as well as conditions
that are repeated frequently in the original graph and known as nested condi-
tions [22]. PROV-GTS is an algebraic graph transformation system that consists
of a set of rules based on the single-pushout approach.

4.1 PROV Graph

Provenance graphs are typed, which means we need to define a type for each
of the nodes, edges, and confidentiality levels. Let v, €, and p represent the
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node types, the edge types, and the confidentiality levels, respectively, where
v = lentity, activity, agent], € = [use, gen, der, info, asso, attr, del], and
p = [plain, restricted, anonymous]. By default, all graph nodes are plain, except
those that have been annotated by the user as restricted. PROV-GTS either
deletes the restricted nodes or makes them anonymous, according to the intuition
of Sect. 3.

To avoid having too many rules and conditions to achieve a particular goal,
we define abstract nodes and edges based on the core PROV data model [23]. For
example, to say that a node has incoming edges, we use an abstract node and
edge to construct a single condition, instead of defining multiple conditions for
each type of incoming edges. These abstract nodes and edges, as shown in the
hierarchies of Fig. 4, have been used to construct PROV-GTS rules, where node
(the triangle in Fig. 4(a)) represents all node types, and artifact (the diamond in
Fig.4(a)) represents entity and agent. The top-level edge link shown in Fig. 4(c)
represents all core PROV edges and rel represents each of der, attr, use, asso,
and del. Regarding the confidentiality levels shown in Fig. 4(b), any represents
the top-level ancestor of plain, anonymous and restricted. Three new sets U, €, p
are defined, where 7 = v U [node, artifact], € = e U [link, rel], and p = p U [any].

Definition 1 (Extended PROV Graph). An extended PROV graph is a
typed graph G = (Ng, Eq, sa, da, pa, ca, ha) where Ng is the set of nodes,
FEq is the set of edges, sq, da: Ea — Ng are functions which assign respectively
a source and a target node to each edge, the function pg : Ng — p assigns con-
fidentiality level to the nodes, and the functions cqg : N¢ — U and hg : Eg — &
map nodes and edges to their types, respectively.

Given the type hierarchies of Fig.4, we extend the definition of graph mor-
phisms [24] with binary relations <.» <,.and <_ which are implicitly defined
in Fig.4 by the subtype arrows. These relations are used in mapping nodes,
edges, and confidentiality levels in PROV-GTS rules to their corresponding
nodes, edges, and confidentiality levels in PROV graphs, respectively.

Definition 2 (Extended Graph-Morphism). Let G and H be graphs. A mor-
phism f : G — H is the mappings fn : N¢ — Ny, fp : N¢ — Ny and
fe: Eq — Eg, such that the diagrams below commute.

A partial graph morphism f: G — H is a total graph morphism from some
sub-graph K of G to H, where Ny C Ng and Ex C Eg.

I LI v fe

Eo—1E 5 5y, Ne—> Ny Ng———> Ny Fe—1t 51,
A"\"(,‘L>NH v p £
Inosa=suofE c¢ <, cuofn pe <, puofp he <_ huo fe

fyoda=dmofEr
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Fig. 4. Type hierarchies for PROV-GTS rules

Definition 3 (Extended Graph Category). Let Graph, be the category of
extended PROV graphs and extended partial graph-morphisms between them. We
use Graph to denote the category of extended PROV graph and their extended
(total) morphism.

4.2 PROV Rules

The graph transformation modifies a graph G according to a rule of the form
r: L — R by replacing an instance of L in G by R [24].

Definition 4 (PROV Rule). A PROV graph transformation rule r : L — R
is a partial morphism v in Graph,; L and R are called the left-hand side (LHS)
and the right-hand (RHS) side of the rule, respectively.

The match of the rule r is given by a total morphism m : L — G. The rule is
applied by using the derivation G 2" H, which is given by the pushout of r and
m using a single-pushout approach [20].

The rule r can be extended to have negative application conditions which
forbid the existence of certain graph patterns before applying the rule [21].

Definition 5 (Negative Application Condition). A negative application
condition (NAC) for the rule v is a total morphism n : L — N in Graph; n
is satisfied by a graph morphism m : L — G if there exists no total morphism
p: N — G such that pon =m.

Definition 6 (PROV Graph Transformation System). A PROV graph
transformation system PROV-GTS consists of a set of graph transformation
rules setp (possibly with NACs).

