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Abstract

A common problem in survey sampling is to compare two cross-sectional
estimates for the same study variable taken on two different waves or occasions.
These cross-sectional estimates often include imputed values to compensate for
item non-response. The estimation of the sampling variance of the estimator of
change is useful to judge whether the observed change is statistically significant.
Estimating the variance of a change is not straightforward due to the rotation
in repeated surveys and imputation. We propose using a multivariate linear
regression approach and show how it can be used to accommodate the effect
of rotation and imputation. The regression approach gives design-consistent
estimation of the variance of change when the sampling fraction is small. We
illustrate the proposed approach using random hot-deck imputation, although

the proposed estimator can be implemented with other imputation techniques.

Key Words: Longitudinal surveys; Missing data; Nonresponse; Overlapping sam-

ples; Rotation; Unequal inclusion probabilities.



1 Introduction

Measuring change over time is a central problem for many users of social, economic
and demographic data. The primary interest of many users is often in changes or
trends from one time period to another. Smith, Pont and Jones (2003) recognised
that assessing change is one of the most important challenge in survey statistics.
A common problem is to compare two cross-sectional estimates for the same study
variable taken on two different waves or occasions. These cross-sectional estimates
often include imputed values to compensate for item non-response (e.g. Lohr, 2009, ch.
8). The estimation of the variance of an estimator of change is useful to judge whether
the observed change is statistically significant. Covariances play an important role in
estimating the variance of an estimated change and they are not straightforward to
estimate with repeated surveys due to rotation.

We propose to use a multivariate linear regression approach to estimate these
covariances. The proposed estimator is not a model-based estimator, as it is valid
even if the underlying model does not fit the data (Berger and Priam, 2010, 2016). We
show how this approach can be used to accommodate the effect of imputation. The
regression approach gives design-consistent estimation of the variance of change when
the sampling fraction is small. We illustrate the proposed approach using random
hot-deck imputation, although the proposed estimator can be implemented with any

other imputation techniques.

2 Rotating surveys

The estimation of variance of change would be relatively straightforward if cross-

sectional estimates were based on the same sample. Furthermore, because of rotations



that is used in repeated surveys, cross-sectional estimates are not independent. Let s,
and s, denote respectively the first and the second wave samples. The samples s; and
s9 are usually not completely overlapping sets of units, because repeated surveys use
rotation designs which consist in selecting new units (k € s; \ 51) to replace old units
(k € s1\ s2) that have been in the survey for a specified number of waves. Without
lost of generality, we assume that s; and sy have the same sample size n. Let ni
denote the sample size of the common sample, s = s1 M s3. The units sampled on
s12 represent usually a large fraction of s;; that is, ni3/n is usually large. We denote
the overall sample by § where § = s; U s5. The size of the overall sample is denoted

by 1 = #(5). The Figure 1 gives a visual representation of the samples considered.

U

Figure 1: The overall sample 5 = s, U s5.

It is important to clarify that units in s; \ s5 are not available at the second wave,
and units in s3 \ 51 are not available at the first wave. This non-availability is not due
to non-response (introduced in Section 3), but due to the rotation. The imputation
is used to impute missing values due to non-response, not to impute the units which
are not available because of the rotation. In other words, those units in s, \ 51 are not
necessarily imputed at the first wave, and units in s, \ s; are not necessarily imputed

at the second wave.



We assume that the rotation sampling design is such that n and n;y are fixed
quantities. This class contains standard rotating sampling designs such as the ro-
tating systematic sampling design (Holmes and Skinner, 2000), the rotation groups
sampling design (e.g. Kalton, 2009; Gambino and Silva, 2009), the rotating design
that was proposed by Tam (1984) and the permanent random numbers rotating de-
sign (e.g. Ohlsson, 1995; Nordberg, 2000). Rotating sampling designs are widely used
in practice for labour force surveys (e.g. Holmes and Skinner, 2000). Rotation de-
sign is also used for the European Union Statistics on Income and Living Conditions
(EU-SILC) social survey (Eurostat, 2012).

Let yer denote the value of the variable of interest gy, for the wave (¢ = 1,2).

Suppose, we wish to estimate the absolute change
A = T2 — T1, (1)

between two population totals 71 and 7 from waves 1 and 2, where 70 = Zke“ Yok
Here, U denotes the population of size NV, assumed to be the same at both waves. It
is possible to extend the approach we proposed for other measures of changes, such
as relative change or change between means.

Suppose that the population is split into H strata: Uy,..., Uy, ..., Uy. Suppose

that two samples are selected from each strata according to the rotating design de-
scribed in Figure 1. Let zf(f;) be the wave-strata sample indicator variable (Berger and

Priam, 2016), defined by

(h) 1 when k € U, and k € sy,
ze;;c: (h=1,...,H and (=1,2) (2)

0 otherwise,



. H . - .
The values of zé::-) are assumed to be known for all £ € s,. We also consider the wave

indicator defined by

H
1 when k£ € s
h .
2= 2y = (3)
h=1

0 otherwise

§ . 1
When we have a single stratum, H = 1 and zé:l-) = Ztk.

In Section 3, we introduce the uniform non-response mechanism for rotating sam-
pling designs and we show how random hot-deck imputed values can be used to
compensate for item non-response. In Section 4, we propose to use a reverse ap-
proach (Fay, 1991) to estimate the variance of the imputed estimator of change. The
proposed variance estimator depends on a covariance matrix which shall be estimated
using a multivariate (general) linear regression approach described in Section 6. In
Section 7, we extend the variance estimator proposed to missing at random response
mechanism (MAR) involving multiple imputation-classes. In Section 8.2, we consider
a missing not at random (MNAR) response mechanism. In Section 8, a simulation

study illustrates our findings.

