
Hardware-Software Interaction for Run-time Power Optimization:
A Case Study of Embedded Linux on Multicore Smartphones

†Anup Das, †Matthew J. Walker, †‡Andreas Hansson, †Bashir M. Al-Hashimi and †Geoff V. Merrett
†ARM-ECS Research Center, University of Southampton, United Kingdom

‡Research, ARM Ltd, Cambridge, United Kingdom
Email: †{a.k.das,mw9g09,gvm,bmah}@ecs.soton.ac.uk and ‡andreas.hansson@arm.com

Abstract—Applications running on smartphones interact with
the hardware and the system software differently, resulting in
widely varying power consumption and hence thermal profiles.
Typically, these smartphone platforms expose some hardware
power control features to users, controlled through software
governors such as cpufreq for dynamic voltage-frequency
scaling (DVFS) and cpuquiet for dynamic core selection (DCS).
Operating systems on these platforms manage these governors
conservatively, independent of application’s performance require-
ment. To address this, we propose an alternative approach, which
uses reinforcement learning to explore the trade-off between
power saving opportunities using DVFS and DCS and applica-
tion’s performance at run-time. The objective is to reduce power
consumption, taking into consideration dynamic power, leakage
power, and the inter-dependency between temperature and power.
The reinforcement learning-based control is validated as a case-
study on ARM A15-based nvidia’s tegra smartphone through
its implementation as a run-time manager (RTM). This RTM
interfaces with different hardware performance counters and the
embedded Linux Operating System through (1) the cpuquiet
API to select cores at run-time; and (2) the cpufreq API to
scale the frequency of active cores. Experiments with mobile and
high performance applications demonstrate that the proposed
approach achieves an average 22% (7-40%) power reduction
compared to existing techniques.

Keywords—Power reduction, temperature minimization, rein-
forcement learning, cpufreq, cpuquiet

I. INTRODUCTION

Modern embedded systems feature multiple general pur-
pose cores, which improve application performance by execut-
ing its independent threads simultaneously. As more processing
cores are integrated in a system, the chip power consumption
increases, reducing the battery life [1]. This increase in power
consumption also increases chip temperature, triggering relia-
bility concerns [2]. Recent studies show that the leakage power
constitutes more than 40% of the total power consumption,
being superlinearly dependent on the chip temperature [3].
This has attracted significant attention in recent years [4]–[10].

Two of the most widely accepted system-level design
techniques for power optimization are dynamic voltage and fre-
quency scaling (DVFS) [11] and dynamic power management
(DPM) [12]. In DVFS, the voltage and frequency are scaled
down dynamically to reduce both the active and leakage power
consumption, whereas in DPM, the processing cores are shut
down (or put into sleep mode) to reduce leakage power. In the
context of this paper, we achieve DPM by dynamically con-
trolling the number of active cores and as such, the approach
is commonly termed as Dynamic Core Selection (DCS).
Operating systems (OSs) such as embedded Linux (eLinux)
provide user interfaces for managing both DVFS and DCS.
Examples of these interfaces are cpufreq [13] for DVFS
and cpuhotplug [14] for DCS. Typically, cpuhotplug is
1000 times slower than cpufreq, limiting its use at run-time.
Existing studies on run-time management have therefore con-

sidered DVFS alone to perform dynamic power optimization1

[4]–[7]. The commercial version of hotplug for embedded
systems, called cpuquiet [15], provides a low overhead user
interface for addition and deletion of cores at run-time. The
cpuquiet and the cpufreq APIs are widely used for run-
time power management in OSs. Examples include the ARM
Intelligent Power Allocation (IPA) and ARM Energy Aware
Scheduler (EAS). Our approach complements these techniques
by exploring the trade-off between performance loss and power
saving opportunities using machine learning.

