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Abstract

We calculate radiative corrections to a full set of coupling constants for the 125 GeV Higgs boson at the

one-loop level in two Higgs doublet models with four types of Yukawa interaction under the softly-broken

discrete Z2 symmetry. The renormalization calculations are performed in the on-shell scheme, in which the

gauge dependence in the mixing parameter which appears in the previous calculation is consistently avoided.

We first show the details of our renormalization scheme, and present the complete set of the analytic formulae

of the renormalized couplings. We then numerically demonstrate how the inner parameters of the model

can be extracted by the future precision measurements of these couplings at the high luminosity LHC and

the International Linear Collider.
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I. INTRODUCTION

The LHC Run-I has confirmed the existence of a Higgs boson (h) [1, 2], whose properties

are in agreement with those of the standard model (SM) within the uncertainties of the current

data [3–8]. Thanks to the discovery of the Higgs boson, the SM was established as an effective

theory to describe physics at the scale of electroweak symmetry breaking. In spite of the success

of the SM, there are many motivations to consider new physics beyond the SM such as to solve

the gauge hierarchy problem and to explain phenomena like neutrino oscillation, dark matter and

baryon asymmetry of the Universe. There have been various new physics models proposed, some

of which predict new particles at the electroweak to TeV scales. However, currently none of such

new particles has been discovered yet. Their discovery is one of the main tasks of the LHC Run-II,

which will start its operation in 2015.

Even though the Higgs boson shows SM like properties, the Higgs sector can be extended

from the minimal form with only an isospin doublet field. Indeed, there is no theoretical reason

for the hypothesis of the minimal structure for the Higgs sector. Thus there are possibilities for

extended Higgs sectors such as those with additional iso-singlets, doublets, and/or triplets. These

extended Higgs sectors can also be consistent with all the current LHC data in some portions of

their parameter space.

Extended Higgs sectors are often introduced in various new physics models. For example,

the Minimal Supersymmetric SM (MSSM) requires the Higgs sector with two doublet fields [9, 10].

Multi Higgs structures are also studied in the context of additional CP violating phases [11] and also

realization of the strong first order phase transition [12], both of which are required for successful

electroweak baryogenesis [13]. Models with the Type-II seesaw scenario are motivated to generate

tiny neutrino masses by introducing a triplet field [14]. An additional singlet is required in the Higgs

sector of the models with spontaneous breakdown of the U(1)B−L symmetry [15–17], which may be

related to the mechanism of neutrino mass generation [18]. Introduction of an additional unbroken

symmetry into an extended Higgs sector, such as a discrete Z2 symmetry [19, 20] or a global U(1)

symmetry [21], can provide candidates of dark matter. Under the Z2 or the global U(1) symmetry,

if some of the scalar fields are assigned to be odd or to be charged, respectively, they cannot decay

into a pair of SM particles so that the lightest one is stable. Such an unbroken symmetry can

also be embedded into models with a radiative generation of neutrino masses [18, 22–27], where

the existence of tiny neutrino masses and dark matter can be explained by the same origin of the

symmetry. Therefore, a characteristic Higgs sector appears in each new physics model.
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There are several important properties which characterize the structure of the Higgs sector.

First of all, it is important to know the number of scalar multiplets and their representations.

Second, does it respect new symmetries (global or discrete/exact or softly-broken)? Third, the

mass of the second Higgs boson generally contains information of the new scale which does not

appear in the SM. Fourth, the strength of the coupling constants among extra Higgs bosons provides

information of the dynamics of the Higgs potential which is essentially important to understand

nature of electroweak symmetry breaking. Finally, the decoupling property [28] of extra Higgs

bosons is closely connected to physics beyond the SM. Therefore, by future measurements of these

properties, the Higgs sector can be reconstructed, and the direction of new physics beyond the SM

can be determined.

The direct search of extra Higgs bosons can provide a clear evidence to a non-minimal Higgs

sector. The current data accumulated from previous collider experiments such as LEP [29, 30]

and Tevatron [31–36] have already given lower bounds for masses of the extra Higgs bosons. At

the LHC Run-I, in spite of the discovery of a Higgs boson with the mass of 125 GeV, no extra

Higgs boson has been found, and the parameter space for additional light Higgs bosons has been

constrained to the considerable extent in regions with relatively smaller masses of the extra Higgs

bosons [37–49]. At the LHC Run-II, with the energy of 13-14 TeV and the integrated luminosity

of 300 fb−1, wider regions of masses of the extra Higgs bosons will be surveyed.

In addition to direct searches, new physics models beyond the SM have also been indirectly

investigated by utilizing precision measurements of various physics observables such as the oblique

parameters at LEP/SLC experiments [50]. Flavour experiments have also been used to constrain

the mass of charged Higgs bosons which appears in extended Higgs sectors [51, 52]. Now that the

measured couplings of the Higgs boson h with the SM particles are consistent with the predic-

tions in the SM within the uncertainties, it is time to consider fingerprinting of extended Higgs

sectors [53, 54] by calculating radiative corrections to the predictions of those observables which

will be measured with more precision at future experiments such as the LHC Run-II, the high lu-

minosity (HL)-LHC [55–57] with the integrated luminosity of 3000 fb−1 and future lepton colliders

like the International Linear Collider (ILC) [58, 59]. In new physics models with extended Higgs

sectors, the coupling constants of h with the SM particles are generally predicted with deviations

from the SM predictions due to field mixing and loop contributions of non-SM particles. Although

no deviation has been found up to now in the Higgs boson couplings within the uncertainty of the

current data, a deviation could be found in future experiments where more precise measurements

will be attained. We then are able to indirectly obtain information of the second Higgs boson from
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these deviations. Furthermore, a pattern of these deviations strongly depends on the structure of

the Higgs sector, so that by comparing theoretical predictions of the Higgs couplings in various

new physics models with future experimental data the shape of the Higgs sector can be determined

indirectly. In order to compare the theory predictions to future precision data at the HL-LHC and

also the ILC, where coupling constants are expected to be measured typically by a few percent

or better accuracy, evaluations of the Higgs boson couplings including radiative corrections are

inevitable.

There are many studies for radiative corrections in extended Higgs sectors in the literature.

Radiative corrections to the electroweak gauge boson two point functions (oblique corrections) have

been studied in extended Higgs sectors in Refs. [60–63]. Loop induced vertices hgg [64], hγγ [65–70]

and hZγ [67, 69–72] have been evaluated in extended Higgs sectors. Those to the Higgs boson

couplings have been investigated in the two Higgs doublet model (THDM) in Refs. [73–76] and in

the Higgs triplet model in Refs. [77, 78].

In this paper, we study electroweak radiative corrections to the coupling constants of the 125

GeV Higgs boson h in the THDM [79] with the softly-broken Z2 symmetry [80]. Under the Z2

symmetry, four types of Yukawa interactions [81–84] are possible depending on the assignment

of the Z2 charges into quarks and leptons. We investigate radiative corrections to the full set

of Higgs boson couplings (hWW , hZZ, htt, hbb, hττ , hhh, hγγ, hZγ and hgg) at the one-loop

level in all types of the THDMs. We employ an improved on-shell renormalization scheme in our

renormalization calculation where the gauge dependence in the calculation of the mixing angle in

the previous studies is eliminated1. We then evaluate deviations in these coupling constants from

the SM predictions under the constraint of current experimental data and theoretical bounds such

as vacuum stability and perturbative unitarity.

Furthermore, we investigate how we can extract information of the inner parameters such as the

mass of the second Higgs boson and mixing angles when the scale factors κX are experimentally

determined with the expected uncertainties at the HL-LHC and the ILC, where κX are the ratios

of the measured couplings hXX from the SM predictions. Evaluating κX at the one-loop level in

the THDMs, we discuss the possibility to measure properties of the Higgs sector using the future

precision data by fingerprinting, and finally we determine the structure of the Higgs sector.

This paper is organized as follows. In Sec. II, we define the Lagrangian of THDMs, and give

formulae for the Higgs boson masses and the Higgs boson couplings at the tree level. After that,

1 According to Ref. [85], the gauge dependence exists in a renormalization of a mixing angle.
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Z2 charge Mixing factor

Φ1 Φ2 QL LL uR dR eR ξu ξd ξe

Type-I + − + + − − − cotβ cotβ cotβ

Type-II + − + + − + + cotβ − tanβ − tanβ

Type-X + − + + − − + cotβ cotβ − tanβ

Type-Y + − + + − + − cotβ − tanβ cotβ

TABLE I: Charge assignment of the softly-broken Z2 symmetry and the mixing factors in Yukawa interac-

tions given in Eq. (8).

we discuss constraints from vacuum stability and perturbative unitarity as the theoretical bounds.

We then discuss the bounds from the electroweak oblique parameters, flavour experiments, direct

searches of extra Higgs bosons at the LHC and the measurements of Higgs boson couplings at the

LHC Run-I. In addition, we shortly summarize future prospects for extra Higgs boson searches

and precision measurements of the Higgs boson h at the LHC Run-II, the HL-LHC and the ILC.

In Sec. III, we explain renormalization in the electroweak sector, the Yukawa sector, and the Higgs

sector in the THDMs. We also discuss the modified renormalization scheme. In Sec. IV, we give

formulae of renormalized Higgs couplings and loop induced decay rates. We numerically estimate

decoupling properties and non-decoupling effects of our one-loop calculations in the section. In

Sec. V, we demonstrate how we can extract inner parameters by using future precision data.

Discussions and conclusions are given in Sec. VI.

II. TWO HIGGS DOUBLET MODELS

A. Lagrangian

In this section, we define the Lagrangian in the THDM with the softly-broken Z2 symmetry,

where the Higgs sector is composed of two isospin doublet scalar fields Φ1 and Φ2. The charge

assignment for the Z2 symmetry is shown in Table I. The following Lagrangian is modified from

the SM:

LTHDM = Lkin + LY − V, (1)

where Lkin, LY and V are respectively the kinetic Lagrangian, the Yukawa Lagrangian and the

scalar potential. Throughout the paper, we assume the CP invariance in the Higgs sector.
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First, the kinetic Lagrangian is given by

Lkin = |DμΦ1|2 + |DμΦ2|2, (2)

where Dμ is the covariant derivative:

Dμ = ∂μ − i

2
gτaW a

μ − i

2
g′Bμ, (3)

with W a
μ (a =1-3) and Bμ being the SU(2)L and U(1)Y gauge bosons, respectively. The two

doublet fields can be parameterized as

Φi =

⎡
⎣ w+

i

1√
2
(vi + hi + izi)

⎤
⎦ , (i = 1, 2), (4)

where v1 and v2 are the vacuum expectation values (VEVs) for Φ1 and Φ2, which satisfy v ≡√
v21 + v22 = (

√
2GF )

−1/2. The ratio of the two VEVs is defined as tanβ = v2/v1. The mass

eigenstates for the scalar bosons are obtained by the following orthogonal transformations as⎛
⎝ w±

1

w±
2

⎞
⎠ = R(β)

⎛
⎝ G±

H±

⎞
⎠ ,

⎛
⎝ z1

z2

⎞
⎠ = R(β)

⎛
⎝ G0

A

⎞
⎠ ,

⎛
⎝ h1

h2

⎞
⎠ = R(α)

⎛
⎝ H

h

⎞
⎠ ,

with R(θ) =

⎛
⎝ cos θ − sin θ

sin θ cos θ

⎞
⎠ , (5)

where G± and G0 are the Nambu-Goldstone bosons absorbed by the longitudinal component of

W± and Z, respectively. The mixing angle α is expressed in terms of the mass matrix elements

for the CP-even scalar states as shown in Eqs. (18)-(21). As the physical degrees of freedom, we

have a pair of singly-charged Higgs boson H±, a CP-odd Higgs boson A and two CP-even Higgs

bosons h and H. We define h as the observed Higgs boson with the mass of about 125 GeV.

In terms of the mass eigenbasis of the Higgs fields, the interaction terms among the Higgs bosons

and the weak gauge bosons are given by

Lkin =[sin(β − α)h+ cos(β − α)H]
(m2

W

v
W+μW−

μ +
m2

Z

2v
ZμZμ

)
+ gφ1φ2V (∂

μφ1φ2 − φ1∂
μφ2)Vμ + gφ1φ2V1V2

φ1φ2V
μ
1 V2μ, (6)

where coefficients of the Scalar-Scalar-Gauge vertex gφ1φ2V
and those of the Scalar-Scalar-Gauge-

Gauge vertex gφ1φ2V1V2
are listed in Appendix A.

Next, we discuss the Yukawa Lagrangian. The most general form under the Z2 symmetry is

given by

−LY =YuQLiσ2Φ
∗
uuR + YdQLΦddR + YeLLΦeeR + h.c., (7)
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where Φu,d,e are either Φ1 or Φ2. Depending on the Z2 charge assignment, there are four types

of Yukawa interactions [81, 82], which we call as Type-I, Type-II, Type-X and Type-Y [84]. The

interaction terms are expressed in terms of the mass eigenstates of the Higgs bosons as

−Lint
Y =

∑
f=u,d,e

mf

v

(
ξfhffh+ ξfHffH − 2iIfξffγ5fA

)

+

√
2

v

[
Vudu (mdξd PR −muξuPL) dH

+ +meξeνPReH
+ + h.c.

]
, (8)

where ξfh and ξfH are defined by

ξfh = sin(β − α) + ξf cos(β − α), (9)

ξfH = cos(β − α)− ξf sin(β − α), (10)

and ξf in each type of Yukawa interactions are given in Table I. In Eq. (8), If represents the third

component of the isospin of a fermion f ; i.e., If = +1/2 (−1/2) for f = u (d, e).

The Higgs potential under the softly-broken Z2 symmetry and the CP invariance is given by

V = m2
1|Φ1|2 +m2

2|Φ2|2 −m2
3(Φ

†
1Φ2 + h.c.)

+
1

2
λ1|Φ1|4 + 1

2
λ2|Φ2|4 + λ3|Φ1|2|Φ2|2 + λ4|Φ†

1Φ2|2 + 1

2
λ5

[
(Φ†

1Φ2)
2 + h.c.

]
. (11)

The tadpole terms for h1 and h2 are respectively calculated as

T1

v cosβ
= −m2

1 +M2 sin2 β − v2

2
(λ1 cos

2 β + λ̄ sin2 β), (12)

T2

v sinβ
= −m2

2 +M2 cos2 β − v2

2
(λ2 sin

2 β + λ̄ cos2 β), (13)

where λ̄ ≡ λ3 + λ4 + λ5, and M describes the soft breaking scale of the Z2 symmetry:

M2 =
m2

3

sinβ cosβ
. (14)

We note that M2 can be taken to be both positive and negative values. By requiring the tree level

tadpole conditions; i.e., T1 = T2 = 0, m2
1 and m2

2 can be eliminated in the Higgs potential.

The squared masses of H± and A are calculated as

m2
H± = M2 − v2

2
(λ4 + λ5), m2

A = M2 − v2λ5. (15)

Those for the CP-even Higgs bosons and the mixing angle α are given by

m2
H = cos2(α− β)M2

11 + sin2(α− β)M2
22 + sin 2(α− β)M2

12, (16)

m2
h = sin2(α− β)M2

11 + cos2(α− β)M2
22 − sin 2(α− β)M2

12, (17)

tan 2(α− β) =
2M2

12

M2
11 −M2

22

, (18)
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where M2
ij (i, j = 1, 2) are the mass matrix elements for the CP-even scalar states in the basis of

(h1, h2)R(β):

M2
11 = v2(λ1 cos

4 β + λ2 sin
4 β) +

v2

2
λ̄ sin2 2β, (19)

M2
22 = M2 + v2 sin2 β cos2 β(λ1 + λ2 − 2λ̄), (20)

M2
12 =

v2

2
sin 2β(−λ1 cos

2 β + λ2 sin
2 β) +

v2

2
sin 2β cos 2βλ̄. (21)

Thus, ten parameters in the potential (v1,2, m
2
1-3 and λ1-5) can be described by the eight physical

parameters mh, mH , mA, mH± , α, β, v and M2, and two tadpoles T1 and T2 which are taken to

be zero at the tree level. The quartic couplings λ1-λ5 in the potential are then rewritten in terms

of the physical parameters as

λ1v
2 = (m2

H tan2 β +m2
h) sin

2(β − α) + (m2
H +m2

h tan
2 β) cos2(β − α)

+ 2(m2
H −m2

h) sin(β − α) cos(β − α) tanβ −M2 tan2 β,

λ2v
2 = (m2

H cot2 β +m2
h) sin

2(β − α) + (m2
H +m2

h cot
2 β) cos2(β − α)

− 2(m2
H −m2

h) sin(β − α) cos(β − α) tanβ −M2 cot2 β,

λ3v
2 = (m2

H −m2
h)[cos

2(β − α)− sin2(β − α) + (tanβ − cotβ) sin(β − α) cos(β − α)]

+ 2m2
H± −M2,

λ4v
2 = M2 +m2

A − 2m2
H± ,

λ5v
2 = M2 −m2

A. (22)

We here define the so-called scaling factors to describe deviations in the Higgs boson couplings

from the SM prediction as follows:

κV ≡ gTHDM
hV V

gSMhV V

, for V = Z, W, κf ≡ yTHDM
hff

ySMhff
, κh ≡ λTHDM

hhh

λSM
hhh

, (23)

where gSMhV V , y
SM
hff and λSM

hhh are the hV V , hff̄ and hhh coupling constants in the SM, respectively,

and those with THDM in the superscript are corresponding predictions in the THDM. The scaling

factors for loop induced couplings can also be defined by

κ2γ ≡ Γ(h → γγ)THDM

Γ(h → γγ)SM
, κ2Zγ ≡ Γ(h → Zγ)THDM

Γ(h → Zγ)SM
, κ2g ≡ Γ(h → gg)THDM

Γ(h → gg)SM
, (24)

where Γ(h → XY )SM and Γ(h → XY )THDM are respectively the decay rates of the h → XY mode
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in the SM and in the THDM. At the tree level, the scaling factors are given by

κV = sin(β − α), (25)

κf = ξfh = sin(β − α) + ξf cos(β − α), (26)

κh = sin(β − α)− 2(M2 −m2
h)

m2
h

sin(β − α) cos2(β − α)

− M2 −m2
h

m2
h

cos3(β − α)(cotβ − tanβ). (27)

We can see that all the scaling factors become unity when sin(β − α) = 1 is taken, so that we call

this limit as the SM-like limit [86].

