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Abstract
In state-of-the-art phrase-based statistical machine translation systems, modelling phrase

reorderings is an important need to enhance naturalness of the translated outputs, particularly
when the grammatical structures of the language pairs differ significantly. Posing phrase move-
ments as a classification problem, we exploit recent developments in solving large-scale mul-
ticlass support vector machines. Using dual coordinate descent methods for learning, we pro-
vide a mechanism to shrink the amount of training data required for each iteration. Hence, we
produce significant computational saving while preserving the accuracy of the models. Our ap-
proach is a couple of times faster than maximum entropy approach and more memory-efficient
(50% reduction). Experiments were carried out on an Arabic-English corpus with more than a
quarter of a billion words. We achieve BLEU score improvements on top of a strong baseline
system with sparse reordering features.

1. Introduction

The mathematical basis of statistical machine translation (SMT) has its origins in
the formulation due to Brown et al. (1988), who later introduced five statistical models
widely known as the IBM models (Brown et al., 1993). While these early models were
word-based, assuming the translation to take place on a word by word basis, in reality,
groups of words (phrases) are recognised as better units of translation (Koehn, 2010).

Working at the phrase level helps resolve many ambiguities that occur at the word
level. Since the IBM models allow one to many mappings of words, phrase can be
automatically defined by training IBM word alignment models in both direction of
source and target languages, and combining the two alignments (Och and Ney, 2004).
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While such attempts at phrase level translation has shown improvement in transla-
tion performance, a further issue that has to be addressed is that of long range phrase
reorderings (Galley and Manning, 2008). Such reorderings arise from differences in
grammatical structures between language pairs and addressing this is important in
achieving increased naturalness of the translated output (Koehn, 2010). This issue
is particularly pronounced when language pairs separated by large evolutionary dis-
tances, or from different linguistic families, are considered such as Arabic and English.

Early work on handling phrase reorderings implemented a relaxation into the de-
coder which, instead of forcing phrases to be in synchrony, allowed a penalty func-
tion that penalised large movements proportionately (Koehn, 2004a). An alternative
approach, adopted by several systems nowadays is lexicalised reordering modelling
(Tillmann, 2004; Kumar and Byrne, 2005; Koehn et al., 2005), whereby the frequencies
of relative positions of the phrase pairs are extracted from the training corpus and
used as additional inputs to the decoder (see section 4).

Building on this, some researchers have borrowed powerful ideas from the ma-
chine learning literature, to pose the phrase movement problem as a prediction prob-
lem using contextual input features whose importance is modelled as weights of a
linear classifier trained by entropic criteria. This maximum entropy-based approach
(so called MaxEnt) is a popular choice (Zens and Ney, 2006; Xiong et al., 2006; Nguyen
et al., 2009; Xiang et al., 2011).

However, if the underlying classification problem is not linearly separable, the
MaxEnt classifier will not perform well and more advanced nonlinear methods will be
needed. Kernel methods (such as support vector machines in the context of pattern
recognition) are state-of-the-art approaches to capture nonlinear effects in datasets
(Cristianini and Shawe-Taylor, 2000). They map the data into high dimensional spaces
implicitly defined by properties of the chosen kernel, and achieve linear separability
in the transformed space.

In many natural language processing problems, including the phrase reordering
problem we address here, context information extracted from data are represented
explicitly in very high dimensional spaces and linear separability in these spaces can
be expected. Motivated by this, Ni et al. (2011) proposed the use of a structured per-
ceptron approach to tackle long range phrase reorderings. While that system results
in encouraging results on a Chinese-English translation task, dimensionality and the
resulting computational complexity were noted as issues that needed to be tackled.

More recently, there have been extensive developments in the machine learning
literature on scaling up support vector machines to problems with large data sizes.
The underlying quadratic programming problem is being solved by stochastic gradi-
ent search type algorithms. Many researchers proposed fast learning techniques for
linear SVM using a dual coordinate descent approach (Hsieh et al., 2008; Glasmachers
and Dogan, 2013; Alrajeh et al., 2015). The method of Hsieh et al. (2008), for example,
has linear complexity and reaches an ϵ-accurate solution in O(log(1/ϵ)) iterations.
Later, Chang et al. (2010) took the approach a step further and applied linear SVM to
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the explicit form of low-degree polynomial kernel. Although, in many cases, kernel
mapping is exponential to the input space or infinite as in the Gaussian kernel, the
approach is shown to be useful for certain datasets such as NLP task on dependency
parsing (Chang et al., 2010).

