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Abstract

We calculate radiative corrections to a full set of coupling constants for the 125 GeV Higgs boson at the
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I. INTRODUCTION

The LHC Run-I has confirmed the existence of a Higgs boson (h) [1, 2], whose properties
are in agreement with those of the standard model (SM) within the uncertainties of the current
data [3-8]. Thanks to the discovery of the Higgs boson, the SM was established as an effective
theory to describe physics at the scale of electroweak symmetry breaking. In spite of the success
of the SM, there are many motivations to consider new physics beyond the SM such as to solve
the gauge hierarchy problem and to explain phenomena like neutrino oscillation, dark matter and
baryon asymmetry of the Universe. There have been various new physics models proposed, some
of which predict new particles at the electroweak to TeV scales. However, currently none of such
new particles has been discovered yet. Their discovery is one of the main tasks of the LHC Run-II,
which will start its operation in 2015.

Even though the Higgs boson shows SM like properties, the Higgs sector can be extended
from the minimal form with only an isospin doublet field. Indeed, there is no theoretical reason
for the hypothesis of the minimal structure for the Higgs sector. Thus there are possibilities for
extended Higgs sectors such as those with additional iso-singlets, doublets, and/or triplets. These
extended Higgs sectors can also be consistent with all the current LHC data in some portions of
their parameter space.

Extended Higgs sectors are often introduced in various new physics models. For example,
the Minimal Supersymmetric SM (MSSM) requires the Higgs sector with two doublet fields [9, 10].
Multi Higgs structures are also studied in the context of additional CP violating phases [11] and also
realization of the strong first order phase transition [12], both of which are required for successful
electroweak baryogenesis [13]. Models with the Type-1I seesaw scenario are motivated to generate
tiny neutrino masses by introducing a triplet field [14]. An additional singlet is required in the Higgs
sector of the models with spontaneous breakdown of the U(1) g—;, symmetry [15-17], which may be
related to the mechanism of neutrino mass generation [18]. Introduction of an additional unbroken
symmetry into an extended Higgs sector, such as a discrete Zs symmetry [19, 20] or a global U(1)
symmetry [21], can provide candidates of dark matter. Under the Z; or the global U(1) symmetry,
if some of the scalar fields are assigned to be odd or to be charged, respectively, they cannot decay
into a pair of SM particles so that the lightest one is stable. Such an unbroken symmetry can
also be embedded into models with a radiative generation of neutrino masses [18, 22-27], where
the existence of tiny neutrino masses and dark matter can be explained by the same origin of the

symmetry. Therefore, a characteristic Higgs sector appears in each new physics model.



There are several important properties which characterize the structure of the Higgs sector.
First of all, it is important to know the number of scalar multiplets and their representations.
Second, does it respect new symmetries (global or discrete/exact or softly-broken)? Third, the
mass of the second Higgs boson generally contains information of the new scale which does not
appear in the SM. Fourth, the strength of the coupling constants among extra Higgs bosons provides
information of the dynamics of the Higgs potential which is essentially important to understand
nature of electroweak symmetry breaking. Finally, the decoupling property [28] of extra Higgs
bosons is closely connected to physics beyond the SM. Therefore, by future measurements of these
properties, the Higgs sector can be reconstructed, and the direction of new physics beyond the SM
can be determined.

The direct search of extra Higgs bosons can provide a clear evidence to a non-minimal Higgs
sector. The current data accumulated from previous collider experiments such as LEP [29, 30]
and Tevatron [31-36] have already given lower bounds for masses of the extra Higgs bosons. At
the LHC Run-I, in spite of the discovery of a Higgs boson with the mass of 125 GeV, no extra
Higgs boson has been found, and the parameter space for additional light Higgs bosons has been
constrained to the considerable extent in regions with relatively smaller masses of the extra Higgs
bosons [37-49]. At the LHC Run-II, with the energy of 13-14 TeV and the integrated luminosity
of 300 fb~!, wider regions of masses of the extra Higgs bosons will be surveyed.

In addition to direct searches, new physics models beyond the SM have also been indirectly
investigated by utilizing precision measurements of various physics observables such as the oblique
parameters at LEP/SLC experiments [50]. Flavour experiments have also been used to constrain
the mass of charged Higgs bosons which appears in extended Higgs sectors [51, 52]. Now that the
measured couplings of the Higgs boson h with the SM particles are consistent with the predic-
tions in the SM within the uncertainties, it is time to consider fingerprinting of extended Higgs
sectors [53, 54] by calculating radiative corrections to the predictions of those observables which
will be measured with more precision at future experiments such as the LHC Run-II, the high lu-
minosity (HL)-LHC [55-57] with the integrated luminosity of 3000 fb~! and future lepton colliders
like the International Linear Collider (ILC) [58, 59]. In new physics models with extended Higgs
sectors, the coupling constants of h with the SM particles are generally predicted with deviations
from the SM predictions due to field mixing and loop contributions of non-SM particles. Although
no deviation has been found up to now in the Higgs boson couplings within the uncertainty of the
current data, a deviation could be found in future experiments where more precise measurements

will be attained. We then are able to indirectly obtain information of the second Higgs boson from



these deviations. Furthermore, a pattern of these deviations strongly depends on the structure of
the Higgs sector, so that by comparing theoretical predictions of the Higgs couplings in various
new physics models with future experimental data the shape of the Higgs sector can be determined
indirectly. In order to compare the theory predictions to future precision data at the HL-LHC and
also the ILC, where coupling constants are expected to be measured typically by a few percent
or better accuracy, evaluations of the Higgs boson couplings including radiative corrections are
inevitable.

There are many studies for radiative corrections in extended Higgs sectors in the literature.
Radiative corrections to the electroweak gauge boson two point functions (oblique corrections) have
been studied in extended Higgs sectors in Refs. [60-63]. Loop induced vertices hgg [64], hyy [65-70]
and hZvy [67, 69-72] have been evaluated in extended Higgs sectors. Those to the Higgs boson
couplings have been investigated in the two Higgs doublet model (THDM) in Refs. [73-76] and in
the Higgs triplet model in Refs. [77, 78].

In this paper, we study electroweak radiative corrections to the coupling constants of the 125
GeV Higgs boson h in the THDM [79] with the softly-broken Zs symmetry [80]. Under the Z,
symmetry, four types of Yukawa interactions [81-84] are possible depending on the assignment
of the Zs charges into quarks and leptons. We investigate radiative corrections to the full set
of Higgs boson couplings (WWW, hZZ, htt, hbb, htr, hhh, hyy, hZ~ and hgg) at the one-loop
level in all types of the THDMs. We employ an improved on-shell renormalization scheme in our
renormalization calculation where the gauge dependence in the calculation of the mixing angle in
the previous studies is eliminated'. We then evaluate deviations in these coupling constants from
the SM predictions under the constraint of current experimental data and theoretical bounds such
as vacuum stability and perturbative unitarity.

Furthermore, we investigate how we can extract information of the inner parameters such as the
mass of the second Higgs boson and mixing angles when the scale factors ky are experimentally
determined with the expected uncertainties at the HL-LHC and the ILC, where xy are the ratios
of the measured couplings hX X from the SM predictions. Evaluating &, at the one-loop level in
the THDMs, we discuss the possibility to measure properties of the Higgs sector using the future
precision data by fingerprinting, and finally we determine the structure of the Higgs sector.

This paper is organized as follows. In Sec. II, we define the Lagrangian of THDMs, and give

formulae for the Higgs boson masses and the Higgs boson couplings at the tree level. After that,

! According to Ref. [85], the gauge dependence exists in a renormalization of a mixing angle.



Zy charge Mixing factor

@1 @2 Qr Ly ur dr er| &u  &d €e
Type-l|+ — + + — — —|cotf cotf cotf
Type-Il|+ — 4+ + — 4+ +|cotff —tanf —tanpf
Type-X|+ — 4+ + — — +|cotff cotf —tanp
Type-Y|+ — 4+ + — 4+ —|cotf —tanf cotf

TABLE I: Charge assignment of the softly-broken Zs symmetry and the mixing factors in Yukawa interac-

tions given in Eq. (8).

we discuss constraints from vacuum stability and perturbative unitarity as the theoretical bounds.
We then discuss the bounds from the electroweak oblique parameters, flavour experiments, direct
searches of extra Higgs bosons at the LHC and the measurements of Higgs boson couplings at the
LHC Run-I. In addition, we shortly summarize future prospects for extra Higgs boson searches
and precision measurements of the Higgs boson h at the LHC Run-II, the HL-LHC and the ILC.
In Sec. I1I, we explain renormalization in the electroweak sector, the Yukawa sector, and the Higgs
sector in the THDMs. We also discuss the modified renormalization scheme. In Sec. IV, we give
formulae of renormalized Higgs couplings and loop induced decay rates. We numerically estimate
decoupling properties and non-decoupling effects of our one-loop calculations in the section. In
Sec. V, we demonstrate how we can extract inner parameters by using future precision data.

Discussions and conclusions are given in Sec. VI.

II. TWO HIGGS DOUBLET MODELS
A. Lagrangian

In this section, we define the Lagrangian in the THDM with the softly-broken Z5 symmetry,
where the Higgs sector is composed of two isospin doublet scalar fields ®; and ®5. The charge
assignment for the Zy symmetry is shown in Table I. The following Lagrangian is modified from

the SM:
Lrapm = Liin + Ly =V, (1)

where Ly, Ly and V are respectively the kinetic Lagrangian, the Yukawa Lagrangian and the

scalar potential. Throughout the paper, we assume the CP invariance in the Higgs sector.



First, the kinetic Lagrangian is given by
Lyin = ‘Du(b1|2 + |Duq)2‘27 (2)
where D), is the covariant derivative:
D,=0 ! awe ! 'B 3
w= u_igT M_§9 iz (3)
with W (e =1-3) and B, being the SU(2); and U(1)y gauge bosons, respectively. The two

doublet fields can be parameterized as

wi

o; = ’ ) (’L = 172)7 (4)

%(Ui + hi +iz;)
where v; and vg are the vacuum expectation values (VEVs) for ®; and ®5, which satisfy v =
Vi +v3 = (V2GF)~/2. The ratio of the two VEVs is defined as tan8 = va/v;. The mass

eigenstates for the scalar bosons are obtained by the following orthogonal transformations as

wf Gi 21 GO hl H
4 = R(ﬂ) " ) = R(B) ) = R(a) )
Wsy H z92 A hg h
cosf —sinf
with R(0) = ; (5)
sinf cos6

where G* and G° are the Nambu-Goldstone bosons absorbed by the longitudinal component of
W= and Z, respectively. The mixing angle o is expressed in terms of the mass matrix elements
for the CP-even scalar states as shown in Eqgs. (18)-(21). As the physical degrees of freedom, we
have a pair of singly-charged Higgs boson H*, a CP-odd Higgs boson A and two CP-even Higgs
bosons h and H. We define h as the observed Higgs boson with the mass of about 125 GeV.

In terms of the mass eigenbasis of the Higgs fields, the interaction terms among the Higgs bosons

and the weak gauge bosons are given by
2 2
Lian =lsin(8 — o)+ cos(8 — ) H) (W W, + £2207,)
+ g¢1¢2V(au¢1¢2 o (blaﬂ(bz)v“ + Ip1¢2V1 Va ¢1¢2V1HV2;M (6)

where coefficients of the Scalar-Scalar-Gauge vertex GV and those of the Scalar-Scalar-Gauge-
Gauge vertex 9 $oVi Vs BTE listed in Appendix A.
Next, we discuss the Yukawa Lagrangian. The most general form under the Zs symmetry is

given by

—Ly =Y, Qpios®up + YaQPadp + YL Peep + hoc, (7)



where ®, g, are either ®; or ®3. Depending on the Z, charge assignment, there are four types
of Yukawa interactions [81, 82], which we call as Type-I, Type-II, Type-X and Type-Y [84]. The

interaction terms are expressed in terms of the mass eigenstates of the Higgs bosons as

—cpt = > L (el Frn+ el FrH — 2il€ s A)

f=u,d,e
V2, N —
+ [Vud@ (maéq Pr — my&uPr) d HT + me&evPreH' +hc ], (8)
where f}; and {}; are defined by
& = sin(B — a) + & cos(8 — ), (9)
€t = cos(8 — a) = &psin(f — a), (10)
and &7 in each type of Yukawa interactions are given in Table I. In Eq. (8), Iy represents the third
component of the isospin of a fermion f; ie., Ir = +1/2 (=1/2) for f =u (d,e).
The Higgs potential under the softly-broken Zs symmetry and the CP invariance is given by

V = m3|®1 % + md|®s)? — m3(®]®y + hoc.)

1 1 1
AP+ Sl ol + Agl @1 o + MBI + S5 [(@{%)2 + h.c.} . (11)
The tadpole terms for hy and hsy are respectively calculated as
o —m?2 + M?sin” g — U—Q()\l cos® B + Asin? B) (12)
vcos 8 2 ’
o _ —m3 + M?cos® § — v—2(A2 sin B8 + Xcos® B) (13)
vsin 3 2 ’

where A = \3 + Ay + A5, and M describes the soft breaking scale of the Z5 symmetry:
2
2 m3
_ ) 14
sin 3 cos 3 (14)
We note that M? can be taken to be both positive and negative values. By requiring the tree level
tadpole conditions; i.e., Ty = Ty = 0, m} and m3 can be eliminated in the Higgs potential.

The squared masses of H* and A are calculated as
2
v
mi. = M? — 5 At 2s), m% = M? —v?)s. (15)

Those for the CP-even Higgs bosons and the mixing angle « are given by

m3; = cos®(a — BYME + sin®(a — B)M3, + sin 2(a — B) M7y, (16)
mi = sin®(a — B)ME + cos’(a — B)M2, — sin2(a — B) M3, (17)
2M}
tan2(a — fB) = ——2 (18)
M, — M3,



where MZ%- (i,j = 1,2) are the mass matrix elements for the CP-even scalar states in the basis of

(h1, ho) R(B):

2
M2 = v3(\ cos? B+ Aosin B) + 1}55\811&2 28, (19)
M2, = M? 4+ v?sin? Bcos? B(A1 4+ Ag — 2)), (20)
02 v? -
M?Z, = 5 sin 28(— A1 cos? B + g sin? ) + 5 sin 23 cos 28\. (21)

Thus, ten parameters in the potential (v; 2, m%_3 and A1_5) can be described by the eight physical
parameters mp, My, My, Mye, @, 3, v and M?, and two tadpoles Ty and Ty which are taken to
be zero at the tree level. The quartic couplings Ai-A5 in the potential are then rewritten in terms

of the physical parameters as

Mo? = (my tan® B +mj) sin® (8 — @) + (m3; +mj, tan® B) cos®(8 — )
+2(m?% — m3)sin(B — a) cos(f — ) tan § — M? tan® 3,

Aov? = (m3 cot? B+ mi)sin?(B — @) + (m3 + mi cot? B) cos?(B — a)
—2(mf; — mj) sin(8 — a) cos(8 — a) tan § — M cot? j,

Agv? = (m —mi)[cos?(B — @) = sin®(8 — a) + (tan § — cot f) sin(8 — ) cos(8 — a)]
+2m?%. — M2,

Av? = M? +m? — 2m7;.,

Asv? = M? —m?. (22)

We here define the so-called scaling factors to describe deviations in the Higgs boson couplings

from the SM prediction as follows:

THDM THDM THDM
Y A
Ry = A for V=2, W k= = S (23)
Invv yhff hhh

where g,sl%\/dv, y,? if and /\S whn, are the AVV b f f and hhh coupling constants in the SM, respectively,
and those with THDM in the superscript are corresponding predictions in the THDM. The scaling

factors for loop induced couplings can also be defined by

L(h—=yv)iom 5 _ Db = Z9)teom > _ I'(h = gg) DM
L(h = 7)sm o

2
L(h—Zy)sm = 7 T(h— g9)sm

(24)

Jw

where I'(h — XY)gum and I'(h — XY )rppm are respectively the decay rates of the h — XY mode



in the SM and in the THDM. At the tree level, the scaling factors are given by

Ky = sin(f8 — a), (25)
k=& =sin(B — a) + & cos(8 — ), (26)
K, =sin(f — a) — w sin(8 — a) cos?(8 — a)
mpy,
- w cos®(B — a)(cot f — tan B). (27)
my,

We can see that all the scaling factors become unity when sin(8 — «) = 1 is taken, so that we call
this limit as the SM-like limit [86].