5 Construction of PROV-GTS Rules

We use PROV properties provl—5 (see Table 1) to construct the provenance graph
transformation rules in a principled manner. All the inferences related to core
PROV [6] are used to define PROV-GTS, except for [6, Inference 11] which is
related to the time information of generation and usage relations and is outside
the scope of this paper. While formally there is no explicit inference relevant
to prov4, the narrative of PROV makes it clear that the existence of an activ-
ity can be inferred from the derivation relation. Table1 provides a graphical
representation of PROV properties, which we comment below.
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Table 1. PROV model properties

Property Graph Patterns (C; — E;) Property Graph Patterns (C; — E;)

info

prov2

provl info >

wnm!
prov3 @ = provd > & &

provs =>

— provl: The existence of an entity generated by an activity and used by another
can be implied from their communication (info) relation ([6, Inference 5]).

— prov2: The communication between two activities can be inferred if there
exists an entity generated by one of the activities and used by the other
([6, Inference 6]).

— prov3: The existence of an entity implies the existence of the activity that
generated it ([6, Inference 7]).

— provd: The derivation (der) edge implies the existence of an activity which
connects the generated and used entities [1].

— provh: The attribution relation (attr) between an entity and an agent implies
that there is an activity that generated the entity and is associated with the
agent ([6, Inference 13]).

Definition 7 (PROV Property). A PROV property provi is p : C; — E; in
Graph for i = 1..5 where Ci and Ei are respectively premise and conclusion of
inference rules, and p is the obvious inclusion morphism.

These properties are used for two purposes. First, to define conditions necessary
to construct the deletion rules. Second, to create the inferred nodes and edges
that are not explicitly in the PROV graph and required to trigger the deletion
rules by defining a set of creation rules. For example, provl can be used not only
to delete an entity if it is part of a communication relation, but also to infer the
existence of the entity if its identity is unknown. Any restricted nodes that are
not part of the patterns that are represented by those properties and cannot be
inferred from them will be used to construct anonymization rules.

The following sections respectively introduce deletion, creation, and
anonymization rules, consisting of LHS, RHS, and/or NACs based on the
aforementioned properties. The rules are presented progressively, starting with
the functionality, and continuing with the more involved versions, in Sect.6 to
deal with inconsistency, and in Sect. 7 with nested conditions.

5.1 Deletion Rules

Based on provl, a restricted entity can be deleted when the info edge between
the generating and using activities exists. Additionally, the prov3, 4, 5 are used
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Table 2. Deletion rules

rule L R NAC Rationale

info

rue £ (O | EH B provl
delete-entity
rel

B A B A
i 2| S 8 brovi5
delete-activity-in-out
rule 3 X gen A 4 tink X gen A
£ ] GD prov3

delete-activity-no-out

to form two activity deletion rules. By using the shapes and the colour pat-
terns defined in Fig.4, Table?2 illustrates the deletion rules and specifies the
properties used in their construction in the ‘Rationale’ column. Note that the
(labelled) nodes in L are fixed for the entire rule. The negative application con-
dition for rule 3 indicates that the rule is applicable if the restricted activity has
no outgoing edges.

Definition 8 (Deletion Rule). A deletion rule is a rule r : L — R in Graph,,
constructed from PROV property provi, where L = E;, R = C; and the nodes in
Ng, \Ng, are restricted.

5.2 Creation Rules

The info relation can be inferred with prov2. In addition, generating and using
activity can be inferred by prov4—5. Furthermore, generating activities can be
inferred with prov3, if the restricted entity has no outgoing edges. Using provl,
we can add an entity to info edges to enable the delete-activity-no-out rule. The
creation rules are shown in Table 3.

Definition 9 (Creation Rule). A creation rule is a ruler : L — R in Graph,,
constructed from PROV property provi where L = C;, R = E;, and one of the
nodes in N¢, is restricted.

5.3 Anonymization Rules

The restricted nodes are not always part of the patterns used to construct the
deletion rules, or the patterns that can be completed using the creation rules.
If this is the case, the restricted nodes will be anonymized. Examples of the
restricted nodes that cannot be removed include an entity with no incoming
edges, an activity that generated an entity and used another without derivation
edges. Since there are no properties that help eliminate agents, they are always
anonymized. The patterns that have been used to construct the anonymization
rules are shown in Table 4. The rules create-entity-in-info (Table 3) and anonym-
activity-in-info (Table 4) share the same LHS and NAC but conflict in their RHS
which will be addressed in Sect. 6.
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Table 3. Creation rules

