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Abstract. This paper provides benchmarks for the identification of best 
performance classifiers for the detection of operational states in industrial drilling 
operations. Multiple scenarios for the detection of the operational states are tested 
on a rig with various drilling wells. Drilling data are extremely challenging due to 
their non-linear and stochastic natures, notwithstanding the embedded noise in 
them and unbalancing. Nevertheless, there is a possibility to deploy robust 
classifiers to overcome such challenges and achieve good automated detection of 
states. Three classifiers with best classification rates of drilling operational states 
were identified in this study.  

1 Introduction 

Offshore industrial engineering involves the management of highly complex 
operations in drilling rigs. Critical situations such as "Kicks", "Fluid loss" or "Stuck 
pipe" may occur during drilling operations. Such conditions are gradually reached 
following various stages of criticalities in time. Therefore, it is important that those 
stages of operations are detected and controlled during drilling processes. One way of 
achieving it is to automate the detection of drilling Operational States (OS).  It 
involves the breaking of  a drilling process into ten well-defined and exclusive drilling 
OS [1]: 1) Drilling Rotary (DrlRot); 2) Drilling sliding (DrlSld); 3) Clean 
Downwards (CleanDN); 4) Clean Upwards (CleanUP); 5) Wash Upwards 
(WashUP); 6) Wash Downwards (WashDN); 7) Move in hole (MoveDN); 8) Move out 
of hole (MoveUP); 9) Circulation on (CirclHL); and 10) Make Connection 
(MakeCN). The OS have been successfully detected on a drilling run using machine 
learning techniques with five additional principal states [1]. Further, Echo State 
Networks were adjusted to cope with unbalanced datasets in order to perform well in 
the classification of OS at a given well [2]. However, knowledge of labeled data for 
training was assumed to be available during the drilling process. Therefore, the 
challenge is to consider a real operational scenario which considers a drilling plan at 
multiple wells when labelled data becomes available after drilling, at least in one well 
on the rig.   
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A framework for the selection of the best performing OS classifiers is proposed in 
this study. The classifiers are trained by using a portion of available labeled data of 
OS, i.e. the training is done for a given well, while testing is performed on other wells 
for the detection of unseen OS.  

2 Data analytics 

Two types of drilling data are generated: Sensor measurements data (time series); and 
data created by drilling experts as observations, so-called OS labels. The analyses of 
both observations and measurements data are addressed in this section. 
 
2.1 Measurement data analyses (Time series) 
Measurement data are generated by sensing devices. The data exhibit complex 
behaviour (Fig. 1.) which led to further data analysis for selecting suitable classifiers. 
The complexity of the drilling time series (data behaviour) required two tests in the 
classification process: Linearity and Normality tests.  
  

 
Fig.  1. The complexity of data dynamics: (a) Block Position and (b) Hook Load 

 
Scatter plots for each time series data have been produced in order to check on data 

linearity. From the ten available measurement time series data only two showed 
linearity trends. These include Bit Depth and Hole Depth measurements. The test for 
data Normality was performed using Mardia's goodness-of-fit test for multivariate 
normality [3]. The results have shown that the drilling measurement time series data 
are non-Gaussian.             

   
2.2 Observation data analysis (OS labels) 
OS data are generated by drilling engineers as real-time observations, using expert 
knowledge assessments and Morning Reports. The latter are filled up when phases of 
drilling operations are complete and passed to the next operating drilling teams. The 
OS labels are consequently noisy and subjective. The statistical analysis of the 9 wells 
showed that 15% to 25% of OS labels were missing for each well. Also, the generated 
labeled OS occurred at different durations and frequencies, i.e. they are statistically 
imbalanced. Table 1 illustrates such issue (Well140).  

Data complexity measures [4] were recently proposed to quantify the 
characteristics of data which affect accuracy of classification such as 1) Overlaps of 



classes in feature space; 2) Separability of classes; and 3) Class density in overlap 
region.  
 
CircHL CleanDN CleanUP DrlRot DrlSld MakeCN MoveDN MoveUP WashDN WashUP 
9.2% 5.8% 1.3% 33.8% 21.3% 16.7% 3.5% 3.8% 2.4% 2.2% 

Table 1: Distribution of OS label, Well140 
 

Fisher's discriminant ratio (F1), the ratio of average intra/inter class nearest-
neighbour distance (N2), and class density in overlapped regions (D3) represent a 
useful set of indicators for the good classification characteristics of the dataset. The 
generalization for L classes which also considers all feature dimensions was 
suggested in [5] for F1 and can be calculated as follows: 
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where in  is the number of samples in class i ,δ is a similarity metric, μ  is the overall 

mean, iμ is the mean of class i , and i
jx corresponds to the sample j of class i . 