Recently, performance impact of DVFS and DCS have been
studied using high level application graph models (directed
acyclic graphs or synchronous data flow graphs) representing
static workload scenarios [9], [10]. The power-temperature
inter-dependency is either not incorporated or the influence of
ambient temperature is not factored. From a practical aspect,
applications running on embedded systems interact with the
OS and the hardware differently, resulting in widely varying
thermal and power profiles. The performance requirement also
differs from one application to another, requiring application-
specific voltage-frequency settings. Additionally, the nature of
cross-layer interaction and the performance requirement varies
within application execution, as observed for instance when
switching from 4K resolution video to a high-definition (HD)
video. These intra- and inter-application variations present a
dynamic scenario to determine the minimum number of cores
and their operating point at run-time. To address this, we
propose a reinforcement learning-based run-time approach that
adapts to intra- and inter-application variations by adding or
deleting cores at run-time using the cpuquiet governor, and
controlling the voltage and frequency of operation using the
cpufreq governor. The objective is to explore the trade-off
between an application’s performance (specified as deadline
or throughput constraint) and power saving opportunities.
Following are our key contributions:

• a reinforcement-learning based approach for power
management of embedded systems, considering the
inter-dependency of temperature and power;

• integrating DCS and DVFS together in a run-time
framework, considering both dynamic and leakage
power components simultaneously; and

• adapting to intra- and inter-application variations in
order to deploy an application-specific strategy for
thermal-aware power management.

Remainder of this paper is organized as follows. The
problem formulation is discussed next in Section II along
with the motivation for a solution using machine learning. The
proposed approach is described in Section III and its evaluation

1Some OS- based approaches achieve DPM by increasing the idleness of
cores at run-time [4], [8]. These approaches reduce power consumption only
if an application’s idle period is greater than the minimum idle time [3], which
is difficult to determine at run-time.



0 100 200 300 400 500 600 700 800 900
0

50

100
U

til
iz

at
io

n 
(%

)

 

 

0 100 200 300 400 500 600 700 800 900
45

50

55

60

65

70

T
em

pe
ra

tu
re

 (
C

)

0 100 200 300 400 500 600 700 800 900
0.5

1

1.5

2

2.5

Time (s)

C
P

U
 P

ow
er

 (
W

)
core 0 core 1 core 2 core 3

(a)

(b)

(c)

core 3 off core 2,3 off
core 1,2,3 off

Fig. 1. Utilization, temperature and power variation with changes in the
number of active cores.

case-study in Section IV. Finally, the paper is concluded in
Section V.

II. PROBLEM FORMULATION AND MOTIVATION

A. Processor Power Consumption

The dynamic power of a processor is directly proportional
to the frequency (f ) of operation and quadratically proportional
to the voltage (V ), i.e. Pd ∝ f · V 2. The static power (Ps) is
given by [3], i.e. Ps = V · Ileak, where Ileak is the leakage
current. As discussed in [3], out of the five leakage components
in modern CMOS transistors, the only temperature-dependent
dominant leakage component is the sub-threshold leakage
current, which is given by

Isub = V · Io ×
[
AT

2
e
αV+β
T

+BeγV+δ
]

(1)

where T is the temperature, Io is the leakage current at the
reference temperature, and A,B, α, β, γ, δ are the technology
dependent constants. Clearly, the sub-threshold leakage is
super-linearly dependent on the temperature.

B. Processor Temperature

The temperature of a core is related to its power dissipation
according to the following equation [16].

C
dT (t)

dt
+G (T (t)− Tamb) = P (t) = Pd + Ps (2)

where C is the thermal capacitance, G is the thermal conduc-
tance, t is the time, Tamb is the ambient temperature, T (t) is
the instantaneous temperature and P (t) is the instantaneous
power, which is composed of the dynamic and the leakage
components. As seen from Equations 1-2, there is an inter-
dependency between temperature and power.

