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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF PHYSICAL AND APPLIED SCIENCES

Electronics and Computer Science

Doctor of Philosophy

INVESTIGATING PHASE SYNCHRONISATION IN EEG SIGNALS FOR BRAIN

CONNECTIVITY ANALYSIS

by Wasifa Jamal

The brain holds key information regarding the information processing capability of individuals and

recent advances in sensor devices and technology have attracted researchers to question the working of

this complex organ. It is not only the elusiveness of the brain that has drawn recent research attention

but also the claim of doctors that brain function is key in neurological disorders. Disorders like Autism

and Attention Deficit Hyperactivity Disorder (ADHD) not to mention other forms of neurobiological

diseases have been attributed to disproportionate and disrupted connectivity in the brain. It is envisaged

that more accurate and thorough understanding such connectivity can pave the way for medical research

of diseases such as these which are deeply rooted to neural level information exchange deficits.

The main objective of this work is to develop an effective means to quantitatively characterise functional

connectivity in the brain. Phase synchronisation is reported as the key manifestation of the underlying

mechanism of information coupling between different brain regions. This work, therefore first the phase

relationships between Electroencephalogram (EEG) signals have been investigated to understand the

synchronisation pattern underlying them during the execution of a task. The pursuit to characterise

time evolving phase synchrony leads to the identification of the existence of discrete states with quasi-

stable phase topography call synchrostates in EEG datasets from range of subjects. These states ex-

hibited switching patterns which were characteristic to the stimuli provided during a cognitive task,

specifically in this case face perception tasks. The switching of these states were modelled in a prob-

abilistic framework using a finite Markov model and the stability of the states are represented by the

self-transition probabilities.

The degree of phase synchronisation during the existence of each state is then translated into functional

connectivity maps and complex network graph measures were applied on it to obtain a set of metrics

that quantify the characteristics of such connections formed within the brain. These quantitative brain

connectivity measures were used as features to solve a classification problem between autistic and typ-

ical children which resulted in an accuracy of 94.7%. The connectivity parameters were then used to

characterise behavioural trait scores of anxious children by developing a regression model correlating

these to the standardised behavioural scores calculated from questionnaires. Traits like sadness, state

anxiety and anger could be modelled effectively using the metrics reported in this study.

This work lays the foundation for further exploration of these quantitative measures for characterising

a variety of neurodegenerative diseases and hence may result in a new type of diagnostic process to aid

the existing tools available to the clinicians.

mailto:wj4g08@ecs.soton.ac.uk
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Chapter 1

Introduction

1.1 Motivation

The prevalence rates for neurobiological disorders like Autism, Aspergers Syndrome

(AS), Attention Deficit Hyperactivity Disorder (ADHD), anxiety etc. is increasing

throughout the world (Kramer (1980)). There is a rising pandemic of people suffer-

ing from such polygenetic developmental and neurological disorders and the chronic

symptoms associated with them. Due to the absence of effective techniques to reduce

incidence, the prevalence of such diseases will continue to increase (Landa (2008)). Typ-

ically although the symptoms of these illnesses are present at the age of 2-4 years they

are only diagnosed an average of 10 years after the advent of the first symptom (of the

Surgeon General (US et al.(2001)). It is well accepted in the scientific community that

early diagnosis can greatly improve the prognosis of a child with disorders such as autism

(Morrison et al. (2002)). Researchers like Dawson, Oberman and others (Dawson (2008),

Oberman and Pascual-Leone (2008)) consider early treatment of children with Autism

Spectrum Disorder (ASD) as a crucial step by intervention during a critical period when

the brain’s plasticity is maximal. Others have reported that intensive and specialised

treatment in a timely manner can have an encouraging impact on the development of

language, cognitive and social functions of an autistic patient (Dawson et al. (2010),

National Research Council (2001)).

Initiation of early intervention in children with neurobiological disorders is pivotal for

attaining an eminent outcome through treatment (Altemeier and Altemeier (2009)) and

timely, intensive treatments have been known to have a favourable impact on the be-

haviour of children (Rogers and Vismara (2008)). Undetected disorders lead to a delay

in the initiation of appropriate treatment, which can mute the effects of the syndrome if

not prevent the onset of a full-blown disorder all together ( Reichow and Wolery (2009),

Stone and Yoder (2001)). Hence, early detection is essential in controlling the onset of

such traits and critical for early intervention (Szatmari et al. (2003)).

1
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There are a myriad of treatment protocols that have been demonstrated to be efficacious

with children with behaviour disorders (Taylor (2014), Lang et al. (2012), Hakamata

et al. (2010)). However, since most of these neurobiological disorders, including autism

and ADHD, are by nature heterogeneous and evolutionary, it is not likely that a specific

treatment will work for all children (Doyle (2005), Amaral et al. (2008)). The disar-

rayed attributes of such diseases and the irregular manifestation of symptoms among

those afflicted, calls for more individualised intervention schemes based on the individual

characteristics of children (White (2000)). Such personalised patient centric therapies

could have substantial benefits for individuals as well as the society, however they call

for task specific, subjective evaluation of the individuals (Morrison et al. (2002)).

Current methods of assessing children and adolescents with disorders encompass a wide

range of interview formats and behavioural screening scales. The conventional approach

to screen for developmental disorders in children is through behavioural assessments or

from self-reported tests and interviews (Dietz et al. (2006)). This method of scoring

a child is influenced by many factors, such as difference in opinion of the clinicians,

environmental impact, as well as uncertain or doubtful answers to interview questions.

The conventional screening method is only effective in children who externalise their

problems through atypical behaviour. Many of them rely on parent-rated symptoms

of a child’s behaviour and researchers have questioned the extent to which adults are

able to detect and accurately report internalising symptoms in children and adolescents

(Choudhury et al. (2003)). Some symptoms are too mild to be noticed by the parents

and teachers, hence the child’s problems are neglected until a full blown set of symptoms

emerge. Diagnostic accuracy and reliability of self-report measures is also questioned

and clinician administered formats are limited by difference in opinion and potential

bias (Antony (2001)).

The subjective nature of the behavioural evaluation technique stipulates the need for

more qualitative and objective psychophysiological measures, that have the potential to

supplement the existing conventional methods in providing a more accurate evaluation

of symptoms in children in the general population. This approach, if further developed

in clinical samples, can aid diagnostic accuracy of such disorders in the future. As the

conventional behavioural methods are not very conclusive and do not generally facilitate

the early diagnosis and patient centric treatment protocol, we look into physiological

signatures for the quantification of the disease. The aim is to use physiological signals

for the identification of variables that support the doctors in the diagnosis as well as to

characterise the patients so as to give apriori indication on the most suitable therapeutic

program that will benefit the individual children.

Research like that of (Rippon et al. (2007b)) proposing that, disorders such as autism

could be a manifestation of disproportionate connections between brain regions, moti-

vates researchers to look into the brain to find answers to clinical questions. With the

advent of technology and the development of sophisticated techniques to study brain
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function, research can take a different turn and brain dynamics can be used to better

understand these disorders.

Researchers have looked into many techniques to understand the information exchange in

the brain in order to decrypt the signal propagation pathways (Friston (2011)). Although

there has been progressive research, the mystery of the brain remains elusive till date.

Most of the knowledge of how the brain operates and its localised functional areas is

known from studies of the brain done over many years (Schoenemann (2006), Cohen

et al. (2008)). Modern technology provides a window into the human brain using an

array of techniques. Most commonly used methods by researchers to carry out studies

in the field of cognitive neuroscience are given below:

• Analysing electroencephalograms (EEG): electrical activity of the brain recorded

at the scalp

• Other modern techniques used are Positron Emission Tomography (PET), func-

tional Magnetic Resonance Imaging (fMRI), Single Photon Emission Computed

Tomography (SPECT), Magnetoencephalopham (MEG), Magnetic Resonance Spec-

troscopy (MRS), Diffusion Tensor Imaging (DTI) etc.

• Synthesized data

In case of studying the brain of children and pathological patients, the ideal modality

is the one that is non-invasive. More detailed spatial information can be achieved by

using invasive tools, however it is difficult to attain the same level of detail using other

non-invasive modalities. Spatial information gathered using BOLD (Blood-oxygen-level

dependent) signals allows one to gain millimetre-resolution information about the physi-

cal areas of the brain and there relative activation during a task (Logothetis and Wandell

(2004)). However the steep cost of PET scanners and the low time and temporal preci-

sion of fMRI has made EEG a very popular choice among researchers. Currently there is

no existing non-invasive recording tool that trace neural activity at both high temporal

and spacial resolution. Temporal information is crucial in understanding the dynamics

of patients as it allow the investigation of time-sensitive integration of information from

discrete brain areas (Cold et al. (2007)). EEG signals have a high temporal resolu-

tion which makes them ideal for estimating functional and effective connectivity which

depend largely on calculating the correspondence of neural signals over time (Sakkalis

(2011)).

Signal analysis plays an important role in the mapping of brain dynamics as it throws

some light into the understanding of electrophysiological signals recorded from the brain

and brings us a step closer to discovering the underlying mechanics of the brain. Neuro-

biological disorders, like the ones mentioned above can prevail due to under functioning

integrative circuitry leading to deficits in neural level information integration (Just et al.
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(2004)), (Rippon et al. (2007b)). With more and more advances in the field of cogni-

tive neuroscience for measuring and modelling connectivity, it sets an ideal platform for

studying the complexity of the brain network. The comparison of brain network topolo-

gies between subject populations can reveal presumed abnormalities and may also lead

to the identification of distinguishable measures for the classification of such populations

(Rubinov and Sporns (2010)) hence leading to early detection. Various techniques have

been proposed for mapping brain connectivity, but developing an effective and accurate

method has always been a challenge.

Deeper insight into the mechanics of the brain will allow the use of technology to guide

the clinicians in diagnosis as well as early detection and allow more tailored therapy,

like neurofeedback, to the patients. Quantitative results acquired from connectivity

analysis and a comprehensive understanding of the disrupted connections in the brain

will pave the way for future neurofeedback to patients. The efficacy and effectiveness of

neurofeedback weighs heavily on the computer generated metric that the system tries to

regulate in the feedback loop (Coben et al. (2010)). The current neurofeedback protocols

call for enhancing poorly regulated brainwave (delta, theta, alpha and beta) patterns.

However these do not take into account the temporal dynamics of the brain waves and

also the underlying connectivity patterns of the patient undergoing the therapy (Koush

et al. (2013)). Since many of the neurobiological disorders stem from disruptions in

the neural connectivity (Just et al. (2004), Rippon et al. (2007b)), connectivity data

when considered during neurofeedback has remediating effects (Coben (2007)). Thus

connectivity analysis is essential in therapy and also in any form of neurofeedback to

achieve reduced symptomatology of these disorders.

1.2 Objective

Motivated by the fact that early detection and therapy can reduce some of the numerous

impacts of neurobiological diseases like Autism, ADHD, AS, etc., research in these fields

have taken a turn towards being more proactive than reactive. Since many of these

disorders are constellations of disrupted connectivity (Hazlett et al. (2005), Lainhart

et al. (2006)) in the brain, the focus of this research is to find quantitative metrics

from brain connectivity, which can then be applied for biomedical applications like the

diagnosis and prognosis of neurodevelopmental disorders such as autism, ADHD, AS

etc.

In order for the therapy or treatment method to be applicable in the clinical environment,

it needs to be capable of carrying out the task specific characterisation of subjects. Fur-

thermore, intensive neurofeedback treatment systems, like Deep brain stimulation and

transcranial magnetic stimulation or any form of bio feedback that is to be provided to

the patients, require knowledge of the transients of the brain dynamics during cognition
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Figure 1.1: Flowchart showing the core issues to be investigated to accomplish
the research objective.

(Koush et al. (2013)). Hence stimulus specific and dynamic quantification of connec-

tivity is a prerequisite for an effective connectivity guided therapy and feedback. This

sort of temporal information is crucial in understanding of the dynamics of patients as

it allow the investigation of time-sensitive integration of information from discrete brain

areas (Terry and Mahadik (2007)).

The objective here is to utilise a set of advanced, sophisticated signal processing algo-

rithms that facilitate accurate characterisation of stimulation-specific brainwave anoma-

lies and connectivity between different regions of the brain; thus giving definite insight

into the process of information integration ability of the brain in a stimulus-specific way.

The Figure 1.1 highlights the research focus and the flowchart with the blocks required

to achieve our objectives.

1.3 Challenges

High complexity of the mammalian brain in conjunction with the limited understanding

of its physiology is one of the major reasons why it is difficult to model its connectivity.

Another major bottleneck is that the human brain reaction time to any stimuli is around

150ms (Thorpe et al. (1996)). Modelling connectivity at such granular time intervals is

not an easy task. The current research trend is steered towards tackling these issues.

Given the above challenges, advances in the neuroimaging techniques allow brain re-

searchers to non-invasively monitor brain at millisecond order time resolution with EEG;

however one has to compromise on the spatial accuracy of this modality. EEG signals

also come with its trail of problems, like contamination from artifacts (Romo Vázquez

et al. (2012)), corruption from volume conduction (Vinck et al. (2011)), etc. Any con-

clusions made from these signals need to be validated and carefully interpreted to be

free from such problems.
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EEG connectivity can also be rendered at sensor or source level. These two paradigms

have their own set of advantages and disadvantages. In connectivity estimates, artificial

synchrony may occur due to linear mixing between nearby sources (Palva and Palva

(2012)). Nevertheless, this artificial component may be attenuated or removed by using

precautionary methods. When conducting analysis on stimulus evoked responses in

humans, one must also consider the latency of the evoked responses. Latency should

be factored into the experimental design so that the time window of interest is long

enough for the response to be acquired and not contaminated by other irrelavent evoked

responses (Truccolo et al. (2002)).

1.4 Contribution

The contributions of this research are:

• Reports the existence of a new phenomenon called synchrostates. These are a

set of distinct states, where the relative phase between EEG electrodes are quasi-

stable of the order of milliseconds and they switch amongst themselves during the

execution period of a task.

• Establishes the presence of the synchrostates and their consistency during face

perception tasks by showing their existence over a large number of different simu-

lations and studies.

• Shows that these states when coupled with their stability time periods may be

used to derive the functional connectivity in brain following the principles of phase

synchronisation.

• Reports the theoretical foundation to model the synchrostates and their transition

to predict future state sequences with high performance results and models the

stability of each state in probabilistic framework.

• Proposes the use of graph theory measures on connectivity networks derived from

synchrostates as quantitative metrics for information integration (global connec-

tivity) and segregation (local connectivity) in the brain.

• Proves that the quantifiable network measures when used as features for clas-

sification of typical and autistic children achieves state of the art classification

performance with low complexity classifiers and hence has a potential to be used

as a diagnostic tool for early detection of ASD from physiological signals, in future.

• Shows that network measures can be used to construct a set of simple parametric

models to characterise negative affectivity in children based on brain connectivity

measures derived from EEG synchrostates. This study can lay the foundation
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for the application of such models to assist in the screening process of behaviour

problems in children as well as in applications of emotion recognition in healthcare,

rehabilitation as well as brain computer interface (BCI).

1.5 Organisation

The rest of thesis is organised as follows:

Chapter 2 includes detailed background and literature review of EEG, EEG phase lock-

ing and its relevance in this research, brain connectivity and graph theory. It also reviews

the current state of the art in EEG signal processing techniques and then discusses the

caveats of those tools, which motivated the formulation of the new method described

in this work. It also goes on to list some of the technical concerns revolving around

EEG signal processing, such as the issues related to the volume conduction and artifacts

embedded in EEG signals. Chapter 3 describes the technique proposed to investigate

the phase locking in EEG signals which lead to the observation of the new phenomenon

called synchrostates and their transition. They were first shown to exist in single adult

EEG during face perception. Later the similar states were observed in multiple adult

subjects. Chapter 4 reports the synchrostate analysis results on EEG from patholog-

ical populations with neurological disorders from two different datasets with different

experimental paradigms. Chapter 5 explains how the synchrostates can be modelled

and validated in probabilistic framework using Markov properties for comparison be-

tween groups in a study. Chapter 6 explains how connectivity can be derived from

synchrostates and their transition using a synchronisation index and how graph theory

can be applied to obtain quantitative measures for segregation and integration in the

brain functional network. Chapter 7 explains the details of the experimental results,

which were carried out for classifying typical and autistic children using synchrostates

and there subsequent network measures as well as reports evidence for a model to evalu-

ate scores of negative affectivity (sadness) in children as a function of brain connectivity

measures. The conclusions along with the highlights of the possible future work that

can follow this research is detailed in Chapter 8.

1.6 Accepted papers for publication
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and Biology Society, IEEE EMBC, July 2013, Osaka, Japan, pp. 2539-2542.

2. Wasifa Jamal, Saptarshi Das, Koushik Maharatna, Doga Kuyucu, Federico Sicca,

Lucia Billeci, Fabio Apicella, and Filippo Muratori, “Using brain connectivity
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Chapter 2

Literature Review

This chapter discusses the necessary theoretical background and reviews the current state

of the art techniques in the field of brain dynamics. It goes into details about the various

methods currently used to study the brain. The different types of brain connectivity

that is popular in the field are also discussed. Studying EEG can take two directions,

time or frequency. Common methods used in both domains are briefly discussed. The

chapter highlights how phase synchrony is attributed to interactions in the brain and

goes on to reporting the popular methods currently available in literature to study

synchrony in brain. The reported facts justify the aim to study phase synchrony in EEG.

The detailed review of the current state of the art methods to study synchrony reveals

that these methods are unable to perverse the time information about the temporal

evolution of phase locking hence fueling the objective of investigating time varying phase

locking in EEG. The challenges faced in phase synchrony studies due to the effect of

volume conduction are reported in Section 2.2.2. The chapter also includes information

regrading the implications of carrying out source level connectivity over sensor level and

justifies the approach to carry out sensor level connectivity analysis. Sections 2.3 and 2.4

briefly accounts on the characteristics of autism and behaviour disorder and also recounts

the finding of brain connectivity and other related research conducted on them. There is

also a discussion about microstates in this chapter which is a time domain phenomenon

observed in EEG potential maps.

2.1 The Human Brain

Neurons or brain cells are the basic working units of the brain that generate the electri-

cal activity. Large assemblies of neurons behave as electrical generators producing EEG

signals measured on the scalp. Neurons need both electrical and chemical stimulation

for excitation. Neurons, when triggered by a stimulus, which can be any activity inside

or outside the body that evokes a physical or psychological response, produce electrical

9
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impulse. After being triggered, the electrical impulse travels along the neuron’s axon

until it meets the dendrite (incoming branch) of the next neuron at a synapse. Neuro-

transmitters are specialised chemicals that are released from the tip of the dendrites that

assist nerve signals jump the synaptic gap, and hence carrying messages from neuron to

neuron.

Figure 2.1: Figure showing the structure of a neuron and how a
neuronal signal passes along two neuron cells. Image taken from
(http://www.kvhs.nbed.nb.ca/gallant/biology/neuron structure.jpg)

The electroencephalogram is the time series data of the electrical signals generated in

the brain recorded by scalp electrodes. These signals are scalp potentials produced by

the synchronised cortical pyramidal neurons during excitation. Postsynaptic graded po-

tentials from the pyramidal cells form dipoles between the cell body, soma and dendrites

(Sanei and Chambers (2007)). The array of electrodes placed on the scalp measure the

potential difference of these dipoles between the electrode itself and a reference, which

is then amplified and then recorded. These electrical currents are caused mostly by

the movement of ions through the neuron membrane in a direction governed by the

membrane potential (Attwood and MacKay (1989)). However due to the different layers

inside the human head, like the brain, skull and scalp, with different electrical proper-

ties, the signal is attenuated. Please refer to Appendix B for details. As a result only a

large population of neurons which are active can generate enough potential that is mea-

surable by the electrodes on the scalp (Sanei and Chambers (2007)) and is thus useful

as it gives a coarse view of neural activity and thus can be used to unobtrusively study

brain activities. Modern techniques allow researchers to work with up to 256 electrodes

giving them excellent temporal resolution.

EEG Clinical bands:

The recorded electrical activity from the brain occur at different frequencies. They are

known as brain waves and are classified into EEG bands called delta, theta, alpha, beta

and gamma and are identified according to their frequency measured in Hertz (Hz).

There are difference of opinion as to the best way to group brain waves into clinical
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bands, but generally, it is agreed that the waves should be grouped as shown in Table

2.1.

Table 2.1: Table detailing the clinical EEG frequency bands, and their typical
properties and the typical distribution of these rhythms

Frequency
(Hz)

Band Distribution Characteristics

0.5-4 Delta
(δ)

Generally broad, frontally in
adults and posterior distribu-
tion in children

Slow, high Amplitude waves.
Usually related to deep sleep.
Has been detected in continu-
ous attention tasks (Kirmizi-
Alsan et al. (2006)).

4-8 Theta
(θ)

Found in many lobes and is re-
gional

Associated with drowsiness in
older children and adults and
inhibition of elicited responses
(Kirmizi-Alsan et al. (2006))

8-13 Alpha
(α)

Found in posterior regions of
the head and at central sites
during rest

Indicates relaxed and me-
diated level of conscious-
ness. Predominant when eyes
closed.

13- 30 Beta
(β)

Symmetrical distribution pre-
dominant in frontal and occip-
ital lobes.

Indicates a level of alertness
with active focus and readi-
ness for action. Low ampli-
tude waves.

> 30 Gamma
(γ)

Localised around the so-
matosensory cortex

Associated with high level
information processing, mem-
ory matching tasks and cross
modal sensory processing
(Kisley and Cornwell (2006)).

2.2 Connectivity in the Brain: Background and Literature

review

The brain has areas of specialised neurons which are responsible for distinct functions

(Brett et al. (2002)). These clusters of specialised neurons in turn form a part of a

big coherent organisation of segregated cortical areas which dynamically interact to

steer the brain into specific cognitive states. These assemblies influence each other

through excitatory and inhibitory synaptic connections (Fell and Axmacher (2011a)).

The phenomenon of integration and co-ordination of interacting cortical regions is known

as synchronisation in time scale (P. R. Roelfsema and Singer (1997)). The temporal

evolution of these synchronised cortical areas is instrumental in understanding how the

human brain performs certain tasks given a particular stimulus. Research has established

phase synchronisation as a key feature for communication between the brain regions

(Quiroga et al. (2002a), Makarenko and Llins (1998), Gray et al. (1989)) serving as the
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manifestation of underpinning mechanism of information exchange in the brain during

cognition (Engel et al. (2001a)). There is evidence of short range synchrony and long

range synchrony in several studies and these have been most commonly interpreted as

biological mechanism of integration (Varela et al. (2001a)). There is also evidence of

synchronisation in the visual cortex and the role it plays in binding features, through

experiments carried out on animals (Gray et al. (1989)). One of the objectives of this

research is to characterise the patterns of phase synchronisation and to translate them

into functional connectivity network giving an insight into how the segregated brain

areas interact during a task.

Connectivity within the brain mediates the process of functional segregation and func-

tional integration (Wass (2011)). Various techniques have been proposed for formulating

brain connectivity but developing an effective and accurate method has always been a

challenge. This section details the different types of connectivity measures and the most

widely used methods.

Structural connectivity

The structural connectivity of the brain highlights the anatomical connections which link

the neural elements (Sporns (2011)). These can vary in scale from large scale connections

between hemispheres or small networks of single cells.

Functional connectivity

Karl Friston defined function connectivity as the time based temporal correlations be-

tween distributed neuronal units or the synchronisation of activation of brain areas when

performing a task (Horwitz (2003), Rippon et al. (2007a)). It reflects the patterns de-

rived from statistical dependence between spatially remote neurophysiological events

(Friston et al. (1993a)). Functional connectivity is defined to be highly time dependent

and changes on the scale of a milliseconds and is prone to change depending on the task

and stimuli (Sporns (2011)).

Effective connectivity

This type of connectivity models the network of interactions that are casual in nature.

It accounts for both direct and indirect influences that one neural unit has over another

which can be local or distant (Friston et al. (1993b)).

The importance of studying the temporal dynamics of the communication system of

the brain have been highlighted in Chapter 1, hence tracking functional connectivity is
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the focus of this work. Tracing time dependent functional connections will allow us to

quantify the quality and stability of connections made in a stimulus specific way for it to

be useful in the understanding of implications of neurobiological disorders in the brain.

Typically synchronisation can be studied from EEG signals in two domains i.e. time

and frequency. The work reported in (Lehmann et al. (1987), Koenig et al. (2014))

considered brain electric states with consistent scalp electric field topography and their

sequence which lead to what is commonly known as EEG microstates. Since the scalp

electric field topography is the sum of all momentarily active sources in the brain irre-

spective of frequency, this method allows one to obtain a global measure of momentary

brain activity in a temporal resolution of that of the EEG. It has been shown that such

EEG microstates can effectively characterise qualitative aspects of spontaneous thoughts

and play an instrumental role for gaining deeper insights into the cognitive and percep-

tual processes (Lehmann et al. (1998)). The idea of microstates was first established

by Lehmann et al. (Lehmann et al. (1987)) where he found stable map configurations

when he viewed momentary EEG field across the scalp. It has been proposed that the

microstates reflect the “contents” of information processing and are claimed to be the

“atoms of thoughts” (Lehmann et al. (1998), Michel and Murray (2012)). Later on this

concept was applied to EEG, acquired in awake and sleep states, during deep hypno-

sis and from schizophrenic patients (J.L. Cantero and Salas (2002), H. Katayama and

Lehmann (2007), S. Irisawa and Kinoshita (2006)). The most important characteristic

of the EEG microstates is that the topography does not change randomly or contin-

uously over time but exhibit quasi-stable behaviour in the order of 80 - 120 ms; and

abruptly switches from one topography to another - the number of unique topographies

being small (typically 3 - 10) (Koenig et al. (2002)). Researchers have investigated mi-

crostates in healthy adults to classify the dominant microstates in spontaneous EEG

when they were awake (Britz et al. (2010)). Microstates have also been found to be

independent of frequency and have been reported to have correlations with fMRI resting

state networks (Britz et al. (2010)). The microstate transitions have also been shown to

follow the Markovian property in (Schack et al. (2001)).

Granger causality is another time domain method used to infer functional connectivity

that measures the temporal dependency of the data itself (Roebroeck et al. (2005)).

Granger Causal Modelling (GCM) is in essence a vector autoregressive model in discrete

time (Friston (2009)) hence it assumes that EEG signals are stationary and does not

take the phase coupling information into account. Generalised Synchronisation (GS)

hinges on the concept of chaotic oscillators and represents how well an oscillator maps

onto the other, which again reports on non-linear interdependencies rather than phase

synchronisation (Arnhold et al. (1999)).

Another way, other than time domain, to study the synchronisation phenomenon is in

the frequency domain. This is led by the assumption that if two points (i.e. two EEG

electrode sites) are in coherence (i.e. maintaining constant phase relationship over time),
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they can be considered as functionally synchronised or connected (Fries et al. (2001)).

Therefore computation of phase coherence is fundamental in this approach. Recent re-

search has established phase coherence as a biological mechanism for communication

between different brain regions. Evidence has been found of short- and long-range phase

synchrony as a key manifestation of information integration process in brain during cog-

nition providing an independent dimension of understanding the information processing

in brain ((Mulert et al. (2011), Fell and Axmacher (2011b), Fries et al. (2001)). Phase

coupling has been studied in patients with mental disorders (Razavi et al. (2013)) and

the merits of synchrony analysis have been found in the understanding of neurodevel-

opmental disorders (Uhlhaas et al. (2008)).

Covariance and coherence is classically used to model synchronisation and has been

applied extensively for multichannel EEG signal analysis (Koenig et al. (2005)). The

frequency coherence is typically computed by first taking Fourier Transform (FT) of

the EEG signals recorded at two arbitrary EEG electrode sites and then considering

the imaginary parts of the transformed signals. Leocani et al. (Leocani et al. (1997)),

Weiss and Rappelsberger (Weiss and Rappelsberger (2000)) and Nolte et al. (Nolte

et al. (2004)) studied the Fourier Transform coherency to formulate synchronisation in

EEG. Since the method for coherence analysis use Fourier transform (Kottlow et al.

(2012)), it does not preserve the temporal information of phase evolution and therefore

gives an average measure of synchronisation over a time window at each of the bands.

Also the methods mentioned, measure frequency coherence which mixes the effect of

phase and amplitude when computing the synchrony between two signals (Varela et al.