It is convenient to introduce a parameter x defined as

x ≡ π

2
− (β − α), (28)

where x → 0 corresponds to the SM-like limit. We note that in the MSSM, the sign of x is

determined to be negative due to supersymmetric relations [10]. Because the current LHC data

suggest that the observed Higgs boson is SM-like, the case with |x| � 1 describes such a situation.

In this case, we obtain

κV = 1− x2

2
+O(x3), (29)

κf = 1 + ξf x− x2

2
+O(x3), (30)

κh = 1 +

(
3

2
− 2M2

m2
h

)
x2 +O(x3). (31)

As it has already been pointed out in Ref. [53], looking at the correlation between κf and κf ′

(f �= f ′) is quite useful to distinguish the four types of Yukawa interactions.

In Fig. 1, we show the tree level predictions on the ΔκE-ΔκD plane (left panels) and ΔκE-ΔκU

plane (right panels) in the four types of Yukawa interactions, where ΔκX = κX−1. The subscripts

E, D and U respectively represent the flavour independent charged leptons, down-type quarks

and up-type quarks. In this plot, we take |x| = 0.2, 0.14 and 0.028, and the sign of x is set to be

negative (positive) for upper (lower) panels. As it can be seen, the predictions for the four types

of Yukawa interacitons appear in different quadrants of the ΔκE-ΔκD plane. Therefore, at least

from the tree level result, we can discriminate the type of Yukawa interaction in the THDM by

looking at the measured values of ΔκE and ΔκD.

In Ref. [76], one-loop corrected Yukawa couplings have been calculated in the four types of

Yukawa interactions in the THDM. It has been clarified that the predictions in the four types of
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FIG. 1: Tree level predictions on the ΔκE-ΔκD (left panel) and ΔκE-ΔκU (right panel) plane in the four

types of Yukawa interactions. The black, blue and red curves respectively show the case of |x| = 0.20

[sin(β − α) � 0.98], |x| = 0.14 [sin(β − α) � 0.99] and |x| = 0.028 [sin(β − α) � 0.996]. The sign of x is

taken to be negative in the upper figures and positive in the lower figures.

Yukawa interactions are well separated on the ΔκE-ΔκD plane at the one-loop level even if we

scan the inner parameters under the constraints from perturbative unitarity and vacuum stability.

B. Vacuum stability and perturbative unitarity

A set of quartic coupling constants in the Higgs potential λ1-λ5 is constrained by taking into

account vacuum stability and perturbative unitarity as follows.
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First, we require that the Higgs potential is bounded from below in any direction with a large

scalar field value. The sufficient condition to keep such a stability of the vacuum is given by [19,

87, 88]

λ1 > 0, λ2 > 0,
√
λ1λ2 + λ3 +MIN(0, λ4 + λ5, λ4 − λ5) > 0. (32)

Second, the perturbative unitarity bound [89–92] is given by requiring that all the independent

eigenvalues of the T matrix a0i,± (i = 1-6) for the S-wave amplitude of the elastic scatterings of

2-body boson states are satisfied as

|a0i,±| ≤
1

2
, (33)

where each of a0i,± is given by [90–92]

a01,± =
1

32π

[
3(λ1 + λ2)±

√
9(λ1 − λ2)2 + 4(2λ3 + λ4)2

]
, (34)

a02,± =
1

32π

[
(λ1 + λ2)±

√
(λ1 − λ2)2 + 4λ2

4

]
, (35)

a03,± =
1

32π

[
(λ1 + λ2)±

√
(λ1 − λ2)2 + 4λ2

5

]
, (36)

a04,± =
1

16π
(λ3 + 2λ4 ± 3λ5), (37)

a05,± =
1

16π
(λ3 ± λ4), (38)

a06,± =
1

16π
(λ3 ± λ5). (39)

In Fig. 2, we show the allowed parameter region on the mΦ-sin(β − α) plane (mΦ ≡ mH± =

mA = mH) from the constraints of vacuum stability and unitarity. It is seen that a large mass of

additional Higgs bosons is allowed in a case with sin(β − α) � 1. As another view of this figure,

we can extract the scale of the mass of the second Higgs boson from the precise measurement of

κV using Eq. (27). For example, if 1% deviation in the hV V coupling is found at future collider

experiments, then the second Higgs boson should exist below about 800 GeV.

C. The oblique parameters

The S, T and U parameters proposed by Peskin and Takeuchi [93] are modified in the THDM

from those predicted in the SM due to the additional Higgs boson loop contributions and modified

values of the SM-like Higgs boson coupling constants [60]. We define the differences of S, T and

U parameters as ΔS = STHDM − SSM, ΔT = TTHDM − TSM and ΔU = UTHDM − USM. These are
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FIG. 2: The upper limit on the mass of additional Higgs bosons mΦ(≡ mH± = mA = mH) as a function of

sin(β − α) for each fixed value of tan β in the case of cos(β − α) < 0. The left regions from each curve are

allowed by the constraints of vacuum stability and unitarity.

calculated in terms of x defined in Eq. (28) as

ΔS =
1

4π

{
F ′
5(m

2
Z ;mH ,mA)− 1

3
lnm2

H±

+ x2
[
F ′
Δ

(mA

mh
,
mZ

mh

)
− F ′

Δ

(mA

mH
,
mZ

mH

)
+G′

Δ

(mH

mZ
,
mh

mZ

)]}
+O(x3), (40)

ΔT =
1

4πe2v2

{
F5(0;mA,mH±) +m2

HFΔ

(
mH±

mH
,
mA

mH

)

+ x2
[
m2

HFΔ

(
mA

mH
,
mH±

mH

)
+m2

hFΔ

(
mH±

mh
,
mA

mh

)
+m2

WFΔ

(
mH

mW
,
mh

mW

)

+m2
ZFΔ

(
mh

mZ
,
mH

mZ

)
+ 4m2

WGΔ

(mH

mW
,
mh

mW

)
− 4m2

ZGΔ

(mH

mZ
,
mh

mZ

)]}
+O(x3), (41)

ΔU =
1

4π

{
F ′
Δ

( mA

mH±
,
mH

mH±

)
− 1

3
lnm2

H± − F ′
5(m

2
Z ;mA,mH)

+ x2
[
F ′
Δ

(mA

mH
,
mZ

mH

)
− F ′

Δ

(mA

mh
,
mZ

mh

)
+ F ′

Δ

(mH±

mh
,
mW

mh

)
− F ′

Δ

(mH±

mH
,
mW

mH

)

+G′
Δ

(mH

mZ
,
mh

mZ

)
−G′

Δ

(mH

mW
,
mh

mW

)}
+O(x3), (42)
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where F ′
5(m

2
V ;m1,m2) = [F5(m

2
V ;m1,m2)− F5(0;m1,m2)]/m

2
V . The loop functions are given by

F5(p
2,m1,m2) =

∫ 1

0
dx
[
(2x− 1)(m2

1 −m2
2) + p2(2x− 1)2

]
lnΔB, (43)

FΔ(x1, x2) =
1

2
(x21 − x22) +

x21
1− x21

lnx21 −
x22

1− x22
lnx22, (44)

GΔ(x1, x2) =
1

2
ln

x21
x22

− 1 + x21
2(1− x21)

lnx21 −
1 + x22

2(1− x22)
lnx22, (45)

F ′
Δ(x1, x2) =

1

3

[
2(x21 − x22)(1− x21x

2
2)

(1− x21)
2(1− x22)

2
− x41(x

2
1 − 3)

(1− x21)
3
lnx21 +

x42(x
2
2 − 3)

(1− x22)
3
lnx22

]
, (46)

G′
Δ(x1, x2) = 2

[
−1− x41 + 2x21 lnx

2
1

(1− x21)
3

+
1− x42 + 2x22 lnx

2
1

(1− x22)
3

]
, (47)

where

ΔB = −x(1− x)p2 + xm2
1 + (1− x)m2

2. (48)

In the case of p2 = 0, the F5 function is expressed by

F5(0;m1,m2) =
1

2
(m2

1 +m2
2) +

2m2
1m

2
2

m2
1 −m2

2

ln
m2

m1
, (49)

which gives zero in the case of m1 = m2. Therefore, it is seen that ΔT becomes zero when x = 0

and mA = mH± or x = 0 and mH = mH± is taken.

D. Flavour Constraints

The mass of H± can be constrained from various B physics processes, because contributions

from the SM W -boson mediation are replaced by H±. In most of the cases, the constraint from

the b → sγ process provides the most stringent lower limit on mH± [51, 52]. In Ref. [52], the

branching ratio of B̄ → Xsγ has been calculated at the next-to-next-to-leading order in the Type-I

and Type-II THDMs. A lower bound has been found to be mH± � 380 GeV at 95% confidence

level (CL) in the Type-II THDM with tanβ � 2. A stronger bound for mH± is obtained for smaller

values of tan β. On the other hand, in the Type-I THDM, the bound from b → sγ is important

in the case with low tanβ; e.g., mH± � 200 (800) GeV is excluded at 95% CL in the case of

tanβ = 2 (1). When we consider the case with tanβ � 2.5, the bound on mH± is weaker than

the lower bound from the direct search at LEP, namely, about 80 GeV [94]. The similar bounds

as those given in the Type-II and Type-I THDMs can be obtained in the Type-Y and Type-X

THDMs, respectively, because of the same structure of quark Yukawa interactions.

For a large tanβ case, bounds from B → τν [95, 96], τ → μνν̄ [96, 97] and the muon anomalous

magnetic moment [98, 99] can be more important as compared to the bound from b → sγ in the
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Type-II THDM. For example, the lower limit on mH± to be about 400 GeV is given at 95% CL in

the case of tanβ � 50 in the Type-II THDM [96].

For a small tanβ case, the B0-B̄0 mixing is getting important to obtain a severe constraint

on mH± in the THDMs. In the case of tan β = 1, mH± � 500 GeV is exluded at 95% CL in all

the types of THDMs [100]. This gives the stronger (weaker) bound than that from b → sγ in the

Type-II and Type-Y (Type-I and Type-X) THDMs.

E. Direct searches for additional Higgs bosons at the LHC (7-8 TeV)

The neutral Higgs bosons in the MSSM have been searched in the τ+τ− decay mode in the gluon

fusion and bottom quark associated productions [37, 38] using data with 7 TeV and 8 TeV of the

collision energy and 4.9 fb−1 and 19.7 fb−1 of the integrated luminosity, respectively. Because the

production cross section of the CP-odd Higgs boson from the bottom quark associated production is

proportional to tan2 β, high-tanβ regions can be excluded by this process. For example, tanβ � 10

and tanβ � 40 have been excluded at 95% CL for the fixed value of the mass of the CP-odd Higgs

boson to be 300 GeV and 800 GeV, respectively [38]. We can obtain a similar bound on tanβ for

a fixed value of mA in the Type-II THDM, because the structure of the Yukawa interaction is the

same as that in the MSSM. Although the Hff̄ coupling constant can be different in the Type-II

THDM and the MSSM, we can achieve a similar value by taking sin(β − α) � 1, especially for the

case with a rather large mass of the CP-odd Higgs boson in the MSSM.

When sin(β−α) �= 1 is given, H → W+W−/ZZ decays can open in addition to the decay modes

into a fermion pair. The search for the H → WW → eνμν signal has been performed [39] in the

range of 135 GeV < mH < 300 GeV using data with 8 TeV of the collision energy and 13 fb−1

of the integrated luminosity. The bound is presented in the mH -cosα plane for each fixed value

of tanβ in the Type-I and Type-II THDMs. In the Type-I THDM with tanβ > 1, the strongest

lower limit on mH is given to be about 220 GeV at 95% CL. On the other hand, in the Type-II

THDM, similar bounds have been given as in the Type-I THDM. However, for a case with large

tanβ, the excluded regions are shrinked due to an enhancement of fermonic decay modes such as

H → bb̄.

In Ref. [40], H → hh and A → Zh decays have been searched in the THDMs with data of

the collision energy to be 8 TeV and the integrated luminosity to be 19.5 fb−1. Multi-lepton and

di-photon final states have been used for this search. The upper limit on the cross section times

branching ratio has been presented for each of the processes gg → H → hh and gg → A → Zh ;
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e.g., the upper limit of 8 (4) pb is given for the case of mH = 260 (360) GeV in the H → hh decay,

while that of 1.6 (1.0) pb is given for the case of mH = 260 (360) GeV in the H → Zh decay.

These bounds can be translated into the excluded regions on the cos(β − α)-tanβ plane for given

values of mH depending on the type of Yukawa interaction.

F. Measurements of the Higgs boson couplings at LHC (7-8 TeV), and future collider

experiments

Both the ATLAS and CMS Collaborations have provided scaling factors for the Higgs boson

couplings extracted from combined data of Higgs boson searches with
√
s = 7 and 8 TeV and

25 fb−1 of the integrated luminosity [3–7]. Under assumptions of the universal scaling factors for

fermions and vector bosons; i.e., κF = κt = κb = κτ and κV = κW = κZ , current data gives

κV = 1.15± 0.08, κF = 0.99+0.08
−0.15, ATLAS [4], (50)

κV = 1.01± 0.07, κF = 0.87+0.14
−0.13, CMS [7], (51)

from the two parameters (κF and κV ) fit analysis based on Ref. [101]. The scaling factors for the

loop induced Higgs boson couplings κg and κγ have also been measured under the assumptions of

κF = κV = 1,

κg = 1.08+0.15
−0.13, κγ = 1.19+0.15

−0.12, ATLAS [4], (52)

κg = 0.89+0.11
−0.10, κγ = 1.14+0.12

−0.13, CMS [7], (53)

from the two parameters (κg and κγ) fit analysis based on Ref. [101]. We can see that all the

SM predictions (κX = 1) are included within the 2-σ uncertainty of the measured scaling factors,

where the current 1-σ uncertainties of the scaling factors are typically of O(10%).

These scaling factors are expected to be measured more precisely at future collider experiments

such as the HL-LHC and the ILC. In TABLE II, expected accuracies of the measurement for the

scaling factors are listed at the LHC and at the ILC with several collision energies and integrated

luminosities.

III. RENORMALIZATION

We discuss the renormalization of the Higgs boson couplings, i.e, hZZ, hWW , hff̄ and hhh

at the one-loop level. In previous works, each part of the renormalized Higgs boson couplings has
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Facility LHC HL-LHC ILC500 ILC500-up ILC1000 ILC1000-up
√
s (GeV) 14,000 14,000 250/500 250/500 250/500/1000 250/500/1000∫ Ldt (fb−1) 300/expt 3000/expt 250+500 1150+1600 250+500+1000 1150+1600+2500

κγ 5− 7% 2− 5% 8.3% 4.4% 3.8% 2.3%

κg 6− 8% 3− 5% 2.0% 1.1% 1.1% 0.67%

κW 4− 6% 2− 5% 0.39% 0.21% 0.21% 0.2%

κZ 4− 6% 2− 4% 0.49% 0.24% 0.50% 0.3%

κE 6− 8% 2− 5% 1.9% 0.98% 1.3% 0.72%

κD = κb 10− 13% 4− 7% 0.93% 0.60% 0.51% 0.4%

κU = κt 14− 15% 7− 10% 2.5% 1.3% 1.3% 0.9%

TABLE II: Expected precision on the Higgs boson couplings and total width at the 1-σ level from a con-

strained 7-parameter fit quoted from Table 1-20 in Ref. [102].

been calculated. The one-loop corrected hZZ and hhh couplings have been evaluated in Ref. [75]

in the Type-II THDM, and the hff̄ couplings have been calculated in Ref. [76] in the four types

of THDMs.

We perform renormalization calculations based on the on-shell scheme which has been applied

in Ref. [75]2. However, it has been pointed out that there remains gauge dependence in the

determination of the counter term of β in Ref. [85]. We thus construct a new renormalization

scheme for β to get rid of the gauge dependence. As pointed out later in the paper, the gauge

dependence is not completely removed, but shifted to a sector which does not contribute to the

investigated couplings.

First, we prepare a set of independent counter terms by shifting all the relevant bare parameters

in the Lagrangian. We then give the renormalized one- and two-point functions which are written

in terms of the contributions from 1PI diagrams and counter terms. After that, we set the same

number of renormalization conditions as the number of independent counter terms to determine

them.