C. Interplay of DCS and DVFS

To demonstrate the interplay of DCS and DVFS, we
conducted an experiment on nvidia’s smartphone platform (the
Jetson development board) with a multithreaded application.
The application is executed for several iterations; each iteration
is accompanied by a deadline, which serves as the performance
requirement. At each iteration, six threads are spawned with
each thread performing basicmaths, crc and fft operations in
series but on different data set. A simple proportion-integral
(PI) controller is used as a Kernel module for the eLinux

Application Layer

MPEG 
Decode FFT Basic

Maths

Operating System Layer

Ubuntu/
Android RTM

Hardware Layer

Hardware frequency
Core selection

Utilization
Temperature

Performance Requirement

Thermal Sensors

core core

ti ti+1ti-1

time

core core

Determine 
Last State

Calculate 
Payoff

Q-table 
Update

Predict Next 
State

Select Next 
Action

Fig. 2. Three-layered representation of an embedded system with the
proposed approach indicated as RTM.

running on the platform to determine the operating point.
Specifically, the control algorithm scales down the operating
frequency whenever there is slack in the application. In this
context it is worth mentioning that eLinux allow scaling the
frequency only; the voltage is scaled proportionately.

With this setup, Figure 1 plots the utilization, temperature
and the CPU power consumption as the number of cores
is decreased from 4 to 1 (left to right of the figure) using
the cpuquiet API implementing cpuhotplugging. The
following observations can be made from this figure.

Observation 1: Utilization of the active cores increases with
decrease in core count. In the interval 50s to 250s in Figure 1,
all four cores are active, resulting in an average utilization of
45% across the cores. In the interval 250s - 425s, three cores
are active and the average utilization is 47%. In the interval
425s - 600s, core 0 and core 1 are active with an average
utilization of 60% for the two cores. Finally, in the interval
600s - 800s, only one core (core 0) is active, resulting in an
utilization of 100% for core 0.

Observation 2: The temperature and total power consumption
increases with decrease in the core count. In our earlier
work [17], we have shown that the processor utilization
correlates to a reasonable accuracy with the dynamic power
consumption for ARM A15 cores. This is evident from the
results obtained with 1, 2 and 3 active cores, where the power
consumption increases with a reduction of the active cores. It
is worth noting that with 1 core, the frequency is also higher
(due to the deadline requirement) contributing further to the
dynamic power. However, when all 4 cores are active (interval
50s to 250s ), the power consumption is higher than that
obtained with 3 active cores. This is due to high active power
as compared to that of deep sleep mode when it is hotplugged.

To conclude, the power consumption of an application
is dependent on the number of active cores, application’s
cross-layer interactions, the CPU utilization and the thermal
profile. Some of these dependencies are not known prior to
executing the application on the hardware. Therefore, no single
policy (DCS or DVFS) can guarantee minimum power for
all applications. Application workload guides the selection of
the cores and their voltage-frequency values. Additionally, due
to the large number of unknown dependencies, unsupervised
machine learning, in particular reinforcement learning is best
suited for the workload-specific power optimization problem.

III. RUN-TIME MANAGER FOR ELINUX

The proposed approach is validated through its imple-
mentation as run-time manager (RTM) for eLinux. Typically,
embedded systems are not equipped with power monitors.
To implement a closed-loop power control (i.e. evaluating
the impact of an applied action), we used the CPU power



model [17], which estimates the power consumption of a
workload by reading hardware performance counters. The
leakage power consumption is calculated using the technology
dependent parameters of Equation 1. These parameters are
characterized for the board, as discussed in Section IV. The
temperature for a given workload is measured by reading the
on-chip thermal sensor.

Figure 2 shows the three-layered representation of an em-
bedded system. The top most layer is the application layer with
active applications; the middle layer is the OS layer (eLinux),
coordinating application execution on the hardware; the bottom
layer is the hardware layer consisting of multicore processors.
Interactions among these layers are indicated with arrows.
Our approach is implemented as part of eLinux (indicated as
RTM). The RTM, which uses Q-learning algorithm (a variant
of reinforcement learning), repeatedly observes the current
state of the system, and selects an action. The selected action
changes the system state, which is used to determine the
immediate numeric payoff. Positive payoff is termed as profit
and negative payoff as punishment. Initially, the RTM does not
know what effect its action have on the state of the system,
nor what immediate payoffs its actions will produce. Rather,
it tries out various actions in different states computing the
payoff, which is stored in a table (termed Q-table). Eventually,
the RTM learns to select the best action in order to maximize
the long-term sum of future payoffs.

