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Abstract 

This article analyses empirically the main existing theories on income and population city 

growth: increasing returns to scale, locational fundamentals and random growth. To do this 

we consider a large database of urban, climatological and macroeconomic data from 1,173 

US cities observed in 1990 and 2000. The econometric model is robust to the presence of 

spatial effects. Our analysis shows the existence of increasing returns and two distinct 

equilibria in per-capita income and population growth. We also find important differences 

in the structure of productive activity, unemployment rates and geographical location 

between cities in low-income and high-income regimes. 
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1. Introduction 

There are differences in the growth rates of cities. It is evident that some cities (or regions) 

are more productive than others, or attract more population, depending on certain 

circumstances that vary over time. Several explanations have been proposed to try to 

explain these differentiated behaviours. Following Davis and Weinstein (2002), these 

theoretical explanations can be grouped into three main theories: the existence of increasing 

returns to scale, the importance of locational fundamentals and the absence of both (random 

growth). 

 Each theory has different implications for the understanding of city growth over 

recent decades. Thus, the existence of increasing returns suggests the presence of 

endogenous mechanisms in city growth that lead to multiple equilibria depending on initial 

conditions on income or population. Seminal articles discussing the endogenous character 

of city growth and proposing theoretical models of urban growth are Fujita (1976), Palivos 

and Wang (1996), Eaton and Eckstein (1997) and Black and Henderson (1999). In contrast, 

there is a body of literature influenced by the belief that city growth is driven by exogenous 

characteristics that help to shape the landscape of opportunities for their inhabitants 

prompting economic and population growth. This theory implies the existence of 

conditional convergence towards different equilibria that in contrast to the previous case is 

driven by exogenous factors linked to geography. According to this theory, the presence of 

a natural harbour, a specific climate or access to the sea, among many other socio-economic 

and locational characteristics, can determine cities’ income and population. A third theory 

postulates that economic growth cannot be attributed to measurable endogenous or 

exogenous characteristics but instead to the occurrence of random events that act as drivers 

of economic activity over time.  

Empirical economists on urban economics and economic geography have debated 

over the suitability of each of these theories for different periods and countries, see for 

example, Davis and Weinstein (2002) or Bosker et al. (2008), and the literature review in 

the next section. The availability of census data and the development of sophisticated 

econometric methods for modelling nonlinearities in time series and cross-sectional 

analysis have made possible to formally test statistically to what extent each theory helps to 

predict city growth.  
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The aim of this paper is to disentangle between these theories by determining the 

contribution that each theory has on explaining income and population growth. This is done 

by exploiting a large database of urban, climatological and macroeconomic data from 1,173 

US cities observed in 1990 and 2000.  More specifically, the contribution of this paper is to 

develop an econometric specification for growth predictive regressions sufficiently general 

to nest each of the above theories on city growth as particular cases. By doing so we can 

perform different likelihood ratio tests to determine what theory is better suited to 

describing the data on US cities. One of these statistical tests aims to capture the potential 

of endogenous growth in the form of increasing returns to scale. This is done by adapting 

the threshold nonlinearity tests developed in Hansen (1996, 1997) to our cross-sectional 

setting.  

The econometric specification proposed for the analysis of the above theories is 

founded on a theoretical model of growth that expands the seminal contributions of Solow 

(1956) and Diamond (1965) to the nonlinear case. Following the contributions of Fingleton 

and López-Bazo (2006) and Le Gallo et al. (2003), our theoretical model also 

accommodates the presence of spatial effects in economic activity. In contrast to Fingleton 

and López-Bazo (2006) that focuses on the presence of across-region externalities due to 

knowledge diffusion, we incorporate spatial components in the growth model to describe 

neighbouring effects due to spillovers across neighbouring cities exposed to the same 

shocks. Following a similar approach to López-Bazo et al (2004), our empirical economic 

growth specifications also have their basis on neoclassical economic growth theory. In our 

case, our models for explaining economic and population growth gravitate around the 

concept of multiple equilibria.  

Two distinct models are consistent with the idea of multiple equilibria. The first is 

the notion of a poverty trap. A poverty trap arises when poor individuals, cities or countries 

are faced with two distinct equilibria, one below the poverty trap and one above it. 

Individuals with sufficiently low income or asset endowments are trapped in the poor 

equilibrium, and small improvements are not enough to escape the forces bringing them 

back to this level. In this conceptualization of multiple equilibria, individuals are classified 

according to some level of income that is defined by a threshold value above which they 

should be able to escape poverty. This idea rests on the existence of increasing returns to 
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income and productivity. In the second model, individuals can be sorted into two groups 

depending on their intrinsic socio-economic and locational characteristics: the first group 

corresponds to low-income levels and the second group to high-income levels. This model 

corresponds to the concept of conditional convergence, where different individuals 

converge to different levels depending on their fundamentals.  

Our results provide mixed evidence on the importance of increasing returns and 

locational fundamentals for predicting economic and population growth. On one hand, our 

statistical threshold nonlinearity test finds empirical evidence of threshold nonlinearities 

suggesting the existence of different equilibria that depend on the initial levels of income 

and population. On the other hand, the statistical measures gauging the explanatory power 

of the econometric specification, such as the coefficient of determination, suggest that the 

inclusion of exogenous variables, locational fundamentals, significantly improve the fit of 

the empirical model highlighting the major role of these variables in explaining the 

observed levels of income and population across cities in the US. The spatial component of 

our empirical specification is also relevant for describing neighbouring effects on growth 

across cities. These empirical findings suggest that multiple equilibria in city growth is 

mainly determined by locational fundamentals and corresponds to conditional convergence 

in equilibrium. Nevertheless, the existence of increasing returns in economic and 

population growth suggest that cities sharing the same values of locational fundamentals 

will converge to different equilibria if their initial levels of income lie on different regions 

of the nonlinear threshold empirical specification. 

The article is structured as follows. The next section reviews the related literature. 

Section 3 introduces a theoretical specification of growth models that accommodates the 

presence of endogenous threshold nonlinearities of capital accumulation on economic 

growth. The section also discusses a simple extension of this model to describe population 

growth in the spirit of the seminal works of Glaeser et al. (1995) and Glaeser (2000). 

Section 4 sets out the econometric framework and discusses the different hypothesis tests of 

interest. Section 5 discusses the empirical results for a database containing 1,173 US cities 

and the last Section concludes. An appendix contains data sources and collects the tables. 
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2. Related literature 

Davis and Weinstein (2002) group the traditional theoretical explanations of urban growth 

into three main theories: the existence of increasing returns to scale, the importance of 

locational fundamentals and the absence of both (random growth). 

The first theory is supported by the theoretical models of the New Economic 

Geography (NEG). These models often display nonlinear behaviours and multiple 

equilibria as a consequence of their basic assumptions (mobile factors, transport costs, 

centrifugal and centripetal forces, etc.), which are very different from the classic 

framework. The literature on urban increasing returns, also known as agglomeration 

economies, is wide (see the meta-analysis by Melo et al., 2009). The traditional Marshallian 

sources of external economies of scale are labour market pooling, input sharing and 

knowledge spillovers. Duranton and Puga (2004) provide an alternative perspective, 

namely that agglomeration economies could be driven by sharing, matching or learning 

mechanisms. In addition, there is also evidence that other factors contribute to 

agglomeration, such as home market effects, consumption opportunities and rent-seeking 

(see the survey by Rosenthal and Strange, 2004). 

In the economic literature, locational fundamentals are considered to be 

geographical factors linked to the physical landscape, such as temperature, rainfall, access 

to the sea, the presence of natural resources or the availability of arable land. Random 

growth models usually assume that these characteristics are randomly distributed across 

space, but actually they are not. From a physical geography perspective, factors such as 

mineral resources and nice weather are clearly concentrated in certain areas. Several studies 

find a significant influence of these characteristics on the development of some particular 

regions. For example, the nearby deposits of coal, iron ore and limestone as well as the 

extensive network of natural waterways and deep water sea and river ports contributed to 

the development of the US manufacturing belt in the Upper Midwest and North-east 

regions (Berry and Kasarda, 1977). Fernihough and O’Rourke (2014) also find that coal 

had a strong influence on city population; according to their estimates coal explains at least 

60% of the growth in European city populations from 1750 to 1900. 

Nevertheless, although locational fundamentals may have played a crucial role in 



 5

early settlements, one would expect that their influence decreases over time. However, 

empirical studies demonstrate that their important influence in determining agglomeration 

remains. For the case of the United States, Ellison and Glaeser (1999) state that natural 

advantages, such as the presence of a natural harbour or a particular climate, can explain 

about 20% of the observed geographic concentration. Glaeser and Shapiro (2003) find that 

in the 1990s people moved to warmer, dryer places, while Rappaport (2007) explains that a 

large proportion of weather-related movement seems to be driven by an increased valuation 

of nice weather as a consumption amenity.  