It is convenient to introduce a parameter x defined as

ng—(ﬁ—a), (28)

where * — 0 corresponds to the SM-like limit. We note that in the MSSM, the sign of x is
determined to be negative due to supersymmetric relations [10]. Because the current LHC data
suggest that the observed Higgs boson is SM-like, the case with |x| < 1 describes such a situation.
In this case, we obtain

2

Ky =1 % + 0%, (29)

/<;f:1+§fx—7+(’)(:c )s (30)
3 2M?

Ky =1+ <§ - m—%> 2+ O(z3). (31)

As it has already been pointed out in Ref. [53], looking at the correlation between kp and Ky
(f # f') is quite useful to distinguish the four types of Yukawa interactions.

In Fig. 1, we show the tree level predictions on the Axkg-Akp plane (left panels) and Akg-Aky
plane (right panels) in the four types of Yukawa interactions, where Axx = kx — 1. The subscripts
E, D and U respectively represent the flavour independent charged leptons, down-type quarks
and up-type quarks. In this plot, we take |z| = 0.2, 0.14 and 0.028, and the sign of x is set to be
negative (positive) for upper (lower) panels. As it can be seen, the predictions for the four types
of Yukawa interacitons appear in different quadrants of the Axp-Axp plane. Therefore, at least
from the tree level result, we can discriminate the type of Yukawa interaction in the THDM by
looking at the measured values of Axkg and Akp.

In Ref. [76], one-loop corrected Yukawa couplings have been calculated in the four types of

Yukawa interactions in the THDM. It has been clarified that the predictions in the four types of
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FIG. 1: Tree level predictions on the Axp-Axp (left panel) and Axg-Ary (right panel) plane in the four
types of Yukawa interactions. The black, blue and red curves respectively show the case of |z| = 0.20
[sin(f — ) ~ 0.98], |z| = 0.14 [sin(8 — a) ~ 0.99] and |z| = 0.028 [sin(8 — a) =~ 0.996]. The sign of x is

taken to be negative in the upper figures and positive in the lower figures.

Yukawa interactions are well separated on the Axkg-Arxp plane at the one-loop level even if we

scan the inner parameters under the constraints from perturbative unitarity and vacuum stability.

B. Vacuum stability and perturbative unitarity

A set of quartic coupling constants in the Higgs potential A;-A5 is constrained by taking into

account vacuum stability and perturbative unitarity as follows.
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First, we require that the Higgs potential is bounded from below in any direction with a large
scalar field value. The sufficient condition to keep such a stability of the vacuum is given by [19,

87, 88]
A1 >0, A>0, VA4 A3+ NHN(O7 A+ A5, A — /\5) > 0. (32)

Second, the perturbative unitarity bound [89-92] is given by requiring that all the independent
eigenvalues of the 7" matrix a?,i (i = 1-6) for the S-wave amplitude of the elastic scatterings of

2-body boson states are satisfied as

1
a2 < 3 (33)
’ 2
where each of a?,i is given by [90-92]
a? —i'g(A +22) £ V9(A1 — X2)2 +4(203 + \y)2 (34)
1+ = o [3(A1+ A2 1= A2 3+ A1)?),
T
o _ b )2 2
B = gom |+ ) & V=222 + 4)\4] , (35)
S S VI W VO = A)2 + a2 (36)
3, 3927 I 5]
1
0
=—(A 224 £ 3X 37
Qg+ 1677( 3+ 2A4 5); (37)
1
a9, = 16—71'(/\3 + \y), (38)
1
aﬁyi = ﬁ()\g + /\5) (39)

In Fig. 2, we show the allowed parameter region on the mg-sin(5 — «) plane (mg = my+ =
ma = my) from the constraints of vacuum stability and unitarity. It is seen that a large mass of
additional Higgs bosons is allowed in a case with sin(8 — a) ~ 1. As another view of this figure,
we can extract the scale of the mass of the second Higgs boson from the precise measurement of
ry using Eq. (27). For example, if 1% deviation in the hV'V coupling is found at future collider

experiments, then the second Higgs boson should exist below about 800 GeV.

C. The oblique parameters

The S, T and U parameters proposed by Peskin and Takeuchi [93] are modified in the THDM
from those predicted in the SM due to the additional Higgs boson loop contributions and modified
values of the SM-like Higgs boson coupling constants [60]. We define the differences of S, T" and

U parameters as AS = Stgpm — Ssm, AT = Trypm — Tsm and AU = Upgpym — Usm- These are

11
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FIG. 2: The upper limit on the mass of additional Higgs bosons me (= mg+ = ma = my) as a function of
sin(f8 — «) for each fixed value of tan 8 in the case of cos(8 — ) < 0. The left regions from each curve are

allowed by the constraints of vacuum stability and unitarity.
calculated in terms of = defined in Eq. (28) as

1 1
AS = —{Fg(mQZ;mH,mA) — ~Inm?.

4 3
ma mgz ma Mgz mpg mp 3
P nl) = FA (a2 ) a2 o )] o + 06, 1
[Amhmh A2 ) G (G )| 06 (40)
1 mpg+ Ma
AT = ——{ F5(0; 2 Az 24
47T62’U2{ 5( 7mA7mHi)+mH A(mH mH)
+2? [quFA (ﬂ, mHi) +miFa (mHi,mA) + miy Fa (—mH,—mh >
myg My mp mp mwy  mwy
+myFa (mﬂmH) + Ay Ga (o, ) —4mZGA(@,ﬂ)}}+O(x3), (41)
my My mw  myw my my

1 m m 1
AU = E{F/A(m;i’ m;fi) a §1nm%1i = F§(mZ;ma,m)

b2 [my (D4, ML _ g (TA M2y gy (e MY gy (e )

mg Mg mp Mmp mp mp mg My
e (mHmh) Gy (mH mh)}+0( 3, (42)
my my mw mw

12



where FY(m2;mi,mo) = [F5(m3-;my, mae) — F5(0;m1,ma)]/mé,. The loop functions are given by

F5(p?,m1, mg) = /01 dz [(22 — 1)(m —m3) + p*(2z — 1)*| In Ap, (43)
Fa(zy,m2) = %(az% — )+ 1 f%w% Inz? — % Inz2, (44)
GA(xl,xg)—%lnz—g—Q(llJr—aj%) nx%—%lnx%, (45)
Filoym) - 3[R B0 A3y 20D )
Gy (21 29) = 2 [ 1- ?‘11 —l— ia%:)%gln 31— a(f‘f —l— i:g)%sln 3 7 (47)

where
Ap = —2(1 —2)p> + zm? + (1 — z)m3. (48)

In the case of p?> = 0, the Fj function is expressed by

1
F5(O;m1,m2) = i(m% + m%) + W ) (49)

which gives zero in the case of m; = mo. Therefore, it is seen that AT becomes zero when x = 0

and mg = mpg+ or x =0 and my = mp+ is taken.

D. Flavour Constraints

The mass of H* can be constrained from various B physics processes, because contributions
from the SM W-boson mediation are replaced by H*. In most of the cases, the constraint from
the b — sy process provides the most stringent lower limit on mpy+ [51, 52]. In Ref. [52], the
branching ratio of B — X,v has been calculated at the next-to-next-to-leading order in the Type-I
and Type-II THDMs. A lower bound has been found to be mpy= 2 380 GeV at 95% confidence
level (CL) in the Type-II THDM with tan 8 2 2. A stronger bound for m+ is obtained for smaller
values of tan 5. On the other hand, in the Type-I THDM, the bound from b — sv is important
in the case with low tan3; e.g., mg+ < 200 (800) GeV is excluded at 95% CL in the case of
tan S = 2 (1). When we consider the case with tan 8 2 2.5, the bound on mpy=+ is weaker than
the lower bound from the direct search at LEP, namely, about 80 GeV [94]. The similar bounds
as those given in the Type-II and Type-I THDMs can be obtained in the Type-Y and Type-X
THDMSs, respectively, because of the same structure of quark Yukawa interactions.

For a large tan § case, bounds from B — 7v [95, 96], 7 — pwi [96, 97] and the muon anomalous

magnetic moment [98, 99] can be more important as compared to the bound from b — sv in the
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Type-II THDM. For example, the lower limit on m g+ to be about 400 GeV is given at 95% CL in
the case of tan 8 2 50 in the Type-1I THDM [96].

For a small tan 3 case, the B’-B" mixing is getting important to obtain a severe constraint
on my+ in the THDMs. In the case of tan 8 = 1, my+ < 500 GeV is exluded at 95% CL in all
the types of THDMs [100]. This gives the stronger (weaker) bound than that from b — sv in the
Type-IT and Type-Y (Type-I and Type-X) THDMs.

E. Direct searches for additional Higgs bosons at the LHC (7-8 TeV)

The neutral Higgs bosons in the MSSM have been searched in the 777~ decay mode in the gluon
fusion and bottom quark associated productions [37, 38] using data with 7 TeV and 8 TeV of the
collision energy and 4.9 fb~! and 19.7 fb~! of the integrated luminosity, respectively. Because the
production cross section of the CP-odd Higgs boson from the bottom quark associated production is
proportional to tan? 3, high-tan 3 regions can be excluded by this process. For example, tan 8 > 10
and tan 3 2 40 have been excluded at 95% CL for the fixed value of the mass of the CP-odd Higgs
boson to be 300 GeV and 800 GeV, respectively [38]. We can obtain a similar bound on tan 3 for
a fixed value of m4 in the Type-II THDM, because the structure of the Yukawa interaction is the
same as that in the MSSM. Although the H ff coupling constant can be different in the Type-II
THDM and the MSSM, we can achieve a similar value by taking sin(8 — «) ~ 1, especially for the
case with a rather large mass of the CP-odd Higgs boson in the MSSM.

When sin(8—a) # 1is given, H — WTW ™ /Z Z decays can open in addition to the decay modes
into a fermion pair. The search for the H — WW — evpuv signal has been performed [39] in the
range of 135 GeV < my < 300 GeV using data with 8 TeV of the collision energy and 13 fb~!
of the integrated luminosity. The bound is presented in the mpg-cos « plane for each fixed value
of tan 8 in the Type-I and Type-II THDMs. In the Type-I THDM with tan 3 > 1, the strongest
lower limit on myy is given to be about 220 GeV at 95% CL. On the other hand, in the Type-II
THDM, similar bounds have been given as in the Type-I THDM. However, for a case with large
tan 3, the excluded regions are shrinked due to an enhancement of fermonic decay modes such as
H — bb.

In Ref. [40], H — hh and A — Zh decays have been searched in the THDMs with data of
the collision energy to be 8 TeV and the integrated luminosity to be 19.5 fb~!. Multi-lepton and
di-photon final states have been used for this search. The upper limit on the cross section times

branching ratio has been presented for each of the processes gg — H — hh and g9 -+ A — Zh ;
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e.g., the upper limit of 8 (4) pb is given for the case of mp = 260 (360) GeV in the H — hh decay,
while that of 1.6 (1.0) pb is given for the case of my = 260 (360) GeV in the H — Zh decay.
These bounds can be translated into the excluded regions on the cos( — «)-tan 8 plane for given

values of my depending on the type of Yukawa interaction.

F. Measurements of the Higgs boson couplings at LHC (7-8 TeV), and future collider

experiments

Both the ATLAS and CMS Collaborations have provided scaling factors for the Higgs boson
couplings extracted from combined data of Higgs boson searches with /s = 7 and 8 TeV and
25 fb~! of the integrated luminosity [3-7]. Under assumptions of the universal scaling factors for

fermions and vector bosons; i.e., k» = Kk = Ky = Ky and Ky, = Ky, = Kk, current data gives
) ) F b VvV wW 7

Ky =1.15+£0.08, kp=0.99T5% ATLAS [4], (50)

Ky = 1.01+0.07, wp=0.871013 CMS [7], (51)

from the two parameters (k5 and k) fit analysis based on Ref. [101]. The scaling factors for the
loop induced Higgs boson couplings x4 and &, have also been measured under the assumptions of

kp = ky =1,

kg =1.08%015 . = 1.197015 ATLAS [4], (52)

kg = 089701 Ky =1.14T012 CMS [7], (53)

from the two parameters (x, and k) fit analysis based on Ref. [101]. We can see that all the

g
SM predictions (ky = 1) are included within the 2-o uncertainty of the measured scaling factors,
where the current 1-0 uncertainties of the scaling factors are typically of O(10%).

These scaling factors are expected to be measured more precisely at future collider experiments
such as the HL-LHC and the ILC. In TABLE II, expected accuracies of the measurement for the

scaling factors are listed at the LHC and at the ILC with several collision energies and integrated

luminosities.

IIT. RENORMALIZATION

We discuss the renormalization of the Higgs boson couplings, i.e, hZZ, hWW, hff and hhh

at the one-loop level. In previous works, each part of the renormalized Higgs boson couplings has
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Facility LHC HL-LHC ILC500 ILC500-up  ILC1000 ILC1000-up
V5 (GeV) 14,000 14,000 250/500 250/500 250/500/1000  250/500/1000
[ Ldt (fb=1) 300/expt 3000/expt 2504500 115041600 250+500+1000 1150-+1600+2500

Firy 5—-7% 2-5% 8.3% 4.4% 3.8% 2.3%
Kg 6—-8% 3-5% 2.0% 1.1% 1.1% 0.67%
Ew 4-6% 2-5% 0.39% 0.21% 0.21% 0.2%
Kz 4-6% 2—4% 0.49% 0.24% 0.50% 0.3%
Kg 6-8% 2-5% 1.9% 0.98% 1.3% 0.72%
KD = Kb 10-13% 4-7%  0.93% 0.60% 0.51% 0.4%
KU = Kt 14-15% 7-10%  2.5% 1.3% 1.3% 0.9%

TABLE II: Expected precision on the Higgs boson couplings and total width at the 1-o level from a con-
strained 7-parameter fit quoted from Table 1-20 in Ref. [102].

been calculated. The one-loop corrected hZZ and hhh couplings have been evaluated in Ref. [75]
in the Type-II THDM, and the hff couplings have been calculated in Ref. [76] in the four types
of THDMs.