2 For the determination of the counter term for M2, the minimal subtraction scheme has been applied.
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A. Parameter shift and renormalized functions

We first perform the parameter shift of the electroweak sector and Yukawa sector as the following

m2
V → m2

V + δm2
V (V = W,Z), αem → αem + δαem,

mf → mf + δmf , T1,2 → δT1,2,

m2
ϕ → m2

ϕ + δm2
ϕ, α → α+ δα, β → β + δβ, M2 → M2 + δM2, (54)

where ϕ = H±, A, H and h. The wave functions for the SM gauge bosons Bμ and W a
μ and the

SM left (right) handed fermions ψL (ψR) are shifted as

Bμ →
(
1 +

1

2
δZB

)
Bμ, W a

μ →
(
1 +

1

2
δZW

)
W a

μ , ψL/R →
(
1 +

1

2
δZf

L/R

)
ψL/R. (55)

We can then write down the renormalized two point functions for each particle. In the following,

Π̂XY (p
2) and Π1PI

XY (p
2) respectively denote the renormalized two point functions and the 1PI dia-

gram contributions for fields X and Y with the external momentum pμ. The analytic formulae for

the 1PI diagram contributions are given in Appendix C. For the gauge boson two point functions

W+W−, ZZ, γγ and the Z-γ mixing, we have

Π̂WW (p2) = Π1PI
WW (p2)− δm2

W + δZW (p2 −m2
W ), (56)

Π̂ZZ(p
2) = Π1PI

ZZ (p
2)− δm2

Z + δZZ(p
2 −m2

Z), (57)

Π̂γγ(p
2) = Π1PI

γγ (p2) + p2δZγ , (58)

Π̂Zγ(p
2) = Π1PI

Zγ (p
2)− δZZγ

(
p2 − 1

2
m2

Z

)
−m2

Z

δs2W
2sW cW

, (59)

where ⎛
⎝ δZZ

δZγ

⎞
⎠ =

⎛
⎝ c2W s2W

s2W c2W

⎞
⎠
⎛
⎝ δZW

δZB

⎞
⎠ ,

δs2W
s2W

=
c2W
s2W

(
δm2

Z

m2
Z

− δm2
W

m2
W

)
,

δZZγ = cW sW (δZW − δZB) =
cW sW

c2W − s2W
(δZZ − δZγ). (60)

The renormalized fermion two point function is expressed by the following two parts:

Π̂ff (p
2) = Π̂ff,V (p

2) + Π̂ff,A(p
2), (61)

where

Π̂ff,V (p
2) = p/

[
Π1PI

ff,V (p
2) + δZf

V

]
+mf

[
Π1PI

ff,S(p
2)− δZf

V − δmf

mf

]
,

Π̂ff,A(p
2) = −p/γ5

[
Π1PI

ff,A(p
2) + δZf

A

]
, (62)
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with

δZf
V =

δZf
L + δZf

R

2
, δZf

A =
δZf

L − δZf
R

2
. (63)

In Eq. (62), Π1PI
ff,V , Π

1PI
ff,A and Π1PI

ff,S are the vector, axial vector and scalar parts of the 1PI diagram

contributions at the one-loop level, respectively.

For the scalar sector, we first define shifts in the weak eigenbasis of the scalar fields:⎛
⎝h1

h2

⎞
⎠→ Z̃even

⎛
⎝h1

h2

⎞
⎠ ,

⎛
⎝z1

z2

⎞
⎠→ Z̃odd

⎛
⎝z1

z2

⎞
⎠ ,

⎛
⎝w±

1

w±
2

⎞
⎠→ Z̃±

⎛
⎝w±

1

w±
2

⎞
⎠ , (64)

where Z̃even, Z̃odd and Z̃± are arbitrary real 2 × 2 matrices. We then express shifts of the scalar

fields in the mass eigenbasis as⎛
⎝H

h

⎞
⎠→ R(−δα)Zeven

⎛
⎝H

h

⎞
⎠ ,

⎛
⎝G0

A

⎞
⎠→ R(−δβ)Zodd

⎛
⎝G0

A

⎞
⎠ ,

⎛
⎝G±

H±

⎞
⎠→ R(−δβ)Z±

⎛
⎝G±

H±

⎞
⎠ , (65)

where we introduce Zeven ≡ R(−α)Z̃evenR(α) and Zodd/± ≡ R(−β)Z̃odd/±R(β). We define the

matrix elements of them as follows:

Zeven =

⎛
⎝1 + 1

2ZH δCHh

δChH 1 + 1
2Zh

⎞
⎠ , Zodd =

⎛
⎝1 + 1

2ZG δCGA

δCAG 1 + 1
2ZA

⎞
⎠ , Z± =

⎛
⎝1 + 1

2ZG± δCG+H−

δCH+G− 1 + 1
2ZH±

⎞
⎠ .

(66)

We note that in Ref. [75], the above matrices are chosen to be a symmetric form; i.e., δCHh = δChH ,

δCGA = δCAG and δCG+H− = δCH+G− . In this paper, we do not take the symmetric form, and

we use the additional degrees of freedom to remove the gauge dependence in the renormalization

of δβ as it will be discussed in Sec. III-D. Finally, we can express the shifts of the scalar fields by⎛
⎝ H

h

⎞
⎠→

⎛
⎝ 1 + 1

2δZH δCHh + δα

δChH − δα 1 + 1
2δZh

⎞
⎠
⎛
⎝ H

h

⎞
⎠ ,

⎛
⎝ G0

A

⎞
⎠→

⎛
⎝1 + 1

2δZG0 δCGA + δβ

δCAG − δβ 1 + 1
2δZA

⎞
⎠
⎛
⎝ G0

A

⎞
⎠ ,

⎛
⎝ G±

H±

⎞
⎠→

⎛
⎝ 1 + 1

2δZH+ δCG+H− + δβ

δCH+G− − δβ 1 + 1
2δZH±

⎞
⎠
⎛
⎝ G±

H±

⎞
⎠ . (67)

For the scalar sector, we have the renormalized one-point function for h and H as

T̂h = δTh + Γ1PI
h , T̂H = δTH + Γ1PI

H , (68)
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where ⎛
⎝ δT1

δT2

⎞
⎠ = R(α)

⎛
⎝ δTH

δTh

⎞
⎠ . (69)

The renormalized two-point functions are expressed as

Π̂hh(p
2) = Π̃1PI

hh (p2) +
[
(p2 −m2

h)δZh − δm2
h

]
, (70)

Π̂HH(p2) = Π̃1PI
HH(p2) +

[
(p2 −m2

H)δZH − δm2
H

]
, (71)

Π̂AA(p
2) = Π̃1PI

AA(p
2) +

[
(p2 −m2

A)δZA − δm2
A

]
, (72)

Π̂H+H−(p2) = Π̃1PI
H+H−(p

2) +
[
(p2 −m2

H±)δZH± − δm2
H±
]
, (73)

and those of the scalar mixings are given by

Π̂Hh(p
2) = Π̃1PI

Hh(p
2) + p2(δChH + δCHh) +m2

h(δα− δChH)−m2
H(δα+ δCHh), (74)

Π̂AG(p
2) = Π̃1PI

AG(p
2) + p2(δCAG + δCGA) +m2

A(δβ − δCAG), (75)

Π̂H+G−(p2) = Π̃1PI
H+G−(p

2) + p2(δCH+G− + δCG+H−) +m2
H±(δβ − δCH+G−), (76)

where

Π̃1PI
hh (p2) = Π1PI

hh (p2) +
s2αδT1

cβv
+

c2αδT2

sβv
, (77)

Π̃1PI
HH(p2) = Π1PI

HH(p2) +
c2αδT1

cβv
+

s2αδT2

sβv
, (78)

Π̃1PI
AA(p

2) = Π1PI
AA(p

2) +
s2βδT1

cβv
+

c2βδT2

sβv
, (79)

Π̃1PI
H+H−(p

2) = Π1PI
H+H−(p

2) +
s2βδT1

cβv
+

c2βδT2

sβv
, (80)

Π̃1PI
Hh(p

2) = Π1PI
Hh(p

2)− sαcα

(
δT1

cβv
− δT2

sβv

)
, (81)

Π̃1PI
AG(p

2) = Π1PI
AG(p

2) +
1

v
[sin(β − α)TH − cos(β − α)Th] , (82)

Π̃1PI
H+G−(p

2) = Π1PI
H+G−(p

2) +
1

v
[sin(β − α)TH − cos(β − α)Th] . (83)

B. Renormalization conditions in the electroweak gauge sector

The renormalization of the electroweak parameters can be done in the same way as in the SM,

because the number of parameters to describe the electroweak observables are the same in the
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THDM. This nature is also applied to models based on the SU(2)L×U(1)Y gauge symmetry with

ρ = 1 at the tree level3.

We apply the electroweak on-shell scheme based on Ref. [103] to our model. There are five

counter terms in the electroweak sector; i.e., δm2
W , δm2

Z , δαem, δZW and δZB. Therefore, we need

the following five renormalization conditions to determine them:

ReΠ̂WW (m2
W ) = 0, ReΠ̂ZZ(m

2
Z) = 0, (84)

d

dp2
Π̂γγ(p

2)
∣∣∣
p2=0

= 0, Π̂Zγ(0) = 0, (85)

Γ̂γee
μ (q2 = 0, p1/ = p2/ = me) = ieγμ, (86)

where Γ̂γee
μ is the renormalized photon-electron-positron vertex. From the above conditions, we

obtain

δm2
W = ReΠ1PI

WW (m2
W ), δm2

Z = ReΠ1PI
ZZ (m

2
Z),

δαem

αem
= Π1PI

γγ (0)′ − 2sW
cW

Π1PI
Zγ (0)

m2
Z

, (87)

δZγ = −Π1PI
γγ (0)′, δZZγ = − 2

m2
Z

Π1PI
Zγ (0) +

δs2W
sW cW

, (88)

where Π1PI
γγ (0)′ = d

dp2
Π1PI

γγ (p2)
∣∣∣
p2=0

. The other counter terms are also determined by

δZZ = −Π1PI
γγ (0)′ − 2(c2W − s2W )

cW sW

Π1PI
Zγ (0)

m2
Z

+
c2W − s2W

c2W

δs2W
s2W

, (89)

δZW = −Π1PI
γγ (0)′ − 2cW

sW

Π1PI
Zγ (0)

m2
Z

+
δs2W
s2W

, (90)

δs2W
s2W

=
c2W
s2W

[
Π1PI

ZZ (m
2
Z)

m2
Z

− Π1PI
WW (m2

W )

m2
W

]
. (91)

The counter term for the VEV δv is also obtained through the tree level relation:

v2 =
m2

W s2W
παem

, (92)

as

δv

v
=

1

2

[
s2W − c2W

s2W

Π1PI
WW (m2

W )

m2
W

+
c2W
s2W

Π1PI
ZZ (m

2
Z)

m2
Z

−Π1PI
γγ (0)′ +

2sW
cW

Π1PI
Zγ (0)

m2
Z

]
. (93)

3 When we discuss models without ρ = 1 at the tree level such as models with isosipin triplet scalar fields, one
additional input parameter is required to express the electroweak sector. Therefore, we need an additional renor-
malization condition to determine the extra counter term associated with the parameter. In the model with a
Y = 0 Higgs triplet field, the renormalization of electroweak parameters has been discussed in Refs. [61, 62].
Furthermore, in the model with a Y = 1 Higgs triplet field, that has also been discussed in Refs. [63, 78].
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We here note that the fermion-loop contribution to Π1PI
γγ (0)′ is given by

Π1PI
γγ (0)′ =

∑
f

αem

3π
Nf

c Q
2
f (Δ− lnm2

f ), (94)

where Qf is the electric charge of a fermion f , Nf
c is the color factor: Nf

c = 3 (1) for f being quarks

(leptons), and Δ is the divergent part of the loop integral as defined in Eq. (B23) in Appendix B.

In order to avoid to input the light quark masses, we can use the following relation obtained from

Eqs. (58) and (88)

Π1PI
γγ (0)′ =

1

m2
Z

[
Π1PI

γγ (m2
Z)− Π̂γγ(m

2
Z)
]
=

1

m2
Z

Π1PI
γγ (m2

Z) + Δαem, (95)

where Δαem is the shift of the structure constant that we can quote the experimental value. In

the right hand side of the above equation, the light fermion mass dependence in Π1PI
γγ (m2

Z)/m
2
Z is

of order m2
f/m

2
Z , so that we can neglect it.

C. Renormalization conditions in the Yukawa sector

In the Yukawa sector, there are three counter terms δmf , δZ
f
V and δZf

A. To determine them,

we impose the following three conditions for the fermion two point functions [76]:

Π̂ff,V (m
2
f ) = 0,

d

dp/
Π̂ff,V (p

2)
∣∣∣
p2=m2

f

= 0,
d

dp/
Π̂ff,A(p

2)
∣∣∣
p2=m2

f

= 0, (96)

we obtain

δmf

mf
= Π1PI

ff,V (m
2
f ) + Π1PI

ff,S(m
2
f ),

δZf
V = −Π1PI

ff,V (m
2
f )− 2m2

f

[
d

dp2
Π1PI

ff,V (p
2)
∣∣∣
p2=m2

f

+
d

dp2
Π1PI

ff,S(p
2)
∣∣∣
p2=m2

f

]
,

δZf
A = −Π1PI

ff,A(m
2
f ) + 2m2

f

d

dp2
Π1PI

ff,A(p
2)
∣∣∣
p2=m2

f

. (97)

D. Renormalization conditions in the Higgs potential

There are totally 21 counter terms in the Higgs potential, namely, the counter terms for two

tadpoles δTh and δTH , four mass parameters δm2
ϕ (ϕ = H±, A, H and h), two mixing angles δα

and δβ, four wave function factors δZϕ, six wave function mixing factors δCij , and δM2 4. First,

4 In addition to them, there are two more counter terms δZG± and δZG0 . However, they do not enter the following
discussion.
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we impose two tadpole conditions at the one-loop level, i.e.,

T̂h = T̂H = 0. (98)

We then obtain

δTh = −Γ1PI
h , δTH = −Γ1PI

H . (99)

Second, eight on-shell conditions for the two-point functions:

Π̂ϕϕ(m
2
ϕ) = 0, (100)

d

dp2
Π̂ϕϕ(p

2)
∣∣
p2=m2

ϕ
= 0, for ϕ = H±, A, H and h, (101)

which determine the following eight counter terms

δm2
h = Π1PI

hh (m2
h) +

s2αδT1

cβv
+

c2αδT2

sβv
, (102)

δm2
H = Π1PI

HH(m2
H) +

c2αδT1

cβv
+

s2αδT2

sβv
, (103)

δm2
A = Π1PI

AA(m
2
A) +

s2βδT1

cβv
+

c2βδT2

sβv
, (104)

δm2
H± = Π1PI

H+H−(m
2
H±) +

s2βδT1

cβv
+

c2βδT2

sβv
, (105)

and

δZϕ = − d

dp2
Π1PI

ϕϕ (p2)
∣∣∣
p2=m2

ϕ

. (106)

Three counter terms δα, δChH and δCHh related to the mixing between the CP-even scalar

states are determined by imposing the following three conditions

Π̂Hh(m
2
h) = Π̂Hh(m

2
H) = 0, δChH = δCHh ≡ δCh. (107)

They give

δα =
1

2(m2
H −m2

h)

[
Π1PI

Hh(m
2
h) + Π1PI

Hh(m
2
H)− 2sαcα

(
δT1

cβv
− δT2

sβv

)]
, (108)

δCh =
1

2(m2
H −m2

h)

[
Π1PI

Hh(m
2
h)−Π1PI

Hh(m
2
H)
]
. (109)

Three counter terms δβ, δCAG and δCGA related to the mixing between the CP-odd scalar states

are determined by three conditions. Similar to the CP-even sector, we first impose the following

two conditions as

Π̂AG(0) = Π̂AG(m
2
A) = 0. (110)
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We then obtain

δβ − δCAG = − 1

m2
A

Π̃1PI
AG(0), δβ + δCGA = − 1

m2
A

Π̃1PI
AG(m

2
A). (111)

In order to determine three counter terms, we need to impose one more renormalization condition

in addition to that given in Eq. (110). This third condition can be used to remove the gauge

dependence in δβ which was already mentioned in the beginning of this section. To define such a

condition, we separate Π̃1PI
AG(p

2) into the gauge dependent (G.D.) part and the gauge independent

(G.I.) part as

Π̃1PI
AG(p

2) = Π̃1PI
AG(p

2)
∣∣
G.D.

+ Π̃1PI
AG(p

2)
∣∣
G.I.

. (112)

Then, we imposed the third condition as

δβ = − 1

2m2
A

Π̃1PI
AG(m

2
A)
∣∣
G.I.

. (113)

Using Eq. (111), the remaining two counter terms are also determined:

δCAG = − 1

2m2
A

[
Π̃1PI

AG(m
2
A)
∣∣
G.I.

− 2Π̃1PI
AG(0)

∣∣
G.D.

]
, (114)

δCGA = − 1

2m2
A

[
Π̃1PI

AG(m
2
A)
∣∣
G.I.

+ 2Π̃1PI
AG(m

2
A)
∣∣
G.D.

]
. (115)

We note that in Π̃1PI
AG(0) only the G.D. part is survived; i.e., Π̃1PI

AG(0) = Π̃1PI
AG(0)

∣∣
G.D.

. As it can

be seen in Eqs. (114) and (115), there still remains the gauge dependence in δCAG and δCGA.

However, they do not appear in the following calculations for the renormalization of the Higgs

boson couplings. Instead of applying the above renormalization scheme for δβ, we can apply the

MS scheme in which the gauge dependence can also be removed at the one-loop level as discueed

in Ref. [85]. In the following discussion, we apply the renormalized tanβ determined by Eq. (113).

The above A-G0 mixing can be replaced by the mixing between A and the physical Z boson

by the help of the Ward-Takahashi identity; i.e., the condition Π̂AG(m
2
A) = 0 is equivalent to that

of vanishing renormalized A-Z mixing; i.e., Π̂ZA(m
2
A) = 0, which can be defined in the following

way. The Z-A mixing is obtained from the kinetic term:

Lkin = mZ(∂μG
0)Zμ + · · · → mZ(δβ + δCGA)(∂μA

0)Zμ + · · · . (116)

The renormalized Z-A mixing Π̂μ
ZA ≡ −ipμΠ̂ZA(p

2) is then expressed by

Π̂ZA(p
2) = mZ(δβ + δCGA) + Π1PI

ZA(p
2), (117)
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δξuh δξdh δξeh

Type-I − cα
sβ
(cotβδβ + tanαδα) − cα

sβ
(cotβδβ + tanαδα) − cα

sβ
(cotβδβ + tanαδα)

Type-II − cα
sβ
(cotβδβ + tanαδα) − sα

cβ
(tanβδβ + cotαδα) − sα

cβ
(tanβδβ + cotαδα)

Type-X − cα
sβ
(cotβδβ + tanαδα) − cα

sβ
(cotβδβ + tanαδα) − sα

cβ
(tanβδβ + cotαδα)

Type-Y − cα
sβ
(cotβδβ + tanαδα) − sα

cβ
(tanβδβ + cotαδα) − cα

sβ
(cotβδβ + tanαδα)

TABLE III: The counter term for the mixing factors in Yukawa interactions.

where pμ is the incoming momentum of A. The 1PI diagram contribution to the Z-A mixing

Π1PI
ZA(p

2) is given in Appendix. Because of the relation Π̃1PI
AG(m

2
A)/m

2
A = Π1PI

ZA(m
2
A)/mZ , the con-

dition Π̂AG(m
2
A) = 0 can be replaced by Π̂ZA(m

2
A) = 0. Therefore, Eq. (113) is rewritten as

δβ = − 1

2mZ
Π1PI

ZA(m
2
A)
∣∣
G.I.