3 Non-response

The main objective of this article is to address the problem of variance estimation
under non-response rather than the non-response issue. Little has been done on vari-
ance estimation of change. However, there are many design-based variance estimators
of cross-sectional estimates (e.g. Wolter, 2007). The use of models to address non-

response is also popular. A model-assisted approach can be found in Deville and

Sarndal (1994); Fay (1994); Steel and Fay (1995); Sarndal and Lundstrom (2005). A



Bayesian treatment of imputation can be found for example in Rubin (1987). See
Brick and Montaquila (2009) for a wide discussion on non-response. A discussion on
which inference-approach to use for non-response in surveys can be found in Haziza
(2009). These approaches deal with cross-sectional estimators, and cannot be directly
implemented with estimators of changes.

We propose to use a design-based approach combined with random hot-deck im-
putation. A recent review on cross-sectional hot-deck imputation can be found in
Andridge and Little (2010). The random hot-deck imputation has the advantage of
guaranteeing unbiased estimation of population distributions (Rao and Shao, 1992).
The approach proposed is also valid under deterministic regression imputation.

Due to non-response, some of the values y;; can be missing in each sample s,

(¢ =1,2). We propose to impute these missing values. Let

1 if yp.,. is observed, and k € s,
I Yek ; £ (0=1,2).

0 if yg. is missing due to non-response, and k € sy,
The distribution of the random variables ag,, represents the response mechanism for
the wave £. We assume that the values ayy are known for all k € s,. To simplify, we
use the same notation for the random variables and their observed values.
As far as the response mechanism is concerned, we consider the usual cross-

sectional design-based assumption below (e.g. Fay, 1991; Rao and Shao, 1992; Rao

and Sitter, 1995; Shao and Steel, 1999), but adapted for rotating sampling designs.

Assumption 1 (single imputation-class). The response probability
for the variable of interest in each wave is uniform on U and it is strictly
positwe (i.e. P{ag, =1} >0). The ap and appn are independent for all

k' # K" where k', k" € s;. The responses between waves can be dependent



that is, ap g and agnge may be dependent, where k' € sy and k' € spn. The

imputation is conducted independently within waves.

The Assumption 1 implies a missing completely at random (MCAR) response
mechanism. The missing at random (MAR) response mechanisms are covered in
Section 7. In Section 8.2, we consider a simulation study with a missing not at
random (MNAR) response mechanism.

The setting of a single imputation class is the simplest case when handling non-
response. However, the assumption may be considered unrealistic (e.g. Rao and Shao,
1992, p. 818). We therefore also consider, in Section 7, multiple imputation-classes
where values are imputed within imputation classes (e.g. Haziza and Beaumont, 2007).
First, we show how the proposed approach can be implemented when we have a single
imputation class. In Section 7 we extend the approach proposed under a multiple

imputation-classes setting (see Assumption 2).

3.1 The imputed estimator of change

Suppose that the change A in (1) is estimated by

A =7 -, (4)
where
1 y;?‘.k
T, = - (=12 5
(=X -1 Q

is the cross-sectional imputed Narain (1951); Horvitz and Thompson (1952) estima-

tors at wave (. Here y;, is defined by

Ver = zex {(1 = aek) Yiy + ok yert, (6)



where y7, denotes an imputed value which depends on the imputation technique. For
example, in what follows Yoy 18 defined by random hot-deck imputation, although
the approach proposed can be generalised for other imputation techniques. The
deterministic mean imputation is a particular case of hot-deck imputation. Note that
the imputation is only used for missing data due to non-response, and not to impute
the values y,., of k € sy \ 55 and yy, of k € 55\ 57 which are the non-available values

of the units that rotate in and out.

3.2 Random hot-deck imputation

With random hot-deck imputation, the values y;; used in equation (6) are,

Yor = Hi T ee (7)
ek = Yej — Hps

where j is a donor selected with-replacement with probabilities pg; = Eig;k/f\}é' from
the sample of respondents s = {k : zx = 1 and age = 1}. Here fif = 77 /N
is the estimator of the respondents’ mean, 7, = Y, . ¥ek is the estimator of the
respondents’ totals, and NI = Zkeé ag. 1s the estimator of the number of respondents

for waves ¢ = 1, 2; with § = s, U s5, and where

Yo = Tf{f 20 Qg Yook (8)
g = Tf{f Zpge Qg 9)

The 7y, denotes the first-order inclusion probability of the unit & at wave £. If eg, = 0
in equation (7), then the y;, from equation (6) are the deterministic mean imputed

values.



4 Population variance of the hot-deck imputed es-
timator of change

We propose to estimate the variance of Al defined by equation (4) using a reverse
approach for non-response (Fay, 1991; Shao and Steel, 1999). Let U] be the pop-
ulation of respondents at wave ¢, where U] C U. In other words, at both waves,
the population is randomly split into a population of respondents and a population
of non-respondents according to an unknown response mechanism. Note that the
response mechanisms can be such that the set of respondents of the wave 2 depends
on the set of respondents at wave 1. That is, a;,; and ag; can be dependent random

variables (see Assumption 1).

U

respondents U,

unknown
response
mechanism
at wave (

non-respondents

Figure 2: Non-response at wave £ = 1,2.

