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Abstract

This paper presents a novel method for the systematic implementation of low-power microelectronic circuits aimed at
computing nonlinear cellular and molecular dynamics. The method proposed is based on the Nonlinear Bernoulli Cell
Formalism (NBCF), an advanced mathematical framework stemming from the Bernoulli Cell Formalism (BCF) originally
exploited for the modular synthesis and analysis of linear, time-invariant, high dynamic range, logarithmic filters. Our
approach identifies and exploits the striking similarities existing between the NBCF and coupled nonlinear ordinary
differential equations (ODEs) typically appearing in models of naturally encountered biochemical systems. The resulting
continuous-time, continuous-value, low-power CytoMimetic electronic circuits succeed in simulating fast and with good
accuracy cellular and molecular dynamics. The application of the method is illustrated by synthesising for the first time
microelectronic CytoMimetic topologies which simulate successfully: 1) a nonlinear intracellular calcium oscillations model
for several Hill coefficient values and 2) a gene-protein regulatory system model. The dynamic behaviours generated by the
proposed CytoMimetic circuits are compared and found to be in very good agreement with their biological counterparts.
The circuits exploit the exponential law codifying the low-power subthreshold operation regime and have been simulated
with realistic parameters from a commercially available CMOS process. They occupy an area of a fraction of a square-
millimetre, while consuming between 1 and 12 microwatts of power. Simulations of fabrication-related variability results are
also presented.
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Introduction

The human body can be viewed as an incredibly complex

biological oscillator that exhibits prominent harmony between all

cellular rhythms in it, thanks to the enviably efficient energy and

performance properties of the cells. With an average net power

consumption of only 1pW , performance of approximately 107

ATP-dependent biochemical reactions per second and typical

dimensions that do not exceed 10mm, the average human cell is

undoubtedly an unmatched ‘‘biological microprocessor’’ of various

types of signals [1,2].

Although cells are accurate and power-efficient ‘‘biological

processors’’, in most cases they require specific conditions and a

certain amount of time from start to completion of an operation.

For example, one of the most important cellular oscillations in the

human body, mitosis, is a highly demanding procedure, which

undergoes several stages and requires a large period of time,

usually several hours, until it is completed [1,3]. In addition, even

small changes in experimental parameters of a biological process

implemented in vitro might lead to significant phenotypic variations

and require repetition of the whole process, leading to loss of

valuable test time and ultimately to high cost.

For these reasons, it can be argued that it is very advantageous

to simulate biological and biochemical dynamics by means of

powerful computers, which use precise and accurate numerical

simulation methods and are able to process huge amounts of data,

based on the mathematical equations that describe each cellular or

molecular function. Various reduced or extended mathematical

models have been proposed, particularly during the last few

decades, defining in a more or in a less accurate mathematical way

most of the biological rhythms, which take place in the human cell.

More specifically, the mathematical description of cellular

behaviour has progressed to such a level that a gene-protein

regulation network or a cellular/neural network can now be

efficiently described by a system of coupled nonlinear differential

equations, which incorporate properties, such as stochasticity and

cell variability [4–6].

Albeit the mathematical models describing cellular functions

have reached an adequate level of accuracy and can be simulated

with the use of powerful software, when it comes to the simulation

of very large networks of cells, whose dynamics include

nonlinearity, stochasticity, cell variability, dynamic uncertainties

and perturbation, software simulations start to become extremely

demanding in computational power [2]. Moreover, computer

simulations are not always suitable for human-machine interac-
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tion, since continuous monitoring might be required in conjunc-

tion with small device area and low power consumption.

This appearing gap that exists between computer simulations

and biology can be filled with the use of certain biomimetic

engineering devices, which are capable of generating dynamical

behaviours similar to the biological ones observed experimentally.

With the use of ultra-fast, ultra-low-power analog chips that are

able to simulate single or multiple cell operations and are

organised in highly parallel formation, it is possible to implement

large VLSI cell networks, which - in principle - could include the

time-varying stochastic parameters that define a biochemical

system [7].

The striking similarities between the equations describing

biochemical systems and the equations defining the current-

voltage relations between properly interconnected subthreshold

MOS devices and capacitors, provide the motivation to emulate a

real life cellular behaviour by means of an ultra-low power

electrical circuit. The potentials of such an endeavour are

tremendous: with the use of the aforementioned circuits,

researchers would be able not only to simulate biological responses

fast and accurately by simply altering different biological

parameters that can be translated into certain electrical param-

eters, but would also be able to predict a future cell behaviour

following a deterministic or a stochastic dynamical description.

Inspired by the above, the aim of this paper is to introduce a

systematic way of designing such electrical circuits by exploiting

the similarities between the Nonlinear Bernoulli Cell Formalism

(NBCF) and systems of ordinary differential equations (ODEs) that

characterise biochemical processes. The flexibility provided by the

NBCF allows us to use simple static translinear blocks for the

implementation of mathematical operations, in combination with

dynamic translinear blocks whose current-voltage logarithmic

behaviour is characterised by the Bernoulli differential equation, to

realise in full the differential equations, which specify the

considered biological systems.

The paper is structured as follows: Firstly, we introduce the

biological models that characterise the cellular and molecular

behaviours. Then present the log-domain mathematical frame-

work used for the transformation of the biological equations into

the electrical ones. To illustrate the striking similarities between

the original equations and the electrical ones, an in depth

mathematical analysis is provided exhibiting the nonlinear

properties of both models and examining how close these models

are to each other. After the mathematical treatment of both

models, a section comparing simulations of these dynamical

models produced by MATLAB� and Cadence software platforms

is presented. Moreover, a section investigating the robustness of

the proposed circuits based on Monte Carlo Analysis and

Transient Noise Analysis simulations follows. Finally, a discussion

section is presented commenting on the similarities of both

biological and electrical models and providing an insight into the

envisaged applications of such bioinspired devices.

Modelling Intracellular Signals

Cells in multicellular organisms need to communicate with each

other during their daily functions, in order to accomplish a large

number of operations, such as cell division, apoptosis or

differentiation. The remarkable ways through which this commu-

nication is achieved is a result of complicated combinations of

electrical or chemical signalling mechanisms. This paper focuses

on one of the key intracellular signalling processes, the intracellular

calcium (Ca2z) oscillations [1]. Analysing the background

mechanisms leading to the oscillatory behaviour of intracellular

Ca2z and presenting the mathematical models proposed for the

description of these oscillations, we aim at demonstrating a

systematic approach for the design of VLSI circuits that are able to

generate similar dynamics to the ones produced through the

aforementioned intracellular signalling processes.

Models of intracellular calcium oscillations
Being amongst the most important cellular rhythms in the field

of biological oscillations and body rhythms in general, Ca2z

oscillations exhibit great interest for a plethora of reasons. Apart

from the fact that Ca2z oscillations occur in a large number of

cells either spontaneously or after hormone or neurotransmitter

stimulation, these rhythms are often associated with the propaga-

tion of Ca2z waves within the cytosol and neighboring cells [1].

Moreover, the undisputable regulatory properties of Ca2z in a

wide range of cell operations, such as metabolic/secretory

processes, cell-cycle progression, replication or gene expressions

combined with the vast number of cell types, where Ca2z

oscillations take place in, (e.g. cardiac cells [8], oocytes,

hepatocytes [9], endothelial cells [10], fibroblasts or pancreatic

acinar cells) underline the importance of this intracellular signal

and stress the need for the development of accurate mathematical

models that can efficiently describe this type of intracellular

oscillation [1].

Due to the Poincaré{Bendixson theorem [11] at least a two-

variable system of kinetic equations is required for the realisation

of self-sustained oscillations. As illustrated in [12], at least five

minimal models can be conceived for this biochemical type of

oscillation. Apart from the two-dimensional model proposed by

Goldbeter and his collaborators [13], a focal point of this paper,

other minimal models such as the ones presented by Li and Rinzel

[14] and Marhl et al. [15] can be used to describe this intracellular

rhythm, each one exploiting a different system process, such as

Ca2z exchange with extracellular medium, inositol triphosphate

receptor (IP3R) desensitisation or even Ca2z binding to proteins

[12]. In the following paragraphs, a brief analysis will be presented

regarding the prevalent, experimentally verified mechanism for

Ca2z oscillations in cells.

Models For Ca2z Oscillations Based On Ca2z-Induced

Ca2z-Release Mechanism. According to a feedback mech-

anism proposed by Berridge [16,17], IP3 triggers Ca2z mobili-

sation from an intracellular store causing cytosolic Ca2z to be

transported into an IP3-insensitive store from which it is released

in by a Ca2z activated process [1]. This mechanism, which has

been experimentally demonstrated in the past, is also known as

‘‘Ca2z-Induced Ca2z-Release’’ mechanism or CICR. The existence

of this specific intracellular mechanism has been verified in a wide

variety of cells [1].

By taking the principles of the aforementioned ‘‘structure’’ into

consideration, Goldbeter and his collaborators [1,13,18–22]

developed a reduced and an extended model, which accurately

and efficiently describe Ca2z oscillations. Relying on the

hypothesis that the amount of Ca2z released is controlled by

the level of stimulus through modulation of the IP3 level and by

making the simplification that the level of stimulus-induced, IP3-

mediated Ca2z is a model parameter, the following two-

dimensional minimal model for the description of intracellular

Ca2z oscillations is generated:

_XX~z0zz1b{z2(X )zz3(X ,Y )zkf Y{kX

_YY~z2(X ){z3(X ,Y ){kf Y
ð1Þ
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with

z2(X )~VM2

X n

Kn
2 zX n

z3(X ,Y )~VM3

Y m

Km
R zY m

X p

K
p
AzX p

The quantities X and Y denote the concentration of free Ca2z in

the cytosol and in the IP3-insensitive pool, respectively. Moreover,

z0 denotes the constant Ca2z input from the extracellular medium

and z1b refers to the IP3-modulated release of Ca2z from the IP3-

sensitive store. The parameter b defines the amount of IP3 and

therefore measures the saturation of the IP3 receptor [1]. The

values of b typically range from 0 to 1. The biochemical rates z2

and z3 refer, respectively, to the pumping of Ca2z into the IP3-

insensitive store and to the release of Ca2z from that store into the

cytosol. The parameters VM2
, VM3

, K2, KR, KA, kf and k are the

maximum values of z2 and z3, threshold constants for pumping,

release and activation and rate constants, respectively [1,18–22]. It

is worth mentioning that the dimensions of the quantities in (1) are

mM=sec.