. (118)

We note that the numerical difference between in our scheme and in the previous scheme applied

in Ref. [75] is negligibly small as long as we discuss the case with sin(β − α) � 1 or x � 1.

Two counter terms δCH+G− and δCG+H− for the mixing between the singly-charged scalar

states are determined by requiring the vanishment of the mixing between G± and H± at p2 = 0

and p2 = m2
H± :

Π̂H+G−(0) = Π̂H+G−(m2
H±) = 0. (119)

We obtain

δCH+G− = δβ − 1

m2
H±

Π̃1PI
H+G−(0), δCG+H− = −δβ − 1

m2
H±

Π̃1PI
H+G−(m

2
H±). (120)

Until here, we did not discuss the determination of δM2. As adopted in Ref. [75], we apply the

minimal subtraction scheme for δM2, where it is determined so as to absorb only the divergent

part in the hhh vertex at the one-loop level, that is

δM2

M2
=

1

16π2v2

[
2
∑
f

Nf
c m

2
fξ

2
f + 4M2 − 2m2

H± −m2
A +

sin 2α

sin 2β
(m2

H −m2
h)− 3(2m2

W +m2
Z)
]
Δ.

(121)
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IV. ONE-LOOP CORRECTED HIGGS BOSON COUPLINGS

A. Analytic expressions

In the previous section, all the counter terms are determined by the set of renormalization

conditions. Now, we can evaluate the one-loop corrected Higgs boson couplings hWW , hZZ, hff̄

and hhh. In addition to the above couplings, we also give formulae for the loop induced decay

rates h → γγ, h → Zγ and h → gg.

The renormalized hV V , hff̄ and hhh vertices are expressed as

Γ̂i
hV V (p

2
1, p

2
2, q

2) = Γi,tree
hV V + δΓi

hV V + Γi,1PI
hV V (p

2
1, p

2
2, q

2), (122)

Γ̂j
hff (p

2
1, p

2
2, q

2) = Γj,tree
hff + δΓj

hff + Γj,1PI
hff (p21, p

2
2, q

2), (123)

Γ̂hhh(p
2
1, p

2
2, q

2) = Γtree
hhh + δΓhhh + Γ1PI

hhh(p
2
1, p

2
2, q

2), (124)

where Γtree
hXX , δΓhXX and Γ1PI

hXX are the contributions from the tree level, the counter terms and the

1PI diagrams for the hXX vertices, respectively. In the above expressions, p1 and p2 (q = p1+ p2)

are the incoming momenta of particle X (outgoing momentum for h).

For the hV V and hff̄ vertices, the indices i and j label the following form factors:

Γ̂μν
hV V = Γ̂1

hV V g
μν + Γ̂2

hV V

pμ1p
ν
2

m2
V

+ iΓ̂3
hV V ε

μνρσ p1ρp2σ
m2

V

, (125)

Γ̂hff = Γ̂S
hff + γ5Γ̂

P
hff + p1/ Γ̂V 1

hff + p2/ Γ̂V 2
hff

+ p1/ γ5Γ̂
A1
hff + p2/ γ5Γ̂

A2
hff + p1/ p2/ Γ̂T

hff + p1/ p2/ γ5Γ̂
PT
hff . (126)

The tree-level contributions are given as

Γ1,tree
hV V =

2m2
V

v
sin(β − α), Γtree

hff = −mf

v
ξfh , Γtree

hhh = −6λhhh,

Γ2,tree
hV V = Γ3,tree

hV V = Γj,tree
hff = 0 (j �= S). (127)

The counter-term contributions are

δΓ1
hV V =

2m2
V

v

[
sin(β − α)

(
δm2

V

m2
V

+ δZV +
1

2
δZh − δv

v

)
+ cos(β − α)(δβ + δCh)

]
,

δΓS
hff = −mf

v
ξfh

[
δmf

mf
− δv

v
+ δZf

V +
1

2
δZh +

δξfh

ξfh
+

ξfH

ξfh
(δCh + δα)

]
,

δΓhhh = 6

[
δλhhh +

3

2
δZh + λHhh(δα+ δCh)

]
,

δΓ2
hV V = δΓ3

hV V = δΓj
hff = 0, (j �= S), (128)
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where

δλhhh = −λhhh
δv

v
+

1

v sin 2β
cos2(β − α) cos(α+ β)δM2

− 1

4v sin 2β
[cos(3α− β) + 3 cos(α+ β)] δm2

h

+
1

2v
cos(β − α)

[
3
sin 2α

sin 2β
(m2

h −M2) +M2

]
δα

+
1

4v sin2 2β
cos(β − α)[(4 + 4 cos 2α cos 2β − 2 sin 2α sin 2β)m2

h

− (5− cos 4β + 4 cos 2α cos 2β − 2 sin 2α sin 2β)M2]δβ. (129)

The counter terms δξfh appearing in the Yukawa couplings are expressed in terms of δβ and δα as

listed in Table III. We define the renormalized scaling factors in the following way:

κ̂V =
Γ̂1
hV V (m

2
V ,m

2
h, q

2)THDM

Γ̂1
hV V (m

2
V ,m

2
h, q

2)SM
, (130a)

κ̂f =
Γ̂S
hff (m

2
f ,m

2
f , q

2)THDM

Γ̂S
hff (m

2
f ,m

2
f , q

2)SM
, (130b)

κ̂h =
Γ̂hhh(m

2
h,m

2
h, q

2)THDM

Γ̂hhh(m
2
h,m

2
h, q

2)SM
. (130c)

The momentum q2 is fixed to be (mV +mh)
2, m2

h and (2mh)
2 for κ̂V , κ̂f and κ̂h, respectively, in

the following discussion.

The deviations in the renormalized Higgs boson couplings are approximately expressed by keep-

ing the non-decoupling effects of extra Higgs bosons and top and bottom masses dependence

(mA � mH is assumed) as

Δκ̂V � −1

2
x2 − 1

16π2

1

6

∑
Φ=A,H,H±

cΦ
m2

Φ

v2

(
1− M2

m2
Φ

)2

, (131)

Δκ̂τ � Δκ̂V + ξe x, (132)

Δκ̂c � Δκ̂V + ξu x, (133)

Δκ̂b � Δκ̂V + ξd x− 1

16π2
ξuξd

4m2
t

v2

[
1− M2

m2
H±

+
m2

t

m2
H±

(
1 + ln

m2
t

m2
H±

)]

− 1

16π2

1

3
ξ2d

∑
Φ=A,H,H±

m4
b

v2m2
Φ

, (134)

Δκ̂t � Δκ̂V + ξu x− 1

16π2

1

3

⎡
⎣ξ2u ∑

Φ=A,H,H±

m4
t

v2m2
Φ

+ ξ2d
m2

bm
2
t

v2m2
H±

⎤
⎦ , (135)

Δκ̂h �
(
3

2
− 2M2

m2
h

)
x2 +

1

16π2

∑
Φ=A,H,H±

cΦ
4

3

m4
Φ

m2
hv

2

(
1− M2

m2
Φ

)3

, (136)
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where cΦ = 2 (1) for Φ = H± (H, A). We can see that there appears the term

m2
Φ/v

2
(
1−M2/m2

Φ

)2
in Δκ̂V which comes from the counter term δZh; i.e., the derivative of

the h two point function given in Eq. (106). When we consider the case with M2 � v2, this term

gives the quadratic power like dependence of the mass of additional Higgs bosons. This corresponds

to the case where the masses of the additional Higgs bosons, which is expressed schematically as

m2
Φ = λiv

2 +M2, mostly come from the Higgs VEV v. In such a situation, it is known that the

decoupling theorem does not work. On the other hand, if we consider the case of M2 	 v2, the

amount of Δκ̂f is reduced as 1/m2
Φ according to the decoupling theorem. The same contribution

from δZh is also seen in Δκ̂f (f = τ, c, b, t) through the term Δκ̂V . Notice here that there are

additional terms proportional to the top or bottom quark masses in Δκ̂b and Δκ̂t. Apart from Δκ̂V

and Δκ̂f , let us discuss the expression of Δκ̂h. There appears the term m4
Φ/(m

2
hv

2)
(
1−M2/m2

Φ

)3
which comes from the additional Higgs boson loop contributions to the 1PI hhh diagrams. When

we consider the non-decoupling case; i.e., M2 � v2, it gives the quartic power like dependence of

mΦ. Similar to the case in ΔκV , this effect is decoupled by 1/m2
Φ when M2 	 v2 is taken.

Similarly, the decay rates of h → γγ and h → gg are expressed in terms of x (x � 1) as

Γ(h → γγ) � GFα
2
emm

3
h

128
√
2π3

∣∣∣∣∣∣−
1

3

(
1− M2

m2
H±

)
+
∑
f

QfN
f
c (1 + ξf x− x2

2
)IF + (1− x2

2
)IW

∣∣∣∣∣∣
2

, (137)

Γ(h → gg) � GFα
2
sm

3
h

64
√
2π3

∣∣∣∣∣
∑
q

(1 + ξq x− x2

2
)IF

∣∣∣∣∣
2

, (138)

where IF and IW are the loop functions. The exact expressions for the decay rates for h → γγ,

h → Zγ and h → gg are given in Eqs. (C58), (C59) and (C60) in Appendix C, respectively. In

Eq. (137), the first term in Γ(h → γγ) proportional to (1−M2/m2
H±) is the charged Higgs boson

loop contribution. When we take the limit of M2 → 0, this term approaches to the constant −1/3.

This can also be understood as the consequence of the non-decoupling effect of the charged Higgs

boson loop contribution, but it is not like the quartic (quadratic) power like dependence as seen in

Δκ̂h (Δκ̂V and Δκ̂f ).
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FIG. 3: Deviations in the scaling factors for hV V (upper left), hbb̄ (upper right), hγγ/hZγ (bottom left) and

hhh (bottom right) at the one-loop level as a function ofmΦ(= mH± = mA = mH) in the case of sin(β−α) =

1 and tanβ = 1 The black, blue and red curves respectively show the cases of
√
λv2(=

√
m2

Φ −M2) = 150,

300 and 400 GeV.

B. Numerical evaluations

In the following, we show numerical results for the Higgs boson couplings at the one-loop level.

We use the following inputs [94]:

mZ = 91.1875 GeV, GF = 1.16639× 10−5 GeV−2, α−1
em = 137.035989, Δαem = 0.06635,

mt = 173.07 GeV, mb = 4.66 GeV, mc = 1.275 GeV, mτ = 1.77684 GeV,

mh = 126 GeV. (139)

We first show the case of the SM-like limit x = 0. In this case, the deviations in the Higgs

boson couplings purely comes from the additional Higgs boson loop effects. We note that the
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FIG. 4: Deviations in the scaling factors for hV V (upper left), hff̄ (upper right), hγγ/hZγ (bottom left)

and hhh (bottom right) at the one-loop level as a function of mΦ(= mH± = mA = mH) in the case of

M2 = 0, sin(β − α) = 1 and tanβ = 1.

tanβ dependence in the renormalized scaling factors appears only in κ̂f . We take all the masses

of additional Higgs bosons to be the same; i.e., mH± = mA = mH (≡ mΦ) for simplicity.

In Fig. 3, we show the decoupling behavior of additional Higgs boson loop contributions to

the Higgs boson couplings. The upper-left, upper-right, lower-left and lower-right panels re-

spectively show Δκ̂V , Δκ̂b, Δκ2γ/Zγ and Δκ̂h as a function of mΦ for several fixed values of
√
λv2 (=

√
m2

Φ −M2) in the case of tanβ = 1. We can see that all the deviations approach

to zero in the large mass region due to the decoupling theorem [28].

In Fig. 4, we show the deviation in the Higgs boson couplings Δκ̂V (upper-left), Δκ̂ef (upper-

right), Δκ2γ/Zγ (lower-left) and Δκ̂h (lower-right) as a function of mΦ. We take M2 = 0 and

tanβ = 1 for all panels. In this case, the magnitude of deviations increase when mΦ becomes
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Set A Set B Set C Set D Set E

ΔκV −2% −2% −2% −1% −0.4%

Δκτ +18% +10% +5% +18% +18%

Δκb +18% +10% +5% +18% +18%

TABLE IV: Benchmark sets for the central values of measured scaling factors for the hV V , hbb̄ and hττ

couplings. The expected 1-σ uncertainties for each scaling factor at the HL-LHC and the ILC 500 are shown

in Eq. (140).

larger due to the non-decouipling effect of the extra Higgs boson loops except for Δκ2γ/Zγ .

V. DETERMINATION OF INNER PARAMETERS FROM THE HIGGS BOSON COU-

PLING MEASUREMENTS

In this section, we investigate how we can fingerprint the THDMs using the one-loop corrected

Higgs boson couplings and also future precision measurements of these couplings at the HL-LHC

and the ILC. We carefully see how the tree level analysis for the model discrimination discussed

in Sec. II or in Ref. [53] can be improved by the analysis with radiative corrections. Furthermore,

we demonstrate how the inner parameters such as x, tanβ and masses of additional Higgs bosons

can be extracted from the measurement of the couplings for the Higgs boson h. In our analysis

below, we assume that the deviations in scale factors of the Higgs boson couplings are measured

as expected in Table IV. We also assume that the SM values of these coupling constants are well

predicted without large uncertainties which mainly come from QCD corrections5.

Let us suppose that ΔκV , Δκτ and Δκb are measured at the HL-LHC and the ILC500. We

consider five benchmark sets for the central values of (ΔκV ,Δκτ ,Δκb) as listed in Table IV. Set A

is the typical case where Yukawa couplings deviate from the SM values rather significantly (18%)

with a relatively large deviation in the hV V couplings (−2%). Set B and Set C correspond to the

cases with smaller deviations in Yukawa couplings with the same deviation in gauge couplings as

Set A. Set D and Set E do to the cases with smaller deviations in gauge couplings with fixing the

5 According to Refs. [104, 105], the current uncertainty of the bottom Yukawa coupling hbb̄ due to the QCD correc-
tions is 0.77% in the SM. This uncertainty could be reduced in future studies using the lattice calculation up to
0.10% [105] which is better than the expected accuracy of the measurement of the hbb̄ coupling at the ILC1000-up
as listed in Table II (0.4%).
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same deviation in Yukawa couplings as Set A. According to Table II, the 1-σ uncertainty for these

scaling factors are given as

[σ(κV ), σ(κb), σ(κτ )] = [2%, 4%, 2%], for HL-LHC,

[σ(κV ), σ(κb), σ(κτ )] = [0.4%, 0.9%, 1.9%], for ILC500. (140)

From the tree level analysis in Fig. 1, these benchmark sets indicate that the Higgs sector is the

THDM with the Type-II (Type-I) Yukawa interaction assuming x � cos(β − α) < 0 (x > 0). In

order to further discriminate Type-I or Type-II, we need additional information to determine the

sign of x such as the measurement of Δκc, namely, if Δκc is given to be a negative (positive) value,

then we can completely determine the Yukawa interaction to be Type-II (Type-I). In the following,

we consider the case of Δκc < 0, so that we assume the case of the Type-II THDM.

For all Set A to Set E, we survey parameter regions in which values of κ’s are predicted around

the central values within the 1-σ uncertainty expressed in Eq. (140) by scanning the inner pa-

rameters x, tanβ, mΦ (= mH± = mA = mH) and M2 in the Type-II THDM. We also take into

account the constraints from vacuum stability and perturbative unitarity in order to constrain the

parameter space. The scanned regions for tanβ and mΦ are taken as tanβ ≥ 1 and mΦ ≥ 300

GeV, respectively. Values of the other parameters M2 and x are scanned over ranges which are

enough wide to obtain the maximally allowed parameter spaces.

In Fig. 5, we show the allowed parameter regions on the x-tanβ, x-m̄Φ, mΦ-ζ and mΦ-tanβ

planes from the left to right panels, where we define

ζ ≡ 1−M2/m2
Φ, m̄Φ ≡ mΦζ. (141)

The parameters x and m̄Φ give deviations of the Higgs boson couplings by the mixing effect and

the loop effect, respectively. Notice that the scale of m̄Φ corresponds to the mass of the extra Higgs

boson when M2 = 0. The physics meaning of ζ is to measure the magnitude of non-decouplingness

of the loop effects of extra Higgs bosons. If ζ is unity, we have M2 = 0, while if ζ < 1 with

nonzero value of M2 (> 0), the mass of the extra Higgs bosons partially comes from M2 so that

the non-decouplingness is smaller. The central values of Δκ’s are chosen from Set A, B, C, D and

E from the upper to bottom panels. The blue and red points correspond to the region within the

1-σ uncertainty at the HL-LHC and ILC500, respectively, from the central value in Table IV.

For Set A in Fig. 5, let us first explain the behavior of the red points on the x-tanβ plane. In

this case, −2.4% < ΔκV < −1.6% is allowed at the ILC500, which can be explained by taking

−0.22 � x � −0.18 at the tree level from the expression of ΔκV � −x2/2. At the same time,
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FIG. 5: Scatter plots for Set A, B, C, D and E from upper to bottom panels. The cyan and red points satisfy

the benchmark sets within the 1-σ uncertainty at the HL-LHC and ILC500 given in Eq. (140), respectively.

For the panels shown in the second and the third columns, the vertical axis m̄Φ and ζ are respectively

defined by m̄Φ ≡ mΦ(1−M2/m2
Φ) and ζ ≡ 1−M2/m2

Φ.

both Δκτ and Δκb are approximately given by −x tanβ in the Type-II THDM at the tree level,

so that tanβ is determined by a fixed value of x from tanβ � −Δκτ/b/x, which is around unity

if we take the central value of ΔκV and Δκτ/b. In fact, by looking at the top-left panel in Fig. 5,

the above mentioned values of x and tanβ are allowed. However, the actual allowed region of x
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inclucing radiative corrections is about from −0.22 to −0.12 which is wider than the allowed region

estimated at the tree level. This can be understood by taking into account the additional Higgs

boson loop contributions to κV at the one-loop level. The approximate formula for Δκ̂V is given in

Eq. (131), where the second term in the right hand side corresponds to the one-loop contribution.

