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Measurements were conducted downstream of a square-fractal-element grid at Rer, =
ULo/v = 65,000, where Lg is the size of the largest element in the grid. The scale-by-
scale energy budget for grid turbulence is used to investigate the phenomenological change
in the turbulence between the inhomogeneous and homogeneous regions downstream of the
grid, providing greater insight into the evolution of the turbulence in these two regions. It is
shown that in the far-field, /Lo > 20, where the flow is approximately homogeneous and
isotropic, the scale-by-scale energy budget proposed by Danaila et al. [1] for grid turbulence is
well balanced. In the near-field, /Lo < 20, the same energy budget is not satisfied, with the
imbalance of the budget occurring at scales in the range A <r < Lo. It is proposed that the
imbalance is caused by non-zero transverse transport of turbulent kinetic energy and produc-
tion due to transverse mean velocity gradients. Approach of the spectra to k—5/3 behaviour
with a decade long scaling range in the inhomogeneous region is attributed to forcing by these
non-zero transverse terms.

Keywords: grid turbulence, homogeneous turbulence, isotropic turbulence, energy budget,
fractal grid

1. Introduction

Kolmogorov [2, 3] developed a relationship between the second- and third-moments
of the longitudinal velocity increments over a spatial interval r. These moments are
typically referred to as the second- and third-order structure functions, represented
by ((6u)?) and ((du)3), respectively, where u is the turbulent fluctuation in the z-
direction, du = u(z +r) — u(z) and (-) is an ensemble average in the homogeneous
directions. The relationship developed by Kolmogorov is given by

(6w + 6 (6u)?) =

- (@, (1)

where (€) is the mean turbulent kinetic energy dissipation rate. Equation (1) can be
thought of as a scale-by-scale energy budget with respect to the energy contained
at a scale r. The first term on the left-hand-side of (1), which is the third moment
of velocity, represents the energy transferred through advection. The second term,
which includes the rate of change of the second moment of velocity, represents
the energy transferred through molecular diffusion. The derivation of (1) assumes
a cascade of energy and sufficiently high Reynolds numbers such that the small
scales are locally isotropic and adequately separated from the large scales to be
uninfluenced by them.
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Grid turbulence and turbulent jet measurements found that (1) was not satisfied
at the large scales [1, 4-6]. Consequently, Danaila et al. [1] derived the following
relationship for homogeneous, locally isotropic grid turbulence:

()G + 2 (60P) — 1 [ G ds = g@n @)

where {(3g)%) = {(u)2) + {(0v)?) + ((6w)?), (0u)(39)2) = {(u)®) + {(0u) (Fv)?) +
{(6u)(dw)?), and s is a dummy integration variable. Equation (2) may be repre-
sented simply as G+ D + I = C. G and D are analogous to the first two terms of
(1). However, I has been added to account for the influence of longitudinal inhomo-
geneity resulting from the decay of turbulence behind the grid. Furthermore, (2) is
more robust than (1) because it was derived under the assumption of local, rather
than global, isotropy. All four terms of (2) may be measured experimentally, and as
such it is common to refer to the ‘balance’ of the energy budget to describe how well
the measured left-hand-side approximates the measured right-hand-side of (2). The
balance, B*, may be explicitly defined as G/C+D/C+1/C = G*+ D*+1* = B*,
where B* = 1 represents the case where (2) is fully satisfied. Lavoie et al. [7] found
that if grid turbulence measurements are performed with adequate longitudinal
spatial resolution such that the I term is resolved (measurements typically need to
be performed with spacings on the order of the grid mesh length, M), then B* =1
at all r to within +5%.

