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Abstract 

There has been considerable progress in automatic recognition of people by the way they walk since 

its inception almost 20 years ago: there is now a plethora of technique and data which continue to 

show that a person’s walking is indeed unique. Gait recognition is a behavioural biometric which is 

available even at a distance from a camera when other biometrics may be occluded, obscured or 

suffering from insufficient image resolution (e.g. a blurred face image or a face image occluded by 

mask). Since gait recognition does not require subject cooperation due to its non-invasive capturing 

process, it is expected to be applied for criminal investigation from CCTV footages in public and 

private spaces. This article introduces current progress, a research background, and basic 

approaches for gait recognition in the first three sections, and two important aspects of gait 

recognition, the gait databases and gait feature representations are described in the following 

sections. 

Publicly available gait databases are essential for benchmarking individual approaches, and such 

databases should contain a sufficient number of subjects as well as covariate factors to realize 

statistically reliable performance evaluation and also robust gait recognition. Gait recognition 

researchers have therefore built such useful gait databases which incorporate subject diversities 

and/or rich covariate factors. 

Gait feature representation is also an important aspect for effective and efficient gait recognition. 

We describe the two main approaches to representation: model-free (appearance-based) 

approaches and model-based approaches. In particular, silhouette-based model-free approaches 

predominate in recent studies and many have been proposed and are described in detail. 

Performance evaluation results of such recent gait feature representations on two of the publicly 

available gait databases are reported: USF Human ID with rich covariate factors such as views, 

surface, bag, shoes, time elapse; and OU-ISIR LP with more than 4,000 subjects. Since gait 

recognition is suitable for criminal investigation applications of the gait recognition to forensics are 

addressed with real criminal cases in the application section. Finally, several open problems of the 

gait recognition are discussed to show future research avenues of the gait recognition. 
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Time Period #Subjects Source Rank-1 
identification rate 

Notes 

1990’s ~ 10 USC 95.2  

2000’s ~ 120 USF HumanID, 
CASIA, SOTON 
Large Database 

75% - 99% Recognition rate 
depends on covariates 

Recent (2010) >300 SOTON 
Multimodal 

95% - 100% Includes time 
dependent covariates 

Recent (2012) > 4,000 OU-ISIR, LP 97.5% No covariates 
Table 1 - Progression of Gait Recognition Systems  

 

Current Progress in Automated Recognition by Gait 

Automatically recognising people by their gait via machine perception has made enormous progress 

since the 1990s. Then, research used databases with tens of subjects, showing that correct 

identification could be made. A decade later people progressed to databases of around 100 people, 

still showing that identification could be achieved. As computers became more powerful and 

memory became cheaper the databases moved into the thousands, and high recognition rates have 

been achieved. The most recent database is of more than 4000 subjects with a correct classification 

rate of 97.5%. Part of this progress has been due to the studies of the factors that affect the 

perception of the way people walk. This article reviews that progress and shows how the current 

position has arisen. 

Background 

Gait has some important advantages over other forms of biometric authentication. It can be 

acquired at a distance when other biometrics are obscured or the resolution is insufficient. It does 

not require subject cooperation and can be acquired in a non-invasive manner. It is easy to observe 

and hard to disguise as walking is necessary for human mobility. Gait can be acquired from a 

temporal sequence of images (e.g. a video) and may be partly acquired even from a single still image 

(e.g. a single still image at the double support phase may contain a stride as one of gait information).  

Shakespeare made several references to the individuality of gait, e.g. in The Tempest [Act 4 Scene 1], 

Cares observes “High’st Queen of state, Great Juno comes; I know her by her gait”, in Henry IV Part II 

[Act 2, Scene 3] “To seem like him: so that, in speech, in gait, in diet, in affections of delight, in 

military rules, humours of blood, he was the mark and glass, copy and book”.   

The aim of medical research has been to classify the components of gait for the treatment of 

pathologically abnormal patients (e.g. Parkinson’s disease, degenerative hip disease, and idiopathic 

normal pressure hydrocephalus). Work (1) created standard movement patterns for pathologically 

normal people. Those patterns were then used to identify pathologically abnormal patients. 

The biomechanics literature makes observations concerning identity: “A given person will perform 

his or her walking pattern in a fairly repeatable and characteristic way, sufficiently unique that it is 

possible to recognize a person at a distance by their gait” (2). 



Psycho-physiological studies such as (3) and (4) have shown that humans can recognise friends and 

the sex of a person solely by their gait with 70-80% accuracy. Moreover, a biological motion study (5) 

has shown that several factors such as the sex, the body weight, feeling (e.g. nervous or relaxed), 

and emotion (e.g. happy or sad) clearly appear in their gaits even if the gaits are displayed as a 

simple biological motion (i.e. point light sources attached to the human joints). One early work 

highlighted the human ability to recognise people by gait to identify six individuals on the basis of 

their gait under conditions of simulated daylight, simulated dusk and via point-light displays (113). 

These and similar studies via human perceptions have inspired the use of gait as a biometric trait via 

machine perception. 

Recently, there has been a rapid growth in the number of surveillance systems, aimed to improve 

safety and security. These systems are yet to include recognition capabilities and automatic gait 

recognition through machine perception (e.g. pattern recognition from CCVT footage) could be a 

most suitable choice. The primary aim of surveillance videos is to monitor people. However, the 

video data can be of a low quality (poor resolution, time lapse etc.) and the subject can try to 

conceal the more conventional biometrics. Nevertheless, such video can provide sufficient data for 

gait recognition technology and there is already research in using gait biometrics as forensic tools (6-

8). Gait recognition could be employed at a border crossing or any high throughput environment. 

Gait contains very rich information and is considered to be unique. Studies have shown that gait can 

also be used to reveal a person’s identity, gender (9-12), age (13-16), emotional state (17) etc.  

Recognition by gait is one of the newest biometrics, since its development only started when 

computer memory and processing speed became sufficient to process sequences of image data with 

reasonable performance. The potential for gait recognition is great and hence there is a vast interest 

in computer vision and pattern recognition research in extracting and matching gait features.  

