Observation of Intensity Statistics of Light Transmitted
Through 3D Random Media
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We experimentally observe the spatial intensity statistics of light transmitted through three-dimensional
isotropic scattering media. The intensity distributions measured through layers consisting of zinc oxide nanopar-
ticles differ significantly from the usual Rayleigh statistics associated with speckle, and instead are in agreement
with the predictions of mesoscopic transport theory, taking into account the known material parameters of the
samples. Consistent with the measured spatial intensity fluctuations, the total transmission fluctuates. The
magnitude of the fluctuations in the total transmission is smaller than expected on the basis of quasi-one-
dimensional (1D) transport theory, which indicates that quasi-1D theories cannot fully describe these open

three-dimensional media.
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Understanding the flow of light in three-dimensional
(3D) scattering environments is important for a vari-
ety of applications ranging from new developments in
biomedical imaging [1] to energy harvesting [2], spec-
troscopy [3, 4], information control [5] and lighting [6].
Often, light transport in such media can be approxi-
mated as a series of uncorrelated, random events. How-
ever, interference between scattered fields can give rise to
mesoscopic effects that can reveal valuable information
on the properties of the medium and the transport pro-
cess. In quantum transport theory for electrons, meso-
scopic correlations originate from the crossing of many
possible trajectories inside the medium [7]. The analogy
between electrons and matter waves with classical waves
such as light and sound allows a direct mapping of con-
cepts from mesoscopic transport theory. The crossing
probabilities of wave paths and the resulting correlations
are described by a single parameter, the dimensionless
conductance g, which is equal to the average number of
open transmission eigenchannels. In a waveguide geom-
etry, g is defined as ¢ = N(T,), with N the total number
of transmission eigenchannels that light in the incident
free-space modes can couple to and (Ty) =~ Iy, /L the en-
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semble averaged transmission probability of light, with
l¢r the transport mean free path and L the thickness.

Statistical methods have been widely employed in the
study of wave transport through disordered systems to
extract mesoscopic transport contributions [8-22]. The
dimensionality of the experiment is of paramount im-
portance. Quasi one-dimensional (1D) waveguides al-
low the direct observation of light propagation in the
strongly mesoscopic regime, including Anderson local-
ization [11, 12]. Deviations from Rayleigh statistics were
observed in the crossover from the 1D to the quasi-
1D regime using stacks of glass slides [23] and in 2D
photonic crystal waveguides containing localized modes
[18, 19]. The case of 3D random media is of special in-
terest, as only in 3D a phase transition to localization
is expected. In 3D materials however, the effects of in-
terference are generally much weaker because the large
available phase space leads to a reduced probability for
trajectories to cross. Mesoscopic effects for light in 3D
media are therefore generally quite subtle and difficult
to measure [9, 21, 22, 24]. Intensity statistics deviating
from Rayleigh statistics in 3D have only been observed
in strongly anisotropic disordered mats of semiconductor
nanowires [17]. The observation of transmission statis-
tics beyond the Rayleigh regime is a crucial test for the
extension of mesoscopic transport theory to these inher-
ently open 3D media.

Here we present measurements of the intensity fluctu-
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Fig. 1. Experimental setup. HeNe: laser (=A =632.8 nm,
P= 5 mW). ZnO: sample. Objective 1: 100x 0.9-NA objec-
tive. Objective 2: 100x 1.3-NA oil immersion objective. L:
200 mm focal length lens. P: polarizer. CCD: camera sensor.

ations in the transmission of light through 3D layers of
ZnO particles with an average size of 200 nm. Transmis-
sion was recorded spatially using a high numerical aper-
ture (NA) transmission microscope as shown in Fig. 1
and described in more detail in Ref. [17]. Light from a
Helium-Neon laser was focused on the incident surface
of the sample. The spatial distribution of transmitted
light at ZnO-glass interface was imaged onto a camera,
in a cross-polarized configuration.