Accurately determining the gradient term in the integral of I may not always be
feasible due to the requirement of relatively fine spacing in  measurements. In such
cases, the similarity form of (2), derived by Antonia et al. [8] and based on the work
of George [9], may provide an alternative means of estimating the scale-by-scale
energy budget without the necessity of detailed x measurements. The similarity
form of (2) is given by [8]

1@ L0 op, ] 22 205 3)

9(7) dr n M3

where n is the exponent of the power-law decay of turbulent kinetic energy <q2> ~
(x—x0)", and a tilde denotes normalization by the Taylor microscale whose square
is given by

N =5 o (4)

where (¢%) = (u?) 4+ (v*) + (w?). The functions in (3) are given by [8]

31/2R€)\>

9(7) = ~((6u)(50)°) ( 7
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Dy (7) = /0 i fd3, (5d)

where § = s/ is a dummy integration variable and the Taylor microscale Reynolds
number is

q2 1/2 A
Re,\ = <31>/21/ (6)
Similar to (2), (3) may be written as Gs + Ds + Iy = Cs. It then follows that
the balance of the similarity form of the scale-by-scale energy budget is given
by Bf = Gs/Cs + Ds/Cs + I;/Cs = G* + D¥ + If. This similarity analysis has
been shown to be approximately satisfied in grid turbulence in multiple studies
[7, 10, 11].

Recent experiments by Vassilicos and co-workers with space-filling square-fractals
have rekindled interest in grid-generated turbulence [12-15]. The space-filling
square-fractal grids are a single fractal that occupies the entire wind tunnel cross-
section. These grids have produced results that contrast with those of classical grid-
generated turbulence. For instance, space-filling square fractals have been shown
to produce turbulence that decays according to a power-law with n ~ —2.5, which
represents very rapid decay relative to classical grids and theoretical expectations
where —1 < n < —1.4 [14]. Turbulent spectra with scaling ranges that exist over a
decade have also been observed, which are atypical of classical grids (the lack of a
scaling range for classical grid turbulence is typically attributed to insufficient Rey)).
Furthermore, although the core of the flow has been reported as approximately ho-
mogeneous [12-14], non-zero transverse transport of turbulent kinetic energy has
been measured [14]. These studies were conducted in the range x/Ly < 20, where
Ly is the largest element length in the grid geometry.

Krogstad and Davidson [16, 17] have extensively investigated the near- and far-
field of multi-scale cross-grids and found that the flow is highly inhomogeneous
near the grid and decays with an accelerated rate relative to the far-field where the
flow is homogeneous and decays with an exponent near n = —1.2. If one assumes
that Lo from a square fractal is equivalent to M for a cross-grid or classical grid,
then the investigation area of earlier square fractal studies is very close to the
grid where one might expect inhomogeneity. Furthermore, Valente and Vassilicos
[14] specifically argue that the range of scales induced by a cross-grid may not be
sufficient to produce the same results as a square fractal geometry. Hence, while
the near- and far-fields of classical and cross-grid geometries are reasonably well
understood, the same is not true for square fractal grids.

The above was the basis for the work of Hearst and Lavoie [18] who designed
a square-fractal-element grid featuring a 12 x 8 arrangement of small fractal el-
ements mounted to a background mesh (see Figure 1). Measuring in the range
3.5 < x/Lo < 48.5, Hearst and Lavoie [18] showed that the atypical results asso-
ciated with previous fractal studies were related to the proximity of the measure-
ments to the grid itself. They showed that for the region x/Lg < 20 the flow was
inhomogeneous and exhibited the same properties as previous fractal studies, while
in the region x/Ly > 20 the flow was approximately homogeneous and reached a
state that agreed well with classical Richardson-Kolmogorov phenomenology, in-
cluding a decay exponent of n = —1.37.

The present study employs the same square-fractal-element grid to investigate
the phenomenological differences between the near-grid, /Ly < 20, and the far-
field, x /Lo > 20, regions of fractal-generated turbulence in order to determine the
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Figure 1. Square-fractal-element grid positioned in situ (left) with a magnified view of a single fractal
element (right) and primary grid dimensions.

sources of near-field inhomogeneity and if high-order statistics in the far-field agree
with predictions for homogeneous, isotropic turbulence (HIT). While Hearst and
Lavoie [18] investigated transverse profiles of the mean velocity and turbulence
intensity, the present study considers the scale-by-scale energy budget, transverse
transport of turbulent kinetic energy, and production as metrics for the approxi-
mation of HIT by the square-fractal-element flow. The primary aim of the present
work is thus to further reconcile fractal-generated and classical grid-generated tur-
bulence measurements.