Theory 

A gait recognition system primarily consists of a computer vision system. A gait signature is created 

by extracting images of a walking subject which is then compared to the signatures of known 

subjects. Figure 1 shows an example of some of the basic steps in a gait recognition system. 
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Figure 1 - General steps of a gait recognition system 

Step 1: Data can be acquired using a single or multiple cameras. If data is acquired using a single 

camera, recognition can be performed using a 2D gait signature shown in step 4 in Fig. 1. However, if 

multiple but synchronised cameras are used, the number of possibilities is greater. Examples of the 

usage of multiple-synchronised cameras include:  

 Producing a 3D gait model and using it for recognition 

 3D information can be used to improve recognition for a 2D approach by producing a 2D 

signature with depth information (i.e. 2.5D gait signature). 

 Achieving a view-invariant recognition. A gait signature from any view can be re-created 

using 3D data which can be mapped to a signature acquired in an outdoor environment 

where typically only a single and non-optimal view is available.  

Some of the above properties can be also exploited if data is acquired using a single depth sensor. In 

particular, since an inexpensive depth sensor (e.g. Microsoft Kinect ™) is recently available, the 

depth-based gait signatures are promising choice for indoor and middle-range applications (e.g. 

access control and border control). 

Step 2: An example of pre-processing step is background subtraction or background segmentation. 

The subject can be acquired easily and reliably in the form of silhouette by using chroma-keying if 

there are clear colour difference between the subject and the background. Background subtraction 

can measure the naturally occurring scene behind the walking subject using one of a plethora of 

computer vision techniques. 

Step 3: As human gait is periodic, a gait sequence (sample) can consist of multiple gait cycles. 

Identifying the most suitable cycle can lead to better recognition rates. Signal processing techniques 

(e.g. peak detection or maximizing autocorrelation) can be applied to the foreground signal (e.g. sum 

of foreground pixels at the whole body or the lower body (23), aspect ratio of the foreground region 

(24), or a set of foreground pixels themselves as a multi-dimensional signal (25)) in the case of binary 

image. Moreover, a recent advanced signal processing technique (26) enables us to handle quasi-

periodic gait image sequence and gait cycle detection by sub-frame order. 

Step 4: There are number of approaches to produce a gait signature, some of which are described 

later. A baseline gait signature was proposed in (23). An example of a signature is shown in Step 4 in 

Fig. 1.  

Step 5: A gait signature can be used directly within a classifier. Alternatively, features can be 

extracted from a signature and those features can be used for classification. Again, there is a 

selection of classification techniques; in the simplest case, a classifier such as k-nearest neighbour 

(using Euclidian distance) can be used. In a more elaborate case, a combination of principal 

component analysis (PCA) and the subsequent linear discriminant analysis (LDA) can be a reasonable 

Step 4 – Create a gait 

signature 

Step 5 – Classification 



choice (27). In the most recent study, primal rank support vector machine (Primal RankSVM) (28) is 

employed to cope with general types of covariate factors in gait recognition (29). 

 

Databases  

A database can be collected for various purposes. Primary concerns include uniqueness and 

practicality. A database should contain enough subjects to allow for an estimate of inter- and intra-

subject variation and for statistically reliable performance evaluation. The current databases contain 

smaller number of subjects compared to databases used to evaluate performance of other 

biometrics (e.g. face, fingerprint). However, there are databases that include covariate factors and 

application potential. Some of the most well-known databases together with some of their 

characteristics are shown in Table 2. 

Name Subjects Sequences Covariates Viewpoints 
Indoor(I)/ 

Outdoor(O) 

CMU MoBo (30) 25 600 Y 6 I (Treadmill) 

Georgia Tech (31) 15 268 Y - O 

18 20 Y - - 

HID-UMD (32) 25 100 N 1 O 

55 222 Y 2 O 

SOTON Small Database (33) 12 - Y 3 I 

SOTON Large Database (34) 115 2,128 Y 2 I/O 

SOTON Multimodal (35) >300 >5,000 Y 12 I 

SOTON Temporal (36) 25 2,280 Y 12 I 

USF HumanID (23) 122 1,870 Y 2 O 

CASIA A (37) 20 240 Y 3 I 

CASIA B (38) 124 1,240 Y 11 I 

CASIA C (39) 153 1,530 Y 1 O 

OU-ISIR, Treadmill A (40) 34 612 Y 1 I (Treadmill) 

OU-ISIR, Treadmill B (41) 68 2,764 Y 1 I (Treadmill) 

OU-ISIR, Treadmill C (42) 200 200 Y 25 I (Treadmill) 

OU-ISIR, Treadmill D (43) 185 370 N 1 I (Treadmill) 

OU-ISIR, LP (44) 4,007 7,842 N 2 I 

TUM-IITKGP (45) 35 850 Y 1 O 

TUM-GAID (46) 305 3,370 Y 1 O 

WOSG (47) 155 684 Y 8 O 
Table 2 - Details of some of the well-known gait databases 

SOTON Large Database (34) was the first gait database to contain over 100 subjects, walking on a 

track indoor, a treadmill, and outdoor and who are observed from two views: side view and oblique 

view. Both SOTON Multimodal (35)*1 and SOTON Temporal (36) were collected at the biometric 

tunnel (48), which is described later. Particularly, SOTON Temporal contains the largest variations 

w.r.t. time elapse; a gait sequence was captured monthly for a year with controlled and uncontrolled 

clothing condition. It is therefore suitable for purely investigating the time elapse effect on the gait 

recognition by excluding clothing effect. 



USF HumanID (23) is one of the most frequently used gait database since it contains over 100 

subjects who walk along an ellipsoidal path outdoor, as well as contains a variety of covariates: view; 

surface; shoes; bag; and time elapse, although each covariate has at most two variations (e.g. 

concrete and grass for surface covariate, with and without bag for bag covariate). This database is 

suitable for investigating which covariate significantly impacts on the gait recognition performance. 

More details are found in the section of experimental results. 