Let E.{-} and V,{-} denote respectively the expectation and variance operators
with respect to the response mechanism. Rotation samples s; and s; are selected
from the population U according to a rotation sampling design (see Section 1). The
samples of respondents are given by sj = Uj N se, (0 = 1,2). Let Ey{-} and Va{-}
denote the expectation and the variance operators with respect to the sampling design.

Furthermore, we suppose that the random hot-deck imputation described in Section



3.1 is used. Let E;{-} and V;{-} denote the expectation and the variance operators
with respect to the random imputation.

The overall variance of the imputed estimator of change Al is given by

V(Aly = A + B + C, (10)

which is an overall three stage variance, where

A = EJ{Vi{E/{A"|S, R}|R}}, (11)
= EA{B{Vi{A"|S,R}|R}}, (12)
= V{EJE{A'S,R}|R}}, (13)

with S = {s1, 82}, R = {s],s5}. The variance (10) includes the effect of the response

mechanism, the sampling design and the imputation. We now focus on each term.

The term A

Turning to the term A given by equation (11). As Er{esx|S, R} = 0, from equation
(7), we have that E{y;,|S, R} = ji;. Hence, from equations (5) and (6), it can be

shown that E,{7/|S, R} = N;7//N;. Thus,

E/{AlS,R} = N, 22 — N, L, (14)
Ny NI

where f\}g = > s 2tk (0= 1,2) is an estimator of N. Here, Zy = ﬂ'ﬁ zp.,. Note
that E;{A!|S, R} = f(7), where f(-) is a function of estimated totals 7 = (7, , 7, )7,
with

—~ —~ T
7= (Mo ML 7)) (15)

10



is a vector of Narain-Horvitz-Thompson totals (Narain, 1951; Horvitz and Thompson,
1952). Using a Taylor linearisation (e.g. Sarndal, Swensson and Wretman, 1992, §5.5,

5.7), we have that

E{AS,Ry - A = V() (F—17), (16)
where
—77 Ni' —N 1 —N77 N\
V(r) = ( Lz 2 ) (17)
Ni (N{)? Nf Ny (N3)? N
is the gradient of f(7) at 7 = (7] ,7, )", with
o= (N, N, 7). (18)

Here 7; is the population total of the variable of interest over the respondents at wave
¢; and Ny is the total number of respondents in the population at wave ¢, (£ = 1,2).

The expression (16) implies the following approximation

A= E{VJ{E{A"|S,R}R}} = V(r)" E{Va(F|R)} V(7), (19)

where V4(T|R) is the covariance matrix of the vector 7 with respect to the design.

Thus, an approximately design-unbiased estimator for (19) is given by

A=VAEA{AN|S,R}R} = V(7) Va(F|R) V(7), (20)

where i}d(ﬂR) is the approximately design-unbiased estimator of the covariance
V4(F|R). The estimator Vy(7|R) is defined below in equation (28). Note that in

equation (20), the agy’s are treated as fixed quantities, as %{E;{E“

S,R}|R)} is a

conditional variance given R.

11



The term B

We now turn to the term B given by expression (12). Under Assumption 1, we have,

{Ed{fj Vi{/|S. R} }}
2 o)

—E{Ed{ZZm{Jms R} ":" (1 —aw)}}. (21)

=1 =1 kes

with Vi{y;,|S, R} = Vi{ewl|S, R} = 3,0 a0 pew €7y as Er{eni]S, R} = 0. Note
that, under deterministic mean imputation, we have V;{EﬂS, R} = 0. This is also
the case for regression imputation.

The expression (21) implies that an unbiased estimator of expression (12) is given

by
N N H (h
B:%{AW&R}:ZZ%{JMS R} “(1—0“) (22)

h=1 {=1 kes

Note that we use the same notation for the random variables e;.;.’s and their observed

values.
The term C
We now turn to the term C given by equation (13). Let

TE'
N?

Y. = Eo{Ei{t/|S, R} R} =

We have from equation (4) that E,{E;{A!|S,R}|R} = Y2 — Y. Hence, from

equation (13),

C = Vi(YT1) + Vi(Ya) — 2Corr(T1,T2) Vi (Y1) Vi (T2), (23)

12



where Corr,(-) denotes the correlation operator with respect to the response mecha-

nism. Here, V. (T,) = M,{Ed{Ej{%;"

S, R}|R}} is the cross-sectional variance for wave
¢ under the response mechanism given the random imputation and the sampling de-
sign.

We recall from Shao and Steel (1999, pp. 256, 257) that the cross-sectional
variances V,. (T;) are of order O(N;) implying C' = O(N;), because the correlation
Corr,(Y1,T,) is between -1 and 1 in equation (23). Given standard assumptions for
linearised variances of functions of totals (e.g. Robinson and Sarndal, 1983; Sarndal
et al.,; 1992, secs. 5.5, 5.7), the linearised version of the term A from equation (19) is of
order O(N7?/n), which is the dominant term of the overall variance V(a“ ) from equa-
tion (10). Furthermore, C'/A = O(n/N;). Thus, for negligible n/N, the contribution

of C' to equation (10) is negligible (e.g. Haziza, 2009, pp. 238-240). Thus,
V(Aly = A+ B. (24)

From equation (23), we note that the response mechanisms can be dependent between

waves. In other words, even if a;., and ay,; are dependent, the equation (24) still holds.

5 The proposed variance estimator

We proposed to estimate the variance of the imputed estimator (4) by

VIAY = A+ B = V{E{A"S,R}R} + V,{A!

