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Abstract: We have demonstrated robust and accurate methods of selecting whispering gallery modes 

in optical bottle microresonators (BMR) by accurately placing high-index liquid drops and inscribing 

micro-scars on BMR’s surface by focused ion beam milling. BMRs with cleaned-up transmission 

spectra and superior performance are obtained.   
 

 
 

1. Introduction 

 

Optical microresonator based devices have recently attracted considerable attention, promising an increasingly wide 

range of applications [1]. Among microresonators, microdisks [2], microspheres [3] and microtoroids [4] rely on the 

efficient excitation of whispering gallery modes (WGM), which are confined predominantly in one azimuthal plane and 

show well resolved spectral characteristics. A recently proposed truly 3-D optical microresonator, namely the bottle 

microresonator (BMR) [5]-[10], proves to be very promising for a number of applications such as cavity QED studies 

[9], strain [11] and optofluidic [12] sensors as well as add-drop multiplexers [13].  BMRs, however, exhibit particularly 

dense spectral features, which require considerable effort to be identified [10]. The rich spectral features are a result of 

the strongly broken degeneracy between WGMs with common azimuthal and differing axial mode numbers, as a result 

of the highly prolate shape. While dense spectral features are highly advantageous when bottle microresonators are 

used in cavity QED studies [9], they can potentially be a serious hindrance if BMRs were to be used in other 

applications such as refractometric optofluidic sensors. In this case, a cleaner spectrum with more easily identifiable 

and traceable spectral features would be desirable. Exploiting the distinctly different spatial intensity distributions of 

the non-degenerate resonances supported by such highly non-spherical microresonators, different approaches, such as 

using high-index prisms [14] and micro-droplets [10], have been used to differentially attenuate modes and clean-up 

the spectrum.  However, these techniques are cumbersome, not accurately controlled and difficult to integrate in 

practical systems. 

In this presentation, we describe different mechanisms, namely, a high-index liquid drop [10] and an accurately 

placed and controlled micro-scar [15][16] on the surface of the BMR - using high-precision focused ion beam (FIB) 

milling - to clean up the original dense spectrum. The former diffracts while the latter scatters light out of the resonator 

and preferentially attenuate a subset of the bottle modes. In the case of micro-scars, the shape, size and orientation of 

the scars can be controlled for optimum spectral clean-up. In addition, more than one micro-scar can be optimally 

placed in order allow only one bottle mode to survive.   

 

 

2.  Device Fabrication and Characterization 

 

The “soften-and-compress” solid BMR fabrication technique [6][8] was employed to produce robust resonators. In this 

work, a standard telecom fiber (Corning SMF28) was used to fabricate BMRs with typical neck-to-neck distance Lb=350 

µm, bottle diameter Db=170 µm and stem diameter Ds=125 µm.  We have also extended this technique to produce 

highly-controllable, high performance hollow BMRs (HBMRs).  The HBMRs were fabricated from a slightly pressurised 

glass capillary using a standard fusion splicer. This method has the advantage of being easy to implement, and yet very 

flexible. One end of the capillary was sealed, while the other was connected to a custom-built pressurisation system. In 

contrast with the technique reported in [17], which relies on high internal pressure only to form a microbubble, our 

technique uses moderate pressure,  sufficient to counteract the surface tension in the softened glass, and relies entirely 

on the “compression” action of the splicer to form a highly-controllable-curvature “bottle” shape.  HBMR s with typical 

dimensions of Dc=218µm, Db=265µm and bottle length Lb=550µm were fabricated. The BMRs were optically excited 
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with a 2µm diameter tapered fiber.  The micro-tapered fiber was in physical contact with the microresonator which, 

while lowering the loaded Q’s, results in extremely stable operation.  One of the pigtails of the excitation fiber taper 

was connected to a tuneable laser and the other pigtail to an InGaAs detector to measure the transmitted light. Q factors 

of ~107 were obtained.  

 

 

3. BMR Spectral Clean-Up 

 

Figure 1(a) shows a high-index liquid drop [10] placed on the surface of the BMR.  Figure 1(b), on the other hand, 

shows accurately placed and controlled micro-scars [15][16] on the surface of the BMR - using high-precision focused 

ion beam (FIB) milling.  Both techniques are used to clean up the original dense BMR transmission spectrum. 

Scars of different sizes and orientations were carved using the FIB system “Helios 600” (FEI Inc., Hillsboro, USA). 

FIB beam sizes smaller than 50 nm can be easily obtained, thus scar sizes can be controlled with excellent precision. Fig. 

1 shows the SEM images of the gold-coated FIB-milled BMRs. In sample #1 (Fig. 1(b2)) two scars were milled 

perpendicularly to the resonator axis and placed asymmetrically with respect to the BMR center. The first scar, with 5 

µm width, 109 µm length and 6 µm depth, was placed 50 µm away from the center. The second scar, with 5.5 µm 

width, 27.5 µm length and 6 µm depth, was placed 83 µm away from the center. In sample #2 (Fig. 1(b1)), a single scar, 

with 5 µm width, 50 µm length and 6 µm depth was carved parallel to the BMR axis and placed 50 µm away from the 

center. The gold coating was removed after FIB milling was completed.  