A major advantage of the above two-dimensional model is the

flexibility that it provides regarding the selection of the

cooperativity factors. Parameters n, m, and p define the Hill

coefficients characterising the pumping, release and activation

processes, respectively. Depending on the values of the Hill

coefficients, different degrees of cooperativity can be achieved and

this consequently allows us to study different cellular functions. For

example, in this type of intracellular signaling, pumping is known

to be characterised by a cooperativity index 2 [23]. However,

higher degrees of cooperativity have also been observed experi-

mentally [1][19].

Three different cases of Hill coefficients have been investigated

for the purposes of this paper. Based on [1,13,18–22] the case of

m~n~p~1, which corresponds to non-cooperative behaviour is

treated first. Subsequently, we consider the case where

m~n~p~2 and conclude with the m~n~2, p~4 case, which

implies high activation cooperativity. All three cases have been

simulated by means of MATLAB� simulations and realised by

means of new, ultra-low-power analog circuits. The fact that the

model is two dimensional makes it suitable for extended phase

plane analysis, based on the Poincaré{Bendixson theorem.

Modelling Genetic Regulatory Systems

In the 2002 paper of Chen and Aihara [24], a gene-protein

regulatory system was proposed and modelled by a nonlinear

system of coupled differential equations. It is a gene system with an

autoregulatory feedback loop, which can generate periodic

oscillations for a specific number of parametric values. The

biomedical application of the proposed multiple time scale model

is that it can act as a genetic oscillator or even as a switch in gene-

protein networks, due to the robustness of the dynamics produced

for different parameter perturbations [24]. This elegant nonlinear

system can be also used for the qualitative analysis of periodic

oscillations, such as circadian rhythms, which appear in most

living organisms with day-night cycles. Similar network models

have been proposed in [25] and [26], all of them aiming to

contribute to the establishment of new biotechnological design

methods [24]. Chen and Aihara’s model is described by the

following two-dimensional set of coupled nonlinear differential

equations:

_pp(t)~{kp p(t)z
k1

q(t)zk2

E _qq(t)~{kq q(t)z
q2(t)p(t)

q2(t)zk4
zk3

ð2Þ

where p(t) and q(t) express time-dependent protein concentra-

tions, kp and kq=E are degradation rates, k1 is the transcription and

translation rate for gene P, k2 is the Michaelis-Menten constant

and k3 and k4 are lumped parameters, describing the binding,

multimerisation of protein and phosphorylation effects [24]. The

quantity E is a real, positive number controlling time scaling.

In addition, in the same paper, a three dimensional biologically

plausible model has been presented, in order to verify their initial

assumptions. In this model, proteins p1 and p3 form a heterodimer,

which inhibits expression of gene 2, while protein p2 forms another

heterodimer for the activation of gene 3 and simultaneous

inhibition of gene 1. The aforementioned process is described by

the following set of three nonlinear coupled differential equations:

E _pp1(t)~
k1

1za1 p2
2(t)

{d1 p1(t)zb1

E _pp2(t)~
k2

1za2 p1(t) p3(t)
{d2 p2(t)zb2

_pp3(t)~
k3 p2

2(t)

1za3 p2
2(t)

{d3 p3(t)zb3

ð3Þ

This model is based on the assumption that the production of

proteins p1 and p2 takes place much faster than the production of

p3. The remaining quantities of the three dimensional model are

appropriate biological kinetic parameters. The quantities in (2) and

(3) have no units, due to lack of experimental data [24].

Mathematical Framework

The Bernoulli Cell formalism: A MOSFET type-invariant
analysis

The term Bernoulli Cell (BC) was coined in the international

literature by Drakakis in 1997 [27] in an attempt to describe the

relation governing an exponential transconductor and a source-

connected linear capacitor, whose other plate is held at a constant

voltage level (e.g. ground). It has been shown that the current

relation between these two basic monolithic elements is the well

known Bernoulli differential equation. As Figure 1 illustrates, by

setting the drain current as the state variable of our system and by

means of a nonlinear substitution (T(t)~1=ID(t)), we can express

the nonlinear dynamics of the BC in a linearised form.

The current relation of an NMOS device operating in weak-

inversion [28] is described by the following relation:

ID~
W

L
IDO

exp
VGS

nVT

� �
ð4Þ

where n is the subthreshold slope factor, VT is the thermal voltage

(&26mV at 300K ), IDO
is the leakage current of the transistor and

W, L are the width and length of the device, respectively.

Assuming VDS&4VT , the factor of the complete weak-inversion

drain current relation shown in [28], exp({VDS=VT ), can be

omitted.

Based on (4), the drain currents of the NMOS and PMOS

transistors can be re-expressed as follows, taking into consideration
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their nonlinear substitution and setting IS~(W=L)IDO
:

IDn (t)~IS exp
VG(t){VS(t)

nVT

� �
~

1

Tn(t)
ð5Þ

IDp (t)~IS exp
VS(t){VG(t)

nVT

� �
~

1

Tp(t)
ð6Þ

By differentiating (5) and (6) with respect to time:

_IIDn (t)~ IS exp
VG(t){VS(t)

nVT

� �� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{IDn (t)

_VVG(t){ _VVS(t)

nVT

� �

_IIDp (t)~ IS exp
VS(t){VG(t)

nVT

� �� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{IDp (t)

_VVS(t){ _VVG(t)

nVT

� �

Figure 1 shows that in the case where the bottom plate of the

capacitor is held at ground, application of Kirchhoff’s Current

Law (KCL) provides the following relations for both cases:

ID(t)zv(t)~IC(t)zu(t) (for NMOS)

IC(t)zv(t)zID(t)~u(t) (for PMOS)

where u and v are defined as the input and output currents of the

BC. Similar analysis holds if the bottom plate of the capacitor is

held at VDD.

By substituting the current expressions derived from KCL into

the aforementioned drain current differential equations, we end up

with the following set of differential equations for both transistor

types:

_IIDn (t){IDn (t)
_VVG(t)

nVT

z
½u(t){v(t)�

nCVT

� �
z

I2
Dn

(t)

nCVT

~0 ð7Þ

_IIDp (t){IDp (t) {
_VVG(t)

nVT

z
½u(t){v(t)�

nCVT

� �
z

I2
Dp

(t)

nCVT

~0 ð8Þ

The form of (7) and (8) comply with the Bernoulli differential

equation and by substituting IDn,p (t) with 1=Tn,p(t) (and conse-

quently _IIDn,p (t)~{ _TTn,p(t)=T2
n,p(t)) :

_TTn(t)z
_VVG(t)

nVT

z
½u(t){v(t)�

nCVT

� �
Tn(t){

1

nCVT

~0 ð9Þ

_TTp(t)z {
_VVG(t)

nVT

z
½u(t){v(t)�

nCVT

� �
Tp(t){

1

nCVT

~0 ð10Þ

Driving both devices by a logarithmically compressed input

current (see Figure 2) so that _VVG(t)~nVT
_IIIN (t)=IIN (t) and

_VVG(t)~{nVT
_IIIN (t)=IIN (t) for the NMOS and PMOS case,

respectively, yields:

_TT(t)

T(t)
z

_IIIN (t)

IIN (t)
z
½u(t){v(t)�

nCVT

� �
{

1

nCVT

1

T(t)
~0 ð11Þ

or equivalently to

nCVT

L(ln(TIIN (t)))

Lt
z½u(t){v(t)�~ 1

T(t)
~ID(t) ð12Þ

for both types of MOSFETs.

From (12), defining a new dimensionless state-variable w1,

which is defined as w1~TIIN , we end up with the following final

expression:

nCVT _ww1(t)z½u(t){v(t)�w1(t)~IIN (t) ð13Þ

By connecting m BCs in series (‘‘cascade’’ topology), where the gate

voltage of the first one is logarithmically driven by a constant input

current IIN (see Figure 2), while the gate voltage of the rest BCs is

controlled by the capacitor variations of the previous BC, a set of

generic dynamics termed Log-Domain-State-Space (LDSS) is

generated [29]. The LDSS relations are simply the linearised

differential equation expressions of the nonlinear differential equa-

tions governing the corresponding BC and have the following form:

nCVT _ww1(t)z½u1(t){v1(t)�w1(t)~IIN(t) ð14aÞ

nCVT _ww2(t)z½u2(t){v2(t)�w2(t)~w1(t) ð14bÞ

nCVT _ww3(t)z½u3(t){v3(t)�w3(t)~w2(t) ð14cÞ

nCVT _wwm(t)z½um(t){vm(t)�wm(t)~wm{1(t) ð14dÞ

where the subscript j (j~1,2,:::,m) corresponds to the j{th BC of

the cascade, while the variables wj are defined as follows:

Figure 1. A NMOS and PMOS based Bernoulli Cell. The arrows
defining the direction of the capacitor current are bidirectional, since
the BC analysis holds, whether the capacitor is connected to ground or
VDD.
doi:10.1371/journal.pone.0053591.g001
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w1(t)~T1(t)IIN (t), ½dimensionless�

w2(t)~T2(t)T1(t)IIN (t)~T2(t)w1(t), ½Ampere{1� ð15Þ

w3(t)~T3(t)T2(t)T1(t)IIN (t)~T3(t)w2(t), ½Ampere{2�

wm(t)~Tm(t)wm{1(t), ½Ampere{(m{1)�

The derivation of (14.b), (14.c) etc. follows a procedure identical to the

one explained before.

For Externally-Linear, Internally-Nonlinear (ELIN) applications

[30], such as the synthesis and the analysis of log-domain filters

[29,31], the usefulness of this formalism is that it bypasses the

nonlinearity of log-domain dynamics by converting them into their

linearised equivalent form [27,29,32]. However, the BCF, or more

specifically a new, modified version of it, termed Nonlinear Bernoulli

Cell Formalism (NBCF) can be used for non-cascaded BCs as well.

Instead of selecting to connect in tandem m single BC hosting log-

domain integrator-like translinear (TL) circuits, where the current

output of the previous one becomes the current input to the next one

[29], single, independent dynamic translinear blocks can be connected

together (say m again in number) with their inputs and outputs

connected in a coupled way (‘‘coupled’’ BC topology). As will be shown

later, it is the coupled interconnection of the dynamic translinear

blocks, which ‘‘host’’ the BCs that will allow us to implement the

coupled nonlinear biological differential equation systems.