Random growth theories are based on stochastic growth processes and probabilistic 

models. The most important models are those presented by Champernowne (1953), Simon 

(1955) and, more recently, Gabaix (1999). In the case of population growth, these models 

are able to reproduce an empirical regularity well-known in urban economics: Gibrat's law 

(or the law of proportionate growth). For the case of the US, several works statistically 

accept the fulfilment of Gibrat’s law, whether at the level of places (Eeckhout, 2004; 

González-Val, 2010) or metropolitan areas (Ioannides and Overman, 2003). In contrast to 

these studies, Black and Henderson (2003) reject Gibrat’s law, using a different dataset of 

metro areas in the US. Michaels et al. (2012) use data from Minor Civil Divisions and 

counties to track the evolution of populations across both rural and urban areas in the US 

from 1880 to 2000, finding that Gibrat’s law is a reasonable approximation for population 

growth only for the largest units.  

However, recent studies argue that empirically random growth can only hold as a 

long-run average; Gabaix and Ioannides (2004) point out that “the casual impression of the 

authors is that in some decades, large cities grow faster than small cities, but in other 

decades, small cities grow faster.” This size-dependent growth would rebut random growth 

in the short-term, but random growth theory would still be important from a long-term 

perspective, because the influence of other factors such as locational fundamentals and 

increasing returns may change (or even disappear) over time. A unifying approach to justify 

random growth models could be a combination of weak size-dependence and decaying 

impact of locational fundamentals over time (because of advances in transportation and 

communication technology) or random changes in the importance of each fundamentals 

(e.g. in the case of weather). 
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While there are many studies of each of these theories, the literature on alternative 

approaches is scant; only Davis and Weinstein (2002, 2008) and Bloom et al. (2003) adopt 

such a broad perspective. The first authors support a hybrid theory in which locational 

fundamentals establish the spatial pattern of relative regional densities, but increasing 

returns help determine the degree of spatial differentiation in Japanese cities. Similarly, 

Bloom et al. (2003) study the influence of climatological and geographical variables on 

growth at a country level. These authors develop a Markov regime-switching model to 

analyse whether locational fundamentals have additional explanatory power to describe 

per-capita income growth compared with nonlinear models based on lagged per-capita 

income. Finally, Davis and Weinstein (2008) develop a threshold regression framework for 

distinguishing the hypothesis of unique versus multiple equilibria and apply it to the Allied 

bombing of Japan during World War II, finding evidence against multiple equilibria. 

Bosker et al. (2007) replicate this analysis for the bombing of Germany during World War 

II and their results support a model with two stable equilibria. 

3. Convergence equations for income and population 

The structural factors that contribute to city income include consumption, investment, trade 

and local government expenditure. All these variables depend on a set of socioeconomic 

and geographical variables that determine the economic size of a city. These variables 

include literacy variables such as schooling, socioeconomic variables such as productive 

structure or unemployment rate and geographical and environmental variables such as 

temperature or climate. Our interest is in studying the influence of these explanatory 

variables on aggregate measures of city income and population growth.  

Among the several potential indicators for economic activity we choose two 

different dependent variables at the city level: population and per-capita income. Both of 

them are second nature variables closely linked (higher per-capita income stimulates 

migration), but they give different information. Although the two variables are assumed to 

capture many agglomeration economies such as informational spillovers or labour market 

economies (Roos, 2005), population is a measure of urban concentration and a proxy for 

urban amenities and potential congestion costs (Melo et al., 2009), while income is a more 

direct measure of city’s productivity. Glaeser et al. (1995) discuss both measures of city 

size; population growth captures the extent to which cities are becoming increasingly 
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attractive habitats and labour markets across cities, while income growth captures some 

portion of productivity growth but it also captures declines in quality of life. Empirical 

studies usually consider only one of them; but there are exceptions: Glaeser et al. (1995), 

Roos (2005) and González-Val (2014). Glaeser et al. (1995) and González-Val (2014) 

analyze the influence of a set of initial city characteristics on both population and income 

growth in US cities, and Roos (2005) considers these two second-nature variables and 

develops a stepwise procedure to infer the unobservable effect of first nature for Germany. 

Chasco et al. (2012) adapt this framework to allow for spatial effects.  

 The aim of our study is to provide a formal analysis of growth for each of these 

variables (per-capita income and population). In order to provide a meaningful econometric 

specification it is convenient to set the microfoundations of city income and population. To 

do this, we build on two different neoclassical models of economic growth. More 

specifically, we analyse growth in per-capita income using a framework consistent with the 

existence of poverty traps. Similarly, our analysis of city population builds on the seminal 

contributions of Glaeser et al. (1995) and Glaeser (2000). These models are extended in this 

paper to accommodate the presence of nonlinearities in the growth equation and the 

potential of spatial effects. 

To motivate the existence of a poverty trap in city income growth we follow Barro 

and Sala-i-Martin (2004, ch.1) exposition of a Solow-Swan type model with a generic city 

that has access to a traditional (A) and a modern (B) technology. Each technology is 

represented by a Cobb-Douglas production function with two factors of production (labour 

and capital) and constant returns to scale. In per capita terms, these production functions are 

AKYA   and BKYB   where Y  is a measure of per capita city income, K  is the per 

capita capital stock and )1,0(,  ; 0, BA  are the parameters capturing the contribution 

of technology to the production function. Different from Barro and Sala-i-Martin (2004, 

ch.1) we allow for the possibility of   , that is, distinct capital elasticities, and, for 

simplicity, assume that    to ensure non-reversibility.  

 This nonlinear specification of city income is extended to reflect the effect of 

locational fundamentals. The relevant production functions accommodating these effects 

are  XAKYA   and  XBKYB  , with n
nXXX   1

1  denoting the vector of 
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locational fundamentals; )',,( 1 nXXX   and )',,( 1 n  . After simple algebra, the 

log-linearized envelope production function can be expressed as the combination of the 

above functions as 

 

 
' ,  if 

{
' ,  if 

k x k k
y a

k x k k

 

 

 
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 
                                        

where for notational convenience we use Xx ln . More compactly, we have 

                                ( ' ) ( ) ( ' ) ( )y a k x I k k k x I k k           

with I(.) an indicator variable taking the value of one when the argument is true and zero 

otherwise; k denotes the threshold characterizing the nonlinearities in the growth equation. 

 The derivation of the growth equation describing transitional dynamics is standard 

in the growth literature (Mankiw et al., 1992; Barro and Sala-i-Martin, 1992). A detailed 

derivation of the growth equation corresponding to the Cobb-Douglas production function 

described above where externalities across economies are included in the technology of 

production is offered in the appendix of Fingleton and López-Bazo (2006). After suitable 

modification of the algebra to accommodate the above piecewise linear specification, the 

corresponding empirical specification of the growth equation is in our setting equal to 

0 11 12 2( ) ( ) ' ,i io io io io ioy y I y u y I y u x                               

where ioifi yyy   is the growth variable that is measured as the difference of the 

terminal and initial values of log per-capita income, ify  and ioy , respectively; iox  is a 

vector of socioeconomic and geographical indicators; u  is the threshold value 

corresponding to lagged income. The parameters gauging the extent of increasing returns 

on per-capita income are 11  and 12 . The parameter 2  determines the effect of the 

locational fundamentals in the growth equation. This model reflects two different types of 

multiple equilibria: an equilibrium arising from nonlinear endogenous growth and 

characterised by the presence of increasing returns, and another equilibrium that reflects 

conditional convergence and characterized by the values of the locational fundamentals. 

To describe the growth equation for population we extend the approach put forward 

in Glaeser et al. (1995) and further developed in Glaeser (2000). We assume that cities are 

in a spatial equilibrium where individual utility and the returns to capital are equalized 
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across space. Each city produces according to the production functions AY  and BY  

introduced before. Thus, the returns to capital (equal to the marginal product) are different 

depending on the type of technology:  XAKrA
1  and  XAKrB

1 , respectively. 

Utility equals 
P

CW
, where C  is a city-level consumption amenity index, W  represents 

city-level wages, and P  describes city-level prices. To add city population to the model, it 

is assumed that the total labour in the city is equal to z  times total city population, with 

10  z , representing  z1  the share of nonworking population in the city. In the case 

that production is the same across technological levels  and  , giving rise to a linear 

specification of per-capita income, these equations produce the following equality1  

0 1 2 ,i io iol l x                            

with  ioifi lll    being the difference of the terminal and initial values of log population 

and  i
 a mean zero iid error term with constant variance;  0  is the intercept and 1  and 2  

are the parameters that describe the marginal effect of the explanatory variables. iox  is 

again a vector of city-characteristics. This is a model of spatial equilibrium similar to the 

Roback (1982) model, where the relationship between population growth and initial 

characteristics is determined by changes in demand for some aspects of the city’s initial 

endowment in production or consumption, or by the effect of this initial characteristic on 

productivity growth. After suitable algebra, it can be shown that the threshold nonlinear 

version of the model describing population growth is 

2

'
0 11 12( ) ( ) .i io io io io iol l I l l I l x              

As in the previous case, this model also reflects two different types of multiple equilibria: 

an equilibrium arising from the presence of increasing returns and another equilibrium 

characterized by locational fundamentals and leading to conditional convergence. 