(2001b)) whereas it is vital to investigate the phase synchrony independently, as phase

interactions are independent of the neural firing rates in different regions. This pro-

vides an independent dimension to the study of neural information processing (Fell and

Axmacher (2011b), Fries et al. (2001)).

FT coherence methodology was later modified by several researchers by using Con-

tinuous Wavelet Transform (CWT) and Hilbert Transform (HT) to compute phase in

transformed domains and for deriving associated synchronisation indices from the co-

herence values thus obtained. Rosenblum et al. (Rosenblum et al. (1996)) studied phase

synchronisation of chaotic oscillators using HT to decompose signals and inspected only

the phase component by taking the argument of the complex result. Lachaux et al.

(Lachaux et al. (1999)) also did phase analysis by convolving with a Gabor wavelet to

transform the signal. The methods mentioned above have been applied to EEG and

MEG signals; from epileptic patients for both analysis (Gupta et al. (2006), Mormann

et al. (2000)) and seizure prediction (Lehnertz et al. (2003)), for modeling correlations

between synaptic strength and cortical synchronisation (Esser et al. (2007)), for studying

stability of synchronisation in the auditory cortex of schizophrenic patients (Maharajh

et al. (2010)) and measuring synchrony in EEG of elderly people participating in a

visual search task (Phillips and Takeda (2010)). The Hilbert and wavelet coherence
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approaches have the advantage of allowing phase extraction over non-stationary signals

than the FT which can be applied to stationary signals- which EEG is not (Lee et al.

(2003)). The mean phase coherence is a measure (Mormann et al. (2000)) that computes

the Hilbert coherence synchronisation over the whole time series and therefore gives an

average measure of synchronisation for the whole signal span and hence does not provide

us with the means to investigate phase at fine temporal scale. The Phase Locking Value

(PLV) uses wavelet coherence to quantify phase locking in EEG signals. The signals

are transformed using a Gabor wavelet to measures the inter-trial variability of phase

difference (Rodriguez et al. (1999)). Although PLV varies with time, it measures phase

locking across trials rather than the temporal variability of phase over the period when

the subject is engaged in a task. Partial Directed Coherence (PDC) extends from the

concept of partial coherence and measures the causal influences in the time series using

the multivariate autoregressive (MVAR) models (Baccalá and Sameshima (2001)) which

is not stationary independent. Additionally, various other measures of phase synchro-

nisation have been reported in (Quiroga et al. (2002b)). In Mutlu et al. (Mutlu et al.

(2012)) and Fallani et al. (Fallani et al. (2008)) time varying brain connectivity analyses

have also been explored considering the whole time course, using measures like PLV and

PDC for completing a specific cognitive task. Although useful, such approaches only

give insight into the phase synchronisation in a time-averaged way over all the frequency

bands, rather than capturing the true picture of the temporal or transient evolution of

phase synchrony in a band-specific way. On the other hand, in principle, CWT and HT

both being time-frequency transform methods, have potential to describe the temporal

evolution of phase synchronisation at sub-second resolution level which could be more

informative to understand the dynamics of the synchronisation phenomena from the

onset of a given stimulus till the end of the corresponding cognitive action. Astolfi and

Babiloni (Astolfi et al. (2008)) proposed an adaptive multivariate approach on directed

transfer function and partial direct coherence to estimate time varying cortical connec-

tivity. However these do not measure phase coupling which is the main focus of the

present study.

Dynamic Casual Modelling (DCM) models a network of discretely located interacting

neuronal sources whose dynamic system response can be explained by neural mass mod-

els. It employs a forward model to generate data in order to explain how the observed

data was caused, however it relies on a biophysical model of neuronal dynamics (Sakkalis

(2011)) and requires one to predefine a large set of parameters which is a drawback of

such an approach (Kiebel et al. (2006)). Again this method does not measure phase

coupling and also suffers from the generalisation error as there may be multiple models

that are equally probable from the given data (Sakkalis (2011)).

Sakkalis (Sakkalis (2011)) recently conducted a thorough review of the all the modalities

available at present to researchers for estimating brain connectivity. In his review he

highlights the underlying assumptions, and important caveats of each technique with
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the clinical applications suited to their use. He summarises the modalities as measures

which can be linear, nonlinear, model-based or data driven, bivariate or multivariate etc.

The scope of this work is not to study the underlying neuroanatomy of patients but to

understand the underlying dynamics therefore this research only looks into the methods

for modelling functional connectivity. His comparison is represented in the Table 2.2

listing the characteristic of the each technique he discusses:

Table 2.2: Table adapted from (Sakkalis (2011)) showing the different measures
of connectivity and their characteristics
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Linear X X X X

Nonlinear X X
Info-based X X

Model-based X
Data-driven X X X X X X X

Causality assessing X X X
Multivariate X X X

Stationarity independent X X
Functional Connectivity X X X X X X X

Effective Connectivity X X X

To understand the transient dynamics of the information integration process in the brain

in a task-specific way it is necessary to estimate the evolution of phase relationships from

the onset of a stimulus at different bands amongst different EEG electrodes and finally

mapping them to the temporal evolution pattern of synchronisation over the entire scalp.

Recently there has been a lot of interest and ongoing research in the field of dynamic

connectivity analysis owing to the inherent dynamic nature of the human brain using

EEG, MEG and fMRI data.

As evident from the foregoing discussion the existing frequency domain methods com-

pute the phase synchronisation over the entire post stimulus segment of the signal and

therefore are unable to retain the transient information at finer temporal granularity,

whereas the method of microstate finds the unique electric potential patterns and their

transients during the execution period of the task (Gianotti et al. (2008)). Research has
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established and stressed on the idea that the phenomenon of phase synchrony over the

scalp extends to dynamic brain mapping (Rodriguez et al. (1999)). Information pro-

cessing between neural assemblies with similar dynamical functional state is facilitated

by synchronised oscillatory activity of the neural groups. Deeper understanding of this

integration process between such groups during cognitive tasks can be useful in describ-

ing brain organisation (Aviyente et al. (2011)). Therefore new measures are needed

to estimate such transient dynamics of synchronisation to understand the interactions

between different brain regions subject to a specific task. In this study both of these con-

cepts are merged, i.e. the concept of temporal switching (transient behaviour) of stable

states along with the band specific phase locking by considering a joint time-frequency

representation of the EEG signal. The focus on transient phase synchronisation is not

intended to imply that the other measures are not relevant. However, it provides more

insight into understanding connectivity and dynamics of brain states.

2.2.1 Source level and sensor level connectivity

Modalities such as fMRI and DTI provides great spatial information as they can pro-

vide information about specific brain activation areas by tracking blood flow however

the signals are slow and the cost related, is very high. The bulky nature of their ac-

quisition system also prevents researchers from using them for tracking brain activity

from subjects while performing day to day activities. EEG is cheaper, non-invasive,

less bulky and has very good temporal resolution. EEG is acquired from sensors which

are placed over the scalp. The sensors and the current sources within the brain are

separated by the scalp, skull and by cerebrospinal fluid. Consequently EEG has a poor

spatial resolution (Srinivasan (1999)). Because of the lack of spatial good resolution in

EEG, popularly researchers do source level phase synchrony analysis, which gives more

reliable physiological interpretations. The process of acquiring source level information

from EEG involves solving the inverse problem. Although source level connectivity has

more reliable physiological interpretations, reconstructing source activity from EEG is

intrinsically an ill-posed problem and is known to have infinite solutions (Sanei and

Chambers (2008), Pascual-Marqui (2007)) as many spatial patterns of EEG signals can

be fit with a least-squares scheme by many equally plausible equivalent dipoles solu-

tions. It suffers from the issue that using only EEG one cannot uniquely determine

the spatial configuration of the underlying neural activity. Thus to resolve this issue

with the inverse problem, one has to make a lot of assumptions about the problem to

obtain an optimal and unique solution (Phillips et al. (2005)) and thus it only leads to

approximate solutions (Phillips et al. (2005)). The use of apriori assumptions are not

always justifiable in certain experiments.

One must also consider that each equivalent dipole only reflects the center of mass of

the activity distributed throughout a region of the brain (He et al. (2011), Srinivasan
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(1999)). The interpretation of dipole fitting must be restrained as there is little evidence

from intracranial recordings that support the contention that only a few sites in the brain

are active while generating evoked or spontaneous EEG (Towle et al. (1998)). It is more

likely that there exist spatio-temporal patterns of neural activity that are distributed

throughout the brain which are correlated at multiple spatial scales (Nunez (1995)).

The accuracy with which a source can be localised is affected by the approximate volume

conduction model of the head which is influenced by conductivity values (refer to Ap-

pendix B for examples) of tissue compartments (i.e skull scalp, white matter etc.) and

their distribution, head-modelling (geometric model of the head), co-registration (map-

ping of functional information into anatomical space in the brain) etc. (Whittingstall

et al. (2003), Grech et al. (2008)). Correct modelling of head tissue conductivities, as

well as the forward head model employed can be a source of error in such a problem

(Acar and Makeig (2013)). Since the localised nodes within the brain are non-unique,

connectivity analysis based on these nodes are still unreliable and based on some apriori

assumptions that are made (Grech et al. (2008)). Research has established and stressed

on the idea that the phenomenon of phase synchrony over the scalp extends to dynamic

brain mapping (Rodriguez et al. (1999)). This encouraged us to analyse the EEG signals

at sensor level as they do no suffer from the problems of source localisation mentioned

above.

2.2.2 The effect of volume conduction on EEG phase analysis

The phase synchrony, derived from EEG signals recorded over the scalp has been

doubted, as it is believed to be the result of spurious synchronisation that can occur due

to volume conduction (Nunez et al. (1997)). Volume conduction is the undesired effect

when an electric current passing through any biological matter from a source is recorded

at the sensor. In the case of the brain there are action potentials from the neurons

near the surface of the brain spreading to the EEG sensor scalp electrodes. Electrical

events inside the human brain spread nearly instantaneously throughout any volume,

like membranes, skin, tissues etc. The signal recorded at the electrodes are smaller in

amplitude since the amplitude of the action potential are reduced as they travel along

the various media to be detected by the sensors. The potential recorded at the scalp

is inversely proportional to the distance from the source. Hence any small change in

distance causes large changes in the recorded signal. The signals between nearby sen-

sors may cause artificial synchrony due to linear mixing. Due to the problem of volume

conduction, synchronisation reported from scalp EEG is deemed corrupted and masked.

When understanding synchrony of the brain the fundamental principle of the quasi-

static approximation is assumed, i.e. the measured potential on the scalp surface by the

electrodes have no time-lag to the underlying source activity (Nolte (2003)). Thus lagged

correlations and out-of-phase components are said to be personalities or properties of
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EEG resulting from connectivity. Volume conduction is known to occur at zero time

delay and is hence defined by zero phase lag (Thatcher et al. (2008)). Phase delays

measured from spontaneous EEG do not account for volume conduction owing to the

quasi-static approximation (Nolte et al. (2004), Pascual-Marqui (2007). The zero phase

lag property of volume conduction is used in pioneering works on phase synchronisation

like that of (Gysels and Celka (2004), Kramer (1980), Urbano et al. (1998)), to mitigate

the effects of volume conduction in their measure of phase synchronisation. On the

premise of this assumption one can conclude that the synchrony derived from phase

difference which does not report zero phase lag (phase difference of zero) is free from

the affect of volume conduction and represents true brain interaction.

2.3 Autism Spectrum Disorder (ASD) and issues relating

to brain connectivity

One of the aims of this study is to understand autism spectrum disorder and functional

brain connectivity concerns related to it. Autism is a lifetime condition which Min-

shew and William defined as a polygenetic developmental and neurobiological disorder

(Minshew and Williams (2007a)) that is characterised by atypical behaviour and lack of

social reciprocity. ASD comprises of a complex group of behaviourally defined conditions

with core deficits in social interaction, communication and stereotyped and restricted

behaviours. Autistic patients have disorders which span over a broad spectrum and can

range from moderate to severe. Although problems in perception and attention are not

considered as primary diagnostic categories, individuals with ASD often present diffi-

culties in these domains. It is believed these symptoms suggest generalised dysfunction

in the association cortex (Minshew and Williams (2007b)). Researchers have suggested

that autism is due to under functioning integrative circuitry leading to deficits in neural

level information integration (Just et al. (2004), Rippon et al. (2007b)). Research has

shown that a key feature in the neuro-anatomy of autism is the early brain overgrowth

(Simmons et al. (2009)) subsequently leading to greater local connectivity and suppressed

long-range connectivity. Findings from (Lainhart (2006), Hazlett et al. (2005), Klein-

hans et al. (2008), Courchesne et al. (2001)) show evidence of overgrowth of shorter range

cortico-cortical intra-hemispheric connections with little involvement of connections be-

tween hemispheres and cortex and subcortical structures. The behavioural symptoms

of autism could be a manifestation of these disrupted neural circuits. The overgrowth

is believed to be a cause of the disrupted development of normal function in autism, as

the onset of brain overgrowth matches with the advent of the symptoms of autism (Min-

shew and Williams (2007b)). Evidence has been found for supporting the hypothesis of

under-connectivity within large-distant networks and also under-connectivity within the

local networks. This evidence comes from several studies done using functional Mag-

netic Resonance Imaging (fMRI), EEG and Magneto-encephalogram (MEG) recording.
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Kleinhans et al. (Kleinhans et al. (2008)) found disrupted functional connectivity be-

tween the Fusiform face area and the left amygdala and between the posterior cingulate

and thalamus in the social brain during face processing. An fMRI based study car-

ried out by Just et al. reported evidence of overall functional under-connectivity in

autistic subjects compared to controls (Just et al. (2004)). Horwitz et al. (Horwitz

et al. (1988)) was the first to present data supporting such theories, where he found

PET scans revealing lower level of activation between frontal, parietal and other regions

in resting autistic adults. Power studies of EEG/MEG report decreased peri-stimulus

induced gamma power. Elsabbagha et al. (Elsabbagha et al. (2009)) reported these

findings in response to direct gaze, Wilson et al. (Wilson et al. (2007)) found them in

7-17 year old autistic subjects after onset of auditory presented clicks. Tommerdahl et

al. (Tommerdahl et al. (2008)) detected local under-connectivity in autistic adults in

their study of sensory perception. Coben et al. (Coben et al. (2008)) found reduced

inter-hemispheric coherence across different frequency bands. Bosl et al. used the com-

plexity of EEG signals recorded during resting state as a feature to distinguish typically

developing children from children with the risk for ASD (Bosl et al. (2011)). Studies

have found various disruptions while performing different task, some of these studies

have been listed in the Table 2.3:

Table 2.3: Table detailing some studies carried out on autism listing the dis-
ruption area and the task that was being performed

Study Area Task

Welchew et al.
(2005)

between medial temporal lobe
and other cortical areas

emotion recognition task

Kana et al. (2007) anterior cingulate gyrus, mid-
dle cingulate gyrus, insula,
parietal and premotor regions

emotion recognition task

Villalobos et al.
(2005)

V1 and inferior frontal cortex visuomotor task

Solomon et al.
(2009) and Just
et al. (2007)

frontal and other areas executive planning task

M. A. Just (2004) Wernicke’s area, Broca’s area
and the dorsolateral pre-
frontal cortex

sentence comprehension

The theory suggested by Johnson et al. (Johnson et al. (2002)) that the small develop-

ment failures in early years may lead a cascading effect on behavioural diffculties can be

more a conclusive explanation for conditions like autism. Models implicating anomalies

in connectivity in autism have been deemed constructive and are supported by genetic,

psychological and physiological theories. Genetic anomalies in neuroligin 3 and 4 which

are known to control synaptic assembly and dendritic development are found in such

patients (Polleux and Lauder (2004)). Autistic individuals are said to have abnormal
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neuronal development in the cortical columns which is associated with biochemical defi-

ciencies in serotonin activity (Chandana et al. (2005)). Belmonte et al. (Belmonte et al.

(2004)) proposes a model of local over-connectivity and long-range under-connectivity.

He suggests that the dysfunctions in the developing brain pilots the cognitive and be-

havioural symptoms one often sees in the autistic patients. Brock et al. (Brock et al.

(2002)), suggested another model where there were deficits in the dynamics between

specialised local neural networks and over-connectivity within the isolated individual

neural assemblies (Brock et al. (2002)).

It is very important to understand how these finding translate into differences in the

functional organisation of the brain between typical and high risk populations. Thus

studying the functional connectivity patterns may be the key to understanding the dif-

ferences between the typical and autistic brain. Therefore quantitative characterisation

of the connectivity derived from phase synchronisation measures in ASD patients may

lead to an diagnostic tool enabling intervention at appropriate stage.

2.4 Behaviour and Anxiety Disorder

Another pathological disorder in children that is quantitatively modeled is behaviour

disorder. Behaviour disorder is heterogeneous disorder that has very high prevalence

rates and is associated with a great deal of financial burden and stress to the fami-

lies. Internalising behaviour problems (i.e. anxiety and depression) in children is a

growing concern for parents, clinicians, and policy makers alike. The most common

types of behaviour problems in children include hyperactivity, conduct problems and

anxiety. Hyperactivity is a symptom dimension of ADHD which is a complex develop-

mental disorder characterised by inappropriate levels of inattention and hyperactivity

(Association et al. (2013), Chronaki (2011)). The symptoms of ADHD often overlap

with other behavioural problems, such as conduct disorder, hyperactivity, oppositional

defiant disorder, etc. (Brown (2009), Waschbusch et al. (2002)). Conduct disorder is a

more extreme form of oppositional defiant disorder and is reported to have 6-16% and

2-9% lifetime prevalence rate for males and females respectively (Loeber et al. (2000),

Maughan et al. (2004)). Anxiety in children is one of the most prevalent forms of child

psychopathy and affects about 20% of children (Morris and March (2004), Verhulst et al.

(1997)). External behaviour problems often co-exist with anxiety and depression in chil-

dren (Jensen et al. (2001), Brown (2000)). Though anxiety is thought to be transient,

studies have shown that anxiety disorders may exist all the way into adulthood (Pine

et al. (1998)). Temperament factors of negative affectivity (i.e. sadness) are strongly as-

sociated with internalising symptoms in children and adolescents (Muris et al. (2007)).

Research has shown that children with internalising behaviour problems are rated as

more sad by parents and teachers compared to typically developing children (Eisenberg

et al. (2001)). Recent research has supported strong links between negative affectivity



22 Chapter 2 Literature Review

and anxiety and depressive dimensions consistently across ethnic groups (Austin and

Chorpita (2004)). Longitudinal research has shown that temperamental traits in chil-

dren at 3 years can predict anxiety symptoms four years later (Volbrecht and Goldsmith

(2010)).

Developmentally inappropriate behaviours, such as persistent fears, alongside clinical

levels of anxiety can have devastating effects on a child’s daily functioning (Association

et al. (2013)). They have adverse academic and social outcomes in the long run and can

lead to depression (Pine et al. (1998)) hence it is imperative to study high risk children

before the advent of any chronic form of mental illness. Hence it is important to define

these disorders in children early with the hope of identifying the factors leading to the

disorder and also to start early intervention where possible. An affective study would be

one that integrates clinical psychology with the information about the neural circuitry.

Given the debilitating effects of internalising behavioural problems on a child’s daily life

(Quilty et al. (2003)), early and accurate evaluation of traits of internalising disorders

and their associated characteristics (i.e. negative affectivity) is essential for the design

of effective intervention.

Biological correlates (i.e., frontal EEG activation) of inhibited behaviour have been pro-

posed as endophenotypes for anxiety. In addition, earlier temperament and biological

(i.e., basal cortisol) measures have been shown to have predictive value for internal-

ising problems during the preschool years (Goldsmith and Lemery (2000)). Children

with ADHD have been reported to have lower short and long range connectivity in the

superior parietal cortex and in the default-mode networks compared to the control sub-

jects (Tomasi and Volkow (2012)). Other studies state the prevalence of dysfunctional

connectivity during resting and cognitive task in ADHD patients (Konrad and Eickhoff

(2010)). Differential connectivity patterns have been reported in resting functional con-

nectivity in major depression (Greicius et al. (2007)). Studies conducted on anxious

cohorts revealed differences in large scale connectivity (Etkin et al. (2009)).

It is imperative to understand how these biological correlates are reflected in the func-

tional connectivity networks of the behavioural disorder cohort. A quantitative measure

that stems from physiological measurements to characterise such heterogenous disorders

would have a pre-eminent effect on the diagnosis and therapeutic protocols used.

2.5 Face perception: a stimulus for characterising cogni-

tion in subjects

Humans have complex abilities that are essential to the recognition of facial emotion.

Facial expressions give a lot of information and play a cardinal role in daily social

communication (Ekman (1994)). Faces provide critical information about a subject’s
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social stand, such as the identity, intention, and emotional state (Sugita (2009)) and

hence is a biologically significant visual stimulus for humans. Generally, faces are the

most fundamental channel of communication with humans. The process of facial emo-

tion recognition involves perception and the recognition of meaning (Adolphs (2002)).

Perception involves the ability to discriminate key features of an expression (Chron-

aki (2011)). Research in the field of emotion processing highlights that the process of

emotion perception involves perceptual skills (Gosselin and Simard (1999)) as well as

conceptual abilities (Widen and Russell (2008)). Differences between emotion process-

ing in individuals are closely related to social adjustment especially in children (Mostow

et al. (2002)). A child’s ability to gather information from face features is a pivotal skill

in his/her development, and hence is a basic condition for social interaction (Apicella

et al. (2012)). Over the last decade face processing and recognition have been studied

in great detail. The face recognition system of humans is extremely fine and has the

capacity to recognise and to discriminate between faces and different facial expressions

and involves unique functional properties that are do not exist in the recognition of

other visual stimuli (Sugita (2009)). A neuro-scientific approach to this issue lead to

the identification of specific brain areas and circuits involved in face processing. The

research conducted in Boiten et al. (Boiten et al. (1992)) established that different cog-

nitive processes yield responses in different EEG bands indicating the association of a

particular frequency band to a specific cognitive task. As an example, the β rhythms

have been reported to be linked to cognitive processing, visual attention and perception

related modulations (Wróbel (2000), Gross et al. (2004)). Previous research conducted

in the domain of face perception has reported different responses in brain oscillation in

processing varying emotional face expression (Güntekin and Basar (2007)). They found

amplitude differences in the oscillations during processing of angry and happy faces.

Basar et al. (Bacsar et al. (2008)) also found different responses in the frequency bands

when subjects were exposed to pictures of a loved person as opposed to an unknown

person.

Previous research has suggested that social dysfunctioning in school-aged children with

behaviour problems may stem from difficulties in understanding others emotions from

facial expressions. Recent studies have found correlations between emotion knowledge

(recognition of facial and vocal emotion) and various internalised and externalised prob-

lems (Trentacosta and Fine (2010)). Highly anxious children were likely to mistake

happy faces as angry (Richards et al. (2007)) and display an attentional bias toward

angry faces when paired with happy and neutral expressions (Roy et al. (2008), Wa-

ters et al. (2010)), a finding consistent with visual search studies using self-reported

anxiety measures (Hadwin et al. (2003)). Facial emotion-recognition difficulties have

been reported in school-aged children with behaviour problems (Izard et al. (2001)).

Recent studies have focused on associations between emotion processing and experi-

ences of negative emotional states (i.e., symptoms of anxiety and depression) in children

and adolescents. Facial emotional recognition constitutes one of the most reliable and
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widely used methods to assess emotion processing in anxiety disorders (McClure et al.

(2003)). Research with anxious adults has found increased C1 amplitudes (80ms post

stimulus) in response to angry-neutral face pairs compared to non-anxious individuals

in dot-probe tasks (Eldar et al. (2010)). Similar research has showed that increased

processing of negative compared to neutral pictorial stimuli in 5-7-year olds (reflected

by the posterior Late Positive Potential; LPP) was associated with parent-rated child

anxiety (DeCicco et al. (2012)). These findings support models of increased allocation

of attention to threat at early processing stages in anxiety.

The neural processing underpinning face processing allows us to understand social in-

formation and cues conveyed by faces, especially in subjects who have dysfunctions

that have been postulated to underlie their behavioural impairments like those in ASD.

Deficiencies in children with autism in understanding social information conveyed by

emotional faces have been attributed to the inability in activation of brain circuitry

involved in face processing (Apicella et al. (2012)). This impairment in social process-

ing is said to be a core difficulty in autism (Carver and Dawson (2002)). Owing to all

the information about face emotion processing and perception mentioned above one can

presume that face stimuli may be useful for tracing the congition traits and anomalies

in typical adults and children and in pathological subject groups.

2.6 Application of Complex network graph theory in brain

connectivity analysis

The integrative nature of brain connectivity can be addressed from a complex network

perspective (Sporns (2011)). Describing a complex system such as the brain in terms of

graph theory allows one to meaningfully describe them as networks. The characterisation

of the brain network as a complex system is a multidisciplinary approach which applies

graph theory methods on connectivity matrices derived from neurophysiological data.

In principle the adjacency matrix of a graph is representative of the brain connectivity

matrix. The adjacency matrix, A of a graph with n vertices is a n x n matrix with

the entries Aij consisting of the weights of the edges between the nodes i and j. The

networks constitute of nodes and edges i.e. the connections between the nodes. The

structure of the adjacency matrix essentially describes the communication pattern of

the brain network. The graphical measures are all derived from the adjacency matrix.

Brain networks have common features with networks from other biological and physical

systems and are also perpetually complex and hence can be characterised with the

standard methods.

The use of graph theory provides a new dimension to the investigation of the brain

network organisation in humans at different levels of granularity (Supekar et al. (2009))

and thus gives a holistic analysis. Complex network measures have been used to quantify
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the underlying brain network from EEG signals (Rubinov and Sporns (2010), Sporns

(2011)). These parameters have been useful to draw network topology comparisons

between typical and patients with neurological injury or disorder (Watts and Strogatz

(1998)). Complex network metrics have been used to model the organisation of the

human brain in various studies conducted on fMRI and MEG recoding. Supekar et

al. (Supekar et al. (2008)) applied graph theory on task-free Alzheimers disease fMRI.

Liu et al. (Liu et al. (2008)) investigated the network properties of functional networks

of schizophrenic patients from resting state fMRI data, Bassett et al. (Bassett et al.

(2006)) used similar graph metrics for MEG analysis of healthy adults during resting

state and fingertapping task. Studies in this field suggest that in complex networks more

robust results are obtained by retaining weight information of the graphs as compared

to the binary graphs (Newman (2004), Barrat et al. (2004)), since binary networks

only provide an approximation of the original weighted network as the whole range of

connection strengths are lost. It is also known that weighted characterisation is useful

to filter out the influence of weak and potentially less-significant links (Rubinov and

Sporns (2010)).

Here in this study complex network measures are used to represent the brain connectiv-

ity maps quantitatively which can encapsulate the network properties of the connections.

These parameters allow one to utilise them as features for a myriad of problems, like

classification, regression analysis etc. EEG classification is a popular research area and

the scope of its application is endless. The simple linear classifier is a very popular

algorithm for event related potential (ERP) analysis in Brain Computer Interface (BCI)

applications (Lotte et al. (2007), Blankertz et al. (2011)) that have been applied for clas-

sification of motor imagination (Ramoser et al. (2000)). Garrett et al. (Garrett et al.

(2003)) applied both linear discriminant analysis (LDA), conventional neural networks

and support vector machine (SVM) on EEG recorded during mental tasks and concluded

SVM to be the more sound and conclusive algorithm, although the other two did not

perform much worse. Variants of the classical SVM learning algorithm have been ap-

plied to classification problems in EEG for application in BCI systems (Liyanage et al.

(2013), Liao et al. (2007), Jrad et al. (2011)). ERP regression or correlation analysis is

extensively used in neuroscience and psychology. ERP components like P300, N170 and

their latencies are used to fit models and prove hypothesises about the brain information

processing (Eldar et al. (2010)).

2.7 This Work

From the discussion in Chapter 1 one realises that EEG modality favours the motivations

to study the brain dynamics of neurological disordered patients. The literature review

conducted highlights how EEG has excellent temporal resolution as it provides the most

direct access to neural signals (Sporns (2011)). Studying the signals in a band specific
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way is essential as the neural activity manifest themselves differently across the different

EEG bands. Functional connectivity is fundamental when trying to understand stimulus

specific responses of the brain. As mentioned in Section 2.2 functional connectivity is

highly time-dependent in nature and thus it is pivotal to retain the temporal evolution

of such connections to assess the observations in a comprehensive manner. The review

revealed that the phase synchronisation of neural activity is key for understandings pat-

terns of connectivity that appear within the neural assemblies. The review exposes the

limitations of the current EEG signal processing tools for investigating the dynamic at-

tributes of phase locking. Focusing on the low spatial resolution of EEG, researchers

attempt to reconstruct the electrical sources responsible for observed signals however

this leads to ambiguous results (Sporns (2011)). Hence it is preferred to process signals

in the EEG sensor space by applying a different range of frequency domain techniques.