In this paper, we explore computationally fast and memory-efficient uses of mul-
ticlass SVM classifier as a model of long range phrase reorderings. Our results show
significant improvement in the BLEU score over a lexicalised reordering model. Train-
ing multiclass SVM is shown to be faster than MaxEnt with 50% reduction in memory
usage due to a shrinking heuristic we propose.

The remainder of this paper is organised as follows. Section 2 discusses previ-
ous work in the field and how it relates to our reordering model. Section 3 gives
an overview of the baseline translation system. Section 4 and 5 briefly describe the
lexicalised and maximum entropy-based reordering models. Section 6 introduces the
proposed SVM-based reordering model. Starting from a brief introduction to the SVM
formulation, we explain a fast learning technique for linear mulitclass SVM and how
it is extended to nonlinear using kernel mapping. Section 7 evaluates multiclass SVM
on benchmark datasets. Section 8 undertakes a comparison between our work and
previously proposed models and reports the results evaluated as classification and
translation problems. The experiments are based on a large-scale Arabic-English cor-
pus. Finally, we end the paper with a summary of our conclusions and perspectives.

2. Related Work

Adding a lexicalised reordering model has been shown to consistently improve the
translation quality for several language pairs (Koehn et al., 2005). The model tries to
predict the orientation of a phrase pair with respect to the previous adjacent target
words. Ideally, the reordering model would predict the right position in the target
sentence given a source phrase, which is difficult to achieve. Therefore, positions are
grouped into limited orientations or classes. The orientation probability for a phrase
pair is simply based on the relative occurrences in the training corpus.

The lexicalised reordering model has been extended to tackle long-distance re-
orderings (Galley and Manning, 2008). This takes into account the hierarchical struc-
ture of the sentence when considering such an orientation. This approach is shown to
improve translation performance for several translation tasks. An additional appeal
of the method is the low computing cost.

In addition to the fact that the lexicalised reordering model is always biased to-
ward the most frequent orientation for such a phrase pair, it may suffer from a data
sparseness problem since many phrase pairs occur only once (Nguyen et al., 2009).
Moreover, the context of a phrase might affect its orientation, which is not considered
as well.

Adopting the idea of predicting orientation based on content, it has been proposed
to represent each phrase pair by linguistic features as reordering evidence, and then
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train a classifier for prediction. The maximum entropy classifier is a popular choice
among many researchers.

Zens and Ney (2006) introduced the maximum entropy classifier for phrase re-
ordering. Three different translation tasks were carried out: Arabic-English, Chinese-
English and Japanese-English. Only two orientations were considered, left or right
(i.e. monotone or swap). Although the proposed model outperforms the relative
frequency model in terms of classification performance, they did not draw compar-
ison between them in terms of translation performance. The translation results re-
ported were between their model and the distance-based reordering model. We be-
lieve that such a comparison with a lexicalised reordering model is important because
the model is faster to estimate (i.e. relative frequency) and also faster to use during
translation since there is no overhead computation (i.e. retrieving probabilities from
a table).

Xiong et al. (2006) also proposed a maximum entropy model to predicate reorder-
ing of neighbour blocks (i.e. phrase pairs) and considered straight or inverted orienta-
tions (i.e. monotone or swap). Their experiments were carried out on Chinese-English
translation tasks. The reported results were only in terms of translation performance.
Similar to Zens and Ney (2006), the authors compared their model with the distance-
based reordering model although they did make reference to the lexicalised reorder-
ing model.

Nguyen et al. (2009) applied the maximum entropy model to learn orientations
identified by the hierarchical reordering model proposed by Galley and Manning
(2008). The previous work of Zens and Ney (2006) and Xiong et al. (2006) identi-
fied such an orientation without considering the hierarchical structure of previous
phrases. The authors used a relatively small English-Vietnamese corpus (0.6 million
words) collected from daily newspapers. The approach achieves translation improve-
ments over the lexical hierarchical reordering model in a test set taken from the same
corpus (i.e. not a benchmark).