However, the existence of a spatial equilibrium does not necessarily imply the same 

equilibrium city size and thus growth convergence across cities.2 In Henderson’s (1974) 

seminal system of cities model (and in many of the subsequent models) all cities are fully 

                                                 
1 We use simpler notation, but this equation is equivalent to Eq. (2.7) and Eq. (1’) in Glaeser et al. (1995) and 
Glaeser (2000), respectively. 
2 We acknowledge one anonymous referee for suggesting this point. 
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specialised in equilibrium and only the cities with the same specialisation must be of the 

same size (Combes et al., 2005). Nevertheless, other theoretical frameworks combine 

diversified and specialized cities (Duranton and Puga, 2001) and in equilibrium all the 

cities of the same type are of the same size.  

 

4. Econometric methodology 

4.1. Estimation  

The different specifications of the growth equation for per-capita income and population 

discussed in the preceding section correspond to two working hypotheses defined by a 

linear and a nonlinear model on a cross-sectional two-period model. Further, we will 

assume throughout that the relationship between initial conditions and the response 

variables measuring growth is constant across cities in the sample.3 Thus, for per-capita 

income growth the linear econometric specification is  

,'210 iioioi xyy                 (1) 

that extends the above empirical specification by adding an error term i  that captures 

independent and identically distributed (iid) unobserved components that are assumed to  

exhibit constant variance.  

The study of population growth follows similarly. A suitable linear regression 

equation for measuring population growth is 

,210
  iioioi xll                         (2) 

0  is the intercept and 1  and 2  are the parameters that describe the marginal effect of the 

explanatory variables.  

In our framework, the nonlinear alternative, assuming the presence of at most two 

regimes in per-capita income, is  

,')()( 212110 iioioioioioi xuyIyuyIyy                        (3) 

                                                 
3 As a robustness check, we explore the suitability of alternative threshold models putting the emphasis on 
nonlinearities on the locational fundamentals rather than in the endogenous income and population variables, 
see Section 5.4. 
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For 01211   , the model describes the existence of increasing returns to scale for values 

of initial per-capita income greater than a threshold value u  defined on a compact space 

U R , because in that situation the cities with a higher initial per-capita income grow at a 

higher rate. This can be better observed if (3) is rewritten instead as 

,')()1()()1( 212110 iioioioioioif xuyIyuyIyy        (3’) 

In equilibrium (   0iE  ) this model yields two different balanced growth paths. In the 

lower regime, per-capita income in equilibrium is equal to (1) 0 2

11

' io
if

x
y

 



   and in the 

upper regime the per-capita income in equilibrium is (2) 0 2

12

'
.io

if

x
y

 



 
 

From these 

expressions and assuming that 0 2 ' 0iox   , it is not difficult to see that (1)
ify < (2)

ify if 

01211   . The existence of increasing returns leads in equilibrium to two different city 

sizes for each growth path, however it should be noted that for cities within each growth 

regime conditional convergence also takes place due to the effect of locational 

fundamentals. While some NEG models feature a location pattern that can only lead to 

‘bang-bang’ outcomes (a symmetric equilibrium with all the regions completely 

symmetrical or a corner one with all mobile agents concentrated in one of the regions), our 

specification allows for the more realistic result of partial agglomeration, fully consistent 

with others NEG models (see Pflüger and Südekum, 2008). 

 Our model extends the study of Durlauf and Johnson (1995) by providing a formal 

procedure for dividing the sample. Thus, this approach is different from those proposed in 

previous empirical studies of growth convergence clubs, such as the regression tree analysis 

used by Durlauf and Johnson (1995) and the predictive density of the data used by Canova 

(2004) to identify different clusters of countries or regions.  

A further robustness check to measure the impact of the endogenous and exogenous 

factors on the growth variables is to consider spatial effects in the different econometric 

specifications. One fundamental issue missing in most of the empirical studies on cross-

sectional growth across cities is the spatial dimension. This is noted by Rey and Montouri 

(1999) and Heckelman (2013); these authors report significant spatial effects in US states 

for per capita income growth. In a first step, we implement spatial hypothesis tests such as 
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the Lagrange multiplier and Moran’s I tests (see Moran, 1950; Anselin, 1988) to assess the 

spillover effects between neighbouring locations in the residuals of the above regression 

models. In a second step, we estimate a spatial error model and a spatial autoregressive 

model with the aim of explicitly considering the impact of neighbouring locations on per-

capita income and population growth. Nevertheless, these analyses must be taken with 

caution, as Fingleton and López-Bazo (2006) remark in their study. More specifically, these 

authors show that straightforward applications of spatial econometrics tools are likely to 

suggest inappropriate empirical growth specifications. Fingleton and López-Bazo (2006) 

also provide theoretical foundations for appropriate linear specifications incorporating 

spatial effects with across-region externalities due to knowledge diffusion. Beaumont et al. 

(2003) estimate a -convergence model with spatial effects too, allowing for different 

spatial regimes. They define two different convergence clubs using Exploratory Spatial 

Data Analysis (a Moran scatterplot) considering a sample of 138 European regions over the 

period 1980–1995.4  

In this context, the spatial error model extends model (3) by considering an error 

variable that satisfies 

,vW            (4) 

with 1  being a parameter that reflects the effect of the residuals of neighbouring 

variables on the residual of location i , W  a weighting matrix that measures the distances 

between the different locations and iv  an iid random variable that describes the error of the 

regression model. There exist different possibilities for choosing W ; we consider a matrix 

obtained from the coordinates (longitude and latitude) of the locations in order to construct 

the Euclidean distance between the cities in the empirical analysis. The spatial 

autoregressive model considers the following econometric specification: 

,)()( 212110 iioioioioioii xuyIyuyIyyWy                  (5) 

with 1  measuring the effect on the response variable of per-capita income growth in 

neighbouring cities.  

                                                 
4 There are important differences between Beaumont et al. (2003)’s data and our sample. Their sample size is 
9 times smaller than ours and they consider regions from different countries, while our sample includes cities 
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Similarly, the threshold nonlinear specification for population growth that 

incorporates the spatial error model is 

,)()( 212110 iioioioioioi xlIllIll     (6) 

with vW    and 1  describing the spatial relationship between the residuals of 

the nonlinear model. The empirical growth equation considering the spatial autoregressive 

model is 

,)()( 212110 iioioioioioii xlIllIllWl    (7) 

with 1  measuring the effect on the response variable of the growth in population in 

neighbouring locations. 

The main difference between previous studies and our method is the procedure for 

dividing the sample. The threshold parameter u  is estimated by the minimization of the 

concentrated sum of squared residuals      ueueuS ˆ  with  ue  being the residual of the 

corresponding regression model for u  fixed (see Hansen, 1997). The estimation of these 

models is complex and follows different techniques depending on the regression model 

assumed. Thus, models (1) and (2) can be estimated by ordinary least squares, and standard 

asymptotic inference results hold. Model (3) is nonlinear and depends on a prior estimation 

of the threshold value u . Once the threshold value has been estimated, OLS methods can 

be applied to estimate the remainder of the regression model parameters. Inference on the 

model parameters is achieved via simulation and bootstrap methods that approximate the 

finite-sample distribution of the supremum of Chi-squared tests. Finally, the estimation of 

spatial models is also cumbersome and needs to be carried out using maximum likelihood 

techniques under the assumption that the error variables are normally distributed. Inference 

follows from applying well-known results for maximum likelihood estimation methods. 

4.2. Testing the three leading theories 

The above models allow us to derive hypothesis tests for each of the leading hypotheses in 

the analysis of cross-sectional city growth: increasing returns, random growth and 

socioeconomic and locational fundamentals. For completeness, we also analyse the 

                                                                                                                                                     
from only one country. 
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existence of increasing returns to scale in population growth and the explanatory power of 

the regressors outlined above. 

The first hypothesis under study is the existence of increasing returns to scale. 

Under increasing returns to scale, the accumulation of output beyond a threshold u   makes 

cities more productive5; thus, per-capita income growth is endogenous. This hypothesis can 

be tested using several of the above regression specifications. In particular, for models (3) 

and (5), the hypothesis of interest can be expressed as 1211,0 :  IRSH  vs. 

, 11 12:A IRSH   . The differences between both specifications lie on the inclusion or not of 

spatial effects in the regression equations. The existence of these effects is determined by 

applying the Lagrange multiplier and Moran’s I tests to the residuals of the regression 

equation (3). 

The second hypothesis of interest is to assess the statistical significance of the 

socioeconomic and locational fundamentals variables. In order to be robust to the existence 

of increasing returns in per-capita income and spatial effects, we propose testing the 

hypothesis 0: 2,0 LH   vs.  0: 2, LAH   in model (5). One of the few and 

pioneering studies concerned with the impact of locational fundamentals is Bloom et al. 

(2003). These authors are interested in modelling the presence of nonlinearities in per-

capita income growth from country-level data using a model that incorporates 

climatological and geographical variables. They propose a Markov regime-switching model 

in which the probabilities that determine the change of regime depend on these 

environmental (locational fundamentals) variables. 