The point here is that the sign of one-loop effect is negative, and it is proportional to the factor

ζ2. Therefore, the allowed region above x � −0.18 is explained from the one-loop contribution

with a non-zero value of ζ. On the other hand, the one-loop correction to κτ is given by the same

form as for κV as given in Eq. (132), so that the difference Δκ̂τ − Δκ̂V is approximately given

by the same form −x tanβ as that given at the tree level. Now from the measurement, since the

difference is determined with the uncertainty, −x tanβ is also fixed at the one-loop level. We thus

can understand the shape of the allowed region of this plot. Although for Δκ̂b the top quark, the

bottom quark and H± loop diagrams give an additional contribution as shown in Eq. (134), this

is not so significant in the scanned regions. As a consequence for Set A, when the measurement

at the ILC500 is assumed, the allowed value of x and tanβ can be determined to be about from

−0.22 to −0.12 and from 1 to 2, respectively. On the other hand at the HL-LHC, ΔκV = 0 is

included within the 1-σ uncertainty. Thus, x � 0 is still allowed, so that the value of tan β is not

determined at all because of the relation tanβ � −Δκτ/b/x. In addition, we can only extract the

lower limit of x to be about −0.22.

Next, we discuss the behavior of the second panel for Set A in Fig. 5. As we mentioned in the

above, the vertical axis m̄Φ measures the size of one-loop contribution to the deviation in the Higgs

boson couplings. At the ILC500, in the region with x � −0.20, the value of m̄Φ is determined to

be a smaller value, but m̄Φ � 0 is not included because of the constraint from vacuum stability.

This can be understood that the deviation from the tree level mixing is dominant in this case.

On the other hand, when the value of x approaches to zero, a sizable value of m̄Φ is extracted, in

which the deviation driven by the one-loop contribution becomes more important to compensate

the reduced contribution from the tree level mixing. In addition, the upper limit of m̄Φ to be about

450 GeV is determined by the constraint from perturbative unitarity. At the HL-LHC, although

the blue plots are spread over the region with x � 0 as we observed in the x-tanβ plot, the upper

and lower limit of m̄Φ is given by the constraint from unitarity and vacuum stability, respectively.

The third panel for Set A in Fig. 5 shows the allowed region on the mΦ-ζ plane, where ζ is the

parameter indicating the non-decouplingness of the extra Higgs bosons. For Set A, the allowed

regions for ILC500 are shown by the red points while those for HL-LHC by the blue points. There

are upper and lower bounds for ζ for each value of mΦ. They are crossed at around mΦ = 850 GeV
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which corresponds to the upper bound of the mass of extra Higgs boson. The region of ζ is from 0.2

to 1.4 at mΦ = 300 GeV. The region of ζ > 1 corresponds to M2 < 0, where non-decoupling effects

are effectively large. The exclusion of ζ < 0.2 means that there must be some non-decoupling loop

effects of extra Higgs bosons in order to explain this benchmark point. At the HL-LHC, the similar

behavior can be observed. However, ζ = 0 is still allowed, so that we cannot say something about

the non-decoupling effect.

The last panel for Set A in Fig. 5 shows the allowed regions on the mΦ-tanβ plane. At the

ILC500, tanβ can be determined to be less than 2, and the upper bound of the mass of the extra

Higgs bosons are obtained to be less 850 GeV, while at the HL-LHC, tanβ is undetermined and

only the upper bound of the mass of the extra Higgs bosons is obtained.

The panels shown in the second and third rows in Fig. 5 display the allowed parameter regions

for Set B and Set C, respectively, where the central value of Δκτ (= Δκb) is taken to be smaller than

that of Set A, while ΔκV is taken to be the same. By looking at the panels for the x-tanβ plane,

we can see that a smaller value of |x| is preferred as compared to the case for Set A. Furthermore,

a smaller value of tanβ is favored in addition to a smaller value of |x| as seen in the result at

the ILC500. These tendencies can be understood in such a way that the deviations in Yuakwa

couplings are proportional to −x tanβ at the tree level. Because of the smaller value of |x|, the
deviation in κV cannot be explained only from the tree level contribution, so that the one-loop

effect is necessary to compensate the tree level contribution. That is the reason why the red points

in the second and the third panels for Set B and Set C are given in the upper region which does not

include m̄Φ � 0 and ζ � 0. Therefore, the non-decoupling effect can be extracted at the ILC500

for these two benchmark sets. From the results of ILC500, the upper limit on mΦ is extracted to

be about 950 GeV and 800 GeV for Set B and Set C, respectively.

The panels shown in the fourth and fifth rows in Fig. 5 display the allowed parameter regions

for Set D and Set E, respectively, where the central value of ΔκV is taken to be smaller than that

of Set A, while Δκτ (= Δκb) is taken to be the same. From the red points in the left panels, it is

seen that the values of smaller |x| and larger tanβ are allowed, which can be explained by the tree

level formulae of ΔκV = −x2/2 and Δκτ/b = −x tanβ. For Set E unlike the other benchmark sets,

values of x and tanβ are not well determined even at the ILC500, because ΔκV � 0 is included

within the 1-σ uncertainty of ILC500. The extraction for m̄Φ, ζ and mΦ is done from the ILC500

as 50 � m̄Φ � 300 GeV, 0.1 � ζ � 1.1 GeV and mΦ < 850 GeV for Set D and 0 � m̄Φ � 200 GeV,

0 � ζ � 0.7 GeV and mΦ < 800 GeV for Set E.

Up to now, we have discussed the extraction of the inner parameters from the three experimental
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FIG. 6: Scatter plots for Set A with the additional constraint from κγ = 0.98, 1.00 and 1.02 for upper,

center and bottom panels. The 1-σ uncertainty of κγ is assumed to be 2% as expected at the HL-LHC. The

cyan and red points satisfy the benchmark sets within the 1-sigma uncertainty at the HL-LHC and ILC500

given in Eq. (140), respectively. For the panels shown in the second and the third columns, the vertical axis

m̄Φ and ζ are respectively defined by m̄Φ ≡ mΦ(1−M2/m2
Φ) and ζ ≡ 1−M2/m2

Φ.

inputs; i.e., ΔκV , Δκτ and Δκb. In Fig. 6, we show how the extraction can be improved by adding

information of κγ in addition to the above three inputs. The panels shown in the first row are the

same as those shown in the first row in Fig. 5, which are displayed in order to compare the results

with κγ . The panels displayed in the second, third and fourth rows respectively show the allowed

region for Set A with the central value of κγ of 0.98, 1.00 and 1.02 within the 1-σ uncertainty of

±2% as expected at the HL-LHC (see Table II). Because the accuracy of the measurement of κγ

at the ILC500 is not better than that of the best value at the HL-LHC, 2%, we also use 2% for

the analysis at the ILC500. As we see Eq. (137), the H± loop contribution to the decay rate of
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the h → γγ mode gives a different dependence of the non-decouplingness from that in Δκ̂V and

Δκ̂f , which is not proportional to m̄Φ, but proportional to ζ, so that the non-decouplingness ζ

can be expected to be extracted more precisely depending on the measured value of κγ . In fact,

we can observe that ζ is determined more precisely to be 0.5 � ζ � 1.0, 0.25 � ζ � 1.1 and

0.2 � ζ � 0.5 at the ILC500 for the cases with the central value of κγ = 0.98, κγ = 1.00 and

κγ = 1.02, respectively, as compared to the case without κγ (0.2 � ζ � 1.2). The determination

of m̄Φ is also improved, because m̄Φ is given as a function of ζ. We note that smaller values of ζ

and m̄Φ are favored in the case of the larger central value of κγ , because the H± loop effect gives

a destructive contribution to the W boson loop contribution.

In Fig. 7, we also show the allowed parameter region with additional information of κγ for Set

D. Similar to the results in the previous figure, ζ and m̄Φ are well extracted as compared to the case

without κγ displayed in the first row in Fig. 7. For example, ζ is determined to be 0.3 � ζ � 0.8,

0.1 � ζ � 0.6 and 0.1 � ζ � 0.6 for the cases with the central value of κγ = 0.98, κγ = 1.00 and

κγ = 1.02, respectively.

VI. DISCUSSIONS AND CONCLUSIONS

We have calculated radiative corrections to a full set of coupling constants for the Higgs boson

h at the one-loop level in the THDMs with the four types of Yukawa interactions under the softly-

broken discrete Z2 symmetry. These couplings are evaluated in the on-shell scheme, in which the

gauge dependence in the mixing parameter which appears in the previous calculation is consistently

avoided. We have shown the details of our one-loop calculations, and have presented the complete

set of the analytic formulae of the renormalized couplings. We then have numerically demonstrated

how the inner parameters of the THDM can be extracted by the future precision measurements of

these couplings at the HL-LHC and the ILC.

We have found that the inner parameters of the THDM can be determined to a considerable

extent as long as κV will be measured with the deviation about 1%. The extraction of the inner

parameters using the ILC500 is much better than that using the HL-LHC. That is mainly due to the

good accuracy of the hV V coupling measurement at the ILC500 whose uncertainty is expected to

be less than 1%. Although we have only demonstrated the results for Set A to Set E assuming the

true Higgs sector is of the Type-II THDM, the similar analysis can be performed straightforwardly

in the other types of THDM or the other extended Higgs sectors, and the extraction of inner

parameters is expected to be attained as well in these models. Our study given in this paper
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FIG. 7: Scatter plots for Set D with the additional constraint from κγ = 0.98, 1.00 and 1.02 for upper,

center and bottom panels. The 1-σ uncertainty of κγ is assumed to be 2% as expected at the HL-LHC. The

cyan and red points satisfy the benchmark sets within the 1-sigma uncertainty at the HL-LHC and ILC500

given in Eq. (140), respectively. For the panels shown in the second and the third columns, the vertical axis

m̄Φ and ζ are respectively defined by m̄Φ ≡ mΦ(1−M2/m2
Φ) and ζ ≡ 1−M2/m2

Φ.

shows that the numerical evaluation of the Higgs boson couplings at the one-loop level in extended

Higgs sectors is essentially important to indirectly determine the structure of the Higgs sector by

using the future precision data. In addition, it also shows that in addition to the HL-LHC where

especially hγγ can be measured precisely future lepton colliders such as the ILC are absolutely

necessary for our purpose of determining the structure of the Higgs sector from the measurement

of the coupling constants of the discovered Higgs boson h.

Although we have discussed fingerprinting by using κV , κτ , κb and κγ , the information of κc, κt

and κh is also important to determine the Higgs sector more deeply. In particular, the measurement
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of the top Yukawa coupling is important not only to determine the nature of the top quark, the

heaviest matter particle, but also to test the new physics scenarios based on the composite models.

The measurement of the hhh coupling is essentially important not only to determine the nature of

the Higgs potential but also to test, for instance, the new physics models with strongly first order

phase transition. Although at the HL-LHC the cross section of the double Higgs production process

is expected to be measured at a few times 10% it seems to be hopeless to extract the information

of the hhh coupling sufficiently accurately. On the other hand, at the ILC with
√
s = 1 TeV the

hhh coupling can be measured with the 13% accuracy [59, 106], which is sufficient precision to test

the strong first order phase transition which is required for successful electroweak baryogenesis.

We conclude that the combination of the future data for all kinds of the couplings for the Higgs

boson h and their theory predictions with radiative corrections in various extended Higgs sectors

is a promissing way to determine the structure of the Higgs sector and further to access new

physics beyond the SM, even if a new particle was not directly discovered in the future experiments.
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Appendix A: Higgs boson couplings

From the Higgs kinetic term, we obtain the two types of the trilinear couplings; i.e., Gauge-

Gauge-Scalar, Gauge-Scalar-Scalar, and quartic Gauge-Gauge-Scalar-Scalar type couplings. These

couplings can be expressed as

L =+ gφV1V2
gμνφV1μV2ν + gφ1φ2V (∂

μφ1φ2 − φ1∂
μφ2)Vμ + gφ1φ2V1V2g

μνφ1φ2V1μV2ν + · · · . (A1)

The coefficients gφV1V2 , gφ1φ2V and gφ1φ2V1V2 are listed in Table VI, where we use gZ = g/cW in

this table and below. Throughout Appendix, we use the shortened notation of the mixing angles,

sβ−α = sin(β − α) and cβ−α = cos(β − α).

From the Higgs potential, we obtain the scalar trilinear and the scalar quartic couplings. When

we use the following notation for these couplings

L = +λφiφjφk
φiφjφk + λφiφjφkφl

φiφjφkφl + · · · . (A2)
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Vertices gφV1V2

hW+
μ W−

ν
g2

2 vsβ−α

HW+
μ W−

ν
g2

2 vcβ−α

hZμZν
g2
Z

4 vsβ−α

HZμZν
g2
Z

4 vcβ−α

G±ZμW
∓
ν − ggZ

2 vs2W

G±AμW
∓
ν

eg
2 v

TABLE V: The Gauge-Gauge-Scalar vertices.

Vertices gφ1φ2V

hG±W∓
μ ∓i g2sβ−α

HG±W∓
μ ∓i g2cβ−α

G0G±W∓
μ − g

2

hH±W∓
μ ∓i g2cβ−α

HH±W∓
μ ±i g2sβ−α

AH±W∓
μ − g

2

G+G−Zμ i gZ2 c2W

H+H−Zμ i gZ2 c2W

hG0Zμ − gZ
2 sβ−α

hAZμ − gZ
2 cβ−α

HG0Zμ − gZ
2 cβ−α

HAZμ
gZ
2 sβ−α

G+G−Aμ ie

H+H−Aμ ie

Vertices gφ1φ2V1V2 Vertices gφ1φ2V1V2

hhW+
μ W−

ν
g2

4 G±G0W∓
μ Zν ±i ggZ2 s2W

HHW+
μ W−

ν
g2

4 H±AW∓
μ Zν ±i ggZ2 s2W

AAW+
μ W−

ν
g2

4 G±HW∓
μ Zν − ggZ

2 s2W cβ−α

G0G0W+
μ W−

ν
g2

4 H±hW∓
μ Zν − ggZ

2 s2W cβ−α

G+G−W+
μ W−

ν
g2

2 G±hW∓
μ Zν − ggZ

2 s2W sβ−α

H+H−W+
μ W−

ν
g2

2 H±HW∓
μ Zν

ggZ
2 s2W sβ−α

hhZμZν
g2
Z

8 H±AW∓
μ Aν ∓ eg

2

HHZμZν
g2
Z

8 G±G0W∓
μ Aν ∓ eg

2

AAZμZν
g2
Z

8 H±hW∓
μ Aν

eg
2 cβ−α

G0G0ZμZν
g2
Z

8 G±HW∓
μ Aν

eg
2 cβ−α

G+G−ZμZν
g2
Z

4 c22W G+G−AμZν egZc2W

H+H−ZμZν
g2
Z

4 c22W H+H−AμZν egZc2W

G+G−AμAν e2 G±hW∓
μ Aν

eg
2 sβ−α

H+H−AμAν e2 H±HW∓
μ Aν − eg

2 sβ−α

TABLE VI: The Scalar-Scalar-Gauge and Scalar-Scalar-Gauge-Gauge type vertices and those coefficients
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These coefficients are given by

λH+H−h =
1

v

[
(2M2 − 2m2

H± −m2
h)sβ−α + 2(M2 −m2

h) cot 2βcβ−α

]
, (A3)

λAAh =
1

2v

[
(2M2 − 2m2

A −m2
h)sβ−α + 2(M2 −m2

h) cot 2βcβ−α

]
, (A4)

λHHh =
sβ−α

2v

[
(2M2 − 2m2

H −m2
h)s

2
β−α + 2(3M2 − 2m2

H −m2
h) cot 2βsβ−αcβ−α

− (4M2 − 2m2
H −m2

h)c
2
β−α

]
, (A5)

λhhh = −m2
h

2v
sβ−α +

M2 −m2
h

v
sβ−αc

2
β−α +

M2 −m2
h

2v
c3β−α(cotβ − tanβ), (A6)

λGGh = −m2
h

2v
sβ−α, (A7)

λH±G∓h = −1

v
(m2

h −m2
H±)cβ−α, (A8)

λAGh = −1

v
(m2

h −m2
A)cβ−α, (A9)

λH+H−H = −1

v

[
2(M2 −m2

H) cot 2βsβ−α + (2m2
H± +m2

H − 2M2)cβ−α

]
, (A10)

λAAH = − 1

2v

[
2(M2 −m2

H) cot 2βsβ−α + (2m2
A +m2

H − 2M2)cβ−α

]
, (A11)

λHHH = − 1

2v

[
2(M2 −m2

H) cot 2βs3β−α − 2(M2 −m2
H)cβ−αs

2
β−α +m2

Hcβ−α

]
, (A12)

λGGH = −m2
H

2v
cβ−α, (A13)

λH±G∓H =
1

v
(m2

H −m2
H±)sβ−α, (A14)

λAGH =
1

v
(m2

H −m2
A)sβ−α, (A15)

λHhh = − cβ−α

2v sin 2β

[
(2m2

h +m2
H − 3M2) sin 2α+M2 sin 2β

]
, (A16)

λH±G∓A = ± i

v
(m2

A −m2
H±). (A17)

The four point couplings are given by

λH+H−AG = −1

v
(λH+H−Hsβ−α − λH+H−hcβ−α), (A18)

λG+G−AG = −1

v
(λG+G−Hsβ−α − λG+G−hcβ−α), (A19)

λAAAG = −1

v
(λAAHsβ−α − λAAhcβ−α), (A20)

λAGGG = −1

v
(λGGHsβ−α − λGGhcβ−α). (A21)
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Appendix B: Loop Functions