2. Experimental setup

The grid was laser-cut from a single piece of 3 mm thick stainless steel. The ge-
ometry consists of a 12 x 8 matrix of square fractal elements with NV = 3 fractal
iterations. The lengths of the fractal iterations are L; = 55.6 mm, 24.7 mm, and
11.0 mm where L;11 = L;/ Ry with Ry, = 2.25, and the thicknesses are t; = 4.1 mm,
2.5 mm, and 1.5 mm, where t;11 = t;/R; with R; = 1.65. The background mesh
has dimensions of Ly = 100 mm and ¢y = 6.7 mm. The grid solidity is ¢ = 0.39.
The study was conducted in a low-speed wind tunnel with dimensions 5.0 m x
1.2m x 0.8 m (length x width x height); the background turbulence intensity was
~ 0.05%. Measurements were acquired at Rer, = ULg/v = 65,000 with a X-wire,
using a Dantec 56C-series anemometer. The hot-wire probes were prepared in-house
using Dantec prongs and 2.5 pm thick copper-coated tungsten wire. Wire sensing
lengths were maintained at ¢ = 0.55 + 0.05 mm, ensuring the required length-to-
diameter ratio of 200. This resulted in spatial resolutions ranging 1.4 < ¢/n < 5.6
dependent on z, where 1 = 1%/4/ <6>1/ * is the Kolmogorov microscale. Streamwise
measurements were performed over the range 3.5 < x/Ly < 48.5 in /Lo = 0.35
increments. Measurements were made slightly off-centre, (y,z) = (30 mm,0), as
it was found that this produced the best approximation of U ~ constant (+1%)
along the test-section length. Transverse scans at x/Lo = 10, 25, 35, and 45 were
also conducted in the range —2.6 < y/Ly < 2.1 in increments of y/Lo = 0.3. All
measurements were acquired for 8 minutes or longer, ensuring better than +1%
convergence of <q2>, estimated from <q2> ~ <u2> + 2 <v2>, and +5% convergence
of the peak of ((du)(dq)?), estimated from ((6u)(6q)?) = ((du)3) + 2((du)(dv)?),
using the 95% confidence interval [19]. Post-acquisition, the data were recursively
low-pass filtered with a fifth-order digital Butterworth filter at the Kolmogorov
frequency, fx = U/2mn, using the technique described in [20]. Corrections were
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applied for the finite spatial resolution of the hot-wire probes and the inherent
filtering effects of numerical differentiation using a Wyngaard-style approach [21-
24]. The methodology employed for post-processing, including a discussion of the
assumptions needed, is given by Hearst and Lavoie [18]. For the majority of the
measurements, the applied corrections were less than 1% for <u2> and <v2>, and
less than 5% for ((9u/0z)?) and ((Ov/0z)?), with corrections for the gradients
approaching 10% near the grid.

The mean turbulent kinetic energy dissipation rate, (e), hereafter referred to
simply as dissipation, is estimated in the present study via two means. In the far-
field, /Lo > 20, where the flow was approximately homogeneous and isotropic,
the dissipation is given by

2
@a= 220D, ™

Equation (7) is derived from the turbulent kinetic energy budget for HIT, and
thus is only valid for flows that approximate HIT. Estimates of (¢), are made
using a power-law fit to <q2> in order to reduce the effect of noise associated with
discrete spatial differentiation of <q2>. The power-law fit reported in [18] is <q2> =
14.35(x/Lo — 7.0) 137, applying from 23.8 < z/Lg < 48.5. In the inhomogeneous
near-grid region, x /Lo < 20, dissipation is estimated from

(I -

The estimates of (€); and (€) yy;, agree to within £8% in the far-field.