The last competing theory under analysis is that of random growth, namely, that no 

explanatory variable helps systematically explain per-capita income growth. The null 

hypothesis in model (3) is 0: 21211,0  RH . The reader should note that the 

restriction 01211    is the key assumption of the random growth hypothesis. This is 

because random growth implies that city growth rates are independent of initial city size. 

By estimating model (5) instead, this hypothesis can be tested under the implicit presence 

                                                 
5 This is a macroeconomic approach to increasing returns. However, some of our exogenous variables, i.e. 
human capital variables, are considered in the literature to be a source of agglomeration economics from a 
microeconomic perspective (see Duranton and Puga, 2004). This micro-treatment of the model is beyond the 
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of spatial effects from neighbouring locations. A stronger version of the random growth 

theory assumes that 0: 21211,0  RH  or alternatively, for the spatial 

autoregressive model, that 0: 21211,0  RH . Under the null hypothesis, per-

capita income growth is a random variable independently distributed across cities. 

Similar tests can be carried out to gauge the empirical relevance of the above 

models in city population growth. The object of interest is to assess whether population 

growth in US cities is endogenous or exogenously determined by the set of socioeconomic 

and locational fundamentals discussed earlier. By accommodating the existence of spatial 

effects, we robustify the methodology in order to consider the spillover cross-border effects 

that come from neighbouring locations.  

5. Empirical results 

This section illustrates the above econometric models and tests using data from all US cities 

with more than 25,000 inhabitants in 2000 (1,173 cities).6 The dataset includes urban, 

climatological, locational and macroeconomic variables on all these 1,173 cities. This 

sample represents 41.34% of the total US population in this year, and 52.33% of the total 

urban population. 

5.1. Data 

The data came from the censuses for 1990 and 2000 (see Appendix 1 for the details of the 

data sources). We identified cities as what the US Census Bureau calls “incorporated 

places”. The US Census Bureau uses the generic term incorporated place to refer to a type 

of governmental unit incorporated under state law as a city, town, borough or village. They 

are administratively defined “legal” cities; these places have been used recently in the 

empirical analyses of American city size distribution (Eeckhout, 2004; González-Val, 2010; 

Ioannides and Skouras, 2013). These cities may occupy a variety of spatial locations in the 

territory, being either in the core or the periphery or at different distances of more or less 

                                                                                                                                                     
scope of this paper. 
6 There are 141 cities in our sample below the 25.000 inhabitants in 1990. As the sample is defined according 
to the largest cities in the latest period, it might imply a slight bias because these are the "winning" cities, 
namely, those that have presented the highest growth rates (Black and Henderson, 2003). Nevertheless, as the 
period considered is only one decade, there are almost no "losing cities" excluded that could bias our results. 
If we consider all the incorporated places with 25,000 or more inhabitants in 1990 according to the US Census 
Bureau only 10 out of these 1,077 cities fall below the 25,000 inhabitants in 2000. 
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large metropolitan areas. In the US, to qualify as a metropolitan area a central city of 

50,000 or more inhabitants is needed. Thus, although our cities may occupy very different 

relative positions in the urban space of metropolitan areas, many of the selected 

incorporated places that have more than 25,000 inhabitants are the central cities of a 

metropolitan area. 

US urban growth has also been analysed using other geographical units: counties 

(Beeson et al., 2001), minor civil divisions (Michaels et al., 2012), metropolitan areas 

(Dobkins and Ioannides, 2001; Black and Henderson, 2003; Ioannides and Overman, 2003) 

and urbanised areas (Garmestani et al., 2008). However, researchers usually choose 

between two basic alternatives: administratively defined cities (incorporated places) and 

metropolitan areas7. Both units have advantages. As Glaeser and Shapiro (2003) indicate, 

metro areas represent urban agglomerations, covering huge areas that are meant to capture 

labour markets. Metropolitan areas are attractive because they are more natural economic 

units, while legal cities are political units that usually lie within metropolitan areas, and 

their boundaries make no economic sense. However, certain factors, such as human capital 

spillovers, are thought to operate at a very local level (Eeckhout, 2004). The economic area 

of influence of labour markets and large infrastructure projects such as airports exceeds the 

boundaries of single legal cities, while the geographical influence of factors such as public 

services (schools, public transportation, etc.) and local externalities is more reduced. 

Finally, the population of incorporated places is almost entirely urban, 94.18% in 2000, 

compared with 88.35% of urban population in metropolitan areas. 

One important limitation of incorporated places is the spillover effect or contagion 

effect between neighbouring localities, which can influence the urban growth process. We 

use spatial econometrics to deal with this issue. Moreover, the geographic boundaries of 

census places can change between censuses. As in Glaeser and Shapiro (2003), we address 

this issue by controlling for change in land area. We acknowledge that this control may not 

be appropriate because it is also an endogenous variable that may reflect the growth of the 

city, nevertheless, none of our results change significantly if this control is excluded. 

Moreover, we also eliminate incorporated places that either more than doubled land area 

                                                 
7 In fact, information on most of the variables used in this study is only available at the place or metropolitan 
area level. 
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(37 cities) or lost more than 10% of their land area (five cities). This correction eliminates 

42 extreme cases where the city in 1990 is something very different from the city in 2000. 

The explicative variables chosen are similar to those reported in other studies on city 

growth in the US and city size, and correspond to the initial 1990 values. The influence of 

some of these variables on determining city size has been empirically illustrated in other 

studies such as Glaeser et al. (1995) or Glaeser and Shapiro (2003). Our aim is to introduce 

variables to control for some of the already known empirical determinants of city growth 

(human capital, density, weather). Table 1 presents the variables, which can be grouped 

into four types: urban sprawl variables, human capital variables, productive structure 

variables and weather variables. 

Urban sprawl variables aim to reflect the effect of city size on urban growth. For 

this, we use population density, growth in land area from 1990 to 2000 (as a control for 

boundary changes) and the variable median travel time to work, which represents the 

commuting cost borne by workers. Commuting time is endogenous and depends in part on 

the spatial organisation of cities and location choice within cities. The median commuting 

time may reflect traffic congestion in larger urbanised areas as well as the size of the city in 

less densely populated areas, or the remoteness of location for rural towns; in other words, 

the idea that as a city's population increases, so do the costs in terms of individuals’ travel 

time to work. 

Regarding human capital variables, many studies demonstrate the influence of 

human capital on city size, as cities with better educated inhabitants tend to grow more. For 

example, Glaeser and Saiz (2003) analyse the period 1970–2000 and show that skilled 

cities are more productive economically. We take two human capital variables: population 

with a high school graduate or higher degree and population with some college or higher 

degree. The former represents a wider concept of human capital, while the latter centres on 

higher educational levels (some college, Associate degree, Bachelor’s degree and Graduate 

or professional degree). 

The third group of variables, referring to productive structure, contains the 

unemployment rate and distribution of employment by sector. The distribution of labour 

among the various productive activities provides valuable information about other city 

characteristics. Thus, the employment level in the primary sector (agriculture, forestry, 
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fishing and hunting and mining) also represents a proxy for the natural physical resources 

available to the city (cultivable land, port, etc.) Like construction, this sector is also 

characterised by constant or even decreasing returns to scale. Employment in 

manufacturing informs us about the level of local economies of scale in production, as this 

sector normally presents increasing returns to scale. A proxy for the market size of the city 

is the employment in commerce, whether retail or wholesale. Information is also included 

on employment in the most relevant activities in the services sector: finance, insurance and 

real estate; educational, health, and other professional and related services; and 

employment in public administration. 

We disaggregate geography into physical geography and the socioeconomic 

environment and control for both types of characteristics. We use a temperature index as a 

measure of weather. The temperature discomfort index (TEMP_INDEX ) represents each 

city's climate amenity, and is constructed in a similar way as in Zheng et al. (2010). It is 

defined as:  

  
  2

2
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_

peratureSummer_temperatureSummer_tem

peratureWinter_temperatureWinter_tem


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
k

k
kINDEXTEMP  

where peratureWinter_tem  and peratureSummer_tem  are the 30-year average values in 

January and July in Fahrenheit degrees computed from the data recorded during the period 

1971–2000. The index represents the distance of the k city's winter and summer 

temperatures from the mildest winter and summer temperatures across the 1,173 cities. A 

higher  TEMP_INDEX   means a harsher winter or a hotter summer, which makes the city a 

harder place in which to live or produce. Annual precipitation in inches and the percentage 

of water area over the total land area are also included. 

We introduce several dummies to provide information about geographic 

localisation; these take a value of one depending on the region (Northeast, Midwest, South 

or West) in which the city is located8. These dummies show the influence of a series of 

variables for which individual data are not available for all places, and which could be 

directly related to the geographical situation (access to the sea, presence of natural 

                                                 
8 We also introduced state-level dummies into some of the preliminary estimations, but they were not 
significant. 
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resources, etc.) or, especially, the socioeconomic environment (differences in economic and 

productive structures). 

