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Abbreviatiens List

e CIMT — Carotid Intima-Media Thickness
s (V- Coefficient of Variation
e DEXA - Dual energy X-ray absorptiometry -
¢ DHA - Docosahexaenoic Acid
. EPA - Eicosapentaenoic Acid
¢ IR - Insulin Resistance
e  MF - Maximum Flux
e MF/RF - The ratio of Maximum Flux (MF) to Resting Flux (RF)
s MR - Microvascular Reactivity
e MRI - Magnetic Resonance Imaging
- & MRS - Magnetic Resonance Spectroscopy
e NAFLD - Non-Alcoholic Fatty Liver Disease
e PU - (arbitrary) Perfusion Units
¢ RF - Resting Flux
e VPT - Vibration Perception Thresholds
¢ WELCOME - Wessex Evaluation of fatty Liver and Cardiovascular markers in
NAFLD with OMacor thErapy (WELCOME) trial)



Abstract.

- Aims/hypothesis. The effect of omega-3 fatty acid treatment on vibration perc-:ption
thresholds (VPTs) and cutaneous microvascular reactivity (MR) is not known. We tested
whether: a) 15-18 months treatment with high dose (4 g/day) docosahexaenoic
(DHA)+eicosapentacnoic (EPA) acid improved VPT and MR in patients with non-alcoholic
fatty liver disease (NAFLD); and b) there are associations between VPT, MR and metabolic

parameters.

Methods. In the completed single centre, randomised, double blind placebo-controlled
Wessex Evaluation of fatty Liver and Cardiovascular markers in NAFLD with OMacor
thErapy (WELCOME) trial), we tested the effect of DI-IAJrEPA_/placebo (randomised 1:1) on
VPT at 125Hz (big toe) and the cutaneous hyperat;mic response (fo’reérm) to arterial

occlusion (ratio maximum to resting blood flux-MF/RF),

Results. 51 and 49 patients Wefe randomised to placebo and DHA+EPA respectively (mean
age 51.4y). 32 subjécts had type 2 diabetes. 46 (placebo} and 47 (DHA+EPA) subjects
completed the study. There were no serious side effects. In multivariable-adjusted regression
models (ITT a:ﬁalyses), DHA+EPA treatment was associated with an increase in VPT (B
coefficient 1.49, (95%CI 0.04,2.94), p=0.04). For VPT, the adjusted mean differences

(95%ClIs) in the placebo and DHA+EPA treatment groups were -0.725 (-1.71,0.25) and

-2
+0.767 (-0.21,1.75) m.s , respectively. With DHA+EPA treatment, there was no change in
MF/RF (B coefficient 0.07, (95%CI -0.56,0.70), p=0.84). VPT was independently associated
with age (B coefficient 0.019, (95%CI 0.010,0.029), p<0.0001) and MF/RF (B coefficient -

0.074, (95%CT -0.132,-0.016, p=0.013), but not diabetes (p=0.38).



Conclusions/interpretation. High dose omega-3 fatty acid treatment did not improve
measures - of microvascular function or vibration perception. Ageing and microvascular

reactivity are associated with a measure of peripheral nerve function.

www clinicalTrials.gov_registration number (NCT00760513) accessed 23 April 2015. Funding

National Institute for Health Research UK and Diabetes UK.



Intreduction

Peripheral néuropathy and impaired microvascﬁlar function are strong risk factors for foot
ulceration and impaired wound healing in people with diabetes (1) and both somatic
cutaneous sensory fibre neuropathy and nﬁcrovascular dysfunction are early complications of
diabetes mellitus and/or insulin resistance (IR) in obese individuals (2). Screening tests for
neuropathy in the clinic include use of a 10 g monofilament and use of a 128 Hz tuning fork
(3). Both tests reflect the function of large myelinated sensory nerve fibres and, although the
monofilament test has béen widely adopted and is easy to use in clinical. practice, its
 sensitivity to detect early impaifment in perve function is limited (4). In contrast, use of
- vibration perception thresholds (VPTs) allows not only detection of neuropathy but also
assessment of the severity of the sensorj/~ nerve impairment (5). The prevalence of an
abnormal VPT in patients with type 2 diabetes has been -shown to be >11% (6) and an
abnormal VPT is an excellent predictor of foot ulceration, limb amputation and mortality in

patients with type 2 diabetes (7).