3. Scale-by-scale energy budget for grid turbulence

The scale-by-scale energy budget for the turbulence produced by the square-fractal-
element grid is investigated in the context of the normalized version of (2), i.e.
G*+4 D*+I* = B*, which are functions of 7 = r/\. The assumptions of (2) are less
restrictive than (3), hence whenever the gradient of I may be evaluated accurately,
(2) is preferred. The 9((6q)?)/dx term of I was calculated by fitting sixth-order
polynomials to {(§¢)?) along x for each r over the ranges 3.5 < x/Lg < 34.0 and
17.9 < z/Ly < 48.5, and taking 0/0x analytically. This technique is similar to that
employed in [7], where a single polynomial was used. Two overlapping polynomials
were used in the present study given the significant differences in homogeneity and
energy decay identified by Hearst and Lavoie [18] in the near- and far-fields. In
the region where the two polynomials overlap, a linear weighting was used between
them to average the resulting gradient curves. Although data was acquired over
the range 3.5 < /Ly < 48.5, the scale-by-scale budget was only investigated for
5 <x/Ly < 45 in order to reduce the influence of end effects.

Figure 2 shows the normalized scale-by-scale energy budget at three locations in
the grid far-field and demonstrates that (2) is balanced to within 10% there. Thus,
(2) adequately represents the far-field turbulence. The location of the peak of G*
at 7 ~ 1 is also in good agreement with previous grid turbulence measurements
[7, 11] and analytical models [10]. Furthermore, the individual terms are nearly
equal given the current normalization, which implies that they are self-similar to
a good approximation. This result is consistent with previous grid measurements
that have found this scaling to be approximately satisfied [11, 25].
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Figure 2. Normalized terms of the scale-by-scale energy budget for grid-turbulence, given by (2), at three
locations in the far-field; (>) z/Lo = 27.3, Reyx = 83; () x/Lo = 34.7, Rey = 80; (A) xz/Lo = 424,
Rey) = 80.

Figure 3 shows the terms of (2) for three locations in the near-grid region. The
present dataset allows a unique perspective on the scale-by-scale energy budget, as
the measurements are performed such that ((6u)(dq)?) is resolved at every mea-
surement station. As such, contours of B* are plotted in Figure 4. From Figures
3 and 4, where there are peaks in B* exceeding 30% of unity, it is clear that the
balance of (2) is significantly better for x/Ly > 20 compared to z/Lo < 20. This
corresponds to the homogeneous and inhomogeneous regions of the flow. As such,
Figure 4 explicitly illustrates the phenomenological difference in the near- and far-
field flows. Furthermore, the strong imbalance for x/Ly < 20 is located between
the peak of G* and the plateau of the inhomogeneous term, I*, typically in the
range 1 < 7 < 40. Interestingly, the return to B* = 1 appears to always be at
scales near the size of Ly (represented by a dashed line in Figure 4), hence the
imbalance is approximately restricted to A < r < Lg. Recall that the growth of A
in grid turbulence can be significant as it can be shown that A2 ~ (x — ), which
is approximately true for the present grid [18]. As such, Lo/\ decreases with /L.

In order to determine if the chosen streamwise axis accurately reflects the flow
field as a whole, the transverse hot-wire scans at x/Lo = 10, 25, 35 and 45 were
investigated in the context of the similarity form of the scale-by-scale energy bud-
get given by (3). Similarity must be invoked to evaluate the scale-by-scale budget
across the transverse scans because there is insufficient streamwise data to accu-
rately estimate the gradient term of I off the primary axis. Figure 5 shows the
normalized terms of the similarity form of the scale-by-scale energy budget given
by (3) at y/Ly = —1.0, 0, and 1.3, which are representative of all y/Lg, for the
aforementioned streamwise positions. Variations with y/Lg are only present for the
nearest measurement location (z/Ly = 10), suggesting that the choice of the trans-
verse location does not affect the results of the scale-by-scale budget for = /Ly > 25.
By is also comparable in the far-field to the results for B*. Figure 5 thus confirms
that the far-field results in Figures 2 and 4 are representative of the entire HIT
far-field flow. In the near-field, the exact magnitude by which B} deviates from
unity is dependent on y/Lg, but the imbalance occurs at several y/Ly and is a
distinguishing feature compared to the far-field measurements.