When 01 =F , a complete overlap exists between classes, while 11 −> LF means that 
there is no overlap. The intermediate values of F1 show the level of overlap between 
some classes. In this study, 97.11 =F  for training data set of 10 classes. This shows 
that although there is no complete overlap between all classes, some classes may still 
overlap. 

 N2 measures class separability in the following way: 
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N is the number of data samples, ( )ixintra  is the distance to the nearest neighbour 
within a class for a sample i ; and ( )ixinter  is the distance to the nearest neighbour of 
any other class. Low values of N2 suggest that samples of the same class are well 
separated from other classes, whereas large values of N2 indicate that they are 
dispersed. Table 2 shows N2 values, calculated for each OS (class) for drilling data. 
The DrlRot class is the best separated class from the rest of classes. Hence one 
expects that this class can be easily classified. CleanDN and MakeCN classes exhibit 
good separability, while the MoveDN has the worst separability measure, followed by 
the DrlSld and MoveUP classes. These last three states mentioned may consequently 
present some confusion during the classification process.   

The aim of the class density D3, as introduced in [5], is to determine the relative 
density of each class within an overlapping region. The lower the values of D3, the 
less number of samples lie within the overlapping region. Table 2 shows D3 values of 
samples in overlapping regions for all OS. The OS with the smallest D3s include 
DrlRot, MakeCN and CircHL. However, CleanUP, DrlSld and WashUp have shown 
D3s exceeding 60%. The rest of the OSs has shown significant high proportion of the 
overlapping regions. This analyses shows the type of challenges exists in this 



classification problem with overlapping classes and high class densities overall. As a 
result, the selected classification algorithms need to overcome the multi-class 
imbalance and complexity of the drilling data. 
 

OS N2 D3 (%) 
CircHL 1.6 9.5 
CleanDN 0.7 34.3 
CleanUP 1.5 66.6 
DrlRot 0.1 4.1 
DrlSld 4.7 62 
MakeCN 0.2 6.1 
MoveDN 8.3 48 
MoveUP 4.2 28.9 
WashDN 1.5 49.0 
WashUP 1.3 66.0 

Table 2: Measures of data complexity N2 and D3 

3 Selection of classifiers for the best performance 

Following the above data analysis, reference to one of the most comprehensive review 
in [6] and the authors’ experience with complex data classification, eight machine 
learning algorithms were selected. These include: 1) k-Nearest-Neighbour (kNN), 2) 
Support Vector Machines (SVM), 3) Linear Discriminant Analysis (LDA) 4) Echo 
State Network (ESN), 5) Random Forest (RF), 6) AdaBoostM2, 7) RusBoost and 8) 
Subspace.  Each of the algorithms were evaluated using micro-averaged and macro-
averaged F-measures [2]; together with the Matthews Correlation Coefficient (MCC) 
[7] for their respective overall performances. Correct Classification Rates (CCR) were 
adopted for the assessment of individual OSs. The larger the F-measure is the higher 
the classification rate. Micro-average F-measure gives equal weights to each label and 
tends to be dominated by the classifier's performance on common classes.  Macro-
average F-measure gives equal weights to each class regardless of its frequency. It is 
influenced more by the classifier's performance on rare classes. Both measurement 
scores are used to analyze how well classifiers perform under common and rare 
classes. MCC summarizes the confusion matrix into a single value and is regarded as 
a good measure for problems with unbalanced classes. It returns a value between -1 
and 1, where 1 is a perfect prediction, 0 no better than a random prediction and -1 
indicates a total disagreement between prediction and observation. The selected eight 
classifiers were trained using sensor measurements with given OS at Well140. Their 
testing was subsequently performed on two other Wells of the same Rig (Well80 and 
Well85). Only Well80 is presented in this instance.  