CASIA A (37) is an initial dataset of CASIA Gait Database and hence contains a limited number of 

subjects (i.e. 20) and view variations: front view; oblique view; and side view. On the other hand, 

CASIA B (38) is a frequently used gait database since it contains large view variations from front view 

(0 deg) to rear view (180 deg) with 18-degree interval. This database recorded ten sequences per 

subject: six normal sequences; two sequences with a long coat; two sequences with a backpack. This 

database is therefore suitable for evaluating cross-view gait recognition as well as investigating the 

clothing and carrying status effects on the gait recognition. CASIA C (39) contains the largest number 

of subjects (153) among the CASIA gait databases and each subject was captured by an IR camera at 

the outdoor night session, which is suitable for evaluating gait recognition as a surveillance task 

during night. 

OU-ISIR Treadmill A (40) and B (41) contain the largest variations of speed from 2 km/h to 10 km/h 

with 1 km/h interval, and clothing up to 32 combinations, respectively, although the numbers of 

subjects are small (34 and 68, respectively). These databases are naturally suitable for evaluating 

cross-speed and clothing-invariant gait recognition. OU-ISIR Treadmill C (42) contains 200 subjects 

with 25 views: a combination of 12 azimuth views with 30 degree-interval and two tilt views; and 

one top view. OU-ISIR Treadmill D (43) contains 185 subjects with various degrees of fluctuations 

(e.g. different motions among gait cycles). Data acquisition setting and performance evaluations are 

summarized in (49). On the other hand, OU-ISIR LP (44) contains the largest number of subjects 

(over 4,000) with a wide age range from 1 year old to 94 years old also with an almost balanced 

gender ratio, although it does not contain any covariates. It is therefore suitable for estimating a sort 

of upper bound accuracy of the gait recognition with high statistical reliability. It is also suitable for 

evaluating gait-based age estimation. 

TUM-IITKGP (45) contains some unique covariates other than those in USF HumanID: hands in 

pocket; dynamic occlusion (two people walking past); and static occlusion (two people just standing 

in the line of sight), which are possibly observed in a real situation. Although the number of subjects 

are not many, this database can be used as an initial benchmark for occlusion-handling gait 

recognition. TUM-GAID (46) is the first multi-signal gait database containing gait audio signals, RGB 

images, and depth images by Microsoft Kinect™ and also relatively large number of subjects (i.e. 

305). This database contains some covariates: normal; backpack; shoes coating to test the 

robustness of gait audio signals; and time elapsed versions of them. Although this database is 

unsuitable for evaluating the gait recognition in wide-area surveillance scenarios (i.e. at a large 

distance) since the observation distance is relatively close (approximately 3.0 meter) due to the 

limitation of depth image acquisition requirement by Microsoft Kinect™, it is still useful for 

evaluating the multi-modal gait recognition in access control scenarios. 

WOSG (47) contains 155 subjects with eight view variations. Whereas the other databases mainly 

focusing on the individual aspects (e.g. walking speed, carrying status, clothing), this database more 



focuses on a less constrained environment which is likely to occur in an operational setting. More 

specifically, each of subject was captured with the short-wave-infrared spectrum (900 nm - 1,700 

nm) in an active, outdoor environment, wherein environmental factors such as cloud cover 

(impacting illumination) and scene factors such motion artifacts due to trees or additional persons 

(impacting segmentation and tracking) exist. 

In summary, challenging aspects of individual gait databases roughly fall into three: subject diversity, 

individual factors (e.g. clothing, speed, carrying status), and environmental or scene factors (e.g. 

view directions and illumination changes in outdoor). Moreover, the importance of these challenging 

aspects is highly dependent on application scenarios. For example, in an access control scenario, the 

environment is usually fixed and even appropriately designed for better authentication (e.g. indoor 

environment such as a corridor in front of door, relatively close observation distance, multi-modal 

information source such as an RGB camera and a depth camera, multi-modal biometric cues such as 

face, ear, the height as well as gait, are acceptable).  Moreover, the individual factors are controlled 

to some extent since a user (client) wants to be successfully authenticated (i.e. cooperative). 

Consequently, the subject diversity is the most important aspect in the access control scenario and 

hence SOTON Multimodal (35), OU-ISIR LP (45), and TUM-GAID (46) are suitable for evaluating the 

access control scenario. 

On the other hand, in a surveillance or criminal investigation scenario, the environment is usually 

unfixed and a subject such as a perpetrator or a suspect is uncooperative. Both the individual and 

environmental factors are therefore important as well as the subject diversity. SOTON Large 

Database (34) and USF HumanID (23) provide a variety of such individual and environmental factors, 

and hence they are suitable exploratory factor analysis in the surveillance and criminal investigation 

scenario. However, the variation of each factor is limited in SOTON Large Database (34) and USF 

HumanID (23), other databases are still useful when focusing on each factor (e.g. CASIA B (38) for 

view variations, OU-ISIR Treadmill A (40) for speed variations, OU-ISIR Treadmill B for clothing 

variation, and SOTON Temporal (36) for time elapse variations, WOSG (47) for environmental 

variations). 

Approaches to Gait Recognition 

Model-free approach Model-based approach 
Spatiotemporal pattern (50) 
Parametric eigen space (51) 
Shape of motion (52) 
PCA + canonical analysis (53) 
Moments (54) 
Self-similarity plot (55) 
Key frame analysis (56) 
Frieze patterns (57) 
Unwrapped silhouette (58) 
Eigenspace sequences (24) 
Relational statistics (58) 
Area (59) 
Symmetry (60) 
Key poses (61) 
Hidden Markov model (62) 

Single oscillator (82) 
Ellipsoidal fits (83) 
Kinematic features (84) 
Stride parameters (85) 
Human parameters (86) 
Joint trajectories (87) 
Articulated model (88) 
Dual oscillator (89) 
Linked feature trajectories (90) 
Stick model (91) 
Layered deformable model (92) 
Marionette mass-spring model (93) 