The Passarino-Veltman functions [107] are quite useful to systematically express the one-loop

functions. First, we define A, B and C functions:

i

16π2
A(m1) = μ4−D

∫
dDk

(2π)D
1

N1
, (B1)

i

16π2
[B0, B

μ, Bμν ](p21;m1,m2) = μ4−D

∫
dDk

(2π)D
[1, kμ, kμkν ]

N1N2
, (B2)

i

16π2
[C0, C

μ, Cμν ](p21, p
2
2, (p1 + p2)

2;m1,m2,m3) = μ4−D

∫
dDk

(2π)D
[1, kμ, kμkν ]

N1N2N3
, (B3)

where D = 4 − 2ε, and μ is a dimensionful parameter to keep the mass dimension four in the

k-integral. The propagators are defined by

N1 = k2 −m2
1 + iε, N2 = (k + p1)

2 −m2
2 + iε, N3 = (k + p1 + p2)

2 −m2
3 + iε. (B4)

The vector and the tensor functions for B and C are expressed in terms of the following scalar

functions:

Bμ = pμ1B1, (B5)

Bμν = pμ1p
ν
1B21 + gμνB22, (B6)

Cμ = pμ1C11 + pμ2C12, (B7)

Cμν = pμ1p
ν
1C21 + pμ2p

ν
2C22 + (pμ1p

ν
2 + pν1p

μ
2 )C23 + gμνC24. (B8)

By counting the mass demension of the above functions, we can find that the divergent part is

contained in A, B0, B1, B21, B22 and C24. All the scalar functions are expressed by the divergent
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part and finite part as

A(m) = m2
(
Δ+ 1− lnm2

)
, (B9)

B0 = Δ−
∫ 1

0
dx lnΔB, (B10)

B1 = −Δ

2
+

∫ 1

0
dx(1− x) lnΔB, (B11)

B21 =
Δ

3
−
∫ 1

0
dx(1− x)2 lnΔB, (B12)

B22 =
1

4

(
m2

1 +m2
2 −

p2

3

)
Δ+

1

4

(
m2

1 +m2
2 −

p2

3

)
− 1

2

∫ 1

0
dxΔB lnΔB, (B13)

C0 = −
∫ 1

0
dx

∫ 1

0
dy

y

ΔC
, (B14)

C11 = −
∫ 1

0
dx

∫ 1

0
dy

y(xy − 1)

ΔC
, (B15)

C12 = −
∫ 1

0
dx

∫ 1

0
dy

y(y − 1)

ΔC
, (B16)

C21 = −
∫ 1

0
dx

∫ 1

0
dy

y(1− xy)2

ΔC
, (B17)

C22 = −
∫ 1

0
dx

∫ 1

0
dy

y(1− y)2

ΔC
, (B18)

C23 = −
∫ 1

0
dx

∫ 1

0
dy

y(1− xy)(1− y)

ΔC
, (B19)

C24 =
Δ

4
− 1

2

∫ 1

0
dx

∫ 1

0
dy y lnΔC , (B20)

where

ΔB = −x(1− x)p2 + xm2
1 + (1− x)m2

2, (B21)

ΔC = y2(p1x+ p2)
2 + y[x(p22 − q2 +m2

1 −m2
2) +m2

2 −m2
3 − p22] +m2

3, (B22)

and the divergent part Δ is given by

Δ ≡ 1

ε
− γE + ln 4π + lnμ2, (B23)

with γE being the Euler constant. It is convenient to define the following functions [108]:

B2(p
2,m1,m2) = B21(p

2,m1,m2), (B24)

B3(p
2,m1,m2) = −B1(p

2,m1,m2)−B21(p
2,m1,m2), (B25)

B4(p
2,m1,m2) = −m2

1B1(p
2,m2,m1)−m2

2B1(p
2,m1,m2), (B26)

B5(p
2,m1,m2) = A(m1) +A(m2)− 4B22(p

2,m1,m2). (B27)
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Appendix C: 1PI diagrams

In this section, we give the analytic expressions for the 1PI diagram contributions to one,

two and three point functions by using the Passarino-Veltman functions defined in the previous

section. We calculate 1PI diagrams in the t’ Hooft-Feynman gauge in which the masses of Nambu-

Goldstone bosons mG± and mG0 and those of Fadeev-Popov ghosts mc± and mcZ are the same as

corresponding masses of the gauge bosons; i.e., mG± = mc± = mW and mG0 = mcZ = mZ . 1PI

diagrams with bosonic external lines are separately calculated by the fermion-loop and boson-loop

contritbutions. We denote the fermionic- and bosonic-loop contributions by the subscript of F and

B, respectively. Throughout this section, we use the shortened notation of the Passarino-Veltman

functions [107] as

A(X) =
i

16π2
A(mX) (C1)

Bi, ij(p
2;X,Y ) =

i

16π2
Bi, ij(p

2;mX ,mY ), (C2)

Ci, ij(X,Y, Z) =
i

16π2
Ci, ij(p

2
1, p

2
2, (p1 + p2)

2;mX ,mY ,mZ). (C3)

1. One-point functions

The 1PI tadpole diagrams for h and H are calculated by

T 1PI
h,F = −

∑
f

4m2
f

v
Nf

c ξ
f
hA(f), (C4)

T 1PI
H,F = −

∑
f

4m2
f

v
Nf

c ξ
f
HA(f), (C5)

T 1PI
h,B = sβ−α

[
3gmWA(W ) +

3

2
gZmZA(Z)− 2gm3

W − gZm
3
Z

]

− λH+H−hA(H
±)− λAAhA(A)− λHHhA(H)− 3λhhhA(h)

− λG+G−hA(G
±)− λG0G0hA(G0), (C6)

T 1PI
H,B = cβ−α

[
3gmWA(W ) +

3

2
gZmZA(Z)− 2gm3

W − gZm
3
Z

]

− λH+H−HA(H±)− λAAHA(A)− 3λHHHA(H)− λHhhA(h)

− λG+G−HA(G±)− λG0G0HA(G0). (C7)
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2. Two-point functions

The 1PI diagram contributions to the scalar boson two point functions are calculated as

Π1PI
hh (p2)F = −

∑
f

4m2
fN

f
c

v2
(ξfh)

2

[
A(f) +

(
2m2

f − p2

2

)
B0(p

2; f, f)

]
, (C8)

Π1PI
HH(p2)F = −

∑
f

4m2
fN

f
c

v2
(ξfH)2

[
A(f) +

(
2m2

f − p2

2

)
B0(p

2; f, f)

]
, (C9)

Π1PI
Hh(p

2)F = −
∑
f

4m2
fN

f
c

v2
ξfhξ

f
H

[
A(f) +

(
2m2

f − p2

2

)
B0(p

2; f, f)

]
, (C10)

Π1PI
AA(p

2)F = −
∑
f

4m2
fN

f
c

v2
ξ2f

[
A(f)− p2

2
B0(p

2; f, f)

]
, (C11)

Π1PI
AG(p

2)F = −
∑
f

4m2
fN

f
c

v2
ξf

[
A(f)− p2

2
B0(p

2; f, f)

]
, (C12)

Π1PI
hh (p2)B = g2 sin2(β − α)(3m2

W − p2)B0(p
2;W,W ) +

g2

2

[
4− sin2(β − α)

]
A(W )

+
g2Z
2

sin2(β − α)(3m2
Z − p2)B0(p

2;Z,Z) +
g2Z
4

[
4− sin2(β − α)

]
A(Z)

− g2

2
cos2(β − α)

[
2A(W )−A(H±) + (2m2

H± −m2
W + 2p2)B0(p

2;W,H±)
]

− g2Z
4

cos2(β − α)
[
2A(Z)−A(A) + (2m2

A −m2
Z + 2p2)B0(p

2;Z,A)
]

−
[
sin2(β − α) +

1

2

]
(2g2m2

W + g2Zm
2
Z),

− 2λH+H−hhA(H
±)− 2λAAhhA(A)− 2λHHhhA(H)− 12λhhhhA(h)

− 2λG+G−hhA(G
±)− 2λG0G0hhA(G0)

+ λ2
H+H−hB0(p

2;H±, H±) + λ2
G+G−hB0(p

2;G±, G±) + 2λ2
H+G−hB0(p

2;H±, G±)

+ 2λ2
AAhB0(p

2;A,A) + 2λ2
G0G0hB0(p

2;G0, G0) + λ2
AG0hB0(p

2;A,G0)

+ 2λ2
HHhB0(p

2;H,H) + 18λ2
hhhB0(p

2;h, h) + 4λ2
HhhB0(p

2;h,H), (C13)
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Π1PI
HH(p2)B = g2 cos2(β − α)(3m2

W − p2)B0(p
2;W,W ) +

g2

2
[4− cos2(β − α)]A(W )

+
g2Z
2

cos2(β − α)(3m2
Z − p2)B0(p

2;Z,Z) +
g2Z
4

[
4− cos2(β − α)

]
A(Z)

− g2

2
sin2(β − α)

[
2A(W )−A(H±) + (2m2

H± −m2
W + 2p2)B0(p

2;W,H±)
]

− g2Z
4

sin2(β − α)
[
2A(Z)−A(A) + (2m2

A −m2
Z + 2p2)B0(p

2;Z,A)
]

−
[
cos2(β − α) +

1

2

]
(2g2m2

W + g2Zm
2
Z),

− 2λH+H−HHA(H±)− 2λAAHHA(A)− 12λHHHHA(H)− 2λHHhhA(h)

− 2λG+G−HHA(G±)− 2λG0G0HHA(G0)

+ λ2
H+H−HB0(p

2;H±, H±) + λ2
G+G−HB0(p

2;G±, G±) + 2λ2
H+G−HB0(p

2;H±, G±)

+ 2λ2
AAHB0(p

2;A,A) + 2λ2
G0G0HB0(p

2;G0, G0) + λ2
AG0HB0(p

2;A,G0)

+ 18λ2
HHHB0(p

2;H,H) + 2λ2
HhhB0(p

2;h, h) + 4λ2
HHhB0(p

2;h,H), (C14)

Π1PI
Hh(p

2)B = sβ−αcβ−α

×
{
g2(3m2

W − p2)B0(p
2;W,W )− g2

2
A(W )

+
g2Z
2
(3m2

Z − p2)B0(p
2;Z,Z)− g2Z

4
A(Z)

+
g2

2
[2A(W )−A(H±) + (2m2

H± −m2
W + 2p2)B0(p

2;W,H±)]

+
g2Z
4
[2A(Z)−A(A) + (2m2

A −m2
Z + 2p2)B0(p

2;Z,A)]− (2g2m2
W + g2Zm

2
Z)
}

− λH+H−HhA(H
±)− λAAHhA(A)− 3λHHHhA(H)− 3λHhhhA(h)

− λG+G−HhA(G
±)− λG0G0HhA(G0)

+ λH+H−hλH+H−HB0(p
2;H±, H±) + λG+G−hλG+G−HB0(p

2;G±, G±)

+ 2λH+G−hλH+G−HB0(p
2;H±, G±)

+ 2λAAhλAAHB0(p
2;A,A) + 2λhG0G0λG0G0HB0(p

2;G0, G0)

+ λAG0hλAG0HB0(p
2;A,G0) + 6λHHhλHHHB0(p

2;H,H)

+ 6λhhhλHhhB0(p
2;h, h) + 4λHhhλHHhB0(p

2;H,h), (C15)
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Π1PI
AA(p

2)B = 2g2A(W ) + g2ZA(Z)− 1

2
(2g2m2

W + g2Zm
2
Z)

− g2

2

[
2A(W )−A(H±) + (2m2

H± −m2
W + 2p2)B0(p

2;W,H±)
]

− g2Z
4

cos2(β − α)
[
2A(Z)−A(h) + (2m2

h −m2
Z + 2p2)B0(p

2;Z, h)
]

− g2Z
4

sin2(β − α)
[
2A(Z)−A(H) + (2m2

H −m2
Z + 2p2)B0(p

2;Z,H)
]
,

− 2λH+H−AAA(H
±)− 12λAAAAA(A)− 2λAAHHA(H)− 2λAAhhA(h)

− 2λG+G−AAA(G
±)− 2λAAG0G0A(G0)

+ 2|λH+G−A|2B0(p
2;H±, G±) + 4λ2

AAhB0(p
2;A, h)

+ 4λ2
AAHB0(p

2;A,H) + λ2
AG0hB0(p

2;h,G0) + λ2
AG0HB0(p

2;H,G0), (C16)

Π1PI
AG(p

2)B = sβ−αcβ−α

×
{g2Z

4

[
2A(Z)−A(H) + (2m2

H −m2
Z + 2p2)B0(p

2;Z,H)
]

− g2Z
4
[2A(Z)−A(h) + (2m2

h −m2
Z + 2p2)B0(p

2;Z, h)]
}

− λH+H−AG0A(H±)− 3λAAAG0A(A)− λAG0HHA(H)− λAG0hhA(h)

− λG+G−AG0A(G±)− 3λAG0G0G0A(G0)

+ 2λAAhλAG0hB0(p
2;A, h) + 2λAAHλAG0HB0(p

2;A,H)

+ 2λAG0hλG0G0hB0(p
2;G0, h) + 2λAG0HλG0G0HB0(p

2;G0, H). (C17)

The Z-A mixing is given by

ΠZA(p
2)F =

∑
f

2m2
f

v2
mZN

f
c ξfB0(p

2; f, f), (C18)

ΠZA(p
2)B = mZ

[2λAAH

v
sβ−α(2B1 +B0)(p

2;A,H)− 2λAAh

v
cβ−α(2B1 +B0)(p

2;A, h)

− λAGH

v
cβ−α(2B1 +B0)(p

2;G0, H)− λAGh

v
sβ−α(2B1 +B0)(p

2;G0, h)

− g2Z
2
sβ−αcβ−α(B1 −B0)(p

2;H,Z) +
g2Z
2
sβ−αcβ−α(B1 −B0)(p

2;h, Z)
]
, (C19)

The G.I. part appearing in Eq. (118) is given by

ΠZA(p
2)
∣∣
G.I.

= ΠZA(p
2)F

+
2mZ

v

[
λAAHsβ−α(2B1 +B0)(p

2;A,H)− λAAhcβ−α(2B1 +B0)(p
2;A, h)

]
. (C20)
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The 1PI diagram contributions to the gauge boson two point functions are calculated as

Π1PI
WW (p2)F =

∑
f,f ′

g2Nf
c

(
2p2B3 −B4

)
(p2; f, f ′), (C21)

Π1PI
γγ (p2)F =

∑
f

8e2Q2
fN

f
c p

2B3(p
2; f, f), (C22)

Π1PI
Zγ (p

2)F =
∑
f

egZN
f
c

[
2p2(2IfQf − 4s2WQ2

f )B3

]
(p2; f, f), (C23)

Π1PI
ZZ (p

2)F =
∑
f

g2ZN
f
c

[
2p2(4s4WQ2

f − 4s2WQfIf + 2I2f )B3 − 2I2ff
2B0

]
(p2; f, f), (C24)

Π1PI
WW (p2)B = g2

{
1

4
B5(p

2;A,H±) +
1

4
sin2(β − α)B5(p

2;H,H±)

+
1

4
cos2(β − α)B5(p

2;h,H±)

+ sin2(β − α)

(
m2

WB0 +
1

4
B5

)
(p2;h,W )

+ cos2(β − α)

(
m2

WB0 +
1

4
B5

)
(p2;H,W )

+

[(
1

4
+ 2c2W

)
B5 + (m2

W − 4s2Wm2
W +m2

Z − 8p2c2W )B0

]
(p2;Z,W )

+ 2s2W

[
B5 + (2m2

W − 4p2)B0

]
(p2; 0,W )− 2

3
p2

}
, (C25)

Π1PI
γγ (p2)B = e2B5(p

2;H±, H±)− e2p2
[
12B3 + 5B0(p

2;W,W ) +
2

3

]
, (C26)

Π1PI
Zγ (p

2)B =
egZ
2

B5(p
2;H±, H±)− egZp

2

(
10B3 +

11

2
B0 +

2

3

)
(p2;W,W )

− sW
cW

Π1PI
γγ (p2)B, (C27)

Π1PI
ZZ (p

2)B = g2Z

{
1

4
B5(p

2;H±, H±) +
1

4
sin2(β − α)B5(p

2;H,A)

+
1

4
cos2(β − α)B5(p

2;h,A)]

+ sin2(β − α)

(
m2

ZB0 +
1

4
B5

)
(p2;h, Z)

+ cos2(β − α)

(
m2

ZB0 +
1

4
B5

)
(p2;H,Z)

+
[
(2m2

W − 23

4
p2)B0 − 9p2B3

]
(p2;W,W )− 2

3
p2

}

− 2sW
cW

Π1PI
Zγ (p

2)B − s2W
c2W

Π1PI
γγ (p2)B, (C28)

where the fermion-loop contributions are the same as those in the SM.
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The fermion two point functions can be decomposed into the following three parts

Π1PI
ff (p2) = p/Π1PI

ff,V (p
2)− p/γ5Π

1PI
ff,A(p

2) +mfΠ
1PI
ff,S(p

2). (C29)

Each part is caluclated as

Π1PI
ff,V (p

2) = −e2Q2
f (2B1 + 1)(p2; f, γ)− g2Z(v

2
f + a2f )(2B1 + 1)(p2; f, Z)

− g2

4
(2B1 + 1)(p2; f ′,W )

− m2
f

v2

[
(ξfh)

2B1(p
2; f, h) + (ξfH)2B1(p

2; f,H) + ξ2fB1(p
2; f,A) +B1(p

2; f,G0)
]

− m2
f +m2

f ′

v2
B1(p

2; f ′, G±)− m2
fξ

2
f +m2

f ′ξ2f ′

v2
B1(p

2; f ′, H±),

Π1PI
ff,A(p

2) = −2g2Zvfaf (2B1 + 1)(p2; f, Z)− g2

4
(2B1 + 1)(p2; f ′,W )

+
m2

f −m2
f ′

v2
B1(p

2; f ′, G±) +
m2

fξ
2
f −m2

f ′ξ2f ′

v2
B1(p

2; f ′, H±),

Π1PI
ff,S(p

2) = −2e2Q2
f (2B0 − 1)(p2; f, γ)− 2g2Z(v

2
f − a2f )(2B0 − 1)(p2; f, Z)

+
m2

f

v2

[
(ξfh)

2B0(p
2; f, h) + (ξfH)2B0(p

2; f,H)− ξ2fB0(p
2; f,A)−B0(p

2; f,G0)
]

− 2
m2

f ′

v2
[
B0(p

2; f ′, G±) + ξfξf ′B0(p
2; f ′, H±)

]
, (C30)

where vf and af are the coefficient of the vector coupling and axial vector coupling of Zff̄ vertex

given as

vf =
If
2

− s2WQf , af =
If
2
. (C31)

3. Three-point functions

In this subsection, we give analytic expressions for the 1PI diagram contributions to the three

point functions. The assignment for external momentum is taken in such a way that p1 and (p2) is

the incoming momnetum of h (h), V (V ) and f (f̄) for the hhh, hV V and hff̄ vertices, respectively,

and q = p1 + p2 is the outgoing momentum of h for all the above vertices.