Xiang et al. (2011) introduced a smoothed prior probability to maximum entropy
model and used multiple features based on syntactic parsing. The smoothed prior is a
combination of – through interpolation weight – a global distortion probability p(ok)
and a local distortion probability p(ok|f̄n, ēn) (i.e. lexicalised reordering model). The
model predicts the jump distance (up to five words) from the previously translated
source word to the current source word. This method does not capture the hierarchi-
cal structure of the sentence as explained by Galley and Manning (2008). The experi-
ments were undertaken on a large-scale Chinese-English translation task (one million
sentence pairs). The proposed model shows improvement over a distance-based re-
ordering model. Like the findings of Zens and Ney (2006) and Xiong et al. (2006),
there is no comparison with a lexicalised reordering model.

Ni et al. (2011) considered a variety of machine learning techniques including the
maximum entropy model. They introduced a perceptron-based learning approach
to modelling long-distance phrase movements. Similar to Xiang et al. (2011), their
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model predicts the jump distance (up to five words) from the previously translated
source word to the current one. Differing from the previous works, training data were
divided into small independent sets where all samples share the same source phrase.
This method breaks down the learning complexity by having as many sub-models as
source phrases. Although the number of parameters for each sub-model are small,
the total number of parameters are larger than having just one model to incorporate
all the data. Several learning techniques are compared and evaluated on a Chinese-
English corpus (Hong Kong laws corpus). The perceptron-based learning approach
outperforms both the lexicalised reordering model and the maximum entropy model.
The reported results were based on a test set taken from the same corpus.

Alrajeh and Niranjan (2014b) explored generative learning approach to phrase re-
ordering in Arabic to English namely Bayesian naive Bayes. We achieved an improve-
ment over a lexicalised reordering model. Training time of the model is as fast as the
lexicalised one. Its storage requirement is many times smaller, which makes it more
efficient particularly for large-scale tasks. Previously proposed discriminative models
might achieve higher score than the reported results. However, the model is scalable
since parameter estimation requires only one pass over the data with limited memory
(i.e. no iterative learning). This is a critical advantage over discriminative models.

Recently, Cherry (2013) proposed using sparse features to optimise BLEU with the
decoder instead of training a classifier independently. The reported results shows that
sparse decoder features are superior to maximum entropy classifier.

We distinguish our work from the previous ones in the following. We propose
fast and memory-efficient reordering models using multiclass SVM. In this study,
we undertake a comparison between our work and both lexicalised and maximum
entropy-based reordering models.

3. Baseline System

In statistical machine translation, the most likely translation ebest of an input sen-
tence f can be found by maximising the probability p(e|f), as follows:

ebest = arg max
e

p(e|f). (1)

A log-linear combination of different models (features) is used for direct modelling
of the posterior probability p(e|f) (Papineni et al., 1998; Och and Ney, 2002):

ebest = arg max
e

n∑
i=1

λihi(f,e), (2)

where the feature hi(f,e) is a score function over sentence pairs. The translation
model and the language model are the main features in any system although addi-
tional features h(.) can be integrated easily (such as word penalty).

69



PBML 103 APRIL 2015

In phrase-based systems, the translation model can capture the local meaning for
each source phrase. However, to capture the whole meaning of a sentence, its trans-
lated phrases need to be in the correct order. The language model, which ensures flu-
ent translation, plays an important role in reordering; however, the model is not suf-
ficient (Al-Onaizan and Papineni, 2006). It prefers sentences that are grammatically
correct without considering their actual meaning (i.e. the dependence of the target
sentence on the source sentence). Besides that, it has a bias towards short transla-
tions1 (Koehn, 2010). Therefore, developing a specific reordering model will improve
the accuracy particularly when translating between two grammatically different lan-
guages.

4. Lexicalised Reordering Model

Phrase reordering modelling involves formulating phrase movements as a classi-
fication problem where each phrase position considered as a class (Tillmann, 2004).
Some researchers classified phrase movements into three categories (monotone, swap,
and discontinuous) but the classes can be extended to any arbitrary number (Koehn
and Monz, 2005). In general, the distribution of phrase orientation is:

p(ok|f̄i, ēi) =
1

Z
h(f̄i, ēi, ok). (3)

This lexicalised reordering model is estimated by relative frequency where each
phrase pair (f̄i, ēi) with orientation ok is counted and then normalised to yield the
probability as follows:

p(ok|f̄i, ēi) =
count(f̄i, ēi, ok)∑
o count(f̄i, ēi, o)

. (4)

The orientation class of a current phrase pair is defined with respect to the pre-
vious target word or phrase (i.e. word-based classes or phrase-based classes). In the
case of three categories (monotone, swap, and discontinuous): monotone is the previ-
ous source phrase (or word) that is previously adjacent to the current source phrase,
swap is the previous source phrase (or word) that is next-adjacent to the current source
phrase, and discontinuous is not monotone or swap. Galley and Manning (2008) ex-
tended the model to recognise sentence hierarchical structure.