Average silhouette (63) 
Gait style and content (64) 
Cubic higher-order local auto-correlation (65) 
Silhouette similarity (23) 
Fourier descriptor (66) 
Motion silhouette image (67) 
Gait energy image (27) 
Frequency-domain feature (25) 
Gabor filter (68) 
3D distribution transform (69) 
Motion silhouette contour template (70) 
Shape variation-based frieze pattern (71) 
Flow field (72) 
Gait entropy image (73) 
Masked gait energy image (74) 
Gait curve (75) 
Gait flow image (76) 
Gait energy volume (77) 
Chrono-gait image (78) 
Gradient histogram energy image (22) 
Depth gradient histogram energy image (79) 
Depth-based gait feature (80) 
Local Gauss map (81) 
Table 3 - Approaches to Gait Recognition 

The approaches to gait recognition can be divided in two main groups: model-based and model-free 

(appearance-based) (see Table 3). Model-based approaches use the human body structure and 

model-free methods use the whole motion pattern of the human body. Which approach is adopted 

depends on the acquisition conditions. Model-free approaches use the input images directly to 

produce a gait signature without fitting a model. These approaches can perform recognition at lower 

resolutions which makes then suitable for outdoor applications, where a subject can be at a large 

distance from the camera. Model-based approaches typically require higher resolution images of a 

subject to be able to fit the model accurately as well as relatively high computational cost. 

We refer the readers to (94, 95) for surveys of model-based and model-free approaches at a 

relatively early research stage. 

Model-Free Approaches  
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Figure 2 - Examples of model-free gait signatures 

The model-free approaches derive the human silhouette by separating the moving object from the 
background. The subject can then be recognized by measurements that reflect shape and/or 
movement. The simplest approach is to directly compute the dissimilarity (e.g. Euclidean distance, 
cosine distance, Tanimoto distance) between two silhouette sequences (i.e. a probe and a gallery) in 
conjunction with phase synchronization by frame shifting, which is called a baseline algorithm (23) in 
the gait recognition community. Another simple approach is an averaged silhouette over a complete 
gait cycle (63) which is also known as gait energy image (GEI) (27) (see Fig. 2). Motion silhouette 
image (MSI) (67) is a similar representation to the GEI. The value of each pixel is computed as a 
function of motion of that pixel in the temporal dimension over all silhouettes that are part of a 
single gait cycle (see Fig. 2). Both the GEI and MSI are easy to compute but they are vulnerable to 
appearance changes of the human silhouette. Frieze pattern (57) represents the information 
contained in a gait sequence by horizontal and vertical projections of the silhouettes. Its extension, 
shape variation-based (SVB) frieze patterns (71) use key frame subtraction in order to mitigate the 
effects of appearance changes on the silhouette (see Fig. 2). The gait entropy image (GEnI) (73) is 
another example of a compact gait representation (signature). GEnI is computed by calculating the 
Shannon entropy for each pixel in a silhouette image sequence. Shannon entropy measures the 
uncertainty associated with a random variable.  
 
The gait signatures for the approaches shown in Fig. 2 are usually used directly for classification. 

There are additional ways of extracting gait signatures without using a model. Some examples are 

described below:  

 Niyogi and Adelson (50) represent the walking image sequence as an xyt-volume and fit the 

xyt pattern with a smooth spatio-temporal surface after change detection. The spatio-



temporal surface is expressed as a combination of a standard parameterized surface (i.e. a 

canonical walk) and a subject-specific deviation surface. 

 Murase and Sakai (51) applied PCA to a set of silhouettes and then represents the silhouette 

sequence over a complete gait cycle as a closed curve in the eigenspace based on an idea of 

parametric eigenspace method (96), where a gait stance (phase) is handled as a parameter. 

Matching is done with linear time normalization so as to synchronize phases between a pair 

of a probe and a gallery silhouette sequences. 

 Little and Boyd (52) derived a dense optical flow for each image sequence. Scale-

independent scalar features of each flow, based on moments of the moving point 

characterize the spatial distribution of the flow. The periodic structure of these sequences of 

scalars is analysed. The scalar sequences for an image sequence have the same fundamental 

period but differ in phase, which is used as a feature for recognition of individuals by the 

shape of their motion. 

 BenAbdelkader et al. (85) used background modelling to track the subject for a number of 

frames and extract a sequence of segmented images of the person. A self-similarity plot is 

computed via correlation of each pair of images in this sequence. For recognition, PCA is 

used to reduce the dimensionality of the plots. A k-nearest neighbour rule is used on the 

reduced space for classification. 

 Another silhouette-based gait recognition technique using PCA has been proposed by Liang 

et al. (97). Eigenspace transformation based on PCA is applied to time-varying distance 

signals derived from a sequence of silhouette images to reduce the dimensionality of the 

input feature space. Supervised pattern classification techniques are performed in the 

lower-dimensional eigenspace for recognition. 

 Hayfron-Acquah et al. (60) proposes a method for automatic gait recognition based on 

analysing the symmetry of human motion. The generalised symmetry operator is used to 

locate features according to their symmetrical properties rather than relying on the boarders 

of a shape. The symmetry operator is used on the optical flow image to produce a gait 

signature. For purposes of classification, the similarity differences between the Fourier 

descriptions of the gait signatures are calculated using Euclidean distance.  

 Gait is a temporal sequence and can be modelled using hidden Markov models (HMM). The 

statistical nature makes the model relatively robust. The postures that an individual adopts 

are regarded as states of the HMM and are typical to that individual and provide means of 

discrimination in (98).  

 Wang et al. (99) extract moving silhouettes by an improved background subtraction scheme. 

The extracted silhouette is unwrapped by contour following and it is represented in a 

complex number coordinate (i.e. horizontal and vertical axes are real and imaginary parts of 

a complex number) whose origin is aligned to the silhouette centroid. Thereafter, Procrustes 

shape analysis is applied to the unwrapped silhouette and finally mean Procrustes shape 

distance is used as similarity measure between a pair of silhouette sequences. 

 Wang et al. (24) also extracts moving silhouettes in the same way as (99) and then extract a 

series of distances between each contour point and the silhouette centroid as a one-

dimensional signal. The signal is then projected into the eigenspace by PCA and spatio-

temporal correlation, which is extension from 2D image correlation to 3D correlation in the 

space and time domain, is used for matching in conjunction with linear time normalization. 