Comparing experimental and DNS measurements of decaying and forced turbu-
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Figure 3. Normalized terms of the scale-by-scale energy budget for grid-turbulence, given by (2), at three
locations in the near-field; (@) z/Lo = 10.2, Rey = 138; («) /Lo = 15.8, Re) = 106; (W) =/Lo = 20.0,
Re) = 93.
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Figure 4. Contour plot of the the balance of the scale-by scale energy budget, B* = G* 4+ D* + I'*, which
is equal to unity when (2) is fully satisfied. The dashed line represents Lo /.

lence, Antonia and Burattini [10] identified that for a given Rey, forced turbulence
causes both a growth in the peak of ((du)3), the isotropic analogue of ((du)(5q)?),
and in the location of its peak relative to decaying turbulence. In a jet flow, Ra-
jagopalan et al. [26] investigated how a disk mesh that partially obstructs the core
of a jet nozzle influenced the energy budget. They found that the disk mesh excited
the shear layer, effectively injecting energy into the flow. These authors measured
both growth of G* and movement of its peak to higher r values relative to the
case without the disk mesh. Figure 6 shows contours of G* from the present data
with the locations of the peak values marked. The figure demonstrates that for
x /Lo < 20, G* has a broad peak that occurs at 7 > 1. However, as x/Lg grows, the
shape of G* collapses to within +4% with a relatively constant peak at 7 ~ 1.1.
This suggests that the near-grid region of a fractal wake includes appreciable energy
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x/Ly=25

(c) (d)

Figure 5. Normalized terms of the similarity form of the scale-by-scale energy budget for grid-turbulence,
given by (3), at three transverse locations for each streamwise location; (@) y/Lo = 1.3; («) y/Lo = 0.0;
(W) y/Lo = —1.0.

injection or forcing.

4. Production and transverse transport of energy

Hearst and Lavoie [18] observed mean shear in the region x/Lo < 20 behind the
square-fractal-element grid, which suggests that there may be production there. In
the same region relative to Lo, Valente and Vassilicos [14] observed that there was
non-zero transverse transport of turbulent kinetic energy behind a space-filling
square fractal grid. These phenomena are addressed here in the context of the
turbulent kinetic energy equation [27]:

ou; 9 (<ukq2>+<ukp>>+

(‘T’Cj_@a:k 2 p

Uy, 9(a?)
2 Oxy

v 0% (¢*)
2 0T 0T e, (9)

= — (uuy)

where Einstein’s summation notation is used. Along the centreline of grid-generated
turbulence, Valente and Vassilicos [14] simplified (9) to:

vole) _ (<u2> U 3ty 6U> . <6<uq?> 2a<vq2>)

2 Ox Oz y or 2 dy 2

(10)
_ (8 (up) + 22 <Up>> + g (82 <q2> + 282 <q2>> —{e),

or p dy p Ox? Oy?
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Figure 6. Contour plot of G* = —((6u)(8q)?)/(4/3 (¢?)r); (x) mark the peak of G* at each x/Lo, and
the dashed line represents Lg/A.
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Figure 7. Transverse profiles of the normalized mean velocities, U and V; (O) z/Lo = 10, ([J) /Lo = 25,
(©) /Lo = 35, (A) /Lo = 45.

where the first four bracketed terms on the right-hand-side represent, respectively,
production, triple-correlation transport, pressure transport, and viscous diffusion.
If these four terms are zero, (10) simplifies to (7).