Non-invasive assessment of cutaneous microvascular reactivity (MR) has been widely used
to assess microvascular endothelial and neurovascular function in patients at increased risk of
cardio-metabolic disease (8) and is indicative of MR in other véscular beds (9). Impaired
skin MR strongly relates to impaired glucose tolerance, IR and obesity (10;11) and whilst
microvascular and neurological function are interlinked in diabetes (12), there is still
- controversy whether early changes in microvascular function or changes’ in metabolic

parameters have the greater influence on peripheral nerve function (13).

Treatment with high dose long chain omega-3 polyunsaturated fatty acids such as |
eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) improves

endothelial function (14). These fatty acids enhance nerve blood flow (15), may improve



vibration perception and clinical symptoms of neuropathy in patients with type 2 diabetes
(16), and have been shown to be protective against paclitaxel-induced peripheral neuropathy
a7). However, although there is some preliminary evidence of benefit of long chain omega-
3 fatfy acids in patients with neuropathy, it remains uncertain whether these fatty acids have

beneficial effects on VPTs and MF.

Patients with IR and non-alcoholic fatty liver disease (NAFLD) ate at increased risk of type
2 diabetes and its complications, including macrovascular disease (18) (19). Additionally,
NAFLD is associated with impaired coronary microvascular function (20), increased risk of
retinal microvascular disease and prevalence of peripheral neuropai:hy (21). Since the effect
of high dose omega-3 fatty acid treatment on nerve function and microvascular function in
high risk patients for type 2 diabetes and-its complications is not known, we have tested
whether high dose omega-3 rfatty acid treatment has beneficial effects on VPTs and MF in
this patient group. Specifically, we tested whether 15 to 18 monthsrtreatment with high dose
DHA+EPA (4 g per day as ethyl esters) produced improvements in VPTs and MR in people
with NAFLD, some of whom had type 2 diabetes, but all patients were without clinical
evidence of peripheral neuropathy or microvascular disease. In a pre-specified sub-study of
the Wessex Evaluation of fatty Liver and Qardiovascuiar markers in NAFLD With OMacor
thErapy (WELCOME) trial (www.clinicaltrials.gov registration nurnbér NCT00760513)
(22;23), a randomised double blind placebo-controlled trial, wé tested ‘the effect of

DHA+EPA treatment on VPT and MR.



Methods
Study design

105 individuals (60 men and 45 women (mean age of 51.4 y)) Were studied. The
participants formed part of the WELCOME study, a randoﬁﬂsed double blind placebo-
coﬁtrolled trial (22) [approved by the local research ethics committee (REC: 08/H05 62/ 165)].
Participants were block randomised by an independent clinical trials pharmacist to identical
capsules by mouth of either omega-3 fatty acid ethyl esters (4 g/day Omacor, Pronova,
Sandefjord, Norway) or placebo (4 g/day olive oil) for a minimum of 15 months and a
maximurh of 18 months of treaﬁnent. Only the clinical trials pharmacist was unblinded, and
randomisation group allocation was concealed from all study members throughout the trial.
One gram of Omécor contains 460 mg EPA and 380 mg DHA 380 mg as ethyl esters.
Omacor 18 approved“by the Food and Drug Administration and the European Medicines
Agency at a dose of 2 to 4 g/day for the treatment of hypertriglyceridaemia. Olive oil placebo
contained ~67% oleic acid, ~15% linoleic acid, ~15% palmitic acid. ~2% stearic acid and ~1%
alpha linolenic acid. Participants wete unpaid and gave their informed written consent.
Inclusion criteria were diagnosis of NAFLD based on liver biopsy or presence of hepatic
steatosis on ultrasouﬁd and exclusion of other liver diseases. Participants were excluded from
the final analyses if they had evidence of distal pe_ﬁpheral neuropathy in their feet (n=4), as
suggested by their failuré to detect a 10 g monofilament (24), or if they had evidence of
diabetic eye disease at retinal screening (n=0).