 Vega and Sarkar (58) extract moving edge pixels and represent relations between all the 

pairs of such moving edge pixels in space of probability function (SoPF), where the domain is 

defined as a set of normalized distance and orientations between a pair of moving edge 

pixels. PCA is then applied to SoPF for dimension reduction and a sequence of the 

dimension-reduced SoPF is used for matching with Euclidean distance in conjunction with 

frame shifting or linear time normalization for phase synchronization. 

 Kale et al. (62) use two different image features to directly train a HMM: the width of the 

outer contour of a binary silhouette (i.e. width vector); and the entire binary silhouette 

itself. 

 Lee and Elgammal (64) introduce a bilinear decomposition of gait data into time-invariant 

gait-style and time-dependent gait-content factors. More specifically, they developed a 

generative model by embedding gait sequences into a unit circle and learning nonlinear 

mapping from a point on the unit circle to the silhouette space to enable us to synthesize 

temporally-aligned gait sequences. Given such synthesized gait data, an invariant gait style is 

separated from the time-dependent gait-content by the bilinear model and is used for 

recognition. 

 Kobayashi and Otsu (65) employ a segmentation-free representation named cubic higher-

order local auto-correlation (CHLAC). They first extract moving pixels by frame subtraction 

and then compute the summation of correlation between the moving pixels and a set of 

local spatio-temporal mask patterns (e.g. a cuboid of 3 pixels by 3 pixels by 3 frames) by 

scanning over the entire image and over a predefined number of frames. This results in a 

feature vector whose dimension is the same as the number of local spatio-temporal mask 

patterns. In a training stage, fisher discriminant analysis is learnt by a set of training samples 

and then Euclidean distance in the discriminant space is employed for dissimilarity measure 

in a matching stage. 

 Mowbray and Nixon (66) regard a set of two-dimensional positions of silhouette contours 

over a complete gait cycle as a spatio-temporal periodic signal and hence extract a set of 

Fourier descriptors in the spatio-temporal domain. For the discrimination capability and 

dimension reduction purposes, only low-order Fourier descriptors are used for classification. 

 Makihara et al. (25) first detect a complete gait cycle by maximizing the autocorrelation of a 

full spatio-temporal silhouette sequences rather than detecting peaks of areas or aspect 

ratio so as to cope with view variety in a more robust way. They apply one-dimensional 

Fourier analysis to the silhouette sequence over the complete gait cycle (i.e. a base period 

for Fourier analysis is the complete gait cycle) along the temporal axis for each pixel 

independently, and subsequently computes amplitude spectra of Fourier coefficients. They 

also use low-order Fourier coefficients (i.e. 0, 1, and 2) due to a similar reason to (66) and a 

set of such amplitude images is defined as a frequency-domain feature (FDF, see Fig. 2). 

Note that an image composed of 0-times elements correspond to the averaged silhouette 

(63) or GEI (27), while those of one-time and two-times frequency correspond to asymmetric 

and symmetric motions in case of a side-view image, respectively. 

 Bashir et al. (72) compute the flow fields and decompose it into five components: stationary 

region; leftward motion; rightward motion; upward motion; and downward motion, which 

constructs a gait motion descriptor (GMD) (see Fig. 2). Since they consider that the 

downward motion does not contain much useful information for classification, they 



compute the dissimilarity between the gait motion descriptors other than the downward 

motion components. 

 Bashir et al. (74) introduce a masked GEI, which is a sort of modified versions of GEI, where a 

pixel with a small entropy (i.e. almost background or foreground during a complete gait 

cycle) is masked out (i.e. set to zero so as to make it out of consideration for matching). This 

operation mitigates the effect of clothing and carrying status variations to some extent since 

the large portion of dissimilarity due to such covariates is excluded. For example, assuming 

that a probe with a backpack has a definite foreground region within the backpack region 

and that a gallery without a backpack has a definite background region within the same 

region, the both regions are successfully masked out from dissimilarity computation since 

entropies for both regions are small. 

 DeCann and Ross (75) firstly divide a silhouette into the left side and right side by a coronal 

plane and then extract a left-most and right-most silhouette contour for each height as a 

gait curve. The evolution of the gait curve across time is regarded as a spatio-temporal gait 

curve and it is averaged over a complete gait cycle. Through analysis on the averaged gait 

curve for backpack detection, the corrected gait curved without the backpack is estimated 

and used for matching. 

 Lam et al. (76) extract an optical flow field from a silhouette sequence (i.e. optical flow only 

appears the silhouette boundary) and then activate pixels whose resultant magnitude of the 

optical flow is greater than a threshold so as to make a binary image (white: region without 

motion, black: region with motion). A sequence of such binary images are averaged over a 

complete gait cycle so as to construct a gait flow image (GFI, see Fig. 2). 

 Wang et al. (78) points out that GEI and its variants loses important temporal information 

(gait stance or phase) in a gait sequence by simply averaging over a complete gait cycle and 

hence propose a template keeping the temporal information. More specifically, they first 

extract a silhouette contour and assign gait stance-dependent colour gradation for each 

contour (e.g. red for double support phase and blue for single support phase). A sequence of 

such coloured contours are averaged over a quarter gait cycle to generate a chrono-gait 

image (CGI, see Fig. 2). 

 Whereas the most of the approach is based on the silhouette, Hofmann and Rigoll (22) 

exploits the edge gradient information inside the person silhouette via well-known form of 

histogram of oriented gradient (HOG) (100), and average them for each spatial cell over a 

complete gait cycle, which results in gradient histogram energy image (GHEI). To avoid the 

effect of background, they compute the edge gradient only for segmented silhouette and 

also for alpha-matte silhouette for better performance, which are named as s-GHEI and 

alpha-GHEI, respectively.  

 El-Alfy et al. (81) captures a silhouette shape property by voting the normal vector of the 

smoothed silhouette contour into Gauss sphere (unit sphere). To enhance the locality in 

spatio-temporal domain, voting is done for individual spatio-temporal cells rather than an 

entire image sequences over a complete gait cycle, which leads to a histogram of normal 

vector (HoNV). 