We perform renormalization calculations based on the on-shell scheme which has been applied
in Ref. [75]2. However, it has been pointed out that there remains gauge dependence in the
determination of the counter term of S in Ref. [85]. We thus construct a new renormalization
scheme for  to get rid of the gauge dependence. As pointed out later in the paper, the gauge
dependence is not completely removed, but shifted to a sector which does not contribute to the
investigated couplings.

First, we prepare a set of independent counter terms by shifting all the relevant bare parameters
in the Lagrangian. We then give the renormalized one- and two-point functions which are written
in terms of the contributions from 1PI diagrams and counter terms. After that, we set the same

number of renormalization conditions as the number of independent counter terms to determine

them.

2 For the determination of the counter term for M?, the minimal subtraction scheme has been applied.
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A. Parameter shift and renormalized functions

We first perform the parameter shift of the electroweak sector and Yukawa sector as the following

m%/ — m%/ +5m%/ (V=W,Z), Qom — Qem + 0Qem,
my —>mf+5mf, TLQ —)5T1’2,

m = mi+0md, a—a+da, B—B+68, M — M+ M, (54)

where ¢ = H*, A, H and h. The wave functions for the SM gauge bosons B,, and W} and the
SM left (right) handed fermions ¢y, (¢r) are shifted as

1 . 1 . 1
B‘u — <1 + 5(523) Bl" WH — (1 =+ §5ZW> WN’ wL/R — (1 + §5Z£/R> wL/R' (55)

We can then write down the renormalized two point functions for each particle. In the following,
Ixy (p?) and L (p?) respectively denote the renormalized two point functions and the 1PI dia-
gram contributions for fields X and Y with the external momentum p,. The analytic formulae for
the 1PI diagram contributions are given in Appendix C. For the gauge boson two point functions

W+W~—, ZZ, vy and the Z-vy mixing, we have

Mww (p%) = iy (0°) — omiy + 62w (p° — miy), (56)
M2z (p%) = N7 (p*) — omy + 6Z5(p* — m3), (57)
1L, (p%) = I (p?) + p?0Z,, (58)
I 2y _ P12 _ 57 2 1 5 2 53124/ 59
Zv(p)_ ny(p)— Zy | P —§mz _mZQSWcW (59)
where
027\ _ st § Zw sty _ oy <5m2Z B 5m§v>
87, sy, 6Zp sy sy \ my miy
CWwS
027, = cwsw(0Zw —0Zp) = (627 — 82). (60)
S — Sw
The renormalized fermion two point function is expressed by the following two parts:
My (p%) = Tppv(p?) + s a(0?), (61)
where
. om
Ty (%) = p (W 02) + 02| +my [H}?}suﬂ) —ozl =
My 5,a(02) =~ [T (0%) + 624 |, (62)
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with

07} +02f  <p _ 824 0Zf

6z =
4 2 ’ 2

(63)

In Eq. (62), H}?IV, H}?I 4 and H}?IS are the vector, axial vector and scalar parts of the 1PI diagram
contributions at the one-loop level, respectively.

For the scalar sector, we first define shifts in the weak eigenbasis of the scalar fields:

hl ~ hl z1 ~ z1 wf[ ~ wf[
— Zeven ; — Zodd ’ 4 — Zi R (64)
hQ hg z9 zZ9 Woy Woy

where Zevem Zodd and Zi are arbitrary real 2 x 2 matrices. We then express shifts of the scalar
fields in the mass eigenbasis as
H GO G° G* G*
— R(_aa)Zeven y — R(_aﬂ)Zodd 5 — R(_éﬁ)zﬂ: ) (65)
h h A A H* H*
where we introduce Zeyen = R(—)Zeven R(cr) and Zodd/+ = R(—ﬂ)Zodd/iR(ﬁ). We define the

matrix elements of them as follows:

1+%ZH 0Cun 1—|—%ZG 0Caa P 1+%Zgi 0Co+ -

even — y Lodd — y L+ —

Ch 1412, 6Cac 1+ 3Za 6Cprg- 1+ 3Zp=+
(66)

We note that in Ref. [75], the above matrices are chosen to be a symmetric form; i.e., §Cyp = 6Chy,
0Cca = 0Caq and 0Cq+py- = 0CH+g—. In this paper, we do not take the symmetric form, and
we use the additional degrees of freedom to remove the gauge dependence in the renormalization

of 6 as it will be discussed in Sec. III-D. Finally, we can express the shifts of the scalar fields by

H 1+ 30Zy 0Chyp+6a\ ( H

%
h 0Chy —da 1+ %(SZ}L h
GY 1+ 46Zgo 6Caa+0B)\ [ G°

- :
A 6Cac — 6B 1+ 3624 A
G* 1+ 157 8Cavp- +96 G*

= 20Zu+ 0Cqrn-+08 . (67)

H* 6Crra- — 6B 1+16Zps H*

For the scalar sector, we have the renormalized one-point function for h and H as

Ty =0T, + T}, Ty =Ty +Tq (68)
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where

0T R 0Ty
0Ty 0Th

The renormalized two-point functions are expressed as

I (p?

44 (p?

p2

(r°) =
M (p?) =
(r°) =
(r°) =

Mg

) + [(p° — m3)6Zy — 6mj]
ik (p%) + [(0° — m3)0Zy — dm]
A (0%) + [(p* — m3)0Za — omY]

I3 n-(0) + [(0° = miy2)0 Zpgs — omiys]

and those of the scalar mixings are given by

ﬂHh (PQ)
ac(p?) =
ﬁH+G* (PZ) =

where

HlPI( )
HIPI ( )
HlPI( )

Wien- ") =

HIPI( )

HlPI( )

Wit~ (0") =

TP () + p2(6Chm + 6Chn) + m2 (S — 6Chyr) —

I (p?) + p*(0Caq + 6CGa) + mA (68 — 6Cac),

m?{(éa + 50Hh),

M- (?) + p*(6CH+- + 6Cq+p—) + mips (68 — 6Ch+g-),

2 2
50T 50T
R (p?) + 22— + =2,
CﬁU Sﬁv
26T 26T
HIPI( )+Ca 1+8a 2,
cgv 580
2 2
S 5T1 C (5T2
HlPI( )+ B + B ,
CBU SﬁU
2 2
S 5T1 C (5T2
P (2 B B
H+H (p)+ Cﬁl) + 851) 9

HIPI( ) — SaCa (@ _ @) ,

Cﬁl) Sg’U

HlPI( ) + % [sin(8 — a)Ty — cos(B — a)Ty],

IIlPI

Wlo 07) + 1+ [sin(B — o) Ty — cos(8 — a)Ti].

B. Renormalization conditions in the electroweak gauge sector

The renormalization of the electroweak parameters can be done in the same way as in the SM,

because the number of parameters to describe the electroweak observables are the same in the
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THDM. This nature is also applied to models based on the SU(2)r x U(1)y gauge symmetry with
p =1 at the tree level?.

We apply the electroweak on-shell scheme based on Ref. [103] to our model. There are five
counter terms in the electroweak sector; i.e., 5m‘2,v, 6m22, 0CQem, 0 Zw and 0 Zp. Therefore, we need

the following five renormalization conditions to determine them:

Reﬂww(m%,V) = 0, Reﬁzz (mQZ) = 0, (84)
d 2 2 -

d_pQHW(p ) 2=0 =0, 1z/(0)=0, (85)

fzee(qQ =0, ﬁlz ]7(2: me) = ie'yl“ (86)

where I} is the renormalized photon-electron-positron vertex. From the above conditions, we

obtain
St 961 TILPL(Q
Sy = Rellifly (), om = Rellffd(m), 2o bty - 2w 00 )
Qem cw my
6Z, = —1PY0), 674, = 2 Iy 0) + sty (88)
L ST Zy = m2 Zy J—
where H}ﬁl(O)’ = d;;zl_[}ﬁl(pZ) 1y’ The other counter terms are also determined by
p p—
22_2H1PIO 2 g2 52
524 — —mrioy — 2 —sw) 12, O ciy —siy dsfy (89)
cw Sw my, Sy Sy
2 HlPI 0 5 2
5 Zy, = —IIPL (o) — =W 272( ) SQW, (90)
L sw my sty
sty _ by [IH0n8) Tl Ok o
s2 52 m> m?
w w Z w
The counter term for the VEV v is also obtained through the tree level relation:
o2 = Ty, (92)
T lem
as
1PI
2 s3, mi, st m% L cw  my

3 When we discuss models without p = 1 at the tree level such as models with isosipin triplet scalar fields, one
additional input parameter is required to express the electroweak sector. Therefore, we need an additional renor-
malization condition to determine the extra counter term associated with the parameter. In the model with a
Y = 0 Higgs triplet field, the renormalization of electroweak parameters has been discussed in Refs. [61, 62].
Furthermore, in the model with a ¥ = 1 Higgs triplet field, that has also been discussed in Refs. [63, 78].
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1PI

We here note that the fermion-loop contribution to 157

(0)" is given by

Q@

(o) = 30 %NS QHA ~ ), (94)
f

where @)y is the electric charge of a fermion f, N{ is the color factor: N =3 (1) for f being quarks

(leptons), and A is the divergent part of the loop integral as defined in Eq. (B23) in Appendix B.

In order to avoid to input the light quark masses, we can use the following relation obtained from

Egs. (58) and (88)

N 1
(1281 n2) Ly (m3)] = 5 T2F ) + Acv, 5

1
2
my

P 0y =

vy mZ
where Aaey, is the shift of the structure constant that we can quote the experimental value. In
the right hand side of the above equation, the light fermion mass dependence in H}f;l(mzz) /m?% is

of order m%/mQZ, so that we can neglect it.

C. Renormalization conditions in the Yukawa sector

In the Yukawa sector, there are three counter terms dmy, 6Z{; and 67 1{;. To determine them,

we impose the following three conditions for the fermion two point functions [76]:

R d - d -
11 =0, —II v =0, —II 2 =0 96
ssvmy) =0, Zllypw (%) pom = G 11.4(07) P—— (96)
we obtain
om
— L~ () + 1 (m]),
my
5Zf _ HIPI 2 2 2 d HIPI 2 d HlPI 2
v = My (my) —2mj s frv (P )p2:m§ e 1.5 )p2=m§ ;
f 1PI 2 2 d 1PI 2
6ZA = — fﬁA(mf) + 2mfd7p2nff’A(p ) p2:m?. (97)

D. Renormalization conditions in the Higgs potential

There are totally 21 counter terms in the Higgs potential, namely, the counter terms for two
tadpoles 0T}, and 67T, four mass parameters 5m?0 (¢ = H*, A, H and h), two mixing angles da

and 43, four wave function factors §Z,, six wave function mixing factors 6C;;, and 6 M 24 First,

4 In addition to them, there are two more counter terms §Zo+ and 6Zgo. However, they do not enter the following
discussion.
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we impose two tadpole conditions at the one-loop level, i.e.,
T, =Ty = 0. (98)
We then obtain
6T, = —T}FPL 6Ty = —THL (99)

Second, eight on-shell conditions for the two-point functions:

I, (m2) =0, (100)
g ()] =0, for p=H* A, Handh 101
dp2 pp\D pP=m2 or ¢ = s 4 a1l s ( )

which determine the following eight counter terms

82 5T1 02 (5T2

omi = TE (m3) + 29— 4 == (102)
C3v SpU
26Ty sEOT
oy = Ui (my) + 2=t 4 =02, (103)
cpv 58V
s20T, 30T
om? = W (m3) + 2 4 272 (104)
Cpv SpU
2 2
PI $B6T1 CB(STQ
5m§{i = H}{*H* (m%{i) K 05—11 + Slg—’U7 (105)
and
57, = —-L 12 (106)
v g e P p=m?’

Three counter terms da, 0Cyy and dCgy, related to the mixing between the CP-even scalar

states are determined by imposing the following three conditions

fIHh(m%) = ﬂHh(m%{) = 0, 5ChH = 50Hh = 5Ch (107)
They give
1 T T
o = —f HlPI( ) + Hlpl( ) — 250Ca, <6_1 _ 6_2>:| , (108)
2(m3, —m3) cgu 5BV
1
0Ch = [[5h (miz) — gy (m)] - (109)

2(m3% —m3)
Three counter terms §3, 6C ¢ and §Cg 4 related to the mixing between the CP-odd scalar states
are determined by three conditions. Similar to the CP-even sector, we first impose the following

two conditions as
146 (0) = [ag(m?%) = 0. (110)
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We then obtain

0B —0Cag = — H“”I(o), 6B +8Cqa = — HlPI( 2). (111)

A

In order to determine three counter terms, we need to impose one more renormalization condition
in addition to that given in Eq. (110). This third condition can be used to remove the gauge
dependence in 65 which was already mentioned in the beginning of this section. To define such a
condition, we separate HlPI( %) into the gauge dependent (G.D.) part and the gauge independent
(G.1.) part as

HlPI( ) HlPI 2)}(;.]:) 4 HlPI )|GVI.. (112)
Then, we imposed the third condition as
08 = — o TR (mA) o - (113)
2m?4 G.L

Using Eq. (111), the remaining two counter terms are also determined:
5Cac = ——2 [ )]y, = 20O p | - (114)
§Cea = T [HlPI m?)|q g + 20 ?4)|G_D} . (115)
We note that in T} (0) only the G.D. part is survived; i.e., TI{3(0) = T (0 )|G.D.' As it can

be seen in Egs. (114) and (115), there still remains the gauge dependence in §C4g and §Cga4.
However, they do not appear in the following calculations for the renormalization of the Higgs
boson couplings. Instead of applying the above renormalization scheme for §3, we can apply the
MS scheme in which the gauge dependence can also be removed at the one-loop level as discueed
in Ref. [85]. In the following discussion, we apply the renormalized tan 8 determined by Eq. (113).

The above A-G° mixing can be replaced by the mixing between A and the physical Z boson
by the help of the Ward-Takahashi identity; i.e., the condition II ac(m?) = 0 is equivalent to that
of vanishing renormalized A-Z mixing; i.e., I, A(mi‘) = 0, which can be defined in the following

way. The Z-A mixing is obtained from the kinetic term:
Liin = mz(0,G°)Z" + -+ = mz (6B + 6Cca) (0, A°) 2" + - - . (116)
The renormalized Z-A mixing ﬁ’g 4= —iphTl, 4(p?) is then expressed by

Iz4(p%) = mz (68 + 6Caqa) + UL (D?), (117)
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3 8¢y 133

Type-I fz—g(cot B0 4 tan adar) —<=(cot 65 + tan ada) —<=(cot B80S + tan ada)

Ca Ca
SB B

Type-11 fg—g(cot [0S + tan adar) —2=(tan S0 + cot adar) — 2= (tan 35 + cot adar)

Sa Sa

Type-X fg—g(cot B0 + tan adar) —<=(cot 565 + tan adar) — 2= (tan 555 + cot adar)

Ca Sa
SB B

Type-Y fg—g(cot [0S + tan adar) —2=(tan S5 + cot adar) —<=(cot B80S + tan ada)

Sa Ca
cs Sp

TABLE III: The counter term for the mixing factors in Yukawa interactions.

where p* is the incoming momentum of A. The 1PI diagram contribution to the Z-A mixing
I (p?) is given in Appendix. Because of the relation ﬁh%(mi)/mi = 111 (m?%)/mz, the con-
dition f[Ag(mE‘) = 0 can be replaced by fIZA(mi) = 0. Therefore, Eq. (113) is rewritten as

L P12
0B = *%HZA(WAHGL- (118)

We note that the numerical difference between in our scheme and in the previous scheme applied
in Ref. [75] is negligibly small as long as we discuss the case with sin(f — o) ~ 1 or z < 1.

