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Abstract 11 

 We describe a simple method to prepare nanostructured copper electrodes based on 12 

electrodeposition of copper through a polystyrene nanosphere template to produce a copper sphere 13 

segment void (SSV) structure. We show that the SSV copper electrodes give a large SER 14 

enhancement under potentiostatic control and we use the SSV copper electrodes to study the 15 

adsorption of aromatic and non-aromatic amino acids in basic solution.  16 
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Highlights 21 

- Simple and reproducible copper substrate preparation for SERS measurements. 22 

 -  Robust surface with good surface enhancement.  23 

 - The templates were used under potentiostat conditions to study SERS of amino acids. 24 

 - With the SSV Cu surfaces it was possible to obtain SERS of aromatic and non-aromatic amino acids. 25 

Introduction. 26 

 Surface-enhanced Raman spectroscopy (SERS) is recognized as one of the most sensitive 27 

spectroscopic analytical techniques for chemical and biochemical analysis. One of the key issues for 28 

the application of SERS is the preparation of structurally uniform and highly sensitive SERS substrates 29 

[1]. With that in mind, the aim of this paper is the development of sphere segment void (SSV) 30 

electrodes for use in electrochemical SERS studies at copper electrodes. The nanostructured copper 31 

surfaces are produced by electroplating copper through self-assembled templates of uniform sub-32 

micron polystyrene spheres [2]. This has the advantage of producing copper electrode surfaces 33 

which show large, reproducible and stable SERS enhancements without resorting to roughened 34 

surfaces which have high surface areas and where the precise surface area of the electrode is not 35 

well known.  36 

Copper is an interesting material with unique properties and it has an important role in 37 

several diseases, such as in Parkinson’s disease where it is associated with protein conjugation [3]. 38 

Copper has also attracted great interest as an antimicrobial material [4], due to the reactions of 39 

biomolecules with the oxides of copper present on the metal surface. In addition, copper electrodes 40 

are widely used to oxidise and detect amino acids [5-7] in analytical applications. The mechanisms 41 



that control the oxidation of amino acids on copper electrodes rely on the formation of an 42 

intermediate between copper oxide and the amino acid, but are not very clearly understood.  43 

Copper is a SERS active metal and so the technique offers a sensitive method to explore the 44 

surface chemistry of the metal in solution [8-10]. However the study of the interaction between 45 

amino acids and copper surfaces in alkaline media presents a significant challenge due to the high 46 

reactivity of the metal. With this fact in mind, it is of interest to develop copper electrodes suitable 47 

for use with SERS to investigate the adsorption and oxidation of the amino acids on copper surfaces.  48 

To do this requires a copper electrode structure that gives significant surface enhancement, that is 49 

easy to prepare, that has a well-defined surface area, and that is reproducible and stable.  SSV 50 

copper electrodes fulfil all these requirements. As previously reported by Mahajan et al.[11], the use 51 

of SSV templates has significant advantages as a way to achieve large surface enhancements at 52 

electrodes without high roughness. It is possible to prepare those surfaces for different metals, the 53 

most commonly used being gold but also including silver [12] platinum and palladium [13]. Previous 54 

SERS studies on copper electrodes have mainly used electrochemically roughened surfaces [14, 15] 55 

however these suffer from the problems of high surface area, irreversibility and poor stability 56 

particularly at more negative potentials [16]. This development of SSV nanostructured copper 57 

electrodes for SERS offers the possibility of using SERS to study the interactions of small molecules 58 

with copper electrodes with stable, reproducible structures and known surface areas.  Thus the main 59 

objective of the present work is to describe the preparation and optimization of SSV copper surfaces 60 

as working electrodes for SERS. 61 

 62 

Materials and Methods 63 

Evaporated gold electrodes used as substrates were prepared by depositing 10 nm of 64 

chromium, followed by 200 nm of gold onto 1 mm thick glass microscope slides. These gold 65 



substrates were thoroughly cleaned before use by sonication in deionized water for 30 min, 66 

sonication in isopropanol for 90 min, then rinsed with deionized water and dried under a stream of 67 

argon (BOC Gases).  68 

Templates were made from monodisperse polystyrene latex spheres (Duke Scientific 69 