S, R}, (25)

where V,{ E;{A|S, R}|R} and V,{A!

S, R} are defined by expressions (20) and (22).
In section 6, we propose a multivariate (or general) linear regression model to estimate

the covariance matrix Vu(7|R) involved in the estimator (20) (Berger and Priam,

13



2010, 2016). The proposed estimator (25) is an approximately unbiased estimator of
the variance V(a“) given by equation (10), as the overall expectation of the estimator

(25) is given by

E{EAE{V(A")[S,R}R}} = EAEAEAVi(EA{A

S, R}|R)

S, R}|R}}

+ E{E{EA{V{A!

S, R}} R}

~ EA{VAE{A!

S, R}[R}}

+ E{EV{A!

S, R}|R}}

~ V(A)),

by using the result (24) and the fact that the estimator (20) does not depends on the
epr’s for £ =1,2.

The advantages of the proposed variance estimator (25) are that it is approxi-
mately unbiased under the unknown response mechanisms and that it does not involve
the estimation of the response probabilities. Moreover, note that the estimator (25)
can be generalised for other types of imputation, as long as E;{E“ |S, R} is a function
of Narain-Horvitz-Thompson estimators of totals. In this situation, the gradient (17)

would have a different expression depending on the imputation considered.

6 Estimation of the covariance using the multivari-
ate regression approach

We derive an estimator for the covariance matrix Vg(7|R) in equation (19) under
the rotation sampling design. Note that this covariance is not straightforward to

estimate because it involves a covariance between all the components of 7 defined

14



from different overlapping samples, s; and s;. Several estimators can be used (e.g.
Kish, 1965; Tam, 1984; Holmes and Skinner, 2000; Nordberg, 2000; Berger, 2004;
Qualité and Tillé, 2008; Wood, 2008; Goga, Deville and Ruiz-Gazen, 2009; Miinnich
and Zins, 2011; Knottnerus and van Delden, 2012). We propose to use a multivariate
(or general) linear regression model to estimate this covariance matrix (Berger and
Priam, 2010, 2016).

, where n =

Consider the following n x 6 matrix f’(ﬁxﬁ) = (Y- Ypr---» Y5,

#(s1U s2), U = (Y11, Uap) and
Yoo = (Gor, Gk Jox) (26)

with Zpp = 7, 2. Here, zpy, dg and gy are defined by the expressions (3), (9)

and (8), with £ = 1,2. Consider the following multivariate (general) regression model

v

Y = Z,a +e, (27)

where a is a 3 X 6 matrix of regression parameters, the residuals € have a 6 x 6 covari-

ance matrix 3, and Z is a nx3 design matrix which specifies the fixed-size constraints

of the rotation design. The matrix Z; is defined by Zs = (21,..., 2k, ..., z:ﬁ)T with
. . . . T
(1) J(H) (1) Ll (1) (1) H) o (H)
Zk = (zlng""zlgk Y EQfs s Bk 0 ALk a Lok ALk a “ouk ) ’

With a single stratum, z; = (214, 22, 216 X zzgk)T. The model (27) belongs to the
class of general linear model. In fact, the model (27) is also a multivariate analysis

of variance (MANOVA) model, as the covariates are all dummy variables. Note that

(h) _(h) Zéh;?

we have Zkeé Zpge = Mhs D kes %1k = Nyp.12, where ny, is the sample size of the

h-th stratum and 7,12 is the number of wave 1 and 2 units which belong to the hA-th



stratum. These sums are the sample size restriction imposed on the samples. Thus,
by using the design variables as covariates in the model (27), we implicitly condition
on them. This takes into account the fixed size constraints in the estimation of the
covariance (see Berger and Priam, 2010, 2016). Note that the model (27) includes
the within strata interactions between the variable 4}? and 45!12 These interactions
capture the rotation of the sampling design which is represented by the constraint
Yokes A o = Mz

To estimate Vy(T|R), Berger and Priam (2010, 2016) proposed the estimator
~ AT ~ o~
Vu(TIR) = D XD, (28)

where the matrix ¥ is the Ordinary Least Squares residual covariance matrix esti-
mate from the model (27) and Dis a diagonal matrix with the diagonal elements:
{V(7,|R)/Sqq} /2, where V(7,|R) is a design-based variance estimator of the ¢-th
component of 7 and iqq is the ¢-th diagonal component of s Any approximately
unbiased variance estimator can be used to calculate 17(’?Q|R). Note that the variance
matrix (28) is positive definite, as S is always positive definite. Hence, the proposed
variance estimator (25) is always positive.

Using Berger and Priam; Berger and Priam’s (2010; 2016) results, we have that
the estimator (28) is an approximately design unbiased estimator for V4(7|R) when
the finite population corrections are negligible, even when model (27) does not fit the
data (Berger and Priam, 2010, 2016).

In a series of simulations based on the Swedish Labour Force Survey, Anders-
son, Andersson and Lundquist (2011a); Andersson, Andersson and Lundquist (2011b)
showed that under full response, the estimator that was proposed by Berger (2004)

gives more accurate estimates than standard variance estimators (e.g. Tam, 1984;

16



Qualité and Tillé, 2008) when we are interested in change between strata domains.
Berger and Priam (2010, 2016) showed that the estimator that was proposed by

Berger (2004) reduces to the variance (28) when the sampling fractions are negligible.

