The University of Southampton
University of Southampton Institutional Repository

Light-signalling pathways leading to the co-ordinated expression of HEMA1 and Lhcb during chloroplast development in Arabidopsis thaliana

McCormac, Alex C. and Terry, Matthew J. (2002) Light-signalling pathways leading to the co-ordinated expression of HEMA1 and Lhcb during chloroplast development in Arabidopsis thaliana Plant Journal, 32, (4), pp. 549-559. (doi:10.1046/j.1365-313X.2002.01443.x).

Record type: Article


During de-etiolation, the co-ordinated synthesis of chlorophyll and the chlorophyll a/b-binding proteins is critical to the development of functional light-harvesting complexes. To understand how this co-ordination is achieved, we have made a detailed study of the light-regulated signalling pathways mediating the expression of the HEMA1 and Lhcb genes encoding glutamyl-tRNA reductase, the first committed enzyme of 5-aminolaevulinic acid formation, and chlorophyll a/b-binding proteins, respectively. To do this, we have screened 7 photoreceptor and 12 light-signalling mutants of Arabidopsis thaliana L. for induction of HEMA1 and Lhcb expression in continuous red, far-red and blue light and following a red pulse. We have categorised these mutants into two groups. The phyA, phyB, phyAphyB, cry1, cry2, cop1, det1, poc1, eid1, and far1 mutations lead to diverse effects on the light regulation of HEMA1, but affect Lhcb expression to a similar degree. The hy1, hy2, hy5, fin219, fhy1, fhy3, spa1, ndpk2, and pat1 mutants also affect light regulation of both HEMA1 and Lhcb expression, but with differences in the relative magnitude of the two responses. The fhy1 and fhy3 mutants show the most significant differences in light regulation between the two genes, with both showing a strong inhibition of HEMA1 expression under continuous red light. These results demonstrate that co-ordinated regulation of HEMA1 and Lhcb is largely achieved through parallel light regulation mediated by shared phytochrome- and crytochrome-signalling pathways. However, glutamyl-tRNA reductase is also required for the synthesis of other tetrapyrroles and this dual role may account for the observed differences in these light-signallin pathways.

PDF McCormac_&_Terry_Plant_J_02.pdf - Version of Record
Restricted to Registered users only
Download (1MB)

More information

Submitted date: 19 July 2002
Published date: November 2002
Keywords: aminolaevulinic acid, glutamyl-tRNA reductase, haem and chlorophyll synthesis, light regulation of gene expression, light-harvesting proteins


Local EPrints ID: 37638
ISSN: 0960-7412
PURE UUID: 24cd77e9-011f-494c-af88-d6d37b75c027

Catalogue record

Date deposited: 25 May 2006
Last modified: 17 Jul 2017 15:41

Export record



Author: Alex C. McCormac

University divisions

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton:

ePrints Soton supports OAI 2.0 with a base URL of

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.