Corporation, 1 wt % solution in water, coefficient of variation in diameter 1.3%). Assembly of the 70 

spheres was carried out in a thin layer cell as described elsewhere [17]. Copper was deposited from 71 

an electroplating solution containing 0.1 mol L-1 copper sulfate with 5 mL L-1 of PEG 400 MW (Sigma 72 

Aldrich – St. Louis ) and 1 x 10-6 mol L-1 KCl at 25° C using a conventional three-electrode cell 73 

controlled by an Autolab PGSTAT30 under potentiostatic conditions at - 0.1 V vs. Ag|AgCl (saturated 74 

KCl).  75 

After deposition, the samples were soaked in 50 mL of DMF for two hours to remove the 76 

polystyrene template. A Philips XL30 ESEM was used to image the macroporous metal films. All 77 

Raman spectra were recorded on a Renishaw Raman 2000 system using a 633 nm HeNe laser with 5 78 

μm diameter spot and 3 mW power using a single 10 s accumulation unless otherwise stated. 79 

Benzenethiol was adsorbed onto the gold surface by soaking in a 1.4 x 10-3 mol L-1 ethanolic solution 80 

for 30 min. The samples were left to dry in air for 15 min before measurement.  81 

Amino acid spectra were recorded on a Renishaw Raman 2000 system using a 633 nm HeNe laser 82 

with 5 μm diameter spot and 3 mW power using a single 10 s accumulation under potentiostatic 83 

control using a 3 electrode cell unless otherwise stated. The spectroelectochemical cell has the SSV 84 

copper as the working electrode, a stainless steel counter electrode and Ag|AgCl (saturated KCl) 85 

reference electrode. In the cell the SSV template working electrode is in the center surround by the 86 

counter electrode with the laser beam of the spectrometer normal to the SSV surface (see Figure S1 87 

in Supplementary Information). All solutions were prepared in 0.1 mol L-1 sodium hydroxide (Fischer 88 

Scientific) with the amino acid concentration around 10-4 mol L-1. Details of the experimental setup 89 

are presented in the Supplementary Information. 90 



 91 

Results.  92 

Electroplating of copper SSV structures.  93 

 The conditions for the electrodeposition of copper through the template are discussed in 94 

some detail in this work since the optimization of the deposition step is important in order to 95 

produce well-structured electrodes with a uniform surface. Figure 1A shows a graphic of the desired 96 

SSV structure. To achieve this, the parameters such as applied potential, solution concentration and 97 

additives in the electroplating bath need to be optimized to ensure uniform electrodeposition of 98 

copper on the 10 nm scale.  99 

FIGURE 1 100 

 101 

 Copper is one of the easiest, and most widely, electroplated metals, with several books 102 

dedicated to the topic [18-21]. The applied potential plays an important role in the electroplating of 103 

copper and in order to prepare SSV surfaces in a simple and reproducible way, the applied potential 104 

was chosen to meet the following criteria: nucleation should be fast in order to generate a large 105 

number of nuclei to obtain a small grain size; the deposition of the template film should not take too 106 

long in order to avoid an excessive formation of copper oxide; the surface of the deposit should be 107 

smooth on the 10 nm scale and the formation of dendrites avoided.  108 

For this particular system, using a nanosphere template covered evaporated gold electrode, 109 

the open circuit potential in the 0.1 mol L-1 copper sulfate plating solution was around 0.0 V vs 110 

Ag|AgCl (saturated KCl). A range of deposition potentials were investigated between -0.15 to 0 V vs 111 