Two counter terms dCy+g- and 6Cq+py- for the mixing between the singly-charged scalar
states are determined by requiring the vanishment of the mixing between G* and HT at p? = 0

and p* =m?2 .,

- (0) = Mppeg-(my=) = 0. (119)
We obtain
1 =~ 1 -~
6Ch+g- = 08— —5—Hpte—(0), 0Cq+py- = —08— —5—j i (mis). (120)
mHi mHi

Until here, we did not discuss the determination of §M?2. As adopted in Ref. [75], we apply the
minimal subtraction scheme for §M?, where it is determined so as to absorb only the divergent
part in the hhh vertex at the one-loop level, that is

sM% 1
M2 167202

in 2
(23 NI we +AM? — 2y —md + TS (i —mi) — 3(2mby +m) | A,
f

(121)
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IV. ONE-LOOP CORRECTED HIGGS BOSON COUPLINGS

A. Analytic expressions

In the previous section, all the counter terms are determined by the set of renormalization
conditions. Now, we can evaluate the one-loop corrected Higgs boson couplings \WW, hZZ, hff
and hhh. In addition to the above couplings, we also give formulae for the loop induced decay
rates h — vy, h = Z~v and h — gg.

The renormalized RVV, hf f and hhh vertices are expressed as

g . -

Uiy (01,03, @%) = Ty + 005y + FZVV(PMPQ, 7). (122)
J T PI

D) (0303, 4%) = D3350 + 6T, + Th Y (0 13, ), (123)

Ui (0,03, ¢%) = s + 6T nan + Dok (03, 03, 4°), (124)

where It Xy 0Unxx and F}LI;(IX are the contributions from the tree level, the counter terms and the

1PT diagrams for the hX X vertices, respectively. In the above expressions, p; and pa (¢ = p1 + p2)
are the incoming momenta of particle X (outgoing momentum for h).

For the hV'V and hf f vertices, the indices i and j label the following form factors:

p1 p2

P1pP2
FZvv = Dy g™ + Thv =22 ) +il5y, yerPr (125)

% my 7
Pugr = Thpr + w0y + L1 + B210 7

+ bt + B2l ngs + b1l + bribevsThfy- (126)

The tree-level contributions are given as

ree 2m2 . ree m ree
F}IL"t/V p— UV sin(f — «), I‘sz = _ngh’ F}Czhh = —6Anhh,
Trvv =Dy =Thif =0 (7 #5). (127)
The counter-term contributions are
my [ om V
OLpyy = sin(f — ) +0Zv + 5Zh — — | +cos(B8—a)(d8 +0Ch) |,
m3,
§ v f
5Fhff = **fh L +5Zf + 5Zh + 5]? 5—’}1(56’h+6a) ,
my o Sh
Ol ppn =6 |:5)\hhh + §5Zh + Agnn(6a + 5Ch)} ;
Ty = 0y = 6F%ff =0, (j#59), (128)
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where

_ ov 9 5
0Nkl = —Anhh ” + oS ad cos”(f — a) cos(a+ B)OM
1 2
_ m [cos(3a — B) + 3 cos(a + )] om,
1 - sin2a, 5 o5 9
+ . cos(f — ) 3sin 53 (mj — M*)+ M*|

+ ——5——cos(B — a)[(4 + 4 cos 2a cos 23 — 2sin 2ar sin 26)m3
4v sin” 23

— (5 — cos4f3 + 4 cos 2a cos 23 — 2sin 2a sin 23) M?)6 . (129)

The counter terms (55,{ appearing in the Yukawa couplings are expressed in terms of 65 and d« as

listed in Table III. We define the renormalized scaling factors in the following way:

™1 2 2 2
FhVV(m\h my,q )THDM

Ry = & (130a)
Uiy (mi,mp, 4*)sm
&= Ffff(mfcam?c,QZ)THDM (130D)
d Ffff(mffa m?ﬁ QQ)SM
r 2 .2 2
Ry, = hhh(mhamhaq ) THDM (130C>

Lhnn(m?, m3 ., q%)sm
The momentum ¢? is fixed to be (my, +myp)%, m7 and (2myp,)? for &y, iy and &, respectively, in
the following discussion.

The deviations in the renormalized Higgs boson couplings are approximately expressed by keep-
ing the non-decoupling effects of extra Higgs bosons and top and bottom masses dependence

(ma ~ mpr is assumed) as

) 1, 11 m2, M2\?
Alivﬁfix —mé Z C@? (1771(21) 5 (131)
d=A,H,H*
Ay ~ Aky + & 1, (132)
Ao Aby o u T, (133)
1 4 2 M2 2 2
Aky = Aky + €0 — —5Eubg—st {1— — o <1+1n o )]
167 v Miype My Myt
11, m
y -~ __ 134
1672 3§d Z v?m3,’ (134)
d=A,H H*
. " 1L 1], mi o mymi
Ak~ ARy + &y @ — T6-23 &u Z 5,2 T Sdz, s | (135)
d=A,H H* @ H*
) 3 2M?\ , 1 4 mi M2\?
Afin = <2 Com? > T Ton? Z C(bgm%vQ - m3) "’ (136)
d=A,H,H*



where ¢y = 2 (1) for ® = H* (H, A). We can see that there appears the term
m2 /v? (1 — M2/m2)* in Aky which comes from the counter term §Zy; ie., the derivative of
the h two point function given in Eq. (106). When we consider the case with M? < v?, this term
gives the quadratic power like dependence of the mass of additional Higgs bosons. This corresponds
to the case where the masses of the additional Higgs bosons, which is expressed schematically as
m?{) = \v? + M?, mostly come from the Higgs VEV v. In such a situation, it is known that the
decoupling theorem does not work. On the other hand, if we consider the case of M? > v2, the
amount of A&y is reduced as 1/ mé according to the decoupling theorem. The same contribution
from 67, is also seen in Aky (f = 7,¢,b,t) through the term ARy. Notice here that there are
additional terms proportional to the top or bottom quark masses in Ak, and Akg. Apart from Aiy
and ARy, let us discuss the expression of A&y,. There appears the term mg /(mjv?) (1 — Z\lz/mé)3
which comes from the additional Higgs boson loop contributions to the 1PI Ahh diagrams. When
we consider the non-decoupling case; i.e., M? < v?, it gives the quartic power like dependence of
mg. Similar to the case in Aky, this effect is decoupled by 1/m3I> when M? > v? is taken.

Similarly, the decay rates of h — vy and h — gg are expressed in terms of z (x < 1) as

2
Gpa2,m; 1( M2> z? z?

D(h—yy) —2 D (1—- —— | + NI+ &z —")Ip+ (1 - =)Ly| , (137
(h =) 128v2r8 | 3 s ;Qf A+&a— ) r+ 0= )|, (137)
2

GFOZQTTL% 22
I'(h— ~ 5 n 1+&x——)Ip| 138
(= 99) = G S0+ G = e (138)

where I and Iy are the loop functions. The exact expressions for the decay rates for h — v,
h — Z~ and h — gg are given in Egs. (C58), (C59) and (C60) in Appendix C, respectively. In
Eq. (137), the first term in T'(h — ) proportional to (1 — Mz/mi,i) is the charged Higgs boson
loop contribution. When we take the limit of M? — 0, this term approaches to the constant —1/3.
This can also be understood as the consequence of the non-decoupling effect of the charged Higgs

boson loop contribution, but it is not like the quartic (quadratic) power like dependence as seen in

A/%h (A/%V and A/%f).
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FIG. 3: Deviations in the scaling factors for hV'V (upper left), hbb (upper right), hyy/hZ7 (bottom left) and
hhh (bottom right) at the one-loop level as a function of mg (= m+ = m, = my) in the case of sin(f—a) =
1 and tan 8 = 1 The black, blue and red curves respectively show the cases of Va2 (= \/W) = 150,
300 and 400 GeV.

B. Numerical evaluations

In the following, we show numerical results for the Higgs boson couplings at the one-loop level.

We use the following inputs [94]:

myz = 91.1875 GeV, Gp = 1.16639 x 107> GeV 2, a,l = 137.035989, Adaen = 0.06635,

my = 173.07 GeV, my = 4.66 GeV, m. = 1.275 GeV, m, = 1.77684 GeV,

mp = 126 GeV. (139)

We first show the case of the SM-like limit « = 0. In this case, the deviations in the Higgs

boson couplings purely comes from the additional Higgs boson loop effects. We note that the
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M? =0,sin(8—a)=1and tan = 1.

tan 8 dependence in the renormalized scaling factors appears only in ~y. We take all the masses
of additional Higgs bosons to be the same; i.e., mg+ = mg = my (= mg) for simplicity.

In Fig. 3, we show the decoupling behavior of additional Higgs boson loop contributions to
the Higgs boson couplings. The upper-left, upper-right, lower-left and lower-right panels re-
spectively show ARy, AkRy, A/{% 17~ and AF&p, as a function of me for several fixed values of
Va2 (= ,/m%{, — M?2) in the case of tan3 = 1. We can see that all the deviations approach
to zero in the large mass region due to the decoupling theorem [28].

In Fig. 4, we show the deviation in the Higgs boson couplings A&y, (upper-left), Akey (upper-
right), Ax?

v/ Zy

tan 8 = 1 for all panels. In this case, the magnitude of deviations increase when mg becomes

(lower-left) and A&y, (lower-right) as a function of mg. We take M? = 0 and
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Set A |Set B|Set C|Set D| Set E

Ary || —2% | —2% | —2% | —1% |—0.4%
Ak, || +18%|+10%| +5% |+18% | +18%

Aryp [|[+18% [ +10% | +5% |+18% | +18%

TABLE IV: Benchmark sets for the central values of measured scaling factors for the hVV, hbb and hrr
couplings. The expected 1-o uncertainties for each scaling factor at the HL-LHC and the ILC 500 are shown
in Eq. (140).

2

larger due to the non-decouipling effect of the extra Higgs boson loops except for A/@/ e

V. DETERMINATION OF INNER PARAMETERS FROM THE HIGGS BOSON COU-
PLING MEASUREMENTS

In this section, we investigate how we can fingerprint the THDMs using the one-loop corrected
Higgs boson couplings and also future precision measurements of these couplings at the HL-LHC
and the ILC. We carefully see how the tree level analysis for the model discrimination discussed
in Sec. I or in Ref. [53] can be improved by the analysis with radiative corrections. Furthermore,
we demonstrate how the inner parameters such as x, tan 5 and masses of additional Higgs bosons
can be extracted from the measurement of the couplings for the Higgs boson h. In our analysis
below, we assume that the deviations in scale factors of the Higgs boson couplings are measured
as expected in Table IV. We also assume that the SM values of these coupling constants are well
predicted without large uncertainties which mainly come from QCD corrections®.

Let us suppose that Axy, Ak, and Akp are measured at the HL-LHC and the ILC500. We
consider five benchmark sets for the central values of (Aky,, Ak, Aky) as listed in Table IV. Set A
is the typical case where Yukawa couplings deviate from the SM values rather significantly (18%)
with a relatively large deviation in the hV'V couplings (—2%). Set B and Set C correspond to the
cases with smaller deviations in Yukawa couplings with the same deviation in gauge couplings as

Set A. Set D and Set E do to the cases with smaller deviations in gauge couplings with fixing the

5 According to Refs. [104, 105], the current uncertainty of the bottom Yukawa coupling hbb due to the QCD correc-
tions is 0.77% in the SM. This uncertainty could be reduced in future studies using the lattice calculation up to
0.10% [105] which is better than the expected accuracy of the measurement of the hbb coupling at the ILC1000-up
as listed in Table II (0.4%).
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same deviation in Yukawa couplings as Set A. According to Table II, the 1-o uncertainty for these

scaling factors are given as

[0(kv),o(kp),o(kr)] = [2%, 4%, 2%)], for HL-LHC,

[o(kv),o(kp), o(kr)] = [0.4%, 0.9%, 1.9%], for ILC500. (140)

From the tree level analysis in Fig. 1, these benchmark sets indicate that the Higgs sector is the
THDM with the Type-IT (Type-I) Yukawa interaction assuming z ~ cos(5 — a) < 0 (z > 0). In
order to further discriminate Type-I or Type-II, we need additional information to determine the
sign of x such as the measurement of Ak, namely, if Ak, is given to be a negative (positive) value,
then we can completely determine the Yukawa interaction to be Type-II (Type-I). In the following,
we consider the case of Ak, < 0, so that we assume the case of the Type-I1 THDM.

For all Set A to Set E, we survey parameter regions in which values of k’s are predicted around
the central values within the 1-o uncertainty expressed in Eq. (140) by scanning the inner pa-
rameters x, tan 5, mg (= Mpys =My = my) and M? in the Type-II THDM. We also take into
account the constraints from vacuum stability and perturbative unitarity in order to constrain the
parameter space. The scanned regions for tan 8 and mg are taken as tan3 > 1 and mg > 300
GeV, respectively. Values of the other parameters M? and x are scanned over ranges which are
enough wide to obtain the maximally allowed parameter spaces.

In Fig. 5, we show the allowed parameter regions on the z-tan /3, z-mg, mg-¢ and mg-tan 8

planes from the left to right panels, where we define
C=1-M?*/mb, e =meC. (141)

The parameters « and mg give deviations of the Higgs boson couplings by the mixing effect and
the loop effect, respectively. Notice that the scale of mg corresponds to the mass of the extra Higgs
boson when M? = 0. The physics meaning of ¢ is to measure the magnitude of non-decouplingness
of the loop effects of extra Higgs bosons. If ¢ is unity, we have M? = 0, while if ¢ < 1 with
nonzero value of M? (> 0), the mass of the extra Higgs bosons partially comes from M? so that
the non-decouplingness is smaller. The central values of Ax’s are chosen from Set A, B, C, D and
E from the upper to bottom panels. The blue and red points correspond to the region within the
1-0 uncertainty at the HL-LHC and ILC500, respectively, from the central value in Table IV.