Since it is difficult to uniquely localise sources onto the anatomical space it was decided

to investigate phase locking at EEG sensor (i.e scalp) level. However this track also

comes with its own set of problems like contamination from artifact and volume conduc-

tion. Studies revealed that volume conduction is attributed by zero phase lag hence the

method for investigating phase coupling should be insensitive to zero phase difference.

The application of graph theory is a new approach for evaluating brain networks quanti-

tatively, however it has been successfully used in studies on diseased patients. The aim

is to use the existing principles of representing brain connectivity as complex networks

and obtain graph measures for further analysis.

The thorough review on autism and behaviour disorder reveals that these disorders have

been correlated to disrupted connectivity between brain regions. This is used as the basis

for this analysis to use biological signals from the brain to gain insight into how these

disruptions are reflected onto functional connectivity. The perception of face by humans

has been deemed to be biologically significant and perceived to highlight conceptual

abilities in children (Widen and Russell (2008)). Hence face perception data is used for

the analysis of phase locking in adults and children with behaviour disorders.

2.8 Summary

In this chapter, a range of clinical and technical concepts that are related to the thesis

are reviewed. The chapter started of by discussing the basic human brain, the source of

the action potentials and how they are propagated through the volume of material to

the scalp, where it is recorded as EEGs. The concept of synchrony as an attribute of

brain interaction is highlighted and followed by a detailed review of the current state of

the art signal processing techniques to measure synchrony in EEG. The review revealed

that the current techniques lack the capability to preserve the temporal evolution of

phase locking which is fundamental to this research as mentioned in Chapter 1. A brief

background is reported on Autism and behaviour disorder along with some outline on
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the significance of studying face perception on both healthy and pathological populations

to discern their social and emotional state. In the next chapter, a new methodology is

proposed to identify phase locking periods with temporal information which then leads

us to the observation of the new phenomenon called synchrostates in EEG.





Chapter 3

Investigating Phase Topography

in Multichannel EEG Signals

during Face−perception Tasks

As discussed earlier in Chapter 1 and 2, in order to understand the communication

system of the brain it is important to investigate the time varying phase relations during

cognition. Here a discussion on the algorithms to derive time varying phase patterns

using continuous wavelet transform is presented. In essence, in the method developed

exploits the time-frequency preservation property of wavelet transform for studying the

temporal dynamics or evolution of synchronisation amongst different areas of the brain.

The main goal is to explore the possible existence of stimulus-specific characteristic

phase synchronisation patterns and their temporal stability that may enable one to

objectively measure the information integration or processing capability. Compared to

the contemporary approaches, here the time course is subdivided by associating them

with a finite number of phase-synchronised states (using clustering) to find out how

their switching sequence describes the execution of the face-perception task involving

different types of stimuli. This may in turn lay the foundation of a methodology that

will allow one to reliably diagnose or characterise different atypical neuro-pathological

conditions more accurately.

After applying the method it is found that there exists a small number of well-defined

phase-stable states, each of which is stable of the order of milliseconds during the execu-

tion of a task. These quasi-stable states are termed as synchrostates. The chapter also

includes a discussion two particular issues that are fundamental for developing an inte-

grated methodology for analysing the temporal evolution of phase synchrony from the

onset of a stimulus using EEG time-series data. These issues are: 1) the definition of an

objective measure for capturing the effect of time-varying synchronisation amongst the

29
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EEG electrodes, 2) clustering of characteristic phase difference patterns and translating

those unique clusters into synchrostates.

The method is validated and the existence of the phenomenon is investigated across two

datasets of adult EEG. All the EEG analysis was conducted on face perception tasks.

The preliminary experiments were run on a single subject adult EEG. The phenomenon

was then shown to be free of artifact and volume conduction effects. Then the existence

of synchrostates were shown on a group of 10 normal adults.

3.1 Wavelet Phase Synchronisation

The concept of phase synchronisation was first introduced by Huygens into the field of

physics of coupled oscillators. When in perfect phase synchronisation the two phases of

the signals are locked i.e. φx(t)− φx(t) = constant. If the relative phase varies little in

time, the two sources are considered to be synchronised.

Wavelet phase synchronisation is computed by using the complex argument of the com-

plex wavelet series, Wx(a, t) of a signal x(t). Instantaneous phase difference between

two signals x(t) and y(t) can be calculated by taking the difference of the instanta-

neous phases of the signals which are essentially the complex argument of the wavelet

series Wx(a, t) and Wy(a, t) respectively. Instantaneous phase difference, ∆φxy(a, t) =

φx(a, t)−φy(a, t); where φx and φy are the complex arguments of the continuous wavelet

transform of the time series x(t) and y(t) respectively.

Continuous Wavelet Transform (CWT) improves on the resolution problem that short-

time Fourier transform (STFT) suffers from as the width of the window changes when

the transform is computed for each spectral component. Thus the time and frequency

resolution varies along the plane and hence it obtains better time resolution at higher

frequencies while frequency resolution improves at low frequencies. CWT (a, t) is a

function of wavelet scale a, and time t (Quyen et al. (2001)) is defined below:

CWT (a, t) =
1√
|a|

∫
x(t)h(

t− τ
a

)dt (3.1)

where h(t) is the mother wavelet. CWT gives the user the freedom to choose the mother

wavelet which serves as a wavelet prototype for all the windows. The wavelet transform

is then computed up to a certain value of a, as required. As the scale is increased the

window widens, picking up the lower frequency components.
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3.2 Method

Phase synchrony analysis in EEG signals acquired over the scalp has been projected as

an effective tool for understanding co-operative interactions between different regions

in brain. However the conventional synchrony analysis in EEG does not preserve the

temporal information and therefore offers average characteristics of phase synchrony

only. Here, a wavelet-based synchronisation measure is proposed which inherently pre-

serves the temporal information and therefore may give an accurate picture of transient

synchrony evolution from the onset of a stimulus.

3.2.1 Computation of time-dependent phase difference topography

For the estimation of time varying phase synchronisation between two signals the first

step is to compute their instantaneous phase difference and then to estimate the degree

of phase locking over a period of time (Varela et al. (2001a)). If the instantaneous

phase difference between two signals x(t) and y(t) is constant over a certain time then

these two signals can be considered in synchrony over that time period. Here propose a

CWT based methodology is proposed for investigating the transient dynamics of phase

synchronisation in EEG signals. The time-frequency localisation property of CWT can

be used in this case for first computing the instantaneous phase differences between

different EEG electrode sites over the scalp which may then be used for analysing the

temporal stability of the phase difference topography to get an idea of the extent of

synchronisation between different brain regions.

It has been observed by different researchers that the spectral power of different EEG

bands significantly changes depending upon the stimulus given, i.e. different types of

stimuli yield dominant responses in different EEG band (Boiten et al. (1992)). As a con-

sequence it may be assumed that the temporal stability of instantaneous phase difference

topographies and hence the overall synchronisation pattern may manifest differently in

different EEG bands. Therefore it appears to be more logical to study the synchronisa-

tion phenomenon in a band-specific way. Since CWT decomposes a signal to different

scales (equivalent frequencies) at each time instant, it is possible to study the tempo-

ral evolution pattern of phase difference topographies for an isolated frequency band of

interest. Therefore CWT is used as the main analysis tool, more precisely, a complex

Morlet basis function is used as shown in (3.2) for computing the CWT of the EEG

data.

ΨM (t) =
1√
πFb

e2jπFcte−(t2/.Fb) (3.2)

where, {Fb, Fc} denote the bandwidth parameter and the centre frequency respectively.

As can be seen from (3.2) this wavelet is a simple complex exponential centered at Fc.

The values of Fb are chosen according to how much bandwidth one wants in the wavelet
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filter. For the present case Fb=1 and Fc=1.5 are considered, as it gives a good trade off

between time and frequency bandwidth.

Although one can choose from a number of mother wavelets, for more effective modeling

of biological signals like EEG waveforms, the wavelet has to give a biologically plausible

fit to the signal that is being modelled (Roach and Mathalon (2008)). The Morlet

wavelet is one common biologically plausible wavelet used extensively in EEG analysis

(Adeli et al. (2003)).

Figure 3.1: The structure of the phase difference matrix at frequency fk at time
t.

Considering N number of EEG channels placed over the scalp and x1(t), x2(t), · · · , xN (t)

be the EEG signals acquired at the respective channels, application of complex Morlet

CWT on xi (t) ; i ∈ {1, 2, . . . , N} results in a complex time series Wi (a, t) at the wavelet

scale a at time t. Wi (a, t) can be converted to a function of frequency and time Wi (f, t)

using the following relation (Addison (2010)) in (3.3).

f = Fc/(a · δ) (3.3)

where, δ and f are the sampling period and the approximate pseudo-frequency, i.e. the

frequencies corresponding to the scales, respectively. Subsequently, the instantaneous

phase ϕi(f, t) of Wi(f, t) can be computed as (3.4).

ϕi (f, t) = tan−1

(
Im [Wi (f, t)]

Re [Wi (f, t)]

)
(3.4)

Im[Wi(f, t)] and Re[Wi(f, t)] being the imaginary and the real part of Wi(f, t) respec-

tively. Consequently, the instantaneous phase difference ∆ϕi,j(f, t) between the channels
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i and j can be given by (3.5).

∆ϕi,j (f, t) = |ϕi (f, t)− ϕj (f, t)| (3.5)

Figure 3.2: Computation principle of band-specific phase difference matrix con-
struction

Computation of ∆ϕi,j(f, t) at a time instant t1 and frequency f1 for i, j ∈ {1, 2, . . . , N}
yields a symmetric square matrix [∆ϕ(f1, t1)] that describes the pairwise relationship

of phase difference at the frequency f1 for all the EEG channels at t1 time instant.

Figure 3.1 shows an example of one such phase difference matrix at a frequency fk

at time t. For computing the average response within a subject group the individual

∆ϕi,j(f, t) are averaged over all the subjects to get the average wavelet response for the

group in consideration. If an arbitrary frequency band of interest B is spanned over

the frequencies {f1, f2, · · · , fM} then the instantaneous phase difference matrix for B

at time t can be formulated as (3.6)-(3.7). Figure 3.2 depicts the averaging step across

all frequency matrices within a chosen band B to derive the band average ∆ϕB(t) as a

function of time.

[∆ϕB(t)] =
1

M

M∑
i=1

∆ϕ (fi, t) (3.6)
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(bi,j)∆ϕB
(t) =

1

M

M∑
k=1

(ai,j)∆ϕfk
(t) (3.7)

where, (bi,j)∆ϕB
(t) is the (i, j)th element of the matrix [∆ϕB(t)] and (ai,j)∆ϕfk

(t) is

the (i, j)th element of [∆ϕfk(t)]. Subsequently, [∆ϕB(t)] can be computed at different

time instants {t1, t2,..., tn} resulting in a set of such matrices [∆ϕB(t1)], [∆ϕB (t2)],

..., [∆ϕB(tn)] (a shown in Figure 3.3) that describes the complete picture of temporal

evolution of the phase difference from the onset of a stimulus till the end of the corre-

sponding action in the particular frequency band B over all the EEG channels on the

scalp. The whole process is pictorially depicted in Figure 3.1- Figure 3.3.

Figure 3.3: Computation of band-specific phase difference matrix from the onset
of a stimulus till the end of the desired time window.

3.2.2 Clustering of phase difference matrices into unique set of states

Once all the cross-electrode phase difference matrices for a particular band are formu-

lated over the entire duration of a specified time interval - in this case, it would be

interesting to see the temporal evolution of these topographies at subsecond order time

interval, the next pertinent question is whether there exists any unique spatio-temporal

pattern of phase difference topographies during the execution of the cognitive task. The

first step for that is to identify all possibly unique topographies over the entire time du-

ration of interest. A certain class of pattern recognition techniques could be employed
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for this purpose. The k-means clustering is one such unsupervised pattern recognition

technique. Contemporary researchers have used various clustering and segregation tools

to solve many biomedical problems. Clustering problems resolved using pattern recog-

nition techniques include the segregation of densely connected brain regions (Rubinov

and Sporns (2010)), estimating microstates (Pascual-Marqui et al. (1995)) and for local-

ising interictal epileptic activity from functional Magnetic Resonance Imaging (fMRI)

(V.L. Morgan and Abou-Khalil (2007)).

For a given dataset χ, χ = {xp} , p ∈ [1, · · · , P ], assuming the number of underlying

clusters is known, k-means algorithm iteratively minimises a cost function given below

(3.8).

J(θ, U) =

P∑
p=1

m∑
q=1

upq‖xp − θp‖2 (3.8)

where, θ = [θT1 . . . θTm]T , ‖ · ‖ is the Euclidean distance, θq is mean vectors of the qth

cluster and upq = 1 if xp lies closest to θq; 0 otherwise (Theodoridis et al. (2010)).

Here, χ = {Xi} , i ∈ [1, · · · , P ] is the dataset of all pairwise EEG instantaneous phase

differences, as a function of time and frequency calculated using (3.5). The dataset

χ was clustered along time, for a chosen frequency band, to find out unique phase

synchronised patterns. Initially a range [mmin, mmax] is defined for possible clusters m

for the dataset χ. The k-means clustering runs n (n random initialisations) times for

each m within that range and for every n runs the minimum value of the cost function

Jm (as shown in 3.8) is calculated and stored. The cost function Jm essentially indicates

the sum of distances of the data-points from the nearest cluster mean when m clusters

are considered. The value of Jm is dependent on the number of clusters and also the

dataset under consideration where a high value of Jm represents a less compact cluster.

Thus the knee in the plot of Jm against m is an indication of the number of optimal

clusters underlying the data. If the plot of Jm against m shows a significant knee at m

= m1 (say) then it signifies that the number of optimum clusters underlying the dataset

χ is likely to be m1. To be noted that in the plot of Jm versus m it is typical to have

multiple such knees as m varies within its selected range. In cases, where there is an

increase in the Jm value, it indicates that the distance between all the data points with

respect to the nearest mean of clusters has increased. This increase could be due to the

splitting of large compact clusters into several smaller ones, caused by increasing the

value of m. In such cases, as conventionally followed in machine learning, the earliest

and the most prominent knee should be considered as the characteristic knee, as it

explains the underlying dataset with minimum complexity. The main information lies

in the fact how many compact clusters can be identified in the whole dataset and what

are the average characteristics of the data-points associated with each cluster. Thus the

absolute value of Jm in the plot of Jm against m is not important but the value of m

at which Jm attains minimum value (the significant knee) is the important parameter

indicating the number of underlying clusters.
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In a higher dimensional feature space, the landscape of the cost function J(θ) may have

multiple local minima and there is small probability of finding a higher value of the cost

function if a local minima has been found by the optimisation process. Since the k-

means clustering have the problem of getting trapped to local minima, it should be run

multiple times with different initialisation of the cluster means and the best result with

the minimum value of the cost function should be considered. Therefore in the proposed

method, the best-results of the k-means algorithm for each choice of k is considered out

of n = 10 different random initialisations of the cluster means. This way the incremental

k-means plots the best cost function to obtain the Jm as also suggested in (Theodoridis

et al. (2010)).

In order to determine possible unique clusters optimally, incremental k-means clustering

is performed over the time series of all phase matrices, to associate similar patterns into

a single class, following the method described above. It is well known that the phase and

hence the phase difference data is circular in nature (circular data) therefore standard

Euclidean distance based clustering should not be directly applied on such datasets

(Mardia and Jupp (2009)). In order to circumvent this problem, it is first ensured

that the phase of CWT based complex time-frequency decomposition is always bounded

within ϕx ∈ [−π, π] , x ∈ [1, · · · , N ]. Next the phase difference data for all electrode

pairs are normalised using the minimum and maximum values of the phase difference

∆ϕmax
xy = 2π and ∆ϕmin

xy = 0, so that the transformed data lies within ∆ϕnormalisedxy ∈
[0, 1]. This transformed phase difference data is fed to the clustering algorithm described

in (3.8).

In this case, χ is the dataset of all pairwise EEG instantaneous phase differences [∆ϕB(t1)],

[∆ϕB (t2)], ..., [∆ϕB(tn)], as a function of time. The dataset χ is clustered along time

t, for a chosen frequency band B, to find out unique phase difference patterns. The

algorithm yields k centroids, for each cluster or state and a vector of length n with

the corresponding state or cluster labels for each and every time instance over which it

was clustered. The centroids hold average information for each of the clustered states

whereas the cluster labels signify when in time each state has occurred.

Once the phase-difference matrices are uniquely clustered over different time instances,

the centroids are translated into corresponding colour-coded head-map topographies

following arbitrary colour coding convention. This is done by first calculating the average

phase difference seen at a particular electrode with respect to the rest of the electrodes,

i.e. taking row-wise average and considering it as the average phase difference at that

electrode index and assigning a particular colour corresponding to the numerical value

of that phase difference and finally transforming it to a contour plot. Such head-map

topographies give a visual representation of the distribution of average phase differences

between different regions of brain over the scalp. Note that these plots should not be

viewed or compared to the typical EEG potential plots or the power spectrum plots

typically generated in quantitative EEG (qEEG) analysis. Here the plots show the
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gross phase difference between different electrodes over the scalp over a particular time

window. Higher numerical values represent greater gross phase difference of the electrode

with all the other electrodes and low values indicate that the electrode has relatively less

phase difference with all the other electrodes in that configuration. The set of topography

clusters identified using k-means algorithm are termed as synchrostates. The state

labels are used to construct a transition plot to illustrate the switching sequence of the

synchrostates over the time of the EEG recording. This is simply done by plotting the

cluster labels yielded by the clustering algorithm.

The unsupervised learning technique adopted here is based on the concept of hard clus-

tering, i.e. a single data-point corresponding to each time instant should belong to one

of the clusters. Since the phase coupling is measured in the temporal resolution of mil-

lisecond one can assume for practical reasons that the intrinsic brain dynamics is bound

within one state at each time step over the non stationary time window of EEG.

3.3 Results

Once the critical steps for investigating transient phase coupling was identified the al-

gorithm was run on multichannel EEG data using Matlab. The following experiments

were carried out on a normal single-subject multiple-trial EEG dataset and normal

adults multiple-subjects multiple-trials dataset. All data was baseline corrected and

epochs over 200µV threshold were rejected as artifacts. Data was then band-pass fil-

tered within 0.5-50 Hz using a 5th order digital Butterworth filter to isolate the EEG

bands of interest.

For each of the experiments, the instantaneous phase difference between all pairs of

electrodes were computed following the procedure described in Section 3.2.1 by taking

the argument of the continuous complex Morlet wavelet transform of the signals on

each channel and subtracting it from the other electrodes. The cross-electrode relative

phase at a particular time instant is represented as a symmetric square matrix with

zero diagonal elements as they represent the phase difference of an electrode to itself

(as shown in Figure 3.1). These matrices are then averaged across the number of trials

considered during that run. Observation of this resultant multi-channel phase data in

a sequence of intervals of the order of milliseconds reveals the existence of discrete and

distinctive patterns that are stable over finite number of time-frames. This is an inter-

esting observation, as it is similar to the concept of microstates in (Musso et al. (2010))

where the authors observed stable potential distribution maps over millisecond order

time segments. Similarly, it is observed that the phase difference maps remain stable for

certain time interval of the order of milliseconds i.e. they are phase synchronised and

then suddenly change to a new configuration that also remains stable for finite time.

The temporal stability of such synchrostates may be indicative of the time, required for
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maintaining such a phase relationship between different regions of the brain in order to

perform a certain task - in this case, a face perception task.

Incremental k-means clustering is performed over the time series of all phase matrices

along time t, for a chosen frequency band (θ, α, β, γ), to quantitatively define the unique

phase difference patterns. The k-means algorithm clusters similar states and yields k

centroids for each cluster or state and a vector of length t, with the corresponding

state or cluster labels for each phase difference matrix, for every time instance, along

which it was clustered the data. All the data-points within a cluster are considered to

have a generalised characteristic of that of the mean of the cluster (state), even though

they can slightly differ from each other, as they possess EEG temporal information of

the order of milliseconds. The state labels are used to construct a transition plot to

illustrate the transients of the synchrostates over the time of the EEG recording. The

consecutive occurrences of same labels (i.e. similar phase synchronised patterns) have

been interpreted as the prevalence of the same state. On the other hand, sudden changes

in the cluster label (i.e. different phase-difference pattern) from previous clusters are

considered as switching of the state. The run time for each experiment varied depending

on the number of electrodes and trials in each study. Each experiment took and average

20 mins to run.

3.3.1 Experimental results and analysis of single subject multiple trial

EEG dataset

The first set of experiments were carried out on the SPM multimodal face-evoked dataset

(SPM). This data was acquired from a single subject while the person was presented

images of normal and scrambled faces. The stimulus dataset consisted of 86 normal and

86 scrambled face images. Each face stimulus went through 2D Fourier transformation,

random phase permutation, inverse transformation and outline-masking to create the

scrambled face (Ashburner et al. (2008)). Figure 3.4 show examples of the normal and

scrambled face stimuli presentation protocol for the single subject analysis reported in

this section. The EEG recording was done by randomly selecting stimuli from this set

and presenting it to the subject, multiple times creating multiple trials for each type of

stimulus. The data was sampled at 2048 Hz and was recorded with 128 EEG channels

over several trials of which the first 100 trials were used for this analysis.

In order to compensate for the variability of the results and to investigate its consistency

over different trials the whole data set was divided into two non-overlapping groups (trial

1-50 and trial 51-100) and taking all the trials (trial 1-100) as the third group. This is

done from the point of view that the ensemble statistics of the pattern underlying the

cross-electrode phase difference should be consistent over small subsets of multiple trials

and the trials consisting of the entire dataset.
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Figure 3.4: Stimulus presentation protocol for the single subject face perception
experiment. Image taken from (SPM)

3.3.1.1 Analysis for normal face

Figure 3.5 shows the results from all the three runs of the incremental k-means opti-

misation routine for optimally clustering the synchrostates in the β band when applied

on EEG data for normal face perception task. Here β rhythms are considered, as they

have been reported to be linked to perception related modulations Wróbel (2000). In

this case, over all the runs the k-means clustering consistently results into three unique

states as there exists a knee in the cost function (Jm) at k = 3.

After obtaining three unique synchrostates, the cross-channel EEG phase differences are

averaged for each electrode to get an average phase corresponding to that node. These

are next used to generate a contour plot over a head-map by connecting nodes having the

same average phase difference values. The topographical distributions or contour plots

of each of these three synchrostates are shown in Figure 3.6. Note that the topographies

should not be interpreted like standard quantitative EEG (qEEG) plots (which show the

average spectral power over the scalp), as they are fundamentally different. Here, the

plots show the gross phase difference between different electrodes over the scalp during

the occurrence of the state. Such head-map topographies give a visual representation of

the distribution of average phase differences between different regions of brain over the

scalp. Higher numerical values (reddish hues) represent greater gross phase difference of

the electrode with respect to all the other electrodes and low values (bluish hues) indicate
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Figure 3.5: Determination of the optimum number of underlying clusters (k) for
different group of EEG trials during normal face perception. All the plots show
that the first significant knee is three, i.e. the optimal number of synchrostates
is three.

that the electrode has relatively less phase difference relative to all other electrodes, in

that configuration. It is interesting to note that the topographical maps of synchrostates

are consistent across different sets of runs and are almost unique in the experiment. In

Figure 3.6, there is slight difference in the first state topography, especially in the fronto-

central electrodes. This much of difference is expected due to variability of the trials,

mood or mental condition of the subject, attention level, particular characteristics of

the face stimulus and various other subconscious random processes going on within the

brain during the data-recording. In most literature on EEG studies, there is evidence of

such inter-trial variability. Despite these incongruences, the main unifying theme among

these plots is that almost similar phase synchronisation phenomenon can be observed in

these states.

To explore the consistent repeatability of the synchrostates for the present task, the

number of times each of these states occurs in the β band were computed. The results,

as shown in Table 3.1, confirm that the number of occurrence of each of the synchrostates

is consistent over separate trial groups with little difference. The little variation observed

could be attributed to the fact that even during a focused task, there could be multiple

cognitive processes that run in the background. These may not be directly related

to that specific task but may influence the phase relationship between different brain

regions in an indirect way.

The same technique was applied for extracting the synchrostates in the θ, α and γ

bands and the cost function results of incremental k-means are shown in Figure 3.7. It

was found that, in θ and α band, the optimal number of synchrostates varies between

separate trials but within a small range (approximately 3-5) whereas, for γ band the

optimal number of synchrostates is obtained at k=3 consistently. This small variation of
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Figure 3.6: Clustered synchrostate headplots showing the gross phase difference
between different electrodes over the scalp during the occurrence of the state
for trials 1-50, 51-100 and 1-100 of normal face perception in the β band.

Table 3.1: Time of Occurrence (time instants) of three states for β band with
normal face stimulus

EEG segments State 1 State 2 State 3

trial 1-50 101 43 256
trial 51-100 105 31 264
trial 1-100 113 42 245
Mean 106.33 38.67 255
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Figure 3.7: Cost functions for clustering in different EEG bands with increasing
k during normal face perception. The first significant knee of the plot indicates
the optimal number of clusters or states underlying the dataset. The β and γ
band have a knee at three across all sets of runs.

optimal number of synchrostates in the α and θ bands may once again be attributed to

the fact that they represent different background cognitive processes, executed during

the cognitive task which are not directly related to the present task and therefore may

vary between the trials.

3.3.1.2 Analysis for scrambled face

A similar analysis has been carried out for the scrambled face case. Figure 3.8 shows the

optimal k for the scrambled face run in the β band which is once again obtained at k =

3. The normalised average phase difference head plots were also plotted in a similar way

to those for normal face perception in β band to get a better idea of the topographical

structures of the synchrostates which are shown in Figure 3.9. Interestingly, the maps

appear very similar to the plots resulting from the normal face (Figure 3.6) stimuli

showing that the actual phase topographies remain same for both of the tasks. In

one sense this is expected as both of the tasks fall into the generic category of visual

perception and are plots from the same subject. The optimal number of synchrostates in

the other EEG bands (θ, α, γ) once again varies from 3 to 5 in this case as shown in Figure

3.10, as it did during a normal face perception task. Once again this phenomenon is

attributed to the existence of background cognitive processes, independent of the present

task and inter-trial variability.

The existence of consistent number of synchrostates in β band for both the cases con-

forms to the theory that β rhythm is more related to visual perception tasks (Gross et al.
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Figure 3.8: Determination of the optimum number of underlying clusters (k)
for different group of EEG trials during scrambled face perception. All the
plots show that the first significant knee is three, i.e. the optimal number of
synchrostates is three.

(2004), Wróbel (2000)) and therefore one may expect dominant and stable information

exchange patterns in the β band. On the other hand, the very small variability of the

number of optimal synchrostates in the other EEG bands (3 - 5 in both the cases) also

indicates towards consistency of the existence of synchrostates in these bands.

Table 3.2 shows the number of times each state has occurred for each run during the

presentation of scrambled face stimulus in the β band. The important point to note

is that in this case although the topographic maps of the synchrostates are similar to

those of the normal face perception stimulus, the number of occurrence of each of them

is markedly different. State 3 although shows a similar number of occurrence to that

of the normal face perception, the number of occurrence of state 1 and state 2 differ

significantly between the two cases. A close observation reveals that the state 1 occurs

more frequently during normal face processing whereas state 2 occurs more often during

the scrambled face processing indicating towards different types of processing which

is dependent on the type of stimulus. This supports the claim that the stability and

occurence of the synchrostates is depended on the stimulus given to the subject.

3.3.1.3 Switching characteristics of synchrostates for normal and scrambled

face

In order to distinguish between the time-course of each synchrostate specific to a stimulus

that may be indicative to the processing time required for a task, their switching time-

course were plotted over 400 samples (approximately 195 ms) after the onset of the

stimulus for both normal and scrambled face. Each subplot in Figure 3.11 shows the

switching transition between the 3 states obtained from the average EEG signals using
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Figure 3.9: Clustered synchrostate headplots showing the gross phase difference
between different electrodes over the scalp during the occurrence of the state
for trials 1-50, 51-100 and 1-100 of scrambled face perception in the β band.

the 1-50 trials, 51-100 trials and 1-100 trials for normal and scrambled face stimuli.