First, the 1PI diagrams for the hhh coupling is calculated as

Γ1PI
hhh(p

2
1, p

2
2, q

2)F = −
∑
f

8m4
fN

f
c

v3
(ξfh)

3
[
B0(p

2
1, f, f) +B0(p

2
2, f, f) +B0(q

2, f, f)

+ (4m2
f − q2 + p1 · p2)C0(f, f, f)

]
, (C32)
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Γ1PI
hhh(p

2
1, p

2
2, q

2)B =
g3

2
m3

W s3β−α

[
16C0(W,W,W )− C0(c

±, c±, c±)
]

− g3

2
mW sβ−α

[
s2β−αC

SV V
hhh (G±,W,W ) + c2β−αC

SV V
hhh (H±,W,W )

]
+

g3Z
4
m3

Zs
3
β−α

[
16C0(Z,Z, Z)− C0(cZ , cZ , cZ)

]
− g3ZmZ

4
sβ−α

[
s2β−αC

SV V
hhh (G0, Z, Z)c2β−αC

SV V
hhh (A,Z,Z)

]
+

g2

2
λG+G−hs

2
β−αC

V SS
hhh (W,G±, G±) +

g2

2
λH+H−hc

2
β−αC

V SS
hhh (W,H±, H±)

+
g2

2
λH+G−hsβ−αcβ−α[C

V SS
hhh (W,G±, H±) + CV SS

hhh (W,H±, G±)]

+
g2Z
2
λG0G0hs

2
β−αC

V SS
hhh (Z,G0, G0) +

g2Z
2
λAAhc

2
β−αC

V SS
hhh (Z,A,A)

+
g2Z
4
λAG0hsβ−αcβ−α[C

V SS
hhh (Z,A,G0) + CV SS

hhh (Z,G0, A)]

+ 2g3mW sβ−α[B0(p
2
1,W,W ) +B0(p

2
2,W,W ) +B0(q

2,W,W )]− 3g3mW sβ−α

+ g3ZmZsβ−α[B0(p
2
1, Z, Z) +B0(p

2
2, Z, Z) +B0(q

2, Z, Z)]− 3

2
g3ZmZsβ−α

+ 2λH+H−hλH+H−hh[B0(p
2
1, H

±, H±) +B0(p
2
2, H

±, H±) +B0(q
2, H±, H±)]

+ 2λhG+G−λhhG+G− [B0(p
2
1, G

±, G±) +B0(p
2
2, G

±, G±) +B0(q
2, G±, G±)]

+ 4λH+G−hλH+G−hh[B0(p
2
1, H

±, G±) +B0(p
2
2, H

±, G±) +B0(q
2, H±, G±)]

+ 4λAAhλAAhh[B0(p
2
1, A,A) +B0(p

2
2, A,A) +B0(q

2, A,A)]

+ 4λG0G0hλG0G0hh[B0(p
2
1, G

0, G0) +B0(p
2
2, G

0, G0) +B0(q
2, G0, G0)]

+ 2λAG0hλAG0hh[B0(p
2
1, A,G0) +B0(p

2
2, A,G0) +B0(q

2, A,G0)]

+ 4λHHhλHHhh[B0(p
2
1, H,H) +B0(p

2
2, H,H) +B0(q

2, H,H)]

+ 12λHhhλHhhh[B0(p
2
1, h,H) +B0(p

2
2, h,H) +B0(q

2, h,H)]

+ 72λhhhλhhhh[B0(p
2
1, h, h) +B0(p

2
2, h, h) +B0(q

2, h, h)]

− 2λ3
H+H−hC0(H

±, H±, H±)− 2λ3
G+G−hC0(G

±, G±, G±)− 8λ3
G0G0hC0(G

0, G0, G0)

− 8λ3
AAhC0(A,A,A)− 8λ3

HHhC0(H,H,H)− 216λ3
hhhC0(h, h, h)

− 2λH+H−hλ
2
H+G−h[C0(G

±, H±, H±) + C0(H
±, G±, H±) + C0(H

±, H±, G±)]

− 2λG+G−hλ
2
H+G−h[C0(H

±, G±, G±) + C0(G
±, H±,W ) + C0(G

±, G±, H±)]

− 2λAAhλ
2
AG0h[C0(G

0, A,A) + C0(A,G0, A) + C0(A,A,G0)]

− 2λG0G0hλ
2
AG0h[C0(A,G

0, G0) + C0(G
0, A,G0) + C0(G

0, G0, A)]

− 8λHHhλ
2
Hhh[C0(h,H,H) + C0(H,H, h) + C0(H,h,H)]

− 24λhhhλ
2
Hhh[C0(h, h,H) + C0(H,h, h) + C0(h,H, h)], (C33)
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where

CSV V
hhh (X,Y, Z) ≡

[
p21C21 + p22C22 + 2p1p2C23 + 4C24 − 1

2
− (q + p1)(p1C11 + p2C12) + qp1C0

]
(X,Y, Z)

+
[
p21C21 + p22C22 + 2p1p2C23 + 4C24 − 1

2
+ (3p1 − p2)(p1C11 + p2C12) + 2p1(p1 − p2)C0

]
(Z,X, Y )

+
[
p21C21 + p22C22 + 2p1p2C23 + 4C24 − 1

2
+ (3p1 + 4p2)(p1C11 + p2C12) + 2q(q + p2)C0

]
(Y, Z,X),

CV SS
hhh (X,Y, Z) ≡[
p21C21 + p22C22 + 2p1p2C23 + 4C24 − 1

2
+ (4p1 + 2p2)(p1C11 + p2C12) + 4p1 · qC0

]
(X,Y, Z)

+
[
p21C21 + p22C22 + 2p1p2C23 + 4C24 − 1

2
+ 2p2(p1C11 + p2C12)− p1(p1 + 2p2)C0

]
(Z,X, Y )

+
[
p21C21 + p22C22 + 2p1p2C23 + 4C24 − 1

2
− 2p2(p1C11 + p2C12)− q(p1 − p2)C0

]
(Y, Z,X). (C34)

The hff̄ vertex can be decomposed into the following 8 form factors

Γ1PI
hff (p

2
1, p

2
2, q

2) =

FS
hff + γ5F

P
hff + p1/ F V 1

hff + p2/ F V 2
hff + p1/ γ5F

A1
hff + p2/ γ5F

A2
hff + p1/ p2/ F T

hff + p1/ p2/ γ5F
PT
hff . (C35)

Each form factor can be calculated by(mf

v

)−1
FS
hff = −2g4Zv

2(v2f − a2f )sβ−αC0(Z, f, Z)

− 4ξfh

{
e2Q2

f [m
2
fC0 + p21(C11 + C21) + p22(C12 + C22) + p1 · p2(2C23 − C0) + 4C24 − 1](f, γ, f)

+ g2Z(v
2
f − a2f )[m

2
fC0 + p21(C11 + C21) + p22(C12 + C22) + p1 · p2(2C23 − C0) + 4C24 − 1](f, Z, f)

}

+ ξfh
m2

f

v2

[
(ξfh)

2CFSF
hff (f, h, f) + (ξfH)2CFSF

hff (f,H, f)− CFSF
hff (f,G0, f)− ξ2fC

FSF
hff (f,A, f)

]

− ξf
′

h

2m2
f ′

v2

[
CFSF
hff (f ′, G±, f ′) + ξfξf ′CFSF

hff (f ′, H±, f ′)
]

− m2
f

v

{
6(ξfh)

2λhhhC0(h, f, h) + 2(ξfH)2λHHhC0(H, f,H) + 2ξfhξ
f
HλHhh[C0(h, f,H) + C0(H, f, h)]

− 2λG0G0hC0(G
0, f,G0)− 2ξ2fλAAhC0(A, f,A)− ξfλAG0h[C0(A, f,G0) + C0(G

0, f, A)]
}

+
2m2

f ′

v

{
λG+G−hC0(G

±, f ′, G±) + ξfξf ′λH+H−hC0(H
±, f ′, H±)

+
1

2
λH+G−h(ξf + ξf ′)[C0(G

±, f ′, H±) + C0(H
±, f ′, G±)]

}
− g2

4
sβ−α

[
CV FS
hff (W, f ′, G±) + CSFV

hff (G±, f ′,W )
]

− g2

4
ξfcβ−α

[
CV FS
hff (W, f ′, H±) + CSFV

hff (H±, f ′,W )
]

− g2Z
8
sβ−α

[
CV FS
hff (Z, f,G0) + CSFV

hff (G0, f, Z)
]

− g2Z
8
ξfcβ−α

[
CV FS
hff (Z, f,A) + CSFV

hff (A, f, Z)
]
, (C36)

50



(mf

v

)−1
FP
hff = λH+G−h

m2
f ′

v
(ξf ′ − ξf )[C0(G

±, f ′, H±)− C0(H
±, f ′, G±)]

− g2

4
sβ−α

[
CV FS
hff (W, f ′, G±)− CSFV

hff (G±, f ′,W )
]

− g2

4
ξfcβ−α

[
CV FS
hff (W, f ′, H±)− CSFV

hff (H±, f ′,W )
]

− g2ZvfIfsβ−α

[
CV FS
hff (Z, f,G0)− CSFV

hff (G0, f, Z)
]

− g2ZvfIfξfcβ−α

[
CV FS
hff (Z, f,A)− CSFV

hff (A, f, Z)
]
, (C37)

F V 1
hff =

2m2
f

v
ξfh

[
g2Z(v

2
f + a2f )(C0 + 2C11)(f, Z, f) + e2Q2

f (C0 + 2C11)(f, γ, f)
]

+ g2
m2

f ′

2v
ξf

′
h (C0 + 2C11)(f

′,W, f ′)

− sβ−αg
4
Zv(v

2
f + a2f )(C0 + C11)(Z, f, Z)− sβ−α

g4

4
v(C0 + C11)(W, f ′,W )

+ ξfh
m4

f

v3

[
(ξfh)

2(C0 + 2C11)(f, h, f) + (ξfH)2(C0 + 2C11)(f,H, f)

+ (C0 + 2C11)(f,G
0, f) + ξ2f (C0 + 2C11)(f,A, f)

]

+
m2

f ′

v3
ξf

′
h

[
(m2

f +m2
f ′)(C0 + 2C11)(f

′, G±, f ′) + (m2
fξ

2
f +m2

f ′ξ2f ′)(C0 + 2C11)(f
′, H±, f ′)

]

− m2
f

v2

{
6(ξfh)

2λhhh(C0 + C11)(h, f, h) + 2(ξfH)2λHHh(C0 + C11)(H, f,H)

+ 2ξfhξ
f
HλHhh[(C0 + C11)(H, f, h) + (C0 + C11)(h, f,H)]

+ 2λG0G0h(C0 + C11)(G
0, f,G0) + 2ξ2fλAAh(C0 + C11)(A, f,A)

+ ξfλAG0h[(C0 + C11)(A, f,G0) + (C0 + C11)(G
0, f, A)]

}
− λG+G−h

v2
(m2

f +m2
f ′)(C0 + C11)(G

±, f ′, G±)− λH+H−h

v2
(m2

fξ
2
f +m2

f ′ξ2f ′)(C0 + C11)(H
±, f ′, H±)

− λH+G−h

v2
(m2

fξf +m2
f ′ξf ′)[(C0 + C11)(G

±, f ′, H±) + (C0 + C11)(H
±, f ′, G±)]

− g2
m2

f ′

4v

[
sβ−α(2C0 + C11)(W, f ′, G±) + sβ−α(−C0 + C11)(G

±, f ′,W )

− ξf ′cβ−α(2C0 + C11)(W, f ′, H±)− ξf ′cβ−α(−C0 + C11)(H
±, f ′,W )

]

− g2Z
m2

f

8v

[
sβ−α(2C0 + C11)(Z, f,G

0) + sβ−α(−C0 + C11)(G
0, f, Z)

− ξfcβ−α(2C0 + C11)(Z, f,A)− ξfcβ−α(−C0 + C11)(A, f, Z)
]
, (C38)
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F V 2
hff =

2m2
f

v
ξfh

[
g2Z(v

2
f + a2f )(C0 + 2C12)(f, Z, f) + e2Q2

f (C0 + 2C12)(f, γ, f)
]

+ g2
m2

f ′

2v
ξf

′
h (C0 + 2C12)(f

′,W, f ′)

− sβ−αg
4
Zv(v

2
f + a2f )C12(Z, f, Z)− sβ−α

g4

4
vC12(W, f ′,W )

+ ξfh
m4

f

v3

[
(ξfh)

2(C0 + 2C12)(f, h, f) + (ξfH)2(C0 + 2C12)(f,H, f)

+ (C0 + 2C12)(f,G
0, f) + ξ2f (C0 + 2C12)(f,A, f)

]

+ ξf
′

h

m2
f ′

v3

[
(m2

f +m2
f ′)(C0 + 2C12)(f

′, G±, f ′) + (m2
fξ

2
f +m2

f ′ξ2f ′)(C0 + 2C12)(f
′, H±, f ′)

]

− m2
f

v2

{
6(ξfh)

2λhhhC12(h, f, h) + 2(ξfH)2λHHhC12(H, f,H) + 2ξfhξ
f
HλHhh[C12(H, f, h) + C12(h, f,H)]

+ 2λG0G0hC12(G
0, f,G0) + 2ξ2fλAAhC12(A, f,A) + 2ξfλAG0h[C12(G

0, f, A) + C12(A, f,G0)]
}

− λG+G−h

v2
(m2

f +m2
f ′)C12(G

±, f ′, G±)− λH+H−h

v2
(m2

fξ
2
f +m2

f ′ξ2f ′)C12(H
±, f ′, H±)

− λH+G−h

v2
(m2

fξf +m2
f ′ξf ′)[C12(G

±, f ′, H±) + C12(H
±, f ′, G±)]

− g2

4

m2
f ′

v

[
sβ−α(2C0 + C12)(W, f ′, G±) + sβ−α(−C0 + C12)(G

±, f ′,W )

− ξf ′cβ−α(2C0 + C12)(W, f ′, H±)− ξf ′cβ−α(−C0 + C12)(H
±, f ′,W )

]

− g2Z
8

m2
f

v

[
sβ−α(2C0 + C12)(Z, f,G

0) + sβ−α(C12 − C0)(G
0, f, Z)

+ ξfcβ−α(2C0 + C12)(Z, f,A) + ξfcβ−α(C12 − C0)(A, f, Z)
]
, (C39)

FA1
hff = −4g2Zvfaf

m2
f

v
ξfh(C0 + 2C11)(f, Z, f)− g2

m2
f ′

2v
ξf

′
h (C0 + 2C11)(f

′,W, f ′)

+ 2sβ−αg
4
Zvfafv(C0 + C11)(Z, f, Z) + sβ−α

g4

4
v(C0 + C11)(W, f ′,W )

+
m2

f ′

v3
ξf

′
h

[
(m2

f −m2
f ′)(C0 + 2C11)(f

′, G±, f ′) + (m2
fξ

2
f −m2

f ′ξ2f ′)(C0 + 2C11)(f
′, H±, f ′)

]
− λG+G−h

v2
(m2

f −m2
f ′)(C0 + C11)(G

±, f ′, G±)− λH+H−h

v2
(m2

fξ
2
f −m2

f ′ξ2f ′)(C0 + C11)(H
±, f ′, H±)

− λH+G−h

v2
(m2

fξf −m2
f ′ξf ′)[(C0 + C11)(G

±, f ′, H±) + (C0 + C11)(H
±, f ′, G±)]

+
g2

4

m2
f ′

v

[
sβ−α(2C0 + C11)(W, f ′, G±) + sβ−α(−C0 + C11)(G

±, f ′,W )

− ξf ′cβ−α(2C0 + C11)(W, f ′, H±)− ξf ′cβ−α(−C0 + C11)(H
±, f ′,W )

]

+ g2ZIfvf
m2

f

v

[
sβ−α(2C0 + C11)(Z, f,G

0) + sβ−α(−C0 + C11)(G
0, f, Z)

+ ξfcβ−α(2C0 + C11)(Z, f,A) + ξfcβ−α(−C0 + C11)(A, f, Z)
]
, (C40)
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FA2
hff = −4ξfhg

2
Zvfaf

m2
f

v
(C0 + 2C12)(f, Z, f)− ξf

′
h g2

m2
f ′

2v
(C0 + 2C12)(f

′,W, f ′)

+ 2sβ−αg
4
ZvfafvC12(Z, f, Z) + sβ−α

g4

4
vC12(W, f ′,W )

+ ξf
′

h

m2
f ′

v3

[
(m2

f −m2
f ′)(C0 + 2C12)(f

′, G±, f ′) + (m2
fξ

2
f −m2

f ′ξ2f ′)(C0 + 2C12)(f
′, H±, f ′)

]
− λG+G−h

v2
(m2

f −m2
f ′)C12(G

±, f ′, G±)− λH+H−h

v2
(m2

fξ
2
f −m2

f ′ξ2f ′)C12(H
±, f ′, H±)

− λH+G−h

v2
(m2

fξf −m2
f ′ξf ′)[C12(G

±, f ′, H±) + C12(H
±, f ′, G±)]