Starting from the fact that each differential equation of the

LDSS can exist independently, a sub-category of the LDSS can

hold for j in number dynamic translinear blocks, each described by

the following equation:

nCjVT _wwj(t)z½uj(t){vj(t)�wj(t)~IINj
(t) ð16Þ

with

wj~
IOUTj

IQj

ð17Þ

where j~(1,2,:::,m), IOUTj
is the output current of the j{th BC,

while IQj
is the shifter current of the j{th TL circuit (see Figure 2),

which ‘‘hosts’’ the BC.

The careful selection of the input and output currents uj(t), vj(t)
and IINj

(t) of the BC allows us to construct various types of

differential equations (linear or nonlinear) and consequently imple-

ment them by means of an analog circuit. The appropriate selection

of these BC currents is dictated by the targeted biochemical

dynamics. Thus, their systematic realisation is leading to the

generation of the new type of circuits, termed CytoMimetic circuits.

Synthesis Method of Analog CMOS CytoMimetic
Circuits

In the previous section of the paper, the term CytoMimetic

circuits was introduced. This distinct class of bioinspired circuits

aims at simulating cellular and molecular dynamics, based on the

mathematical expressions of various, nonlinear, biological models.

Our attempts on implementing a wide range of nonlinear models

so far, show that the NBCF formalism is a useful tool for

transforming biochemical models into their electrical equivalent

and as a result design analog circuits, whose outputs will produce

dynamics that are very close to the ones of the prototype systems.

More specifically, the scope of CytoMimetic circuits is to mimic

the time-dependent behaviour of biochemical substances as they are

observed experimentally, relying on a time-scaled approach. Thus,

there is a distinct difference between them and the other categories

of bioinspired circuits, e.g. Neuromorphic [33–35], which mainly

focus on circuits that simulate biological dynamics related to

electrical activities of the cell. In contrast to the Neuromorphic case,

the intrinsic nonlinear cellular and molecular dynamics that

CytoMimetic circuits realise relate with the dynamical behaviour

of biochemical quantities, whose concentration is strictly positive.

The direct correspondence between electrical and biological

variables and parameters stemming from the NBCF provides the

flexibility required for the realisation of various nonlinear

mathematical models by computing their time-dependent dynam-

ical behaviour. The following paragraphs present the method

through which we migrate from the biological to the electrical field

of equations and will offer a systematic methodology to approach

nonlinear biochemical models.

Building the general form of the electrical analogous
equations

The basic structure of the electrical analogous equations is

provided by (16) and (17) and is physically implemented by the BC

block presented in Figure 2. This form of equations creates the

starting transistor-level scaffold, on which the electrical equivalent

system can be built. The counterintuitive, dimensionless param-

eters wj of the linearised BCF serve as the new variables of the

electrical model, which map the biological model’s variables onto

the electrical equations system. For the implementation of a

j{dimensional nonlinear equation system it is clear that j BC

blocks need to be used, each one corresponding to a different

biological variable of the prototype model. Therefore, (16) can be

generalised and in theory one can have a j{th order LDSS

described by the following equations:

nC1VT _ww1(t)z½u1(t){v1(t)�w1(t)~IIN1
(t) ð18aÞ

nC2VT _ww2(t)z½u2(t){v2(t)�w2(t)~IIN2
(t) ð18bÞ

nC3VT _ww3(t)z½u3(t){v3(t)�w3(t)~IIN3
(t) ð18cÞ

nCjVT _wwj(t)z½uj(t){vj(t)�wj(t)~IINj
(t) ð18dÞ

Figure 2. Schematic and symbolic representation of the
dynamic TL block, which ‘‘hosts’’ the Bernoulli Cell. All devices
have the same W/L ratio.
doi:10.1371/journal.pone.0053591.g002

A
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It should clear that (18) introduces a specific form of LDSS, suitable

for the description of coupled linear/nonlinear systems with the

coupling realised through the dependence of the uj , vj and IINj

currents on other u, v and IIN currents. The major difference

between (14) and (18) lies in the RHS of the equations. For the LDSS

equations (14) the RHS of all equations, except for the first one, is a

function of wj , due to the cascaded topology, where the input of the

next BC is the output of the previous one (except for the 1st BC)

[27,29]. On the other hand, for the RHS of (18), it is convenient that

one can taylor the input as a function of the wj variables in a manner

dictated by the targeted dynamics. The coupled BC topology - as

opposed to the cascaded one - provides the flexibility to use the

NBCF in various types of nonlinear differential equations, including

the ones presented in (1), (2) and (3). It should be borne in mind that

in this case the variable w is dimensionless. It is the mapping of the

biological parameters onto the dimensionless w that helps us

maintain unit consistency in the electrical equivalent equations.

Now it is time to explain how one can define the input and output

currents of the NBCF, which will help us complete the formation of

the electrical equations. Being implemented by static TL blocks, the

input/output currents uj and vj of the BC may become a function of

other variables and/or other input currents, e.g.

uj (or vj)~F w1,:::,wj ,:::wm,IIN1
,:::,IINj

,:::,IINm

� �
or simply adopt constant values, i.e. uj (or vj)~const:

However, the selection of the appropriate uj and vj currents in

each BC TL block consists the major challenge of the synthesis

phase of CytoMimetic circuits. The choice of which factors of the

ODE should correspond to the input/output currents of the BC

might become easier when re-expressing the target nonlinear

ODE in the form of (16) or (18).

By separating the terms of the ODE - which are a function of

the equation’s variables - from the other terms, presenting them

onto the LHS of the equations and then setting the system’s

variables as a common factor, will eventually generate a form

similar to (16) or (18). The exemplary, fictitious, two-dimensional

system of nonlinear equations (19) and (20) provide an example of

the above methodology. Let it be assumed that the following

biochemical dynamics are targeted:

_xx~F{a1xy{b1x2y2zc1x3 ð19Þ

_yy~a2y{b2xy2zc2x2

Expressing (19) in a form similar to (18):

_xxz( a1yzb1xy2
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{u1

{ c1x2
zffl}|ffl{v1

)x~ F
z}|{IIN1

ð20Þ

_yyz( b2xy|ffl{zffl}
u2

{ a2|{z}
v2

)y~ c2x2|ffl{zffl}
IIN2

where aj , bj , cj , F (j~1,2) are constants of appropriate dimensions so

that dimensional consistency of (19) and (20) is preserved.

Following this treatment, the terms inside the parenthesis on the

LHS may be treated as the uj and vj currents of the j{th BC,

depending on the sign of the terms. However, such an approach

though correct mathematically might not always lead to the

desirable, practical results. Practical electrical constraints must be

also taken into consideration. In particular, effort should be put

into ensuring that for the anticipated current value range - which

in practice is determined by the form of the targeted biological

dynamics - the devices remain in the subthreshold regime, which

in turn ensures the validity of the LDSS.

Exploiting the freedom provided by NBCF a mathematical

equation can be expressed into various equivalent electrical ones;

we opt to select the electrical analogous model, which not only

implements the desired biological model dynamics but also

facilitates compliance with the subthreshold region constraints of

MOS operation.

Electrical circuit blocks
CytoMimetic circuits comprise medium complexity dynamic

and static TL circuits. Although the majority of the mathematical

models that describe cellular or molecular behaviour might require

a wide range of different TL blocks combinations, most of them

could be derived from or would be a combination of three basic

blocks, given that various mathematical operations could be also

implemented using different TL network realisations. Regardless

of the TL combination chosen to generate the required

mathematical operations, the NBCF will hold. In order to

demonstrate the systematic nature of the proposed framework in

this paper, the following TL blocks have been used for the

implementation of all five electrical equivalent circuits presented in

this work.

The BC block. The BC block presented in Figure 2 is

responsible for generating the general form of the electrical

equivalent equations, described by (16) and (18). By being the TL

block, which ‘‘hosts’’ the Bernoulli Cell, it provides an output

current IOUTj
, which emulates one of the time-dependent variables

of the prototype biochemical model.

The squarer block. With all devices having the same W/L

ratio, the squarer block of Figure 3 produces the square of an input

current over a scaling current, expressed as IX in our circuits.

Without loss of generality, the scaling current usually has the value

of 1nA, so that the numerical squared value of the input current is

received at the circuit’s output. A cascoded topology has been

selected to minimise output current errors.

The multiplier/divider block. Employing devices of the

same W/L aspect ratio, the multiplier block allows us to perform

multiplication or division operations with currents based on the

TL principle: IOUT~I1I2=I3 (see Figure 4). Again, cascoded

topologies have been selected to minimise output current errors.

Example Synthesis of Two Biochemical Systems

From (1), (2) and (3), five mathematical models can be derived,

each one implementing a biological/biochemical function with

different properties. In this paper we opt to present in detail the

synthesis procedure leading to the electrical equivalent equations

and circuits for two prototype models, one from each category.

Thus, for the intracellular Ca2z oscillations model, the case where

the Hill coefficients m, n, p are equal to two has been selected,

while for the gene-protein regulatory models the two-dimensional

case will be elaborated. It is important to mention that the

remaining categories of models have been also analysed in a

similar way. However, owing to lack of space, it has been decided

not to describe and detail the transformation of all prototype

equations into their electrical equivalent circuits though confirm-

ing simulation results are presented for all cases.

At this point it must be stressed that regarding the time

properties of the implemented electrical analogous circuits, a
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nonlinear dynamical system approach should be adopted, in order

to estimate - roughly - the frequency of oscillation of the

considered electrical systems [11,36–39]. Contrary to the case of

input-output linear log-domain circuits and although the quanti-

ties tj~nCjVT=IQ
j

(j~1,2) have dimensions of seconds, they

should not be associated to the nonlinear systems’ frequency of

oscillations. Such quantities now relate to the time scaling of the

CytoMimetic electrical equivalents.

The use of the Andronov-Hopf bifurcation theorem is

particularly useful to determine CytoMimetic circuits’ frequencies

of oscillations [37]. The formula Tosc~2p=Imflg, where Tosc is

the period of oscillations and Imflg refers to the imaginary part of

the eigenvalues calculated at the critical bifurcation point of a

given system (see Figure 5), provides a means to estimate the

period of oscillations as long as the bifurcation parameter is ‘‘close’’

to the critical bifurcation value. Further information on this can be

found in [12,40,41].

For the models examined in this paper, the frequency of their

oscillations could not be determined by the aforementioned

method, since the systems’ points of operation are far away from

the critical bifurcation point. Consequently, we estimated the

frequency of oscillations exclusively through the appropriate use of

signal processing tools such as those found in Cadence and

MATLAB� software.