Ag|AgCl (saturated KCl). At -0.05 V no deposition was observed after 15 min, at -0.10 V after 3 to 5 112 

min a visible copper layer was deposited on the surface. As shown in Figure 1B the resultant film has 113 



the expected gross structure, however there are undesired micron scale copper grains on the 114 

surface. This is due to the fact that, even at low overpotentials deposition still occurs in preferential 115 

areas, leading to rough over growths on the electrode surface. To overcome this we turned to the 116 

use of additives in the electroplating bath.  117 

Polyethylene glycol (PEG) and KCl are commonly used additives in copper plating baths. PEG 118 

has the property of inhibiting the deposition of copper, suppressing dendritic growth. Chloride was 119 

added as it is known to work together with PEG to promote a better quality copper deposition [22-120 

24]. This can be clearly seen in Figures 1C and 1D were the template surface is now much smoother 121 

than that obtained using copper sulfate alone in the electroplating bath and is free from the micron 122 

sized copper grains seen previously. The optimized conditions for copper deposition were 0.1 mol L-1 123 

CuSO4 with 1 mL L-1 PEG and 1 10-6 mol L-1 KCl as electroplating solution. Deposition was carried out 124 

for 300 s at -0.1 V vs Ag|AgCl (saturated KCl).  125 

 Electrochemical measurements.  126 

 In order to assess the suitability of the SSV copper surface as an electrode the voltammetry 127 

of the surface in 0.1 mol L-1 NaOH was compared to that for bulk copper, Figure 2.  The voltammetry 128 

for the two electrodes shows identical surface oxidation and reduction features associated with the 129 

formation and stripping of surface copper (I) and copper (II) oxides [25]. Comparing the current 130 

densities in the two cases we see that for the SSV copper surface the current density, based on the 131 

projected geometric area, is about three times that of the bulk copper electrode.  This is consistent 132 

with the increase in surface area expected for the template structure in which there is a smooth 133 

copper metal surface electrodeposited around the template spheres.  These results show that the 134 

SSV copper surface behaves well as an electrode and has low surface roughness.  135 

FIGURE 2 136 

 137 



 SERS studies.  138 

 As described in the text a three-electrode cell was used in these measurements, pictures of 139 

the system can be seen in Figure S1 in the Supplementary Information. The cell consisted in a PEEK 140 

(polyether ether ketone) circular body with a stainless steel ring attached to act as the counter 141 

electrode. The SSV template is then attached to the centre of the cell and is used as the working 142 

electrode. See FigureS1 A which shows the cell without its lid and with the working (WE) and counter 143 

electrodes (CE) highlighted. Figure S1B shows the assembled cell with reference electrode (RE) 144 

entering the cell from the top and with the lid covering the cell. The lid is a circular piece of PEEK 145 

with a quartz window. The space between the lid and the electrodes is filled with the electrolyte that 146 

contains the amino acid solution that is to be studied. After sealing the cell and positioning the 147 

electrodes, the electrodes are connected to the potentiostat and the laser is focused on the SSV 148 

surface. Figure S1C shows a picture of the system in use; it is possible to see that the laser that 149 

comes through the microscope lenses reaches the template at an angle of 90 degrees.  150 

 The diameter of the voids and the thickness of the film both affect the plasmonic behavior of 151 

the SSV structure [26] and hence affect the magnitude of the surface enhancement  as discussed in 152 

the literature [1, 11, 27]. This is because, for efficient surface enhancement it is necessary to ensure 153 

coupling of both the incoming laser light and the outgoing Raman scattered light to plasmon modes 154 

of the surface [28]. In this work templates varying from 400 to 900 nm were tested in order to seek 155 

the best sphere diameter to obtain the correct coupling.  In order to quantify the surface 156 

enhancement on the SSV copper surfaces benzenethiol [29] was used as a model system to compare 157 

the quality of the spectra and the enhancement to that seen on other metals, and in particular gold. 158 