5. Maximum Entropy-based Reordering Model

As mentioned in the introduction, maximum entropy classifier is a popular choice
to model phrase movements. It is also known as multinomial logistic regression or

1In Moses, it is balanced by the word/phrase count features as noted by one of the reviewers.
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softmax regression, which is a probabilistic model for the multiclass problem. The
model is an extension of logistic regression which is a binary classifier. The class
probability is given by:

p(ok|f̄i, ēi) =
exp(w⊤

kϕ(f̄i, ēi))∑
k ′ exp(w⊤

k ′ϕ(f̄i, ēi))
, (5)

where ϕ(f̄i, ēi) is a feature vector (see Table 3) and wk is a weight vector measur-
ing features’ contribution to orientation ok. The model’s parameters are estimated
by maximum likelihood. To do that, we write the function using the 1-of-K coding
scheme in which ti is a zero vector except where tik equals one, which indicates that
an object is belonging to that class (Bishop, 2006). Then the likelihood is expressed as:

p(o|f̄, ē) =

N∏
i=1

K∏
k=1

p(ok|f̄i, ēi)
tik (6)

Now, taking the partial derivative of the log-likelihood we get (Bishop, 2006):

∂ logL

∂wk

=

N∑
i=1

(
tik − p(ok|f̄i, ēi)

)
ϕ(f̄i, ēi). (7)

The solution is not closed-form but we can estimate wk by the stochastic gradi-
ent descent. Similarly, MAP estimate can be used to impose regularisation on the
parameters. In our experiments, we used a more advanced optimisation algorithm
proposed by Andrew and Gao (2007)2. Their algorithm optimises L1-regularised or
L2-regularised log-likelihood based on L-BFGS algorithm. The L1 regularisation is
equivalent to adding Laplacian prior over the model’s parameters.

6. SVM-based Reordering Model

Phrase reordering problem is usually formulated as multiclass problem which can
be solved as several binary problems in the standard SVM (Boser et al., 1992). One-
versus-rest or one-versus-one are well known strategies.

In this work, we propose multiclass SVM to model phrase movements. We use
dual coordinate method and a mechanism for pruning of the training samples, which
allows us to train a reordering model efficiently. Before discussing our approach we
briefly introduce multiclass SVM formulation.

Given a set S = {(x1, y1), . . . , (xN, yN)} where xi ∈ Rn and yi ∈ {1, . . . , K}, Cram-
mer and Singer (2002) proposed a multiclass SVM formulation. Its dual optimisation
problem is:

2We have used the authors’ implementation of L-BFGS algorithm which is available at
http://homes.cs.washington.edu/∼galen/
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minimise
α

D(α) =
1

2

K∑
k=1

N∑
i,j=1

αikαjkx
T
i xj +

N∑
i=1

K∑
k=1

(1− δik)αi,

subject to
K∑

k=1

αik = 0 and αik ≤ Cδik ∀i, k, (8)

δik =

{
0 if yi ̸= yk;
1 if yi = yk.

where the corresponding wk =
∑N

i=1 αikxi. Here C ≥ 0 is a penalty parameter
for margin violation by each data point xi .

For the sake of clarity, we use xi to represent data in our discussion on SVM, and
the learning algorithms. In the context of our NLP problem, and previous discussion
in this paper xi = ϕ(f̄i, ēi). Table 3 shows how a phrase pair can be represented.

Note that SVM is not a probabilistic classifier but in our experiments we used soft-
max function to yield a probabilistic decision (Bishop, 2006).

