The University of Southampton
University of Southampton Institutional Repository

Disposal in the deep sea: analogue of nature or faux ami?

Tyler, P.A. (2003) Disposal in the deep sea: analogue of nature or faux ami? Environmental Conservation, 30, (1), pp. 26-39. (doi:10.1017/S037689290300002X).

Record type: Article


The deep sea is the world's largest ecosystem by volume and is assumed to have a high assimilative capacity. Natural events, such as the sinking of surface plant and animal material to the seabed, sediment slides, benthic storms and hydrothermal vents can contribute vast amounts of material, both organic and inorganic, to the deep ocean. In the past the deep sea has been used as a repository for sewage, dredge spoil and radioactive waste. In addition, there has been interest in the disposal of large man-made objects and, more recently, the disposal of industrially-produced carbon dioxide. Some of the materials disposed of in the deep sea may have natural analogues. This review examines natural processes in the deep sea including the vertical flux of organic material, turbidity currents and benthic storms, natural gas emissions, hydrothermal vents, natural radionuclides and rocky substrata, and compares them with anthropogenic input including sewage disposal, dredge spoil, carbon dioxide disposal, chemical contamination and the disposal of radioactive waste, wrecks and rigs. The comparison shows what are true analogues and what are false friends. Knowledge of the deep sea is fragmentary and much more needs to be known about this large, biologically-diverse system before any further consideration is given to its use in the disposal of waste.

Full text not available from this repository.

More information

Published date: March 2003


Local EPrints ID: 37652
ISSN: 0376-8929
PURE UUID: 358ca9e6-c350-458b-a200-6a68aa02b42b

Catalogue record

Date deposited: 24 May 2006
Last modified: 17 Jul 2017 15:41

Export record


Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton:

ePrints Soton supports OAI 2.0 with a base URL of

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.