5.2. Econometric analysis of per-capita income growth 

We first carry out an exploratory analysis of the explanatory variables comprising the set of 

locational fundamentals. Thus, Table 1 reports the average values of the explanatory 

variables over the whole sample of US cities and over the subgroup of cities in the low 

regime group. These values reflect important differences in the productive structure, 

education levels and location between these groups. Employment in agriculture and the 

exploitation of natural resources is higher than average in the cities in the low income 

group. Public administration also makes a greater than average contribution in these cities. 

Interestingly, we find that most of these cities are located in the South and West regions of 

the US, indicating an important locational or regional effect on per-capita income growth. 

Educational levels, measured by the population with a high school degree or college 

education, are also well below the average. The descriptive analysis of the sectors of 

productive activity also shows that the financial, insurance and real estate sectors are 

associated with high per-capita income levels. Unemployment rates between both groups of 

cities are also in stark contrast; unemployment is clearly higher in the cities in the low 

regime group. 

Second, we consider the extent of spatial dependence in the data and assess whether 

this dependence is robust to the inclusion of the locational (geographical) fundamentals 

defined in this study. To do this we apply the Lagrange multiplier and Moran’s I tests to the 

residuals of the nonlinear regression analysis (3). Table 2 reports the p-values of these tests. 

These p-values provide clear evidence of the statistical significance of the spatial effects for 

the spatial error model, whereas for the spatial autoregressive model the statistical evidence 

is mixed. 

Third, we statistically assess for the presence of threshold nonlinearities in the 

above spatial models. To do this, the threshold u  is estimated using the Hansen (1997) 

procedure that minimises the concentrated sum of squares of the residual series indexed by 

u , with u  defined inside a compact set in the real line. We obtain a threshold estimate for 

the initial per-capita income of 2289.9ˆ nu , which corresponds to 187,10$ . This threshold 



 20

estimate defines a lower regime characterised by the parameter 11 0.1522    for the 

spatial error model and 1513.011   for the spatial autoregressive model. Meanwhile, the 

upper regime is defined by 12 0.1464    for the spatial error model and 1459.012   for 

the spatial autoregressive model (see columns 3 and 6 in Table 3). These results indicate the 

existence of two distinct equilibria in per-capita income growth. There are 104 cities in the 

lower regime. The p-value of the nonlinearity test for the spatial versions of model (3) 

given by (4) and (5) is zero, demonstrating that the differences between 11  and 12  are 

statistically significant in both modelling strategies. Interestingly, whereas the estimates of 

the regression model parameters are similar across the spatial nonlinear models, the spatial 

effects are in sharp contrast. Thus, the spatial error model reports evidence of negative 

serial correlation between the residuals of model (3) and provides further support to the 

choice of model (4) for fitting the spatial dependence in the model errors. In contrast, the 

parameter estimates of the spatial autoregressive model (5) indicate that the effect of per-

capita income between neighbouring locations vanishes when controls for geography and 

social and economic factors are included.  

These results are consistent with economic growth theory in that the sign of the 

parameters is negative, indicating convergence towards equilibrium. Barro and Sala-i-

Martin (1992), Evans and Karras (1996), Sala-i-Martin (1996) and Evans (1997) also find 

statistically significant  -convergence effects using US state-level data, while Higgins et 

al. (2006) use US county-level data to document statistically significant  -convergence 

effects across the US. Our analysis is more informative since it provides empirical evidence 

of the existence of a threshold value beyond which cities achieve higher growth rates, as 

 01211   . 

The second question that this article aims to answer is whether socioeconomic and 

locational fundamentals can add explanatory power to the nonlinear growth model 

discussed above. To assess this, we estimate both spatial models for the regression 

specification without the covariates ox  and without the subset of socioeconomic covariates, 

namely productive structure and human capital variables (see Table 3). The results are 

conclusive in showing the statistical relevance of including both sets of regressors. The 

difference in log-likelihood between the models in Table 3 and the corresponding 
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likelihood ratio test confirm this finding. Furthermore, the signs of the coefficients are 

consistent with related studies (Glaeser et al., 1995). The table also shows the statistical 

significance of the spatial autoregressive model if no other covariate beyond lagged per-

capita income is included in the regression specification. This finding implies that per-

capita income in neighbouring locations helps explain per-capita income. Interestingly, the 

statistical relevance of this model vanishes if the set of regressors that contain the locational 

fundamentals are included in the multiple regression model. Further, the analysis of the 

differences in log-likelihood between models also confirms the statistical significance of 

the socioeconomic variables. These results provide mounting evidence against a strong 

version of the random growth theory. 

5.3. Econometric analysis of population growth 

The analysis of city growth characteristics also concerns the study of population. The 

supremum nonlinearity test in Hansen (1997) reports a p-value of zero and a threshold 

estimate of 9657.9ˆ nu , which leaves 60 observations below the threshold and corresponds 

to a value of 21,093 inhabitants. Recently, there has also been rising interest in different 

regimes and switching points in the city size distribution literature. Ioannides and Skouras 

(2013) estimate a switching point between the body of the city size distribution and its 

upper tail. Using 2000 Census Places data, they show that there is a switching point from a 

lognormal to a Pareto law. Curiously, the threshold level we find with our nonlinear growth 

model is similar to one of the switching points estimated by Ioannides and Skouras (2013). 

Their estimate for the CDGPR mixture model inspired by Combes et al. (2012) is 16,312 

inhabitants with a standard deviation of 5,401. 

The next step is to decide on the appropriate regression specification to test for the 

existence of increasing returns to scale and to assess the importance of socioeconomic and 

locational fundamentals for explaining growth in city population. Table 2 provides mixed 

evidence on the relevance of using spatial models to describe the relationship between 

population growth and the sets of regressors in the study. Whereas the Lagrange multiplier 

test rejects the null hypothesis of no spatial effects, Moran’s I test finds no statistical 

evidence to reject the null hypothesis. Based on these results, we estimate models (6) and 

(7), which are robust to spatial effects. 
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Table 4 collects the estimates of the model parameters of the regression models (6) 

and (7). The parameter estimates in the low growth regime are 11 0.0765    for the spatial 

error model and 0711.011   for the spatial autoregressive model. For the high growth 

regime, we have 0691.012   for the spatial error model and 0635.012   for the 

spatial autoregressive model (columns 3 and 6 in Table 4). These values suggest the 

existence of increasing returns on population growth in US cities, because  01211   

(see models (6) and (7)). The p-value of the corresponding nonlinearity test is zero giving 

further support to the multiple equilibria hypothesis. Table 4 details the specific marginal 

effects of the different variables. Our results show that the unemployment rate has no 

significant effect on income growth but a very small but positive and statistically 

significant influence on population growth. Unemployment’s main effect concerns 

individuals’ movements rather than city’s productivity. 

In contrast to the analysis of income growth, both spatial regression models are 

statistically significant in all specifications for the study of population growth. 

Interestingly, whereas the spatial error model reports a negative spatial correlation between 

the residuals, the spatial autoregressive model indicates a positive relationship between the 

population growth rates in neighbouring locations. This phenomenon suggests that 

population city growth can occur because of population inflows at a regional level. 

Table 1 also shows interesting insights into the differences between those cities with 

low population growth rates and the national average. In contrast to the per-capita income 

analysis, unemployment rates are well below the average for these cities despite slightly 

lower than average educational levels. Interestingly, the structure of productive activity is 

highly diversified with important contributions by the construction, manufacturing and 

agriculture sectors. Location is also important; there are no cities in our sample with these 

characteristics in the Northeast region of the US. 

A comparison between the models in Tables 3 and 4 shows similar values for the 

parameter estimates of the regressors. One exception is the parameter values of the two 

human capital variables under study; increases in the percentage of population with the 

highest education level (some college or higher degree) have a positive impact on 

population growth, while the wider concept of human capital (high school graduate or 



 23

higher degree) has a significant negative effect. These results coincide with those of other 

studies that analyse the influence of education on city growth. Glaeser and Shapiro (2003) 

also find that workers have a different impact depending on their education levels (high 

school or college). Finally, the study of environmental variables shows that the influence of 

climate on population growth is weak, while the temperature index has a negative effect on 

growth, as expected: a higher index means that the city is a harder place in which to live. 

However, this coefficient loses significance in some specifications. The same applies to the 

precipitation variable. 

5.4. Robustness analysis 

To assess the robustness of the results discussed in the preceding subsection, we carry out a 

further empirical analysis. The aim of the following study is to assess the importance of the 

threshold model in both of the above growth equations for determining the presence of 

nonlinearities in the above convergence models. To do this we conduct three alternative 

regression studies that capture potential nonlinear effects of lagged per-capita income and 

population in the respective growth variables. First, we replace the threshold variables by a 

polynomial of order three. This alternative modelling strategy explores the statistical 

significance of higher order effects without requiring complex regression analysis. Further, 

this approach is highly tractable as it relies on standard multiple linear regression analysis. 