All tests for peripheral neurological and microvascular function were conducted in a
temperature controlled room (22 - 24°C).  Skin temperature at the toe, if below 25°C, was
raised with a heat pad to 25°C prior to vibration testing. Mean (+SD) skin temperature

measured at the toe was 28.3 £ 2.5°C (range 25.0 - 35.1°C) and at the forearm was 29.3 +



0.7°C (range 27.5 - 31.1°C). Participants refrained from caffeine containing drinks, smoking

and exercise for > 2 h prior to testing. Measurements were made at baseline and end of study.
Vibrotactile perception

Vibrétioﬁ perception thresholds (VPTs) at 125Hz were méasured {Vibrotactile Perception
Meter, HVLab Diagnostics Instruments, Southampton, UK) with a 6-mm difnneter probe and
a 2-mm gap to a 10-mm diameter surround (25). VPTs were determined using the von
Békésy method (25): the vibration magnitude alternately increased and decreased at 3 dB/s
according to whether the subject felt the vibration. A response button was pressed when the
vibration was felt_ and released when the vibration was not felt. Measurements continued for
30 s or until a minimum of six pairs of reversals had been obtained, after excluding the first
pair. Thresholds (m.s) were determined from the arithmetic averages of the logarithms of
the root-mean-square vibration acceleration at the reversals (26). Tests were performied on the
pulp of the left great toc at baseline and end of study. The intra-individual coefficient of

variation (CV) was 22% measured in 20 volunteers on two occasions.

Microvascular function

Cutaneous microvascular reactivity (MR) was assessed on the ventral surface of the non-
dominant forcarm arm using Iaser. Doppler fluximetry (Moor VMS LDF2 and DP1T probe,
Moor Instruments Ltd, Axminster, UK) (27). Blood flux was recorded continuously before
and during the dilator response to transient ischaemia (180 mmHg for 3 min; MoorVMS-
PRES). The post occlusive hyperaemic response is an integrated vascular response involving
neural, endothelial and vascular smooth muscle activity and is analogous to that used to

assess endothelial function in conduit arteries (8). Values for microvascular perfusion in



arbitrary perﬁlsion units (PU) were determined at rest (RF: mean value over the final 5 min
before perturbation) and at maximum value after release of the pressufe cuff (MF) using the
manufacturer’s software (MoorVMS-PC software, Moor Instruments Ltd, UK). MR was
expressed as the ratio of maximum to resting blood‘ﬂux (MF/RF). The intra-individual CV |
measured in the forearm_of 10 volunteers oﬂ two‘occasions, 7 days apart, was 15% for RF

and 19% for ME/RF.

Biochemical and anthropometric measurements

Measurements were made at baseline and at the end of the intervention period. Glucose,
insulin, tﬁtal cholesterol, HDL-cholesterol and triacylglycerol concentrations were measured
in fasting serum or plasma using commercially available kits according to the manufacturers’
instructions. HbAj. was measured by high pressure liquid chromatography (Bio-Rad
LaBoratories, Irvine, CA, USA). HOMA-IR was calculated from fasting insulin and fasting
glucose concentrations. Blood pressure was measured in the non-dominant arm after subjects
had become acclimatised and had rested for at least 60 min; the mean of three measurements
was calculated. Dual-energy X-ray absorptibmetry (DEXA), magnetic resonance imaging
(MRI)and magnetic resonance spectroscopy (MRS) were undertaken to assess body fat (total
body fat, regional body fat and visceral fat) and liver fat quantity (22). Liver fibrosis was
assessed using NAFLD fibrosis score (28) and an additional validated liver fibrosis score (29).
Carotid intima-media thickneés (CIMT) was measured at both carotid arteries with B-mode
ultrasound and a mean value calculated. This measure is a recognised marker of subclinical
atherosclerosis (30) and has prognostic value in cardiovascular disease (31). Overall 10 year
risk of cardiovascular disease was calculated using the Q-RISK 2011 online calculator

{www.grisk.org).