As can be seen from Figure 3.11, the switching time-course of the synchrostates for

different trials for each of the considered cases follow a consistent pattern, whereas they

are markedly different between the normal and scrambled face perception, indicating

toward the stimulus-specific nature of it.

Also it can be noted that the inter-synchrostate transition in Figure 3.11 occurs abruptly

which is again similar to the transitional nature of the microstates (Pascual-Marqui et al.

(1995)). Assuming that each task can be broken down into a sequence of subtasks, the

time duration of each synchrostate in the time-course sequence may be indicative to the

processing time required by the underlying brain circuitry for a subtask. In addition,

the sequence and duration in which the synchrostates occur may reflect the sequence
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Figure 3.10: Cost functions for clustering in different EEG bands with increasing
k during scrambled face perception across different trial groups.

Table 3.2: Number of Occurrence (time instants) for Three States in β Band
with Scrambled Face Stimulus

EEG segments State 1 State 2 State 3

trial 1-50 29 123 248
trial 51-100 31 155 214
trial 1-100 29 137 234
Mean 29.67 138.33 232

and time of information exchange that is characteristic to a particular task. There-

fore analysis of synchrostates could be an effective tool for quantitatively characterising

information processing ability of brain in different neurophysiological disorders where

information integration and processing speed are the biggest issues, by comparing the

sequence and duration of the synchrostates with those in a control population.

3.3.1.4 Consistency of the synchrostates in different ensembles of EEG trials

during normal and scrambled face perception

So far the clustering results over large number of trials (50s and 100s) have been reported.

It may be argued that this may have possibly averaged out small inter-trial variability

of the new physical phenomenon i.e. the existence of synchrostates during normal and

scrambled face perception. This is fundamental and worth looking at, in two different

contexts of face perception task, to understand the basic physical nature of processing

of these stimuli within the brain. It is verified that the patterns obtained in larger

ensembles of EEG trials are consistent, even in smaller groups as well. The clustering

results that produce the optimal k estimates under normal and scrambled face stimuli
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Figure 3.11: β band temporal evolution of synchrostates for different trials of
EEG during normal and scrambled face perception. The temporal switching
patterns amongst these states during the same face stimuli are similar across
different ensemble of trials however they are very different between the two
stimuli (normal and scrambled face)

have been reported here. The 100 trials of the 128 channel EEGs are grouped into

different ensembles as groups of 10s and 20s and then the clustering algorithm was run

on each ensemble. Figure 3.12 shows that in each group of normal and scrambled face

processing, the optimal unique phase synchronised patterns or synchrostates is three.

These three unique states have been shown to be the same with larger ensembles as well

(50s and all) as in Figure 3.5 and Figure 3.8. As discussed in Section 3.2.2, in different

trials the characteristic knee can be found by the first significant fall in the cost function

Jm. In some cases, there is an increase in the cost function indicating that the total

sum of Euclidean distances of all data points from the respective mean of clusters has

increased due to splitting of large compact clusters into several smaller ones.

The fact of consistently obtaining three optimal states also confirms that the number of

states obtained in the synchrostate analysis does not depend on how the data was divided

in groups and on the choice of the number of trials used. Any stochastic process, such

as EEGs are expected to have some inter-trial variability but the statistical measures,

capturing the common underlying characteristics of different ensembles have been found

to be the same. The results show that irrespective of the starting point, i.e. the number

of trials the user selects at the beginning, a consistent number of synchrostates is still

obtained.



Chapter 3 Investigating Phase Topography in Multichannel EEG Signals during
Face−perception Tasks 47

Figure 3.12: Determination of the optimum number of underlying synchrostates
for different ensemble of EEGs during normal and scrambled face perception.
All ensembles show a significant knee at cluster 3 hence the optimal number of
synchrostates is consistent across different ensembles of the data.

3.3.2 Synchrostate analysis of multiple subjects involving multiple tri-

als during face perception

The results shown in the foregoing section are only based on a single subject. In order

to explore whether the result holds true for a number of different subjects, a similar

exploration was run on EEG recorded from 10 subjects, when they were presented with

three types of face perception stimuli i.e. famous face, scrambled face and unfamiliar

face. An example of these stimuli and the presentation protocol is shown in Figure

3.13. Data available in Henson et al. (Henson et al. (2011)) was used, where EEG was

recorded simultaneously from 70 electrodes at 1.1 kHz, with the recording reference set

at the nose electrode. The data was epoched from -200 ms to 600 ms to produce 100

trails for each subject and subsequently was pre-processed, filtered and artifact rejected,

using the same algorithms and criteria used in the previous single subject study (Section

3.3.1). The results presented in this section show the average synchrostate response of

the 10 subjects which were obtained by taking the mean of the phase response of the

100 trials of each stimulus of each of the 10 individuals. The EEG phase difference of

each 10 adults were averaged to generate the mean phase response of the cohort.

Using this mean phase response and following the steps (described in detail in Section

3.2) to generate the optimal states using k-means clustering from the wavelet based

time-frequency domain decomposition of the EEG signals, the obtained the results are
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Figure 3.13: Stimulus presentation scheme for the multiple subject adult face
perception dataset.

Figure 3.14: Determination of the optimum number of underlying clusters for
different EEG bands during famous, scrambled and unfamiliar face perception
for 10 subject group analysis. The number of states for all three stimuli in the
β band is three.
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shown in Figure 3.14. For all the three stimuli (famous, scrambled and unfamiliar), the

α, β and γ-band - all cluster at 5, 3 and 4 respectively, as the first significant knee

is observed at these values. In the θ band however, the famous face stimulus yields

four optimal states whereas the other two (scrambled and unfamiliar) stimuli have five

optimal synchrostates. To corroborate the results from the single subject study reported

in previous section, the results of the β-band synchrostate analysis for multiple subject

group analysis are detailed here.

The head-plots for the synchrostates for all the three stimuli (in the β band) have

been reported in Figure 3.15. As confirmed from Figure 3.14 the optimal number of

synchrostates for all three stimuli is 3 in β band. The corresponding unique phase

topographies or head-plots (Figure 3.15) show that for the general task of perceiving a

face, be that famous or unfamiliar, the synchrostate topographies for both the famous

face and the unfamiliar face are comparable. However, when perceiving the scrambled

face, the state topography is different. The difference between the face (famous and

unfamiliar) and the scrambled topographies in this experiment could be an indication

that every individual perceives the scrambled face in a different form to each other,

hence scrambled face does not yield a topography that is similar to the face (famous

and unfamiliar) topography of the cohort. One may conclude that the every individual

perceives the face category in a similar way hence both of the famous and unfamiliar

headplots are similar. Another point to be noted here is that in this experiment the no.

of electrodes were less than that of the study with single subject described earlier. This

leads to loss of resolution in the computation process itself. Hence the result is expected

to be less consistent and have more variability with fewer electrode EEG systems.

The transition plots in Figure 3.16 show the 363 ms post stimulus response. The state

labels between both experiments are arbitrarily labelled, so state 1 in analysis 1 (sin-

gle subject analysis) is not analogous to state 1 in the second (group analysis). It is

evident from Figure 3.16 that both famous and unfamiliar faces have similar transient

synchrostate switching dynamics and response. However, similar to the conclusion from

the face perception study, discussed earlier, it appears that for this pool of subjects as

well, the state transitions are different for the general category of normal face (famous

and unfamiliar faces) and scrambled face. These observations obtained from the results

of 10 subjects, during a different experiment, affirm the phenomenon of the existence of

the synchrostates and the consistency in the results. The number of occurrence of each

of the three states in the β band for all three stimuli has been reported in Table 3.3.

Figure 3.17 shows the number of states for each of the 10 individual in the θ, α and γ

band across the three different stimuli in a box plot. The red cross marks the outliers,

the blue box shows inter-quartile range and the solid red line shows the median. From

the figure it is evident that the number of synchrostates lie between a 3 to 6 for this

cohort of subjects. The number of states in the γ band is three for all subjects, same

number as β (as seen from results above). The other bands have slight variations in
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Figure 3.15: Multiple-subject average synchrostates during famous, unfamiliar
and scrambled face perception in the β.

Table 3.3: Number of occurrence of the three synchrostates in β band with three
different face stimulus in the multiple-subject averaged EEG

Stimuli State 1 State 2 State 3

Famous 58 239 104
Scrambled 69 176 156
Unfamiliar 59 251 91



Chapter 3 Investigating Phase Topography in Multichannel EEG Signals during
Face−perception Tasks 51

Figure 3.16: Multiple-subject averaged temporal evolution of β band syn-
chrostates in 363ms for three different face stimuli. The famous and unfamiliar
face show similar responses compared to scrambled.

the number of synchrostates across individuals which is very likely due to interperson

variability in the processing each stimuli.

From these results, one can conclude that there exist a small number of states which

might have different topography in a face perception task. The results from the individ-

ual study show that the synchrostate properties are almost consistent across different

trials from the same individual. The similarity between the group analysis and the in-

dividual analysis shows that the number of states is consistently three in the β band

for both the cases. The topographies and the transitions between the two experiments

are very likely to be different as the data collection paradigms are not the same. The

number of electrodes, electrode layout as well as the sampling rate of EEG acquisition

for both these studies are also not equivalent.

3.3.3 Possible artifact and volume conduction effect

Before continuing discussion about the implications of these results one needs to elimi-

nate possible artifact effect that may bias the observation. It is worth mentioning once

again the head plots shown here are fundamentally different from those obtained from

qEEG analysis where the average power spectrum is plotted over the scalp. Any possible

artifact in such cases is manifested as strong correlation at the scalp edges. On the con-

trary, the head plots shown here are more like the visualisation of the phase difference

patterns distributed over the scalp. The bluish hues imply nearly zero phase difference

whereas the reddish hue implies large phase difference.
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Figure 3.17: The no. of synchrostates for each subject during famous, scrambled
and unfamiliar face perception for 10 subject group analysis in the θ, α and γ
band shown in a boxplots.

Furthermore, in the side edges of the headplots, like that in Figure 3.6, concentration

of large phase difference should not be confused with the presence of artifacts. This is

because the synchrostates change at the time resolution of milliseconds (ms) and the

artifacts generally occur in the time interval of seconds. Here, each of the head plots

show phase difference topographies existing of the order of ms. Since the synchrostate

topographies are constructed in the ms order and as the transition diagrams show that

the topographies switch from one configuration to another and back, in the ms order time

interval, in the presence of possible artifacts all of the states should exhibit similar phase

relation at the scalp edge for all the states which is not the case. Because artifacts could

not appear in millisecond level time resolution, then disappear and again reappear within

this small time window, they do not account for the observation of the synchrostates, as

all states are following a switching sequence in a small window of time. While processing

the data, as mentioned in Section 3.3, the epochs above 200µV were eliminated as

possible artifacts. Therefore the data used in the analysis is likely to be artifact free in

the first place.

Secondly, eye artifacts are generally concentrated in the forehead and are constrained

mainly in the low frequency ranging from 1-5 Hz (McFarland et al. (1997a)). Muscle

activity is reported to be maximal at frequencies higher than 30 Hz (Fatourechi et al.

(2007),Anderer et al. (1999), McFarland et al. (1997b)). It is also well known that

prominent broad-band signal power above 30 Hz can be attributed to micro-saccadic

artifacts (Yuval-Greenberg and Deouell (2009)). The plots in Figure 3.6 are the results

in the β band (13-30 Hz) synchronisation, so are likely to be minimally affected by eye
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or muscle artifacts. Therefore while interpreting the results one may eliminate the effect

of possible artifacts.

The validity of phase synchrony, derived from EEG signals recorded over the scalp has

been doubted in past literatures, as it is considered as the effect of spurious synchroni-

sation that occur due to volume conduction (Nunez et al. (1997)). As studied in Section

2.2.2, zero phase lag is characteristic of volume conduction and interactions reported

from them are not reliable, whereas the network properties are measured through phase

differences (Thatcher et al. (2008)). Volume conduction involves zero phase delays be-

tween any two points within the electrical field as collections of dipoles oscillate in time

(Nunez and Srinivasan (1981)). Zero phase delay is an important property of volume

conduction based on which measures such as imaginary spectrum, bi-coherence, phase

reset and coherence of long phase delays are considered critical in measuring brain con-

nectivity, independent of volume conduction (Nolte et al. (2004), Pascual-Marqui (2007),

Peraza et al. (2012)). According to the assumptions in pioneering paper regarding iden-

tifying true brain interaction by Nolte et al. (Nolte et al. (2004)), phase shifts (phase

differences) cannot be explained by volume conduction. In this study from the very

beginning the same premise is used and only non-zero phase differences between EEG is

investigated. The synchrony reported in this study does not report zero phase lag syn-

chronisation as can be seen from the experiment shown in Figure 3.18. The figure shows

individual cross electrode phase differences for all channel-pairs along time (continuous

blue lines) for the adult EEG over 1-100 trail run as an example. The plot of red circles

shows the average cross channel phase difference. From Figure 3.18 it is observed that

the cross electrode phase difference is consistently non-zero in time. Also, as per the

study of Stam et al. (Stam et al. (2007)), the existence of a consistent non-zero phase

lag cannot be explained by volume conduction. The non-zero value of pair-wise phase

differences along time in the study, suggests that the synchronies are not artifactual

hence is a reflection of brain interactions and is not a result of volume conduction.

Thatcher et al. (Thatcher (2012)), also pointed out that if phase difference in the space

between two electrodes uniformly equals to zero then this is volume conduction. On

the other hand, if a point intermediate between two sources is not at phase zero, then

it cannot be explained by volume conduction. Hence this means in high density EEG

space, if at a single time instant the phase difference between intermediate electrodes

is zero, the data can be labeled as corrupted with volume conduction. However if the

relative phase difference between an electrode and its neighbouring electrodes are non

zero then there is no effect of volume conduction. To investigate if the phase information

in this study is affected by volume conduction the phase difference of a single electrode

with respect to all others was observed. Figure 3.19 shows the phase difference from

the single subject EEG in Section 3.3.1 (in degrees) between electrode A1 and other 127

electrode at t = 19ms and then at t = 24ms. From both the plots it can been seen, that

the phase difference between A1 and the other electrodes in the scalp are never zero



54
Chapter 3 Investigating Phase Topography in Multichannel EEG Signals during

Face−perception Tasks

Figure 3.18: Cross channel phase difference evolution over time and of their
average across all possible pairs.

Figure 3.19: Absence of volume conduction revealed from consistent non-zero
phase difference across EEG channel pairs.

and ∆ϕij (where i = A1 and j are channel numbers) is not uniformly zero between any

intermediate electrodes in space. Therefore it can be concluded that the phase locking

observed in synchrostates cannot be explained by volume conduction.

Another property of the new phenomena in this study - ‘synchrostates’ that cannot be

explained by volume conduction is the desynchronisation and resynchronisation (Ro-

driguez et al. (1999)) of different electrode signals over time i.e. the transition between
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the states in ms order. If the synchrony captured was in fact the effect of volume conduc-

tion it does not account for the change in the synchronisation pattern in both strength

and between relative electrodes over time (in ms) during state changes. Synchrony re-

sulting from volume conduction would result in constant synchronisation configuration

prevailing over the scalp throughout the recording time for all the synchrostates. Even

the signals from a single intermittent source will simultaneously affect all the electrode

recordings. Thus time delays between electrodes cannot be accounted for by a single in-

termittent source (Koenig et al. (2005), Studer et al. (2006)). If the single source activity

was conducted through a distributed lead field its intermittent activation patterns would

also be volume conducted to several of scalp electrodes. Such a scenario would entail

there would be no change in the effective phase difference between two electrode signals

during these intermittently active sources (Rodriguez et al. (1999)). Stam et al. (Stam

et al. (2007)), states that the asymmetric distribution of instantaneous phase differences

between two signals cannot be explained by volume conduction from a single source. The

time varying desynchronising and resynchronising nature of the synchrostates is due to

the asymmetric nature of the reported phase differences which causes to be sometimes

positive or negative and larger or smaller indicating towards a phase lag and a phase

lead and hence changes the synchronisation pattern between electrodes as a result. The

phase difference between a pair of electrodes abruptly change and then can reconfigure

into new topographies which confirms that the synchrostates are not affected by volume

conduction.

Techniques such as mutual information (Gysels and Celka (2004)), cross covariance

(Kramer (1980), Urbano et al. (1998)) PDC (Baccalá and Sameshima (2001)), DTF

(Kamiński et al. (2001), Babiloni et al. (2005)), Granger causality methods, Phase lag

index - PLI (Stam et al. (2007)) and PLV (Lachaux et al. (1999)) are some popular

synchrony measures in EEG that are widely used in current brain research. All of the

above mentioned literature devise methods or report EEG coherence or synchronisation

that are not manifested through volume conduction based on the theory of zero phase lag

and the asymmetric distribution of phase difference. This research in phase synchrony

is an extension of these concepts of functional connectivity analysis using EEG signals.

The same premise and arguments are used to validate that the observed phenomenon is

not an effect of volume conduction.

3.4 Conclusion

The most important finding in this study is that over all the subject groups and individ-

ual subject a small set of unique phase difference patterns - synchrostates - each being

stable of the order of ms have been found to exist. These synchrostates switch from one

to another abruptly and thereby constructing a characteristic time-course to the applied

stimulus. This is qualitatively similar to the results obtained with microstates (Koenig
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et al. (2005)) albeit the microstate topographies are constructed in the EEG amplitude

domain where the number of states may go up to 10. From these experiments, it is

observed that the number of synchrostates is bounded between 3 and 6 depending on

individual subjects, stimuli and also the number of EEG electrodes for recording. From

the time-course plots it is evident that different synchrostates show different duration of

stability at different time points depending on the applied stimulus and thereby possibly

capturing the dynamics of phase synchronisation at a finer temporal granularity level.

The results from the individual subject study show that the synchrostate properties

are almost consistent across different trials from the same individual. Without loss of

generality the same synchrostate analysis approach can be applied to an average subject

group with multiple trials and also a single subject from EEG recorded over multiple

trials. The similarity between the group analysis and the individual analysis shows that

the number of states is consistently ranged between 3-6 in both the cases, although the

synchrostate topographies seem to be different due to difference in number of electrodes,

electrode layout as well as the sampling rate of EEG acquisition.

Physically it means that during an information processing task, in this case, a face

perception task a well defined information exchange process is initiated between different

regions of brain and the state transition characteristics resulted indicates the dynamics

of such a process. Assuming that each task can be broken down into a sequence of

subtasks, this may mean that the time duration of each synchrostate in the time course

sequence is indicative to the processing time required for the underlying brain circuitry

for processing a subtask. Therefore this could be an effective tool for quantitatively

characterising information processing ability of brain in neurophysiological disorders

like Autism and ADHD where information integration and processing speed are the big

concerns.



Chapter 4

Synchrostates in pathological

populations

The results and discussion from the previous chapter established that synchrostates

exist during face perception in normal adults. However, whether the same phenomenon

exists in a pathological subjects, needs to be explored. Given the stimulus specific

nature of synchrostate and its inherent ability to describe temporal evolution of phase

relationship at different sites of the brain, it could offer new possibility for understanding

pathological brain function if such a phenomenon is found to exist. In this chapter

the method discussed in the previous chapter was applied on EEG from two groups

of children - typically growing and autistic and high and low anxiety children in two

separate experiments.

As discussed earlier β band modulations have been correlated to face processing and

cognition. It has also been argued that γ band synchronisation is a fundamental process

that follows any elemental operation of cortical computation (Fries (2009)). Since these

two band have been revered as bands of interest in face processing and cognition (Table

2.1) from here on the work concentrates on the synchrostate analysis on these bands

only.

4.1 Experimental results and analysis of Typical and ASD

population

Data from a high-density EEG study was used for this experiment. The experimental

sample of the dataset contains EEG data from 24 participants; 12 children with ASD and

12 typical controls. The ASD group had subjects with an age range of 6-13 years with a

mean age of 10.2 years. The control population was aged between 6-13 years as well with

an average age of 9.7 years. The subjects for group with ASD were diagnosed according
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Figure 4.1: The face stimuli shown to the children during the experiment

to the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TP) criteria

(Association (2000)). The diagnosis was confirmed by Autism Diagnostic Observation

Schedule-Generic (ADOS-G) and Autism Diagnostic Interview-Revised (ADI-R). The

stimuli for the experiment run with these groups were taken from a database of widely

used standardised facial expressions (Tottenham et al. (2009)). 30 faces from 5 male and

5 female subjects were taken, each exhibiting fearful, happy and neutral expressions. The

Figure 4.1 shows the stimulus presentation protocol adopted during the data acquisition.

The experiment was conducted in 4 blocks and in each block 10 fearful, 10 neutral and

10 happy faces were presented at random. Data was acquired at 250 Hz using a 128-

channel HydroCel Geodesic Sensor net (Apicella et al. (2012)). The continuous EEG

data was segmented into 1000ms epochs and segments with signals over a threshold of

200µV were rejected. Data was band-pass filtered from 0.5 Hz to 50 Hz and baseline

corrected.

The results for this experiment are presented in two steps: first as a population average

and then for individual subjects belonging to a population. To study the population

average, first the average phase difference matrix for each subject is formulated by

averaging the phase difference matrices across all trails. Then again, an average of the

phase matrices of each subject belonging to that population is taken at every time instant

and then k-means clustering is invoked on that set of average matrices as described in

Section 3.2.1 and 3.2.2. In essence this gives a general picture of temporal evolution

of phase relationship between different electrode sites for a specific population. The
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Figure 4.2: k-means clustering result of β and γ band for the typical group. In
both bands the optimal number of states is three as the plot shows a significant
knee at three.

exploration shows that the cost function for clustering does not fall arbitrarily with

the increase in the number of clusters confirming the existence of a finite number of

compact underlying clusters or states during the whole time-course of the EEG data.

The detailed results for the individual groups are furnished in the following subsections.

4.1.1 Typically developing children

Figure 4.2 shows the results of the incremental k-means clustering algorithm in both

the bands (β and γ) for all the given stimuli from the population average of 12 children

with typical development (group I). It is clear that the dominant knee of cost function

for all the three stimuli appears at k = 3 although in some cases after the knee the cost

function increases and then again decreases. These are the typical situations already

discussed in Section 3.2.2 and accordingly where the earliest knee appeared needs to be

considered only. This means that in the dataset considered, there exist three unique

phase difference matrix configurations - synchrostates - from the onset of stimulus till

the end of an action.

In Figure 4.3, from the corresponding head-plots it is evident that the topographies of

all the three synchrostates are very similar for all the different stimuli in the β band. A

similar result is observed for the γ band in Figure 4.4 where the synchrostate topographic

plots are similar and more importantly closely resembles to those obtained in the β

band although differing slightly in the numerical values, in particular in the reddish hue

regions. However, an interesting difference is observed in the state transition plots shown
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Figure 4.3: The topographic map for all the three stimuli in β band for the
typical group. The plots show similar topography across the stimuli,

in Figure 4.5. Although in both the bands the transitions start from state 2, the overall

transition patterns are markedly different not only between the β and γ band but also

between different stimuli within a band. This demonstrates the stimulus specific nature

of the synchrostates. It is evident from this experimental study that the β and γ bands

characteristics are significantly different for the two bands.

From the headplots one can infer that in state 1 and state 3 for both the β and the γ

band the average phase difference distribution across the scalp is almost uniform across

all electrodes. This could be due to uniform information exchange in the brain during

the existence of these states. Looking at the state transition plots (Figure 4.5) for this

cohort of subjects it is observed that, the typical population spends most of the task

execution time in state 1 and state 2 and hence one may say that they reside at a state

of phase homogeneity for longer. This supports the theory that the face recognition is a

multiscale integration system (Goudail et al. (1996)) and is in agreement with current

literature suggesting that re-entrant integration of the occipito-temporal face-sensitive

is necessary for face processing (Rossion et al. (2003)).
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Figure 4.4: The topographic map for all the three stimuli in γ band for the
typical group. The states share similar topography across all the stimuli.

4.1.2 ASD

The k-means clustering results for ASD population is shown in Figure 4.6 for the β and

γ bands for all the three applied stimuli i.e. fearful, happy and neutral faces. Once

again the significant knee appears at k = 3 implying existence of three synchrostates

similar to the typical case. The corresponding phase difference topographies over the

scalp are shown in Figure 4.7- Figure 4.8 as head plots with each of the colours signifying

a particular range of phase differences as shown in the legend (in a normalised scale with

respect to the maximum and minimum phase difference). It appears that although the

stimuli are different the topographies are nearly similar in the β bands (in Figure 4.7)

in particular for state 1 and state 3. However topographies corresponding to state 2 are

slightly different. On the other hand, in γ band the state 1 for happy and neutral stimuli

are similar while it differs significantly for fear stimulus (Figure 4.8). State 3 shows close

similarity under all the three stimuli. As a further investigation, the time-course plots

of the synchrostate transition are shown in Figure 4.9. In the both the bands the time
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Figure 4.5: The time-course plot of synchrostate transitions in β and γ band
for the typical group for fearful, happy and neutral face stimuli for 1 second.

Figure 4.6: k-means clustering result of β and γ band for the ASD group. The
optimal number of states for both the bands is three.
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course plots are markedly different depending upon the stimulus and thereby indicating

different temporal stability period of the synchrostates at different points in time.

Observing the transition plots closely shows that some states in the transition plot

are existing for a very small time and move quickly to another. It must taken into

consideration that the sampling rate for EEG in these experiments were 250Hz. Hence

there is a loss in the temporal granularity of the transition plots of these experiments

compared to those conducted in the previous chapter. Another interesting observation

from the β band state transition plot is that in the ASD group spend significantly more

time in state 2 during fearful and happy face stimuli compared to the typical. The

headplot of state two shows a more heterogenous distribution of the phase difference

across the electrodes. Current literature stresses on the need for integration in face

processing. The state 2 characteristic of this ASD cohort is that of sparsely distributed

phase distribution which is not uniform. Compared to the typical subjects it is observed

that the ASD population spend more time in sporadic phase distribution states.

These visual anomalies observed from the typical and ASD headplots and transition di-

agrams need to be investigated in quantifiable measures. In order to do so one must first

determine if these differences manifest themselves into phase synchronisation features,

which may allow us to use them as biomakers for the disease.

4.2 Experimental results and analysis of Low and High

Anxiety population

For the next set of experiments standard EEG acquisition protocol was followed for

acquiring the data at 250 samples/s. The subjects in this group are children with

behaviour disorder with anxiety problems and were assessed using the DOMINIC (Valla

et al. (2000)) which is a DSM-IV based pictorial interview for children aged 6-11 years.

Children in this group met the recommended cut-off points for generalised anxiety (Valla

et al. (2000)). The stimuli presented to the children is shown in Figure 4.10. The

experiment had 180 trials (60 trials per emotion type) with stimuli presented in random

order in two blocks of 90 trials. A 30 channel EEG system was used for data acquisition

and data was epoched at 100 ms pre-stimulus to 1000 ms post-stimulus. Collected data

was band-pass filtered in the range 0.1 - 70 Hz for eliminating the drift and noise as

done in the former cases.

4.2.1 Low Anxiety

The k-means clustering when run on the population average of the children with low

anxiety for the β band resulted with four states for all the three stimuli i.e. angry,
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Figure 4.7: The topographic map for all the three stimuli in β band for the ASD
group.

happy and neutral face. This is shown in Figure 4.11 as all three plots have the earliest

significant “knee” in the cost function plot at k = 4. However in the γ band the number

of states is different for the neutral face perception case. The number of states in the

γ band for angry and happy face remain unchanged at k = 4 whereas for neutral face

it is 6. In the head topographies for the β band, (Figure 4.12) although the number of

synchrostate is consistently four, their characteristics for each different task are quite

different. From the γ band head plots in Figure 4.13 it can be seen that the states 1,

4, 5 and 6 head plots are almost similar and common for all the three stimuli. However

the neutral stimulus has two extra states which did not exist in the other two stimuli

of angry and happy as can be seen from Figure 4.13. The transition of the states in β

band is shown for each specific stimulus in Figure 4.14. It can be observed that during

the execution of the angry face stimuli the inter-state transition is not as frequent as

compared to the other two stimuli viz. happy and neutral. The β band state transition

shows that except for angry stimuli for both the other stimuli the sequence start with

state 4, whereas for the angry visual stimuli it starts from state 2. In the γ band, the
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Figure 4.8: The topographic map for all the three stimuli in γ band for the ASD
group.

state transitions are much faster in neutral face perception compared to the other two

stimuli as shown in Figure 4.14.