Note, however, that the method is not as explicit as the threshold model in determining the 

region exhibiting the nonlinearities. Second, we consider a model the makes allowance for 

interactions between the locational fundamentals and the lagged of per-capita income and 

population. By doing so, the model aims to capture multiplicative effects of the variable of 

interest on the response variable that are determined by the interaction of the variable with 

the rest of regressors. In some cases, it seems hard to separate locational fundamentals from 

increasing returns (i. e., the presence of a natural harbor or natural resources might be the 

cause of local increasing returns; Ellison and Glaeser, 1999); this new specification allows 

some variation of the fundamental parameters with city size. Third, we investigate the 

suitability of considering threshold nonlinearities on other variables instead of on per-capita 

income and lagged population.  

 Table 5 reports the results of the spatial tests to determine the existence of spatial 

effects in the regression model considering the polynomial of order three, instead of the 
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threshold variables, and the regressors considering locational fundamentals. The table 

shows clear evidence of such effects both for the spatial error model and the spatial lag 

model. Table 6 confirms this evidence and supports the nonlinearity of the lagged per-

capita income in explaining per-capita income growth. Note the lower log-likelihood values 

of the models in Table 6 compared to their counterparts in Table 4. These statistics suggest 

the better fit of the threshold model than of the polynomial and confirm the superior 

performance of threshold models for capturing piecewise nonlinearities in the data. The 

results for the polynomial model fitted to population growth are not reported because in this 

example the algorithm to estimate the model parameters only shows convergence for the 

simple model without locational fundamentals9. Surprisingly, the polynomial terms are not 

statistically significant in the simple case. The statistics of the spatial tests reported in Table 

7 provide further empirical evidence on the presence of such effects under other nonlinear 

specifications of the baseline model. Table 8 reports the results for the spatial regression 

models that incorporate interactions between the lagged income variable and the rest of 

explanatory variables. The results suggest some relevance of the interactions between 

variables, the log-likelihood function is high and comparable in some cases to the threshold 

model. Interestingly, some of the locational fundamentals lose statistical significance when 

combined with the rest of regressors incorporating the interactions. The results 

corresponding to the analysis of population growth are surprisingly disappointing. None of 

the locational fundamentals is significant in the model. The third robustness analysis 

explores the suitability of alternative threshold models putting the emphasis on 

nonlinearities on the locational fundamentals rather than in the endogenous income and 

population variables. Unreported results provide mixed evidence on the success of such 

models in explaining income and population growth. Thus, we find that human capital 

variables and some productive structure variables such as manufactures, wholesale and 

retail trade, and professional services exhibit nonlinearities in explaining city growth. 

Nevertheless, these nonlinearities in the locational fundamentals do not change the 

hypotheses tested nor the main results.  

Overall, the robustness analysis confirms the existence of nonlinearities in the 

relationship between lagged income and lagged population and next period’s growth. The 

                                                 
9 These results are available from the authors upon request. 
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threshold model shows a very strong performance in terms of model fit compared to the 

polynomial model and the model considering interactions with the locational fundamentals.  

 

6. Conclusion  

The empirical analysis of city growth has long been open to debate by researchers in urban 

and geographical economics. This article has discussed three competing theories given by 

increasing returns to scale leading to multiple equilibria, the importance of locational 

fundamentals in determining the different equilibrium paths and leading to conditional 

convergence outcomes or the absence of any of these theories. To assess which of these 

theories is better supported by the data on city growth we have developed a cross-sectional 

threshold model that makes allowance in the absence of shocks for two distinct equilibrium 

paths. This model incorporates a set of socio-economic and climatological variables that 

proxy the locational fundamentals. We have also considered the impact of spatial effects in 

city growth due to neighbouring locations and not reflected by our set of regressors.  

The conclusions of our empirical analysis that cover a sample comprising the 1,173 

largest US cities confirm the existence of increasing returns to scale on both city per-capita 

income and population growth in the 1990s. The threshold values that determine these 

nonlinearities correspond to wealth and population levels near the left end of their 

respective distributions, supporting the view that there exist some barriers to growth in 

small locations. This finding is consistent with the literature on poverty traps in 

macroeconomic studies of cross-sectional economic growth at the country level. 

Nevertheless, our results also highlight the importance of the locational fundamentals in 

explaining differences in growth across cities. These variables have in fact more 

explanatory power than the threshold variables chosen to capture the endogenous growth 

process. Both sets of results combined suggest that the process of city growth is determined 

to a large extent by initial conditions. Nevertheless, there are also some other factors that 

contribute to growth such as climate, the level of education or the composition of the 

productive structure, amongst others.  

Our results also suggest other sources of city growth not captured by the above 

theories and the corresponding empirical models. Thus, we observe strong spatial effects 
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pointing out the significance of neighbouring effects in determining city growth. These 

effects can be due to some common characteristic shared by cities in a specific region such 

as climate, legislation or economic policies that make cities more or less appealing for 

attracting population and wealth. The importance of these spatial effects suggest that there 

may be other theories, beyond and above the three aforementioned, building on the 

existence of clustering effects at the county or region level that can provide alternative 

explanations of city growth. Thus, these spatial effects can capture internal economies of 

scale, large industry effects spilling over a region, cultural effects characteristic of a region 

or state or knowledge diffusion across locations. The understanding of the variables behind 

the spatial effects is beyond the scope of this paper and is left for future research.  

 Finally, it is worth mentioning that the period considered does not provide 

conclusive evidence of one theory against the others. This is because the growth process 

observed in this decade can change in former or later periods depending on several factors 

(e.g. innovation cycles; see Robson, 1973; Favaro and Pumain, 2011). 
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Appendix: Data sources and Tables 

The US Census Bureau offers information on a large number of variables for different 

geographical levels, available on its website: www.census.gov. Using the American 

FactFinder tool, you can download data from decennial census in 1990 and 2000 on most 

of the variables in our study: population and per-capita income levels in 1990 and 2000, 

median travel time to work, educational variables and productive structure variables. Data 

on active population and unemployed people, required to construct the unemployment 

rates, can also be found there. The data set containing all these economic and demographic 

city variables used in the regressions is the 1990 Census Summary Tape File 3 (STF 3). 

Land and water area data, needed to construct the variables land area growth, population 

per square mile and percentage of water area, also come from the US Census Bureau: 

http://www.census.gov/population/www/censusdata/places.html, and 

http://www.census.gov/geo/www/gazetteer/places2k.html. 

Finally, the source for the weather variables (temperatures used to construct the discomfort 

index and annual precipitation) is the US National Oceanic and Atmospheric 

Administration (NOAA), National Climatic Data Center (NCDC), Climatography of the 

United States, Number 81, available online at: 

http://cdo.ncdc.noaa.gov/cgi-bin/climatenormals/climatenormals.pl. 
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Table 1. Summary table: means and standard deviations, city variables in 1990 

  All sample Bottom income group Bottom population group 
Variable Mean Stand. dev. Mean Stand. dev. Mean Stand. dev. 
Population Growth (ln scale), 1990–2000 0.14 0.20 0.15 0.28 0.62 0.30 
Per-Capita Income Growth (ln scale), 1989–1999 0.38 0.10 0.42 0.13 0.48 0.14 
Urban sprawl             
Land Area Growth (ln scale) 0.09 0.14 0.14 0.19 0.22 0.20 
Population per Square Mile 7.90 0.77 8.03 0.91 7.05 0.73 
Median Travel Time to Work (in minutes) 20.68 4.95 19.49 4.73 22.82 4.84 
Human capital variables             
Percent population 18 years and over: Some college or higher degree 37.85 11.76 27.09 15.08 37.02 10.41 
Percent population 18 years and over: High school graduate or higher degree 58.55 9.67 45.78 14.52 56.35 9.52 
Productive structure variables             
Unemployment rate 6.24 2.83 10.83 4.22 4.90 3.00 
Percent employed civilian population 16 years and over:       
   Agriculture, forestry, fishing, and mining 1.95 2.62 3.93 5.53 3.51 4.24 
   Construction 5.62 2.00 5.54 2.35 6.51 2.52 
   Manufacturing (durable and nondurable goods) 17.46 7.54 17.59 9.15 18.81 6.26 
   Wholesale and Retail trade 22.51 3.01 22.67 3.37 22.22 3.37 
   Finance, insurance, and real estate 7.08 2.62 4.56 1.39 7.08 2.53 
   Educational, health, and other professional and related services 24.19 6.75 24.33 9.11 20.47 4.09 
   Public administration 4.70 3.36 5.33 3.98 4.75 2.71 
Weather             
Temperature index 65.59 11.40 68.88 10.78 64.37 9.50 
Annual precipitation (inches) 34.90 14.56 30.84 17.27 33.94 15.07 
Percentage of water area 0.09 0.33 0.05 0.12 0.02 0.04 
Regional dummy variables             
Northeast Region 13.30%  8.65%  0.00%  
Midwest Region 28.64%  17.31%  30.00%  
South Region 27.54% 35.58% 35.00%
West Region 30.52%   38.46%   35.00%   

Note: Average values of the variables under study across 1,173 observations (All sample), across the bottom per-capita income group 