While all the above approaches are based on a normal RGB image or a grey-scale image, we can 

also employ a depth image captured by a commercial and inexpensive sensor (e.g. Microsoft 

Kinect™) which increases an amount of information as well as makes the foreground 



segmentation easy. A couple of depth-based or three-dimensional volumetric representation-

based approaches to the model-free analysis are introduced below. 

 Ioannidis et al. (69) assigns depth-related data to silhouette sequences using two new 

transforms: the 3-D radial silhouette distribution transform; and the 3-D geodesic silhouette 

distribution transform. They extract three different features: two features based on the 

generalized radon transform (i.e. the radial integration transform and the circular 

integration transform); and a feature based on the weighted Krawtchouk moments, and 

they fuse them via a genetic algorithm in a matching stage. 

 Sivapalan et al. (77) propose a three-dimensional version of averaged silhouette (63) or GEI 

(27) named gait energy volume (GEV). They firstly reconstruct a sequence of three-

dimensional volumes by multi-view silhouettes and then spatially align them. Finally, a 

sequence of the registered three-dimensional volumes are averaged over a complete gait 

cycle, which corresponds to the GEV. They also show a variant of GEV which constructed 

from a frontal depth image with backside filling. 

 Hofmann et al. (46) extend GHEI (45) into the depth domain. They compute a gradient of a 

depth image and average them for each spatial cell over a complete gait cycle, which results 

in depth gradient histogram energy image (DGHEI). 

 Nakajima et al. (80) firstly reconstruct a depth image from a canonical view (not only 

azimuth and tilt angles but also the distance from camera to a subject) and then apply pixel-

wise one-dimensional Fourier transform for temporal axis in analogous to (25). They extract 

three types of gait features as results of Fourier analysis: direct current elements; amplitude 

spectra; and phase information. 

 

 

Model-Based Approaches  

The advantages of the previous approaches (silhouette or features derived from it) are 

computational efficiency and simplicity. However, model-based approaches have greater invariant 

properties and are better at handling occlusion, noise, scale and rotation. Model-based approaches 

require a high resolution and are not yet very suitable for outdoor surveillance.  

Model-based approaches incorporate knowledge of the shape and dynamics of the human body into 

the extraction process. These approaches extract features that fit a physical model of the human 

body. A gait model consists of shapes of various body parts and how those shapes move relative to 

each other (motion model). The shape model for a human subject can use ellipse to describe the 

head and the torso, quadrilaterals to describe the limbs and rectangles to describe the feet. 

Alternatively arbitrary shapes could be used to describe the edges of the body parts. The motion 

model describes the dynamics of the motion of the different body parts. Using a model ensures that 

only image data corresponding to allowable human shape and motion is extracted, reducing the 

effect of noise. The models can be 2 or 3 dimensional. Most of the current models are 2 

dimensional, but deliver good results on databases of more than 100 subjects.  

Some examples of model-based approaches are described below:  



 Yam et al. (89) have used pendular motion and the understanding of biomechanics of human 

locomotion to develop two models: a bilateral symmetric and analytical model (employs the 

concept of forced couple oscillator). The gait signature is the phase-weighted magnitude of 

the Fourier description of both the thigh and knee rotation.  

 

Figure 3 - Example of a gait model – The dynamically coupled pendulum model (Reprinted from (89), Copyright (2004), 
with permission from Elsevier) 

 

 Bouchrika and Nixon (101) have proposed a new approach to extract human joints. Spatial 

model templates for human motion are derived from the analysis of gait data collected from 

manual labelling. Motion templates describing the motion of the joints are parameterised 

using the elliptic Fourier descriptors.  

[
𝑥(𝑡)
𝑦(𝑡)

] = [
𝑎0

𝑏0
] +  [

cos(𝛼) −  sin (𝛼)

sin(𝛼)  cos (𝛼)
] [

𝑋(𝑡)𝑆𝑥

𝑌(𝑡)𝑆𝑦
] 

where 𝛼 is the rotation angle, Sx and Sy are the scaling factors across the horizontal and 

vertical axes respectively and X(t) and Y(t) are the Fourier summation. Hough transform is 

used in the feature extraction process. 

 Wang et al. (87) have proposed an algorithm based upon the fusion of static and dynamic 

body information. The static body information is in a form of a compact representation 

obtained by Procrustes shape analysis. The dynamic information is obtained by a model 

based approach which tracks the subject and recover joint-angle trajectories of lower limbs. 

A fusion at the decision level is used to improve recognition results.  



 

Figure 4 - Example of results (Copyright [2004] IEEE. Reprinted, with permission, from (87)) 

There have been moves towards developing 3D gait models. Examples of work in this fields are 

(102,103). Guoying et al. (103) use video sequences from multiple cameras to construct 3D human 

models. The motion is tracked by applying a local optimisation algorithm. The length of key 

segments is extracted as static parameters and the motion trajectories of lower limbs are used as 

dynamic features. Linear time normalisation is used for matching and recognition. 3D approaches 

are robust to changes in viewpoint and have a great potential. However at present, experiments only 

on small databases are possible mainly due to high computational requirements.   

Gait is dependent on large number of parameters (joint angles and body segment size) which leads 

to complex models with many free parameters. Finding the best fit model for a subject leads to 

searching a high-dimensional parameter space. Therefore, there is a trade-off between the accuracy 

of the model (complexity) and computational cost. The models are often simplified based on certain 

acceptable assumptions, e.g. a system could assume constant walking speed. However, as 

computing power increases the problems arising of high complexity can be mitigated. 

We finally discuss the suitability of the approaches described above in the context of the two 

application scenarios: access control and surveillance. In the access control scenario, since we can 

design the environment as we have already discussed in the section of databases, it is possible to 

capture a subject with relatively high image resolution (i.e. capturing at a close distance). 

Consequently, not only model-free approaches but also model-based approaches are suitable. 

Moreover, it is allowed to use a depth camera in this scenario, recent depth-based gait features (69, 

77, 46, 80) are promising since they have possibilities for higher accuracy due to richer information 

than two-dimensional silhouette-based approaches such as GEI (27). 