6.1. Shrinking dual method for solving Multiclass SVM

Keerthi et al. (2008) propose a sequential dual method to solve the problem (8).
The method sequentially picks xi at a time and optimises its dual variable (i.e. αik ∀k)
while fixing all other variables. The sub-problem is given by:

minimise
αi

1

2

K∑
k=1

1

2
Aα2

ik + Bkαik,

subject to αik ≤ Cδik ∀k, (9)

where

A = xTi xi and Bk = Gik −Aαik,

Gik =
∂D(α)

∂αik

= wT
kxi + 1− δik. (10)

Crammer and Singer (2002) provide O(k log k) algorithm to solve the sub-problem
(9). Fan et al. (2008) present a simpler version given in Algorithm 1.

After each update, the corresponding weight vector for each class wk is main-
tained as follows (Fan et al., 2008):

wk = wk + (α
′

ik − αik)xi (11)
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Algorithm 1 Solving the sub-problem of multiclass SVM
Require: A, B and a penalty parameter C ≥ 0

1: Dk ← Bk +ACδik , ∀k
2: Sort D in decreasing order
3: β← D1 −AC , r← 2

4: while r ≤ K and β/(r− 1) < Dr do
5: β← β+Dr , r← r+ 1

6: end while
7: β← β/(r− 1)
8: α

′

ik ← min(Cδik, (β− Bk)/A) , ∀k

The optimal dual variables are achieved when the following condition is satisfied
for all samples (Keerthi et al., 2008):

vi = 0 , ∀i, where vi = max
k

Gik − min
k:αik<Cδik

Gik. (12)

We propose a shrinking heuristic based on this condition which is a key to acceler-
ate our algorithm. The dual variables αik are associated with each sample (i.e. phrase
pair) therefore a training sample can be disregarded once its optimal dual variables
are obtained. More data shrinking can be achieved by tolerating a small difference be-
tween the two values in (12). Algorithm 2 presents the overall procedure (shrinking
step is from line 6 to 8).

Algorithm 2 Shrinking dual method for training large-scale multiclass SVM
Require: training set S = {xi, yi}

N
i=1

1: α = 0 and w = 0

2: repeat
3: Randomly pick i from S

4: Calculate Aik , Bik , Gik ∀k by (10)
5: Calculate vi by (12)
6: if vi ≤ ϵ then
7: Remove i from S

8: else
9: Calculate α ′

ik ∀k by Algorithm 1
10: Update α and w by (11)
11: end if
12: until vi ≤ ϵ ∀i
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6.2. Kernel Mapping via Linear SVM

We have seen in the previous section that linear SVM can be scalable because of
the advantage of accessing the feature space. On the other hand, kernel SVM is able
to learn more complex patterns by working on high dimensional feature space, where
the data might be linearly separable, without explicit mapping using the kernel trick.

An interesting technique to accelerate kernel SVM is to apply linear SVM to the
explicit form. However, in many cases, kernel mapping is exponential to the input
space or infinite as in the Gaussian kernel. Low-degree polynomial mapping is shown
to be useful for certain datasets (Chang et al., 2010). All-subsets kernel is similar to
polynomial kernel but has more flexibility in terms of the monomials’ weightings
(Shawe-Taylor and Cristianini, 2004). The mapping generates all combinations of in-
put features and each monomial’s coefficient equals one unlike polynomial mapping.
Working with all monomials might be computationally expensive. Analysis of vari-
ance (ANOVA) kernel Kd, used in our experiments, restricts the mapping to subsets
of cardinality d with

(
n
d

)
dimensions (Shawe-Taylor and Cristianini, 2004). Table 3, in

the next section, gives an example of AVOVA mapping.

7. Experiments

The Arabic-English parallel corpus used in our experiments is a combination of
MultiUN, ISI and Ummah to set up a large-scale corpus. MultiUN is a large-scale
parallel corpus extracted from the United Nations website3 (Eisele and Chen, 2010).
ISI and Ummah were taken from Linguistic Data Consortium4 (LDC) with catalogue
numbers (LDC2007T08) and (LDC2004T18), respectively. Table 1 shows general statis-
tics of the corpora. Test sets are from NIST MT06 and MT08 where the Arabic sides
are 1797 and 813 sentences, respectively. Each sentence has four English references.

Corpus MultiUN ISI Ummah
Statistics Arabic English Arabic English Arabic English

Sentence Pairs 9.7 M 1.1 M 80 K
Running Words 255.5 M 285.7 M 30.5 M 34.4 M 2.7 M 2.9 M

Words/Line 22 25 27 31 33 36
Vocabulary Size 677 K 410 K 354 K 195 K 63 K 46 K
Vocabulary [%] 0.26 0.14 1.16 0.57 2.33 1.59

Table 1. General statistics of MultiUN, ISI and Ummah (M: million, K: thousand).

