The University of Southampton
University of Southampton Institutional Repository

Non-coherent successive relaying and cooperation: principles, designs, and applications

Non-coherent successive relaying and cooperation: principles, designs, and applications
Non-coherent successive relaying and cooperation: principles, designs, and applications
Cooperative communication is capable of forming a virtual antenna array for each node (user) in a network by allowing the nodes (users) to relay the messages of others to the destination. Such a relay aided network may be viewed as a distributed multiple-input multiple-output (MIMO) system relying on the spatially distributed single antennas of the cooperating mobiles, which avoids the correlation of the antenna elements routinely encountered in conventional MIMO systems and hence attains the maximum achievable diversity gain. Therefore, the family of cooperative communication techniques may be regarded as a potential solution for future wireless networks. However, constrained by the half-duplex transmit/receive mode of most practical transceivers, the cooperative networks may impose a severe 50% throughput loss. As a remedy, successive relaying can be employed, which is capable of mimicking a full-duplex relay and thereby recovering much of the 50% throughput loss. Furthermore, for the sake of bypassing power-hungry and potentially excessive-complexity channel estimation, noncoherent detection techniques may be employed for multiple-antenna aided systems, because estimating all the associated channels may become unrealistic. Explicitly, the mobile-stations acting as relays cannot be realistically expected to estimate the source-to-relay channels. In order to motivate further research on noncoherent successive relaying aided systems, a comprehensive review of its basic concepts, fundamental principles, practical transceiver designs and open challenges is provided
1-32
Li, Li
8e6fbabd-aac6-4bb0-a273-a77750dc5b92
Poor, H. Vincent
2450f17a-1b3d-4eef-ba7e-111f75631764
Hanzo, Lajos
66e7266f-3066-4fc0-8391-e000acce71a1
Li, Li
8e6fbabd-aac6-4bb0-a273-a77750dc5b92
Poor, H. Vincent
2450f17a-1b3d-4eef-ba7e-111f75631764
Hanzo, Lajos
66e7266f-3066-4fc0-8391-e000acce71a1

Li, Li, Poor, H. Vincent and Hanzo, Lajos (2015) Non-coherent successive relaying and cooperation: principles, designs, and applications. IEEE Communications Surveys & Tutorials, 1-32. (doi:10.1109/COMST.2015.2424157).

Record type: Article

Abstract

Cooperative communication is capable of forming a virtual antenna array for each node (user) in a network by allowing the nodes (users) to relay the messages of others to the destination. Such a relay aided network may be viewed as a distributed multiple-input multiple-output (MIMO) system relying on the spatially distributed single antennas of the cooperating mobiles, which avoids the correlation of the antenna elements routinely encountered in conventional MIMO systems and hence attains the maximum achievable diversity gain. Therefore, the family of cooperative communication techniques may be regarded as a potential solution for future wireless networks. However, constrained by the half-duplex transmit/receive mode of most practical transceivers, the cooperative networks may impose a severe 50% throughput loss. As a remedy, successive relaying can be employed, which is capable of mimicking a full-duplex relay and thereby recovering much of the 50% throughput loss. Furthermore, for the sake of bypassing power-hungry and potentially excessive-complexity channel estimation, noncoherent detection techniques may be employed for multiple-antenna aided systems, because estimating all the associated channels may become unrealistic. Explicitly, the mobile-stations acting as relays cannot be realistically expected to estimate the source-to-relay channels. In order to motivate further research on noncoherent successive relaying aided systems, a comprehensive review of its basic concepts, fundamental principles, practical transceiver designs and open challenges is provided

Text
comst-hanzo-2424157-proof.pdf - Accepted Manuscript
Download (2MB)

More information

Accepted/In Press date: 5 April 2015
Published date: 17 April 2015

Identifiers

Local EPrints ID: 376641
URI: http://eprints.soton.ac.uk/id/eprint/376641
PURE UUID: 590215fd-d953-481e-b124-ff3ddd559d13
ORCID for Lajos Hanzo: ORCID iD orcid.org/0000-0002-2636-5214

Catalogue record

Date deposited: 11 May 2015 08:47
Last modified: 18 Mar 2024 02:35

Export record

Altmetrics

Contributors

Author: Li Li
Author: H. Vincent Poor
Author: Lajos Hanzo ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×