Benzenethiol is a good choice because it forms well defined self-assembled monolayers on gold, 159 

silver and copper through the formation of metal-sulphur bonds [29, 30]. To assemble the 160 

benzenethiol on the copper surface it was incubated in an ethanolic solution of benzenthiol for 3 161 

hours, and then dried with the stream of nitrogen.  All spectra were recorded in air immediately 162 



after preparation. It is possible to observe the difference in quality and intensity for the spectra for 163 

each template sphere diameter. 164 

Several parameters had to be optimized in order to obtain the best coupling between the 165 

incoming laser light and the outgoing Raman scattered light. In order to find this optimum condition 166 

template spheres from 400 to 900 nm diameter were tested. As discussed in the text the sphere size 167 

and film thickness plays a crucial role in determining the size of the enhancement. For copper these 168 

needed to be optimised from scratch as there is no previous report on the use of SSV copper 169 

surfaces.  170 

Figure 3 shows spectra for different copper SSV surfaces recorded using benzenethiol as a 171 

model compound. It can be seen that, even though the 700 nm sphere structures do not give the 172 

highest global intensity, the difference between the background and the peak height, and the signal 173 

to noise ratio, is highest for this sphere diameter. In addition the 400 nm spheres are more difficult 174 

to pack uniformly and so give less reproducible SSV substrates. For the 900 nm spheres the SSV 175 

structures show a large background.  176 

The film thickness was a consequence of the deposition period. The deposition was 177 

performed for 300 seconds; this is because longer deposition times led to uneven surfaces, with the 178 

presence of copper blocks, which would interfere in the measurements. The obtained film thickness 179 

was calculated according to the average size of voids, which had a correlation with the total sphere 180 

size. As the voids have an open sphere shape, the film thickness is smaller than the total diameter of 181 

the sphere. Therefore, it was possible to calculate the film thickness, which led to the following 182 

results. For the polystyrene particle used as template for the deposition with a diameter of 400 nm 183 

led to a film with a thickness of 140 ± 5 nm, with 600 nm the film thickness was 220 ± 5 nm, for 700 184 

nm it was 300 ± 5 nm and for 900 nm it was 350 ± 5 nm.  185 

FIGURE 3 186 

 187 



For the conditions of this study, 700 nm diameter template spheres were found to give the best 188 

signal to background ratio when using the 633 nm laser and a film thickness of 300 nm. These SSV 189 

copper substrates are robust and show good stability. We were able to store samples for at least 5 190 

days without loss of SERS activity provided care was taken to slow down surface oxidation (storage 191 

in a sealed container filled with nitrogen) and any surface oxide was electrochemically reduced 192 

before use. 193 

Figure 4 shows an SER spectrum obtained for benzenethiol on the optimised SSV copper 194 

surface. The spectrum corresponds to that of benzenethiol as expected [29]: the peak at 1579 cm-1 is 195 

assigned to a1 v (C-C-C) mode; the peak at 1079 cm-1 to the a1 v(C-C-C) and v(C-S) modes; 1022 cm-1 196 

to the a1 v(C-H) mode; 998 cm-1 to the a1 v(C-C-C) mode. The broad peaks between 400 cm-1 and 700 197 

cm-1 are not due to the benzenethiol and are believed to be due to several overlapping Cu2O-related 198 

bands such as those reported at 616 and 531 cm-1 [31]. The intensity of the benzenethiol spectra 199 

obtained on the SSV copper surfaces is around one tenth of that previously reported for an SSV gold 200 

surface [29], but this is as expected when one takes account of the optical properties of the two 201 

metals [32] and is consistent with studies of gold and copper metal colloids [33]. 202 

Figure 4 203 

Spectroelectrochemistry measurements.  204 

The SSV copper surfaces were used in a preliminary study of the adsorption of amino acids 205 

at copper electrodes in basic solution under potentiostatic control. Six amino acids were selected, 3 206 

aromatic amino acids (tryptophan, histidine and phenylalanine) and 3 non-aromatic ones (serine, 207 

alanine and glycine).  Non-aromatic amino acids have much lower Raman cross sections than those 208 

that have an aromatic ring in the structure [34] and are therefore more challenging to observe by 209 