Intracellular Ca2+ oscillations model (m~n~p~2 case)
The model of intracellular Ca2z oscillations described by (1) is a

two-dimensional model. Since two prototype differential equations

are targeted, two electrical differential equations must be

employed. Based on the analysis provided in section 5 the

following steps have been followed:

a) The time-varying concentration of cytosolic Ca2z (CaCyt)

denoted by X in (1) has been chosen to be implemented by

means of the output current IOUT1
of the 1st BC, which bears

the subscript j~1 (IOUT1
<X ).

b) The time-varying concentration of Ca2z in the IP3-

insensitive pool (CaIP3
) denoted by Y in (1) is implemented

by means of the output current IOUT2
of the 2nd BC, which

bears the subscript j~2 (IOUT2
<Y ).

c) We have mapped each parameter and variable of the

chemical model onto a current in the electrical equivalent

one. Although such an approach might seem counterintui-

tive, especially in the case where the chemical value k is

characterised by units of 1=sec, the rather flexible nature of

the NBCF helps us overcome this problem. As illustrated in

(18), the dimensionless parameter wj~IOUTj
=IQj

multiplied

by the input/output BC currents uj or vj and by the 1=tj

factor ensures that this product has dimensions of nA=sec,

since the unit of the term tj is sec. Indeed, the current IK for

example, which corresponds to the variable k of the

biological model is divided by IQ1
and multiplied by the

1=tj~IQj
=nCjVT factor, which has units of 1=sec (j~1 in

this case).

d) The correspondence between biological concentration and

electrical current is mM<nA.

Based on the above, we can start forming the electrical

equivalent using only the first two terms of (18):

nC1VT _ww1(t)z½u1(t){v1(t)�w1(t)~IIN1
(t) ð21Þ

nC2VT _ww2(t)z½u2(t){v2(t)�w2(t)~IIN2
(t) ð22Þ

According to (16) and (17), (21) and (22) can be re-expressed as:

_IIOUT1,Ca
z

1

t1,Ca

½u1,Ca{v1,Ca�
IQ1,Ca

IOUT1,Ca
~

IIN1,Ca

t1,Ca

ð23Þ

Figure 3. Schematic and symbolic representation of the
squarer TL block. All devices have the same W/L ratio.
doi:10.1371/journal.pone.0053591.g003

Figure 4. Schematic and symbolic representation of the
multiplier/divider TL block. Note that both blocks presented in
this Figure are cascoded TL blocks. Depending on the accuracy required
for each application, CytoMimetic circuits can operate with non-
cascoded multiplier TL blocks. The symbolic representation for the non-
cascoded multiplier is similar to the one presented here but with a star
placed inside the symbol (see for example Figure 6). In the non-
cascoded topology, the devices that are sketched with dashed lines are
absent.
doi:10.1371/journal.pone.0053591.g004
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_IIOUT2,Ca
z

1

t2,Ca

½u2,Ca{v2,Ca�
IQ2,Ca

IOUT2,Ca
~

IIN2,Ca

t2,Ca

ð24Þ

For the realisation of the correct electrical equivalent equations,

the appropriate IINj
, uj and vj (j~1,2) currents must be selected,

as discussed in section 5. To elucidate the selection, (1) is re-written

in a form that resembles (23) and (24). According to [1] and [19],

in the case where m~n~p~2, the time constant kf is zero.

Furthermore, the parameter b present in (1) has been substituted

by bBio, to distinguish it from the electrical b. Thus, from (1) we

have:

_XXzkXzz2(X ){z3(X ,Y )~z0zz1bBio

_YYzz3(X ,Y )~z2(X )

or

_XXz(kz�zz2(X ){�zz3(X ,Y )) X~ z0zz1bBio

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{�ZZ

ð25Þ

_YYzẑz3(X ,Y ) Y~z2(X ) ð26Þ

where now

�zz2(X ) ¼D z2(X )

X
~VM2

X

K2
2 zX 2

�zz3(X ,Y ) ¼D z3(X ,Y )

X
~VM3

Y 2

K2
RzY 2

X

K2
AzX 2

ẑz3(X ,Y ) ¼D z3(X ,Y )

Y
~VM3

Y

K2
RzY 2

X 2

K2
AzX 2

By comparing (25) to (23) and (26) to (24), we set the following IINj
,

uj and vj (j~1,2) currents for BC1,2, in order to map the biological

parameters onto electrical ones:

.IIN1,Ca~Iz0
zbElecIz1

~IINT
ð27aÞ

.IIN2,Ca~
IVM2

I2
OUT1,Ca

I2
K2

zI2
OUT1,Ca

ð27bÞ

.u1,Ca~IKz
IVM2

IOUT1,Ca
IX

I2
K2zI2

OUT1,Ca

ð27cÞ

.v1,Ca~
IVM3

I2
OUT2,Ca

I2
KR

zI2
OUT2,Ca

IOUT1,Ca
IO

I2
KA

zI2
OUT1,Ca

ð27dÞ

.u2,Ca~
IVM3

IOUT2,Ca

I2
KR

zI2
OUT2,Ca

I2
OUT1,Ca

IO

I2
KA

zI2
OUT1,Ca

ð27eÞ

.v2,Ca~0 ð27fÞ

where the IO and IX factors correspond to biasing currents

employed by the squarers’ and multipliers’ blocks used to

implement the appropriate mathematical operations (see

Figures 3 and 4).

After the above treatment, substituting (27) into (23) and (24)

yields:

_IIOUT1,Ca
z

IK IOUT1,Ca

t1,CaIQ1,Ca

zzel
1,Ca{zel

2,Ca~
IINT

t1,Ca

ð28Þ

_IIOUT2,Ca
zzel

3,Ca~
1

t2,Ca

IVM2
I2

OUT1,Ca

I2
K2

zI2
OUT1,Ca

ð29Þ

where

zel
1,Ca~

1

t1,CaIQ1,Ca

IVM2
I2

OUT1,Ca
IX

I2
K2

zI2
OUT1,Ca

zel
2,Ca~

1

t1,CaIQ1,Ca

IVM3
I2

OUT2,Ca

I2
KR

zI2
OUT2,Ca

I2
OUT1,Ca

IO

I2
KA

zI2
OUT1,Ca

zel
3,Ca~

1

t2,CaIQ2,Ca

IVM3
I2

OUT2,Ca

I2
KR

zI2
OUT2,Ca

I2
OUT1,Ca

IO

I2
KA

zI2
OUT1,Ca

Table 1 summarises both chemical and electrical equations in a

way that highlights the analogies between them. Unit consistency

is preserved in (25), (26), (28) and (29) with the units of (25) and (26)

corresponding to mM=sec and the units of (28) and (29) to nA=sec

in a complete analogy.

Figure 5. Locus of system’s eigenvalues during the ‘‘birth’’ of a
limit cycle. m is defined in [40] as a bifurcation parameter.
doi:10.1371/journal.pone.0053591.g005
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Genetic regulatory networks model (two-dimensional
case)

For the two dimensional case of the genetic regulatory networks

model, the following steps have been followed:

a) The time-varying behaviour of protein’s q concentration is

implemented by means of the output current IOUT1
of the 1st

BC which bears the subscript j~1 (IOUT1
<q).

b) We have selected to implement the time-varying behaviour of

protein’s p concentration by means of the output current

IOUT2
of the 2nd BC which bears the subscript j~2

(IOUT2
<p).

c) Each parameter and variable of the chemical model is

mapped onto a current in the electrical equivalent one.

d) The correspondence between the units of the prototype and

electrical system is concentration<current (nA).

e) In the electrical model, the equivalent of the time scaling

factor E of the biological model (see (2)) has been implemented

by means of a ‘‘gain’’ current termed IGain, analogous to the

value of 1=E and by setting the values of the currents IKq
and

IK3
analogous to the values of (kq=E) and (k3=E), respectively.

The exact same procedure as before is adopted for the

realisation of the electrical equations of this model from the

prototype ones presented in (2). Starting once again from the

general form of the NBCF in (18) we end up with the following

two-dimensional electrical expressions:

_IIOUT1,ge
z

1

t1,ge

½u1,ge{v1,ge�
IQ1,ge

IOUT1,ge
~

IIN1,ge

t1,ge

ð30Þ

_IIOUT2,ge
z

1

t2,ge

½u2,ge{v2,ge�
IQ2,ge

IOUT2,ge
~

IIN2,ge

t2,ge

ð31Þ

By bringing the prototype equations of (2) into a form similar to

(30) and (31), we can make the selection of the input and output

currents of the two BCs more apparent:

_qq(t)z
kq

E
{

q(t)

q(t)2zk4

p(t)

E

� �
q(t)~

k3

E
ð32Þ

_pp(t)zkp p(t)~
k1

q(t)zk2
ð33Þ

A direct comparison of (30) with (32) and (31) with (33) helps us

determine the following IINj
, uj and vj (j~1,2) currents for BC1,2,

to achieve mathematical mapping of the biological terms onto the

electrical ones:

.IIN1,ge
~IK3

~IIN ð34aÞ

.IIN2,ge
~

IK1
IO

IOUT1,ge
zIK2

ð34bÞ

.u1,ge~IKq ð34cÞ

.v1,ge~
IOUT1,ge

IOUT2,ge
IX

I2
OUT1,ge

zIK4
IX

IGain

IO

ð34dÞ

.u2,ge~IKp ð34eÞ

.v2,ge~0 ð34fÞ

where the IO and IX factors correspond to squarers’ and

multipliers’ biasing currents.

Based on the above analysis and (34), the relations (30) and (31)

are transformed as follows:

_IIOUT1,ge
zxel

1,ge{xel
2,ge~

IIN

t1
ð35Þ

_IIOUT2,ge
z

IKp

t2,ge

IOUT2,ge

IQ2,ge

~
1

t2

IK1
IO

IOUT1,ge
zIK2

ð36Þ

where

Table 1. Chemical And Electrical Equations Of The Intracellular Ca2z Oscillations Model (m~n~p~2) Case, Codified By (1), (28) &
(29).