3http://www.ods.un.org/ods/
4http://ldc.upenn.edu/
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We compare our approach with previously proposed reordering models in two
phases. In the classification phase, we see the performance of the models as a classifi-
cation problem. In the translation phase, we test the actual impact of these reordering
models in a translation system.

7.1. Classification

We simplify the problem by classifying phrase movements into three categories
(monotone, swap, discontinuous). To train the reordering models, we used GIZA++
to produce word alignments (Och and Ney, 2000). Then, we used the extract tool
that comes with the Moses 5 toolkit (Koehn et al., 2007) in order to extract phrase
pairs along with their orientation classes.

During the extraction process, each extracted phrase pair is represented by lin-
guistic features. There are different feature representations in the literature as we
have seen in Section 2. We explore a variety of feature sets as shown in Table 2. Each
phrase pair is represented by all its words, its boundaries or its alignments. We have
considered one or three words of context (i.e. occur before or after each phrase pair).
Finally, one of ANOVA mappings were selected. Table 3 gives a generic example.

Feature Phrase Pair Context ANOVA Mapping
Set all words boundaries alignments size=1 size=3 d=1 d=2 d≤2
S1 . ✓
S2 . ✓
S3 . ✓
S4 . . ✓
S5 . . ✓
S6 . . ✓
S7 . . ✓
S8 . . ✓
S9 . . ✓
S10 . . ✓
S11 . . ✓
S12 . . ✓
S13 . . ✓
S14 . . ✓
S15 . . ✓

Table 2. A variety of feature sets to represent a phrase pair.

5Moses is an open source toolkit for statistical machine translation (www.statmt.org/moses/).
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Sentence pair:
Foreign sentence f : ..f1 f2

1
..f3 f4 f5

2
..f6

3
.

English sentence e : ..e1
1

..e2 e3
3

..e4 e5
2
.

Extracted phrase pairs (f̄, ē) :
f̄i ||| ēi ||| oi ||| alignments

f1 f2 ||| e1 ||| mono ||| 0-0 1-0
f3 f4 f5 ||| e4 e5 ||| swap ||| 0-1 2-0
f6 ||| e2 e3 ||| other ||| 0-0 0-1

Feature Representation:
a phrase pair is represented as a vector ϕ where each feature is a discrete number
(0=not exist). Below is a representation of ϕ(f̄2, ē2) in different feature sets:

S1 : f3, f4, f5, e4, e5
S2 : f3, f5, e4, e5
S3 : f3&e5, f5&e4
S4 : f3, f5, e4, e5, f−2 , f+6
S5 : f3_f5, f3_e4, f3_e5, f3_f−2 , f3_f+6 , f5_e4, f5_e5, f5_f−2 , f5_f+6 ,

e4_e5, e4_f−2 , e4_f+6 , f−2 _f+6
S6 : f3, f5, e4, e5, f−2 , f+6 , f3_f5, f3_e4, f3_e5, f3_f−2 , f3_f+6 ,

f5_e4, f5_e5, f5_f−2 , f5_f+6 , e4_e5, e4_f−2 , e4_f+6 , f−2 _f+6

Table 3. A generic example of the process of phrase pair extraction and
representation in different feature sets

Firstly, we present the performance of lexicalised reordering model in Table 4.
Then, we compare MaxEnt and multiclass SVM under all feature sets in Table 2. It
is not hard to see that using MaxEnt with an alternate feature set that enumerates all
conjunctions of size d is equal to ANOVA mapping. Tables 5 and 6 report the results.