SERS. The electrode potential is a key parameter in these experiments since copper readily 210 

undergoes oxidation, especially in the alkaline media (0.1 mol L-1 sodium hydroxide) used for 211 



electrochemical oxidation of amino acids. The presence of an oxide layer at the copper surface is 212 

believed to be important in the process; however, copper oxide may absorb light and could quench 213 

the SERS process if the layer becomes too thick. 214 

Figure 5 shows a set of spectra recorded for 7.5 10-4 mol L-1 tryptophan in 0.1 mol L-1 NaOH 215 

at different applied potentials.  Starting at the open circuit potential (around -0.2 V vs Ag|AgCl 216 

(saturated KCl)) and then at +0.25 V there is a broad SERS band or set of bands between 400 and 700 217 

cm-1 corresponding to copper oxide but no features that could be attributed to the tryptophan.  At 218 

open circuit there is no significant different between the spectra with and without tryptophan (see 219 

Figure S3).  However on stepping the potential to -0.65 V, where the surface oxide is reduced to the 220 

copper (I) oxide (see Figure 2), the spectra change significantly with new bands attributable to 221 

tryptophan appearing at higher wave number and rapidly stabilising (Figure 5). 222 

Figure 5 223 

Figure 6 shows spectra for serine and tryptophan obtained under potentiostatic control at -224 

0.65V vs Ag|AgCl (saturated KCl). Under these conditions, in contrast with the results at open circuit 225 

(Figure S3 and Figure 5), there are clear SERS bands associated with the adsorbed amino acids and 226 

the broad bands associated with the copper oxide are significantly diminished. The spectra obtained 227 

for serine and tryptophan were assigned by comparison with the literature, Tables 1 and 2.  It is 228 

notable that although the spectra for serine are less intense than those for tryptophan the bands are 229 

still readily visible.  Corresponding spectra for phenylalanine, alanine, histidine and glycine are given 230 

in the supplementary information (Figures S4 to S6) 231 

Figure 6 232 

 233 

Table 1 234 



 235 

Table 2 236 

 237 

 238 

There are three points to note.  First, the copper SSV substrates show good stability during 239 

use.  Our experiments lasted up to 4 hours and over this time there was no problem with loss of 240 

activity and the templates were stable upon potential cycling from +0.5 to - 0.7 vs Ag|AgCl 241 

(saturated KCl) with spectra being unchanged when the potential was returned to its initial value.  242 

Second, this is the first work to report amino acid SERS on SSV copper surfaces and further studies 243 

will be needed to fully understand all the vibration modes involved in the interaction of the molecule 244 

and the copper electrode. Third, it is well established that the mechanism of interaction between 245 

amino acids and the copper electrode involves the formation of some form of complex [35], it is 246 

therefore reasonable to infer that the molecules are bound in some way to the surface of the 247 

electrode [36]. Considering these facts it is interesting to point out that a clear difference between 248 

the spectra obtained on copper and those reported on silver in the work of Stewart et al. [37] is the 249 

absence of vibrations associated with the carboxylate. This suggests that interaction between the 250 

carboxylate group and the copper oxide may play an important role.  251 

Conclusion.  252 

 In this paper we describe for the first time the fabrication of SSV copper surfaces for 253 

electrochemical SERS.  Using benzenethiol as a model system, we have shown that these surfaces 254 

give strong SERS enhancements with the intensity of the spectra about one tenth of that found on 255 

gold. We have also shown that these SSV copper electrode surfaces can be used to obtain SER 256 

spectra for the aromatic amino acids (tryptophan, histidine and phenylalanine) and for non-aromatic 257 

amino acids (serine, alanine and glycine) under potentiostatic control in 0.1 mol L-1 NaOH. This 258 

preliminary work on electrochemical SERS on SSV copper electrodes opens up a great number of 259 



possibilities as it allows the study the interaction of molecules with copper electrodes at different 260 

applied potentials.  261 
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Subtitles  397 