7 Multiple imputation-classes

We now consider the situation when the response mechanism is not uniform. Hence,

instead of the Assumption 1, we have the following assumption:

Assumption 2 (multiple imputation-classes). The population U can
be divided into Cy imputation classes for wave 1 and Cy imputation classes
for wave 2. The response probability for the variable of interest is uniform
within wave-class combinations and it is strictly positive. The units’ re-
sponses within and across classes are independent; and responses between

waves can be dependent.

The Assumption 2 holds under missing at random (MAR) response mechanism
(given the set of classes).
Let Upy, ..., Upe, ... .Uy, be the Cp class of wave . Let béﬁ be the following

imputation classes indicator for wave .

B _ 1 if k€ Uy,
£k
0 otherwise,
where ¢ = 1,...,Cy. The random hot-deck imputed values y;;;k from equation (6)

is now given by yj, = > ibiefi (Arm + (3( )) where (’éi Y. — ﬁ;(c) instead of

expression (7), where j is a donor selected with-replacement with probabilities Dk =

b’ )E”} /Nf( “ from the sample sf(" of respondents of class c¢. Here, s,'7 = {k : 20 =

17



1,ap = 1,bf = 1} and

o - o
N

7O = 3 b g,
kes

N;© = 3 g,
kes

are respectively the estimates of the respondents’ means, totals and number of re-
spondents for each wave-class combination (¢ = 1,2,...,Cp ¢ = 1,2). Note that
under multiple-classes deterministic mean imputation, we have Q(;;)L =0.

With multiple imputation-classes the population variance V(a“) from equation
(10) is different. In the term A from expression (11), the equations (14), (15), (17)

and (18) are replaced by,

N AP S DT\

E;{B“ S,R} = 2 (‘7,\ - N (2271/} (29)
Z:’_‘Jil NZ() Z:’_'Jil Nl()
_~~ el ATV —~ ] o~ T T
T o= ( o Ny N W Tg(m) ; (30)
T
V(T) = _T?:‘ NTI g s ey _N'.' s ey Tzr,-_' _NT;:‘"'! Nv'.'"' ‘(31)
Ny (ND)? Ny Ny (Ng)? N;
——r —— ——— S —
' times ' times s times s times
1 * ] * T
T, = (j\;r1 N;U), NE(C.“?)1 Té(l)s Tg((fr)) 1 (32)

with 7/ = Z((L T;(f") and Nj = 221 N;(f"), where T;(f") and N;(c) are, respectively,
the respondents’ population totals of the variable 3, and the number of respondents

at each wave-class combination, (¢ = 1,2,...,Cp ¢ =1,2).

18



Under Assumption 2, we have that

2 & )
Z Z Z gk Pesk {" e Z M(l — Qppr)- (33)

(=1 e=1 kes k€ Tk

V{A!

Thus, the estimator proposed is given by expression (25) where %{E;{a"
and V;{A’|S, R} are now given by equations (20) and (33). The quantities E;{A’

T4, V(1), and T4, are now given by equations (29), (30), (31) and (32).
As in Section 6, the covariance matrix Vu(7|R) in equation (19) can be estimated
using a multivariate (or general) linear regression model. With multiple imputation-

classes, the model (27) now uses a 71x (242C,42C,) matrix Y = (9, ... . Gp ... F5) |

where g, = (#y. ). With

b( r)

( e B, Oy )T
'yf,tl— 2k ELGEL ----- O'EL ELJEL ----- JEL

replaces the expression (26). Now a is a 3 x (2 4+ 2C1 + 2C3) matrix and X is a
(24 2C1 + 2C) x (2+ 2C1 + 2C3) matrix.

The variance estimator (28) is based on the implicit assumption that the class
indicator bgi are constants defined at population level. In other words, the b};g do
not depend on the samples selected. For example, this is the case when we use the
strata as imputation classes; that is, the béL are the strata indicators z;,, ") defined
by (2). In the Section 8.2, we will consider the situation when the br(efi are defined
form the sampled data; that is, the b}“ are random variable because they depend
on the samples selected. In this case, the variance estimator (28) does not take the
randomness of bé?t into account. In the simulation study of Section 8.2, we did not

observe major impacts of this randomness.
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8 Simulation study

8.1 Labor Force Population

We use the Labor Force Population dataset from Valliant, Dorfman and Royall (2000,
Appendix B.5) available at the John Wiley worldwide website. The dataset is du-
plicated 50 times to obtain a large population suitable for different levels of rotation
and small sampling fractions in the sampling design. We consider two variables: the
weekly wages and the hours worked per week (HW). The units with the value 99
for the weekly wage and 999 for the hours worked per week were removed from the
population frame. These units were not treated as missing. We obtain a population

frame of size N = 23550. The target variables v, and y,,, are given by,

yi.e = Weekly wages,

Y2: = Y1k + v YLk + .lfbk'.‘

where 1 denotes randomly generated values according to a Normal distribution
N(0,5%). The true absolute change between the two wave totals is given by A =
377960.66. We estimate A by the hot-deck imputed point estimator A defined by
equation (4). The first wave sample s; is selected using the Rao (1965) and Sampford
(1967) unequal probability sampling design. We consider two scenarios for the inclu-
sion probabilities: the 7y, are constant (w1, = n/N), and the 7 are proportional
to the variable hours worked per week which has values all larger than 5. We consider
that we have a single stratum.