Orientation Confusion Matrix Accuracy Precision Recall F1 score
Mono Swap Disc. all classes

Monotone 68.9 0.9 1.3 97.0 77.0 85.9
Swap 6.4 2.6 0.8 75.9 26.8 63.5 37.7

Discontinuous 14.2 0.6 4.4 23.0 68.4 34.5

Table 4. The performance of lexicalised reordering model.
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Feature Time Acc. Precision Recall F1 score
Set M S D M S D M S D
S1 1h26m 74.1 96.6 17.3 19.7 75.5 57.7 61.4 84.8 26.6 29.8
S2 1h10m 74.0 97.1 13.9 19.1 75.1 61.2 62.0 84.7 22.7 29.2
S3 1h40m 76.1 93.5 32.1 34.0 79.8 55.5 58.6 86.1 40.7 43.0
S4 1h50m 77.0 95.5 37.3 29.1 78.9 69.6 63.0 86.4 48.5 39.9
S5 5h59m 80.7 94.9 49.2 44.2 83.3 71.9 68.4 88.7 58.4 53.7
S6 6h21m 81.3 94.4 53.3 46.9 84.3 72.5 67.6 89.1 61.4 55.4
S7 3h10m 78.7 93.8 45.2 39.7 82.2 67.1 61.7 87.6 54.0 48.3
S8 4h32m 81.4 93.9 51.6 50.7 85.0 72.7 66.7 89.3 60.4 57.6
S9 4h43m 82.5 93.4 59.5 53.9 86.7 72.1 67.3 89.9 65.2 59.9
S10 2h45m 76.2 94.1 34.0 31.3 79.2 61.9 58.8 86.0 43.9 40.9
S11 15h11m 82.4 95.2 56.4 47.3 84.8 75.0 74.0 89.7 64.4 57.7
S12 16h04m 82.6 94.9 58.1 48.9 84.7 73.3 71.2 89.5 64.8 58.0
S13 3h24m 78.8 92.3 46.3 45.1 83.8 62.2 59.8 87.9 53.1 51.4
S14 13h03m 82.2 93.9 50.0 45.4 83.5 78.6 68.8 88.4 61.1 54.7
S15 15h12m 82.9 93.4 59.8 54.8 88.3 72.8 69.9 90.8 65.7 61.4

Table 5. Maximum entropy-based reordering model’s performance (M is monotone, S
is swap, D is discontinuous). The reported time is in hours (h) and minutes (m).

Feature Time Acc. Precision Recall F1 score
Set M S D M S D M S D
S1 0h30m 70.8 92.7 7.4 22.3 76.5 31.9 36.8 83.8 12.0 27.8
S2 0h28m 71.7 96.2 13.3 10.7 74.9 30.9 44.5 84.2 18.6 17.3
S3 0h40m 75.8 93.3 36.3 31.1 80.0 50.5 58.8 86.1 42.2 40.7
S4 0h33m 75.6 95.9 35.9 21.0 77.7 59.9 62.2 85.8 44.9 31.4
S5 1h45m 82.1 95.8 55.8 44.8 84.1 73.7 73.3 89.6 63.5 55.6
S6 2h07m 82.5 95.1 60.0 47.4 85.2 72.1 72.4 89.9 65.5 57.3
S7 0h47m 79.3 93.7 49.5 41.3 82.8 69.0 62 .7 87.9 57.7 49.8
S8 1h24m 81.0 95.3 50.4 42.9 83.3 69.0 71.0 88.9 58.2 53.5
S9 1h41m 82.1 92.5 61.0 54.1 86.8 69.7 65.6 89.6 65.1 59.3
S10 0h44m 74.0 95.6 24.5 18.7 76.8 49.2 53.4 85.2 32.7 27.7
S11 4h33m 82.7 95.9 56.2 47.4 84.7 75.0 74.2 89.8 64.3 57.9
S12 4h51m 82.6 94.9 57.9 49.7 85.4 73.3 71.8 89.9 64.7 58.7
S13 0h59m 78.0 94.2 46.3 35.0 81.6 58.4 62.2 87.4 49.7 44.8
S14 3h32m 82.0 96.8 49.1 44.0 83.2 77.3 75.8 89.5 60.0 55.6
S15 4h04m 82.8 95.5 55.8 49.8 85.4 73.6 72.8 90.2 63.5 59.1

Table 6. Multiclass SVM-based reordering model’s performance.
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Four observations can be drawn from the results in Table 5 and Table 6. First, the
performance of multiclass SVM is similar to MaxEnt in most feature sets. Second, our
classifier is a couple of times faster than MaxEnt (around 4-fold) due to the shrinking
method. Third, context around phrase pairs is important to achieve high accuracy
and only one word before and after is enough. Finally, alignment features usually
have higher F1 score than boundary features in both MaxEnt and multiclass SVM.