Graphical abstract presenting a sketch of the template developed in this work. Presenting a nanostructured 398 
copper sphere void template that provides the surface enhancement. 399 

Figure 1. SSV copper template. A) graphic of the desired template structure. B) scanning electron micrograph 400 
of a templated film produced without the use of additives, the electroplating solution was 0.1 mol L-1 of CuSO4, 401 
deposition was carried out for 150 s at -0.1 V vs Ag|AgCl (saturated KCl). C and D) scanning electron 402 
micrographs of templated films prepared from solution containing additives (5000 and 15000 magnification) of 403 
0.1 mol L-1 of CuSO4 with 1 mL L-1 of PEG and 1 10-6 mol L-1 KCl, deposition was carried out for 300 s at -0.1 V vs 404 
Ag|AgCl (saturated KCl).  405 

Figure 2 Cyclic voltammetry of an SSV copper electrode and a bulk copper electrode in 0.1 mol L-1 sodium 406 
hydroxide, scan rate 10 mV s-1. The bulk copper electrode was 3 mm copper rod insulated in PTFE, the SSV 407 
copper electrode had an exposed area of 1.5 mm by 2 mm. 408 

Figure 3: Raman spectra for copper SSV substrates made using different template sphere diameters. Film 409 
thickness are for 400 nm, 600 nm, 700 nm and 900 nm spheres 140 ±5 nm, 220 ±5 nm, 300 ±5 nm and 350 ±5 410 
nm respectively, recorded for benzenethiol in air, 633 nm laser,10 s single acquisition. 411 

Figure 4. Baseline corrected SER spectrum for benzenethiol recorded in air on an SSV (700 nm diameter, 300 412 
nm thick) copper surface. The benzenethiol was deposited from a 14 mM ethanol solution, 633 nm laser of 3 413 
mW, single 10 s acquisition. 414 

Figure 5.  A series of spectra obtained at different potentials for an SSV copper electrode in solution of 7.5 x 415 
10-4 mol L-1 tryptophan in 0.1 mol L-1 NaOH, 633 nm laser, of 3 mW, single 10 s acquisition.  The potential was 416 
stepped from the open circuit potential (-0.2 V) to +0.25 V and then to -0.65 V vs Ag|AgCl (saturated KCl).  417 
Spectra were recorded every 154 s. 418 

Figure 6.  Baseline subtracted spectra for (Black line) 7.7 x 10-4 mol L-1 serine and (Red line) 7.5 x 10-4 mol L-1 419 
tryptophan at an SSV copper electrode (700 nm diameter, 300 nm thick) recorded in  0.1 mol L-1 NaOH at -0.65 420 
V vs Ag|AgCl (saturated KCl). 421 
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Tables 423 

Table 1 424 

Table 1.  Serine peak assignment 425 

Wavenumber / cm-1 

This work 
Wavenumber / cm-1 

Ref [37, 38] 
Assignment 

1145 1129 ρNH3
+ 

1324 1325  

1348 1354 δCH + δChain framework 

1388 1422 ωCH2 + δCOH  + + δChain framework  

1478 1464 δCH2  

1532   

 426 

Table 2  427 

Table 2. Tryptophan peak assignment. 428 

Wavenumber / cm-1 
This work 

Wavenumber / cm-1 

Ref [39] 
Assignment 

1071 1066 γNH3
+, βH(C) 

1324 1321 βH(C), ωCH2 

1378 1367 ωCH2, βCH 

1426 1418 ν(r), ν(R) 

1508 1486 ν(R), ν(r) 

1574 1564 ν(R), ν(r) 
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