We performed measurements in two configurations,
‘in-focus’ (IF) and ‘out-of-focus’ (OF) illumination, cor-
responding to illumination spots with a width at 1/e of
less than 0.5 ym and 25 pum, respectively. In each config-
uration, 1000 images were captured per dataset, trans-
lating the sample over 1 um for each consecutive image.
At this distance, the speckle patterns of any two con-
secutive images were found to be completely different.
A total number of 6 datasets per sample were recorded
in a procedure identical to that followed in Ref. [17], in
brief: For each dataset, the captured images were aver-
aged to obtain an average spatial intensity distribution.
The total transmitted intensity for each sample position
was obtained by summing the total intensity in the cor-
responding image. In order to divide out any sample
variations over long length scales, the total transmission
was normalized to a moving average over 10 ym. A
constant background corresponding to the dark counts
of the camera was subtracted from all captured images.
Finally, each image was cropped to the area of interest
and divided pixel by pixel by the average intensity im-
age to obtain the normalized intensity s.;, = tab/{tab),
where a denotes an input mode and b an output mode,
and the brackets denote ensemble averaging. This pro-
cedure divides out the envelope in the intensity due to
diffusion. All intensities for the 6 datasets were collected
into a single histogram, to obtain P(su) vs Sqp. After
collection of the IF histogram, the illumination objective
was moved out of focus by 25 ym and the measurement
was repeated in this ‘out-of-focus’ (OF) configuration.
The number of transmission channels addressed by the
incident field is large when OF and small when IF. Thus,
the measurement made when OF serves as a reference
for the case of large g and negligible mesoscopic correc-
tions, whereas the measurements performed when IF are
expected to give rise to strong mesoscopic fluctuations.

In Fig. 2a-c we show the spatial intensity histograms

P(sab) vs Sqp using the data captured IF and OF for
three samples A-C. The OF data is expected to follow
Rayleigh statistics, Pr(sap) = exp(—sap), however due
to experimental aberrations the tail of the OF distri-
bution is slightly suppressed. For reduced speckle visi-
bility, the exact intensity histogram is described by the
gamma-distribution [25], which in the current regime is
well approximated by a single exponential with increased
slope according to Pr(s.) = ¢ ! exp (—sap/c) (dashed
lines, green in Fig. 2a-c), with ¢ ~ 0.95 the experimen-
tal speckle contrast parameter. In comparison to OF,
the histograms of the data captured IF show a heavy
tail at high speckle intensities, which is not present in
the data captured OF and therefore is a direct signal
of mesoscopic fluctuations. We compared the histogram
of sqp in Fig. 2 for IF with a theoretical model for the
mesoscopic distribution [26-28], which can be modified
to include finite contrast by taking into account the re-
duced single channel transmission, resulting in

c2

P(sab) ZPI/z(Sab){1+;g (8(2”’—48‘:’+2)}. (1)

A robust method to analyze distributions is to fit their
moments. An analytical expression of the moments of
the intensity distribution was developed by Kogan et
al. [28]. Following the above reasoning, we introduce
the finite contrast in this expression by approximating
(tap) = ¢ {sap) and normalizing the first moment (s.)
which yields

c
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with Hpy the Hermite polynomial of order N. The
moments of the measured distributions are shown in
Fig. 2d-f. We see a large difference between the OF
(black diamonds) and IF (red dots) moments. The ana-
lytical expression (2) was fitted to the first five moments
of the data, using the contrast ¢ and the dimensionless
conductance g as the free parameters. The fits to the
first 5 moments of the OF histogram resulted in g val-
ues on the order of 10°, indicating that we can not dis-
tinguish them from a Rayleigh distribution (infinite g).
We use the OF fits to obtain the contrast values ¢ with
values indicated in the figure. For moments N > 6, the
statistical variations due to rare events give rise to a
large uncertainty and we did not include these moments
in the fits. The first 5 moments of the IF distribution
were fitted using only g as a free parameter, with the ex-
perimental contrast parameter ¢ fixed by the OF data.
Best fits (shown in Fig. 2d-f) were found for values of
g in the range 35-65. The fits agree with the data up
to the 10" moment, indicating that mescosopic theory
describes the observed intensity fluctuations well. We
did not observe evidence of other, nonuniversal contri-
butions such as for example Cj correlations [29].

A 3D medium differs from a waveguide in the fact
that energy can spread out in the transverse direction.
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Fig. 2. [wide figure] (a-c) Histograms of the intensity distribution P(sqs) of fields transmitted through samples labeled A-C.
Data points: Mean of normalized histograms of six different datasets captured IF (open dots, red) and OF (diamonds, black).
Error bars: standard error of the normalized histograms based on pixel counts. Dashed line, green: Rayleigh statistics with
reduced contrast ¢ obtained from moment fits. Solid line, blue: Plot of Eq. 1 with g from fits of (d-f). (d-f) Moments of the
intensity distributions of transmitted fields for IF (open dots, red) and OF (diamonds, black) configurations. Dashed line,
green: Fits of first 5 OF moments using Rayleigh theory with reduced contrast ¢ as indicated in figures. Solid line, blue: Fits
of IF moments with Eq. 2 for g =35+4 (d), g=65+8 (e) and g =57 £ 7 (f).
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Fig. 3. Histograms of the total transmission s, for (a) IF
and (b) OF, for ZnO samples A (dots, red), B (open dots,
black), and C (open diamonds, blue). Lines: Gaussian fits.
Variances of distributions are shown in Table 1.