(104 observations) and across bottom population group (60 observations). Source: 1990 and 2000 Census, www.census.gov. 
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Table 2. Diagnostics for per-capita income and population models 

 

 Income growth model Population growth model 

Test Statistic p-value Statistic p-value 

Spatial error:     
   Moran's I 1.253 0.210 1.124 0.261 
   Lagrange multiplier 1039.676 0.000 252.767 0.000 

   Robust Lagrange multiplier 1080.431 0.000 268.014 0.000 

Spatial lag:     
   Lagrange multiplier 1.999 0.157 8.516 0.004 

   Robust Lagrange multiplier 42.754 0.000 23.762 0.000 
 

 

Note: The null hypothesis in all tests is that there is zero spatial autocorrelation.
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Table 3. Per-capita income growth models 

  Spatial error models  Spatial lag models 
Variables (1) (2) (3)  (4) (5) (6) 
Per-Capita Income (ln scale) in 1989 u  -0.0683*** -0.0521*** -0.1522***  -0.0361*** -0.0457*** -0.1513*** 
 (0.0097) (0.0115) (0.0187)  (0.1385) (0.0126) (0.0198) 
Per-Capita Income (ln scale) in 1989 u  -0.0603*** -0.0457*** -0.1464***  -0.0308** -0.0402*** -0.1459*** 
 (0.0092) (0.0109) (0.0183)  (0.1311) (0.0119) (0.0193) 
Urban sprawl              
Land Area Growth (ln scale)  0.0738*** 0.0752***   0.0934*** 0.0964*** 
  (0.0193) (0.0187)   (0.0195) (0.0191) 
Population per Square Mile (ln scale)  -0.0193*** -0.0239***   -0.0261*** -0.0324*** 
  (0.0039) (0.0042)   (0.0042) (0.0043) 
Median Travel Time to Work (in minutes)  0.0017** 0.0031***   0.0002 0.00012 
  (0.0006) (0.0007)   (0.0007) (0.0008) 
Human capital variables              
Percentage population 18 years and over: some college or higher degree   0.0016**    0.0014* 
   (0.0008)    (0.0008) 
Percentage population 18 years and over: high school graduate or higher degree   0.0012    0.0016* 
   (0.0007)    (0.0007) 
Productive structure variables              
Unemployment rate   1.40e-08    1.71e-07 
   (1.98e-07)    (2.02e-07) 
Percentage employed civilian population 16 years and over:        
   Agriculture, forestry, fishing, and mining   -0.0032**    -0.0021* 
   (0.0012)    (0.0013) 
   Construction   -0.0088***    -0.0075*** 
   (0.0017)    (0.0018) 
   Manufacturing (durable and nondurable goods)   -0.0008    -0.0014* 
   (0.0007)    (0.0007) 
   Wholesale and Retail trade   -0.0048***    -0.0047*** 
   (0.0011)    (0.0012) 
   Finance, insurance, and real estate   0.0013    0.0008 
   (0.0016)    (0.0016) 
   Educational, health, and other professional and related services   -0.0036***    -0.0036*** 
   (0.0008)    (0.0008) 
   Public administration   -0.0036***    -0.0033*** 
   (0.0010)    (0.0010) 
Weather              
Temperature index  -0.0032*** -0.0022***   -0.0036*** -0.0029*** 
  (0.0004) (0.0004)   (0.0004) (0.0004) 
Annual precipitation (inches)  0.0008*** 0.0005*   0.0009*** 0.0009*** 
  (0.0003) (0.0003)   (0.0003) (0.0002) 
Percentage of water area  0.0352*** 0.0323***   0.4016*** 0.0386*** 
  (0.0075) (0.0073)   (0.0076) (0.0074) 
Regional dummies No Yes Yes  No Yes Yes 

  -0.0003*** -0.0002*** -0.0001***        

 (0.0000) (0.0000) (0.0000)     
         -0.0007*** -0.0001 -0.0002 

     (0.0000) (0.0000) (0.0000) 

Wald test of   or 0  60.228 19.725 33.046  49.358 0.788 2.491 
Log likelihood 1123.2568 1255.5684 1303.3859  1083.6497 1241.3496 1278.4929 

Note: Dependent variable: Per-Capita Income growth 1989–1999 (ln scale). Significant at the *** 1% level, ** 5% level, * 10% level. 
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 Table 4. Population growth models 

  Spatial error models   Spatial lag models 
Variables (1) (2) (3)  (4) (5) (6) 
Population in 1990 (ln scale) u  -0.1324*** -0.0754*** -0.0765***  -0.1349*** -0.0685*** -0.0711*** 
 (0.0106) (0.0088) (0.0091)  (0.0104) (0.0088) (0.0091) 
Population in 1990 (ln scale) u  -0.1171*** -0.0668*** -0.0691***  -0.1188*** -0.0598*** -0.0635*** 
 (0.0092) (0.0077) (0.0081)  (0.0089) (0.0076) (0.0081) 
Urban sprawl              
Land Area Growth (ln scale)  0.4696*** 0.4605***   0.5125*** 0.4951*** 
  (0.0342) (0.0322)   (0.0331) (0.0315) 
Population per Square Mile (ln scale)  -0.0775*** -0.0640***   -0.0916*** -0.0761*** 
  (0.0072) (0.0072)   (0.0067) (0.0067) 
Median Travel Time to Work (in minutes)  0.0144*** 0.0082***   0.0100*** 0.0050*** 
  (0.0011) (0.0013)   (0.0011) (0.0012) 
Human capital variables              
Percentage population 18 years and over: some college or higher degree   0.0085***    0.0075*** 
   (0.0013)    (0.0013) 
Percentage population 18 years and over: high school graduate or higher degree   -0.0057***    -0.0046*** 
   (0.0011)    (0.0011) 
Productive structure variables              
Unemployment rate   1.32e-06***    1.40e-06*** 
   (3.84e-07)    (3.83e-07) 
Percentage employed civilian population 16 years and over:        
   Agriculture, forestry, fishing, and mining   0.0019    0.0045** 
   (0.0021)    (0.0021) 
   Construction   0.0012    0.0036 
   (0.0029)    (0.0029) 
   Manufacturing (durable and nondurable goods)   -0.0042***    -0.0044*** 
   (0.0012)    (0.0012) 
   Wholesale and Retail trade   -0.0058***    -0.0054*** 
   (0.0020)    (0.0019) 
   Finance, insurance, and real estate   -0.0023    -0.0031 
   (0.0025)    (0.0025) 
   Educational, health, and other professional and related services   -0.0120***    -0.0110*** 
   (0.0013)    (0.0014) 
   Public administration   -0.0072***    -0.0059*** 
   (0.0017)    (0.0017) 
Weather              
Temperature index  -0.0000 -0.0009   -0.0011 -0.0021*** 
  (0.0006) (0.0007)   (0.0007) (0.0007) 
Annual precipitation (inches)  -0.0015*** -0.0007   -0.0009* -0.0002 
  (0.0005) (0.0005)   (0.0005) (0.0005) 
Percentage of water area  -0.0287** -0.0362***   -0.0153 -0.0244** 
        
Regional dummies No Yes Yes  No Yes Yes 

  -0.0001* -0.0001* -0.0001***        

 (0.0000) (0.0000) (0.0000)     
         0.0031*** 0.0023*** 0.0015*** 

     (0.0003) (0.0004) (0.0004) 

Wald test of   or 0  3.772 3.480 7.058  82.914 28.948 12.569 
Log likelihood 314.2802 611.6961 693.3034  352.3903 624.0187 695.4746 

Note: Dependent variable: Population growth 1990–2000 (ln scale). Significant at the *** 1% level, ** 5% level, * 10% level. 
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Table 5. Diagnostics for per-capita income and population models for polynomial model accounting for higher orders 

 

 Income growth model Population growth model 

Test Statistic p-value Statistic p-value 

Spatial error:     
   Moran's I 1.313 0.189 1.149 0.251 
   Lagrange multiplier 1057.155 0.000 242.690 0.000 

   Robust Lagrange multiplier 1124.464 0.000 277.952 0.000 

Spatial lag:     
   Lagrange multiplier 20.608 0.000 1.924 0.165 

   Robust Lagrange multiplier 87.917 0.000 37.186 0.000 
 

 

Note: The null hypothesis in all tests is that there is zero spatial autocorrelation.
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Table 6. Robustness analysis: polynomial model for per-capita income growth 