For Set A in Fig. 5, let us first explain the behavior of the red points on the z-tan 5 plane. In
this case, —2.4% < Ary, < —1.6% is allowed at the ILC500, which can be explained by taking

—0.22 < x < —0.18 at the tree level from the expression of Aky ~ —x2/2. At the same time,
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FIG. 5: Scatter plots for Set A, B, C, D and E from upper to bottom panels. The cyan and red points satisfy
the benchmark sets within the 1-o uncertainty at the HL-LHC and ILC500 given in Eq. (140), respectively.
For the panels shown in the second and the third columns, the vertical axis me and ( are respectively

defined by me = me(l — M?/m2) and ¢ =1 — M?/m3,.

both Ak, and Ak are approximately given by —x tan 8 in the Type-II THDM at the tree level,
so that tan 3 is determined by a fixed value of # from tan 8 ~ —A#, /2, which is around unity
if we take the central value of Ary and Ak, . In fact, by looking at the top-left panel in Fig. 5,

the above mentioned values of z and tan 8 are allowed. However, the actual allowed region of x
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inclucing radiative corrections is about from —0.22 to —0.12 which is wider than the allowed region
estimated at the tree level. This can be understood by taking into account the additional Higgs
boson loop contributions to xy, at the one-loop level. The approximate formula for A&y, is given in
Eq. (131), where the second term in the right hand side corresponds to the one-loop contribution.
The point here is that the sign of one-loop effect is negative, and it is proportional to the factor
(2. Therefore, the allowed region above x ~ —0.18 is explained from the one-loop contribution
with a non-zero value of (. On the other hand, the one-loop correction to x, is given by the same
form as for ky, as given in Eq. (132), so that the difference A&, — A&y, is approximately given
by the same form —xtan [ as that given at the tree level. Now from the measurement, since the
difference is determined with the uncertainty, —z tan 3 is also fixed at the one-loop level. We thus
can understand the shape of the allowed region of this plot. Although for A#&; the top quark, the
bottom quark and H* loop diagrams give an additional contribution as shown in Eq. (134), this
is not so significant in the scanned regions. As a consequence for Set A, when the measurement
at the ILC500 is assumed, the allowed value of x and tan 8 can be determined to be about from
—0.22 to —0.12 and from 1 to 2, respectively. On the other hand at the HL-LHC, Axy = 0 is
included within the 1-o uncertainty. Thus, x ~ 0 is still allowed, so that the value of tan 5 is not
determined at all because of the relation tan 3 ~ —Ax, /2. In addition, we can only extract the
lower limit of x to be about —0.22.

Next, we discuss the behavior of the second panel for Set A in Fig. 5. As we mentioned in the
above, the vertical axis mg measures the size of one-loop contribution to the deviation in the Higgs
boson couplings. At the ILC500, in the region with x ~ —0.20, the value of mg is determined to
be a smaller value, but mg ~ 0 is not included because of the constraint from vacuum stability.
This can be understood that the deviation from the tree level mixing is dominant in this case.
On the other hand, when the value of = approaches to zero, a sizable value of mg, is extracted, in
which the deviation driven by the one-loop contribution becomes more important to compensate
the reduced contribution from the tree level mixing. In addition, the upper limit of mg4 to be about
450 GeV is determined by the constraint from perturbative unitarity. At the HL-LHC, although
the blue plots are spread over the region with = ~ 0 as we observed in the z-tan 3 plot, the upper
and lower limit of mg is given by the constraint from unitarity and vacuum stability, respectively.

The third panel for Set A in Fig. 5 shows the allowed region on the mg-( plane, where ¢ is the
parameter indicating the non-decouplingness of the extra Higgs bosons. For Set A, the allowed
regions for ILC500 are shown by the red points while those for HL-LHC by the blue points. There

are upper and lower bounds for ¢ for each value of mg. They are crossed at around mg = 850 GeV
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which corresponds to the upper bound of the mass of extra Higgs boson. The region of ¢ is from 0.2
to 1.4 at mg = 300 GeV. The region of ¢ > 1 corresponds to M 2 < 0, where non-decoupling effects
are effectively large. The exclusion of { < 0.2 means that there must be some non-decoupling loop
effects of extra Higgs bosons in order to explain this benchmark point. At the HL-LHC, the similar
behavior can be observed. However, { = 0 is still allowed, so that we cannot say something about
the non-decoupling effect.

The last panel for Set A in Fig. 5 shows the allowed regions on the mg-tan S plane. At the
ILC500, tan 8 can be determined to be less than 2, and the upper bound of the mass of the extra
Higgs bosons are obtained to be less 850 GeV, while at the HL-LHC, tan 8 is undetermined and
only the upper bound of the mass of the extra Higgs bosons is obtained.

The panels shown in the second and third rows in Fig. 5 display the allowed parameter regions
for Set B and Set C, respectively, where the central value of Ar(= Akp) is taken to be smaller than
that of Set A, while Ak, is taken to be the same. By looking at the panels for the x-tan § plane,
we can see that a smaller value of |z| is preferred as compared to the case for Set A. Furthermore,
a smaller value of tan /3 is favored in addition to a smaller value of || as seen in the result at
the ILC500. These tendencies can be understood in such a way that the deviations in Yuakwa
couplings are proportional to —x tan 8 at the tree level. Because of the smaller value of |z|, the
deviation in sy, cannot be explained only from the tree level contribution, so that the one-loop
effect is necessary to compensate the tree level contribution. That is the reason why the red points
in the second and the third panels for Set B and Set C are given in the upper region which does not
include mg ~ 0 and ¢ ~ 0. Therefore, the non-decoupling effect can be extracted at the ILC500
for these two benchmark sets. From the results of ILC500, the upper limit on mg is extracted to
be about 950 GeV and 800 GeV for Set B and Set C, respectively.

The panels shown in the fourth and fifth rows in Fig. 5 display the allowed parameter regions
for Set D and Set E, respectively, where the central value of Ak, is taken to be smaller than that
of Set A, while Ak, (= Aky) is taken to be the same. From the red points in the left panels, it is
seen that the values of smaller |x| and larger tan § are allowed, which can be explained by the tree
level formulae of Ak, = —2?/2 and Ak, /b = —xtan 3. For Set E unlike the other benchmark sets,
values of x and tan 3 are not well determined even at the ILC500, because Ak, ~ 0 is included
within the 1-o uncertainty of ILC500. The extraction for mg, ¢ and mg is done from the ILC500
as 50 S mg < 300 GeV, 0.1 $ ¢ S 1.1 GeV and mg, < 850 GeV for Set D and 0 S mg < 200 GeV,
0S¢ <07 GeV and mg < 800 GeV for Set E.

Up to now, we have discussed the extraction of the inner parameters from the three experimental
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FIG. 6: Scatter plots for Set A with the additional constraint from x, = 0.98, 1.00 and 1.02 for upper,
center and bottom panels. The 1-¢0 uncertainty of ., is assumed to be 2% as expected at the HL-LHC. The
cyan and red points satisfy the benchmark sets within the 1-sigma uncertainty at the HL-LHC and ILC500
given in Eq. (140), respectively. For the panels shown in the second and the third columns, the vertical axis

me and ( are respectively defined by me = me(1 — M?/m2) and ( =1 — M?/m3.

inputs; i.e., Ak, Arr and Axy. In Fig. 6, we show how the extraction can be improved by adding
information of x, in addition to the above three inputs. The panels shown in the first row are the
same as those shown in the first row in Fig. 5, which are displayed in order to compare the results
with x,. The panels displayed in the second, third and fourth rows respectively show the allowed
region for Set A with the central value of . of 0.98, 1.00 and 1.02 within the 1-o uncertainty of
+2% as expected at the HL-LHC (see Table II). Because the accuracy of the measurement of «.,
at the ILC500 is not better than that of the best value at the HL-LHC, 2%, we also use 2% for
the analysis at the ILC500. As we see Eq. (137), the H* loop contribution to the decay rate of
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the h — 7y mode gives a different dependence of the non-decouplingness from that in A&y, and
Afk ¢, which is not proportional to mg, but proportional to ¢, so that the non-decouplingness ¢
can be expected to be extracted more precisely depending on the measured value of x,. In fact,
we can observe that ¢ is determined more precisely to be 0.5 < ¢ < 1.0, 0.25 < ¢ < 1.1 and
0.2 < ¢ < 0.5 at the ILC500 for the cases with the central value of x, = 0.98, x, = 1.00 and
K~y = 1.02, respectively, as compared to the case without s, (0.2 < ¢ < 1.2). The determination
of mg is also improved, because mg is given as a function of (. We note that smaller values of ¢
and g, are favored in the case of the larger central value of «., because the H * loop effect gives
a destructive contribution to the W boson loop contribution.

In Fig. 7, we also show the allowed parameter region with additional information of &, for Set
D. Similar to the results in the previous figure, ¢ and mg4 are well extracted as compared to the case
without k., displayed in the first row in Fig. 7. For example, ¢ is determined to be 0.3 < ¢ < 0.8,
0.1 $¢<0.6and 0.1 ¢ < 0.6 for the cases with the central value of x, = 0.98, s, = 1.00 and

ky = 1.02, respectively.

VI. DISCUSSIONS AND CONCLUSIONS

We have calculated radiative corrections to a full set of coupling constants for the Higgs boson
h at the one-loop level in the THDMs with the four types of Yukawa interactions under the softly-
broken discrete Z; symmetry. These couplings are evaluated in the on-shell scheme, in which the
gauge dependence in the mixing parameter which appears in the previous calculation is consistently
avoided. We have shown the details of our one-loop calculations, and have presented the complete
set of the analytic formulae of the renormalized couplings. We then have numerically demonstrated
how the inner parameters of the THDM can be extracted by the future precision measurements of
these couplings at the HL-LHC and the TLC.

We have found that the inner parameters of the THDM can be determined to a considerable
extent as long as sy, will be measured with the deviation about 1%. The extraction of the inner
parameters using the ILC500 is much better than that using the HL-LHC. That is mainly due to the
good accuracy of the hV'V coupling measurement at the ILC500 whose uncertainty is expected to
be less than 1%. Although we have only demonstrated the results for Set A to Set E assuming the
true Higgs sector is of the Type-II THDM, the similar analysis can be performed straightforwardly
in the other types of THDM or the other extended Higgs sectors, and the extraction of inner

parameters is expected to be attained as well in these models. Our study given in this paper
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shows that the numerical evaluation of the Higgs boson couplings at the one-loop level in extended
Higgs sectors is essentially important to indirectly determine the structure of the Higgs sector by
using the future precision data. In addition, it also shows that in addition to the HL-LHC where
especially hyv can be measured precisely future lepton colliders such as the ILC are absolutely
necessary for our purpose of determining the structure of the Higgs sector from the measurement
of the coupling constants of the discovered Higgs boson h.

Although we have discussed fingerprinting by using #y,, 7, Ky, and k., the information of ke, ¢

and ky, is also important to determine the Higgs sector more deeply. In particular, the measurement
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of the top Yukawa coupling is important not only to determine the nature of the top quark, the
heaviest matter particle, but also to test the new physics scenarios based on the composite models.
The measurement of the hhh coupling is essentially important not only to determine the nature of
the Higgs potential but also to test, for instance, the new physics models with strongly first order
phase transition. Although at the HL-LHC the cross section of the double Higgs production process
is expected to be measured at a few times 10% it seems to be hopeless to extract the information
of the hhh coupling sufficiently accurately. On the other hand, at the ILC with /s = 1 TeV the
hhh coupling can be measured with the 13% accuracy [59, 106], which is sufficient precision to test
the strong first order phase transition which is required for successful electroweak baryogenesis.
We conclude that the combination of the future data for all kinds of the couplings for the Higgs
boson h and their theory predictions with radiative corrections in various extended Higgs sectors
is a promissing way to determine the structure of the Higgs sector and further to access new

physics beyond the SM, even if a new particle was not directly discovered in the future experiments.
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Appendix A: Higgs boson couplings

From the Higgs kinetic term, we obtain the two types of the trilinear couplings; i.e., Gauge-
Gauge-Scalar, Gauge-Scalar-Scalar, and quartic Gauge-Gauge-Scalar-Scalar type couplings. These

couplings can be expressed as

L=+ 9o, 9" OV1uVaw + 94165V (0" 0102 — 010" D)V + g4, 601112 9" P102V1 Vo + -+ . (Al)

The coefficients ggvivy, 916,y and g 4,111, are listed in Table VI, where we use g, = g/cy, in
this table and below. Throughout Appendix, we use the shortened notation of the mixing angles,
$g—a = sin(B — ) and cg_o = cos(f — ).

From the Higgs potential, we obtain the scalar trilinear and the scalar quartic couplings. When

we use the following notation for these couplings

L= +Xp,0;6, PPk + Api; 001 PiPi PPt + -+ (A2)
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Vertices | ggvivs

2

MWW, | Gusg g
2

HW W, | Socgq
g2

hz,z, Fvsp_a
g2

HZ,Z, | “Fvcg—q

+ 992 5,2
G ZMWIT —TUSW

GEA,WF

TABLE V: The Gauge-Gauge-Scalar vertices.

Vertices | g .V Vertices b1 621 Vs | Vertices b1 ViV
hGEWF |Fidssa hhW W, | GEGOWF Z, |+i%z Y,
HGEWF |Files_q HHWIW, |% HX*AWFZ, |+i%2s3,
GOGEWF| -4 AAWFW, | GEHWFZ, |- 525,
hHEWT | Fidcs_a GOGOW W, | HEWWFZ, |-925%c5,
HH*WF | +ifss_q GrGWiw, | GEWWTZ, |—%%2s%55 4
AHEWF | 4 HYH-WiW, |% H*HWFZ, |92 %550
GG 2, | i%cow hhZ, 2, %z HEAWF A, |74
HYH=Z,| i%cow HHZ,2, |% GEGOWTA, |14

hGYZ, |—%Zs5 4 AAZ, 7, % HERWFA, [Zesa
hAZ, |-%cs o G077, |%Z GEHWTA, |Les .
HGZ, |~%cs_q G*G=2,%, |%Z, |G*G-ALZ, |egzeaw
HAZ, | %ss HYH 2,2, |%, |HTH A,Z, |egzeow
GTG~A, ie GTG~A,A, |e? Gth;FAl, T8«
HYH-A,| e HYH-A,A, |€ HE*HWFA, |—%s5_a

TABLE VI: The Scalar-Scalar-Gauge and Scalar-Scalar-Gauge-Gauge type vertices and those coefficients
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These coefficients are given by

1
Arvm-n = — [(2M? — 2m3s — m})sg_q + 2(M?* — m}) cot 2Bcg_q] , (A3)
v
1
AMAh = % [(2M2 —2m? — m,%)slg_a +2(M? —m3) cot 2B05_a] , (A4)
v
AHHE = Sg;a [(QM2 — 2mi; — mj,)sh_o + 2(3M? — 2m7; — mj,) cot 2B55_aCh—a
— (AM? = 2my = m)eh_, |, (A5)
2 2 2 2 2
_omy M?= —mj 9 M= —mj 4
Ahh = —, Sh-a + — $6-aCia + Tcﬁ_a(cotﬂ — tan 3), (A6)
2
m
Aceh = *2*585—0“ (A7)
1
AHEGFH = —;(m% - qui)cﬂ—a, (A8)
1
>\AGh = —;(mi — mi)cﬁ_a, (AQ)
1
Ag+H-g = —— [Q(M2 —m3;) cot 2855_q + (2mips +m3y — 2M2)05,a}, (A10)
v
1
T [2(M2 — m%) cot 2Bs5_q + (2m3 + m — 2M2)cﬂ_a}, (A11)
v
1
ANHHH = “5g [Z(M2 —myy) cot 2853, — 2(M? — m¥;)cs_ash o + m%{%,a], (A12)
2
m
Ao = *chﬁfou (A13)
AgteFy = 1(m2 —m%.)s (A14)
v H H*t)9B—a)
1
AMGH = ;(m%{ — mQA)Sﬁ_a, (A15)
___CB-a 2 2 ang2) 2 .
AHhh = S0 sin 25 [(th +m7 — 3M*)sin2cc + M* sin Qﬁ] , (A16)
1
)\HiG:FA = :I:;(mi — m%i) (Al?)