CaCyt
. _XX~�ZZ{kX{VM2

X 2

K2
2 zX 2

zVM3

Y 2

K2
RzY 2

X 2

K2
AzX 2

Chemical
Equation

. _IIOUT1
~

IINT

t1

{
IK IOUT1

t1IQ1

{
1

t1IQ1

IVM2
I2

OUT1
IX

I2
K2

zI2
OUT1

z
1

t1IQ1

IVM3
I2

OUT2

I2
KR

zI2
OUT2

I2
OUT1

IO

I2
KA

zI2
OUT1

Electrical
Equation

CaIP3 . _YY~VM2

X 2

K2
2 zX 2

{VM3

Y 2

K2
RzY 2

X 2

K2
AzX 2

Chemical
Equation

. _IIOUT2
~

1

t2

IVM2
I2

OUT1

I2
K2

zI2
OUT1

{
1

t2IQ2

IVM3
I2

OUT2

I2
KR

zI2
OUT2

I2
OUT1

IO

I2
KA

zI2
OUT1

Electrical
Equation

doi:10.1371/journal.pone.0053591.t001
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xel
1,ge~

IKq IOUT1,ge

t1,geIQ1,ge

xel
2,ge~

1

t1,geIQ1,ge

I2
OUT1,ge

IOUT2,ge
IX

I2
OUT1,ge

zIK4
IX

IGain

IO

Table 2 summarises the prototype and electrical equations for the

gene-protein regulation model.

Full circuit schematics
Exploiting the symbolic representation of the basic TL blocks

introduced in section 5, schematic diagrams for the two different

biological models are presented in Figures 6 and 7. Through these

diagrams one can understand how the equations in Tables 1 and 2

have been formed. For example, from Figure 7 one can track the

formation of the electrical equation for protein q, shown in

Table 2.

Starting from the general form of the 1st ODE of the system that

is shown in (30) and is physically implemented by the BC1 block,

the input/output currents of the block need to be formed. Based

on the analogy between biological and electrical model, from (32)

it can be found that for the BC1 block’s input current a constant

current source of value IKq
will be required. On the other hand,

the output current v1, is clearly a combination of the output

currents of BC1 and BC2, IOUT1
and IOUT2

. The PMOS multiplier

1 block combines IOUT1
with its squared value and their product is

subsequently combined with IOUT2
through the PMOS multiplier

2 block. The total product returns to the BC1 block as output

current v1 via the PMOS multiplier 3, where it is multiplied by the

value of the current IGain. In an exact similar way the input and

output current of all the other BC blocks of both electrical

equivalent systems are formed.

Mathematical Analysis of the Biological and
Electrical Models

The characteristics of the oscillatory behaviour of both

prototype and electrical models are determined by their Jacobian

matrixes and eigenvalues. In the following paragraphs, the

mathematical properties of the biochemical models and their

electrical equivalents are analysed using the aforementioned

linearised mathematical tools. The two models studied are the

ones of section 6. At this point, it would be useful to add that the

remaining models (see section 2) have also been investigated in a

similar way and yield similar results.

Intracellular calcium oscillations model (m~n~p~2
case)

Biochemical model. By setting the derivatives of the model

in (25) and (26) equal to zero and solving for X and Y , the fixed

points X � and Y � of the system can be calculated:

(X �,Y �)~

X � ~
�ZZ
k
~a

Y � ~
KRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VM3
VM2

K2
2
za2

K2
A

za2
{1

s
8>>><
>>>:

9>>>=
>>>;

The Jacobian matrix of the system is:

Jbio
Ca~

A1 B1

C1 D1

� �

where

A1~kz
2VM2

K2
2 X

K2
2 zX 2

� 	2
{

VM3
Y 2

K2
RzY 2

2K2
AX

K2
AzX 2

� 	2

B1~{
2VM3

K2
RY

K2
RzY 2

� 	2

X 2

K2
AzX 2

C1~
VM3

Y 2

K2
RzY 2

2K2
AX

K2
AzX 2

� 	2
{

2VM2
K2

2 X

K2
2 zX 2

� 	2

D1~
2VM3

K2
RY

K2
RzY 2

� 	2

X 2

K2
AzX 2

The following conditions are necessary for the generation of sustained

oscillations; the imaginary eigenvalues of the system l1~|a and

l2~{|a must satisfy the following: (a) l1zl2 = A1zD1 = 0 and (b)

l1l2 = det(Jbio
Ca )w0uA1D1{C1B1w0. Moreover, from the above

Jacobian matrix a pool of values, within which the system exhibits

sustained oscillations, can be determined. In order to define this

region of oscillations, the trace of the Jacobian matrix (A1zD1) is set

equal to zero after verifying that the determinant is positive for these

values. Table 3 summarises the outcome of this calculation and

produces the left shaded region of oscillations illustrated in Figure 8,

which is similar to the one presented in [1].

Electrical equivalent model. Setting both derivatives of the

electrical equivalent system equal to zero and solving for IOUT1

and IOUT2
, the following fixed points I�OUT1

and I�OUT2
can be

Table 2. Chemical And Electrical Equations Of The Gene-Protein System Model, Codified By (2), (35) & (36).

Chemical Equations Electrical Equations

Protein q
. E _qqzkq q(t){

q(t)2

q(t)2zk4

p(t)~k3 . _IIOUT1
z

IKq
IOUT1

t1IQ1

{
1

t1IQ1

I2
OUT1

IOUT2
IX

I2
OUT1

zIK4
IX

IGain

IO

~
IIN

t1

Protein p
. _ppzkp p(t)~

k1

q(t)zk2
. _IIOUT2

z
IKp

t2IQ2

IOUT2
~

1

t2

IK1
IO

IOUT1
zIK2

doi:10.1371/journal.pone.0053591.t002
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Figure 6. A block representation of the total circuit implementing intracellular Ca2+ oscillations for the case with Hill coefficients
m~n~p~2 as codified by (28) & (29). Two TL blocks have been selected in a non-cascoded form to provide circuit stability for low power supply.
doi:10.1371/journal.pone.0053591.g006

Figure 7. A block representation of the total circuit implementing the two-dimensional gene-protein regulation model as codified
by (35) & (36).
doi:10.1371/journal.pone.0053591.g007
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calculated:

(I�OUT1
,I�OUT2

)~

I�OUT1
~

IINT
IQ1

IK
~w

I�OUT2
~

IKRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IVM3
IVM2

IO
IQ2

I2
K2

zw2

I2
KA

zw2
{1

s
8>>>><
>>>>:

9>>>>=
>>>>;

The similarity between the electrical and biological fixed points is

straightforward. In a similar way as before, the Jacobian matrix of

the system can be computed:

Jel
Ca~

A2 B2

C2 D2

� �

where

Figure 8. Regions of oscillations (shaded parts) for both prototype and electrical intracellular Ca2+ oscillations systems, based on
their traces illustrated in Table 3. A relation between KR and �ZZ=k and IKR

and IINT
IQ1

=IK has been plotted in complete analogy to [1]. The
values been used for the calculation of both areas are shown in Tables 5 and 9.
doi:10.1371/journal.pone.0053591.g008

Table 3. Regions Of Oscillations For Intracellular Ca2z

Biological Model And Its Electrical Equivalent.

Biological Trace

. KR~
2a2 W{1

b {1
� 	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Wb{1
p

2K2
2 a

K2
2 za2

z
K K2

2 za2
� 	

VM2

{
2K2

Aa

K2
Aza2

Electrical Trace

. IKR
~h

2w2 W{1
e {1

� 	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
We{1
p

2I2
K2

w

I2
K2

zw2
z

IK I2
K2

zw2
� �

IVM2

{
2IQ2

I2
KA

w

I2
KA

zw2

Where :

a~
�ZZ

k
, w~

IINT
IQ1

IK

, Wb~
VM3

VM2

K2
2 za2

K2
Aza2

,

h~
C1I2

Q2

C2IQ1

and We~
IVM3

IVM2

IO

IQ2

I2
K2

zw2

I2
KA

zw2

doi:10.1371/journal.pone.0053591.t003

Table 4. Biological And Electrical Values For The Ca2z

Oscillations Model (m~n~p~1 Case).

Biological Values Electrical Values
(Scaling Factor l: 50%)

z0~1mM=s < l Iz0
=t~0:5=t nA=s

z1bBio~3mM=s < l Iz1
bElec=t~1:5=t nA=s

0vbBiov1 < 0vbElecv1

VM2
~100mM=s < l IVM2

=t~50=t nA=s

VM3
~1000mM=s < l IVM3

=t~500=t nA=s

K2~1mM < IK2
~1nA

KR~ 100mM < IKR
~100nA

KA~2:5mM < IKA
~2:5nA

kf ~0:1s{1 < l IKf
=nCVT ~0:05=nCVT s{1

k~2s{1 < l IK=nCVT ~1=nCVT s{1

doi:10.1371/journal.pone.0053591.t004
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A2~
IK IQ1

nC1VT

z
IQ1

nC1VT

2IVM2
I2

K2
IOUT1

IX

I2
K2

zI2
OUT1

� �2

{
IQ1

nC1VT

IVM3
I2

OUT2

I2
KR

zI2
OUT2

� � 2I2
KA

IOUT1
IO

I2
KA

zI2
OUT1

� �2

B2~{
IQ1

nC1VT

2IVM3
I2

KR
IOUT2

IO

I2
KR

zI2
OUT2

� �2

I2
OUT1

I2
KA

zI2
OUT1

C2~
IQ2

nC2VT

IVM3
I2

OUT2

I2
KR

zI2
OUT2

2I2
KA

IOUT1
IO

I2
KA

zI2
OUT1

� �2

{
I2

Q2

nC2VT

2IVM2
I2

K2
IOUT1

I2
K2

zI2
OUT1

� �2

D2~
IQ2

nC2VT

2IVM3
I2

KR
IOUT2

IO

I2
KR

zI2
OUT2

� �2

I2
OUT1

I2
KA

zI2
OUT1

For the generation of sustained oscillations in the electrical

equivalent system, the same conditions as in the biochemical

model case should apply for the electrical eigenvalues. The

equation that defines the electrical region of oscillations has been

generated by setting the electrical trace (A2zD2) equal to zero

and is also codified in Table 3. The region of oscillations of the

electrical equivalent model corresponds to the right shaded area

presented in Figure 8.

Table 5. Biological And Electrical Values For The Ca2z

Oscillations Model (m~n~p~2 Case).

Biological Values Electrical Values
(Scaling Factor l: 10%)

z0~1mM=s < l Iz0
=t~0:1=t nA=s

z1bBio~8mM=s < l Iz1
bElec=t~0:8=t nA=s

0vbBiov0:7 < 0vbElecv1:2

VM2
~100mM=s < l IVM2

=t~10=t nA=s

VM3
~1000mM=s < l IVM3

=t~100=t nA=s

K2~1mM < IK2
~1nA

KR~&10{1000mM < IKR
~30nA

KA~2:5mM < IKA
~2:5nA

kf ~0 < IKf
~0

k~2s{1 < l IK=nCVT ~0:35=nCVT s{1

doi:10.1371/journal.pone.0053591.t005

Table 6. Biological And Electrical Values For The Ca2z

Oscillations Model (m~n~2, p~4 Case).