Alrajeh and Niranjan (2014a) propose a dual multinomial logistic regression (Dual
MLR) with a shrinking heuristic to model phrase movements. We compare their
shrinking approach with multiclass SVM in Figure 1.
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Figure 1. Comparison between multiclass SVM and dual multinomial logistic
regression (MLR) in terms of active phrase pairs during training.

In Figure 2, we show training time and memory usage for each classifier (Multiclass
SVM, Dual MLR, MaxEnt) when the number of phrase pairs increases. The results
show that multiclass SVM consumes mush less memory (nearly half) than MaxEnt
due to the shrinking technique discussed in Section 6.1.
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Figure 2. Training time (above) and memory usage (below) for each classifier when
the number of phrase pairs increases.
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7.2. Translation

We used the Moses toolkit (Koehn et al., 2007) with its default settings. The lan-
guage model is a 5-gram built from the English side with interpolation and Kneser-
Ney smoothing (Kneser and Ney, 1995). We tuned the system using PRO technique
(Hopkins and May, 2011). We built seven Arabic-English translation systems. The
first system has no reordering model, only a distortion penalty. The second system
has a hierarchical lexicalised reordering model that is built by specifying the con-
figuration string hier-msd-backward-fe. Sparse reordering features (Cherry, 2013)
are added in the third system. We only used ’sparse-phrase=1’ option with top 200
words. The last four systems have SVM-based or MaxEnt-based reordering models.

As commonly used in statistical machine translation, we evaluated the translation
performance by BLEU score (Papineni et al., 2002) and NIST (Doddington, 2002). We
also computed statistical significance for the proposed models using a paired bootstrap
resampling method (Koehn, 2004b).

Table 7 reports the size of each reordering model. Note that there is a big difference
between the lexicalised model and the discriminative ones.

Reordering Model Lexicalised Multiclass SVM (S6) Multiclass SVM (S7)
Parameters (million) 73.2 17.1 2.4
Disk Storage (GB) 5.9 0.7 0.1

Table 7. Comparison of problem sizes for the different reordering models.

Table 8 presents NIST and BLEU scores for five translation systems in MT06 and
MT08 test sets. Our models achieve improvements on top of a strong baseline system
with sparse reordering features. Note that feature sets (S6) and (S7) have similar scores
although (S6) has higher classification accuracy in Table 6.

MT06 MT08
Phrase-based SMT NIST ∆ BLEU ∆ NIST ∆ BLEU ∆

No Reordering Model 9.1 -0.3 35.5 -1.6 9.9 -0.2 41.2 -1.7
LexicalRM (baseline) 9.4 – 37.1 – 10.1 – 42.9 –
LexicalRM + sparseRM 9.5 +0.1 37.6 +0.5 10.2 +0.2 43.8 +0.9
SVM-RM (S6) + sparseRM 9.6 +0.2 38.1 +1.0 10.4 +0.3 44.4 +1.5
SVM-RM (S7) + sparseRM 9.6 +0.2 38.0 +0.9 10.4 +0.3 44.3 +1.4
MaxEnt-RM (S6) + sparseRM 9.6 +0.2 38.1 +1.0 10.4 +0.3 44.4 +1.5
MaxEnt-RM (S7) + sparseRM 9.6 +0.2 38.1 +1.0 10.4 +0.3 44.4 +1.5

Table 8. NIST and BLEU [%] scores for two evaluation sets (RM: Reordering Model).
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8. Conclusion

Posing phrase movements as a classification problem, we exploit recent devel-
opments in solving large-scale multiclass support vector machines using stochastic
gradient learning algorithm and show significant advantages in Arabic-English sys-
tems. The algorithms we propose are shown to be computationally fast and memory-
efficient. In terms of evaluating translation quality using the BLEU score, we achieve
1.0 point in MT06 and 1.5 in MT08 over a lexicalised reordering model with at least
95% statistical significance. Our SVM-based model is shown to be superior to the
maximum entropy-based model. It is a couple of times faster (nearly 4-fold) and more
memory-efficient (50% reduction).

The expanded space due to ANOVA mapping can be reduced significantly by re-
moving less frequent features. We found that a reordering model based on alignments
features (S7) is more compact than using boundaries features (S6).

Our current work focuses on two issues. The first issue is exploring higher degrees
of ANOVA kernels and others in order to reduce the classification error rate. The
second issue is reducing feature space by using limited but informative features such
as part-of-speech tags.
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