For the second wave sample s; we select a simple random sample of ni, units
taken from s;, where g = niy/n = {0.40, 0.60, 0.80, 0.95}, and a sample of n — nqy
units from U\ s; selected with probabilities proportional to moy = 71k /(1 — 7). We

have that m; = 71 (Berger and Priam, 2016).
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Table 1:  RB, RRMSE and Coverage of 950/"9\ confidence interval of the variance
estimators. Hot-deck imputed point estimator A’. 7y, =n/N.
Qe Qk g f RB RRMSE Coverage
Prop. Naive Prop. Naive Prop. Naive
) ) () (%) (&)  (B) (%) (%)
0.70 086 40 0.5 -28  -338 15.5 35.3 95.0 88.7
1.0 0.7 =323 11.2 33.2 94.8 89.3

1.5 04 -321 9.1 32.7 94.7 89.5
2. -2.7 0 -33.7 8.2 34.1 94.6 88.8
60 0.5 -1.8  -313 17.6 33.7 94.7 89.1

1.0 -12 =309 12.5 32.2 94.8 89.7

1.5 -1.1 -308 10.2 31.7 94.7 89.2
2. 0.0 -30.1 8.7 30.8 94.8 89.9
80 0.5 -18  -288 20.1 32.7 94.7 89.8

1.0 -04 =275 14.4 29.8 95.0 90.4

n

1.5 -04 =275 11.6 29.0 95.0 90.5
2. 22 -290 10.0 30.0 94.6 90.0
95 0.5 -18  -253 22.8 31.9 94.8 90.8

1.0 -19  -255 16.0 29.0 94.5 90.8
' -09  -248 13.1 27.2 94.8 90.7
2. -16 -253 11.2 27.0 94.7 90.9

090 092 40 0.5 0.7 -159 14.5 20.2 94.8 92.9
1.0 02 -152 10.2 17.6 95.3 93.2
' 21 -172 8.5 18.5 94.7 92.6
2. -0.7  -159 7.2 17.1 95.1 92.8

60 0.5 04 -144 17.2 21.0 94.9 93.2
1.0 02 -146 12.1 18.2 94.9 92.9
' 06 -142 9.9 16.7 95.1 93.1
2. 00 -148 8.5 16.7 94.8 92.7

80 0.5 -22  -153 214 25.5 94.7 93.0
1.0 20 -15.0 15.0 20.8 95.0 93.1
' -02 137 12.3 18.2 94.8 92.9
2. -1.0  -144 10.7 17.7 94.6 92.9

95 0.5 -29 -134 27.7 33.0 94.5 92.9
1.0 24 -132 19.4 24.8 94.5 93.2

1.5 -1.1 0 -120 15.9 21.3 95.1 93.6

2.0 -09  -120 13.8 19.3 94.9 93.5

n

[
o~

.t

n

n

[
o~

.t

n

n

[
o~

.t

n

n

[
o~

.t

n

[
|

Let a;, = 1 if uy, < ¢ and ay, = 0 otherwise, where ¢, is a fixed quantity
which specify the response rate at wave 1, and u;,;, are independent uniform random

variables U(0,1). Let asy = 1 if ugy < (0.95) ayy + (0.65) (1 — ayy) and agy =0
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Table 2:  RB, RRMSE and Coverage of 95% confidence interval of the variance
estimators. Hot-deck imputed point estimator Al e o0 HW.
Qe G2k g f RB RRMSE Coverage
Prop. Naive Prop. Naive Prop. Naive
) ) () (%) (&)  (B) (%) (%)
0.70 086 40 0.5 -1.6 -29.1 32.3 52.7 94.3 88.7
1.0 -25 299 23.3 42.8 93.5 87.3
1.5 -34 305 19.0 39.7 93.0 86.8
2. -15 294 16.4 36.7 92.4 86.5
60 0.5 -2.0 277 36.2 57.1 94.3 89.3
1.0 1.2 275 26.1 44.0 94.2 88.9
-0.8 271 21.4 39.1 94.1 88.9
2.0 0.7 275 18.2 36.4 93.5 87.8
80 0.f 0.1 -256 40.7 59.2 94.8 90.4
1.0 0.0 -25.2 29.3 45.5 94.9 89.7
' 04 -25.1 23.6 40.4 94.8 90.2
2. -0.6  -258 20.4 37.1 94.5 89.7
95 0.5 -15 -243 43.9 63.6 94.5 90.8
1.0 04 -229 3L.7 48.5 95.2 91.3

n

n

—
on

.t

n

n

[
o~

.t

n

n

1.5 05 -234 26.0 41.4 94.9 91.2
2. -08  -243 22.3 38.1 94.9 90.6
090 092 40 0.5 -0.5  -15.5 34.3 51.2 94.1 91.7

1.0 -15  -156 23.5 37.7 93.1 90 .4
-05  -148 19.9 33.1 92.9 90.2
2.0 -1.7 -16.0 16.9 29.7 91.8 88.9
60 0.3 0.1 -142 41.2 61.1 94.3 92.3
1.0 24 -153 29.2 48.1 93.8 91.6
' 02 -134 23.6 38.1 93.9 91.3
2. -1.0  -144 20.5 34.3 93.0 90.6
80 0.5 -0.3  -128 51.9 78.6 94.5 93.1
1.0 03 -11.7 36.3 99.9 94.7 93.1
' -1.3 -128 29.3 49.3 94.2 92.0
2. 04 -124 25.6 42.1 94.2 92.1
95 0.5 -08  -115 64.3 99.0 94.7 94.4
1.0 -19  -115 44.0 71.4 94.3 93.5
1.5 -15 -119 35.5 58.8 94.6 93.2
2.0 -08  -11.3 30.7 49.7 94.6 93.4

—
on

.t

n

n

[
o~

.t

n

n

[
o~

.t

n

[
|

otherwise, where uy,;, are independent uniform random variables U(0,1). Note that
ay. and agy, are dependent because a respondent at wave 1 is more likely to be also

a respondent on wave 2. The items non-response are imputed using random hot-deck
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as described in subsections 3.1 and 3.2. We consider that we have a single imputation
class. A new set of respondents (ayx, az) is generated randomly before each selection
of s; and ss.