Biological Values Electrical Values
(Scaling Factor l: 25%)

z0~1mM=s < l Iz0
=t~0:25=t nA=s

z1bBio~7:3mM=s < l Iz1
bElec=t~1:8=t nA=s

0:3vbBiov0:7 < 0:26vbElecv0:7

VM2
~65mM=s < l IVM2

=t~16:5=t nA=s

VM3
~500mM=s < l IVM3

=t~125=t nA=s

K2~1mM < IK2
~1nA

KR~ 2mM < IKR
~2nA

KA~0:9mM < IKA
~0:9nA

kf ~1s{1 < l IKf
=nCVT ~0:25=nCVT s{1

k~10s{1 < l IK=nCVT ~2:5=nCVT s{1

doi:10.1371/journal.pone.0053591.t006

Table 7. Biological And Electrical Values For The Gene-
Protein Regulatory Model (2D - Case) for E~0:01.

Biological Values Electrical Values
(Scaling Factor l: 50%)

kp~1 < l IKp
~0:5nA

kq=E~100 < l IKq
~50nA

k1~15 < l IK1
~7:5nA

k2~0:2 < IK2
~0:2nA

k3=E~10 < IIN~l IK3
IQ1

=IQ2
~6:3nA

k4~10 < IK4
~10nA

1=E~100 < l IGain~43nA

doi:10.1371/journal.pone.0053591.t007

Table 8. Biological And Electrical Values For The Gene-
Protein Regulatory Model (3D - Case) for E~0:01.

Biological Values Electrical Values

K1=E~400 < IK1
~400nA

K2=E~100 < IK2
~100nA

K3~0:08 < IK3
~0:08nA

d1=E~d2=E~4 < ID1
~ID2

~4nA

d3~0:04 < ID3
~0:04nA

b1=E~b2=E~0:4 < IB1
~IB2

~0:4nA

b3~0:004 < IB3
~4pA

a1~1 < IA1
~1nA

a2~1=16 < IA2
~16nA

a3~0:05 < IA3
~0:05nA

doi:10.1371/journal.pone.0053591.t008
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Gene regulatory networks model (two-dimensional case)
Biochemical model. Following the analytical steps detailed

in [24], the fixed points p� and q� of the mathematical model (32)

and (33) are calculated as follows for the parameter values reported

in [24]:

(p�,q�)~
p� ~7:6831

q� ~1:4787


 �

The Jacobian matrix becomes:

Jbio
ge ~

1

E

{kpE {
k1E

qzk2ð Þ2

q2

q2zk4
{kqz

2k4pq

q2zk4ð Þ2|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
JQ

0
BBBBBB@

1
CCCCCCA

According to [24], it is the sign of JQ in the Jacobian matrix which

defines whether an oscillation occurs or not. Based on the proof

presented in [24], the system exhibits oscillatory behaviour when

the term JQw0, while when JQv0 the system demonstrates

steady behaviour.

Electrical equivalent model. The fixed points I�OUT1
and

I�OUT2
of the gene-protein electrical circuit (35) and (36) become:

(I�OUT1
,I�OUT2

)~
I�OUT1

~0:3741

I�OUT2
~20:9015

( )

The Jacobian matrix of the electrical equivalent is defined as

follows:

Jel
ge~ A3

z}|{Jel
Q

B3

C3 D3

0
BB@

1
CCA

where

A3~{
IKq

nC1VT

z
1

nC1VT

IGain

IO

2IOUT1
IOUT2

IK4
I2

X

I2
OUT1

zIK4
IX

� �2

B3~
1

nC1VT

IGain

IO

I2
OUT1

IX

I2
OUT1

zIK4
IX

C3~
IQ2

nC2VT

IK1
IO

IOUT1
zIK2

� �2

Table 9. Electrical Properties Of Log-Domain Intracellular Ca2+ Oscillations & Gene-Protein Regulatory Circuits.

Type Of Log-Domain Circuit Ca2+(m = n = p = 1) Ca2+(m = n = p = 2) Ca2+(m = n = 2, p = 4)

Power Supply (Volts) 4 2 2.5

IQ1
(nA) 0.8 0.95 0.95

IQ2
(nA) 0.8 0.95 0.95

IO = IX (nA) 1 1 1

I
0
O (nA) 5 1 0.1

Capacitances (pF) C1 = C2 = 190 C1 = C2 = 200 C1 = C2 = 250

W/L ratio of PMOS and NMOS Devices (mm/mm) 200/1.5 30/9 and 10/2 28/8 and 8/1

Static Power Consumption (mW) 12.61 6.49 1.53

Number of devices (including current mirrors) 205 247 252

Chip Area (On Chip Caps/Off Chip Caps) (Estimate - in mm2) 0.533/0.0718 0.537/0.079 0.661/0.0911

Type Of Log-Domain Circuit
Gene-Prot. Reg.
(2D); EE= 0.01

Gene-Prot. Reg.
(2D); EE= 0.25,0.3

Gene-Prot. Reg.
(3D); EE= 0.01

Power Supply (Volts) 2.5 3 3

IQ1
(nA) 1 1 1

IQ2
(nA) 0.8 1 1

IQ3
(nA) — — 1

IO = IX (nA) 1 1 1

I
0
O (nA) 10 10 50

Capacitances (pF) C1 = C2 = 150 C1 = C2 = 150 C1 = C2 = C3 = 50

W/L ratio of PMOS and NMOS Devices (mm/mm) 38/0.95 50/2 100/2

Static Power Consumption (mW) 1.27 average value < 1.25 3.77

Number of devices (including current mirrors) 154 148 229

Chip Area (On Chip Caps/Off Chip Caps) (Estimate - in mm2) 0.350/0.0116 0.345/0.0316 0.222/0.0475

doi:10.1371/journal.pone.0053591.t009
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Figure 9. Comparison of transient analysis results generated by MATLAB� and Cadence simulations for the Log-Domain
intracellular Ca2+ oscillations circuits.
doi:10.1371/journal.pone.0053591.g009

Figure 10. Comparison of phase plane analysis results generated by MATLAB� and Cadence simulations for the Log-Domain
intracellular Ca2+ oscillations circuits.
doi:10.1371/journal.pone.0053591.g010
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D3~{
IKp

nC2VT

Following the analysis in [24], when Jel
Qw0 the electrical

equivalent circuit oscillates, while it remains steady for Jel
Qv0.

This can be verified by using the electrical values presented in the

following sections for this type of circuit.

Simulation Results

This section aims at demonstrating the correspondence between

the dynamical behaviours generated by simulating both the

biochemical/prototype and the electrical models. The software

used for the simulation of the aforementioned circuits is Cadence

Design Framework (CDF) version 5.1.41, using the process

parameters of the commercially available AMS 0.35 mm - MM/

2P4M c35b4 CMOS technology. MATLAB� and Cadence results

have been obtained for certain biological and electrical parame-

ters. The biological parameters’ values have been acquired from

literature, while the electrical parameters have been calculated

from the scaled relation between the two systems. The scaling

factors, aspect ratios and capacitance values presented in Tables 4,

5, 6, 7, and 8 and Table 9, respectively, are not unique. Further

explanation regarding the values of these quantities will be

provided in the following paragraphs.

Log-domain intracellular Ca2+ oscillations circuits
The proposed circuits can operate with different values of the

aforementioned quantities and produce similar dynamical behav-

iours as the ones illustrated in Figures 9 and 10. The reported

values are an indicative example leading to small chip area and

low power consumption, without being the only ones with these

characteristics. Scaling of the electrical current values was

required, in order to ensure compliance with the weak-inversion

conformities. It has been achieved by multiplying the values of the

constant currents existing in the numerators of the electrical ODE,

such as IINT
, IVM2

, IVM3
and IK (see Table 1) by a scaling factor. By

doing so, the electrical circuit’s time parameter 1=tj , with j~1,2 is

multiplied by this scaling factor leading to a time scaled final

electrical system. The time axis of the biological simulation figures

presented in Figure 9 needed to be normalised with respect to the

electrical systems’ time axis for the sake of comparison. It has been

achieved by multiplying the biological ODEs (see (1)) by the

constant l=t, where l is the scaling factor and t the time

parameter of each electrical system.

m~n~p~1 case simulation parameters. The first case

of the intracellular Ca2z model demonstrates that the mechanisms

of pumping, release and activation can be described by intrinsic

Michaelian processes. Based on [1] and [19], the various values of

the biological and electrical model parameters are presented in

Table 4. The electrical equivalent equation for this system is not

presented due to lack of space, however, it has been left to the

interested reader to verify the similarity between the aforemen-

tioned equations and the ones presented in Table 1.

As can be seen from Table 4, a scaling factor of 0.5 has been

applied to certain electrical quantities, forming a scaled electrical

equivalent model and without affecting the validity of the

Figure 11. Transient analysis of the m~n~p~1 intracellular Ca2+ circuit simulated for the values shown in Table 4 and for four
different bElec values. The electrical parameters are listed in Table 9. The figure illustrates the temporal behaviour of cytosolic Ca2z as the
value of the parameter bElec increases. Increasing the value of bElec, one can observe that the attractor of the system changes from an asymptotically
stable limit cycle to an asymptotically stable fixed point. Damped oscillations are generated when the system ‘‘crosses’’ the bifurcation point of the
system, which takes place when bElec&1.
doi:10.1371/journal.pone.0053591.g011
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mathematical model. Since the initial parameter values of this

biochemical model were relatively high for weak-inversion region

current values, the introduction of this scaling factor facilitates the

compliance of the proposed circuit with the logarithmic confor-

mities.

Both MATLAB� and Cadence results presented in Figures 9

and 10, for this case of Ca2z oscillations, have been generated for

bBio = bElec = 0.01. The remaining electrical parameters, such as

the values of the shifting currents IQj
, I
0
Oj

, the values of the biasing

currents IO and IX , aspect ratios and capacitances (see Figures 2,

3, and 4) are reported in Table 9, which summarises the electrical

parameters of the circuits simulated and commented up in the

next section.

The aforementioned simulation results demonstrate good

qualitative agreement with each other. The signature of the

electrical nonlinear system, i.e. the system’s phase plane, shows

good agreement with the biological one generated by MATLAB�.