On the other hand, in the surveillance or criminal investigation scenario, the suitability of the 

approaches is heavily dependent on actually captured images. For example, in case where the spatial 

resolution of captured subject in the images is relatively high (e.g. convenience-store robbery) and 

where clothing conditions are different between a matching pair, the model-based approaches are 

suitable due to its clothing invariances. In addition, when observation views are different between 

the matching pair, the 3-D model-based approaches (102, 103) are useful. On contrary, when the 

spatial resolution is low, the model-free approaches are more suitable than the model-based 

approaches. Although the model-free approaches are essentially affected by the individual factors 



such as view and clothing, SBV frieze pattern (71) may mitigate the effect of the clothing variation to 

some extent. 

 

Experimental Results 

The HumanID gait challenge problem (23) was set up to outline a baseline algorithm for gait 

recognition and propose a number of difficult experiments including various covariates for the 

existing gait matchers. The gallery set consists of 122 subjects walking on a grass surface recorded by 

a single camera.   

Table  shows the differences of the probe set compared to the gallery set for each of the challenge 

experiments.  

Experiment Probe # of Subjects Difference 

A Different camera view than gallery 122 View 

B Subjects wore different shoes 54 Shoe 

C Different camera view and different shoes 54 Shoe, View 

D Subjects walked on a different surface 121 Surface 

E Different shoes and different walking surface 60 Surface, Shoes 

F Different walking surface and different camera view 121 Surface, View 

G Different walking surface, different shoes and 
different camera view 

60 Surface, Shoe, 
View 

Table 3 – Some experiments comprising the HumanID gait challenge problem 

 

The results in Figure 5 show the progress in gait recognition over a period of 2 years for the 

experiments shown in Table . We can see that relatively high identification rates are achieved 

against some of covariate factors such as views and shoe (Experiments A, B, and C), while that 

surface is still challenging problem (Experiments D, E, F, and G). 

 

 



Figure 5 - The progress from the baseline over 2 years for experiments shown in Table  ( Copyright [2005] IEEE. 
Reprinted, with permission, from  (23)) 

 

On the other hand, recent gait recognition progress from viewpoints of the number of subjects is 

reported in (44), where the world’s largest gait database of more than 4,000 people has been 

constructed to enable statistically reliable performance evaluation of gait recognition, although 

covariates factors are missing. This database is therefore used to measure a sort of upper bound 

accuracy of the gait recognition under a relatively controlled environment. The database contains 

view transition from 55 degree (front-oblique) to 85 degree (almost side view) with 10 degree 

interval, and we show the results by fusion of all the views for eight recent approaches: FDF (25), GEI 

(27), GEnI (73), GFI (76), Masked GEI (74), CGI (78), GHEI (22) and HoNV (81). Figure 6 shows a 

receiver operating characteristics (ROC) curve in a verification scenario and a cumulative matching 

characteristics (CMC) curve in an identification scenario, and furthermore typical evaluation 

measures such as equal error rates (EER) and rank-1, rank-5, and rank-10 identification rates are 

summarized in Table 5. It turns out that the most recent approach (i.e. HoNV) achieves the best 

performance (e.g. 0.58% EER, and 97.5% rank-1 identification rate from 3,141 subjects) for both 

verification and identification scenarios. 

 

  

Figure 6 – ROC (left) and CMC (right) curves for recent benchmarks on OU-ISIR, LP. 

 

Approach GEI FDF GEnI Masked GEI GFI CGI GHEI HoNV 

EER 1.18 1.12 1.59 3.15 2.53 1.29 0.81 0.58 

Rank-1 94.2 94.2 90.9 84.2 87.5 91.6 96.2 97.5 

Rank-5 97.1 97.1 95.4 90.6 92.8 95.3 98.0 98.7 

Rank-10 97.7 97.9 96.3 92.7 94.3 96.5 98.5 99.2 
Table 5 – EER and identification rates [%] for recent benchmarks on OU-ISIR, LP. 

As a general topic, it is important for fair comparison of approaches to gait recognition, to keep 

experimental protocols on the same dataset as well as the consistency of performance evaluation 



measures, although some of previously published papers might have reported the experimental 

results with their own measures. In addition, a recent study on relating ROC and CMC via the 

biometric menagerie (111) concludes that the same ROC may produce different CMCs and that the 

difference is more prominent in soft biometrics such as gait, and hence it is highly recommended for 

gait recognition researchers to report both ROC in verification scenarios and CMC in identification 

scenarios and pick up some representative measures from them (e.g. EER from ROC, rank-n 

identification rates from CMC).  

 

Application 

Gait research is currently at an evaluation stage rather than an application stage. However, the 

potential for gait recognition is great. The complete unobtrusiveness without any subject 

cooperation or contact for data acquisition makes gait particularly attractive for identification 

purposes. It could be used in applications including forensics, security, immigration, surveillance. 

Many surveillance systems capture only a low resolution video at varying lighting conditions, and 

gait recognition might be the only plausible choice for automatic recognition. A bank robber may 

wear a mask so you cannot see his face, wear gloves so you cannot get fingerprints, wear a hat so 

you cannot get DNA evidence – but they have to walk or run into the bank and they could be 

identified from their gait. 

Gait recognition has been used as evidence for conviction in some criminal cases. One forensic study 

has already used gait biometrics to provide evidence for identification (6).  In 2004, a perpetrator 

robbed a bank in Denmark. The Institute of Forensic Medicine in Copenhagen was contacted by the 

police to perform gait analysis, as they thought the perpetrator had a unique gait. The institute 

instructed the police to establish a covert recording of the suspect from the same angles as the 

surveillance recordings for comparison. The gait analysis revealed several characteristic matches 

between the perpetrator and the suspect. For example, both the perpetrator (to the left) and the 

suspect showed inverted left ankle (white arrow) during left leg’s stance phase and markedly 

outward rotated feet. (see Fig. 7) The suspect was convicted of robbery and the court found that gait 

analysis is a very valuable tool (104). 