Statistical analysis

Statistical analyses were undertaken using IBM SPSS Statistics 21.0 (IBM United Kingdom
Limited, UK). Data are reported as means and standard deviations for normally distributed
variables, or as median and interquartile range for non-normally distributed variables. Where
possible, variables that were not normally distributed were normalised by log transformation
for parametric statistical analyses. Pearson and Spearman rank correlation coefficients were
~ used to investigate associations between normally and non-normally distribuied variables,

respectively. In all cases a value of p<0.05 was taken to indicate significance.

We tested the independence of associations between baseline factors and the two primary
outcomes (VPT and MF/RF) at baseline, by multivariable linear regression. We tested the
effects of DHA+EPA treétment on both of the key outcomes of interest (VPT 12511z
_ difference and MF/RF difference) (the difference represented the change in measurement
from baseline to end of study) using multivariable linear regression; and logistic regression
for dichotomous outcomes of VPT difference (increased/decreased). %md MEF/RF
(increased/decreased). ANCOVA was also used to assess adjusted mean differences (95%CI.S)
for both outcomes of interest in the placebo and DHA+EPA groups. These analyses included
all participants with cpmplete data (i.e. having baseline and end of study measurements). For |
all regression models and for ANCOVA, there was also adjustment for baseline measurement
of the outcome variable in question, and adjustment also for key covariates and confounders.
Weralso explored the effect of medication usage (statins, metformin, antidepressants and

antibypertensive drugs, including calcium antagonists (no patients were taking hydrallazine)).
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Results
Characteristics of the trial participants

F igﬁre 1 shows the Consort diagram for recruitment into the study and reasons for withdrawal.
Table 1 shows the baseline characteristics of the farticipants without overt neﬁropathy or
microvascular disease, straﬁﬁed by diabetes status and by randomisation status. The mean
(#8D) age of the 69 (38 men) individuals without diabetes was 51.7+10.9 years and it was
50.1+10.3 yeafs for the 32 (20 men) individuals with type 2 diabetes. 13 participants were
current smokers and 3 had known ischacmic heart disease. Of the particibants,’ 41 were taking
~ statins, 36 antihypertgnsive drugs (9 calcium antagonists), and 27 metformin. VPT IZSHZ
and MF/RF did not differ between individuals with and without djabefes (Table 1). Of the |
participants without diabetes ~50% had impaired fasting glucose or impaired glucose

tolerance.

Associations of VPT at 125 Hz and ME/RF with cardiovascular and metabolic risk fdctors |

at baseline

In univariate analyses, VPT was associated with age (= 0.507, p=0.0001) and MF/RF (r=-
0.301, p=0.002) (Table 2). The scatter plot for the association between VPT and ME/RF is
shown in Figure 2. VPT was positively associated with CIMT (r=0.358, p=0.0001). An
increase in VPT and a decline in ME/RF were both associated with an increase in Q-RISK

(r=0.416, p=0.0001 and r=-0.229, p=0.023, respectively).

There was no significant association between either VPT 125Hz or MF/RF and measures of
obesity, glycacmic status or insulin resistance; although in individuals specifically without

diabetes, MF/RF was negatively correlated with HOMA-IR (r=-0.326, p—=0.006, n=69).
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Stratification by diabetes status suggested that in individuals with diabetes, an increase in

VPT was associated with an increase in duration of diabetes (r=0.485, p=0.005).

A multivariable regression model with baseline VPT as the outcome variable, and age, sex,
ME/RF, diabetes status, liver fibrosis score and CIMT as exposure variabies, showed that all
of these togethér explained ~35% of the variance in VPT (R*= 0.35, p<0.0001‘, adjusted
R?=0.30) (Table 3). Use of statiné, metformin, antidepressants or all antihypertenéive &rugs
(inclﬁdjng calcium antagonists) was not indépendently associated with VPT at 125Hz. The
model was also not. affected by adjustment for skin temperature (data not shown). We
- repeated the model replacing diabetes status with insulin resistance (HOMA-IR). In this
model, age, sex, MF/RF, HOMA-IR, liver fibrosis score and CIMT explained ~33% of the
variance in sensory nerve function (R’= 0.325, p=0.0001, adjusted R2=0.276) in the Whole

cohort.