The four point couplings are given by

AH+H-AG = _%(/\H+H*H3[37a — Mg+ H-hCh—a); (A1)
AG+G-4G = —%()\G+G—H56—a — AG+G-hCB-a), (A19)
Aaag = *%()\AAHsﬁfa — AARCE—a)s (A20)
Acaa = _%(/\GGHS,B—a — AGGhCA—a)- (A21)
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Appendix B: Loop Functions

The Passarino-Veltman functions [107] are quite useful to systematically express the one-loop

functions. First, we define A, B and C functions:

i dPk 1

—FA = 47D/ — B1
TGz Alm) = p (2m)P Ny’ (B1)

i dPk [1, k", kP
— _[Bs. B*. B (p?: _ 4—D/ VR B2
T2 20 BT B (psma,ma) = eGP NN 0 (B2

' b "R
1 “w nuv 2 2 2. o) — 47D\/\ d k [17k ) B
167r2[00’0 ,C*1(p1, p3s (1 + p2)“smi,ma, m3) = 1 eGP NiN,N; (B3)

where D = 4 — 2¢, and p is a dimensionful parameter to keep the mass dimension four in the

k-integral. The propagators are defined by
Ny =k?>—mi+4ie, No=(k+p1)*—m3+ie, Nz=(k+p+p2)’—m?+ic. (B4)

The vector and the tensor functions for B and C are expressed in terms of the following scalar

functions:
B! = pi'By,
B" = pi'p{ Ba1 + g"" B,
CH = p’fCu +p5012,
CM = phip Cor + phps Caz + (piPs + pipy)Caz + g Cau.

By counting the mass demension of the above functions, we can find that the divergent part is

contained in A, By, B, B21, Boo and Cyy. All the scalar functions are expressed by the divergent
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part and finite part as

A(m) =m?® (A+1—1nm?), (B9)
1
BQZA—/ dl‘lnAB, (BIO)
0
A 1
31:—5-1—/ dx(1 —2)InAp, (B11)
0
A 1
Bo = _/ dz(1—z)*InAp, (B12)
0
1 p? 1 p? 1/t
Boo Z(m%—i—m%—?)A—i—Z(m%—i—m%—? —5/0 dxAplnAp, (B13)
1 1 y
— [ d B14
| e [ (B14)
-1)
Cyy = / da:/ Ayl — 2 q”y , (B15)
/ d / dy 2 = 1 (B16)
x y—— Ao
1— 2
Cop = / da dyy( )" (B17)
0 0 Ac
1 1 1 — )2
Ciy = —/ do [ ayti=¥" (B18)
0 0 Ac
1 1 1— 1—
Cas = —/ iz [ ay?d =2 —y) (B19)
0 0 Ac
A 1 1 1
Coy = — — —/ dx/ dyylnAg, (B20)
where
Ap = —x(1 — 2)p* + 2m? + (1 — z)m3, (B21)
Ac = y*(pra +p2)* + yle(p3 — ¢ + mi —m3) +m3 — m3 — p3] + mj, (B22)
and the divergent part A is given by
1 2
A=-—~vg+Indr+Inpu”, (B23)
€
with 7, being the Euler constant. It is convenient to define the following functions [108]:
Bs(p?, m1,mz) = Ba1(p*, m1,ma), (B24)
B3(p27m17m2) = _Bl(p m17m2) B21(p27m17m2)7 (B25)
B4(p23m13m2) _mlBl(p m27m1) m%Bl(p27m17m2)7 (B26)
B5(p2,m1,m2) A(ml) + A(mg) — 4ng(p2,m1,m2). (BQ?)
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Appendix C: 1PI diagrams

In this section, we give the analytic expressions for the 1PI diagram contributions to one,

two and three point functions by using the Passarino-Veltman functions defined in the previous

section. We calculate 1PI diagrams in the t’ Hooft-Feynman gauge in which the masses of Nambu-

Goldstone bosons mg+ and mgo and those of Fadeev-Popov ghosts m.+ and m,, are the same as

corresponding masses of the gauge bosons; i.e., mgt = m = my and mgo = m., = myz. 1PI

diagrams with bosonic external lines are separately calculated by the fermion-loop and boson-loop

contritbutions. We denote the fermionic- and bosonic-loop contributions by the subscript of F' and

B, respectively. Throughout this section, we use the shortened notation of the Passarino-Veltman

functions [107] as

7
AX) = 1672
N
1672

A(my)

B; ;% X,Y) = Bi i (0% mx, my ),

Ciij(X,Y, Z) = Ci,ij (1,13, (p1 + p2)*ymyx, my ., my).

i
1672

1. One-point functions

The 1PI tadpole diagrams for h and H are calculated by

1PI 4m3‘ fef
Thr == — NgA:
!
1PI Am7 fef
Tip ==Y —=NIE A,
!

3
T3 = s-a [Bgmw AOY) + S0mz A(2) = 2y — gzm
— A+ a-nAHT) = AaanA(A) = AganA(H) — 3\ A(h)
— Ag+a-nA(GE) = Agogon A(GY),
3
TiES = i By AGY) + SgzmzA(2) = 20y — g

— A+ m-g AHT) = AaamA(A) = BAgpu A(H) — AgnnA(h)
—Ae+a-HAGE) = Moo A(GO).
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2.

Two-point functions

The 1PI diagram contributions to the scalar boson two point functions are calculated as

I1

HIPI( )F _ _Z
!
HlPI ( )F — Z
!
W) e ==
!
() = —
G (r*)F = —

w (0%)B

2

+ 972 sin?(8 — a)(3m%

— L cos?(B —

- % cos?(3 —

4m}NJ
2

v

4m§NJ

02

4m2Nf
2

v

4m2 Nf

4m2Nf

a) [2A(W) -
o) [24(2) —

—p)Bo(p* Z,Z) +

7 [0+ (20 - 2) Botsi 1.5
? [+ (2 - 5) Butss . )]

2
“elcl, [400+ (2m3 - 2 ) B 1.0

i
|20

AHE) + (2m2s

__BOp .fa

——BOP fa

]
)

2

= ¢*sin?(8 — ) (3miy — p?)Bo(p*; W, W) + % [4 —sin?(8 -

7
ZZ [4 - sin?(8 —

(C10)

(C11)

(C12)

a)] A(W)

a)] A(Z)

—m¥y + 2p%) Bo(p*; W, HF)]

A(A) + (2m% — m% + 2p*)Bo(p*; Z, A)]

. 1
- [s 0 =y 5| gty + g,

— 2 g - A(

Hi) — 2/\AAhhA(A) — 2 \ganA(H

— 20+ A(GF) — 20 qogopn A(G)

+ N n Bo(p

+ 2X\% 1, Bo(p?; H, H) + 18)02,,, Bo(p?; hy h) 4 4%, Bo(p*; b, H),

S HS HY) + Mgy Bo(p

44

%G G) + 20 g, Bolp

%1 AL A) 4 20060, Bo(p% GY, G°) + N0, Bo(p

) — 12)\hhhhA(h)

% H* GF)

*A,GY)

(C13)



%) = g cos?(8 — ) (3 — p2)Bo(p: W, W) + L[4 cos?(8 — )} A(IW)

2 2
+ g?Z cos’ (B — a)(3m% — p*)Bo(p*; Z, Z) + % [4 — cos®(B — @) A(Z)

2

— L sin(8 — a) [24(W) — A(H*) + (2miy. —miy + 2p%) Bo(p*; W, H*)]
2

- %Z sin2(8 — a) [24(Z) — A(A) + (2m% — m% + 20°) Bo(p%; 2, A)]

= [eost( - )+ 3| oty + g2,
— - mnAHY) = 224455 AA) — 1225 pan A(H) — 2X i mnn A(h)

— 2X\g+-nnA(GT) = 2 gogor A(GY)

+ )‘%I+H*HB0(p2; H*, Hi) + )‘éJrG*HBO(pZ; G*, Gi) + 2)‘%[+G*HBO(p2; H*, Gi)
+ 2N 4 Bo(p*; A, A) + 205060 5 Bo (0% G°, G°) + Ny oy Bo(p*; A, G°)

+ 18)\%, 1y Bo(p%; H, H) + 2)\%;,., Bo(p?; hy h) + 4)\%; 11, Bo(p%; b, H), (C14)

H}‘Fh{(pQ)B = 58—afg—a
2 2 2 2 92
< {2Bmiy — ) Bo i W W) = ZAW)

95 97
+ 5 (3m% — ) Bo(v*; 2, Z) = L A(Z)

+ T 2A(W) — A(H) + (2miy — miy +2%) Bo(p’s W, H*)

+ %[QA(Z) — A(A) + (2m% — m% + 2p°) Bo(p*; Z, A)] — (2¢°miy + g%mQZ)}
— Mg+ m-anAHT) = MaarnA(A) = 3NgranAH) = 3XgnnnAh)

— Aata-mnA(GT) = Agocopn A(GY)

+ M+ a-n A - Bo(*s HS HY) + Mg+ g-pAa+a-nBo(p*; G, GF)

+ 2\t a-nAm+o-n Bo(p® H, GF)

+ 2 aandaam Bo(p?; A, A) + 2\ 060 Agogo g Bo(p%; G, G°)

+ AaconAacom Bo(p®; A, G°) + 6A g A Bo(p®; H, H)

+ 6\ nnn A nn Bo(p%; by h) + AN ppeAm s Bo(p®s H, b)), (C15)
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1
(%) = 20°AW) + 97 A(Z) = 5 (29" miy + g5m7)
2
— & [24W) = AWH®) + (@mbys — miy + 20 Bo(p? W, H)]

2
— 92 cos?(8 — a) [24(2) = A(h) + (2m}, — m3, +2") Bo(p*; 2, h)]

2
— 92502 — ) [24(2) — A(H) + (2m —my + 26%) Bo(v™s Z, H)]

— 20+ H-aaACHE) = 1204444 A(A) — 22 aam 5 AH) — 22 gann A(h)
— 20+ - aaA(GF) — 2X g 4o A(G?)
+ 2 A+ -4l Bo(p?s HE, GF) + 403 4, Bo(p%; A, h)

+4X4 45 Bo(p%; A, H) 4+ X005, Bo(p%; hy G) + N2 oy Bo(p?; H, G0), (C16)

4G (p%)B = $5-aCs_a
2
x {22 [24(2) — A(H) + (2m; — m} + 2%) Bo(p%s 2, H)]

~L2pA(Z) — A) + (o~ + 27 Bolo 2,1

— A+ - ago AHT) — 3Maaac0 A(A) — Magoprg AH) — Aagonn A(h)
— )\G+G—AGoA(Gi) — 3)\AGOGOG0A(GO)
+ 2Xaan A aconBo(p®; A, h) + 2Xaam A acor Bo(p*; A, H)

+ 2\ uconrcoconBo(p’; G h) + 2\ aco g Acogon Bo(p?; G°, H). (C17)

The Z-A mixing is given by

) 2
Tza(P)r = %mZNf§fBo(p2; 5, (C18)
f

2AAAH 2)\AAh

$g—a(2B1 + Bo)(p*; A, H) —

Mya(p)5 = myz| ¢3-a(2B1 + Bo) (0% A, h)

A A
~ S, (2B + Bo) (9% G°, H) - AGhs/a o(2B1 + Bo)(p%; G°, h)

2

2
- 97255_@65_&(31 - BO)(pQ; Hv Z) + TZ‘Sﬁ—acﬁ—a(Bl - BO)(pQ; ha Z)] ) (019)

The G.I. part appearing in Eq. (118) is given by

HZA(pz)‘G.L = HZA( 2)F

2m
4 —Z [AAAHSB o(2B1 + Bo) (0% A, H) — Aaancs_o(2B1 + Bo) (0% A, h)] (C20)
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The 1PI diagram contributions to the gauge boson two point functions are calculated as

HIPI () F = ZgQNCf <2p233 - B4) % £, 1), (C21)
1

1 (p 286262 AINIp*Bs(p% f, f), (C22)

(%) = ; gz NE |20 (211Q; — 453,Q7) B (% 1. ). (C23)

W) = g5 N |20 (s QF — dstQqly + 207)Bs 203 Bo| 0% £. ), (C24)
f

1 L.
My (p*) = gQ{Zde?;A,Hi) + 4 sin’(B = ) Bs (p*; H, H¥)

—cos 2(8 — a)Bs(p*; b, Hi)

Bs + (miy — 4sfymiy +m% — SPQC%/V)BO] (p* 2, W)

[( 2y

2
+ 253y [35 + (2miy — 4102)30} (p*; 0, W) — §p2}7 (C25)

2
P (p?) g = €2Bs(p*; HY, H) — e2p? [1233 + 5By (p*; W, W) + 5} , (C26)

e 11 2
(") = 9235( HE H) = egzp? <1OBS+730+§> (%W, W)

SW 11PI/, 2
JH’Y’Y (p )Ba (027)

1 1.
1 0%)s = g%{ZBs,(p%Hi,Hﬂ + (8 — a) a0 H, A)

+ i COSQ(B — Oé)B5(p2; h> A)]

1
+sin?(8 — ) <m2230 + ZB5> (p?; h, Z)

1
+oo(5 - o) (mkBo+ 1Bs) (% H,2)

23 2
+ [(2my = 0% Bo — 97 Bs| (% W W) 3p2}

2$W

2
1PI SW 1P/, 2
e ' (p*)p — 3 I, (p°) B, (C28)

where the fermion-loop contributions are the same as those in the SM.
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The fermion two point functions can be decomposed into the following three parts

I3 (%) = Py (%) — prsTIfsa(p®) + myTl e (7). (C29)

Each part is caluclated as

L (%) = —2Q3(2By + )% £,7) — g5 (03 +a3)(2B1 + 1) (v 1, 2)

- LB W)

(o]

2
m
- (2B £ 0) + (€l Buw? £, H) + §B10% £, A) + B £,GY)]
m2 +m2, m2£2 +m2/£2,
_ %Bl(pQ;f/’Gi) . %Bl(ﬁ;fﬁ]fi)v
2
G (0%) = —29%vpar (2B + 1) (0% f, Z) — %(231 +1)(p% f W)
2

2 2¢2 2 ¢2
my> — M7y, m f —m /f ’
B 1 6F) + B ),

Ijs(v’) = —262Q3‘(230 = D% f,7) = 205(v} — a)(2Bo — (0% /. Z)

+

%[(g) Bo(p?: £.h) + (€1 Bo(p £, H) — §}Bo(p™: £. A) — Bo(p®s £.G")]
2
— 2L [Bo?s 1, G) + &5 Bow?s [/, HY)) (C30)

where vy and ay are the coefficient of the vector coupling and axial vector coupling of Z f f vertex

given as

1 1
vy = 2f SWQf, af = 3f (031)

3. Three-point functions

In this subsection, we give analytic expressions for the 1PI diagram contributions to the three
point functions. The assignment for external momentum is taken in such a way that p; and (p2) is
the incoming momnetum of 4 (h), V (V) and f (f) for the hhh, hVV and hf f vertices, respectively,
and ¢ = p1 + p2 is the outgoing momentum of h for all the above vertices.