rule Rationale
rule 4
create-entity-in-info provl
rule 5
create-info-use-gen prov2
rule 6
create-activity-in-der prov4
rule 7
create-activity-out-der prov4
rule 8
create-activity-atir provs
rule 9 é D‘ﬂé ln\k
create-activity-no-gen prov3
Table 4. Anonymization patterns
rule L R NAC Rationale
rule 10 - 3 Ak VAN entity with no incomin,
anonym-entity- O O . y g
no-in edge
rule 11 5 S 4 info AN activity with no incomin
anonym-activity- l:l |:| L] Y g
no-in edge
X X
rule 12 Q Qo
anonym-agent O agent
gen 5] use,
A X A X A X
rule 13 f f ﬁ . . . .
anonym-activity- HH L] outgoing info with no entity
out-info
gen % use
rule 14 R L i - ﬁ 4 . s - B
ananymTafctivity— N Hitt 1 5 |incoming info with no entity
m-njo
rel
rule 15 B X pen o sen RA .
anonym-activity- “3’“ {1 @ @ {1 @ gen and us:e Wl.th no der-
no-rel gen and asso with no attr

Definition 10 (Anonymization Rule). The anonymization rules are rules
r: L — R in Graph, constructed from a pattern and a NAC as listed in Table 4.
They only match if the none of the deletion and creation rules do.

Observe that the matching condition is beyond the expressive power of classical
transformation systems. We will address this in Sect. 7 by formulating our system
in terms of the more expressive nested rules.

6 Inconsistency in PROV-GTS

In order to avoid non-determinism in GTS, we must ensure that rules are inde-
pendent of each other, and that the output of a transformation is not dependent
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Table 5. Extra negative conditions to ensure consistency

rule conflicting rules added NAC
rule 1 rule 2-3 gen use
O O
delete-entity delete-activity-*
'rule‘ ;4 o 'rul(? 4' ' Ak X mln
anonym-activity-in-info | create-entity-in-info

Table 6. Extended LHS-RHS to ensure consistency

delete-activity-in-out

rule conflicting rules extended L| extended R
rule 7 A g A i A
o
rule 10 create-activity-out-der
anonym-entity-no-in . »
rule 8 ;\m Jink A\
create-activity-atir
rule 9
create-activity-no-gen
A link X iufo A
rule 2 rule 14

anonym-activity-in-info

on the order in which rules are applied. With the rules as presented so far, these
properties do not hold. For instance, restricted activities with incoming info
edge but no outgoing edges can be anonymized by the rule anonym-activity-in-
info but it also deleted by the rule delete-activity-no-out. In addition, the activ-
ities with incoming info and outgoing edges must be anonymized by the rule
anonym-activity-in-info, however, it could be preceded by creating an unneces-
sary entity by the rule create-entity-in-info. The key to ensure the determin-
ism of PROV-GTS is embedding appropriate positive or negative conditions in
the transformation rules. Furthermore, deleting activities before entities when
matchings of the delete-entity rule and the activity-deletion-* rules overlap, may
required more transformation steps. For example, in Fig. 2, deleting the activ-
ity ao before the entity es, requires an extra transformation step by adding an
anonymous activity in place of as. To resolve this issue we prevent deleting activ-
ities until all linked restricted entities are processed by adding two NACs to the
activity-deletion-* rules. Some PROV-GTS rules are provided with extended
LHS and RHS (see Table5), or NACs (see Table6), which must be added to
the conflicting rules, to ensure consistency. There are other overlapped match-
ings between some of the anonymization rules resulting in critical pairs, but
fortunately all these pairs are safe as shown in Sect. 8.3.
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7 Nested Graph Predicate

The simple rule consisting of LHS, RHS, and NAC's is not always enough to
define transformation rules. For example, in Fig.2 the entity e3 has been used
in derivation of the two entities es and es. The entity-deletion rule deletes e
based on one of the outgoing edges, ignoring the other relation. To delete these
nodes, we have to check conditions that repeat frequently in the host graph
and have a universal nature which can only be represented using nested graph
predicates [25]. In our system, we adopt the approach defined in [25,26] limited
to graph predicates of depth three and one rule application. Each nested rule
consists of two parts: the nested graph predicate for rule matching, represented
by a root (LHS) and a set of universal-existential pairs (u;, ¢;), and an RHS for
rule application.

Definition 11 (Nested Graph Predicate). A nested graph predicate is the
tree-shaped diagram in the category Graph consisting of three nested levels:

1. The Root L,: each nested predicate has only one root which must be satisfied
existentially (that is, in the usual way). The root L, plays the same role as
LHS in simple rules.

2. Universal Extensions: each root L, has at least one universal extension
which must be satisfied universally (that is, each possible match is consid-
ered, one at the time). It consists of a finite set U(L,) which represents the
universal extensions of the root L,, where U(Ly) # 0 and u; € U(Ly) is ith
universal extension.