 

high-index liquid

Scar Scars

(a) (b1) (b2)

high-index liquidhigh-index liquidhigh-index liquid

Scar Scars

(a) (b1) (b2)
 

Figure 1:  BMR spectrum clean-up mechanisms: (a) high-index liquid drop and (b) FIB-milled scars on BMRs: (b1: sample 

#1 with one scar parallel to the axis, b2: sample #2 with two scars perpendicular to the axis. 

 

The dense spectral features shown in Fig. 2(a) – top - are highly advantageous when bottle microresonators are used in 

cavity QED studies [9].  However, such spectral characteristics may be a serious hindrance if HBMRs were to be used as 

refractometric optofluidic sensors.  In this case, a “cleaner” spectrum with more easily identifiable and traceable 

spectral features would be desirable.  As it has already been discussed before [8], the rich spectral features are a result 

of the strongly broken degeneracy between whispering-gallery modes with common azimuthal and differing axial 

mode numbers, as a result of the highly prolate shape.   In addition to different eigen-frequencies, these non-degenerate 

resonances exhibit substantially different spatial intensity distributions along the bottle length [8][9][10].  This property 

of the resonant modes can be exploited to differentially attenuate some of the modes according to axial mode-number 

and thereby substantially “clean up” the spectrum.  This is similar to the modal filtering method applied to cm-sized 

crystalline disks using an auxiliary out-coupling prism [14].  Figure 2(a)-left shows the normal spectrum of the HMBR 

excited at the center. Figure 2(b)-left, on the other hand, shows the “cleaned-up” spectrum, with a loss element placed 

away from the center near the bottle edge.  In this case the loss was introduced by depositing a small drop of high index 

liquid in different positions along the bottle length.  The cleaner spectrum consists of modes that occupy the central 

part of the bottle without suffering the extra loss and Q deterioration due to the loss element. Figure 2(c)-left shows 

detail of the cleaned-up and improved spectrum. HBMRs with “cleaned-up” spectral responses would provide tunable 

filters, optofluidic and other refractometric sensors with significantly improved performance. 

Before FIB milling, rich and dense spectral characteristics are shown in Fig. 2(a)-right with the tapered fiber in the 

center of the BMR. In this case, all BMR modes can be potentially excited with amplitude that depends on their 

coupling strength with the micro-taper mode. Similarly dense spectra were obtained with the tapered fiber in different 

positions along the BMR length [8][10]. Fig. 2(b)-right and (c)-right show the corresponding spectra when WGMs in 
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sample #1 are excited with the microtaper placed at the center and 10 µm off-center, respectively. It is shown that the 

spectra of the scarred BMR are substantially cleaner. As in the case of localized diffractive losses [10], this is due to the 

fact that only BMR modes concentrated around the resonator center survive with minimum losses, while modes which 

overlap or extend beyond the FIB scars experience severe scattering losses and are not excited efficiently. When the 

tapered fiber was placed beyond the region with two scars no sharp transmission resonances were observed. However, 

for a tapered-fiber position ~120 µm from the center, shown in Fig. 2(f)-right, sharp and well resolved periodic 

transmission notches appeared again.  
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Figure 2: (a) Transmission spectra of the tapered fiber-coupled #1 BMRs excited at the microresonator center (a)  before 

microstructuring, after microstructuring at (b) the center; (c) 10 µm off-center; (d) 120 µm off-center; (e) Lorentzian fitting 

to a resonance group in Fig. 2 (d); (f) intensity distribution along the BMR axis when two modes are excited 

simultaneously. 

 

 

 
Figure 3:  (a) Lorentzian line fitting of a resonance in Fig. 2(f) (right) and (b) intensity distribution along the BMR axis 

when two modes are excited simultaneously (the insets show the intensity distributions of the two individual beating 

modes). 
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This is a unique feature of the two asymmetrically placed perpendicular scars of sample #1 and was not observed in the 

case of the long longitudinal scar of sample #2 or the diffractive localized loss in Ref. [10].  Fig. 3(a) shows that each of 

the resonance groups of Fig. 2(f)-right constitutes several partially-overlapping Lorentzian resonances. Fig. 3(b) shows 

the intensity distribution along the BMR length when two bottle modes are excited simultaneously. The mode beating 

results in broad-enough power minima in two places along the length. When these minima coincide with the scars the 

effects of the scattering loss is minimized and the sharp resonances re-appear. In this way, well defined individual 

groups of modes, with large axial mode number, occupying a large section of the BMR can be efficiently excited. It 

should be noted that each mode alone would not have “tunneled” through the scars and survived, since their power 

minima (anti-nodes) occur over areas much narrower that the scar width (~5um).  It is demonstrated that BMR modes 

ca “work” together and survive the detrimental effects of localized scattering losses.  Such modes are expected to play 

important role in sensing applications. 

 

 

4. Summary – Conclusions 

 

In conclusion, we have presented two efficient, controllable and robust methods of cleaning-up dense optical spectra in 

BMRs, using high-index drops and micro-scars produced by high precision FIB techniques. We have also demonstrated 

that a reduced group of modes can be predominantly selected with high-Q factor in BMRs with two asymmetrical 

scars. The shapes and positions of the milled scars can be chosen according to the application and the performance of 

microstructured BMRs can be improved by optimizing the scar shape size and orientation. This technique can be 

employed to clean up spectra in other types of non-spherical micro-resonators [4][14][17]. 
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