First, the 1PI diagrams for the Ahh coupling is calculated as

8 4Nf
Fill};}t(php%q )F = _Z m (gh) [BO(p%af7 f)+BO(p%af7f)+BO<q27f7 f)
f
+ (4m} — ¢* +p1 - p2)Co(f, f, f)}, (C32)
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3
g
FUR 019 ) = iy 1000 9,0 - Cole*, %, %))

B
L s [ WO (GEWW) + & WY (W)

3
gzmz
2 55 0|5 aCi (G, 2,2) (O (A2, 2)]

+%m%85 a{16OO(Z;Z,Z)_CO(CZ,CZ7CZ) i

2 2
g g
+ 5 A+ 6-155-aChin W, G, GF) + 5 My y-nho O (W, H, H)
2
g
+ _AH+G—h5ﬁ—aCB—a[C}Yh€LS(W G* H*) + 55 (W, H*,G*))
2 2
+ L rgoconsh-aClii (2,6, GO) + Zdaanch_o Ol (2, A, A)

g2
+ ZZ/\AGOhSB—aCma[Cﬁ%S(Za A,G%) + Cyit (2,G°, A))

+ 2¢3mw s5_alBo(pt, W, W) + Bo(p3, W, W) + Bo(¢*, W, W)]| = 3¢°mwss_a
+ g3mzsp—alBo(pl, Z, Z) + Bo(p3, Z. Z) + Bo(q*, Z, Z)] — gg%mzsﬂfa

+ 2\ g+ - nAm+ - nn[Bo(pl, HS, H) + Bo(p3, HS, HS) + Bo(¢*, H*, HF)]
+ 2\t - M+ - [Bo(p}, GF, GF) + Bo(p3, GF, GF) + Bo(¢%, GF, GF)]

+ A g g-n Ao Bo(pt, HE,G) + Bo(psy, H*,GF) + Bo(q®, H*, G7))]

+ 4 aandaann[Bo(pt, A, A) + Bo(p3, A, A) + Bo(q?, A, A)]

+ 4XgogonAgogonn[Bo(pt, G°, G°) + Bo(p3. G°, G°) + Bo(q®, G°, G°)]

+ 2\ sgonAaconn[Bo(pi, A, G°) + Bo(ps, A, G°) + Bo(¢*, A, GV)]

+ A mann[Bo(pl, H, H) + Bo(p3, H, H) + Bo(¢*, H, H)]

+ 12X gnnAmnen[Bo(pi, b, H) + Bo(ps, h, H) + Bo(q®, h, H))]

+ T2 nnn A nhii [Bo(03, by h) + Bo(p3, h, h) + Bo(q?, h, h)]

— 2N\ o, Co(HE HE HE) — 2034 o, Co(GF, GE,GF) — 8X\2040,Co (G, G0, GP)
— 8A3 s Co(A, A, A) — 803, 1, Co(H, H, H) — 216)3,,,Co(h, h, h)

— 2+ - A e oo [Co (G, HE HF) + Co(H*,G*, HF) + Co(H*, H*, GF)]
— 2t @ gt oo plCo(HE, GE,GE) + Co(GE, HE, W) + Co(G*,G*, HF)]
— 22 44n N30, [Co (G, A, A) + Co(A, G, A) + Co(A, A, G)]

— 2Agogon Mo, Co(A, G, G) + Co(G, A, G°) + Co(G°, G, A)]

— 8\wan\pn[Co(h, H, H) + Co(H, H, h) + Co(H, h, H)]

— 240 N3 [Co(hy by H) + Co(H, hy k) + Co(h, H, h)], (C33)

49



where

1
ConV (X,Y,Z) = [p%czl + p3Cas + 2p1p2Cas + 4C24 — 3~ (¢ + p1)(P1C11 + p2Ci2) + qp1co} (X,Y,2)

1
+ [P%Cm + p3Ca0 + 2p1p2Cas + 4C2y — 5t (3p1 — p2)(P1C11 + p2Ci2) + 2p1(p1 — P2)Co] (Z,X,Y)

+ [p%cm + p3Ca2 + 2p1paCag + 404 — % + (3p1 + 4p2) (p1C11 + p2C12) + 2q¢(q +p2)00} (Y, Z,X),
Cm (X,Y, Z) =
[p%czl + p5Cag + 2p1p2Cas + 4Ch — % + (4p1 + 2p2) (p1C11 + p2Ci2) + 4p1 - qu] (X,Y,Z)

+ {p%Cﬂ + p3Cas + 2p1p2Cas + 4024 — % + 2p2(p1Ci1 + p2Ci2) — p1(p1 + 21?2)00] (Z,X,Y)

1
+ [p%C'm + p5Caz + 2p1paCas + 4Cay — 5 2p2(p1C11 + p2Ci2) — q(p1 — pQ)Co] (Y, Z, X). (C34)

The hf f vertex can be decomposed into the following 8 form factors

1PL, 2 2 2
Fhff(p17p27q )=

Fipp + 5 Fups + BLEVy + B2 FNfy + v Eigy + bovsFify + b2 Filpp + hrifonsFify.  (C35)

Each form factor can be calculated by

m -1
<Tf> Fipy = —2970°(vf — a})sp-aCo(Z, £, Z)

- 45;{{62@?[7”?00 +p1(Ci1 + Ca1) + p5(Crz + Caa) + p1 - pa(2Ca3 — Co) + 4C24 — 1](f,7, f)
+ g7 (v7 — a})[m3Co + pi(Ci1 + Ca1) + p5(Cra + Caa) + p1 - p2(2Ca3 — Co) + 4Cay — 1)(f, Z, f)}

2
+ g,{% (EPCEEF (oo )+ (€ CRFF (L ) = CEFF (1.6, ) = GGCEFF (1, A, )]

2m?2
f/ f/
=& 3

(CESF (. G*, 1)+ &sp CEFF (1 1, )]
_m_? 2 fy2 fef
” {6(€h) M Co(h, o h) +2(E) AaanCo(H, f, H) + 2&; g ann[Co(h, f, H) + Co(H, f, h)]

- 2)‘GOGOh(:b (GO7 f7 GO) - 25?/\AAhCO(A7 f7 A) - gf)‘AGOh[CO(Av f7 GO) + CO(G07 f7 A)]}
2m2,
+

{Aara-nCo(GE, 11, GF) + &4€p Ars -1 Col(HE, [, H)

+ SAmg-nls +Ep)[Co(GE, 11 HE) + ColH, £, G2}
— Q%H OV W, 6%) + CREY (G, W)
- 94—2§fcg_a (CHF . f ) + R (e, 1w
- %s/a—a (G2, 1,69 + CifY (6. £.2)]
2

)
- gzgfcﬁ—a [Oi‘t/fFfS(Zv fa A) + O;?fFfV(A7fv Z)]v (036)
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(") Ry = Amcfhm—?“(g,«/ —)ICO(GF, f HF) = Co(H*, ', G¥)]
Ly [CHE W 6 - RV (G W]

g, [CUES WL p T — CREY (W]

— g3urlpsa-a OV (2, 1,6°) - CREY (G0, 1.2)]

— 5vsIs&scsa [CMFF (2, £.4) = G (A, £, 2)] (ca7)

B = L [202 + a3)(Co 200) (. Z.) + Q3Co + 20077 )
+ 92%% (Co+2C0)(f", W, f)

1
— Sp— ag%U(Usz +a})(Co+Cn)(Z, [, 2Z) - Sﬁfagzv(co + Cn)(W, f, W)

+§ [(fh) (Co +2C01)(f, hy ) + (€4)*(Co + 2C11) (f, H, f)

+ (Co+201)(£.G°, £) + €} (Co +201) (£, A. f)|

2
+ ng e [(m? +m$)(Co+2C0)(f, G=, f') + (m3&5 + m3.5)(Co + 200 (f, H, f’)}

mZ
— {606 n(Co + Cun) (b, £.10) + 2(68) P Aazan(Co + Cua) (H, £, H)
+ 26 L N [(Co + Ca) (H, f,h) + (Co + Cu1) (h, f, H)]
+ 2Xgocon(Co + C11)(GY, £, G°) + 267A44n(Co + C11) (A, f, A)

+ €A aconl(Co+ Ci)(A, £.G%) + (Co + Cu)(G°, £, A)] |

)\G;G " (mF +m$)(Co + C11)(GE, f/,G*) — )\H;H “(m3E7 + m3E3)(Co + Cu)(HE, £, HY)

AHZG " (m3es +mbEp)[(Co+ Cua) (G, ', H*) + (Co + C)(H*, ', G*)]

m
_ f!
v

[55 a(QCo—l-Cll)(Wf Gi)—FSﬁ a( Co—l—Cn)(Gi,f/,W)

_gf/cﬂ—a(QCO—i_Cll)(VvaaH )_Sf'CB—a(_CO+C11)(Hiaflaw):|

2
~ 3L [55-a(2C0 + Cu) (2, £,G%) + 55-0(~Co + Cu1)(G", £, 2)
Z8’U B—a 0 11 s Bb—a 0 11 s S

—&rcp_o(2C0 + C11)(Z, [, A) = Epep_o(—Co + C11)(A, f, Z)} ; (C38)

o1



92 2
Fif = =Ll [ 0% + a3)(Co + 2C0) (1.7, ) + €Q3(Co + 2C02) (£,7. )
Qm_?’ 1 / /
+ Ll (Co+ 200 W, 1)
4

- SB—QQ%U(U]% +a})C12(Z, f. Z) - Sﬁ—agZUClz(W W)

+f [(fh) (Co +2C12)(f, h, ) + (€];)%(Co + 2C12) (f, H, f)

+ (Co+2C12)(£.G°, ) + €}(Co +2C12) (£, A, )|

2
+§h/TZ§/ [(m% + m?@’)(c(] + 2012)(]“’7 Gi,f/) + (mfcg]% + m?c/f?u)(CO + 2012)(f’,Hi, f/):|
2
_ %{6(5}{)2)\}1/1/16'12(}1; I h) + 2(52)2,\HH,1012(H, 1, H) + 25££]f-jAHhh[C12(H, 1, h) + 012(}17 1. H)]

+ 22 gogopCr2(GY, £, G%) + 2§?>\AA}L012(A £ A) + 26 A 4qon[Cr2(G, f, A) + Cr12(A, f, GO)]}

A A
G;G " (m3 + m3)Cra (G, f,GF) — %( m3e} +mbeh) Cra(HE, ', HY)

AH;G L(m3es +m5Ep)[Cra(GE, ) HE) + Cra(HE, f',GF)]

2 m2,
— &L [s5-a(2C0 + Cra) W, £/, G*) + 5-a(~Co + C12)(G*, £, W)
—&preg_o(2C0 + Cra) (W, f, H*) - §r1¢g—a(=Co + Cro)(H*, f, W)}

2 m2
— 2 [55-0(2C0 + C12) (2. £,G") + 85-a(Cha = C)(G", £, 2)

+€105_a(2C0 + C12)(Z, £, A) + €505_a(Crz — C0)(A, . 2)] (C39)

2 m2/ ,
Fily = ~Agbupar—Lef (Co+200)(1.2. 1) — P L€l (Co + 2000) (7, W, 1)
4
+ 255 agzvraso(Co+ Cu)(Z, f, Z) + 55,agzu(00 +Cr)(W, f1, W)

mf/

Ll [( —m$)(Co+200)(f, GF, ') + (m}&F —m7.3)(Co + 2C1) (f', HF, f’)}

/\ A
= SE G G = m3)(Co+ Cn)(GF, f,GF) = TR (mie] — m.5)(Co + Cra)(H*, [/, HY)

V2

%(mﬁf —m5 &) [(Co+ Ca)(G*, f',HF) + (Co + Ci)(H*, f',GF)]

mf,

+ gz |:3,8—a(200 + C1) (W, f,GF) + sp_a(—Co + C11)(GF, f/, W)

v
- gflcﬁ*a(ZCO + Cll)(m/a fla Hi) - gf’cﬁfa(_co + Cll)(Hia fla W):|

2
m
+ g%ffvaf [85*a<200 +C1)(Z, f,G°) + s5p-a(=Co+ C11)(G°, , Z)

+&res_a(2C0 + Cr)(Z, f, A) + §pcp_o(=Co + Cr1)(A, f, Z)] ; (C40)
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2 / m2/
Fi¥y = ~4€]ghupar—L(Co+ 200)(£,2, ) — €] 4 5L (Co + 2C0) (W, 1)
4
+ 25,8—agévfaf’0012(zv fv Z) + 58-—a gZ'UCIQ(VVa f,7 W)

mf,

+& [(mf —m3)(Co+2C0)(f, G, f) + (m3&F — m$€3)(Co + 2C2) (', H, f')]

3

A - A
- G;g h(mi_m?’)Cu(Gi)f/aGi) H;H h( fﬁf m?’&?’)Cu(Hivfl»Hi)

A _
__Egiﬁmﬁif—"@ffﬂCm«?ﬁchiy+cuuréchiﬂ
2 mf’
4

+ 9 [35 (200 + CLo) (W, . GE) + s5_a(—Co + Cra) (GE, f/, W)

— €505 0(2C0 + Cra) (W, f', HE) = €15 (=Clo + Cua) (HE, . W)
i
+ 9170, [35-a(2C0 + C12)(Z, £,G°) 4 55-a(~Co + C12)(C°, [, 2)

+&5¢50(2C0 + Cr2) (Z, £, A) + €p5_o(~Co + C12) (A, £.7)] (C41)

my

(%)™ Fyp =t ﬁguarcmwmﬁ+@®mm—amﬁmﬂ

= (Cu1 = Ci2)(f, Govf) — (O = Cua)(f, A, f)}

7 2 /
—fﬁg (Cit = C)(f,GE, ') + €4 (Cut = Coa) (' B, )]
2

— QZ {S/@,a(—QCO —2Cq1 + C12)(W, f/, Gi) + 85,0‘(—00 —Cn+ 2012)(Gi, f/, W)

+&ep_o(—2C0 — 2011 + Cra)(W, £/, HS) + €ez_o(—Co — Ci1 + 2C12) (HE, f, W)}

N % [8,3 o(—2Cy — 2C11 + C2)(Z, f, GO) + Sﬁfa(_c() —Ci1 + 2012)(G0, £.2)

+&rep_o(—2C0 — 2011 + Cr2)(Z, f, A) + Epep_o(—Co — Cr1 + 2C12) (A, f, Z)}, (C42)

myg\—1 4
(BL) " Bl = 2 [s5_al2C0 + 2011 = Coo)(W, 1/, GF) = s55_a(Co + C11 = 201)(GE, 1/, W)
—&pcg_o(—2C0 — 2C11 + Cra)(W, f', H) — £fe o (Co + Oy — 2C19) (H™, f, W)}

— gz lpvg [Sg,a(—QCO —2C11 + C12)(Z, f,G°) + 55_o(Co + C11 — 2C12)(G°, . Z)

+&€rcg_a(=2C0 —2C11 + C12)(Z, f, A) + €feg_o(Co + C1 — 2C12) (A, f, Z):|7 (C43)
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where

LY. 2) =
1
[m%.Co + p2(C11 + Car) + pa(Cia + Caz) + 2p1 - pa(Cia + Coz) + 4Co4)(X,Y, Z) — X

ChiP (XY, Z) =

[p3(2Co + 3C11 + Ca1) + p3(2C12 + Cag) + 2p1 - p2(2Co + 2011 + Cha + Ca3) +4Cou (X, Y, Z) —

C;?]{}V(X; Y, Z) = [p?(Ca1 — Co) + p3(Cag — C12) + 2p1 - pa(Caz — C12) + 4C2)(X,Y, Z) — .