  Spatial error models  Spatial lag models 
Variables (1) (2) (3)  (4) (5) (6) 
Per-Capita Income (ln scale) in 1989  -56.720*** -61.797*** -59.650***  -47.037*** -60.265*** -58.541*** 
 (0.5584) (0.4631) (0.3866)  (8.5703) (7.5814) (7.262) 
Per-Capita Income (ln scale) in 1989 to power 2 5.7518*** 6.2658*** 6.0300***  4.7722*** 6.1152*** 6.0252*** 
 (0.0661) (0.4599) (0.0397)  (0.8825) (0.7808) (0.0942) 
Per-Capita Income (ln scale) in 1989 to power 3 -0.1939*** -0.2112*** -0.2029***  -0.1610*** -0.2064*** -0.2031*** 
 (0.0026) (0.0017) (0.0016)  (0.0302) (0.0267) (0.0004) 
Urban sprawl              
Land Area Growth (ln scale)  0.0494** 0.0556***   0.0685*** 0.0745*** 
  (0.0203) (0.0196)   (0.0210) (0.0118) 
Population per Square Mile (ln scale)  -0.0024 -0.0098**   -0.0092** -0.0088*** 
  (0.0040) (0.0040)   (0.0042) (0.0034) 
Median Travel Time to Work (in minutes)  -0.0002 0.0015*   -0.0014** -0.0011* 
  (0.0006) (0.0007)   (0.0007) (0.0006) 
Human capital variables              
Percentage population 18 years and over: some college or higher degree   0.0021*    0.0017* 
   (0.0008)    (0.0007) 
Percentage population 18 years and over: high school graduate or higher degree   -0.0000    0.0009* 
   (0.0007)    (0.0005) 
Productive structure variables              
Unemployment rate   1.36e-07    1.83e-07 
   (1.75e-07)    (1.98e-07) 
Percentage employed civilian population 16 years and over:        
   Agriculture, forestry, fishing, and mining   -0.0060**    -0.0042** 
   (0.0013)    (0.0023) 
   Construction   -0.0075***    -0.0073*** 
   (0.0017)    (0.0020) 
   Manufacturing (durable and nondurable goods)   0.0003    0.0006 
   (0.0007)    (0.0010) 
   Wholesale and Retail trade   -0.0029**    -0.0050*** 
   (0.0011)    (0.0020) 
   Finance, insurance, and real estate   0.0008    0.0010 
   (0.0015)    (0.0017) 
   Educational, health, and other professional and related services   -0.0014*    -0.0022*** 
   (0.0008)    (0.0012) 
   Public administration   -0.0026***    -0.0029*** 
   (0.0009)    (0.0013) 
Weather              
Temperature index  -0.0027*** -0.0017***   -0.0036*** -0.0020*** 
  (0.0004) (0.0004)   (0.0004) (0.0004) 
Annual precipitation (inches)  0.0009*** 0.0005*   0.0013*** 0.0009*** 
  (0.0003) (0.0002)   (0.0003) (0.0004) 
Percentage of water area  0.0322*** 0.0299***   0.0400*** 0.0306*** 
  (0.0068) (0.0065)   (0.0070) (0.0035) 
Regional dummies No Yes Yes  No Yes Yes 

  0.0003*** 0.0000***  0.0000***        

 (0.0000) (0.0000) (0.0000)     
         -0.0010*** -0.0005 0.0000 

     (0.0000) (0.0000) (0.0000) 

Wald test of   or 0  318.647 86.784 121.071  117.967 17.906 114.288 
Log likelihood 1137.0772 1234.052 1284.927  1055.958 1201.407 1256.924 

Note: Dependent variable: Per-Capita Income growth 1989–1999 (ln scale). Significant at the *** 1% level, ** 5% level, * 10% level. 



 40

Table 7. Diagnostics for per-capita income and population models for model accounting for interactions 

 

 Income growth model Population growth model 

Test Statistic p-value Statistic p-value 

Spatial error:     
   Moran's I 1.494 0.135 1.157 0.247 
   Lagrange multiplier 696.728 0.000 230.749 0.000 

   Robust Lagrange multiplier 744.901 0.000 265.963 0.000 

Spatial lag:     
   Lagrange multiplier 16.444 0.000 1.466 0.226 

   Robust Lagrange multiplier 64.617 0.000 36.680 0.000 
 

 

Note: The null hypothesis in all tests is that there is zero spatial autocorrelation.
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Table 8. Robustness analysis: interaction effects model for per-capita income growth 

  Spatial error models  Spatial lag models 
Variables (1) (2) (3)  (4) (5) (6) 
Per-Capita Income (ln scale) in 1989  -0.0253*** -0..2958*** -0.6863  0.0256** -0.2596** -0.4830* 
 (0.0055) (0.0942) (0.2346)  (0.0101) (0.1203) (0.2766) 
Urban sprawl            
Land Area Growth (ln scale)  1.8274** 1.3963**   1.9583** 1.3428* 
  (0.7407) (0.7084)   (0.7655) (0.7330) 
Land Area Growth (ln scale) *int  -0.1874** -0.1412*   -0.1992 -0.1339* 
  (0.0780) (0.0746)   (0.0807) (0.0772) 
Population per Square Mile (ln scale)  -0.2742** -0.5385   -0.2406* -0.5185*** 
  (0.1082) (0.1263)   (0.1244) (0.1328) 
Population per Square Mile (ln scale) *int  -0.0193** 0.0546***   0.0240** 0.0519*** 
  (0.0039) (0.0132)   (0.0129) (0.0138) 
Median Travel Time to Work (in minutes)  -0.0065 0.0203   -0.0098 0.0200 
  (0.0196) (0.0243)   (0.0202) (0.0253) 
Median Travel Time to Work (in minutes) *int  0.0007 -0.0018   0.0010 -0.0019 
  (0.0020) (0.0025)   (0.0021) (0.0026) 
Human capital variables            
Percentage population 18 years and over: some college or higher degree   -0.0638***    -0.0464** 
   (0.0213)    (0.0224) 
Percentage population 18 years and over: some college or higher degree*int   0.0068***    0.0051** 
   (0.0022)    (0.0023) 
Percentage population 18 years and over: high school graduate or higher degree   -0.0244    -0.0448** 
   (0.0202)    (0.0210) 
Percentage population 18 years and over: high school graduate or higher degree*int   0.0027    0.0048** 
   (0.0021)    (0.0022) 
Productive structure variables            
Unemployment rate   5.66e-06    0.0000 
   (0.0000)    (0.0000) 
Unemployment rate   -5.74e-07    -1.06e-06 
   (1.14e-06)    (1.17e-06) 
Percentage employed civilian population 16 years and over:        
   Agriculture, forestry, fishing, and mining   0.0064    0.0248 
   (0.0524)    (0.0549) 
   Agriculture, forestry, fishing, and mining*int   -0.0012    -0.0030 
   (0.0055)    (0.0058) 
   Construction   -0.1957***    -0.1876*** 
   (0.6051)    (0.0631) 
   Construction*int   0.0198**    0.0191** 
   (0.0063)    (0.0066) 
   Manufacturing (durable and nondurable goods)   0.0086    0.0166 
   (0.0198)    (0.0218) 
   Manufacturing (durable and nondurable goods)*int   -0.0008    -0.0017 
   (0.0021)    (0.0023) 
   Wholesale and Retail trade   0.0974**    0.1213*** 
   (0.0316)    (0.0348) 
   Wholesale and Retail trade*int   -0.0104**    -0.0130*** 
   (0.0033)    (0.0036) 
   Finance, insurance, and real estate   0.1436***    0.1805*** 
   (0.0417)    (0.0436) 
   Finance, insurance, and real estate*int   -0.0147***    -0.0186*** 
   (0.0043)    (0.0045) 
   Educational, health, and other professional and related services   0.0257    0.0435* 
   (0.0227)    (0.2502) 
   Educational, health, and other professional and related services*int   -0.0029    -0.0048* 
   (0.0023)    (0.0026) 
   Public administration   0.0314    0.0534 
   (0.0349)    (0.0374) 
   Public administration*int   -0.0036    -0.0059 
   (0.0036)    (0.0039) 
Weather            
Temperature index  -0.0185** -0.0004   -0.0190** -0.0003 
  (0.0073) (0.0082)   (0.0077) (0.0087) 
Temperature index*int  0.0016** -0.0001   0.0016** -0.0002 
  (0.0007) (0.0008)   (0.0007) (0.0008) 
Annual precipitation (inches)  0.0105* -0.0049   0.0118* -0.0062 
  (0.0057) (0.0061)   (0.0062) (0.0063) 
Annual precipitation (inches) *int  -0.0010* 0.0006   -0.0011* 0.0007 
  (0.0006) (0.0006)   (0.0006) (0.0006) 
Percentage of water area  0.0362 0.4086**   0.0986 0.4680** 
  (0.1928) (0.1790)   (0.1973) (0.1849) 
Percentage of water area*int  -0.0007 -0.0391**   -0.0064 -0.0444** 
  (0.0196) (0.0182)   (0.0200) (0.0188) 
Regional dummies No Yes Yes  No Yes Yes 

  -0.0005*** -0.0000*** -0.0001***        

 (0.0000) (0.0002) (0.0000)     
         -0.0009*** -0.0004 -0.0006 

     (0.0000) (0.0001) (0.0000) 

Wald test of   or 0  58.409 10.000 8.999  87.220 8.0660 21.518 
Log likelihood 1045.808 1194.296 1311.958  1033.872 1172.394 1278.457 

Note: Dependent variable: Per-Capita Income growth 1989–1999 (ln scale). int represents the interaction between the lagged income 

and the explanatory variable.  Significant at the *** 1% level, ** 5% level, * 10% level. 