Moreover, simulation results have been performed for various

capacitance values to investigate circuit’s robustness. The vast

majority demonstrated good agreement with MATLAB� simula-

tions for the values presented in Table 4 suggesting that the chip

area could decrease without affecting the targeted dynamics

significantly. Finally, Figure 11 demonstrates the actual circuit’s

behaviour as the parameter bElec increases. In practice, the

electrical system is migrating towards its bifurcation point, which

leads to the transfer from periodic to damped system oscillations.

m~n~p~2 case simulation parameters. The second

case of the intracellular Ca2z oscillations model is characterised

by a Hill coefficient of 2 and - in principle - represents a less mild

nonlinear system, compared to the previous case. The values of the

biological model are reported in [1,13,18–22] and similarly to the

Figure 12. Transient analysis of the m~n~2, p~4 intracellular Ca2+ circuit simulated for the values shown in Table 6 and for four
different bElec values. The electrical parameters are listed in Table 9. The figure illustrates the transition of the electric system from
asymptotically stable limit cycles to asymptotically stable fixed points. Damped oscillations are again generated after the system’s bifurcation point,
which corresponds to bElec&0:7. The simulated results exhibit satisfying resemblance with the simulation graphs presented in [1].
doi:10.1371/journal.pone.0053591.g012

Figure 13. Three-dimensional representation of the cytosolic Ca2+

oscillations based on the ideal biological model equations (1) for
the m~n~2, p~4 case. Using parametric sweep analysis with respect to
the bBio parameter, the birth and the decay of the cytosolic Ca2z oscillations
is presented. As expected, oscillations occurred only when 0:3vbBiov0:7.
doi:10.1371/journal.pone.0053591.g013
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previous case, a scaling factor of 0.1 has been introduced for the

values of the electrical equivalent model. The remaining values for

both models are presented in Table 5. The simulation results

shown in Figures 9 and 10, for this case, correspond to

bBio~bElec~0:1 and KR~30mM. The rest of the electrical model

parameters regarding shifting and biasing currents, aspect ratios

and capacitances are being codified in the collective Table 9. It

should be mentioned that although the value of IK should be equal

to 0.2nA based on the proposed scaling, it has been found that a

value of 0.35nA leads to slightly better transients and Monte Carlo

Analysis results. ‘‘Calibrating’’ this current value served only

presentation purposes aimed at highlighting the resemblance

between a real, electrical circuits response and the one produced in

MATLAB�. As it will be discussed in section 9, minor deviations

from the ideal prototype system are a ‘‘feature’’ of this proposed

class of circuits. In this case as well, transient and phase plane

analysis demonstrates that the two systems are adequately close.

However, differences exist at the boundaries of the regions of

oscillations for these systems, as illustrated in Figure 8.

m~n~2, p~4 case simulation parameters. The third

case of the intracellular Ca2z oscillations model is the one with the

highest-order of Hill coefficients equal to 4, leading inevitably to a

stronger nonlinear behaviour, where small current value devia-

tions can significantly alter the targeted dynamics. The selection of

the biochemical parameter values can be found in [1,13,18–22]

and as before the electrical parameters have been selected in a way

that serves the successful circuit operation. Again, certain

biochemical parameter values carried large values, thus, a scaling

factor of 0.25 has been introduced as shown before. Table 6

summarises the correspondence between the values of the

parameters of both models. The simulated results presented in

Figures 9 and 10, for this case, have been obtained for

bBio = bElec = 0.35. Shifting and biasing currents, aspect ratios

and capacitances, corresponding to the rest of the parameters of

the electrical equivalent model are again listed in Table 9. As in

the m~n~p~1 case, the migration of the electrical system

towards damped oscillatory behaviour is illustrated in Figure 12 by

increasing the bElec value. This behaviour complies with the

behaviour of the prototype system as presented explicitly in [1].

This electrical equivalent circuit is the one with the less

‘‘strikingly similar’’ simulation results in the set we considered. The

non-ideal exponential behaviour of certain devices combined with

the strong nonlinearity of the model leads to noticeable deviations

from the expected time traces and operating frequency, when the

circuit’s values are not identical to the corresponding biological

ones. Finally, two three-dimensional graphs are shown, in order to

demonstrate the behaviour of cytosolic Ca2z as b value increases.

Figure 13 illustrates the behaviour of the cytosolic Ca2z spikes

based on the biological model, as shown in (25). As bBio increases,

the density of the spikes increases in total agreement with

Figure 12. On the other hand, Figure 14 presents the three-

dimensional behaviour of the ideal electrical equivalent circuit that

implements cytosolic Ca2z and is codified by (28). The similarities

between the two figures are satisfying. Minor disagreement is

observed for the value of bElec that defines the transition of the

system from stable limit cycles to stable fixed points. For the

biological system, it is clear from Figure 13 that this point occurs

when bBio&0:7, while for the ideal electrical one this point occurs

when bElec&0:8.

Log-domain gene-protein regulatory circuits
This class of mathematical models presents milder nonlinearities

compared to the intracellular Ca2z oscillation models.

Two dimensional model simulation parameters. The

explicit mathematical analysis of this model takes place in [24] and

the simulation results reported there have been collected using the

set of values shown in Table 7. The units of the model are defined

as ‘‘concentration/time’’ in [24]. The electrical equivalent model’s

parameter values are also listed in Table 7, scaled by a factor of

0.5. As in the Ca2z model case, several scaling factor values lead

to similar dynamics.

The MATLAB� transient and phase plane results illustrated in

Figures 15 and 16 have been performed with the time scaling

factor E equals to 0.01. Cadence simulation results for E values of

0.25 and 0.3 are presented in phase plane form in Figure 17. The

rest of the electrical parameters required for the implementation of

the electrical equivalent circuit are again summarised in Table 9.

In the biological model the parameters kq, k3 and the term

(q(t)2p(t)=(q(t)2zk4)) are divided by the time scaling factor E, as

discussed briefly in Section 6. Since in the electrical model, every

parameter of the biological model has been represented by a

current of analogous value, the multiplication of the terms kq and

k3 by 1=E could be represented by specific currents IKq
and

IK3
~IIN with values analogous to (kq=E) and (k3=E), respectively.

Consequently, the value 0.01 of the biological E leads to electrical

current values that are 100 times bigger than the original

biological values. Moreover, the current IK3
~IIN must be also

Figure 14. Three-dimensional representation of the cytosolic
Ca2+ oscillations based on the ideal electrical model equations
for the m~n~2, p~4 case. Using parametric sweep analysis with
respect to the bElec parameter, the birth and the decay of the IOUT1

current oscillations that corresponds to cytosolic Ca2z oscillations is
presented. As expected, oscillations occurred only when
0:3vbElecv0:8. However, as Figure 12 illustrates, the real circuit
implementing this category of Ca2z oscillations presented slight
deviations regarding the boundaries where oscillations occurred, due to
the non-ideal behaviour of the circuit’s components.
doi:10.1371/journal.pone.0053591.g014
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Figure 15. Comparison of transient analysis results generated by MATLAB� and Cadence simulations for the gene-protein
regulatory circuits.
doi:10.1371/journal.pone.0053591.g015

Figure 16. Comparison of phase plane analysis results generated by MATLAB� and Cadence simulations for the gene-protein
regulatory circuits.
doi:10.1371/journal.pone.0053591.g016
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multiplied by the factor IQ1
=IQ2

to ensure that the time constant

parameter 1=tj is similar for every electrical ODE of this electrical

equivalent model, since in this circuit IQ1
=IQ2

.

Regarding the multiplication of the factor

(q2(t)p(t)=(q2(t)zk4)) by 1=E in the biological model, in the

electrical equivalent model the multiplication can be achieved

using two different techniques. The first involves the multiplication

of the factor (I2
OUT1

IOUT2
IX )=(I2

OUT1
zIK4

IX ) (see Table 2) by a

gain current, which has the value of the biological 1=E. The second

approach involves the use of a current mirror of ratio 1 : 1=E. This

ensures that the factor (I2
OUT1

IOUT2
IX )=(I2

OUT1
zIK4

IX ) will

acquire a value of 1=E times larger than before. The first approach

has been adopted for the simulations presented in Figures 15 and

16, while the second one for the phase plane results of Figure 17.

Finally, it is important to clarify that although the value of the

current IGain should have been equal to 50nA from a strictly

mathematical point of view, it has been found that when IGain equals

43nA the circuits approximates better its ideal electrical response.

This current value is translated into a biological time scaling factor

of 0.0116, a value that is practically close to the theoretical value of

E~0:01. As already mentioned, ‘‘calibration’’ is not compulsory for

this type of circuits, however, for presentation’s sake we have

decided to do so, in order to exhibit the potentials of the proposed

circuits. Although this type of biological system has been realised via

two different, transistor-level approaches, both of them exhibit good

agreement with the theoretical transient and phase plane results.

Three dimensional model simulation parameters. The

three dimensional case of the gene-protein regulation model is the

only three dimensional system included in this paper. The reason

that has led to its selection is twofold. The first relates with the fact

that the noticeable wide range of its values (from a few pA to

hundreds of nA) poses a challenging nonlinear model for testing both

the validity and the flexibility of the NBCF. The second one aims at

demonstrating the validity of the NBCF for higher order systems.

For this model, the authors in [24] have selected coefficient

values that are presented in Table 8. In the same table the values

of the electrical equivalent model parameters are tabulated. In this

circuit case, there has been no scaling between the values of the

original and the proposed electrical model. The time scaling factor

E has been set at 0.01, as in the original paper. Since in the

biological model the scaling factor 1=E is multiplied only by terms

that are constants, such as kj , bj and dj , where j~1,2, in the

electrical equivalent model the currents IKj
, IBj

and IDj
with

j~1,2 corresponding to the aforementioned biological parameters

can bear values that are equivalent to (kj=E), (bj=E) and (dj=E),
respectively, where j~1,2. The rest of the electrical model

parameters regarding shifting and biasing current values, device

aspect ratios and capacitance values can be found in Table 9.