We repeated the regression model in Table 3, replacing VPT with ME/RF as the. new
outcome. In a model that included VPT, age, diabetes status, liver fibrosis score, use of
calcium antagonists and CII\/IT as exposure variables, female sex (p=0.010), VPT (p=0.011)
and use of calcium antagonists (p<0.0001) were significant, R*= 027, adjusted R*=0.21,
p<0.001). Use of other_ anti;hypertensive agents was not associated with ME/RF. Replacing
diabetes s;tatus with HOMA-IR as an exposure variable did not improve the model (R2_= 0.23,
adjusted R*=0.17, 7~0.003) and HOMA-IR was not independently associated with MI'/RF

(=0.97).
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Effect of omega-3 polyunsaturated fatty acid treatment on VPT at 125 Hz and MF/RF

Table 1 shows the baseline characteristics 6f the participants without overt neuropathy or

- microvascular disease, by randomisation status. At baseline, by chance VPT was higher in
participants randomised to placebo compared with DHA+EPA and to take account of this
difference the regression models were adjﬁsted for baseline measurement. Table 4 shows the
results of multivariable regression modelling testing the effects of the DHA+EPA
intervention on both outcomes (i.e. VPT difference or MF/RF difference). In regression

~modelling adjusting for ke_y' potential confounders, (age, sex, VPT at baseline, MF/RF,
diabetes (y/n), a liver fibrosis marker, and mean CIMT) there was a small increase
(worsening) in VPT differenc-e with DHA+EPA treatment. The model explained ~33% of the
variance in VPT difference (R*=0.33, p<0.0001, adjusted R>=0.27). The model was slightly
improved when we replaced diabetes (y/n) With HOMA-IR as a measure of insulin resistance
(R2=O.37, p<0.0001, adjusted R’=0.29). None of the tested medications affected the model or |
were associated with either outcome. Since there was a significant, and unexpected, effect of
DHA+EPA to increase VPT at the end of the study, we assessed adjusted mean differences in
placebo and DHA+EPA treatment éroups. The adjusted mean differences (95%CIs) in the
placebo énd DHA+EPA treatment groups were -0.725 (-1.71,0.25) and +0.767 (-0.21,1.75)
respeéﬁvely. These data v;rere in keeping with the unstandardized B coefficient from the
regreésion modelling analyses Shéwn in Table 4 showing the treatment effect (i.e 1.492). We
also assessed the OR (95%CI) for a worsening of VPT difference with DHA+EPA treatment.
These data (OR 2.47, (95%CI 0.97,6.32), p=0.058) were also consistent with the results from
multivariable linear regression modeliing and ANCOVA. Next we tested whether there was a
DHA+EPA treatment interaction with baseline VPT measurement. These analyses (Table 4)

showed there was a significant association between the interaction term and VPT difference.

13



We repeated the fegressién model replacing VPT difference with MF/RF difference as the
outcome (Table 4). Variables included in the model explained 35% of the variance in MF/RF
difference (R*=0.35, p<0.0001, adjusted R*=0.28) but there was no effect of the DHA+EPA.
intervention (p=0.84) (Table 4). Figure 3 shows individual baseline and end of study
measurements for VPT and ME/RF for each participant. Stratifying by diabetes status, there
Was no specific benefit of DHA+EPA treatment on VPT (p=0.36) or MF/RF (p=0.53) in

people with diabetes.
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Discussion

Our study 1s the first randomised doﬁble blind placebo controlied trial to examine the effects
of the highest licensed dose of omega-3 fatty acids on measures of vibration perception and
microvascular function. Our novel data show that there was no benefit from high dose
DHA-EPA treatment for 15-18 months, on vibration perception threshold or microvascular
reactivity. In fact, our results shoﬁv that with DHA+EPA treatment there lwas a small, albeit
significant, increase in VPT between baseline and end of study (Table 4) that is unlikely to be
-of clinical relevance. Although we show an independent association between VPT and
MF/RY at baséline (Table 3), this association was weaker at the end of the study (data not
éhown)-. We consider that the change in the association between these two parameters
{between baseline and end 0f study) may have occurred due to two factors (illustrated in
Table 4): a) the significant interaction between DHA+EPA treatment and baseline VPT, and
;the associatic@n of both factors with change in VPT during the study, and b) the DHA+EPA
treatment-mediated increase in end of study VPT.
Whilst there is gencral agreement that microvascular and neurological function are
interl.inked in diabetes, there is still controversy over the pathogenesis of neuropathy and
uncertainty remains as to whether metabolic or vascular risk factors (including impaired MR)
are more important in influencing VPTs in people at risk of diabetic foot ulceration (13). In
addressing this uncertainty, - our results suggest that ageing and carly changes in
microvascular function have a greater influence on peripheral nerve function than metabolic

PR

parameicrs.