Figure 7 - Bank Robbery (Larsen et al. 2008 (104)) 

Moreover, a gait verification system for this criminal investigation has been developed in (7). The 

system is equipped with a graphical user interface (see Fig. 8) so as that a criminal investigator, who 

may not be a researcher on gait recognition, can obtain gait-based person verification results 

through appropriate manual interventions: target specification; interactive silhouette extraction; 

and undesired region masking (e.g., helmet) if necessary. The system outputs a posterior distribution 

that a pair of walking image sequences are generated from the same person based on circumstance-

dependent probability distribution functions of dissimilarity scores from the same person’s pairs and 

different persons’ pairs. The system is now under a trial use phase by National Research Institute of 

Police Science in Japan. 



 

Figure 8 – Gait verification system 

 

One system named the Biometric Tunnel (48) has led to the first live demonstration of gait as a 

biometric and could indicate a possible route for future deployment of the technology. The left side 

of Fig. 9 depicts the system. It consists of a simple corridor with 12 synchronised and fixed cameras. 

The subjects are asked to walk through the middle and the lighting and background are controlled to 

facilitate analysis. The right side of Fig. 9 shows the details of the arrangement. The system is 

designed with a high throughput environment in mind.   

 

   

Figure 9 - The Biometric Tunnel 



 

 

Open Problems 

Although a large number of gait recognition algorithms have been reported, it is important to note 

that gait biometrics is still in its infancy. The majority of studies achieve good recognition rates on 

gallery and probe acquired in similar conditions. However, it is very challenging to extract gait 

features that are invariant to change in appearance as well as to conditions that affect a person’s 

gait. Examples of things that can change and negatively affect the effectiveness of current gait 

algorithms are: change of clothing, shoe type, carrying a load and injuries/medical conditions. 

Clothing for instance can change the observed pattern of motion and make it difficult to accurately 

locate joint position. Furthermore, there are certain factors that are related to the environment and 

not the subjects themselves that can cause difficulties for current gait matchers. Examples of 

environmental confounding factors are: camera viewing angle, background and illumination.  

Recently, studies have reported progress in solving some of the issues outlined above. A study by 

Goffredo et al. (105) describes a self-calibrating view-invariant gait recognition algorithm, while 

studies (25, 106) introduce training-based approaches in a framework of a view transformation 

model. Studies (41,74) have developed a clothing invariant gait matcher, while studies (17, 40, 108) 

are the most recent approaches focussed on speed variation. 

In addition, while the most of the recent gait recognition approaches exploit model-free features, in 

particular, silhouette-based features such as GEI (27) due to its suitability to outdoor application, 

note that the success of the silhouette-based approaches heavily rely on the silhouette quality and 

that the silhouette quality may be degraded under outdoor scenes with challenging environmental 

factors including but not limited to illumination changes, dark illumination, cluttered background, 

motion blur, and image compression noise. 

A few studies discuss the effect of the silhouette quality on the gait recognition accuracy. For 

example, Liu and Sarkar (18) proposed a method of silhouette cleaning based on population-HMM 

and concluded that the silhouette quality does not affect the gait recognition accuracy in a 

consistent way. Moreover, since GEI (27) is computed by aggregating the pixel-wise silhouette value 

over one gait cycle, it is claimed that the variance of pixel-independent zero-mean noise (i.e. 

expectation of the numbers of over-segmentation and under-segmentation per pixel over one gait 

cycle are the same) is inversely proportional to the number of images in one gait cycle based on 

statistics theory, i.e. the effect of the silhouette quality on GEI is limited. 

On the other hand, it is obvious that the non zero-mean noise affects the silhouette-based features 

(e.g. GEI is significantly degraded if leg region silhouettes are always missing over one gait period by 

under-segmentation). In fact, Matovski et al. (112) demonstrate that the silhouette quality plays an 

important role in an applied automatic gait recognition by proposing a silhouette quality-dependent 

sequential verification procedure. Another direction is to improve the silhouette quality (i.e. 

silhouette refinement) considering spatial adjacency. For example, graph-cut segmentation (19) is a 

promising choice for better silhouette extraction and it is exploited for silhouette extraction in 



conjunction with background subtraction and background update by colour transformation in (20). 

Moreover, since the observed colour at the boundary of the subject and the background is 

essentially a mixture of them, alpha matting (21) is considered for more accurate silhouette 

representation in (22). 

Currently, gait recognition can deliver very high recognition rates in a constrained environment and 

if certain factors are controlled. A move towards developing algorithms invariant to change over 

time is needed. Furthermore, additional work is required to translate the research to outside 

environment and to explore how scalable it is. Attempts so far suggest that developing highly 

reliable gait-based human identification system in a real world application is, and will continue to be, 

very challenging. In the short term, some of the challenges associated with gait recognition can be 

addressed by fusing gait with other biometrics (109, 110).  

List of Abbreviation 

CASIA: The Institute of Automation of the Chinese Academy of Sciences 

CCTV: Closed-circuit television 

CGI: Chrono-gait image 

CHLAC: Cubic higher-order local auto-correlation 

CMC: Cumulative matching characteristics 

CMU: Carnegie Mellon University 

DGHEI: Depth gradient histogram energy image 

DNA: Deoxyribonucleic acid 

EER: Equal error rate 

FAR: False acceptance rate 

FDF: Frequency-domain feature 

FRR: False rejection rate 

GAID: Gait from audio, image and depth 

GEI: Gait energy image 

GEnI: Gait Entropy Image 

GEV: Gait energy volume 

GFI: Gait flow image 

GHEI: Gradient histogram energy image 

GMD: Gait motion descriptor 

HMM: Hidden Markov model 

HOG: Histogram of oriented gradient 

HoNV: Histogram of normal vector 

ID: Identification 

LDA: Linear discriminant analysis 

LP: Large population 

MSI: Motion silhouette image 
OU-ISIR: Osaka University, The Institute of Scientific and Industrial 
Research 

PCA: Principal component analysis 

RGB: Red green blue 

ROC: Receiver operating characteristics 

SoPF: Statistics of probability function 



SOTON: The University of Southampton 

SVB: Shape variation-based 

SVM: Support vector machine 

TUM: Technical University of Munich 

UMD: The University of Maryland 

USF: University of Southern California 

WOSG: West Virginia University Outdoor SWIR Gait 
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