The RTM works at the system time ticks (indicated in the
figure). The learning algorithm proactively manages the power
consumption, i.e. it takes action to prevent the system from
reaching a high power state. Workload prediction is inherent
to this algorithm, i.e. at time ti, the algorithm predicts the
workload for the next interval to select the best action. At
time instant ti, the RTM performs the following steps:

• computes payoff for the time interval ti−1 → ti;

• updates the Q-table entry corresponding to the state
and action at time ti−1;

• predicts the system state for interval ti → ti+1;

• selects the action for the interval ti → ti+1 based on
the predicted state.

Payoffs: The payoff at time ti is computed as

R(ti) =

{
wt × [Pmax − Pavg(ti−1 → ti)] if Li ≥ Lc
ws × (Li − Lc) otherwise

(3)

where Pmax is the power corresponding to the highest fre-
quency set on all cores, Pavg(ti−1 → ti) is the average
power in the interval ti−1 → ti, Li is the performance in
this interval, Lc is the performance constraint, and wt, ws
are the weights. The equation is interpreted as follows: if
the performance obtained in an interval is greater than the
performance constraint, the power overhead is used to compute
the payoff; otherwise, the negative of the performance slack
is used as the payoff. It is to be noted that voltage, frequency
and temperature are incorporated in the computation of Pavg .

System State: The state of an embedded system is represented
using CPU cycle count i.e., the system state si at time ti is
given by si =

∑
j CPU CY CLES(ti−1 → ti), where j is

the number of active cores. The CPU cycle count is a real
number; to limit the state space, each state si is discretized to
one of the Ns levels and is indicated as ŝi. The discrete states
form the rows of the Q-table.

System Action: An action for the RTM consists of (1) core
selection and (2) frequency of the active cores. In typical

ALGORITHM 1: Q-learning implemented in the RTM
Input: Average temperature Ti in the interval ti−1 → ti and CPU cycle

count
∑

j
CPU CY CLES(ti−1 → ti) in the interval

Output: Core selection and hardware frequency
1 Calculate Payoff (Equation 3);
2 Update Q-table entry (Equation 4);
3 Predict Next State (Equation 6);
4 Select Action (Equation 7);
5 Map action to core selection and hardware frequency;

nVidia 
Jetson

Power 
Supply

Agilent Technologies DC Power Analyzer

Monitor

Offline 
Power 

Characterization

nVidia 
Jetson

Power 
Supply Laptop

Agilent Technologies DC Power Analyzer

Run-time 
Power 

Optimization 
and Validation

Benchmarks

Benchmarks

Temperature

Power

LaptopPower

Power 
Model

Power 
Model

(a)

(b)

Fig. 3. Setup for power characterization and use at run-time.

mobile systems, all processing cores are on the same voltage
domain, allowing chip-wide DVFS. The kth action is therefore,
represented as ak = 〈ck1 ck2 · · · ckNc fk〉, where ckj is a binary
indicator to indicate if core cj is enabled for action ak, fk is the
frequency selected for all active cores, and Nc is the number
of cores. The total number of actions is Na = 2Nc ∗ Nf ,
where Nf is the number of frequencies. These actions form
the columns of the Q-table.

cpuquiet [15] allows auto hotplugging i.e., dynamically
selecting which cores need to be enabled for an application.
Following are the sequence of events that are carried out for
core cj , when ckj changes from 1 to 0 i.e., ckj : 1→ 0.

• The event CPU_DOWN_PREPARE is sent to the kernel.

• Kernel migrates running processes on cj to other
cores.

• Kernel invokes architecture specific
_cpu_disable().

• The event CPU_DEAD is sent to offline cj .

Q-table Update: The Q-table entry corresponding to the state
and action at time ti−1 are updated at time ti, using the payoff
as given below.

Q(ŝi−1, âi−1) = Q(ŝi−1, âi−1) + α× R(ti) (4)

where âi−1 ∈ {a1, · · · , aNa} is the action during time ti−1 →
ti, α (0 ≤ α ≤ 1) is the learning rate and indicates the fraction
of the payoff used as learning experience for updating the Q-
table entries. This is computed as

α =

{
1 for 0 ≤ N < Nexplore

2(Nexplore−N) for Nexplore ≤ N < Nexploit

0 for N ≥ Nexploit

(5)

where N is the number of visits, and Nexplore/Nexploit are
the constants indicating the limits of the Q-learning stages,
i.e., exploration, exploration-exploitation and exploitation.