Again in this stimulation short lived states are observed and these can be attributed

to the sampling frequency of the data which is low at 250Hz. The fast dynamic brain

response to these stimuli may be too fast to be captured with good temporal granularity

at this sampling rate.

4.2.2 High Anxiety

For the group of high anxiety subjects, as shown in Figure 4.15, for both the bands the

number of synchrostates is consistently four for different stimuli. The head plots for the

average β responses of the children as can be seen from Figure 4.16 are to some extent

similar across all the stimuli. This close similarity is even more prominent in the γ band

head plots depicted in Figure 4.17. The transitions of the states in β, shown in Figure
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Figure 4.9: The time-course plot of synchrostate transitions in β and γ band
for the ASD group for fearful, happy and neutral face stimuli for 1 second.

Figure 4.10: The stimulus presentation protocol administered during the data
acquisition on children
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Figure 4.11: k-means clustering result of β and γ band for the low anxiety
group. β has fours optimal states for all three stimuli. γ has four states for
angry and happy face and six states for neutral face stimuli.

Figure 4.12: The topographic map for all the three stimuli in β band for the
low anxiety group.
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Figure 4.13: The topographic map for all the three stimuli in γ band for the
low anxiety group

Figure 4.14: The time-course plot of synchrostate transitions in β and γ band
for the low anxiety group during angry, happy and neutral face stimuli for 1
second.
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Figure 4.15: k-means clustering result of β and γ band for the high anxiety
group. Both bands have four synchrostates for all stimuli.

4.18 end in state 1 for all the three stimuli. Also state 3 is the most occurring state over

the duration shown for happy and neutral face. This is also the case for γ band state

transitions for all stimuli as shown in the Figure 4.18.

Comparing visual observations it can been seen that in the γ the low anxious children

have state 1 as the most stable (longest occurring) state and the high anxiety subjects

have state 3 as there most stable state. Referring back to their subsequent headplots

a significant difference among these two topographies it observed and hence it could be

worth investigating the implications of these differences in a more quantitative form.

4.3 Variability analysis for individual subjects

So far the reported figures for the group-wise analysis highlight subtle changes in the

average phase difference topographies over the scalp and state transition plots for dif-

ferent stimuli. Now the statistical measures like the median, inter-quartile ranges of the

inter-person variability for the optimal number of synchrostates in both β and γ band

are shown in the box-plots given in Figure 4.19. The red line in the plot indicates the

median and the crosses show the outliers. The blue boxes denote the inter quartile range

for the data. This is obtained by applying incremental k-means clustering on the phase-

difference matrices obtained from individual subjects at different time instants under

different stimuli. The variability in the number of synchrostates observed when results

from the individual subjects are compared to the respective population average is not

significant. For the pool of typical children there are consistently three states for every

child in the γ band but in the β band the number of states for the children varies from
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Figure 4.16: The topographic map for all the three stimuli in β band for the
high anxiety group.

Figure 4.17: The topographic map for all the three stimuli in γ band for the
high anxiety group.
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Figure 4.18: The time-course plot of synchrostate transitions in β and γ band
for the high anxiety group during angry, happy and neutral face stimuli for 1
second.

3-7. This observation leads us to believe that the number of synchrostates is person-

specific although this number is bounded within a small range only. Also in Figure 4.19,

for ASD group in the β and γ band only 4 subjects show 5 synchrostates whereas the

population average result as well as for the other subjects, the number of synchrostates

is consistently 3. For the low anxiety and high anxiety groups (low-density EEG) it is

interesting to note that the median of the number of synchrostates varies between 5 and

6 whereas the median is consistently 3 for the ASD and typical children (high-density

EEG).

4.4 Variability in results due to electrode numbers

It has been seen in Chapter 3 that variation in the headplots are likely to occur due to

less number of electrodes. The important factor to note here that only 30 electrodes

were used for EEG acquisition for the anxiety groups and 128 electrodes for the ASD and

typical groups. This reduced number of electrodes inherently introduced less resolution

in computing the phase difference matrix and as a consequence may introduce a larger

variability in the synchrostate formulation. Therefore it is evident that the optimal

number of synchrostates largely depends on the number of electrodes and high-density

EEGs (as in the first two groups, Typical and ASD) are more likely to give consistent

result. Apart from that, the small variability observed in all the four cases is also
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Figure 4.19: Box-plot of the variation in the optimal number of synchrostates
in each group of subjects.

expected because of inter-person and inter-trial variability and possible existence of

parallel background processes not related to the cognitive task given.

Another conclusion one can draw is that the synchrostate transitions are better projected

in data with high sampling frequency as it allows the algorithm to trace the dynamics

of the phase evolution of the EEG signals at a coarser time scale. This results to a more

detailed time series for the state transition of the synchrostates. This is the case as the

instantaneous phase differences are estimated from discrete sampling points of the EEG

signal hence a higher sampling rate would yield a more detailed stream of phase time

information.

An interesting observation for the case of typical development population is that the

topographies of population average synchrostates (Figure 4.3 and Figure 4.4) are almost

similar for all the applied stimuli in both the bands. This is similar to the observation in

Section 3.3.1 where initial exploration was carried out with single normal adult subject

with 128 electrodes. Intuitively this implies that although different stimuli have been

applied, since all of them belong to the general class of face perception task, the funda-

mental phase relationship over the scalp remains nearly the same indicating a specific

type of information integration phenomenon pertaining to the general face perception

scenario. However the effect of different stimuli within the general class of face percep-

tion is reflected in the respective time-course plot (Figure 4.5) which showed marked

difference and hence different synchronisation dynamics characteristic to the applied

stimulus. On the other hand, although the topographies (Figure 4.7 and Figure 4.8) in

the case of ASD population showed certain similarities they are more variable compared

to the typical case along with their time-course. This may be due to the difference in
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information processing in the brain between the two subject groups. In addition, it is

apparent that generally for the ASD group the gross phase difference of each electrode

across the scalp is higher than that compared to the typical group as there is more pres-

ence of red and yellow hues in the ASD states in the γ band (Figure 4.8) compared to the

more blue hues in the states for the typical (Figure 4.4) group. Similar considerations

apply to the children with anxiety. However as discussed earlier in this section it seems

that determination of the optimal number of synchrostates depends on the electrode

systems used for EEG recording and more consistent result could be obtained using

high-density system.

4.5 Conclusion

From the results presented here one can conclude that the synchrostate phenomenon

also exists in pathological patient data during a face perception task. The data from a

group can be studied in a holistic way by analysing their synchrostates on the response

of the cohort or they can be investigated individually. For the group analysis, the syn-

chrostate properties and transition plots amongst different individuals could be slightly

different within one experimental paradigm. There is some variation in the number of

synchrostates, headplots between the EEG bands and across different stimuli. These

variations have been attributed to the difference in the electrode number during acqui-

sition as well the inter-person variability. The transition plots are also affected by the

sampling frequency of the EEG as they lose both time and frequency domain granularity.

There are some very evident differences between the headplots and stable states between

the populations and this observation warrants a more in-depth analysis on how these

differences translate into more quantifiable measures that can be used for detection and

therapy of these disorders.





Chapter 5

Modelling Synchrostate

Transitions

In Chapter 3 and 4, the basic principles of synchrostate analysis is discussed in details

and the concept is validated on face perception EEG. Results from six set of different

experiments were presented and synchrostates were shown to exist across all groups.

The multi-step processing in EEG synchrostate analysis reduces the EEG signals to a

simplistic process of stable phase difference maps which are assigned to synchrostates

using clustering. The synchrostate analysis as a theoretical model helps grasp the phase

evolution properties and hence provide insights into the underlying cognitive process.

This is especially interesting since the analysis is reduced to the observed synchrostates

and their transitions rather than the complex EEG time series.

This chapter proposes a stochastic model using the concept of Markov chains for the

inter-state transitions of the millisecond order quasi-stable phase synchronized patterns

or synchrostates. First and second order transition probability matrices are estimated

for Markov chain modelling from 100 trials of 128-channel EEG signals during two

different face perception tasks. Prediction accuracies with such finite Markov chain

models for synchrostate transition are also compared, under a data-partitioning based

cross-validation scheme. Later on the temporal switching sequence of the synchrostates

were modelled in a probabilistic framework for the typical, ASD, high and low anxiety

group of children studied earlier.

75



76 Chapter 5 Modelling Synchrostate Transitions

5.1 Predicting Synchrostate Transitions in single subject

EEG over multiple trials using First and Second Order

Markov Chain Models

In Chapter 3 the temporal evolution of the frequency band-specific phase difference

topographies was investigated to find periods of phase locking in multichannel EEG

signals. It has been found that the phase difference topographies do not change con-

tinuosly and microstate-like (Koenig et al. (2002)) quasi-stable phase locked patterns

are observed in a temporal resolution of the order of milliseconds. These synchrostates

switches from one to the other within the time interval of a cognitive task. The existence

of synchrostates during face perception tasks was observed in the (β) band with differ-

ent ensembles of EEG signals in Section 3.3.1. For similar visual stimuli, the inter-state

switching patterns only slightly change among different ensembles or trials (as evident

from Figure 3.11), however it is different for different stimuli and also across different

pathological groups of people. Hence, statistical modelling of the pseudo-random and

abrupt temporal switching characteristics of synchrostates can be helpful in understand-

ing the dynamic evolution of the stimulus induced brain response particularly in different

pathological population. Such a model could be effective in predicting the future be-

haviour of the state transitions in a probabilistic way using a Bayesian like framework,

once the initial state is known.

Previously, the microstate transitions have also been shown to follow the Markovian

property in (Schack et al. (2001)). In addition, the Markov Chain Monte Carlo (MCMC)

approach has been applied to fit neural mass model with EEG signals (Hettiarachchi

et al. (2012)) and for the necessary cortical sources (Kincses et al. (2003)). Studies have

shown that in order to mathematically model microstate transitions a higher order or n-

step Markov model may be needed due to the inherent long range temporal correlations

in such sequences (Van de Ville et al. (2010)). There has been also few attempts to

simulate epileptic seizure spikes in EEG using the Markov model and HMM (Shayegh

et al. (2014), Shayegh et al. (2009)). Automated evaluation of stages of sleep from EEG

has been modelled using Hidden Markov Model (HMM) in (Flexerand et al. (2002)).

Recently, phase synchronization dynamics have been modelled using the HMM and Semi-

Markov Model (SMM) in (Daly et al. (2013)) however their work does not consider the

presence of synchrostates. The process of deriving synchrostates allows us to represent

a multivariate stochastic process (EEG) as a collection of few univariate quasi-static

subsystems (unique states) which randomly switches amongst themselves. The unique

phase synchronized patterns or synchrostates can be considered as the discrete cognitive

states underlying the information exchange and integration within the brain. In contrast

to the above mentioned literatures, here a probabilistic model of the EEG synchrostate

switching sequences is first constructed using the first and second order Markov chains
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in order to predict their occurrences and validate the predictions with multiple EEG

trials during normal and scrambled face perception tasks.

The present work in this section is aimed to model the switching sequence of syn-

chrostates as a stochastic process over multiple trials, considering that the switching

time courses have the Markovian property and hence the source of these switching can

be modeled as a finite Markov chain. 100 independent trials of EEG signals during

scrambled and normal face perception tasks were used. The details of the dataset, syn-

chrostate derivation and subsequent discussion has been provided earlier in Section 3.3.1.

First order and second order transition probability matrix of Markov chain models were

developed using 90% of the data (EEG trials) in order to predict the state transitions

from the knowledge of the state at the first time step and the subsequent predictions

were verified and compared using the remaining 10% data under a 10-fold cross valida-

tion scheme. Markovian property of first and second order inter-synchrostate transition

essentially implies that the value of each state at any time instant depends only on the

state in the last one/two previous step(s) respectively.

5.1.1 Markov Chain Modeling for Synchrostate Transitions

The probabilistic evolution of many dynamic systems have been modeled by Markov

chains (Luenberger (1979)). The Markov chain can jump from one state or condition

to another, provided the transition is probabilistic and not deterministic. Due to the

probabilistic nature of the model it cannot predict the future states from the present

with certainty, however it can assign probabilities to the possible states that can occur.

Thus in a Markov process the future states are assessed by a vector of probabilities

(Grinstead and Snell (1998)). The evolution of these vectors essentially describes the

underlying dynamical nature of a system. In a first order Markov chain, the state at any

time instant depends only on the state immediately preceding it, and hence is defined

as a single-dependence chain. However, in Markov chains with higher order dependency

relationships like second or higher order chains, the subsequent state depends on two or

more preceding ones.

In an nth order discrete Markov chain, the process can be in any one of the finite

number (m) of possible states S1,S2,...,Sm at any time instant. As the chain progresses,

the states may change from one to another. This process is determined by transition

probabilities between discrete states in the observed system which is estimated using

the maximum likelihood approach (Shamshad et al. (2005)), where pij = Nij

/∑
j
Nij ,

i = 1, 2, ..,m , j = 1, 2, ,m. Here, Nij is the number of transitions from state i to j.

Given an initial condition (state), if the process is in Si at time n, then at time (n+ 1)

it will be at state Sj with probability pij . This study only considers stationary Markov

chains i.e. pij does not vary with time or space (Shamshad et al. (2005)). The transition
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Figure 5.1: The state transition diagram for three synchrostates along with the
transition probabilities pij

probabilities, pij of Markov chain are considered as the elements of the m × m non-

negative stochastic matrix P , commonly known as the state transition matrix. The sum

of the transition probabilities along each row of the transition matrix P equals one. If

one looks at the Markov process after two steps given an initial state Si, the transition

is governed by applying the underlying transition matrix, P twice. In other words if

p
(2)
ij is the transition probability of reaching state Sj from initial state Si in two steps,

then p
(2)
ij =

n=2∑
k

pikpkj =
[
P 2
]
ij

. Therefore, the two-step transition matrix is given by

P 2, the three step transition matrix is given by P 3 and n-step transition matrix is Pn,

such that the ijth entry of Pn is the probability of the system reaching state i to state

j in n steps.

The basic limit theorem (Luenberger (1979)) states that for certain types of Markov

chains there exists a unique limiting probability vector pT . In other words, in n-steps

for any initial state i the transition matrix tends toward a limit m×m matrix, P , known

as the steady state transition matrix, each of whose rows equals pT i.e. lim
n→∞

Pn = P ,

where each row of Pn converges to pT , as n→∞. This type of chains are called regular

Markov chains. A Markov chain can be considered as a linear dynamic system with a

positive system matrix (Luenberger (1979)).

A schematic representation of the transition amongst three synchrostates as an example

case is shown in Figure 5.1 where Si represents state i and pij , i,j=1,2,3 indicates the

probabilities of switching from state i to j which needs to be estimated from the observed

synchrostate sequence dataset. Once the transition probability matrix is obtained, the

future steps of the synchrostate transition can be predicted given an initial state using

the first and second order Markov chain models (Shamshad et al. (2005), Ataharul Islam

and Chowdhury (2006)).
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5.1.2 Results

The synchrostates analysis was carried out on the SPM multimodal face-evoked dataset

(Ashburner et al. (2008)). The dataset consisted of 128-channel EEG signals acquired

from an adult during the execution of face perception tasks when presented with mul-

tiple normal and scrambled face stimuli (details of the dataset, synchrostate deriva-

tion and discussion in Section 3.3.1). The 100 trials of EEG signals were epoched and

pre-processed and then different ensembles of the data was segmented into 10 equal

partitions, each of them containing 10 trials of the EEG. The phase response of each

individual 10 segments of EEG for both scrambled and normal face stimulus, were clus-

tered using incremental k-means clustering algorithm following the technique proposed

and described in section 3.2 to obtain the synchrostates. Here, the optimal number of

synchrostates in β band of EEG signals during face perception task from the incremental

k-means clustering algorithm is found to be three for both the face stimuli for all the

ten segments (Please refer to Figure 3.12 for the results of the clustering algorithm).

The clustering also generated associated inter-synchrostate switching sequence patterns

which may be described as probabilistic switching between the three discrete and unique

synchrostates in a configuration of Figure 5.1, over the task completion time of 400 time

steps. The temporal switching patterns amongst these states during normal face stimuli

were found to be similar across different ensemble of trials, however they differ between

two stimuli (normal and scrambled face) and thus could be considered as a unique signa-

ture of the visual stimuli provided. This allows us to generate two probabilistic models

of first and second order Markov chain to fit the state transition dynamics for each of

the two stimuli.

The state transition sequences for the whole 100 trials without data-partitioning have

been shown in Figure 5.2 for both the normal and scrambled face stimuli. The associated

optimal three synchrostate topographies have also been depicted in Figure 5.2 for all 100

trials of EEG taken together. It is evident from Figure 5.2 that the state topographies

are almost similar for both the stimuli but their transition sequences differ significantly.

For example during normal face perception the sequence starts from state 3 whereas

for scrambled face perception it starts from state 2. In addition, for the normal face

perception state 2 occurs minimum times whereas for scrambled face perception state 1

occurs the least times, indicating the cognitive task-specific nature of the synchrostate

switching patterns. The principle diagonal elements of the transition probability matrix

pii, i=1,2,3 can now easily be estimated from the state sequences shown in Figure 5.2

with prevalence of the same state and so as for the rest of the terms pij , i 6= j by

counting the number of transitions. From the switching sequences obtained for each

of the k = 10 folds of the partitioned EEG trials, synchrostate switching patterns are

derived next yielding a similar characteristics like in Figure 5.2.
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Figure 5.2: Synchrostate topographies for normal and scrambled face perception
for 100 EEG trials.

The aim is to model and simulate the switching sequences of synchrostates as a finite

Markov process for each of the k = 10 folds of synchrostate switching diagrams based

on the characteristics of 90 EEG signals. Starting from the ten group (or fold) of EEG

synchrostate observations, a cross-validation scheme has been adopted to generalize the

model across different ensembles (or group of trials) and generate the probabilistic model

which can give best use of limited data with less chance of introducing bias from the

validation data-set (Rogers and Girolami (2011)). During the experiment, each of the

single folds containing 10 EEG trials was held out as the validation dataset and then

the rest 9 folds containing 90 EEG signals were used to train the probabilistic model.

The Markov models introduced here may provide interesting information about the

evolution process of the synchrostates and their long term behaviour. The limit theorem

is used to consider the long term performance of the estimated model. Figure 5.3 shows

that the synchrostate transition is a regular Markov chain process when estimated on

the whole 100 trials of the data. This has been verified by obtaining the state transition

matrix P and then raising the power as Pn as n → ∞. Figure 5.3 shows that all

the 9 elements of the transition matrix obtained from the three synchrostate switching

sequences converge to the steady state transition probability or eigen-vectors of the

state transition matrix as the number of time steps are increased (Luenberger (1979),

Grinstead and Snell (1998)). The steady state probabilities of the three synchrostates

are found to be pTnormal = {0.6763, 0.13, 0.1937} for normal face stimulus and pTscrambled
= {0.6301, 0.2504, 0.1195} for the scrambled face stimulus respectively, no matter at

which state the sequence or the chain has started.
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Figure 5.3: Steady state transition probability for normal and scrambled face
stimuli (continuous line(red) scrambled, dashed line(blue) normal face)

For the validation of the Markov model, the synthetic generation of state sequences is

simple and straightforward once the model is built from the 9-folds of the whole dataset.

From the estimated Markov model representing a stochastic dynamical system, the

outcome as the synchrostate switching sequences will vary in different realizations of the

underlying random process, due to the probabilistic nature of the problem. Therefore,

during the validation phase, the synthetic data from the same Markov chain model will

be different considering multiple independent realizations of the same Markov chain

given the initial synchrostate condition at the beginning of the cognitive task. Also,

it is mathematically incorrect to match a real data with a single outcome of a trained

Markov process. To circumvent this problem, within each fold of data and at each time

step, by referring to the estimated transition matrix and given initial state, the program

makes 100 independent realizations for the prediction of which state the system moves

to in subsequent time steps, using a discrete random sequence generator. Based on the

estimated or trained Markov model using the past n number of samples, the expected

value of 100 independent predictions of the possible state at step (n + 1) have been

validated with the real observation of the held out state at time step (n + 1). The

mis-predictions are tracked over all the 100 independent realizations and across the 400

time steps for all the k = 10 folds of data segments. The misprediction rate or error for

each fold is then averaged to produce the average error rate of the model for a particular

order (first or second) of Markov chain. For building the second order Markov chain

model the (n + 2)th sample has been predicted in a similar way given the synchrostate

knowledge at time steps n and (n+1). The Markov chain model training and validation

algorithm for the synchrostate transition is illustrated in the following steps:

Step1: For each fold i, i={1,...,k}, calculate the transition probability matrix P by

taking the average of all the P’s over the 90% of the all training sequences.
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Step2: Given the knowledge of the initial state from the test sequence generate the

discrete events for the next time step for 100 independent realizations. This produces

random states from the discrete probability values of the state transition matrix.

Step3: Compare the 100 predicted states with the observed state in the test sequence.

If mispredicted, increase the error counter.

Step4: Increment iterations for the next time step and repeat steps 2 to 3.

Step5: Compute the expected error across the 100 independent realizations of the

Markov model.

Applying the above proposed algorithm yields Figure 5.4 which shows that the error

rates for each of the first and second order Markov models for normal and scrambled

face stimuli across 10 folds. The median percentage errors for the first and second order

Markov chains for normal and scrambled face are 8.49, 8.37, 10.68 and 10.7 respectively.

The small median value and inter-quartile ranges of the error rates for the two first

order Markov chain models indicates that the model is quite successful in predicting

the synchrostate transitions. In the present study, the normal face perception related

Markov model performs better than the scrambled face one, as evident from the smaller

interquartile ranges as well as the medians in Figure 5.4.

Figure 5.4: Average prediction errors using 1st and 2nd order Markov model.
The normal face stimuli show lower errors compared to scrambled face.

Also, given the state transition matrix Pn, it is possible to compute the probability of

getting state j starting from state i in n time steps i.e. Si(n) = Si(0)Pn. This allows us

to check the Markovian property of the data using the estimated model for predicting

the state at nth time-step from the knowledge of the initial state. The experiments

were run for n=400 subsequent time steps and the prediction errors were plotted for
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100 different realizations over all the 10-folds as shown in Figure 5.5. It is evident that

the long-term prediction from a given initial state becomes poorer as the error bounds

diverges and becomes more prone to outliers as time evolves.

Figure 5.5: Box-plot of the error rates for 10 folds across the n steps.

From this study it is found that one can synthetically generate the EEG synchrostate

switching sequences from a first and second order Markov model and then the predictions

can be validated using a 10-fold cross validation scheme. Representing the synchrostate

transitions as a Markov model provides interesting information about the temporal evo-

lution process of these states characterising the underlying probabilistic brain dynamics.

This model successfully predicts the inter-synchrostate transitions with average accuracy

of 91.63% and 89.32% for normal and scrambled face respectively. These results allow

us to conclude that synchrostate transitions may be modelled accurately as a Markov

process.

5.2 Quantification of the synchrostate transition in typical,

ASD, high and low anxiety group

The section above demonstrates that modelling the synchrostate sequence as Markov

chains with a simple description of the transition probabilities is effective as one can

apply statistical significance tests and validation schemes to generate models that are

indicative of the probabilistic nature of the synchrostate dynamics. Here the temporal

switching sequence of the synchrostates are modelled in a probabilistic framework for the

case of typical, ASD, high and low anxiety groups. The study is limited to the transition

probabilities and the degee of self transition and is not extended to the predictive model
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as these datasets have limited number of trials in the experiments, not enough to do

data partitioning and run a viable validation scheme which will not overfit the model.

The transition probability (Pij = nij

/∑
j
nij) of the synchrostate sequence is con-

structed which show the probabilistic nature of each of the state transitions. Here, nij

is the number of transitions from state i to j. When the number of states is 3, the three

probability values - P11, P22, and P33 show how long each state remain stable i.e. how

stable each of the states (S1, S2, S3) are in terms of the probability of staying in the

same state, for different population groups. These probabilities in essence estimate the

stability of phase difference configuration shown in the topoplots in Chapter 3 and 4

and thus potray a key factor of synchronisation.

Figure 5.6 shows the average state transition (across different stimuli) diagrams for the

typical and ASD group in the β and γ bands. It is evident in from the typical transition

probability diagrams that state three in both β and γ bands is most the stable one. From

Figures 4.3 and 4.4 it can be observed that this state has a more uniform and low phase

difference topography. The γ band probability P11 is the highest, indicating state 1 is

likely to be the most synchronised state. The topoplot of this state (Figure 4.8) is very

different to the most stable state of typical children (state 3). This difference in the highly

stable synchrostates in the γ band of typical and autistic children is worth investigating

and a more quantitative analysis in this band may provide more discriminating results.

The other probabilities i.e Pij , {i, j} ∈ [1, 2, 3] when i 6= j show the probability of the

interstate changes. The elements of the state transition matrix (Pij , {i, j} ∈ [1, 2, 3]) for

different population are more informative, although the phase difference topographies

for two different population could be similar. Therefore, the average value of the self-

transitions ((1/N)
N∑
i=1

Pii, N being the optimal number of synchrostates) for a particular

band, can be considered as one of the discriminating measure between two groups. Table

5.1 shows the self transition in both the β and γ bands for the typical and ASD group.

It is evident from the Table 5.1 that for the β band with fear and happy stimuli the ASD

group has got a higher probability of self-transition than the typical case. On contrary

the γ band shows an decrease in self-transition for happy face stimulus in the ASD. The

evident difference in the self transition between the cohort warrants a study to see which

stimuli can quantitatively discriminate between the populations.
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Figure 5.6: Average state transition (across different stimuli) diagrams for the
typical and ASD group in the β and γ band

Table 5.1: Self-transitions in β and γ band for the typical and ASD group with
different stimuli

Stimuli
Typical ASD

β γ β γ

Fear 0.84329 0.7562 0.88044 0.66087

Happy 0.83432 0.69536 0.90409 0.67486

Neutral 0.88044 0.68469 0.7577 0.7528



86 Chapter 5 Modelling Synchrostate Transitions

Table 5.2: Average state transition (across different stimuli) diagrams for the
low anxiety group in the β band

i

Pij 1 2 3 4

j

1 0.892835 0.010685 0.051948 0.044532

2 0.024242 0.815494 0.056354 0.10391

3 0.042042 0.111134 0.837815 0.009009

4 0.173333 0.030352 0.053225 0.743089

Without loss of generality the same method could be applied for analysing systems

with more states and the anxiety groups as well. Table 5.2 and Table 5.3 tabulates the

average state transition matrices for the the low anxiety group across all stimuli for the

β and the γ band respectively. In the low anxiety group β has four synchrostates and γ

has six synchrostates (Figure 4.11), consequently their transition matrices are 4x4 and

6x6 respectively. Figure 5.7 on the other hand shows the same properties but for the

high anxiety group. The self transition values show that state 1 is the most stable and

synchronised in the low anxiety group. State 1 has different topographies for the two

frequency bands. The state 1 headplot for the γ band (Figure 4.13) has a heterogenous

spread of phase difference across the scalp. On the contrary the state 1 topography in

the β band (Figure 4.12) is more subdued and uniform across the scalp, except for the

happy face state 1.

Table 5.4 shows the self transitions for the low and high anxiety group across all three

stimuli. In the β band the low anxiety group has a higher probability of self transition

compared to that of high anxiety. However for the γ band the self transitions are a lot

higher in the high anxiety group. It seems from this table that the γ band synchronisa-

tion could potray the varied anxiety traits between the different subject best.

Table 5.3: Average state transition (across different stimuli) diagrams for the
low anxiety group in the γ band

i
Pij 1 2 3 4 5 6

j

1 0.925926 0 0 0.074074 0 0
2 0 0.210317 0.019841 0.011905 0 0.09127
3 0 0.117647 0.215686 0 0 0
4 0.035517 0.016667 0.016667 0.704968 0.081169 0.145013
5 0 0 0 0.207935 0.678828 0.113238
6 0 0.067797 0 0.095914 0.007638 0.828651
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Figure 5.7: Average state transition (across different stimuli) diagrams for the
high anxiety group in the β and γ band

Table 5.4: Self-transitions in β and γ band for the low and high anxiety group
with different stimuli

Stimuli
Low Anxiety High Anxiety

β γ β γ

Angry 0.843881 0.51635 0.752731 0.752731

Happy 0.791473 0.542314 0.72929 0.72929

Neutral 0.83157 0.723524 0.81774 0.795766

5.3 Discussion

Deriving synchrostates allows us to represents a multivariate stochastic process, EEG as

a few univariate quasi-static synchrostates which randomly switches amongst themselves.