3. Existential Extensions: each universal extension may have an associated
existential extension, to be satisfied existentially for each match of the uni-
versal extension. We denote by e; the existential extension of u;.

Definition 12 (Nested Predicate Satisfaction). Let p be a nested graph
predicate and G be a provenance graph, p satisfied by the graph G if

— The predicate p existentially satisfied by f : L, — G, and

— For each universal extension u; € U(Ly,), p universally satisfied by all g : u; —
G and k: Ly, — u; such that f =gok, and

— For each existential extension e;, p existentially satisfied by at least one h :
e; — G and l : u; — e; such that g =hol.

If e; is non-empty, then u; must be satisfied universally. If e; is empty, then
u; is de facto a negative application condition NAC, in that no match for it
can exist in the graph for p to be satisfied. The nested graph predicates of the
deletion rules of PROV-GTS and the properties used in their construction are
shown in Fig. 5.

The unlabelled nodes are fixed between u; and e; while the labelled nodes
are fixed for the entire rule. The provided graph patterns for u; and e; represent
only the required conditions. The full graphical representation can be obtained
by LUw; (and LUe;) such that Ny, and Ny, \[X] (also Ny, and N,,\[X]) are two
disjoint sets where X € L is a restricted node. The completeness of these graph
predicates is proven in Sect. 8.1 via Lemma 1.
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Fig. 5. Graph predicates for deletion rules

8 Properties of PROV-GTS

In PROV-GTS, provenance graphs are transformed by applying the rules again
and again until no rule applies any more. In the following sections, the proofs of
graph integrity, termination, and confluence are provided.

8.1 Graph Integrity

To trust the provenance information, it is important to show that the trans-
formed graph is semantically correct. This can be done by proving that the rules
do not create false-dependencies and do not result in false-independencies.

Theorem 1 (No False Dependency). Suppose G is the original graph and
Gr is the graph transformed by the PROV-GTS rules. Then Ng,.\Ng and
Ec,\Eg can be inferred from the graph G, i.e. there are no false dependencies.

Proof (No False Dependency). Because of the way the creation rules are con-
structed (see Definition 9), the transformation rules add to the transformed graph
G only what can be inferred from the original graph G. In addition, the mod-
ified rules in Table5 do not affect this property, as they add the same positive
condition to each of LHS and RHS of the conflicting rules, i.e. always Ng\Ny, =
Ng \N¢, and EgR\EL, = Eg,\Ec, for all the creation rules (r : L — R) con-
structed from the PROV properties (p : C; — E;).

Lemma 1 (Completeness of Nested Graph Predicates). Suppose G is
the original graph and G is the graph transformed by the PROV-GTS rules.
Deleting the restricted nodes in G, by the deletion rules shown in Fig. 5, will
not affect what can be inferred from G.
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Proof (Completeness of Nested Graph Predicates). For the graph predicate to
be complete, it must check that all possible relations between the nodes adja-
cent to the restricted nodes have been preserved. To this end, the nested graph
predicates consist of universal-existential pairs that represent all PROV prop-
erties relevant to the type of the restricted node. For instance, in the delete-
entity rule shown in Fig. 5, the PROV properties prov2, provd—5, and prov4 have
been used to construct the universal-existential pairs (ug, €g), (u1, €1), and (ug,
e2), respectively. Therefore, the edges that are not incident to the restricted
nodes, including the inferred ones, will not be affected by the node deletion.

Theorem 2 (No False Independency). Suppose G is the original graph and
Gr is the graph transformed by the PROV-GTS rules, Ny = Ng,.\Ng and
Ex = Eg,.\Eg. No false independency will be created as a consequence of delet-
ing the restricted nodes.

Proof (No False Independency). To prove that there is no false independency, it
is sufficient to prove that all nodes in Ny are restricted nodes and the source or
target of each edge in Fpy is a restricted node in Ny.

All nodes in Ny are restricted because the deletion rules of PROV-GTS,
according to Definition 8, removes only restricted nodes. In addition, the proof
of completeness of the nested graph predicates in Lemma 1 shows that only the
edges incident to the restricted nodes will be deleted.