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

2

4

6

8

10

12

14

16



R
M

S
E

 (
%

)

 

 

x264
FFT
fluidanimate
blackscholes
opencv.sobel
webrender

Fig. 4. Root mean square workload prediction error (RMSE) for different γ.

Action Selection: As discussed before, the RTM selects an
action at time ti for controlling the power overhead in the
time interval ti → ti+1 (proactive approach). So, the RTM
first needs to predict the state of the system for the interval
ti → ti+1; subsequently, the RTM selects an action that
has previously resulted in the least power overhead for that
state. To effectively predict the system state, we use the
exponential weighted moving average (EWMA) technique. In
this technique, the predicted system state pi+1 during the time
interval ti → ti+1 is given by

pi+1 = γ × ŝi + (1− γ)× pi (6)

where γ is the smoothing factor. The equation is interpreted
as follows. The predicted state in the interval ti → ti+1 is
determined from the predicted state during the interval ti−1 →
ti (pi) and also, the actual state during that interval (si). The
action for the interval ti → ti+1 is

ai+1 = argmax Q-table(p̂i+1, :) (7)

where Q-table(p̂i+1, :) is the Q-table row corresponding to the
predicted state pi+1 (discretized to p̂i+1) and argmax returns
the index of the highest argument. Algorithm 1 summarizes
the Q-learning algorithm.

IV. CASE STUDY: ELINUX ON TEGRA K1 SOC

We present a case-study of the hardware-software in-
teraction with eLinux on nvidia’s Jetson board featuring a
Tegra K1 SoC [18] with a quad-core ARM Cortex-A15 CPU.
The platform supports 22 different frequencies (50MHz to
2.32GHz) and integrates a CPU thermal sensor for temperature
measurement. A set of multithreaded benchmarks from from
MiBench [19], PARSEC and the SPLASH2 [20] suites are
used to build a workload-dependent CPU power model [17].
The modeling setup is shown in Figure 3(a), where perfor-
mance counters corresponding to a workload are used together
with voltage, frequency and temperature to correlate (using
a nonlinear fit) with the power consumption recorded from
the DC power analyzer from Agilent Technologies (N6705B).
Benchmarks used for building the power model are different
to those used for validating the reinforcement learning-based
RTM approach.

A. Evaluation of the Proposed RTM

1) Power Estimation Error: Using the setup of Figure 3,
the average power estimation error is 3.5%, with a maximum
of 6.1% for database manipulation application. Detailed results
on power estimation accuracy are presented in [17].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

 
0 0.2 0.4 0.6 0.8 1

Deadline Misses (%)

Power (Watts)

3.65

3.60

3.55

γ

Fig. 5. Effect of workload under-prediction.

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

Time (s)

P
ow

er
 (

W
)

Fig. 6. Exploration phase of the Q-learning.

2) Workload Prediction Error: The smoothing factor γ
defines the relative importance of the predicted workload
as compared to the actual workload of the prior frames.
Figure 4 plots the root mean square prediction error (RMSE)
of the workload (CPU statistics) by varying γ (Equation 6)
for six applications. For some applications such as FFT and
blackscholes, the RMSE is lower and relatively invariant with
γ as compared to applications such as x264 and fluidanimate.
This is because, the workload for FFT and blackscholes are
relatively static (lower variations across frames) and therefore,
these workloads can be predicted with reasonable accuracy
as compared to that of x264 and fluidanimate. It can also be
noted that initially, the RMSE decreases with an increase in
γ implying that the prediction accuracy increases. However,
beyond γ = 0.7, the prediction error increases. γ = 0.7
produces the least prediction error for most applications.