For each simulation, 10000 samples are selected to compute: the empirical relative
bias RB = Bias(var(A’)) /var(A7) where Bias(var(A!)) = E(var(A”)) — var(A7), the
empirical relative root mean squared error RRMSE = (MSE(var(A”)))Y2 /var(Al),
and the coverage of the 95% confidence interval Al 4+ 1.96var(A)Y/2. The term
var(a" ) denotes the empirical variance computed from the 10000 observed values of
Al Computations were performed in R (R Core Team, 2015) using some routines
from the R packages ‘sampling’ (Tillé and Matei, 2013) and ‘samplingVarEst’ (Esco-
bar and Barrios, 2014). We compare the proposed estimator 17(3") from (25) versus
a naive approach which consists in treating the imputed values as real values. Note
that there is no other competitor for the proposed approach, as design-based variance
estimators for imputed change estimators is non existent in the literature.

Tables 1 and 2 give the RB, the RRMSE and the coverage for different values of
the overlapping fraction g between waves. In Table 1, 7, = n/N and in Table 2 the
71, are proportional to the variable hours worked per week.

The proposed approach gives negligible RB. As expected, the naive approach
tends to severely underestimate the variance; in particular, when the fraction of non
respondents is large; that is, when g4 is small. Furthermore, by comparing Table 1
and 2, we observe smaller RB with unequal inclusion probabilities.

The proposed approach has smaller RRMSE than the naive approach. However,
with unequal probabilities we observe larger RRMSE. The coverage of the proposed
approach is closer to 95%. The coverage of the naive approach is lower because of

the under-estimation of the variance.
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8.2 Missing not at random response and multiple imputation-

classes

Four variables, yi, y2, x1, x» and w;, are generated from a multivariate normal
distribution with means 20, 10, 20, 10 and 20. All the variables have the same
variance equals to 5. The correlation between y; and y, is either p(y1,y2) = 0.7
or p(y1,y2) = 0.9. The other correlations are p(ye, z¢) = p(ye,w1) = 0.7 and
p(xe, zp) = plag,wy) = 0.5 (€ # ¢'). The wave 1 variables are y;, 1 and w,. The
wave 2 variables are y5 and z,. We generate N = 20 000 values for each variables.

The values y; and ys. are the values of the variable y; and y,. The parameter of
interest is the absolute change between means: A, = A/N. The imputed estimator
is AL = AI/N.

The sample s, is a randomised systematic sample with first-order inclusion proba-
bilities 7y, proportional to wy,,, where wy.; denotes the k-th value of w;y. The sample
Sy is a simple random sample of niy units selected from s; combined with a ran-
domised systematic sample of ny —ny5 units selected without replacement from U '\ s,
with probabilities proportional to 7. /(1 — m1..). We have that ma, = 71,1 (Berger
and Priam, 2016). The sample sizes are n; = ny = 500 and ny3 = 375. We consider
that we have a single stratum. 10000 samples s; and s, are selected. The Hansen
and Hurwitz (1943) variance estimator is used for cross-sectional variance estimation.

We consider hot-deck imputation with multiple imputation-classes as described
in Section 7. The number of imputation classes is the same on wave 1 and 2: ) =

Cy = C. We consider three types of imputation classes.

(i) “Population imputation classes”: The imputation classes of wave ¢ are C' quan-
tile classes based on the variable z;. The bounds of the classes are the (100¢/C)%

quantiles (¢ = 1,...,C) of the population values {zs; : k € U}, where x4, de-
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(if)

(iii)

notes the k-th value of ;.

“Sample imputation classes”: The imputation classes of wave £ are are C' quan-
tile classes based on the sample values of the variable x,. The bounds of
the classes are the (100¢/C)% quantiles (¢ = 1,...,C) of the sample values

{LL‘QE;L. ke 83}.

“Across-waves imputation classes”: For the classes of wave 1, we use C' quantile
classes based on the sample values of the variable x;, as in (ii). The wave 2
imputation classes are C' quantile classes based on the sample values {71 : k €
sa}, where

yl for k& € sy9,

Yk =y ~

.3[] -+ 61332;;: for k € 59 \ S1°
Here, x5, is the value of the variable z, for unit k. The quantity 3, and 3, are
the ordinary least square coefficients of the regression yi,, = By + S1zox, with

k€ 519.

For the classes (i), the class indicators b};g do not depend on the samples selected.

For the classes (ii) and (iii), the class indicators b};g depend on the samples. Note

that the classes of wave 1 are different from the classes of wave 2, unless C' = 1.

We consider a “missing not at random response mechanism”. The first and second

wave response probabilities g, and gay are given by qos = exp(nex) {1 +exp(nes) } 7,

where mi =4 — 0.15y1, and 2 = 3 — 0.2 y2.. The resulting response probabilities

lies within the range [0.25, 0.95]. We have apy = 1 if upy < goy and agy. = 0 otherwise,

where ug,, are independent uniform random variables U(0, 1). The resulting response

mechanism is missing not at random because large ¢, and g, are associated with



small values of y1., and yo... The overall response rate are 73% and 72% for the first
and second wave. The correlation between ¢, and ¢ is approximately 0.7. The
response probabilities are not constant within the imputation classes. Missing values

are generated randomly before each selection of s; and s,.