This geometry has been modeled as a waveguide of ex-
panding width [21, 22] with an effective conductance
parameter g that increases with N and i, but satu-
rates with increasing sample thickness L. In the case
of an incident beam that is tightly focussed on the
sample the expanding waveguide model predicts a con-
ductance g = (81;,k?/15)wmin. Here k represents the
wavevector inside the medium and wpi, = ali, is the
minimum width of the incident spot inside the sample,
where a is a constant expected to be close to unity. A
later elegant approach [30] obtains similar results. We
use the previously measured values [, =0.7+0.2 ym and
neg=1.4+0.1 [31] in the expanding waveguide formal-

ism and find ¢ in the range (50.47 £ 29.73)a, in good
agreement with the fits to the histograms.

In addition to the spatial intensity statistics, our ex-
perimental configuration provides measurements of the
total transmitted intensity. For this purpose, we inte-
grated the total counts in each camera image, which
we normalized to the ensemble average to obtain the
normalized total transmission s,. Figure 3 shows the
IF and OF distributions P(s,) for the two samples un-
der study. The total transmission is the sum of a large
number of independent speckle spots, and the exponen-
tial distribution converts to a Gaussian with a vari-
ance inversely proportional to the number of indepen-
dent transmission channels g. The OF data shows a cor-
respondingly narrow distribution, which is very similar
(var(sQF) o~ 4 x 10~%) for the three samples under study.
The IF data showed a much broader distribution indi-
cating a reduction of the number of contributing ‘open’
channels g, again with little variation between the three
samples. The measured variances for both the s, and
the s, distributions are summarized in Table 1. For the
latter we corrected the IF variance for the finite speckle
contrast by normalizing to the OF variance (speckle con-
trast does not affect the fluctuations of s,. Error bars
were obtained by calculating the individual variances for
the 6 independent datasets taken at different positions
on each sample. The significant differences of the vari-
ance values between samples A and B, of almost equal
thickness, are most likely caused by intrinsic variations
in density and morphology between similarly prepared
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Sample| L (pum) gt (Var((sé?) — 1) var(sg ) ratio p-value
var Sab
A 11 3544  (314£03)x1072 (7.140.6) x107* 4.440.6 0.0037
B 12 65+8 (21£05)x107%  (42405)x107* 50+1.4 0.038
C 30 5747  (1.6+£0.5)x 1072  (9.94+1.5) x107® 1.6+0.6 0.26

Table 1. Fitted values of g obtained from moments of spatial intensity distribution, and measured variances of the intensity
distributions for samples A-C. Error bars denote standard error of mean taken over 6 data sets for each sample. P-value
indicates the statistical significance of the deviation of the var(sqs)/var(sq) ratio from 2, obtained using a Student’s t-test.

samples, not to extrinsic properties such as thickness.
For the quasi-1D geometry of a waveguide, random ma-
trix theory predicts the relation vars,, = 1 + 2var(s,)
[11]. It is unknown whether this theoretical relation can
be extended in unmodified form for vector waves in 3D
media. The results in Table 1 indicate that the vari-
ance ratio fluctuates and for individual samples may be
significantly different from the quasi-1D value of 2.

In conclusion, we have presented measurements of the
intensity statistics of light transmitted through three-
dimensional isotropic ZnO scattering media. The re-
sults show deviations from Rayleigh statistics. Using an
analysis of the moments of the distribution we obtain
values of the dimensionless conductance g of around 40,
in agreement with predictions based on previously re-
ported sample parameters. This is the first direct obser-
vation through intensity statistics of strong mesoscopic
effects of light transmitted through isotropically scatter-
ing 3D samples. Our results show a good agreement of
the modes of the intensity distribution with transport
theory. However, the ratio between the variances of the
total transmission and the speckle transmission differs
from the predictions of quasi-1D theory. Compared to
random waveguides where much is known about trans-
port in the few channel regime, more studies are needed
to elucidate wave transport in 3D materials. Ultimately,
mesoscopic effects affect important applications such as
wavefront shaping and time reversal methods [5], and
spectroscopy [3, 4]. Our results show that the regime
where mesoscopic fluctuations are measurable is accessi-
ble using conventional scattering materials, opening up
new avenues for experimental investigation.
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