Figure 5 plots the effect of varying the smoothing factor
γ on the number of deadline misses (expressed as percentage
of the total frames) and the power consumption (in watts) for
the ffmpeg application used to play a 1080p video. As γ in-
creases, the number of workload miss-predictions (over/under)
decreases until γ = 0.6-0.7, beyond which the miss-prediction
again increases. A lower number of workload under-prediction
translates to a lower number of frames missing deadline2. It
is to be noted that in most video decoders, frames missing
deadline are usually dropped. This results in glitch in the
output video and therefore, degrades quality of user experience.
Similarly, a lower number of workload over-prediction trans-
lates to lower power consumption. As seen from the figure, a γ
values of 0.6-0.7 yields the best result in terms of the number
of deadline misses and power consumption. A similar trend is
observed for all other applications.

3) Stages of Q-Learning: The Q-learning algorithm used
in our approach has three phases – an initial exploration

2Typically, the display subsystem has a buffer of one frame. Thus, the
deadline for a frame is equal to 42 ms for a 24 fps video.



100 105 110 115 120 125 130 135 140 145 150
0

1

2

3

4

5

Time (s)

P
ow

er
 (

W
)

Fig. 7. Exploitation phase of the Q-learning.

phase, followed by an exploration-exploitation phase and fi-
nally, the exploitation phase. Figures 6 and 7 plot the power
obtained using the proposed RTM during the exploration and
the exploitation phase. In the exploration phase (Figure 6),
the algorithm explores different actions (cpuquiet and
cpufreq) to determine the most appropriate control for the
application workload. The average power in this stage is 2.8W.
The power consumption using the operating system’s default
cpuquiet governor is also similar (2.75W). However, as
the algorithm enters the exploitation phase (Figure 7), best
actions are exploited for a given workload. The average power
consumption in this stage is 1.6W (1.15W savings compared
to the default cpuquiet governor). This improvement clearly
demonstrates the advantage of the proposed approach over
the operating system controlled DCS-DVFS technique. Further
evaluation with other state-of-the-art approaches is provided in
the following section.

B. Power Improvement using the RTM

Figure 8 reports the power improvement of the proposed
approach in comparison to state-of-the-art approaches. Specif-
ically, we compare our approach with the OS-controlled ap-
proach (a combination of cpuquiet and cpufreq), the
minimum of the power results obtained using the DVFS only
technique of [5] and the DCS only technique of [8], and the
system level technique of [4] that selects between DCS and
DVFS policies based on application. As seen from the figure,
the min DVFS/DCS approach performs significantly better
than the OS controlled approach for some applications, such
as the raytrace, while the OS-controlled approach is better for
the x264 application. In comparison to both these approaches,
the technique of [4] minimizes the power consumption by an
average 16%. This result is consistent to that reported in [4].
The proposed approach achieves a similar power consumption
as [4] for the FFT application, which has a static workload.
However, for all other applications, the result using the pro-
posed approach is significantly better, achieving on average
23% further power improvement compared to [4].

C. Performance Trade-off using the RTM

Figure 9 plots the decoding time taken by the ffmpeg
application playing a 1080p video at 24 fps resolution. Results
are reported for the first 260 frames of this video (approxi-
mately 11 sec). As can be seen, the decoding time occasionally
exceeds 50 ms causing these frames to be dropped by ffmpeg
application. As seen from the figure, the ffmpeg application
drops 17 out of 260 frames. On average, the decoding time
for the displayed frames is 42.3 ms (instead of 41.67 ms
requirement of the video). However, this increase in decoding
time is due to processor slowdown for power savings without
perceivable degradation of video quality. This highlights the

x264 FFT fluidanimate blackscholes openCV.sobel raytrace
0

1

2

3

4

5

P
ow

er
 (

W
)

 

 
OS Control
Min DVFS [5]\DPM [8]
System Level [4]
Proposed

Fig. 8. Power for 6 applications: proposed approach vs [4], [5], [8].

0

20

40

60

80

100

120

140

160

1 51 101 151 201 251

De
co
di
ng

 T
im

e 
(m

s)

Frames

Frames Dropped = 17

Fig. 9. Frame decoding time using ffmpeg playing a 1080p video.

fact that the proposed approach reduces power consumption
by trading-off 1.52% performance.