The presence of mean shear for /Lo < 20 as identified by Hearst and Lavoie [18],
is investigated here in the context of sources causing B* #* 1. Figure 7 shows
transverse profiles of both U and V. The mean of U(y) in each transverse plane,
(U(y)) = Uy, is used for normalization. Figure 7(a) demonstrates that there is
mean shear in the near-grid area, which diminishes, i.e. 90U /0y — 0, as z/ L grows.
Figure 7(b) also shows that the transverse gradient of the transverse velocity is non-
zero, i.e. OV /0y # 0, near the grid. The homogeneity of both U and V' improves
with the downstream evolution of the turbulence and as B* — 1 for all 7.

The relevant term of (9) to assess the influence of non-zero transverse gradients
is the production term, (w;u;) (0U;/0x;). The experiment is designed such that
0U/Ox =~ 0, and hence there is no significant contribution to production from this
term. The two transverse terms which may be measured are (uv) (0U/dy) and
(v?) (OV/dy), both of which are shown normalized by dissipation in Figure 8. The
dissipation used to normalize the production is <e>y, the mean of the transverse
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Figure 8. Normalized profiles of the transverse production terms from (9); (O) /Lo = 10, (1) /Lo = 25,
(0) @/Lo = 35, (A) x/Lo = 45.

estimates of (€) vy, from (8) across a given transverse scan. Figure 8 demonstrates
that production only has a significant presence near the grid. In particular, the
primary production term is (uv) (OU/dy), which has peaks in the range of 40% to
60% of the dissipation. The <v2> (0V/0y) production term has a relatively negli-
gible presence in both the near- and far-field. The presence of production due to
non-zero transverse gradients near the grid is a contributing factor to the imbalance
of (2) as production is not included in its derivation. Moreover the production is
non-uniform, which further complicates the nature of the near-grid flow field.

We are also interested in 9({vg®) /2)/8y of the triple-correlation transport term,
as it represents the transverse transport of turbulent kinetic energy by the turbu-
lence itself. For convenience we define 7 = <vq2> /2. The presence of transverse
transport was identified by Valente and Vassilicos [14] as a key difference between
their fractal-generated turbulence and HIT. A non-zero transverse transport term,
07 /0y # 0, can be considered as a source of internal forcing.

Figures 9(a) and 9(b) show transverse scans at four streamwise locations of the
triple-correlation, 7', and 07 /0y, respectively. From the figures, transverse trans-
port of turbulent kinetic energy is negligible at the three streamwise positions in
the homogeneous region, i.e. /Ly = 25, 35, and 45. However, the measurements
conducted at x/Lp = 10, within the inhomogeneous region, clearly demonstrate
the existence of transverse transport of the turbulent kinetic energy there. The
magnitude of the transverse transport term is comparable to the production term
(uv) (0U/dy). The existence of transverse transport further suggests that (2) is not
the appropriate equation for the energy budget in the near-field.

5. Scaling range in the spectra and structure functions
The viscous term of (1) can be neglected in the inertial range such that (1) reduces

to ‘Kolmogorov’s 4/5 law’, —((6u)3) = (4/5) (¢)r, or equivalently, allowing for
anisotropy [28],

ol i

—((0u)(39)*) = % (e} (11)
Figure 10 shows the approach of ((6u)(6q)?), = —((0u)(5q)?)/({€)7) to 4/3. At
x/Lo = 10.2, {(6u)(6q)?), has a broad, flat peak with a maximum at 1.12, very
near 4/3, while the peak of ((du)(dq)?),, and its flatness diminish with 2/L¢. In the
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Figure 9. Measurements of (a) the normalized transverse triple-correlation, and (b) the normalized turbu-
lent transport of turbulent kinetic energy; 7 = (vq?) /2; (O) /Lo = 10, (0) /Lo = 25, () «/Lo = 35,
(A) /Lo = 45.
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Figure 10. Approach of ((6u)(69)%)n = —{(6u)(6¢)%)/({€)T) to 4/3 at several streamwise positions;

(@) ©/Lo = 10.2, Re) = 138; («) /Lo = 15.8, Re) = 106; (M) =/Lo = 20.0, Re) = 93; (>) /Lo = 27.3,
Rey = 83; (©) ©/Lo = 34.7, Rey = 80; (A) /Lo = 42.4, Re) = 80. Filled symbols represent data from
the inhomogeneous region. Empty symbols represent data from the homogeneous region.

far-field, {(6u)(dq)?), becomes approximately self-similar, as demonstrated by the
collapse at low 7 in Figure 10. Evidently, the near-grid turbulence, which is likely
forced by production and transverse transport of turbulent kinetic energy, produces
((6u)(6q)?),, nearer to 4/3 at its peak than the decaying HIT in the far-field.