We do not have measurements of DHA or EPA tissue enrichment in nerves or the
microvasculature. However, we have shown that the DHA+EPA treatment caused excellent
tissue enrichment in erythrocytes and there was good adherence to the intervention (all

participants consumed ~75% of their allocated capsules) (23). Whilst we did not undertake
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prior samplé size calculations for this pre-specified sub-study, our results provided no hint of
improvement with the intervention (Table 4). A retrospective power calculation showed that
~ with the number of patients completing the trial and a=0.05, we had 99% power to detect a
20% change in MF/RF. Although, previously, it has been suggested that six weeks treatment
with- DHA had beneficial effects on forearm blood -flow in obese individuals (14) and that
omega-3 fatty acid treatment (in a non-randomised study)-improved vibration perception. in
21 patients with type 2 diabetes (16), prior. to our study these benefits of DHA+EPA had not

been tested in randomised double blind placebo-controlled trials lasting over 12 months.

Importantly, the association between VPT and MF/RF at baseline remained significant after
| adjusting for potential confounders such as age, sex, diabetes status, obesity, NAFLD éeveﬁty
or CIMT. In our study, stratifying by diabetes status, there was no association between VPT
and insulin resistance (HOMA-IR) in people with diabetes. There was also no a:;,sociatioﬁ
~ between VPT and current glycaemic control (HbA,.) but there was a significant association
between VPT and HOMA-IR in people who did not have diabetes (r=0.342, p=0.005; n=67).
This latter finding most likely reflects the factr :that HOMA-IR measurements are an
inaccurate estimate of insulin resistance in people with diabetes who have pancreatic:beta-cel}
failure. Our findings are also consistent with the fesults of a study of 156 individuals with
peripheral neuropathy and diabetes, where there was no associatidn between neuropathy and
glycaemic control (12). These findings and our data, takén together, suggest strongly that
,peripherallneurological function is related more to a measure of microvascular health than to
metabolic risk factors, wiith the exception of insulin resistance. Microvascular dysfunction
has been proposed to be a link between obesity, IR and hypertension (32) and a reduced
micfovascular dilator and exchange capacity has consistently been reported by us and by

others in individuals with features of the metabolic syndrome (33-36). With respect to a link
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between VPT and HOMA-IR, it is important to note that the DHA+EPA intervention did not

improve HOMA-IR (data not shown but available from the authors).

Peripheral neuropathy is associated with cardiovascular disease (37) and increased vibration
thre;sholds have been shown to be a risk factor for mortality with diabetes (38). We showed
for the first time, a strong association between VPT at 125Hz and CIMT (Table 2). CIMT is a
reliable marker of pre-clinical atherosclerosis and NAFLD is an independent. predictor of an
increased CIMT (39). Endothelial dysﬁmction may occur early in NAFLD (40) and it has
been suggested that the méchanisms associated with arterial thickening could impair blood
‘flow and initiate endoneurial hypoxia, tilought to play a significant role in causing peripheralr

ﬁeuropathy in diabetes (41).

We are not able to explain what aspect of ageing underpiné the association between age and
VPT. Sensory perception decreases with age and higher mechanical and thermal sensory.
perception thresholds have been observed in olde;r people (42), but whether any decrease in
perception occurs as a result of changes in the brain, spinal cord or peripheral ﬁerves or
receptors is uncertain. Qur finding that higher VPTs were associated with increased duration
of diabetes is consistent with .results reﬁorted by. Shﬁn et al. (43) in people with typé 2
diabetes. These authors additioﬂally reported that diabetes duration was negatively associated
with epidermal denervation, an eaﬂy event in people with diabetes (44). It is plausible that
 insulin resistance and advanced protein glycation (45) combine with deleterious changes in
nerve perfusion through components of inflammation and oxidative stress (46) and may be

responsible for the increase in VPT, but this is speculation and further research is needed.