The evolution of these states essentially describes the underlying dynamical nature of a

system.

It is observed that a particular simple structure in the empirical synchrostate transition

sequence that can be described with a first order or second order Markov chain (Norris

(1998)). A statistical synchrostate analysis is performed on the data set reported in

the previous chapters. Temporal parameters eg. the rate or mean duration of intervals

of each state can be inferred from the parameters of the Markov chain. By exploiting

the relation between the observed Markov chain and the synchrostate process, one can

get insights about temporal properties of the EEG process. Modelling of the pseudo-

random and abrupt temporal switching characteristics of synchrostates may be useful

to understand the dynamic nature of the stimulus induced brain response in different
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pathological populations. Microstate duration is a central parameter for spontaneous

EEG activity analysis (Gärtner et al. (2014)). Koenig et. al. reported a decrease in

microstate durations with increasing age (Koenig et al. (2002)). Other studies have

found correlates between the shortening of the duration of single microstate map with

clinical symptoms in schizophrenic patients (Strelets et al. (2003) and Kindler et al.

(2011)), as well as increase in microstate durations in slow wave deep sleep (Brodbeck

et al. (2012)). Conducting a statistical analysis on the synchrostate transitions similar to

the way microstates have been studied is necessary to investigate the correlates between

this new observed phenomenon and other environmental, experimental, demographic

and physical factors.

5.4 Conclusion

In this chapter, a probabilistic model is developed in order to synthetically generate

the EEG synchrostate switching sequences as first and second order Markov process

and then the predictions are validated using a 10-fold cross validation scheme. The

Markov model provides interesting information about the temporal evolution process

of the synchrostates characterising the underlying probabilistic brain dynamics. This

probabilistic model successfully predicts the inter-synchrostate switching patterns with

the best average accuracy of 91.63% (for normal face perception) and 89.32% (for scram-

bled face perception) on average. The proposed modeling approach may shed new light

in understanding stochastic dynamical basis of cognition in humans. The average self

transition probabilities for a particular band show some discriminating characteristics as

well. The γ band self transitions have shown varied stability across different cohorts. It

may well be worth investigating how the synchronisation in this band is reflective of the

underlying connections and hence trace if there are parameters that can quantitatively

express these differences.

It reports the simple transition structure that was observed from EEG synchrostate

analysis. For all the experiments, a first order Markov chain was used to describe

the transition frequencies between different states. The resulting transition matrix is

consistent with the observations of the state transition and hence it is suggested that

Markov chains can be used as a simple description of the transition probabilities from

which one can apply statistical significance tests like the one done by Gartner et. al. on

microstates (Gärtner et al. (2014)) to find deviations from a simple model of background

EEG. Secondly, a simplified Markov chain model also provides a way to deal with the

question of how the empirical observation of synchrostate transition sequence is related

to the underlying process.



Chapter 6

Connectivity analysis using

complex networks

Synchrostates and their transition have been shown to exist in different groups of sub-

jects, both children and adult, healthy and pathological. Their stability when studied in

a probabilistic perspective as self transitions showed varied values across cohorts as well

stimuli. To study phase synchrony one needs to consider stability in the context of time.

Interpretation of the synchrostate topographies and the state transitions should be done

together by combining the stability duration and their respective numerical values of

phase difference. When considered together one can formulate a synchronisation index

corresponding to each of the synchrostates from which scalp-level functional connectivity

network could be derived. These dynamic brain networks are governed by the nature of

switching patterns of the synchrostates and, therefore, in essence capture the temporal

evolution of functional connectivity in stimulus-specific way at fine temporal granular-

ity level. Fundamental graph-theoretic measures could be used for characterising such

networks for gaining quantitatively deeper insight into the temporal dynamics of the

connectivity pattern prevailing after the onset of stimuli and therefore may provide a

quantitative means for assessing cognitive functionalities, which is one of the objective

of the work.

6.1 Functional Connectivity using Phase Synchronisation

Index

Synchrostates have been previously defined as states within which the inter electrode

relative phase difference remains approximately constant over time. Once such possible

unique clusters or states are identified, their temporal stability needs to be analysed

since the clustering technique only identifies possible unique stable phase difference

89
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patterns, but it does not capture the length of time for which each of them are stable.

Quantitatively, this can be described by the synchronisation index Γxy (B) which is an

inverse circular statistical analogue of variance given in (6.1) (Peng et al. (2010)).

Γxy (B) =
1

Ps

√√√√[∑
t

cos (∆ϕB(t))

]2

+

[∑
t

sin (∆ϕB(t))

]2

(6.1)

Here, Ps is the number of data-points in the clustered time series with Ps < P or it

can be viewed as the time points associated with a single state (s) and Γxy (B) ∈ [0, 1].

A high value of Γxy (B) indicates that the phase difference between the two signals at

a given frequency band B has low variation over time and therefore can be considered

in synchrony. This in essence quantifies the average temporal stability of the clustered

phase synchronisation states in that band. In contrast to the coherence based measures

(Engel et al. (2001b)), this index is capable of capturing the band-specific temporal

behaviour of the synchronisation phenomena. Once the values of Γxy (B) are computed

for each of the channel pairs (x,y), they can be plotted for all the electrodes resulting

in a global synchronisation matrix, which is symmetric and square in nature describing

the phase synchronisation in the entire EEG space.

6.2 Complex network measures of brain connectivity

After the global synchronisation matrix describing the stability of each of the clusters is

formed, it can be translated into a complex network that may shed light on the temporal

evolution of phase synchrony amongst different brain regions and hence describe the na-

ture of the associated information coupling. Similar to the other connectivity networks

in nature, brain connectivity can be analysed with the graph theoretic approach by con-

sidering the EEG electrodes as nodes and the Γxy (B) values between them expressed as

weighted edges signifying the connection strength between the (x, y)th node. The use-

fulness of complex network analysis was demonstrated in the study of anatomical as well

as functional brain networks. Network measures have been used to quantify the brain

connectivity (Fallani et al. (2008), Astolfi et al. (2008)) and have been useful to draw

network topology comparisons between healthy subjects and patients with neurological

injury or disorder (Cao and Slobounov (2010)). The topological properties and intrinsic

meaning of the networks thus created can then be studied by interpreting the appro-

priate network measures. Two specific types of generic measures that are most relevant

in understanding the brain’s capability for information processing are segregation and

integration.

Measures of segregation in a brain network quantify the ability for specialised process-

ing within highly connected brain regions. Segregation is suggestive of the segregated

neural processing and can be applied to evaluate local connectivity. Modularity of a
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network is a sophisticated measure of network segregation where the degree to which

a network can be subdivided to a group of nodes with small number of between group

links (edges) and large number of within group links is measured (Rubinov and Sporns

(2010)). Modularity (Qw) of a network is expressed as (6.2).

Qw =
1

lw

∑
x,y∈N

[
wxy −

kwx k
w
y

lw

]
δmx,my (6.2)

where, wxy is the connection weights, kx
w =

∑
y∈N

wxy is the weighted degree, lw =∑
x,y∈N

wxy is the sum of all weights in the network. Also, δmx,my = 1 if mx = my, and 0

otherwise (mx is the module containing node x). Here, the superscript w indicates the

weighted nature of the graphs, as adopted in the present analyses, whereas binary and

directed versions are also possible.

Transitivity (Tw), which is the ratio of the triangle to triplets of the network, is also

a measure of segregation in complex network analysis and is a normalised variant of

clustering coefficient (Strogatz (2001)), which is expressed in (6.3).

Tw =
1

Ñ

∑
i∈N

2twx∑
x∈N

kx (kx − 1)
(6.3)

where, twx = 1
2

∑
y,h∈N

(wxy, wxh, wyh)
1/3 is the weighted geometric mean of the triangles

around x.

The neurobiological context and significance of modularity and transitivity is that they

quantitatively describe the highly segregated communities with information passing

within them (Fallani et al. (2008), Sporns (2011)). Nodes belonging to a cluster or

module share significant information with each other, on the contrary units belonging to

different clusters remain segregated from each other with little interactions. However,

it is to be noted that measurement of phase synchrony represents only the information

coupling strengths amongst different brain regions rather than giving a direction of infor-

mation flow. Therefore, in this work is restricted to the analysis of weighted undirected

brain networks only.

Characteristic path length (Lw) and global efficiency (Ew) are common measures of

integration, which captures the capacity of global interaction in a network and may

represent the ease of network wide communication (Sporns (2011)). Characteristic path

length, given in (6.4), is the average of the shortest path length between a node and all

other nodes (Watts and Strogatz (1998)). It is the global mean of the distance matrix.

On the other hand, the global efficiency, given in (6.5), is computed by averaging the

inverse of the distance matrix. Therefore, a fully connected network has the maximum
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global efficiency (Sporns (2011)).

Lw =
1

Ñ

∑
x∈N

∑
y∈N,j 6=x

dwxy

Ñ − 1
(6.4)

Ew =
1

Ñ

∑
x∈N

∑
y∈N,y 6=x

(
dwxy
)−1

Ñ − 1
(6.5)

where, dwxy is the shortest weighted path length between x and y.

The two important measures, i.e. radius and diameter of any complex network, can be

derived from its eccentricity (ewi ), which refers to the maximum value of each row of

the Hadamard (dot) product of dwxy. Radius (r) and the diameter (D) are the minimum

and the maximum values of eccentricity respectively and are mathematically expressed

in (6.6).

ewx = max
(
dwxy ◦ dwxy

)
, rw = min (ewx ) , Dw = max (ewx ) (6.6)

Quantitative measures of the above mentioned metrics therefore are expected to charac-

terise the ability of the brain network for information processing in terms of specialised

processing (segregation) within local regions and global integration. In the above men-

tioned network parameters in (6.2)-(6.6), N is the set of all nodes in the network and

Ñ is the number of nodes.

6.3 Analysis and results

6.3.1 Connectivity analysis of single subject multiple trial EEG dataset

In order to gain a better insight into the implications of the synchrostates, the complex

networks corresponding to each of them are constructed from the results following from

section 3.3.1 for the single subject adult EEG. The analysis is restricted to β band

as it is more relevant to the information processing in the present case. The brain

connectivity graphs and other relevant network measures, reported in this section are

computed using the clustering results over all the ensembles (1-100 trials). While the

EEG electrodes have been used as nodes, the synchronisation indices Γxy (B), calculated

using (6.1) are used as the edges connecting the (x, y)th nodes. The cross-electrode plots

of Γxy (B) are shown in Figure 6.1 where the close to unity value of Γxy (B)(depicted as

red color) indicates high degree of synchronisation. This yields the basic connectivity

matrix for the complex network analysis. From Figure 6.1 it is evident that there exist

two distinct groups indicating good modularity in state 1 and state 2 (the smaller square

box electrodes (1-32) and the larger square box (33-128)) forming strongly connected

groups amongst themselves with weak connections with the outside nodes.
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In Figure 6.2 the plots of Figure 6.1 are translated into complex network structures.

Owing to the property of Γxy (B) the weight of the edges between the nodes describe

the degree of synchronisation amongst them (how well connected they are) which also

encompasses the temporal stability of each state. Figure 6.2 depicts the brain network

structures for the normal face perception corresponding to each of the synchrostates 1,

2 and 3 respectively and also the same for the scrambled face scenario. All of the brain

connectivity network plots have been made using the Gephi software (Bastian et al.

(2009)). For the ease of visualisation only 7% amongst the highly connected edges are

shown in Figure 6.2. The densely connected nodes are shown as the nodes with large

diameters. As an example, the larger diameter of the node A6 in Figure 6.2 (state 1 of

normal face) signifies higher connectivity than the relatively smaller diameter node A5.

The connection strength to each node is based on the total connections to it before the

7% threshold was applied. Table 6.1 lists the results from the complex network analysis

(without threshold) to obtain further insight into the functional organisation of human

brain at each of these states. The complex network measures in Table 6.1 have been

computed using the brain connectivity toolbox (Rubinov and Sporns (2010)) from the

fully connected graph.

Figure 6.1: Synchronisation index ( Γxy (B)) for different states with normal
and scrambled face stimuli. This shows the adjacency matrix used to form the
connectivity plots for the synchrostates

6.3.1.1 Comparison of the connectivity analysis for normal and scrambled

face

The macroscopic phase change, a discernible transition from one state to the other from

the statistical physics point of view, is clearly exhibited in these three state changes
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(Figure 3.11) and is also reflected in the modularity and transitivity values. However, a

close comparison of the modularity (or transitivity) values for each of the states in both

the cases shows significant differences. The modularity value for normal face perception

is the maximum for state 2 whereas for the scrambled face processing the maximum

modularity is reflected in state 1. On the other hand the modularity values of state 3 for

both of the cases are nearly same which is an order lower than the dominant modularity

state in the two cases. One possible implication of this is that for normal and scrambled

face processing, segregated specialised information processing within an area of highly-

connected node assembly takes place in state 2 and state 1 respectively whereas in

both of the cases, state 3 pertains to minimal specialised segregated processing. Visual

observation of connectivity maps depicted in Figure 6.2 also confirms this observation

where these highly connected nodal assemblies could be identified. As an example,

a comparison of Figure 6.2 (a) and (b) clearly shows that state 1 for scrambled face

processing (Figure 6.2 (b)) shows denser connections between the nodes in the frontal

and parietal regions compared to state 1 for normal face processing (Figure 6.2 (a)) and

also exhibits less connectivity between this region and other regions of the brain. The

effect is exactly opposite for state 2 (Figure 6.2(c) and (d)) where normal face processing

shows denser connections than the scrambled one. The connectivity between different

brain regions is less but more uniformly distributed for state 3 in both the cases (Figure

6.2 (e) and (f)) than state 1 and state 2 confirming less value of modularity in Table

6.1.

Table 6.1: Network measures for the brain connectivity corresponding to each
synchrostate during normal and scrambled face perception (for trials 1-100) in
the β band

Network measures
Normal face Scrambled face

State1 State2 State3 State1 State2 State3

transitivity 0.9371 0.9015 0.9917 0.8325 0.9506 0.9906
modularity 0.0083 0.0339 0.0016 0.0649 0.0172 0.0022
characteristic path length 0.9579 0.8836 0.9761 0.6325 0.9362 0.9751
global efficiency 1.0367 1.1502 1.0165 1.9377 1.0631 1.0176
radius 0.9919 0.9119 0.9918 0.7136 0.9916 0.9918
diameter 0.9986 0.9988 0.998 0.9993 0.9981 0.9985

From Table 6.1, observing the two major indices of information integration capability in

a complex network global efficiency and characteristic path length once again a similar

behaviour has been found. Here, state 2 and state 1 possess larger global efficiency

and smaller characteristic path length for the normal and scrambled face perceptions

respectively, compared to those for the two cases of state 3 which indicate towards

maximum information integration ability in these two states. This affirms the study by

Straaten and Stam (van Straaten and Stam (2013)). It is also apparent from Table 6.1

that for state 2 of the normal face and state 1 of the scrambled face, the radius is the

minimum. This implies that the graph is strongly connected and more information can
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flow very quickly from one region to the other due to lower radius and therefore resulting

in more information integration ability in these states. The respective stability periods

for each of these states may determine the time spent in global information exchange

allowable by that state. During these periods the brain network is configured to share

more information between distant nodes with ease. Combining these observations with

the conclusions drawn from the values of modularity and transitivity, it is apparent

that state 2 and state 1 represent dominant information processing states for normal

and scrambled face processing respectively. These parameters can assess the efficiency

or extent to which optimal partitioning occurs in the functional organisation of brain

(Sporns (2012), Rubinov and Sporns (2011)).

However, although state 2 in normal face perception exhibits higher global efficiency

and minimum characteristic path length, their values are still comparable with those in

the other two states. Similar observation is true for the radius as well. This indicates

that although state 2 is dominant for information integration, the other states also con-

tribute to a comparable level for that process. However, modularity value of state 2 is

significantly higher than that of the other states indicating the majority of segregated

specialised processing taking place in this state. On the other hand, the above-mentioned

parameter values for state 1 of scrambled face perception case are significantly different

from those of the other two states indicating its dominance in both the processes of

segregated information processing, (represented by high modularity) and information

integration (small characteristic path length and high global efficiency). This supports

the study by Stam (Stam (2010)) that modularity reflects segregation and characteristic

path length indicates towards integration. Another interesting point to observe is that

the information integration indices for the non-dominant states in the case of scrambled

face processing show comparable values with even the dominant state (state 2) for nor-

mal face perception. This may mean that in general the information integration process

required for scrambled face processing is more intense compared to that of the normal

face processing. This is also evident from the significant difference of the network pa-

rameter values corresponding to state 1 of scrambled face processing among all 6 states

(3 for normal face and 3 for scrambled face) in Table 6.1 viz. lowest transitivity, highest

modularity, lowest characteristic path length, highest global efficiency and lowest radius.

This argument also matches with the intuitive and practical understanding of the prob-

lem that a person will need greater attention or require more information integration to

discern the scrambled face and therefore confirms the task-specific nature of information

integration.
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Figure 6.2: Brain connectivity plots of three synchrostates for normal face and
scrambled face stimuli in the β band.
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Figure 6.3: Brain connectivity plots of three synchrostates for famous, scrambled
and unfamiliar face stimuli in the β band.

6.3.2 Connectivity Analysis of multiple subjects involving multiple tri-

als EEG dataset

Following on from the previous study, the synchronisation index given in (6.1) is used

to derive the connectivity diagram for the states (derived in section 3.3.2) of the multi-

subject multiple trial EEG face perception data. These have been shown graphically in

Figure 6.3 where only the strongest 7% amongst all the connections are shown. Figure

6.3 shows the network structures for the synchrostates over the three face perception

stimuli corresponding to each of the synchrostates 1, 2 and 3 respectively. These results

show that, without the loss of generality the same synchrostate analysis approach can

be applied to an average subject group with multiple trials and also a single subject

from EEG recorded over multiple trials. Highly connected nodes have a larger diameter

than the sparsely connected ones.
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Once again the discernable changes in the state connectivity plots for the different states

is seen which is also reflected in the network parameters calculated in Table 6.2. For

both the famous and unfamiliar face stimuli state 3 is the state with the highest mod-

ularity values. Following on from the previous assumptions about the interpretation of

the network parameter one may say that state 3 is where the segregated information

processing is happening for famous and unfamiliar face processing. This state for both

the stimuli have minimal global interactions which is quantified with a low value of

characteristic path length. For this case both famous and unfamiliar face stimuli can

be categorised under the normal face stimulus group. It is evident that both of these

stimuli although intrinsically different render similar brain responses when categorised

as normal face. Incase of scrambled face, state 1, which is the minimum occurring state

has the highest modularity and lowest value of characteristic path length i.e the high

local connectivity and low global connectivity. Previously in the single subject analysis

both stimuli (normal and scrambled face) had minimal specialised segregated processing

occurring at the same state 3. Here the same phenomenon is observed, i.e state 2 has

the minimum modularity (localised special processing) values for all the stimuli. From

these observations one may conclude that adults perceive a scrambled face differently to

the way they perceive a general category of normal face stimulus (either famous and un-

familiar). These differences in the encoding of the normal and scrambled faces (George

et al. (1996)) are reflected in the network parameters of the synchrostate connectivity

maps.

Table 6.2: Network measures for the brain connectivity corresponding to the
multi subject synchrostates during famous, scrambled and unfamiliar face per-
ception

Network measures
Famous face Scrambled face Unfamiliar face

State1 State2 State3 State1 State2 State3 State1 State2 State3

transitivity 1.0129 1.0139 1.0116 1.0129 1.0139 1.0135 1.0128 1.0139 1.0118

modularity 2.77E-4 7.46E-5 7.52E-4 3.44E-4 9.87E-5 1.93E-4 3.47E-4 7.40E-5 7.02E-4

characteristic path
length

0.9842 0.9852 0.9829 0.9843 0.9851 0.9847 0.9840 0.9852 0.9831

global efficiency 1.0015 1.0006 1.0029 1.0015 1.0006 1.0010 1.0017 1.0050 1.0027

radius 0.9997 0.9997 0.9994 0.9998 0.9996 0.9997 0.9996 0.9998 0.999

diameter 1 0.9999 0.9999 1 1 1 0.9999 0.9999 1

6.3.3 Effect of Volume conduction on Connectivity analysis

The possible effects of volume conduction on phase synchrony analysis has been discussed

in detail in earlier chapters and the results revealed that the synchrostate phenomenon

is free from volume conduction. Here again through the connectivity analysis results it

is verified that the brain networks extracted from the phase synchronisation reported is

not due to volume conduction.
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Studies which model the effect of distance between scalp electrodes suggest that the

effects of volume conduction registered phase synchrony is significantly reduced at a

distance of 4 cm (Nunez et al. (1997), Nunez et al. (1999)). Some papers state spurious

coherence from volume conduction dropping to near zero when scalp electrodes were

separated by 4 cm or more (Doesburg et al. (2008)). This can lead to difficulties in

distinguishing between volume conduction and true synchrony in the short range (<4

cm) and limits the understanding of short range synchrony. The results in the brain con-

nectivity diagram (Figure 6.2 and Figure 6.3) show that most of the strong synchrony or

connections are between distant electrodes which cannot be accounted for due to volume

conduction. Only 9.4% (with a standard deviation of 2.1) of the synchronies reported

here were between recording sites that are <4 cm apart. The rest of the connections

(approximately 90.6%) and interactions are between electrodes with a distance >4 cm.

Such long range connections cannot be explained with volume conduction. This evidence

adds to the previous comments about the effect of volume conduction and strongly sup-

ports the claim that results presented in all these experiments should not be perceived

to be resulting from volume conduction.

6.3.4 Connectivity Analysis of Emotional face response in Typical and

Autistic Children

Next the same principles of the multiple subject group connectivity analysis were applied

to the typical and ASD group synchrostates. The synchronisation index of (6.1) is used

for formulating the connectivity graphs for each of the synchrostates corresponding to

each of the stimuli with the EEG electrodes representing the nodes and the synchroni-

sation index value as the edges between them.

From the observations of the two experimental results earlier it was observed that the

states which occur the most, i.e the most stable and frequent states hold crucial infor-

mation about the underlying network dynamics. It was also concluded that it is worth

investigating the least occurring state incase of finding stimulus specific signatures in the

brain connectivity measures. Hence as an exploration, only those synchrostates which

occur the most and the least frequently (termed max state and min state respectively)

during the entire task were considered. The synchrostates of the groups were derived

and then their transition sequence along with the phase relations were used to calculate

the degree of synchronisation between each pair of electrodes for the duration of the

synchrostate. The resulting connectivity graphs for the max state and the min state are

shown in Figure 6.4 - 6.6 with only 4% of the strongest connections retained with the

colors representing the degree of synchronisation. The max and min values of the colour

bars in these figures represent the maximum and minimum values of the 4% highly con-

nected edges respectively. An interesting observation from Figure 6.4 - 6.6 is that in

general the min states show more segmented and highly localised connectivity compared
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Figure 6.4: Brain connectivity of typical/ASD with fearful face stimuli, shows
the different structures of connections being formed in the two cohorts

to those of the corresponding max states for all the three stimuli in both the ASD and

typical groups. This may mean that most of the specialised information integration op-

erations occur during the min state and therefore its quantitative characterisation may

be indicative towards the ability of information integration in ASD and typical children.

Table 6.3 shows the results of modularity comparison for the two groups under consider-

ation for their respective min state and max state. It is evident that for all the stimuli

the modularity values of the max state in both the groups are of the same order whereas

the same for the min state in typical group are consistently an order higher than those

in the ASD group. Putting into the perspective of physical meaning of modularity of

a network this difference implies that the ASD subjects are less able to do specialised
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Figure 6.5: Brain connectivity of typical/ASD with happy face stimuli, shows
the different structures of connections being formed in the two cohorts

processing during the min states as their ability to form these localised networks is less

than that of the typical. In one sense this conforms to the findings in the anatomical

study of Tommerdahl et al. (Tommerdahl et al. (2008)). On the other hand this also

shows that modularity could be used as a possible marker for distinguishing ASD from

typically-growing children.

Since measure of segregation in a brain network quantifies its ability for specialised

processing and therefore describes the organisational property of the local connectivity

during information integration, it is deemed that modularity could be a useful index for

characterising an Autistic brain.
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Figure 6.6: Brain connectivity of typical/ASD with neutral face stimuli, shows
the different structures of connections being formed in the two cohorts

Table 6.3: Modularity values of the max/min synchrostates for ASD and typical
children with different stimulus

Stimulus
Modularity of max state Modularity of min state

ASD Typical ASD Typical

fear 1.85x10−06 2.50x10−06 3.72x10−06 1.859x10−05

happy 1.82x10−06 2.01x10−06 1.81x10−06 1.862x10−05

neutral 1.77x10−06 1.97x10−06 1.96x10−06 1.8627x10−05
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6.4 Conclusions

Complex network analysis for the temporal stability and the nature of the synchrostates

could potentially be effective in objectively measuring their characteristic interactions

in terms of specialised segmented processing and information integration. Therefore

comparison of the resulting metrics between a normal and a neurologically impaired

subject in a task specific manner is expected to identify the information processing

impairments in the latter leading to a methodology for person-specific characterisation

of neurological anomalies given the EEG data. There have been recent studies on time-

frequency analysis based dynamic functional connectivity modelling (Lu et al. (2011),

Chang et al. (2013), Mehrkanoon et al. (2013)) which are based on spectral power

analysis. The fundamental difference between this study and (Lu et al. (2011), Chang

et al. (2013), Mehrkanoon et al. (2013)) is that this study explores the evolution and

organisation of cognitive states or synchrostates that switch amongst themselves during

the execution of the task.

The possibility of finding a marker to distinguish between ASD and typical population

using graph theoretic measure of brain connectivity network is also explored. It shows

that modularity of the connectivity network formulated following synchrostate analysis

of non-invasively recorded EEG data could be an effective identifier of ASD children from

age-matched typically-growing ones. Further analysis can be conducted on individual

subjects to explore the degree of distinction modularity values or the other complex

network measures give between these groups.





Chapter 7

Application of Synchrostates in

classifying and characterising

pathological groups

Chapter 6 demonstrated how synchronisation index can be used to translate the syn-

chrostates and their transition plots into brain connectivity maps. Complex network

measures were then applied to the connectivity matrices of the synchrostates to derive

metrics to quantify information flow in the brain connectivity plots. The different net-

work measures were demonstrated to reflect the structure of the underlying connectivity

as a quantitative value indicative of the degree of local and global functional connectiv-

ity. It was shown that the maximum and minimum occurring states have the potential

to distinguish between population groups. Chapter 2 presented studies which reported

anomalies and disruptions in the connectivity structure of pathological patients (Sim-

mons et al. (2009), Kleinhans et al. (2008)). It also reports how brain networks are

correlated to behavioural traits portrayed by humans (Sala-Llonch et al. (2012)). Based

on these reports one can assume that the functional connectivity networks from specific

populations or a general population would be embedded with distinctive information

about their individual patterns of brain response to stimuli. With this assumption, in

this chapter the network properties of the maximum and minimum occurring states is

used and applied to solve two distinct problems. First, to distinguish subjects from

two pathologically different population in a classification problem and next try use the

graph theory measures to develop a generalised model which can characterise negative

affectivity behavioural traits in children.

105
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7.1 Classification of Autism Spectrum Disorder using Brain

Connectivity Measures Extracted from Synchrostates

Data from the high-density EEG study conducted on 12 children with ASD and 12

healthy controls described in Section 4.1 was used for the current experiment. The pur-

pose of the current experiment is to show that brain network parameters derived from

the synchrostates of EEG acquired while the children were performing a face percep-

tion task can effectively classify ASD and typical children. The xperimental paradigm

which yields the most distinguishable result in terms of the nature of face stimuli i.e.

fear, happy and neutral is also explores. Additionally, the best obtained brain network

measures or features and the role of minimum and maximum occurring synchrostates

for discriminating ASD and healthy subjects with relatively less complex classifier and

kernels have been investigated.