To summarize the result for other applications, we con-
ducted experiments with twenty different applications from
the benchmark suites discussed before. Figure 10 shows a
performance summary for these applications. The x-axis of
this figure reports the percentage performance variation using
the proposed approach (with respect to the specified deadline).
The length of each bar represents the number of applications
with the corresponding violations. In representing the number
of applications, we used a ceiling function. As an example, the
ffmpeg application has a steady-state performance violation of
1.52% and is represented along with other applications as part
of the bar corresponding to violation of -2%. It is important
to note that 70% of applications (14 out of 20) have negative
performance variations implying that, for these applications,
the proposed approach achieves power savings (average 23%)
by trading less than 5% in performance. There are 6 appli-
cations which have positive performance variations, i.e. for
these application the proposed approach is not able to exploit
remaining application slack for power savings opportunities.
The highest performance slack that remains to be exploited is
3% (in the figure, the number of application with performance
variation of 4% or above is zero).

D. Thermal Improvement using the RTM

As can be seen from Equation 2, the temperature of
processing cores is dependent on the power consumption,
which in turn depends on the temperature. To address this
inter-dependency of temperature and power, both these metrics
are incorporated in computing the payoff (specifically, as Pavg
of Equation 3). To signify the thermal improvement achieved



0

1

2

3

4

5

6

7

8

‐4 ‐3 ‐2 ‐1 0 1 2 3 4 5 7

4

1

2

5

1 1

3

1

0 0 0

N
um

be
r o

f A
pp

lic
at
io
ns

Performance Variation (%) 

Unexplored Slack in Application Performance ‐Power Tradeoff

Fig. 10. Performance summary across 20 different applications.

TABLE I. THERMAL IMPROVEMENT FOR FFT APPLICATION.

Techniques
Average Peak

Temperature Temperature
OS Controlled 76.6◦C 82

System level [4] 69.9◦C 79◦C
Proposed 62.1◦C 70◦C

using the proposed approach, Table I reports the average
and peak temperature in comparison to some state-of-the-art
approaches. The FFT application is used for demonstration. As
can be seen, the proposed thermal-aware power-optimization
approach reduces average temperature by 15◦C and the peak
temperature by 12◦C as compared to the OS controlled ap-
proach. In comparison to the system level technique of [4],
the improvements are 8◦C and 9◦C, respectively. A similar
improvement is observed for all other application.

E. RTM Power and Timing Overhead

Figure 11 plots the average number of invocations of
the cpuquiet and the cpufreq APIs during execution
of five applications. As can be seen, for the X264 decoder,
the proposed approach invokes the cpuquiet API four
times during execution for DCS, with the cpufreq API
being invoked an average 12 times for DVFS during each
invocation of the cpuquiet API. Similarly, results for other
applications can be interpreted. It is interesting to note that
for the FFT application, the workload is static and therefore
the proposed approach performs DCS only once. On the other
end for x264 application, the proposed approach performs
DCS four times due to the dynamic nature of its workload.
It can also be noted that although 22 frequency levels are
supported on the platform, the proposed approach explores
a subset of these levels due to the specified performance
requirement. For application such as fluidanimate, the number
of explored DVFS levels is much higher due to its relaxed
deadline than that for FFT and x264 applications. Finally,
the proposed RTM constitutes between 0.05% to 0.4% of the
frame processing time for all applications. In terms of power
overhead, frequency switching results in an overhead of 0.1W
to 0.6W and CPU hotplugging has an overhead of an average
0.7W. These are the instantaneous powers recorded directly
from the power analyzer.

V. CONCLUSIONS

We proposed reinforcement learning-based hardware-
software interaction for run-time power optimization. Power
reduction is achieved by reducing the number of active cores
and down-scaling frequency of theses active cores, trading-
off performance (in terms of dropped frames), while still
maintaining a satisfactory quality-of-service. A case study is
provided on nvidia’s smartphone to demonstrate power savings
using such interactions.

0

2

4

6

8

10

12

14

16

18

x264 FFT fluidanimate blackscholes raytrace

4

1

3
4

3

12

10

17

14

12

N
um

be
r o

f i
nv
oc
at
io
ns

cpuquiet cpufreq

Fig. 11. Number of invocations of cpuquiet and cpufreq for five
applications.