Table 3:  Overall expectation, variance, root-mean squared error (RMSE) and cov-
erage of 95% confidence interval based on the estimator proposed. Missing not at
random response mechanisms. p(y,y2) denotes the correlation between the variables

of interest. N = 20000, n; = ny = 500 and ny; = 375. A, = A/N and 3:; = KI/N.
cC A, E(ai) 1/(3:;) E{f/\(ai)} RMSE Coverage (%)

p(y1,y2) Imputation

0.7 (i) Population 1 -10.03 -10.09 0.022 0.021 0.0016 92.9
level 5 -10.03 -10.06 0.017 0.019 0.0029 95.9

10 -10.03 -10.06 0.016 0.019 0.0031 96.0

20 -10.03 -10.06 0.016 0.019 0.0036 96.3

(ii) Sample 5 -10.03 -10.06 0.016 0.019 0.0031 96.2

level 10 -10.03 -10.06 0.015 0.019 0.0037 96.7

20 -10.03 -10.06 0.015 0.019 0.0039 96.8

(iii) Across 5 -10.03 -10.09 0.017 0.019 0.0029 94.5
waves 10 -10.03 -10.08 0.016 0.019 0.0033 95.3

20 -10.03 -10.08 0.016 0.019 0.0032 95.2

0.9 (i) Population 1 -9.99 -10.06 0.019 0.019 0.0015 91.8
level 5 -9.99 -10.03 0.014 0.017 0.0030 95.7

10 -9.99 -10.03 0.014 0.016 0.0031 96.0

20 -9.99 -10.03 0.013 0.016 0.0031 96.2

(ii) Sample 5 -9.99 -10.03 0.013 0.017 0.0034 96.3

level 10 -9.99 -10.03 0.013 0.016 0.0035 96.2

20 -9.99 -10.03 0.013 0.016 0.0033 96.3

(iii) Across 5 -9.99 -10.01 0.013 0.016 0.0032 96.8
waves 10 -9.99 -10.00 0.013 0.016 0.0037 97.3

20 -9.99 -10.00 0.013 0.016 0.0035 97.2

The simulation results are given in Table 3. Large number of classes reduces the
bias of the point estimator. With a single imputation class (C' = 1), the variance

estimator has the smallest bias and is more stable (small root mean square error,
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RMSE), but with low coverages (92.9% and 91.8%). The low coverages is explained
by the largest bias of the point estimator. Note that the point estimator is more
precise with C' = 1 and p(y;,y2) = 0.9, in term of bias and variance. However,
there is only negligible differences between the variance for C' = 5. We only notice a
decrease in the variance, as C' increases, for population level imputation classes with
p(y1,y2) = 0.9. For C' = 5, we observe a slight positive bias for the variance estimator
and an increase in the RMSE. For population level classes, the RMSE increases with
C'. The coverage observed are slightly larger than 95% for C' > 5. We do not observe
significant differences between the imputation classes (i), (ii) and (iii).

The missing not at random response mechanism tends to under-represent the large
values of the variables of interest and therefore the observed correlation between .
and yo. is lower than p(y;,y2). As a result, the correlation between 75 and 7i is
slightly under-estimated. This explains the slight positive bias for the variance esti-
mator (Berger, 2004, p. 462). However, this bias is negligible because the coverages
of the confidence intervals are of an acceptable order. This bias is only observed for

C # 1. For C' = 1, the larger variance compensates the bias.

9 Discussion

The proposed variance estimator is applicable for unequal rotating stratified sampling
designs when random hot-deck imputation is used at both waves and the sampling
fractions are negligible. The proposed variance estimator may be extended in various
ways. Point estimators, such as calibration estimators (Huang and Fuller, 1978;
Deville and Sarndal, 1992) which employ auxiliary population information may often
be expressible as functions of totals. The proposed variance estimator (20) can be

modified to accommodate this situation.
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The main advantages of the proposed variance estimator are that it is approx-
imately unbiased under the response mechanisms and that it does not require the
estimation of the response probabilities.

The proposed approach is not limited to hot-deck imputation, as it can be ex-
tended to other method of imputation, as long as the expectation of the imputed
estimator of change under random imputation can be expressed as a function of to-
tals.

It is possible to take into account of the wave to wave correlation by using a
deterministic regression imputation technique. For example, we could impute by
the fitted values of a regression model with the variable (34) as covariate. In that
situation, the gradient (17) have a different expression and the term B (see expression
(12)) equals zero. The variance estimator can still be used. However, it does not take
into account of the randomness of ,@0 and 31 in (34).

The variance estimator is based on the assumption that the imputation class are
fixed. However, this assumption does not hold when the imputation classes are based
on sampled data. This is also the case when the imputation at wave 2 is based
on classes constructed from sample variables observed at wave 1. In Section 8.2,
we suggest using the the wave 1 variable to impute at wave 2, by using imputation
classes based on the variable of interest of wave 1 (see (iii) “Across-waves imputation
classes™). Our simulation study showed that sample based imputation classes have a
negligible effect on the variance estimates, even with across-waves imputation classes.
Adjusting the variance estimator to accommodate this situation is beyond the scope

of this paper. This is a topic which would need further investigation.
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