For obtaining the synchrostates and the subsequent brain connectivity metrics, the fol-

lowing steps are carried out: 1) apply CWT to produce the time varying phase in-

formation amongst the EEG electrodes, 2) cluster the characteristic phase difference

patterns and use the synchronisation index to quantify the temporal stability of each

synchrostate, and then 3) translate the unique clusters into a complex brain network us-

ing a graph theoretic approach and 4) derive quantitative measures for each connectivity

map. Researchers have argued that gamma-band (30 Hz and above) synchronisation is

the key process that reflects underlying cortical computations (Fries (2009)). Thus here

the gamma band phase synchronisation is computed from synchrostates to characterise

the underlying connections that are formed in the autistic and the typical brain during

the execution of the face perception task.

7.1.1 Feature selection

The global synchronisation matrix derived from synchrostates (6.1) is translated into a

complex network that is useful to shed light on the phase synchrony amongst different

regions and hence describe the nature of the functional network configuration of the

brain. The brain connectivity map is configured by considering the EEG electrodes

as nodes and the synchronisation values between them as the weighted edges i.e. con-

nection strength between the nodes. The appropriate graph metrics when studied can

facilitate the interpretation of the topological properties and intrinsic meaning of the

functional brain networks. The two types of generic measures that are most relevant

in this particular study for understanding the autistic and typical brains capability for

information processing are segregation and integration. Measures of segregation in a

brain network account for the ability of segregated specialised neural processing within

highly connected brain regions. It has been used as the means to evaluate the local

connectivity (Rubinov and Sporns (2011)). The common measures of integration are
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capable of capturing the capacity of global interaction in a network and estimate the

ease of networkwide communication (Sporns (2011)). The chosen features have been

listed in Table 7.1 along with the physical network attributes they portray.

Table 7.1: Different features of the brain connectivity graphs used for classifi-
cation

Name Physical significance

Modularity Measure of segregation. Quantifies the degree to which a
network can be subdivided into a group of nodes with small
number of between group links (edges) and large number of
within group links (Rubinov and Sporns (2011))

Transitivity It is the ratio of the triangle to triplets of the network. Is
a measure of segregation in complex network analysis (Stro-
gatz (2001)).

Characteristic path length It is essentially the global mean of the distance matrix i.e.
the average of the shortest path length between a node and
all other nodes (Watts and Strogatz (1998)). It is a measure
of network integration.

Global efficiency A measure of integration, that is the calculated by averaging
the inverse of the distance matrix (Sporns (2012))

Radius Radius is derived from a networks eccentricity (ewi ) which
refers to the minimum value of each row of the Hadamard
(dot) product of dwij

Diameter Diameter is the maximum value of eccentricity (ewi )

Figure 7.1: Brain connectivity for a typical and an ASD child. The max and
min values of the colour bar represent the maximum and minimum values of
the 7% highly connected edges respectively
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These features were generated by averaging the phase response of the CWT across

all channels for each individual over all trials corresponding to a single stimulus and

carrying out the synchrostate analysis. From the resulting synchrostate sequence of

each child the complex network parameters of the connectivity network are computed

from the functional connectivity graphs of the maximum and minimum occurring states.

The maximum and minimum states are utilised since previous study of synchrostates

in autistic population in the results from Section 6.3.4 showed distinguishing properties

in graph metrics derived from these states. The phase-locked matrices obtained from

clustering, the maximum and minimum occurring synchrostates can be converted to

analogous undirected graphs using the synchronisation index in (6.1). In the undirected

brain network, each edge represents the value of the synchronisation index as the coupling

strength between two electrodes and has been represented in Figure 7.1 for a typical and

ASD child.

There is an observable difference between the maps for the typical and ASD child across

both the maximum and minimum state. The max state of the autistic child shows a

general spread of connections across all electrodes indicating higher global connectiv-

ity. Although the typical child’s maximum map has long range connections they are

restricted to certain regions (parietal) on the scalp. In contrast the minimum state

for the autistic child has more modular connections with more small range connections

compared to the typical child’s map. These observable differences are quantified us-

ing the graph theoretic measures reported in Table 7.1. Figure 7.2 shows a flowchart

for the whole process of deriving synchrostates from the EEG signals and subsequently

obtaining the corresponding brain connectivity measures.

Figure 7.2: The processes involved in deriving synchrostates and brain connec-
tivity measures.

7.1.2 Description of the classification techniques

Since the features have been extracted from a population of healthy and autistic children

the problem is a binary classification task where the aim is to classify autism given the

network measures of EEG phase synchronised states. The aim of this exploration is to

find the optimal feature pool and classifier that can best distinguish between the two

classes of subjects. Given this goal, the choice of the classifier is crucial for obtaining
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consistent classification results. The use of probabilistic classification approaches in the

present context is not suitable due to the limited number of subjects, as it is not reliable

to construct multi-dimensional probability densities functions (pdfs) from the features

for Bayesian classifier and even one dimensional pdf for each feature in Näıve Bayes clas-

sifier (Rogers and Girolami (2011)). Whereas, non-probabilistic classification techniques

like discriminant analysis and SVM (Support Vector Machine) with polynomial kernels

which map the feature vectors to a higher dimensional space in order to separate the

classes using a linear separation boundary or hyper-plane can be used. However, their

performance varies significantly depending on the assumption they make about utilising

all the data-points or the marginal data-points from the two classes while adapting the

classifiers weights in the training phase. Discriminant analysis gives emphasis to all the

data points of the two classes to determine the weights of the classifier, thus is prone to

get affected by outliers. In contrast SVM is based on the principle of maximizing the

margin between the critical points (support vectors) of the classes.

7.1.3 Discriminant analysis based classifiers

The LDA classifier separates two classes using a linear decision boundary in the multi-

dimensional feature space. The linear discriminant function is given by equation(7.1).

y =
N∑
i=1

xiwi + b =
N+1∑
i=1

xiwi = Xw (7.1)

where, y is the predicted class label (y ∈ [−1, 1]), N is the number of features, xi is

the ith feature, wi are the weights and b is the bias. Given an N dimensional input,

the corresponding decision boundary is given by a (N − 1) dimensional hyper-plane. If

y is greater than zero the object is assigned to one class and if is less than zero the

input is assigned to the other class. A least squared estimation (LSE) based approach is

commonly used to train the classifiers weight w where the squared error of the predicted

class and actual class is minimized. The classifier’s optimum weight wopt is obtained in

the form of pseudo-inverse of the input features X, multiplied by the class information

vector y.

wopt =
(
XTX

)−1
XT y (7.2)

LDA (Linear Discriminant Analysis) classifier performs well in data that is linearly sep-

arable. In practice especially in biomedical applications, more complex decision bound-

aries may be necessary. The use of higher order kernels is one way to circumvent this

problem. Polynomial kernels transform feature vectors to a higher dimensional feature

space. According to Covers theorem any data-set can be made linearly separable in some

higher dimensional space, if the order of the kernel is gradually increased (Semmlow

(2009)).The higher dimensional feature space can be created by performing nonlinear

transformation on the input feature using a kernel function k(xi). For an example a
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polynomial kernel of order two (also known as Quadratic Discriminant analysis, in short

QDA) produces a higher dimensional space with the original features plus their cross

products. In the case of a two dimensional feature space with two-variable, x1 and x2,

the quadratic kernel transforms the space into a 5-dimensional space with the variables{
x1, x2, x1x2, x

2
1, x

2
2

}
. Although the higher order kernels effectively increases the number

of features by taking their inner products and use their combinations to train the classi-

fier, the same least square technique is employed for discriminant analysis. However this

increases the computational complexity and is prone to over-fitting resulting in failure

to generalise on a new data-set, unless a large number of data-points are used in the

training phase.

7.1.4 Support vector machine (SVM)

Contrary to the least-square approach for training discriminant analysis based (LDA

or QDA) classifiers which give emphasis to all the data-points in the training-set while

constructing the decision boundary, the SVM give priority to the critical data points

that lie closest to the decision boundary and data-points of the other class. These critical

points are known as support vectors. The classifier that maximize the distance between

these critical vectors or support vectors are known as SVM. This approach is more

likely to give a better separation of data as the basis lies on maximizing the margin

between the support vectors producing the optimum hyper-plane. When the data is

linearly separable in the original feature space, standard SVM uses a linear decision

boundary. However, it tries to find a boundary which maximizes the margin (M) which

involves using an optimisation routine, with a constraint that all data points lie on

the appropriate side of the hyper-plane. If the class labels are y ∈ [−1, 1] the decision

boundary can be defined in between i.e. y=0 following equation (7.3).

y = xiw + b = 0 (7.3)

Given the value of y at the support vectors must be ±1, one gets yi (xiw + b) ≥ 1,

which means the optimisation algorithm should yield {w, b} describing a hyper-plane in

the feature space, such that the two classes fall on the appropriate side of the support

vectors [42]. The margin can be derived as in (7.4).

M =
(1− b)
‖w‖

− (−1− b)
‖w‖

=
2

‖w‖
(7.4)

The margin M , i.e. the distance between the lines separating the two classes is maxi-

mized by minimizing ‖w‖. The minimization is constrained by the equation to ensure the

boundaries are on the accurate side and is done using sequential minimal optimisation

(SMO), although the well-known quadratic programming (QP) can also be employed
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for the same purpose. When the data is not linearly separable, linear SVM is not that

effective. In such cases, the data can be transformed into a higher dimension space using

the kernel methods described earlier in section 7.1.3. However this is computationally

intensive and is prone to over-fitting similar to the use of kernels in discriminant analysis.

Higher the order of the kernel, the more complicated the decision boundary becomes and

the chance of over-fitting increases. Although these complex boundaries may perform

well on the training data, most of the time they fail to generalise with increasing order

of the kernel. This particular phenomenon is observed since the classifier becomes prone

to capture small inconsistent patterns underlying the data-set.

7.1.5 Cross-validation scheme to avoid over-fitting of classifiers

A classifier should be able to generalise beyond the examples of the training set and

the model should be able to make accurate predictions on unseen data. When the

data available is small, in order to overcome the problem of over-fitting and reduce

the sensitiveness to the choice of the training set a cross-validation technique allows

more efficient use of the limited data. Given a data-set with N observations, in the

Leave-One-Out Cross Validation (LOOCV), each observation of the data is held out

in turn for validating the model which is trained on the remaining (N − 1) number of

data-points. Averaging over the resulting accuracies of time independent runs of the

classifier training, gives the final average classifier accuracy. This ensures that all the

test labels are shuffled and results in the best average estimate of the classifier accuracy.

The LOOCV does not suffer from the problem of labelling which all other N -fold cross

validation schemes possess. Since the LOOCV is the most extreme case of N -fold cross

validation with N set to the number of data-points available, the chance of introducing

an undesired bias is minimum (Molinaro et al. (2005)). Although the LOOCV is known

to be computationally heavier than the N-fold cross validation scheme, for relatively

manageable length of data-set it is preferred over the others. The use of the commonly

used 10-fold cross-validation was restricted in this exploration by the limited number of

subjects.

7.1.6 Preprocessing of Features, Feature Ranking and Classification

Performance Measures

In the machine learning literature (Theodoridis et al. (2010)), there are two different

paradigms of feature selection viz. scalar feature selection and feature vector selection.

The scalar feature selection is independent of the classifier where the features are ranked

using a score like Fisher’s Discriminant Ratio (FDR) etc. For feature vector selection

there are several suboptimal search techniques e.g. sequential forward search (SFS) and

sequential backward search (SBS). Using a class separability criterion (like FDR) the
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poorly ranked features can be eliminated one by one or the best ranked features can be

added to the feature subset to check a particular classifier’s performance. Compared to

the exhaustive search method, the suboptimal search techniques like FDR based feature

ranking and grouping and adopting the SFS using these groups, is computationally

less expensive. There could be several other possibilities of optimal feature selection

considering dependency of the features, but the ultimate goal is to get a reliable and

good classification. Normalising the features can remove bias from features having high

value when training the classifier. Normalisation scales the feature vector so that they

are within the maximum (xmax) and minimum (xmin) value.

xnorm =
x− xmin

xmax − xmin
(7.5)

The FDR is an efficient measure that allows finding the discriminating power of a feature

and helps in dimension reduction. The larger the squared difference of the means of the

features along with a small within-class variance, the better discriminating power the

feature has. The features with higher FDR will have higher ranking implying they are

compact and located distantly. The FDR of a feature is calculated using the mean and

variance of individual classes i.e. {µ1, µ2} and
{
σ2

1, σ
2
2

}
as (7.6).

FDR =
(µ1 − µ2)2(
σ2

1 + σ2
2

) (7.6)

The classifiers performance is assessed using the conventional measures sensitivity, speci-

ficity and accuracy. Typically the diseased class or abnormal condition is called, posi-

tive (P ) and the typical or normal class as negative (N). The correct detection or true

classification of abnormal conditions is known as true positive (TP ). Likewise correct

classification of typical population is true negative (TN). An incorrect classification can

be of two types: classifying diseased as typical i.e. false negative (FN) and classifying

typical as diseased i.e. false positive (FP ).Sensitivity and specificity are also known as

true positive rate (TPR) and true negative rate (TNR). These measures along with

accuracy rate (ACC) are given by equation (7.7).

Sensitivity or TPR = TP
TP+FN × 100% = TP

P × 100%

Specificity or TNR = TN
TN+FP × 100% = TN

N × 100%

Accuracy or ACC = TP+TN
TP+TN+FP+FN × 100% = TP+TN

P+N × 100%

(7.7)

7.1.7 Results

One of the aims of this study is to find the optimal pool of features that can best

distinguish the two classes of subjects. Collectively the data generates 36 features from

the six network parameters (Nparameter = 6) i.e. corresponding to three stimuli (fear,
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happy and neutral i.e. Nstimuli = 3) with maximum and minimum occurring state

(Nstate = 2). As a result, their combination has yieldedNparameter×Nstimuli×Nstate = 36

possible set of features for classification of the ASD from typical. Therefore, it might

be interesting to look at which network parameter (in Table 1) or state (among max or

min) or their combination has the best discriminating capability. Also, from the better

discrimination point of view of ASD, the preference of the nature of stimuli (happy,

angry and fearful face) can be analysed from the FDR rankings.

Figure 7.3: FDR ranking of different features for case-1 (all features).

Table 7.2: Different cases for classification considering max/min states, 6 net-
work parameters and 3 stimuli

Case number Feature Combinations Number of features

Case1 All max and min state features for all 3 stimuli 36
Case2 All max state features for all 3 stimuli 18
Case3 All min state features for all 3 stimuli 18
Case4 Transitivity for all 3 stimuli 6
Case5 Modularity for all 3 stimuli 6
Case6 Characteristic path length for all 3 stimuli 6
Case7 Global efficiency for all 3 stimuli 6
Case8 Diameter for all 3 stimuli 6
Case9 Radius for all 3 stimuli 6

The whole 36 feature set was broken down into nine different cases as shown in Table

7.2 so as to determine the feature set that is most effective in classifying the data. In the

first case (case-1) all the 36 features resulting from the combination of all the six network

parameters corresponding to the maximum and minimum states for all the stimuli are

used. This case allows us to find the best combination of network parameter, stimulus

and max/min state which has the best discriminating power. For case-2 and case-3,

only the features from the max states and min states were chosen respectively. From the
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results of case-2 and case-3 one may conclude which of the max state features or min state

features are more efficient and even which state among the max/min is most effective in

the current classification problem among the available Nparameter×Nstimuli = 18 features

in each case. For exploring the discriminative nature of the features (in each of the three

cases 1-3) to separate the typical and autistic subjects, FDR is used to assign a ranking

according to their decreasing order of importance. The FDR ranking and the values are

shown in Figure 7.3-Figure 7.5 for the three cases respectively where the x-axis denotes

the considered features and the relative weightage (FDR) is plotted in the y-axis. The

ranked features are plotted in Figure 7.6 with decreasing order of importance using the

FDR criterion. From Figure 7.6 it is evident that there exist four feature groups for

case-1 to case-2 and three feature groups for case-3 where the features contained in one

group have closer class-discrimination capability i.e. projections on y-axis are closer for

the features in a single group. In case-1, the first group consists of top two features and

next groups with three, four and 36 features respectively. In case-2, the four groups

have top 2, 4, 7 and 18 respectively. In the case of all minimum-state features (case-3)

the three groups have the top 7, then top 15 and then all 18 features as evident from

Figure 7.6. Classification performance using LOOCV and different classifiers with these

groups of FDR based ranking are compared next.

Figure 7.4: FDR ranking of different features for case-2 (max-state features).

The LOOCV classification performance for case-1 i.e. the entire feature set is shown in

Figure 7.7. It shows that for the discriminant analysis increasing the number of features

reduce the accuracy rate. This is in conjunction with the intuition that more features

trained will cause over-fitting. When SVM was run on the data, it can be noticed
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Figure 7.5: FDR ranking of different features for case-3 (min-state features).

Figure 7.6: FDR based feature grouping for cases-1 to case-3. The dotted red
lines indicate the grouping of features.

that beyond SVM kernel order-2, the performance and the generalising capability of the

classifier reduces. The best accuracy for case-1 is 94.7% (with 85.7% sensitivity and

100% specificity) when the top 4 features are used to train an SVM classifier with a

second order polynomial kernel. The top four features are the modularity values of the

maximum states of all the three stimuli and the maximum state diameter for fearful

face stimulus. This result is in agreement with the findings from section 6.3.4 where the

modularity of synchrostates can distinguish between autistic and non-autistic classes.
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Figure 7.7: Performance of different classifiers with different group of features
for case-1.

In case-2, only uses the maximum state features for all three stimuli for classification.

As can be seen from Figure 7.8 the overall performance of QDA is poor compared to

LDA. However when SVM is applied with a linear and 2nd order polynomial kernel the

results are significantly better when compared to the discriminant analysis. Thus giving

priority to the support vectors allows enhanced class separation. In this scenario, the

highest accuracy value achieved is 94.7% (with 85.7% sensitivity and 100% specificity)

which is the same for case-1 and so is the classifier configuration. The top four feature

group contains the same features as of case-1.

In case-3 shown in Figure 7.9, the overall accuracy levels are lower than compared to

case-1 and case-2. The highest accuracy value achieved is 84.2% (with 85.7% sensitivity

and 83.3% specificity). This is accomplished by applying SVM on the dataset in three

cases i.e. with a linear kernel with top 7 features, with 2nd order kernel on the top 7

features and a linear kernel with top 15 features. The configuration which has the least

computational complexity is the linear SVM training with 7 features. Comparing this

case with the previous two cases, one may conclude that the minimum state values are

not as effective in differentiating between the two groups as the maximum state. There

is also a disadvantage since more (seven) features need to be used to achieve this result

in contrast to case-1 and case-2 where better accuracy can be achieved by using only 4

features.
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Figure 7.8: Performance of different classifiers with different group of features
for case-2.

Figure 7.9: Performance of different classifiers with different group of features
for case-3.

The above case scenarios allowed us to factor out which combinations from the pool of

features perform the best. It also gives an idea about the best classifier-setting that

learns the dataset most effectively. The same principle is applied again but this time, to

find out which of the complex network parameters have the best discriminating power.

Six cases are designed with the maximum and minimum state values of the individual

brain-network measures in Table 7.1 for all of the three stimuli. Hence each case has

six features i.e. max/min state features for three stimuli for each choice of network
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Figure 7.10: FDR based feature grouping for cases-4 to case-9. The dotted red
lines indicate the grouping of features.

parameters like transitivity, modularity, characteristic path length, global efficiency,

diameter and radius. This will reveal the discerning capability of each of the complex

network measures for three different stimuli i.e. happy, angry and fearful face. Each of

the cases (from case-4 to case-9) has a pool of six features (i.e. Nstimuli × Nstate = 6)

which represent the network metrics. In every case the FDR value was used to designate

a rank to the feature in decreasing order of importance. The FDR value projection on

the y-axis against the ranking number was used to group the features with the most

discriminating power into one and so on. The FDR based feature grouping for the

case-4 to case-9 has been elucidated in Table 7.3 and Figure 7.10. Although there are

several algorithms available in the machine learning community for effective selection of

least correlated features like scalar feature selection, sequential forward and backward

selection etc., this study is restricted to the FDR based feature grouping only, as it is

a much simpler concept and easy to understand and implement. In fact, increasing the

number of features using closely spaced FDR groups instead of individually adding them

in the feature pool is quite similar to the concept of sequential forward feature selection

method.

Case-4 used all the transitivity values for the maximum and minimum occurring states of

all stimuli. Overall the discriminant analysis classifiers achieve poor results compared to

SVM. When using SVMs it is noticeable that using more number of features is favorable

in this case and yields better accuracy as evident in Figure 7.11. A top accuracy value

of 89.5% (with 85.7% sensitivity and 91.7% specificity) is attained with a linear and

3rd order kernel of SVM using the top five features, without considering the maximum

transitivity of fear (the lowest ranked feature). Training all six features with linear SVM
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Figure 7.11: Performance of different classifiers with different group of features
for case-4.

Figure 7.12: Performance of different classifiers with different group of features
for case-5.

also gives an accuracy of 89.5%. However, training the SVM using five features and a

linear kernel will be most efficient due to less number of features.

In case-5 where all the modularity values were considered, similar grouping results is

observed with that of case-1 and case-2. The maximum modularity values are grouped

as top 2 and top 3, whereas the modularity values for minimum state are grouped

as least discriminant among all six features. The SVM classifiers have almost similar
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Figure 7.13: Performance of different classifiers with different group of features
for case-6.

Figure 7.14: Performance of different classifiers with different group of features
for case-7.

performance for different group of features while having the best accuracy for top two

or top three features. Using all six features reduces the accuracy as it over-fits the

data. Another interesting observation is increasing the SVM kernel order leads to poor

performance as can be seen from Figure 7.12. From the SVM linear kernel plot, it is

observed, that accuracy reaches its maximum value of 89.5% (with 85.7% sensitivity and

91.7% specificity) for all feature groups. Increasing the number of features in this case
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is not improving the performance of the classifier. The maximum state modularity of

the neutral and happy face stimuli when trained with a linear SVM is most effective in

this scenario.

Figure 7.15: Performance of different classifiers with different group of features
for case-8.

Figure 7.16: Performance of different classifiers with different group of features
for case-9.

The classification results when considering only the characteristic path lengths (case-6)

for all the three stimuli are given in Figure 7.13. The discriminant analysis techniques

give poor performance for the characteristic path length features. In this case using
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more features increases the accuracy and the overall performance. This could be due

to the quality of the feature. The classifier that achieves the best result is the linear

SVM when applied to learn all six or top four features; however the latter requires less

computational power. The best accuracy obtained was 89.5% (with 85.7% sensitivity

and 91.7% specificity). The overall performance of global efficiency features (case-7) is

quite modest as shown in Figure 7.14. The accuracy levels with top 2 and 3 features are

low for most of the classifiers. Using all features increases the accuracy with a maximum

value of 89.5% (with 85.7% sensitivity and 91.7% specificity) when the linear SVM is

trained using all the six features.

In case-8 all the diameter metrics are used as the features for classification. From the

FDR plots the features are grouped as top 2, 5 and 6. Here the performance of LDA and

linear SVM is comparable as shown in Figure 7.15. The best accuracy of 84.2% (with

85.7% sensitivity and 83.3% specificity) can be achieved by training the classifier with

top 2 features with LDA and linear SVM. Using the top five features to train SVM with

linear and 3rd order polynomial also yields the same results. However LDA is much less

complex than SVM training.

The overall performance of the network metric radius (case-9) is the worst among all the

other complex network measures which is depicted in Figure 7.16. It can be concluded

that this has the least discerning power for the current classification problem. None

of the classifiers accuracy in this case is satisfactory. The highest achievable accuracy

of 63.2% (with 57.1% sensitivity and 66.6% specificity) is obtained using SVM with

a 3rd order polynomial kernel and all the features. This summarises the exhaustive

classification results of ASD vs. typical children with 6 network measures, two states and

three stimuli while highlighting the best achievable accuracy with a particular classifier

setting amongst the discriminant analysis and support vector family.

7.1.8 Summary and Discussion

The purpose of this study was to explore the possibility of using brain connectivity

parameters derived from synchrostates to classify autistic and typical children. The aim

was also extended to determine which facial stimuli and complex network parameters

yielded the best classification results with the least complex classifier. The summary of

the key findings of the present work for detection of ASD from graph theoretic measures

from multi-channel EEG are as follow:

• The phase synchronisation patterns or synchrostates in multi-channel EEG has

been investigated in autistic and typical children during a face perception task.

The complex brain network parameters have been extracted from the functional

connectivity graphs of maximum and minimum occurring synchrostates which have

been further used to classify an autistic group from the typical with an accuracy
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rate of 94.7% with corresponding sensitivity and specificity values of 85.7% and

100%.

• From the comprehensive study one can see that in most cases, considering more

features during the training phase causes the gross accuracy to fall (Rapp et al.

(2013)). Also, the increase in complexity of the kernel does not always enhance

the performance of the classifier due to over-fitting of the underlying inconsistent

patterns.

• As a whole the maximum occurring state metrics have better discriminating ca-

pability than the minimum occurring state metrics.

• The best features to use for the classification of autistic children from normal ones

is the maximum state modularity values during fear, happy and neutral stimuli

and maximum diameter during fear stimuli. These features when trained using a

2nd order polynomial kernel with SVM produces the best overall accuracy.

• The best graph metrics for classification are neutral and happy stimuli maximum

state modularity.

It is well-known that Autism is a broad spectrum of disorders and a simple binary

test may not be sufficient to make clinical decisions about the presence of autism. Al-

though the classification results shown in the current work is promising it is to be noted

that a more rigorous prospective study with a large cohort of patients may be required

to unequivocally eliminate the possible effects of misclassification and to establish the

clinical validity of the technique before the methodology is put into clinical practice.

However, any EEG based evaluation method that can make a distinction between the

two populations will be able to facilitate the clinicians in their behavioural assessment

and prognosis. The synchrostates and the corresponding network measures effectively

characterise the underlying functional brain connectivity of the subjects and hence may

possess some signature of the particular characteristics of the ASD children. In order to

obtain markers for the detection of ASD from the observation of EEG, the present work

can be considered as the first step where small number of brain network measures can

discriminate between the ASD and healthy subjects. The synchrostates might represent

only a single biomarker of a very complex and heterogeneous spectrum of conditions

such as ASD that require more complex clinical and neurobiological evaluation. The

perspective of using synchrostates as one of the many tools used for the diagnosis of

ASD is promising, but it needs further evidence obtained on larger and additional se-

ries. However, the severity or degree of ASD can further be classified in future using a

similar procedure while deriving network measures from EEG synchrostates especially

from different subclasses of ASD patients. Further extension of the present work can be

directed towards further classification of the degree of ASD as a multi-class classification

problem by using some psychological or behavioural assessment score as a threshold or

decision boundary between the degrees of severity of ASD.
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7.1.9 Comparison of results with other classification studies

Apart from this study there have been a few attempts to detect or classify autism from

EEG/MEG using machine learning algorithms. Bosl et al. (Bosl et al. (2011)) classified

infants with high risk of autism vs. control group using SVM, k-nearest neighbors (k-

NN) and Näıve Bayes classifiers. The study was based on modified multiscale entropy

(mMSE) as feature for different age groups which resulted in an overall accuracy of

80%. Pollonini et al. (Pollonini et al. (2010)) used Granger causality of MEG signals to

discriminate autistic and healthy population using graph theoretic measures as features

and SVM classifier which resulted in 87.5% accuracy. Discriminant analysis and SVM

based classifiers were adopted in Stahl et al. (Stahl et al. (2012)) using event related

potential (ERP) data resulting in an accuracy of 64% for discriminating between groups

of high risk and low risk of autism. Compared to the approaches mentioned above here

the maximum and minimum occurring synchrostates are first extracted and the asso-

ciated brain network parameters are obtained which are then fed into the discriminant

and SVM classifiers to differentiate ASD and healthy subjects. In this study, the overall

classification accuracy (94.7% with SVM and four network measures) outperformed that

reported in the previous mentioned literatures. It has been reported that individuals

with ASD have long range functional under-connectivity and they compensate for this

trait by forming more dense local connections in the frontal and posterior brain regions

(Kana et al. (2011)). Complex network measures such as modularity, transitivity, global

efficiency and characteristic path length which have been used as features here, can effec-

tively capture the integration (global connectivity) and segregation (local connectivity)

ability of brain functional networks (Sporns (2011)). That is why the impact of these

brain network measures is extensively investigated for potential classification between

the ASD and typical cases.