ACKNOWLEDGMENT

This work was supported in parts by the EPSRC
Grant EP/L000563/1 and the PRiME Programme Grant
EP/K034448/1 (www.prime-project.org). The data for this pa-
per can be found at 10.5258/SOTON/377395.

REFERENCES
[1] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and

D. Burger, “Power challenges may end the multicore era,” Communi-
cation of the ACM, vol. 56, no. 2, pp. 93–102, 2013.

[2] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers, “The case for
lifetime reliability-aware microprocessors,” in International Symposium
on Computer Architecture, 2004.

[3] Y. Liu, R. P. Dick, L. Shang, and H. Yang, “Accurate temperature-
dependent integrated circuit leakage power estimation is easy,” in Con-
ference on Design, Automation and Test in Europe, 2007.

[4] G. Dhiman and T. Rosing, “System-level power management using online
learning,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 28, no. 5, 2009.

[5] H. Shen, Y. Tan, J. Lu, Q. Wu, and Q. Qiu, “Achieving autonomous
power management using reinforcement learning,” ACM Transactions
on Design Automation of Electronic Systems, vol. 18, no. 2, 2013.

[6] Y. Wang, Q. Xie, A. Ammari, and M. Pedram, “Deriving a near-optimal
power management policy using model-free reinforcement learning and
bayesian classification,” in Design Automation Conference, 2011.

[7] D.-C. Juan and D. Marculescu, “Power-aware performance increase via
core/uncore reinforcement control for chip-multiprocessors,” in Interna-
tional Symposium on Low Power Electronics and Design, 2012.

[8] R. Ye and Q. Xu, “Learning-based power management for multicore pro-
cessors via idle period manipulation,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 33, no. 7, 2014.

[9] V. Devadas and H. Aydin, “On the interplay of voltage/frequency scaling
and device power management for frame-based real-time embedded
applications,” IEEE Transactions on Computers, vol. 61, no. 1, 2012.

[10] M. E. T. Gerards and J. Kuper, “Optimal dpm and dvfs for frame-
based real-time systems,” ACM Transactions on Architecture and Code
Optimization, vol. 9, no. 4, 2013.

[11] T. Simunic, L. Benini, A. Acquaviva, P. Glynn, and G. De Micheli,
“Dynamic voltage scaling and power management for portable systems,”
in Design Automation Conference, 2001.

[12] L. Benini, A. Bogliolo, and G. De Micheli, “Dynamic power manage-
ment of electronic systems,” in International Conference on Computer-
Aided Design, 1998.

[13] J. Hopper et al., “Using the linux cpufreq subsystem for energy
management,” IBM blueprints, 2009.

[14] Z. Mwaikambo, A. Raj, R. Russell, J. Schopp, and S. Vaddagiri, “Linux
kernel hotplug cpu support,” in Linux Symposium, vol. 2, 2004.

[15] P. De Schrijver et al., “cpuquiet: Dynamic cpu core management,” Linux
Plumbers Conference, 2012.

[16] K. Skadron, M. R. Stan, K. Sankaranarayanan, W. Huang, S. Velusamy,
and D. Tarjan, “Temperature-aware microarchitecture: Modeling and
implementation,” ACM Transactions on Architecture and Code Optimiza-
tion, vol. 1, no. 1, 2004.

[17] M. Walker, A. Das, G. Merrett, and B. Hashimi, “Run-time power esti-
mation for mobile ad embedded asymmetric multi-core cpus,” HiPEAC
Workshop on Energy Efficiency with Heterogenous Computing, 2015.

[18] N. Corpration, “Nvidia tegra mobile processor,” URL http://www. nvidia.
com/object/tegra. html, 2013.

[19] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and
R. Brown, “MiBench: A free, commercially representative embedded
benchmark suite,” in Workshop on Workload Characterization, 2001.

[20] C. Bienia, S. Kumar, and K. Li, “PARSEC vs. SPLASH-2: A quan-
titative comparison of two multithreaded benchmark suites on chip-
multiprocessors,” in Symposium on Workload Characterization, 2008.