Limitations

17



The current study has strengths and limitations. The main strength is that we have ﬁndertaken
a randomised, double blind placebo controlled trial testing the effects of highly purified long
chain omega-3 fatty acids lasting 15-18 months. We cannot overlook the fact that perfusion
of skin capillaries primarily serves the purpose of thermoregulation, whereas those in deeper
tissues (e.g. skeletal muscle) are much moré closely linked to metabolic demand but
nevertheless, the ability to perform minimally invasive in ViVO mechanistic studies in human

~ skin can inform our understanding of how disease states adversely affect vascular function.
There is no ideal biomafker for diagnosis of heu:ropathy in diabetes. We have used
neurothesiometry (VPT) to derive a quantitative measurement of peripheral nerve function
and VPT at 125Hz is neuroselective for large myelinated sensory nerve fibres. Recently, it
has been shown that nerve ciysfunction in large nerve fibres occurs in individuals with IGT
compared to health controls (47). Although, dysfunction in small nerve fibres may precede
larée nerve fibre dysfunction in diabetic neuropathy(13;48), since we measured VPT we
cannot comment on the effect of DHA+EPA on small nerve fibre function or on the
relatiohshjp between MR, ageing and HOMA-IR and small nerve fibre function. We also
cannot be sure of the effect of duration of diabetes on VPT in our cohoft, as identification of
the date of onset of type 2 diabetes is then imprecise. Additionally, we undertook assessment
of VPT in the foot and microvascular function in the arm. It was technically challenging in
this obese cohort to measure microvascular function in the lower leg and' it is well accepted
that the cufaneous arm microcirculation provides a well validated index of microvascular

function indicative of MR in other, less accessible vascular beds (9;49).
Conclusions

In summary, treatment with the highest licensed dose of DHA+EPA (as Omacor/Lovaza) did
not improve VPT or MR in patients with NAFLD. In a high risk patient group, without

- evidence of overt peripheral neuropathy, both ageing and a measure of microvascular
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reactivity were independently associated with VPT. VPT is related more to a measure of

microvascular health than to metabolic risk factors, with the exception of insulin resistance.
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Figure legends

Figare 1. Consort diagram. VPT, vibration perception test; MF/RF microvascular reactivity
test (the ratio of maximum to resting blood flux). N=5 participants were excluded

(neuropathy=4, and not randomised because of illness=1).

Figure 2. Scatter plot showing the relationship between baseline vibration perception
threshold (logzo VPT) at 125Hz and cutaneous microvascular reactivity (log o MF/RF) (the

ratio of maximum to resting blood flux).

Figure 3. Effect_ of 15 -18 months treatment with docosahexanoic acid+eicosabentanoic acid
(DHA+EPA) ethyl esters (4 g/day) or placebo on cutaneous microvascular dilator capacity
and vibration perception threshold at 125Hz. F igurg A and C represent the placebo groﬁp and
B and D represent the treatment group. Baseline and end of study median measurements for

cach group are indicated by a horizontal line.
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Table 2. Univariate associations between vibration perception threshold (VPT) or
microvascular reactivity (MF/RF) and anthreopometric and biechemical risk factors at

baseline
Vibration perception Microvascular reacti&ity
threshold (VPT) at 125 Hz (MFE/RF)
r value (p valur'e) r value (p value)
Age (years) 0.507 (0‘.0001) -0.179 (0.073)
BMI (kg/m )® -0.156 (0.123) 0.074 (0.465)

Duration of Diabetes
(years)* (n=32}

CVD Risk (%)
Systolic BP (mmHg)
CIMT (mm)
Cholesterol/HDL

Total Body Fat
(DXA, %) *

Subcutaneous fat

(MRI, %)*

Visceral fat (MRI, %)
Liver Fat (MRS, %)
Liver Fibrosis score [29]

NAFLD fibrosis score
[28]*

Insulin Resistance
(HOMA-IR)