7.2 Brain connectivity to characterise negative affectivity

in children

Current methods of assessing anxiety in children and adolescents encompass a wide range

of interview formats and behavioural screening tests. Many of these methods rely on

parent-rated symptoms of child anxiety and researchers have questioned the extent to

which adults are able to detect and accurately report internalising symptoms in children

and adolescents (Choudhury et al. (2003)). Diagnostic accuracy and reliability of self-

reported measures is also questioned and clinician administered formats are limited by

difference in opinion and potential bias (Antony (2001)). More objective, psychophysi-

ological measures, have the potential to supplement the existing conventional methods

in providing a more accurate evaluation of anxiety symptoms in the general population.

This approach, if further developed in clinical samples, can aid diagnostic accuracy of
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anxiety disorders. The purpose of the current study is to develop a generalised model

which can fit behaviour scores so as to facilitate the prediction of child’s emotional traits

directly from the brain connectivity measures extracted from EEG. A model such as the

one proposed here may help supplement diagnostic decisions based on scores obtained

from conventional methods of assessment of behaviour disorders including anxiety.

Recent research using structural and resting-state fMRI techniques has shown that

childhood internalising symptoms (anxiety) are associated with increased connectiv-

ity between the amygdala and distributed brain systems involved in attention, emotion

perception and regulation (Qin et al. (2014)). In addition, in the same study machine

learning algorithms have shown that levels of childhood anxiety could be reliably pre-

dicted by amygdala morphometry and intrinsic functional connectivity at a surprisingly

young age (Qin et al. (2014)). Similar research has shown that temperamental precursors

of anxiety (shyness) were associated with structural and functional connectivity changes

in cortical and limbic regions involved with processing socio-emotional stimuli in healthy

adult individuals (Yang et al. (2013)). These findings have important implications for

the development of predictive biomarkers to identify children at risk of anxiety related

disorders. This study is based on the hypothesis that temperamental traits of internal-

ising symptoms (i.e. sadness, anger, shyness, etc.) can be predicted by the functional

brain network hence the connections made in the brain. Consequently here the aim is to

model traits of negative affectivity in children based on the connectivity parameters in

order to provide a more objective, less differential measure of child negative affectivity

(sadness and anger) based on EEG signals.

Studies have shown correlation between functional connectivity and behavioural perfor-

mance like reading ability in MRI signals of adults (Hampson et al. (2006)). Research

has been conducted to show the role of EEG asymmetry on moderating temperamen-

tal negative reactivity in children (Henderson et al. (2001)). In healthy adults, fMRI

findings suggest that the default mode network can predict inter-individual behavioural

differences (Sala-Llonch et al. (2012)). It is suggested that the connectivity-behaviour

relationship is rendered due to the employment of attentional and motivational links

to a behavioural outcome. Research on externalising adolescent boys showed reduced

effective connectivity (Shannon et al. (2009)). Recently behaviour has been positively

linked to functional connectivity in aging adults in a DTI and fMRI study (Davis et al.

(2011)). All these findings suggest that functional connectivity in the brain guides the

internalising symptoms in human.

The aim was to develop a regression model and find a relationship between the EEG

guided brain connectivity metrics with the standardised self-reported behavioural mea-

sures. The aim was to generate a model with low complexity, to avoid over-fitting of

the data, but still equipped enough to predict the behavioural scores accurately. For

this, generalised self-reported measures such as trait anxiety, depression, state anxiety,
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anger, attention focusing, sadness, fear, temperamental shyness and emotionality scores

from 20 children from the general population were used.

7.2.1 Behavioural measures

20 children aged between 6 -12 years were interviewed and asked to complete question-

naires to gauge their behavioural scores for the purpose of this study. Trait Anxiety

and Depression scores were assigned by adding up the individual item scores of the

self-reported anxiety and depression measures from the DOMINIC, a DSM- IV based

pictorial interview (Valla et al. (2000)). State anxiety scores were derived by summing

the scores of the individual items using the State Trait Anxiety Inventory for Children

(STAIC) (Spielberger et al. (1970)). Trait anxiety refers to an individual’s usual level

of anxiety while state anxiety refers to an individual’s current level of anxiety. State

anxiety was measured twice, once before the experiment (state anxiety before) and once

after the experiment (state anxiety after). A ‘Children’s Behavior Questionnaire’ (Put-

nam and Rothbart (2006)) was used to measure temperamental traits including sadness,

attention focusing, anger and fear. The ‘Temperament Survey’ questionnaire which as-

sesses the temperamental shyness and emotionality was also completed by the subjects

(Buss and Plomin (1984)). Parent-report measures were utilised which do not reflect

clinical symptoms but dimensions of problem behaviour in the general population. The

main focus was to examine dimensional accounts of internalising symptoms (i.e. high

compared to low levels of symptoms) rather than diagnostic categories as this offers a

more accurate representation of problem behaviour in the general population.

The distribution of the behavioural scores is shown in the boxplot shown in Figure 7.17.

Each value lies within a specific range. In the box plot the mean is indicated by the cross

(×) and the outliers are represented as circles (o). The distribution of some of the scores

like attention focussing, temperamental shyness and emotionality are skewed hence these

scores are unlikely to be effectively modelled by simple linear models. The sadness and

state anxiety before task have three outliers in total. The scores for temperamental

shyness, temperamental emotionality, sadness, attention focussing, anger and fear lie

between 1 and 5. State anxiety after the task and state anxiety before the task vary

from 19 to 57 and anger problems from -1 to 1. The range for trait anxiety and depression

are 0-14 and 0-18 respectively.

7.2.2 EEG processing and connectivity measures

EEG data from each of 20 children interviewed were used for the current analysis. The

standard EEG acquisition protocol was followed for acquiring the data from 30 channels

at 250 Hz. EEG was recorded while the children were shown face stimuli. The stimuli

were standardised angry, happy and neutral facial expressions taken from the FEEST
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Figure 7.17: Distribution of the emotional and behavioural scores.

database (Chronaki (2011), Young et al. (2002)). The experiment included a total of

180 trials with 60 trials per emotion type presented to participants in random order.

Synchrostates were extracted from EEG signals and their subsequent connectivity pat-

terns were derived from phase synchronisation representing the state of the functional

connectivity of a person through EEG following the method described in section 3.2.

The incremental k-means algorithm for this set of subjects revealed varied number of

optimal synchrostates across each child (Figure 4.19). The variability in the number of

synchrostates is due to the smaller number of electrodes used while acquiring the EEG. In

order to draw equivalent measures from these subjects with different number of optimal

states, the network parameters were calculated only from their maximum and minimum

occurring states. Earlier experiments have shown that max and min states are essential

in the understanding of face evoked brain response in adult subjects (Section 6.3.1.1). In

addition these states have distinguished characteristics which were successfully used to

classify autistic from typically developing children. The significance of the role of γ band

synchronisation in perception, attention and emotion processing is a widely established

concept (Luo et al. (2007), Bichot et al. (2005), Tallon-Baudry et al. (2005)). Only the

maximum (max) and minimum (min) states of the γ band response were used to obtain
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the connectivity maps and then estimate the network parameters. The complex net-

work measures obtained from the connectivity maps where the transitivity, modularity,

characteristic path length and global efficiency. The objective of this modelling process

is to examine whether these parameters extracted from EEG recorded under different

stimuli can correctly predict the behavioural state of the child by matching their psy-

chological scores. The classical way to model such problems is the univariate correlation

analysis, however if the model depends on more than one parameter, one has to go

for a bi- or multivariate regression. The approach taken in this study is to match the

scores with minimum complexity with the network parameters from both max and min

states and henceforth a bivariate regression model is developed. Hence for developing

the regression model, both the max and min state network measures were used from

every sample for each stimulus to predict the clinical scores listed above in Section 7.2.1.

The boxplot for all the network measures of both the maximum and minimum state is

given in Figure 7.18. The parameters for the maximum state have outliers as opposed

to the minimum state parameters. Each individual child’s connectivity features for the

maximum and minimum occurring states for every stimuli are then used to model the

childs behavioural or emotional scores. The scores are modelled with both linear and

polynomial regression with an order going up to three.

7.2.3 Fitness measures

A number of goodness of fit statistics were computed, including root mean squared error

(RMSE), co-efficient of determination (R2) and adjusted r-square (Adj R2), to encap-

sulate the discrepancy between the expected values from the model and the observed

values of the behavioural scores. The sum of squared error (SSE) measures the sum of

the total deviation of the predicted values from the fit to the observed value.

SSE =
n∑
i=1

wi(yi − ŷi)2 (7.8)

where yi is the observed value and ŷi is the predicted value from the model. wi is usually

set to 1 and is the weight applied to each data point. Values closer to one indicate that

the model is more likely to predict the outcome variable accurately. SSE is criticised

for heavily weighting the outliers as squaring each error term effectively prioritises large

errors to small ones.

The RMSE, also known as root mean square deviation, estimates the standard deviation

of the random component of the data. It represents the standard deviation differences

between the predicted and the observed values. Lower values indicate better fits. RMSE

is an absolute measure and hence is not always ideal for making comparisons across

methods as it is influenced by extreme values. It is influenced by the variability of the
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Figure 7.18: The box plots of the complex network connectivity measures for the
maximum and minimum occurring synchrostates (γ band) for all the subjects
across all three face stimuli (angry, happy, neutral).

error magnitudes and the total error (Willmott and Matsuura (2005)).

RMSE =
√
MSE; MSE =

SSE

v
(7.9)

here v = n − m, where n and m are the number of response values and the fitted

coefficients respectively.

R2, or coefficient of determination is the statistical measure which is the square of the

correlation between the observed values and the predicted values. R2 ∈ [0, 1] and values

near 1 mean that the model accounts for a greater proportion of the variance. It is

the ratio of the sum of squares of the regression (SSR) to the total sum of squares

(SST ) where SSR =
n∑
i=1

wi(ŷi − y)2 and SST =
n∑
i=1

wi(yi − y)2 and y is the mean of the

observed values. R2 may yield negative values when it is applied on nonlinear models.

R2 =
SSR

SST
= 1− SSE

SST
(7.10)

Adj R2 is the R2 measure adjusted on the residual degrees of freedom where, p is the
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number of regressors in the model excluding the constant term. It is used to compensate

for the addition of independent variables to a model. Unlike R2 it penalises the model

if the addition of the variable does not improve the model. For both R2 and adjusted

R2 values closer to one is indicative of a better fit.

AdjustedR2 = 1−
(
1−R2

) n− 1

n− p− 1
= R2 −

(
1−R2

) p

n− p− 1
(7.11)

Although RMSE, R2 and adjusted R2 - all represent the goodness of fit, each of them

individually characterise different aspects of the data driven model. As such none of the

three measures are adequate alone to judge the quality of the model and hence should

assist each other to choose the best combination in a regression problem. One has to

investigate each of the criteria to judge the robustness of the model.

7.2.4 Results

Using a population sample of 20 a model was developed and validated which can act as

a template to predict internalising traits in children using EEG signals. Recorded EEG

signals were used to calculate computer generated parameters which was fed into the

model to provide us with an estimate of the behavioural score of an individual. Systems

which can identify emotional or behavioural characteristics using EEG signals can be

used to guide applications in computer science and robotics to inform human computer

interaction models.

Results shown in Table 7.4 reports the top fifteen models for predicting behavioural

measures (z) as a polynomial function of the brain connectivity measures, x and y rep-

resenting the complex network metrics for the max and min state respectively. There-

fore the parametric models reported in Table 7.4 can be viewed as a mapping f(.) that

projects EEG brain connectivity parameters (x, y) to the space of behavioural measures

i.e.

z = f (x, y) , {x, y} ∈ R+, z ∈ R

z ∼ p00 + p10x+ p01y + p20x
2 + p11xy + p02y

2 + p30x
3 + p21x

2y + p12xy
2 + p03y

3

Up to third order polynomial was used in both x and y to keep the complexity within

a limit and trained the model using the least square technique.

Results showed that using the minimum RMSE criteria (see the top 5 models of Table

7.4), the brain network measures could accurately predict sadness in children using char-

acteristic path length (CPL), global efficiency (GE) and transitivity (Tran). Whereas

using the maximum R2 criteria, the best explained behavioural measures were the state

anxiety before the task (individual’s level of anxiety before the EEG task), state anxiety
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(individual’s current level of anxiety) and anger using the modularity (Mod) connec-

tivity metric. Also, with the adjusted R2 criteria, sadness, state anxiety before and

anger can be characterised reliably with CPL, Mod and GE as brain network measures.

The fitting performance of the top five models have been shown graphically in Figure

7.19, for all the three measures of fitness RMSE (top), R2 (middle) and Adjusted R2

(bottom). It must be noted that here only the best models for the behavioural measures

which could be obtained with simple calculation with EEG based connectivity metrics

were reported.

A total of 1080 parametric models were formed with the 1080 number of possible com-

binations (4 network parameters × 9 regressors for third order polynomial × 10 psycho-

logical parameter × 3 stimuli). The parametric models which predict other behavioural

measures with moderately good accuracy (top 15 models) are reported in Table 7.4.

Among the four behavioural measures (mentioned above) the top fifteen models also

included conduct anger problems.

Both RMSE and R2 have disadvantages as mentioned before in Section 7.2.3. Adjusted

R2 is perceived to be the most robust fitness measure against the influence from outliers

as well as fitting complex models. Hence the results from the adjusted R2 ranking could

be used to determine the best model. The top five models from both RMSE and R2

are the top 10 models of the adjusted R2, however ranked in a different order. This re-

enforces the comment on the robustness of the fitness measure as well as the effectiveness

of these models.

Sadness appears five times in the top ten adj R2 models and was predicted using CPL,

GE, Tran and Mod. All these network parameters are indicative of local and global

connectivity in the brain. One may say that the emotion of sadness is best encoded in

the EEG connectivity derived during emotion face perception. The other best models

of state anxiety, anger and state anxiety before (task) scores are predicted by max and

min state modularity values. Modularity is a signature of local connectivity hence these

emotions may be best reflected by local network formation.

More importantly, it was found that in the top 15 reported models, the happy and

neutral face stimuli gave the best fit compared to the angry face stimulus. A possible

explanation for this is that neutral faces can be considered an ambiguous stimuli and,

consistent with previous research (Eubank et al. (2002)), individuals with internalising

symptoms may present some difficulty coping with ambiguity. Associations with happy

stimuli are also consistent with previous research showing that sadness is associated with

lower responsiveness to happy stimuli (Clark and Watson (1991)).
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7.2.5 Discussion

Here a generic framework for parametric modelling of behavioural measures of negative

affectivity in children as a polynomial function of the brain connectivity measures has

been reported. The study was conducted to explore the possibility of mapping a quali-

tative parameter (behaviour and emotions) with quantitative metrics (network measure

from EEG).

Three measures of goodness of fit were used in order to identify the best model to predict

the behavioural scores accurately. All three measures of regression analysis verify that

it is sadness which can be best modelled using two dimensional curve fitting with the

brain connectivity derived from maximum and minimum occurring synchrostates. With

rigorous exploration of 1080 combinations of connectivity measures and behavioural

measures, it was observed that the sadness, anger and state anxiety could be predicted

most consistently using the EEG synchrostate connectivity. The proposed modelling

paradigm, if further developed in future research and validated with larger samples and

clinical populations, has the potential to ultimately be utilised for automated unbiased

measurement of behavioural traits of negative affectivity (sadness) in children directly

from the EEG signal and pave the path in conceptualising new applications in the clinical

and commercial brain computer interface domain. This study sets a foundation for a

more exhaustive study that may be carried out for building a more rigourous model for

the predication of emotion and behavioural scores in children and also likewise adults.

A EEG based evaluation method that can predict the emotional state will be able to

facilitate the clinicians in their behavioural assessment and prognosis of various disorders.

A limitation of the current study includes the low number of subjects involved. Although

the model is based on 20 children with three types of stimuli, the generated model

needs to be validated in larger samples in future research. In addition, although this

study focused on dimensions of problem behaviour, findings should be replicated in

clinical samples of children with internalising behaviour problems. Finally, although the

present study offers valuable new knowledge that has the potential to inform diagnostic

practices, it does not address the question of which mechanisms underlie the development

of anxiety traits in children, an essential step for targeted intervention efforts. Future

research should explore this important question.

Using a large population one can create a model which after it has been validated can act

as a template to predict the internalising traits in children using EEG signals. Recorded

EEG signals can be easily used to calculate computer generated parameters which when

fed into the model can provide us with an estimate of the behavioural score of a subject.

Systems which can identify the emotional or behavioural characteristics of a child using

EEG can be used to guide applications in computer science and robotics to inform

human computer interaction models.
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Chapter 7 Application of Synchrostates in classifying and characterising pathological

groups

7.3 Conclusion

This chapter proposes the use of the network metrics derived from synchrostates to be

applied for two separate applications. The exploration aimed to use the brain connectiv-

ity parameters for the least and most occurring states for the purpose of classification and

parametric modelling in pathological populations. Complex network features extracted

from synchrostate connectivity maps were firstly used to classify two populations, typ-

ical and autistic. The classifier gives state of the art results with a high accuracy of

94.7% with corresponding sensitivity and specificity values of 85.7% and 100%. Max-

imum state modularity values during happy, angry and neutral face was shown to be

the best features to use for classification. The second study used the same network

parameters derived from synchrostate from another population of children to develop

a generalised model to predict the scores about the behavioural or emotional state of

the child. The results show that sadness, anger and state anxiety are the best predicted

behavioural traits. These are new validated and simulated applications of synchrostates.

From the results one can say that these metrics are capable of quantifying the underlying

functional networks during perception and capture the signature characteristics of per-

ception of a subject. These applications can have a big impact if they are escalated and

applied to a larger clinical population to validate the finding presented in this section.



Chapter 8

Conclusions and Future

Directions

Research on neurobiological disorders has shown patients suffering from such disorders

have shown atypical connectivity patterns and have reduced information exchange abil-

ity. These observations have lead to researchers to theorise that these disorders stem

from disrupted neural circuitry which in hand affect their ability to integrate information

from segregated regions of the brain.

This work has shown how EEG data can be effectively used to find time varying dynamic

phase synchronisation in order to determine the connectivity in the brain in a stimulus

specific way. The degree of phase synchronisation between different EEG channels has

been identified as the manifestation of the underlying mechanism of information coupling

between different brain regions. The time-frequency preservation property of wavelet

transform is adopted here and applied on EEG data to explore the temporal dynamics

and evolution of synchronisation amongst different areas of the brain from the onset of

a stimulus. The EEG phase difference matrices were clustered to group synchronised

patterns, called synchrostates, which are quasi-stable over the period of millisecond,

similar to the concept of EEG microstates. During processing of the stimulus, the

switching between these states occurs abruptly but the switching characteristic follows

a well-behaved and repeatable sequence. Synchrostates and their transitions preserve

the information regarding the temporal evolution of phase synchrony and hence allow

deeper understanding into the dynamics of information exchange in the brain. This

property of the synchrostates is crucial and can be applied for understanding disorders

where subjects have inferior dynamic information integration abilities. The synchrostate

phenomenon was ratified to be free from the effect of volume conduction by showing

that the phase locking reported here does not show zero phase lag coherence. The

desynchonisation and resynchronisation property of synchrostates at ms order cannot

be accounted for by volume conduction as well.

137



138 Chapter 8 Conclusions and Future Directions

This is the first time such a phenomenon has been reported from EEG signals and has

been found to exist in the β and γ band in single subject and multiple subjects during

face perception. It was also shown that although in normal population these patterns

remain topographically similar for the general category of face perception task, the se-

quence of their occurrence and their temporal stability varies markedly between different

face perception scenarios (stimuli) indicating towards different dynamics for information

processing that is stimulus-specific in nature. Their existence has also been shown in

groups of typical, autistic and behavioural disorder children. The new observation of

quasi-static phase synchronised patterns in EEG or the synchrostates can be considered

a step forward over the existing state of the art techniques reported in literature. It is

believed the reported synchrostate in multichannel EEG is a generic phenomenon and

may also be observed in various multivariate stochastic time series data.

In essence, it shows that it would be possible to quantify the stochastic EEG response

for such cognitive activities in terms of a few discrete states with switching amongst

them. This reductionist approach of mapping stochastic time domain signals in terms

of probabilistic switching between a small number of discrete states may have long

term implication towards mathematical modeling and quantitative understanding of the

human brain.

Then the switching sequence of synchrostates is modeled as a stochastic process over

multiple trials, considering that the switching time courses have the Markovian prop-

erty and hence the source of these switching can be modeled as a finite Markov chain.

A stochastic model is proposed using the Markov chains for the synchrostate transi-

tion. The model was built and tested under a data partitioning based cross validation

scheme. Both first and second order Markov chain models were used to predicted the

future synchrostates. Using a 10-fold cross validation scheme, the prediction the model

successfully predicts the inter-synchrostate switching patterns with the best average

accuracy of 91.63% (for normal face perception) and 89.32% (for scrambled face percep-

tion). It was also shown that such synchrostates shows different transition characteristics

and self transition probabilities depending on the nature of the stimuli and hence may

characterise the brain dynamics in a task specific way.

Therefore combining these two aspects of synchrostates and their stability in time a new

possible method of formulating connectivity is proposed from which a set of parameters

could be extracted for quantifying cognitive functionality.

The translation of the new observation i.e. synchrostates to produce brain connectivity

and using connectivity or complex-network measures to characterise the stimulus are

systematically presented in this thesis. The usefulness of complex network measures

to quantify the underlying brain connectivity maps were shown in Chapter 6. The

network measures help characterise the degree of segregated processing and information
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integration in the synchrostates which lead to a new methodology for characterising

information processing in human brain.

The concept of synchrostates over the scalp derived from EEG recording was utilised

for formulating brain connectivity network in Autism Spectrum Disorder (ASD) and

typically-growing children. The minimal and maximally occurring synchrostates for

each subject are chosen for extraction of brain connectivity features, which are used for

classification between these two groups of subjects. Among different supervised learning

techniques, the discriminant analysis and support vector machine was explored both with

polynomial kernels for the classification task. The leave one out cross-validation of the

classification algorithm gives 94.7% accuracy as the best performance with corresponding

sensitivity and specificity values as 85.7% and 100% respectively. The proposed method

gives high classification accuracies and outperforms other contemporary research results.

The effectiveness of the proposed method for classification of autistic and typical children

suggests the possibility of using it on a larger population to validate it for clinical

practice. The study also revealed that the maximum occurring synchrostate holds the

best discerning information and its modularity index can be considered as a unique

biomarker for the detection of autism. These results may be used as a foundation to

drive a pilot study on a larger autistic population to investigate these differences across

more subjects and different age groups as well.

The use of the proposed new methodology for characterising information processing in

the brain was extended to a regression analysis. EEG from children with behaviour

disorder was analysed and their synchrostates were computed. The graph metrics of the

the minimal and maximal occurring states were used to fit a model with the clinically

provided scores for the child’s emotional state. A rigourous study was carried out to

match each network parameter to all the clinical scores. The sadness, anger and state

anxiety of a child was successfully predicted by the model fit between these scores and

the functional network parameters. These results open up the possibility for using the

new proposed method to do more extensive studies in order to establish the relationships

that were found between the clinical scores and the graph measures computed from EEG

signals.

It is believed that the concept of reported semi-deterministic phenomenon (which is call

as synchrostates) in a stochastic multivariate time series data (in multi-channel EEG)

and translating these states to complex networks to characterise the stimulus would

attract the attention of other sub-branches of statistical physics. The work presented

here highlights, a new way of characterising brain dynamics by using a methodology

that investigates the temporal evolution of phase coupling. This may in turn lay the

foundation of a methodology that will allow one to reliably supplement the diagnostic

process or characterise different atypical neuro-pathological conditions more accurately.
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8.1 Future Work and Direction

The research done in this thesis provides a foundation for further exploration and use of

advance techniques to study functional brain dynamics. This work was the first attempt

to propose a new methodology capable of quantitatively representing the functional

brain during the execution of a task. The future prospects and other interesting avenues

of research are outlined as follows:

Clinical studies and other applications of connectivity analysis us-

ing synchrostates

In the results reported in Chapter 7 only show two routes the application

of the synchrostates can take. The ability to the quantify dynamic brain

functional network opens the door to many such application which may be

explored in the future. Following on from the classification study future

work may be directed towards acquiring the brain connectivity measures for

large populations of ASD and typical children in order to effectively bring

it in to regular clinical practices. A larger, more clinically driven study

with an extensive EEG data collection is required for the dissemination of

the concept of using synchrostate connectivity as a diagnostic aid to clinical

evaluation of autism. It is also well known that autism encapsulates a broad

spectrum of disorders hence a binary classification test may not suffice as an

effective and useful tool in the clinics. Hence the data from such a study can

be further used to classify the severity or degree of ASD in future using a

similar procedure while deriving network measures from EEG synchrostates

especially from different subclasses of ASD patients.

The implication of the second application study conducted in this thesis is

vast. A rigorous and more thorough study may yield more accurate models

to predict emotional and behavioural state of children. A similar study may

also be carried out with adults. Having such models will enable one to

apply it for the rehabilitation purposes of anxiety, ADHD, depression and

dementia patients. The knowledge about the trait of the patient’s emotional

state can help trigger medication alerts, send automated warning messages

to doctors, actuate environmental changes such as turn on music or dim the

lights following computer generated instructions. The use of such models

also extends to brain computer interface scenarios that can open up many

doors and change the way computers or robots can react to human emotion

or behaviour.

Neurofeedback

The quantification of functional brain networks, which provide a deeper un-

derstanding of the underlying dynamics, into computer recognisable features
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will enable the use of connectivity guided neurofeedback to provide therapy.

The network features may be used as the regulating score in the feedback

loop for deep brain stimulation, transcranial magnetic stimulation as well

as biofeedback systems. Such a protocol would mean better and more pa-

tient centric individualised therapy may be provided. In order to get the

best use out of the metrics a pilot study can be carried out to find out which

graph parameter is most effective for regulating in accordance to the therapy

suggest by the clinicians.

In the case of autism, a study conducted on the atypical connections may be

followed by customised neurofeedback routines that may be designed with

the help of the neuro- physiologist, psychologists and clinicians. The cou-

pling parameters and the connection can be regularly monitored and a study

can be conducted on patients to check for improvements and adjust the neu-

rofeedback routine accordingly.

Source space and EEG network fusion

fMRI data has very accurate spacial resolution but lacks in the temporal res-

olution that is inherent in EEG signals. fMRI provides source information

that will help in identifying the cortical regions of interest in a particular

experiment. The use of fMRI will allow various networks to be set at the

source level using existing literature to model connections between these re-

gions. Once such anatomical networks are formed the synchrostate network

and their networks parameters can be mapped to the structural model and

metrics to formulate an effective model that maps the sensor level connec-

tivity onto the structural one. This will allow for synchrostate sensor level

connectivity maps to be adequately mapped to anatomical regions for better

and more meaningful interpretation about the synchrostates.

Clustering

In a temporal resolution of millisecond, it is assumed that the brain stays

only in one state. Hence hard clustering is used to assign each data-point

corresponding to each time instant to only one of the classes or states. This

means that a single data-point should belong to one of the clusters as dic-

tated by the adopted unsupervised learning technique. The assignment of the

data-points in different clusters or states by the k-means clustering algorithm

is ensured by the final value of the cost-function as the clustering minimises

the sum of the Euclidean distances for all the data-points where the phase

difference matrix at each sample is considered as a new data point. Other

paradigms of soft clustering like fuzzy c-means or similar methods (Dimi-

triadis et al. (2013)) where a single data-point can be associated with more

than one cluster according to its degree of associativity with different classes,
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can also be applied in the present problem and may be explored as future

research.

Here the clustering of the phase difference matrices were done on the Eu-

clidean space, based on the premise that the data is linearly distributed in

that space. The knowledge of the data distribution in a given space is essen-

tial before the application of clustering techniques however since the EEG

phase difference have a very high dimension it is not possible to visualise the

data in order to determine if this assumption holds in the Euclidean space.

The scope of the problem is such that the methodology can be changed and

future research can be directed to studying the effects of applying linear

clustering methods in different spaces. If need be, non-linear kernels like

RBF can be applied to transform the data into a space where one can show

that the data is linearly distributed. Hence applying clustering in that space

would yield more accurate grouping results.



Appendix A

Electrode layout for Datasets

Figure A.1: The sensor layout, nose up.
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Figure A.2: HGSN sensor layout, nose up.
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Figure A.3: EasyCap sensor layout, nose up. Sensors used are colored in blue





Appendix B

Different Layers in the Human

Head

Figure B.1: Figure showing the three main layers of the head, with their ap-
proximate thickness and resistivity. Image taken from Sanei and Chambers
(2007)
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