8.2 Termination

To ensure that the graph transformation in PROG-GTS always terminates, we
use a termination count which is computed by counting the number of occur-
rences of the graph patterns shown in Table 7. Each pattern has a positive part
R and may have a negative part N. The pattern P; is used to compute the num-
ber of restricted nodes, whereas patterns P, ... P; are used to count the number
of creation rule applications for each restricted entity. Suppose m(G) is the ter-
mination count for graph G and m; and mg are the number of occurrences of

Py and Py respectively, while m§’ is the number of occurrences of P; for the

Table 7. Termination measurement patterns

P R N P R N P R N
dor use
A\ @B
Py - _ Py| ¥ T ] T Py |7 T -
[
| gen rel
S| o
info () .
use S
info &
@, B> ] { ]
P, | v T _ Ps| ¥ T v z
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Initial Graph

>
5, T6, 7, T'9

my =3, mg =0
e1 =(1,1,0,

0,1,0) =4
e3 =(0,1,1,
1,0,0) =3
m(G) = 10

gen

mi =3, mg =0
er = (1,1,0,

@ rule 5: create-info-use-
ipf

0,1,0) =4
ez = (0,1,1,
1,0,1) =2
m(G) =9

mi1 =3, mg =0
ep =(1,1,0,
0,1,0) =4

ez = (0,1,0,
2,0,1) =1
m(G) =8

@ rule 6: create-activity-in-der

m1 = 3, mg =0
e; = (0,2,0,

0,1,0) =3
ez = (0,1,0,
2,0,1) =1
m(G) =17

75, T5, 5

mi =3,mg =0
eq = (0,2,0,
1,0,0) =2

e3 = (0,1,0,
2,0,1) =1
m(G) =6

rule 9: create-activity-no-gen

1 fol

-

rule 5: create-info-use-gen 5

5, 5, T'1

info

mi =3,mg =0
e1 = (0,2,0,
1,0,0) =2

ez = (0,1,0,
2,0,2) =0
m(G) =5

rule 5: create-info-use-gen
my =3, mg =0

e1 = (0,2,0,

1,0,1) =1

es = (0,1,0,

2,0,2) =0

m(G) = 4

fol

my =3,mg =0
e; = (0,2,0,
1,0,2) =0

e3 = (0,1,0,
2,0,2) =0
m(G) =3

rule 5: create-info-use-gen

o

fol

my =2,mg =0

e1 = (0,2,0,
1,0,2) =0
m(G) =2

my =1,mg =0
eq = (0,2,0,
1,0,2) =0
m(G) =1

rule 1: delete-entity

fc

RN @ |

info

my =0,mg =0
m(G) =0

Fthese rounded rectangles are used to show the (other) applicable rules where r; represents rule i.

Fig. 6. Step-by-step rule application with the termination count

restricted entity e; where j = 2..7. The total number of pattern matchings can
then be computed using the following equations:

n
m(G) =mq + > E; + mg where n is the number of restricted entities,

i=1
E; = mg + mif + mg' +fi— m? and
fi = (m3" +mg') x (my' +mg' +mg')
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The example in Fig. 6 shows step-by-step PROV-GTS rules application with
the termination count at each step. For conciseness, we use a vector notation
(ma,...,my) for e;. In each step, one of the applicable rules are (randomly)
chosen and applied on the graph.

8.3 Confluence

Confirming the termination of the graph transformation process is not enough.
It is essential to guarantee that the graph rewriting always terminates with the
same resulting graph despite the order in which the rules have been applied, i.e.
confluent.

Definition 13 (Confluence). A graph transformation system is called con-

fluent if for all deriwvations G= H, and G = Hs there is a graph X and the
derivations Hy = X and Hy = X.

To prove the local confluence, it is enough to prove that all critical pairs in
PROV-GTS are strictly confluent [24].

In PROV-GTS, any of the rules anonym-activity-out-info, anonym-activity-
in~-info, and anonym-activity-no-rel, when applies on the same activity, makes
the other two inapplicable. The same conflict happens when the matchings of
the rules anonym-activity-no-in and anonym-activity-out-info overlap. Since the
above rules are anonimyzing activities, the resulting graph is the same for all
rule applications. This proves that the system is confluent.

9 Conclusion

In this paper, PROV model properties have been used to construct a set of
rewriting rules, which form the PROV graph transformation system (PROV-
GTS). The relations are preserved by creating nodes and edges that lead to
the deletion of restricted nodes. If this preservation is not possible or does not
lead to node deletion, the restricted nodes will be anonymized. The integrity
of provenance graph has been proven by showing that no false dependencies or
independencies are generated by PROV-GTS, thereby the transformed graph can
be trusted. The termination has been proven by defining a count that indicates
the progress of graph transformation. We show that the system is confluent using
termination proof and confluence of critical pairs.

The proposed system should be expanded to cover concepts that have not
been included in this paper. First, new transformation rules must be defined to
process the extended terms of the PROV model. In addition, it is important
to preserve other concepts, such as the time sequence in which different opera-
tions in the provenance graph occur. Finally, the system must be integrated into
provenance-based applications and then its functionality, in terms of obscurity
and graph utility, must be evaluated by defining proper measurements.
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