HbA (%)’

0.567 (0.001)

0.416 (0.0001)
0.046 (0.654)
0.358 (0.0001)
-0.122 (0.229)

-0.029 (0.776)
-0.106 (0.315)

0.114 (0.281)
0.088 (0.395)

0.146 (0.155)

0.070 (0.507)

0.073 (0.474)

-0.281 (0.119)

-0.229 (0.023 -
-0.163 (0.164)
-0.092 (0.368)
-0.041 (0.686)

0.029 (0.777)
0.088 (0.402)

-0.132 (0.209)
-0.044 (0.667)
0.065 (0.526)

-0.087 (0.387)
-0.103 (0.324)

0.110 (0.275)
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(mmol/mol)

Vibratory perception -
2
_threshold 125Hz (m.s )

Microvascular -0.301 (0.002)
reactivity (MF/RF)

-0.301 (0.002)

Data are Pearson or *Spearman correlation coefficients. N=101
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Table 3. Multivariable regression model with vibration perception threshold as the
outcome and key covariates and potential confounders as explanatory variables.

Unstandardised  95%CIL ‘ 4
P coefficient ' ' _

Age (v) 0,019 0.010, 0.029 | 0.0001
Male sex 0.031 -0.142, 0.203 ' 0.72
Microvascular : -0.074 : -0.132,-0.016 0.013
reactivity : '
(ME/RF)
Diabetes status 0.080 ' -0.102, 0.262 0.38
Liver fibrosis 0.017 -0.089,0.123 0.75
score [29] (AU) '
CIMT(mm) | = 0544 -0.469, 1.557 0.29
*Antihypertensive | = -0.268 -0.593, 0.057 0.11
(Calcium
antagonists)

R? for the model = 0.35 (P<0.001); adjusted R? = 0.30 (p<0.001). *Other anti-hypertensives
were not associated with VPT.
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Table 4 Multivariable linear regression modelling testing the effects of treatment on
each of the primary outcomes, adjusting for baseline measurement of each outcome,
and key covariates and potential confounders.

Primary outcomes

Vibfati(}_n perceptioh Microvascular reactivity
threshold (VPT m.s'z) (MF/RF)
Change from baseline to end | Change from baseline to end of
' of study study
Independént , Unstandardised B coefficient Unstandardised B coefficient
iabl (95% CI) (95% CI)
varial _ €3 p value pvalue
Treatment 1.492 (0.04,2.94) 0.07 (-0.56,0.70)
Docosahe_xanoic acid -0.04 ‘ 0.84
+ Eicosapentanoic
acid
Age (y) 0.04 (-0.04,0.13) -0.03 (-0.06,0.01) .
0.32 0.16
Male sex -1.07 (-2.53,0.39) 0.60 (-0.06,1.25)
- 0.15 _ 0.08
Diabetes status 1.36 (-0.11,2.83) -0.14(-0.81,0.53)
0.07 0.68
VPT (m.s%) -0.30 (-0.44,-0.17) 0.02 (-0.11,0.15)
<0.0001 0.77
MEF/RF -0.17 (-0.63,0.29) -0.63 (-0.84,0.42)
0.47 <0.0001
"Liver fibrosis score -0.23 (-1.16,0.70) 0.03 (-0.38,0.44)
0.63 0.89
Mean CIMT (mm) -4.16 (-12.40,4.07) 0.02 (-3.72,3.75)
0.32 0.99 :
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Treatment x baseline
VPT (m.s?)

Or

Treatment x
baseline MF/RF

0.31 (0.06,0.56)
0.015

0.16 (-0.24,0.57)
0.42

Multivariable regression models for all subjects completing the randomised double blind
placebo-controlled trial testing the effect of DHA+EPA treatment on each of the two primary
outcomes. Placebo group n=46, treatment group n=47. Each regression model was adjusted
for age, sex, outcome variable value at baseline (i.e. VPT or MF/RF), plus diabetes status
(yes/no), a marker of NAFLD severity (“liver fibrosis score, see reference 29) and a marker of
pre-clinical macrovascular disease status (mean carotid intima medial thickness (CIMT) of
left and right common carotid arteries).
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