The shape of ((0u)(dq)?), and its approach to 4/3 are directly related to the
existence of an inertial or scaling range. The presence of a scaling range can
be considered in terms of the one-dimensional spectrum, Fji, defined here as,
<u2> = fooo Fy1(k)dk. Figure 11 shows Fj; normalized by Kolmogorov variables
at three downstream locations. In the near-grid region there is evidence of a scal-
ing range that spans over a decade with an exponent near, but not exactly, k=5/3.
Earlier fractal studies have made similar observations [12-14]. At locations farther
downstream, both the length of the scaling range and its slope decrease. Reynolds
numbers for each curve are given in the captions to Figures 10 and 11. Comparison
of the square-fractal-element grid-generated turbulence to classical grid-generated
turbulence in the literature at similar Rey (e.g. the ‘regular’ grid data acquired at
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Figure 11. One-dimensional spectra, F}1, normalized by Kolmogorov variables at several streamwise posi-
tions; (@) /Lo = 8.1, Rey = 154; (<) x/Lo = 24.2, Rey, = 92, offset by 10~1; () =/Lo = 45.2, Rey = 80,
offset by 10~2.

U =20 m/s in [14]) demonstrates that the onset of a clear scaling range occurs at
lower Re) for the present study. However, this feature of the turbulence is most
prevalent in the region that does not approximate HIT and hence comparisons to
theoretical predictions for HIT lose significance.

Antonia and Burattini [10] found that for a given Re) there was a faster approach
toward a scaling range for forced homogeneous turbulence compared to decaying
homogeneous turbulence. A similar result is echoed here, that is the near-field re-
sults have a larger scaling range than classical grid experiments at similar Re),
as mentioned earlier. The primary difference between the aforementioned flows is
inhomogeneity, however we suggest that perhaps this very inhomogeneity (which
is characterized by the existence of non-uniform production and transport of tur-
bulent kinetic energy) results in forcing, creating a scaling range that is more
substantial in the forced near-field of a fractal grid compared to the unforced freely
decaying region of a classical grid.

6. Conclusions

Measurements behind a square-fractal-element grid have been investigated in the
context of the scale-by-scale energy budget for grid turbulence as proposed by
Danaila et al. [1]. It was found that in the far-field (x/Lo > 20), where the flow is
homogeneous, the scale-by-scale energy budget, described by (2), is well balanced.
Furthermore, —((du)(dq)?) peaked near r = ), which is consistent with previous
classical grid-turbulence experiments and HIT simulations [7, 10, 11]. This provides
further support to the argument of Hearst and Lavoie [18] that the far-fields of
fractal-generated and classical grid-generated turbulence both exhibit Richardson-
Kolmogorov phenomenology.

In the near-grid region (z/Ly < 20), which overlaps with the region explored
by previous fractal studies, it was shown that the scale-by-scale energy budget
does not balance. In particular, there is a peak in the sum of the terms of the
energy budget that represents an excess of energy, relative to the classical grid
turbulence solution, for scales in the range A < r < Lg. Furthermore, the peak of
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—{((6u)(6q)?) varied, and was located at r > \. It was also identified that the near-
grid region experiences non-zero transverse transport of turbulent kinetic energy
and transverse U and V gradients, resulting in a non-zero production term. These
forcing terms are expected to be the source of the imbalance in the near-grid scale-
by-scale energy budget and differentiate the flow here from freely decaying HIT.
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