Ten sensor measurement were considered: 1) Block Position; 2) Bit Depth; 3) Hole 
Depth; 4) Weight on Bit; 5) Mud Flow; 6) Pump Pressure; 7) Rate of Penetration; 8) 
Rotary Torque; 9) Hook Load and;10) Rotary Speed. Six additional features were also 
considered: 1) Hole Depth - Bit Depth; 2) Hole Depth + Block Position; 3) Bit Depth 
+ Block Position; 4) Rotary Torque * Rotary Speed; 5) Pump Pressure * Mud Flow 
and; 6) Rate of Penetration * Weight on Bit. Three experimental scenarios were 



designed according to various utilizations of the amount of labeled data from Well140 
for classifiers training: 1) 100% of data are considered for training (All); 2) 30% of 
data are considered for training using uniform sampling without replacement 
(30_UWR) and; 3) 30% of data are considered for training using a hybrid sampling 
(30_HS). These scenarios were considered to assess the possibility of reducing 
training sets without losing in the classification accuracy on the testing sets. The 
investigation on the sensitivity of the classifiers to various sub-sampled sets and the 
comparison of confidence intervals under scenarios 2) and 3) were performed using 
ten different Monte Carlo samples which were respectively drawn for each sampling 
scheme. Each algorithm was fine-tuned in order to achieve best performance. Table 3 
shows the algorithms performance for Well80. Three algorithms such as RF, 
AdaBoostM2 and RUSBoost show best performance for the different training sets. 
They achieved similar performance according to all three assessment criteria: F1 and 
F2 measures reached values above 80% and 55% respectively; while MCC was above 
0.7 for all these algorithms. The kNN and SubSpace algorithms consistently 
performed poorly Table 3 shows that the volume of the training datasets can be 
reduced by a third without significantly reducing the classifiers performances. 
 

Method ALL      
(%F1,%F2,MCC) 

30_UWR 
 (%F1,%F2,MCC) 

30_HS  
(%F1,%F2,MCC) 

kNN (56,35.2,0.42) (66.3±3.2,36.8±1.1, 0.53±0.05) (50±2.6,33.6±0.7, 0.37±0.02) 
SVM (71.2,47.2,0.58) (73.7±0.6,46.9±0.4, 0.62±0.008) (70.6±2.4,45.8±1.0, 0.58±0.03) 
LDA (70.4,37.2,0.58) (71.2±0.5,38.4±1.2, 0.59±0.006) (69.9±0.2,37±0.4, 0.56±0.002) 
ESN (67.4,34.5,0.56)  (58.8±7,33±1.7, 0.48±0.06)  (66.2±2.3,36.3±2, 0.53±0.03) 
RF (84.1,57.1,0.77) (85.2±0.3,57.4±0.5, 0.79±0.006) (83.5±0.5,57.5±1.6, 0.74±0.01) 
AdaBoostM2 (85.2,61.4,0.77) (85.3±0.6,60.2±1.9, 0.77±0.01) (85±0.4,60.5±0.6, 0.76±0.005) 
RUSBoost (85.3,61.6,0.76) (84.2±0.5,59.5±1.1, 0.75±0.005) (83.1±1.7,57.9±2.3, 0.73±0.03) 
SubSpace (65.1,22.3,0.61) (64.6±1.4,21.1±2.7, 0.59±0.02) (56.4±0.7,20.8±1.1, 0.44±0.01) 

Table 3: Comparison of algorithms, Well 80 
 
Uniform sampling Without Replacements (30_UWR) led to good overall 

performances for Well80. Though HS produced more balanced classes for 
classification, it did not preserve data structure. DrlRot, DrlSld and MakeCN 
operational states should not be misclassified, since they are critical for decision-
making during normal operations. However, the accurate classification of 
WashUP/WashDN, CleanUP/CleanDN or MoveUP/MoveDN could become more 
important, when critical situations. As shown in Figure 2 below, three classifiers 
fulfill best results. These are RF, AdaBoostM2 and RUSBoost. These nominated 
classifiers achieved high CCRs which are greater than 90% in the majority of cases of 
the critically important states under normal conditions such as DrlRot, DrlSld and 
MakeCN. 
 



         

 
          Fig. 2: Classification results for algorithms selection 

4 Conclusions  

A thorough benchmarking study has been achieved for the selection of the most 
performing classifiers for the detection of operational states in drilling operations. 
Strategies were put in place to filter out the less performing classifiers and maintain 
those which efficiently coped with complex drilling operation data and multiple states 
classification. Prior knowledge on the geophysical strata of the operating rig can 
potentially assist on further inferences for improving the identified performing 
classifiers. RF, AdaBoostM2 and RUSBoost were found highly reliable for achieving 
real-time automated detection of operational drilling states. They are proposed as the 
best classifiers for building the next generation decision-support information systems 
for achieving safer drilling operations in industrial rigs.   
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