Figure 17. Phase plane analysis for the 2D gene-protein
regulatory circuit with the E values set to 0.25 and 0.3. The
presented results comply with a similar phase plane analysis presented
in [24] for the same values of E.
doi:10.1371/journal.pone.0053591.g017

Figure 18. Monte Carlo analysis for the m~n~p~1 intracellular Ca2+ Log-Domain circuit. 600 iterations have been performed and the
percentage of iterations corresponding to successful oscillations was above 70%.
doi:10.1371/journal.pone.0053591.g018
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This only case of three dimensional model demonstrates good

agreement with the theoretically expected behaviour as it can be

observed from Figures 15 and 16. Despite the wide variety of the

selected currents for the targeted dynamics implementation, the

system behaves reliably, providing the desirable outputs. With

regards to the small (4pA) current value IB3
, it is worth noting that

it can be generated on-chip by means of ratiometric downscaling

of a larger in value reference current.

Figure 19. Monte Carlo analysis for m~n~p~2 intracellular Ca2+ Log-Domain circuit. From the 600 total iterations, more than 55% led to
successful oscillations.
doi:10.1371/journal.pone.0053591.g019

Figure 20. Monte Carlo Analysis for m~n~2, p~4 intracellular Ca2+ Log-Domain circuit. 600 iterations have been performed, leading to a
percentage greater than 90% regarding successful oscillation runs.
doi:10.1371/journal.pone.0053591.g020
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Figure 21. Monte Carlo Analysis for the two variable gene-protein regulatory Log-Domain circuit. Graphs A and B correspond to the
various frequencies of protein q and p, respectively, throughout the analysis. 600 runs have been performed resulting to a successful percentage rate
greater than 90%.
doi:10.1371/journal.pone.0053591.g021

Figure 22. Monte Carlo Analysis for the three variable gene-protein regulatory Log-Domain circuit. Graph A corresponds to the various
frequencies of oscillations of protein P1 during the 600 iterations of the analysis. Graphs B and C correspond to the various frequencies of proteins P2
and P3, respectively. The simulations have been performed for the current values presented in Tables 8 and 9. The number of successful oscillations is
greater than 85%.
doi:10.1371/journal.pone.0053591.g022
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Robustness and Electrical Properties of
CytoMimetic Circuits

The aim of CytoMimetic circuits is to emulate nonlinear

biochemical dynamics, thus, their robustness is of great impor-

tance. The robustness of the proposed circuits has been assessed by

means of Monte Carlo (MC) analysis. The output signals of the

proposed circuits are the drain currents IOUTj
of each BC.

Variations due to process and mismatch affect cumulatively such

output currents. The MC analysis results presented in Figures 18,

19, 20, 21, and 22 demonstrate the number of successful

oscillations for each output current versus the frequency of each

oscillation, accompanied by their mean value and their standard

deviation. Regarding the intracellular Ca2z oscillations circuits,

the bElec values that have been selected for the MC analysis of

each model are the central ones (see Tables 4, 5, and 6). Since MC

simulations generate a pool of data ‘‘around’’ a circuit’s given

operating point, it is vital to ensure that the simulated circuits’

variations will be within the circuit’s region of oscillation. Finally,

in Table 9 an estimate of the proposed chips’ area is demonstrated

for the cases that the circuits’ capacitors are built in and off chip.

The capacitors are assumed to be POLY1-POLY2 (CPOLY) with

CPOLY area capacitance &0:86fF=mm2.

Starting with the Log-Domain Intracellular Ca2z Oscillations

circuits and more specifically with the m~n~p~1 case, the MC

analysis was performed for the values of Table 4 and 9, with bElec

set equal to 0.55. The measured frequency for this value of bElec

during transient analysis is 19.7Hz. The mean MC frequency is

&25Hz with standard deviation around 3.5Hz. The adequate

robustness of the specific circuit is accompanied by static power

consumption close to 12.5mW and approximate chip area of

0.5mm2.

In the m~n~p~2 case the MC analysis was performed for the

values of Tables 5 and 9 but with C1~C2~250pF and aspect

ratio for PMOS and NMOS devices set at 60/8 and 10/2,

respectively. The bElec parameter was set at 0.7 and the frequency

of oscillation for this value is &5.3Hz. The mean value of the MC

oscillations is 5.5Hz with standard deviation that approximates

2Hz. Again, the total chip size could be reduced by decreasing the

total circuit capacitance which leads to slightly less similar

dynamics. The total power consumption of this circuit is close to

6.5mW , while the approximate chip area is 0.5mm2.

The most ‘‘sensitive’’ version of the intracellular Ca2z circuits,

the m~n~2, p~4 case has been tested for the values presented in

Tables 6 and 9 but with C1~C2~150pF and the aspect ratio set

at 17/8 and 8/1 for the PMOS and NMOS devices, respectively.

The bElec parameter was set at 0.4 leading to a sustained

oscillation of frequency 19.8Hz. The mean MC frequency is

19.5Hz with standard deviation close to 7.2Hz. The total

percentage of successful oscillations is higher than 90%. The chip

area approximates 0.65mm2 while the power consumed is close to

1.5mW . The various capacitance-aspect ratio combinations that

have been adopted during MC analysis aim at highlighting the

robustness of the proposed circuits, which are hardly affected by

these factors.

The Log-Domain Gene - Protein Regulatory circuits have also

been analysed by means of MC analysis. From the 2D case, the

circuit implementing the E~0:01 case has been chosen. Analysed

for the values presented in Tables 7 and 9 the percentage of

successful iterations is approximately 90%. The mean frequency of

the 600 MC runs is &32Hz with standard deviation 12.5Hz while

the expected frequency for these values based on the transient

analysis simulations is 27.5Hz. The circuit’s static power

consumption is approximately 1.3mW and its total chip area is

close to 0.350mm2. However, the circuit can emulate similar

dynamics with C1~C2~100pF and minor changes of current

values and aspect ratios.

The 3D category of the Log-Domain Gene - Protein Regulatory

circuits also exhibits high percentages of successful oscillations in

MC analysis. With an expected frequency of 4.9Hz, the circuit has

been simulated for the values presented in Table 8 and 9 but with

C1~C2~C3~100pF and aspect ratios 200/2 for both NMOS

and PMOS devices. Similar MC results have been achieved for the

capacitances and aspect ratios presented in Table 9. The mean

MC frequency was approximately 4.1Hz with the standard

deviation being close to 0.7Hz. Finally, Figure 22 also illustrates

a scatterplot for the frequencies of the successful oscillations of two

proteins. The graph verifies that the points lie on a y~x line,

where y and x correspond to the various frequencies of the two

proteins.

It is important to stress that although the proposed circuits have

been tested for their robustness by means of the highly pessimistic

MC analysis, the results obtained are adequately satisfactory. For

very large VLSI cell networks the variability shown in the MC

simulations is a feature that characterises CytoMimetic circuits,

which implements the non-identical behaviour of multiple, real

cellular responses [42,43]. Real cells have variations and variations

in the proposed circuits could mimic those, introducing biologi-

cally realistic randomness to the emulation.

Effect of noise on CytoMimetic circuits
The noise behaviour of the presented topologies exhibits the

basic characteristic on nonlinear logarithmic circuits operating in

accordance with the large-signal exponential characteristic of the

individual transistors, i.e. signal * noise intermodulation takes place.

The case of Externally-Linear-Internally-NonLinear (ELIN), time-

invariant responses has been studied both theoretically and by

means of measurements and simulations [30,44,45]. It has been

confirmed that when the input signal increases considerably in

strength with respect to the input DC value (for example, in class-

AB operation the ratio of these two quantities can be in the range

of thousands), then the noise power increases with the power of the

input.

The practical impact on performance of this ‘‘signal-dependent

noise floor’’ behaviour is a saturated SNR ratio for high inputs.

Hence, the performance of logarithmic and hyperbolic-sine ELIN

responses is characterised by a high dynamic range under constant

SNR for strong input signals. Transient Noise Analysis simulations

performed on the novel CytoMimetic circuits studied here have

confirmed the presence of signal * noise intermodulation. Though

noise simulations are not presented due to lack of space, the

interested reader can verify that the instantaneous noise tends to

increase close to the peaks of strongly non-linear signals (e.g. the

peak of the IP3 insensitive pool Ca2z dynamics for the

m~n~p~1 case in Figure 9 or the peak of Protein P1 dynamics

in Figure 15) in direct analogy with the noise behaviour results

presented in [30]. It would be useful to mention however that the

robustness of the realised CytoMimetic behaviours does not seem

to suffer when noise is taken into consideration.

Discussion

In this paper, we have elaborated a systematic circuit synthesis

method allowing for the direct mapping of nonlinear biological

ODE models onto electrical circuits consisting only of transistors

and capacitors and thus realisable by means of monolithic

microchips. Such progress enables the implementation of a novel

category of continuous-time, continuous-value VLSI biomimetic
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circuits, termed CytoMimetic circuits. Our design method is

inspired by the Bernoulli Cell Formalism (BCF) used for the

analysis and synthesis of dynamic translinear circuits. We have

methodically modified the BCF formalism to yield a systematic

electronic realisation method for nonlinear biochemical ODEs.

The resulting electronic circuits provide ultra-low-power, fast and

accurate means of simulating or predicting cellular or molecular

nonlinear dynamics. Simulated results of novel circuit topologies

mimicking the nonlinear dynamics of (a) an intracellular calcium

oscillations model and of (b) a gene-protein regulatory system

model have been used to illustrate the detailed method.

CytoMimetic circuits for cellular/molecular dynamics compu-

tation have a plethora of possible or envisioned future applications.

Firstly, such circuits open up the possibility of efficiently simulating

the dynamical responses of large networks of cells or even of

accurately mimicking the behaviour of small tissues or organs.

Indeed, based on such technology, the molecular dynamics of

large numbers of interconnected biological systems can be

efficiently simulated in real-time in silico by a microchip with

minute power demands and relatively small size. Secondly, when

coupled to arrays of biosensors and bioactuators, CytoMimetic

circuits can form the basis of fast and relatively cheap, reusable

high-throughput drug testing platforms or, alternatively, be

employed for the robust and optimal control of biological systems

(either natural systems or synthetic biology engineered systems).

Both of the aforementioned applications have been investigated by

few researchers based on microchips designed using approaches

that, contrary to NBCF, do not rely on explicitly defined

relationships between the electrical and biological variables. We

therefore anticipate that VLSI analog CytoMimetic chips, in

principle, have the potential to provide a more efficient and

rigorous solution to the applications outlined above.

All of the aforementioned represent only a minor part of the

potential applications that ultra-low-power biocircuits can have an

impact on. It is highly likely that future developments exploiting

the methods presented here will shed even more light on the range

of applications that such circuits can enable, revealing a promising

path for further fruitful research in cybernetic electronics.
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