1
2’

(C44)

The 1PI diagram contributions to the form factors of the hZZ and hW W vertices which are

defined in Eq. (125) are calculated as

16mfcm2Zch

1,1PI
Uyzz (P%Jbv q2)F = Z 3

I
+ (4m3 =} = p)Co(f, £, /) = 8Coulf, f.1)]

— (v} — a)[Bow3. £, £) + Bo(w3. £, £) + (4m? = )Co(f. £.)| }

32m2m% N/
Fiégl(plap%qQ)F = - Z f’U—3
f
|0} + a)(4Cs + 3C12 + Cu1 + Co) + (v — ) (Crz2 = Cu) | (1, £.),
64m2m4 NI
Trgr (003, a2 F =Y ——L32"vsas(C1 + Cra + Co)(f, £, ),
f
Am?2,m Nf
ChE (0,2 420 = 30 I | S B, £, ) + Bo(a?s £ £) + 5 Bo(wd £ )
LF
_4024(p1>p27q f?f f) (2mf+2mf’_ p%)co(fvf/vf) +(mf<_>mf/)’
—4dmE m Nf
Fow (0%, 98, @) = —— 51— (4Ca + 3C1z + Ca1 + Co) (£ ', ) + (mg > my),
—dmi m2 N/
Do (01,93, %) F = VZ—gf (Ci1 4 Cia+ Co) (f, 1/, ) + (my <> my),

54

{(v,% +a}) | Bov} £, 1) + Bo(v3, . ) + 2Bo(a*, £, f)

(C45)

(C46)

(C47)

(C48)

(C49)

(C50)



1,1P1 B
Ty ry (0193, 6%) B = 295 A a+ - nmiy sty Co(G=, W, GF)

+ g s_a{ 265 CIIA (W, W, W) — 268y Caa(c, o5, %) + sty CRAVL (G, W, W) + 5 CIER (W, W, GF)
84 82
— 22 miyssaCo(W. G W) = (cly — shy) - [Cos(W, GF, GF) + Coa (GF, 6%, W) |
w w

3
+ Zmyss-af = 2m% [5_aColZ.h, 2) + &_oColZ, H, 2)) + 55_a[Caa(G°, 1, Z) + Caa (2,1, G7)

+ Ay [Cos(A, hy Z) + Cos(Z, hy A) + Caa(GO, H, Z) + Cou(Z, H,G°) — Cos(A, H, Z) — Cou(Z, H, A)] }
+ 2g%m2’z{3Ahhhs§,aco(h, Z,h) + Arncs_oCo(H, Z, H) + Annss_aCs_olCo(H, Z, h) + Co(h, Z, H)]}
— 297 (cly — siy)? Ao+ -nCos (G, G, GF) + Ay -1, Coa(H*, H, H*)]

— 29353, [3)\hhh024(h7 GO R) + A anCoa(H, A, H) + AaanCoa(GC, hy GO) + AaanCos(A, H, A)]

=~ 2033 [BNunn Caalh, A, ) + XpranCoa(H, GO H) + AaanCaa (A, by A) + AganCas (G°, H, G°)|

— 29555 0Cs_a annlCos(h, GO, H) + Cos(H,G°, h) — Cas(h, A, H) — Coy(H, A, h)]

—20%55_0Cs_aracn[Caa(A, h, G°) + Cos(G, h, A) — Cos(A, H,G%) — Cou(G°, H, A)]
2 2
g g
+ ?Z)‘G+G*h(CIZ/V — s%)?Bo(¢?, G*,GF) + 7ZAH+H*h(CIQ/V — siy)?Bo(q®, HE, HY)
9% 2 ~0 A0 9% 2 9% 2 39% 2
+ EAGGhBO(q ,G°,GY) + 7>\AAhBo(q JAVA) + EAHHhBO(q JH, H) + TAhthO(q ,h,h)

st 7
- g3CTWmWSﬁ_a[BO(p§a W7 Gi) + BO(p%a Gi? W)] - TZmZSﬁ—a[BO(p%a ha Z) + BO(pga ha Z)]
w

- 6g3c%VmWsﬁ_aB0 (2, W, W) + 4ggc%VmWsﬂ_a, (C51)
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_12,1PT
(9zm%) Ty, (01,03, %) B = 29mw ciy s5—aCiy v (W, W, W) — 2gciymw sg_aCiazs(c

+ gmw sty cly s5-a CRvva (G W, W) + Gty (W, W, G¥))

— gmw (Sl — sty) sty [CrdVo (G, GE, W) + CY P8, (W, G, GF)]

9z
+ Tmz [CX\§‘§2(27 h, GO) + C}‘z/‘}g\§2 (GO’ h, Z)]
9z
+ 5 mzsh_o[CRa(Z, 0. G°) + CRY5(G° . 2)

9z
+ EmZSﬁ—aC%—a[C}YV?\%(Zv h, A) + Ci?0o(Z, H,G%) = Cyi0s(Z, H, A)
+ Ciiva(A b, Z) + CRpva (GO, H, Z) — Cipta (A H, Z)]

—2(ciy — sty)? [Na+a-1C1223(GF,GF,GF) + Ay -1, Croo3(HT, HE, HF))|

S

- 28%7(1 [3)\hhh01223(h7 GO 1) + MganCizos(H, A, H) + AaenCiazs (G2, b, GP) + AaanCi2os(A, H, A)}

—-2c%_, [3/\hhh01223(h, A, h) + A anCizos(H, GO, H) + AaanCio23(A, by A) + AacnCia

23(G07 H? GO):|

— 285 oCg_oAnn[Cr223(h, GO, H) + Chaos(H, G°, h) — Chazs(h, A, H) — Cio3(H, A, h)]

— 255 0C5_aMach[C1223(A, b, G°) + C1223(G°, b, A) — Cuags(A, H,G%) — Ciap3(G, H, A)],

3,1PI
thz (p%ap%a q2)B =0,
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1L1PI , 2 2 2
FhWW(p17p27q )B -

g mwss_o[Crvi(Z, W, Z) + ey O (W, Z, W) + s, Ciis (W, W)

— Cay(cg, o, cz) — C%VC’%(ci, cz, ci) — S%VC%(ci, Cy, ci)}

3
9
= Smwstyss_o[CRVA (G, Z,W) = CRVVA(GE 0 W) + Oty (W, Z,G%) = G (W, 4, GF)]

4
S
— g’miy CTW%_QCO(Z, G*,2) — g*miysh_oCo(W, h, W) — gmiyss_och_oCo(W, H, W)
W

84

+ QQCTWm%VAGJrG*hCO(Gi7 Za Gi) + Sizﬂ/m%/l/)‘GJFG*hCO(Giv Y Gi)
w
+ 692)\hhhm‘2,vs%7a00(h, W,h) + 292/\HHhm%,Vc%7aCO(H, W, H)
+ 20" Aaanmiy Cg_ oS5 olCo(h, W, H) + Co(H, W, h)]
3
+ L sy-a{ Sh_alCas (W, b, GF) + Cos(G*, 1, W)
+ o [Coa(W, H,GF) + Cos(GF, HW) + Coa(W, h, HF) + Cou(H= h, W)
— Cos(W, H, H®) — Coy(H*, H, W)]}
gS 2

S
+ ?mW%Sﬁ—a[Cﬂl(Gov Gi; Z) + 024(Z7 Gia GO)]

— [Amgf B Coa(GE, GO, GF) + Ao g Coa(HE, A, HY)
+ 226enCat(GO, GE, GO) + 2X a4, Cau (A, HE, A)}

— %% [6Ahhhcg4(h, GE,h) + 2\ Coa(H, HE, H)

+ Ag+G-1nCos(GF h, GF) + N g-,Coa(H*, H, Hi)}
— g%, [GAhhh(JM(h, HE, h) + 2\ Coa(H, GE, H)

F A\t aonCot (G, H,GE) + Ajr - nCoa(HE, 1, Hi)}
— PN+ G155 -0aCh-alCoa(GF, h, HE) + Cog(HT h, GF) — Coy(GF, H, H*) — Cou(H*, H,G7))]
— 20° MihhS5—aCsolCoa(h, G, H) + Cou(H,GF, h) — Coy(h, HE, H) — Coy(H, H, h)]

— Pmwss_a [3Bo(q2, W, W) + 3Bo(q%, Z, Z) — 4]

2 2 3 2
+ %)\G+G~h30(q2, G*,G¥%) + %)\GGhBO(QQ) G°,G%) + %Ahtho(QQ, h,h)

2 2 2
+ g?/\H+H7hB0(q27Hi7Hi) + %)‘AAhBO(q2aAaA) + %)‘HHhBO(q2aH7 H)

3 g4
= Sy o{ Bo? W.h) + Bo(w3. Woh) + " [Bo(pt. 2.G*) + Bo(p3. 2, GF)
w

+ sty [Bo(pi, 7, GF) + Bo(p3, 7, Gi)]}, (C54)
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2,1P1
(g2m‘2/V) IFhWW(p17p27q )B =

g s5-a | CHNA(Z, W, Z) + Gy RN (W, Z,W) + sty G (W, 7, W)

— Ch223(cy, ci, cy) — C%VC’1223(ci, Cy, ci) - s%,VC’1223(ci, Cy, ci)]
— 2 st ss-al CRVR(GF, W) = CRL(GH, 7. W) + ORISR, 2,G) — ORI (W, 7, G)]
+ ngS/a a [ChVV2(W h Gi) + C;f{?%(Gi, h, W)}
S sg-ach_o | OWFR(W, H,GF) + CLFE, (W, b, HE) = CLSE,(W, H, 1)

+ GV (G H W) + ORI (HE b, W) = G (H HL W)
+ gimwsgﬂ |22, G%,6°) + G (G0, 6*, )|
[)‘G+G nCr223(GE, G0, GF) + Ay -, Croos(HE, A, HF)
+ 2266nC1223(G0, G, GO) + 22 g unClions (A, HE, A)}

— S3 [6>\hhh01223(h, G*,h) + 2AgunChazs(H, H, H)

+ A+ a-nC1223(GE by GF) + At yr—nChroos (H* H, Hi)}
—Chq [GAhthwQB(h, H*=,h) + 2 pnChags(H,G=, H)

+ A+ a-nCro23(GE H, GF) + Mgt - Croos(HE h, Hi)}
— AB+G-hS3—aCh—a|Cr223(GE, b, HE) + Crags(HT, h, GF) — Chons(GF, H, HF) — Cigo3(HT, H,G%)]
— 2MHhhS5—aCh_alCrzos(h, G, H) 4 Chaos(H,G*, h) — Ciag3(h, H, H) — C123(H, H*, )],

(C55)

Fil/llf)l/l{/(plap% q )B - 07 (056)
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where

CYYN(X,Y, Z) =
[18024 +p%(2021 + 3C11 + Ch) +p%(2022 + Ch2) + p1 - p2(4Ca3 + 3C12 + C11 — 400)} (X,Y,Z) -3,

C}?\‘//“//l (X7 Y7 Z) =
1

[3C54 + p3(Ca1 — Cp) + p3(Cag — 2012 + Co) + 2p1 - pa(Caz — Cn)] (X,Y,2) - 2

CYPI(X, Y, Z) =

1
[3Co4 + p3(Coy + 4C11 4 4Cy) + p3(Cag 4 2C12) + 2p1 - p2(Caz + 2C12 + Chy + 2C)] (X,Y,Z) — >
CYa(X,Y, Z) = (10Ca3 + 9012 + C11 + 5Co) (X, Y, Z),
Citva(X,Y, Z) = (4Ch1 — 3Chz — Ca3) (X, Y, Z),
Cha(X,Y, Z) = (2011 — 5C1y — 20, — Ca3) (XY, Z),
CY225(X,Y, Z) = (Cag + C12 + 2011 + 2Co) (X, Y, Z),
i§\§\‘;2(X7Y> Z) (023 - Cl?)(X7Yv Z)>
C]QQg(X,KZ) = (012+023)<X,}/,Z). (C57)
4. Decay rates for loop induced processes
The decay rates for the loop induced processes are given by
V2Gpal, m A
(b 97) = OIS 1 S QiNYel 1 - 2 (C58)
f
2\ 3
D(h — 2v) = Y2CF0emy (| 5
12873 mi
A _ 2
’Sﬁ aJv—FZQfo?JfJF—%%(C%V—S%/)JS , (C5H9)
\/—GFoz mh
L(h = g9) = =553 ’Zé‘h (C60)
The loop functions are defined as
202
Is = —[1+ 2m2..Co(0,0,m2, mpy+, mpy=, my+)], (C61)
mj,
I 81 14 (w2~ ™) 0,0, €62
F——m—h[ +< f—7> o( mh,mf,mf,mf)] (C62)
2my mj, 2 2 2
Iy = 6 + —= + (12mjy — 6mj;)Co(0, 0, my, mw, mw, mw) | , (C63)
my myy
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and

2m? m? m?
Jo — w { 2 (5 ho) 2 (1 h
v swew (mi —m%,) [CW i 2m?, S\t 2m?,

2
m
1+ 2m,Co + W—ZQ(BO(m,QZ,mW, mw ) — Bo(m?%, mW,mW))]

T Ty
— 6k (m} — m3)Co + 25% (mf — m3)Co }, (C64)
8m? 1
Tr = 7SWCW(m2f— m%) [1 + 5(4m3‘ —mj, +m)Co(0,m%, m, my, mg, my)
R Z
2
m
+ m2 _ZmZ (Bo(m}?t’mf’mf) - Bo(mévmf7mf)):|v (065)
h Z
2v° 2 2 9
Js = e(m? —m32) {1 + 2mi Co(0,mz, my, mp+, my=, mp+)
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