+
g2

4

m2
f ′

v

[
sβ−α(2C0 + C12)(W, f ′, G±) + sβ−α(−C0 + C12)(G

±, f ′,W )

− ξf ′cβ−α(2C0 + C12)(W, f ′, H±)− ξf ′cβ−α(−C0 + C12)(H
±, f ′,W )

]

+ g2ZIfvf
m2

f

v

[
sβ−α(2C0 + C12)(Z, f,G

0) + sβ−α(−C0 + C12)(G
0, f, Z)

+ ξfcβ−α(2C0 + C12)(Z, f,A) + ξfcβ−α(−C0 + C12)(A, f, Z)
]
, (C41)

(mf

v

)−1
F T
hff = ξfh

m2
f

v2

[
(ξfh)

2(C11 − C12)(f, h, f) + (ξfH)2(C11 − C12)(f,H, f)

− (C11 − C12)(f,G
0, f)− ξ2f (C11 − C12)(f,A, f)

]

− ξf
′

h

2m2
f ′

v2

[
(C11 − C12)(f

′, G±, f ′) + ξfξf ′(C11 − C12)(f
′, H±, f ′)

]
− g2

4

[
sβ−α(−2C0 − 2C11 + C12)(W, f ′, G±) + sβ−α(−C0 − C11 + 2C12)(G

±, f ′,W )

+ ξfcβ−α(−2C0 − 2C11 + C12)(W, f ′, H±) + ξfcβ−α(−C0 − C11 + 2C12)(H
±, f ′,W )

]
− g2Z

8

[
sβ−α(−2C0 − 2C11 + C12)(Z, f,G

0) + sβ−α(−C0 − C11 + 2C12)(G
0, f, Z)

+ ξfcβ−α(−2C0 − 2C11 + C12)(Z, f,A) + ξfcβ−α(−C0 − C11 + 2C12)(A, f, Z)
]
, (C42)

(mf

v

)−1
FPT
hff =

g2

4

[
sβ−α(2C0 + 2C11 − C12)(W, f ′, G±)− sβ−α(C0 + C11 − 2C12)(G

±, f ′,W )

− ξfcβ−α(−2C0 − 2C11 + C12)(W, f ′, H±)− ξfcβ−α(C0 + C11 − 2C12)(H
±, f ′,W )

]
− g2ZIfvf

[
sβ−α(−2C0 − 2C11 + C12)(Z, f,G

0) + sβ−α(C0 + C11 − 2C12)(G
0, f, Z)

+ ξfcβ−α(−2C0 − 2C11 + C12)(Z, f,A) + ξfcβ−α(C0 + C11 − 2C12)(A, f, Z)
]
, (C43)
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where

CFSF
hff (X,Y, Z) ≡

[m2
FC0 + p21(C11 + C21) + p22(C12 + C22) + 2p1 · p2(C12 + C23) + 4C24](X,Y, Z)− 1

2
,

CV FS
hff (X,Y, Z) ≡

[p21(2C0 + 3C11 + C21) + p22(2C12 + C22) + 2p1 · p2(2C0 + 2C11 + C12 + C23) + 4C24](X,Y, Z)− 1

2
,

CSFV
hff (X,Y, Z) ≡ [p21(C21 − C0) + p22(C22 − C12) + 2p1 · p2(C23 − C12) + 4C24](X,Y, Z)− 1

2
.

(C44)

The 1PI diagram contributions to the form factors of the hZZ and hWW vertices which are

defined in Eq. (125) are calculated as

Γ1,1PI
hZZ (p21, p

2
2, q

2)F =
∑
f

16m2
fm

2
ZN

f
c

v3

{
(v2f + a2f )

[
B0(p

2
1, f, f) +B0(p

2
2, f, f) + 2B0(q

2, f, f)

+ (4m2
f − p21 − p22)C0(f, f, f)− 8C24(f, f, f)

]

− (v2f − a2f )
[
B0(p

2
2, f, f) +B0(p

2
1, f, f) + (4m2

f − q2)C0(f, f, f)
]}

, (C45)

Γ2,1PI
hZZ (p21, p

2
2, q

2)F = −
∑
f

32m2
fm

4
ZN

f
c

v3[
(v2f + a2f )(4C23 + 3C12 + C11 + C0) + (v2f − a2f )(C12 − C11)

]
(f, f, f), (C46)

Γ3,1PI
hZZ (p21, p

2
2, q

2)F =
∑
f

64m2
fm

4
ZN

f
c

v3
vfaf (C11 + C12 + C0)(f, f, f), (C47)

Γ1,1PI
hWW (p21, p

2
2, q

2)F =
∑
f,f ′

4m2
Wm2

fN
f
c

v3

[
1

2
B0(p

2
2, f, f

′) +B0(q
2, f, f) +

1

2
B0(p

2
1, f, f

′)

− 4C24(p
2
1, p

2
2, q

2, f, f ′, f) +
1

2
(2m2

f + 2m2
f ′ − p21 − p22)C0(f, f

′, f)

]
+ (mf ↔ mf ′), (C48)

Γ2,1PI
hWW (p21, p

2
2, q

2)F =
−4m4

Wm2
fN

f
c

v3
(4C23 + 3C12 + C11 + C0) (f, f

′, f) + (mf ↔ mf ′), (C49)

Γ3,1PI
hWW (p21, p

2
2, q

2)F =
−4m4

Wm2
fN

f
c

v3
(C11 + C12 + C0) (f, f

′, f) + (mf ↔ mf ′), (C50)
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Γ1,1PI
hZZ (p21, p

2
2, q

2)B = 2g2ZλG+G−hm
2
W s4WC0(G

±,W,G±)

+ g3mW sβ−α

{
2c2WCV V V

hV V 1(W,W,W )− 2c2WC24(c
±, c±, c±) + s2WCSV V

hV V 1(G
±,W,W ) + s2WCV V S

hV V 1(W,W,G±)

− 2
s4W
c2W

m2
W sβ−αC0(W,G±,W )− (c2W − s2W )

s2W
c2W

[C24(W,G±, G±) + C24(G
±, G±,W )]

}

+
g3Z
2
mZsβ−α

{
− 2m2

Z

[
s2β−αC0(Z, h, Z) + c2β−αC0(Z,H,Z)

]
+ s2β−α[C24(G

0, h, Z) + C24(Z, h,G
0)]

+ c2β−α

[
C24(A, h, Z) + C24(Z, h,A) + C24(G

0, H, Z) + C24(Z,H,G0)− C24(A,H,Z)− C24(Z,H,A)
] }

+ 2g2Zm
2
Z

{
3λhhhs

2
β−αC0(h, Z, h) + λHHhc

2
β−αC0(H,Z,H) + λHhhsβ−αcβ−α[C0(H,Z, h) + C0(h, Z,H)]

}
− 2g2Z(c

2
W − s2W )2

[
λG+G−hC24(G

±, G±, G±) + λH+H−hC24(H
±, H±, H±)

]
− 2g2Zs

2
β−α

[
3λhhhC24(h,G

0, h) + λHHhC24(H,A,H) + λGGhC24(G
0, h,G0) + λAAhC24(A,H,A)

]
− 2g2Zc

2
β−α

[
3λhhhC24(h,A, h) + λHHhC24(H,G0, H) + λAAhC24(A, h,A) + λGGhC24(G

0, H,G0)
]

− 2g2Zsβ−αcβ−αλHhh[C24(h,G
0, H) + C24(H,G0, h)− C24(h,A,H)− C24(H,A, h)]

− 2g2Zsβ−αcβ−αλAGh[C24(A, h,G0) + C24(G
0, h, A)− C24(A,H,G0)− C24(G

0, H,A)]

+
g2Z
2
λG+G−h(c

2
W − s2W )2B0(q

2, G±, G±) +
g2Z
2
λH+H−h(c

2
W − s2W )2B0(q

2, H±, H±)

+
g2Z
2
λGGhB0(q

2, G0, G0) +
g2Z
2
λAAhB0(q

2, A,A) +
g2Z
2
λHHhB0(q

2, H,H) +
3g2Z
2

λhhhB0(q
2, h, h)

− g3
s4W
c2W

mW sβ−α[B0(p
2
2,W,G±) +B0(p

2
1, G

±,W )]− g3Z
2
mZsβ−α[B0(p

2
1, h, Z) +B0(p

2
2, h, Z)]

− 6g3c2WmW sβ−αB0(q
2,W,W ) + 4g3c2WmW sβ−α, (C51)
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(g2Zm
2
Z)

−1Γ2,1PI
hZZ (p21, p

2
2, q

2)B = 2gmW c4W sβ−αC
V V V
hV V 2(W,W,W )− 2gc4WmW sβ−αC1223(c

±, c±, c±)

+ gmW s2W c2W sβ−α[C
SV V
hV V 2(G

±,W,W ) + CV V S
hV V 2(W,W,G±)]

− gmW (c2W − s2W )s2W [CSSV
hV V 2(G

±, G±,W ) + CV SS
hV V 2(W,G±, G±)]

+
gZ
2
mZ [C

V SS
hV V 2(Z, h,G

0) + CV SS
hV V 2(G

0, h, Z)]

+
gZ
2
mZs

3
β−α[C

V SS
hV V 2(Z, h,G

0) + CSSV
hV V 2(G

0, h, Z)]

+
gZ
2
mZsβ−αc

2
β−α[C

V SS
hV V 2(Z, h,A) + CV SS

hV V 2(Z,H,G0)− CV SS
hV V 2(Z,H,A)

+ CSSV
hV V 2(A, h, Z) + CSSV

hV V 2(G
0, H, Z)− CSSV

hV V 2(A,H,Z)]

− 2(c2W − s2W )2
[
λG+G−hC1223(G

±, G±, G±) + λH+H−hC1223(H
±, H±, H±)

]
− 2s2β−α

[
3λhhhC1223(h,G

0, h) + λHHhC1223(H,A,H) + λGGhC1223(G
0, h,G0) + λAAhC1223(A,H,A)

]
− 2c2β−α

[
3λhhhC1223(h,A, h) + λHHhC1223(H,G0, H) + λAAhC1223(A, h,A) + λGGhC1223(G

0, H,G0)
]

− 2sβ−αcβ−αλHhh[C1223(h,G
0, H) + C1223(H,G0, h)− C1223(h,A,H)− C1223(H,A, h)]

− 2sβ−αcβ−αλAGh[C1223(A, h,G0) + C1223(G
0, h, A)− C1223(A,H,G0)− C1223(G

0, H,A)],

(C52)

Γ3,1PI
hZZ (p21, p

2
2, q

2)B = 0, (C53)
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Γ1,1PI
hWW (p21, p

2
2, q

2)B =

g3mW sβ−α[C
V V V
hV V 1(Z,W,Z) + c2WCV V V

hV V 1(W,Z,W ) + s2WCV V V
hV V 1(W,γ,W )

− C24(cZ , c
±, cZ)− c2WC24(c

±, cZ , c±)− s2WC24(c
±, cγ , c±)]

− g3

2
mW s2W sβ−α[C

SV V
hV V 1(G

±, Z,W )− CSV V
hV V 1(G

±, γ,W ) + CV V S
hV V 1(W,Z,G±)− CV V S

hV V 1(W,γ,G±)]

− g3m3
W

s4W
c4W

sβ−αC0(Z,G
±, Z)− g3m3

W s3β−αC0(W,h,W )− gm3
W sβ−αc

2
β−αC0(W,H,W )

+ g2
s4W
c2W

m2
WλG+G−hC0(G

±, Z,G±) + s2Wm2
WλG+G−hC0(G

±, γ,G±)

+ 6g2λhhhm
2
W s2β−αC0(h,W, h) + 2g2λHHhm

2
W c2β−αC0(H,W,H)

+ 2g2λHhhm
2
W cβ−αsβ−α[C0(h,W,H) + C0(H,W, h)]

+
g3

2
mW sβ−α

{
s2β−α[C24(W,h,G±) + C24(G

±, h,W )]

+ c2β−α[C24(W,H,G±) + C24(G
±, H,W ) + C24(W,h,H±) + C24(H

±, h,W )

− C24(W,H,H±)− C24(H
±, H,W )]

}
+

g3

2
mW

s2W
c2W

sβ−α[C24(G
0, G±, Z) + C24(Z,G

±, G0)]

− g2
[
λG+G−hC24(G

±, G0, G±) + λH+H−hC24(H
±, A,H±)

+ 2λGGhC24(G
0, G±, G0) + 2λAAhC24(A,H±, A)

]
− g2s2β−α

[
6λhhhC24(h,G

±, h) + 2λHHhC24(H,H±, H)

+ λG+G−hC24(G
±, h,G±) + λH+H−hC24(H

±, H,H±)
]

− g2c2β−α

[
6λhhhC24(h,H

±, h) + 2λHHhC24(H,G±, H)

+ λG+G−hC24(G
±, H,G±) + λH+H−hC24(H

±, h,H±)
]

− g2λH+G−hsβ−αcβ−α[C24(G
±, h,H±) + C24(H

±, h,G±)− C24(G
±, H,H±)− C24(H

±, H,G±)]

− 2g2λHhhsβ−αcβ−α[C24(h,G
±, H) + C24(H,G±, h)− C24(h,H

±, H)− C24(H,H±, h)]

− g3mW sβ−α

[
3B0(q

2,W,W ) + 3B0(q
2, Z, Z)− 4

]
+

g2

2
λG+G−hB0(q

2, G±, G±) +
g2

2
λGGhB0(q

2, G0, G0) +
3g2

2
λhhhB0(q

2, h, h)

+
g2

2
λH+H−hB0(q

2, H±, H±) +
g2

2
λAAhB0(q

2, A,A) +
g2

2
λHHhB0(q

2, H,H)

− g3

2
mW sβ−α

{
B0(p

2
1,W, h) +B0(p

2
2,W, h) +

s4W
c2W

[B0(p
2
1, Z,G

±) +B0(p
2
2, Z,G

±)]

+ s2W [B0(p
2
1, γ,G

±) +B0(p
2
2, γ,G

±)]
}
, (C54)
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(g2m2
W )−1Γ2,1PI

hWW (p21, p
2
2, q

2)B =

gmW sβ−α

[
CV V V
hV V 2(Z,W,Z) + c2WCV V V

hV V 2(W,Z,W ) + s2WCV V V
hV V 2(W,γ,W )

− C1223(cZ , c
±, cZ)− c2WC1223(c

±, cZ , c
±)− s2WC1223(c

±, cγ , c±)
]

− g

2
s2WmW sβ−α[C

SV V
hV V 2(G

±, Z,W )− CSV V
hV V 2(G

±, γ,W ) + CV V S
hV V 2(W,Z,G±)− CV V S

hV V 2(W,γ,G±)]

+
g

2
mW s3β−α

[
CV SS
hV V 2(W,h,G±) + CSSV

hV V 2(G
±, h,W )

]
+

g

2
mW sβ−αc

2
β−α

[
CV SS
hV V 2(W,H,G±) + CV SS

hV V 2(W,h,H±)− CV SS
hV V 2(W,H,H±)

+ CSSV
hV V 2(G

±, H,W ) + CSSV
hV V 2(H

±, h,W )− CSSV
hV V 2(H

±, H,W )
]

+
g

2

s2W
c2W

mW s3β−α

[
CV SS
hV V 2(Z,G

±, G0) + CSSV
hV V 2(G

0, G±, Z)
]

−
[
λG+G−hC1223(G

±, G0, G±) + λH+H−hC1223(H
±, A,H±)

+ 2λGGhC1223(G
0, G±, G0) + 2λAAhC1223(A,H±, A)

]
− s2β−α

[
6λhhhC1223(h,G

±, h) + 2λHHhC1223(H,H±, H)

+ λG+G−hC1223(G
±, h,G±) + λH+H−hC1223(H

±, H,H±)
]

− c2β−α

[
6λhhhC1223(h,H

±, h) + 2λHHhC1223(H,G±, H)

+ λG+G−hC1223(G
±, H,G±) + λH+H−hC1223(H

±, h,H±)
]

− λH+G−hsβ−αcβ−α[C1223(G
±, h,H±) + C1223(H

±, h,G±)− C1223(G
±, H,H±)− C1223(H

±, H,G±)]

− 2λHhhsβ−αcβ−α[C1223(h,G
±, H) + C1223(H,G±, h)− C1223(h,H

±, H)− C1223(H,H±, h)],

(C55)

Γ3,1PI
hWW (p21, p

2
2, q

2)B = 0, (C56)
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where

CV V V
hV V 1(X,Y, Z) ≡[
18C24 + p21(2C21 + 3C11 + C0) + p22(2C22 + C12) + p1 · p2(4C23 + 3C12 + C11 − 4C0)

]
(X,Y, Z)− 3,

CSV V
hV V 1(X,Y, Z) ≡[
3C24 + p21(C21 − C0) + p22(C22 − 2C12 + C0) + 2p1 · p2(C23 − C11)

]
(X,Y, Z)− 1

2
,

CV V S
hV V 1(X,Y, Z) ≡[
3C24 + p21(C21 + 4C11 + 4C0) + p22(C22 + 2C12) + 2p1 · p2(C23 + 2C12 + C11 + 2C0)

]
(X,Y, Z)− 1

2
,

CV V V
hV V 2(X,Y, Z) ≡ (10C23 + 9C12 + C11 + 5C0) (X,Y, Z),

CSV V
hV V 2(X,Y, Z) ≡ (4C11 − 3C12 − C23) (X,Y, Z),

CV V S
hV V 2(X,Y, Z) ≡ (2C11 − 5C12 − 2C0 − C23) (X,Y, Z),

CV SS
hV V 2(X,Y, Z) ≡ (C23 + C12 + 2C11 + 2C0)(X,Y, Z),

CSSV
hV V 2(X,Y, Z) ≡ (C23 − C12)(X,Y, Z),

C1223(X,Y, Z) ≡ (C12 + C23)(X,Y, Z). (C57)

4. Decay rates for loop induced processes

The decay rates for the loop induced processes are given by

Γ(h → γγ) =

√
2GFα

2
emm

3
h

256π3

∣∣∣sβ−αIV +
∑
f

Q2
fN

f
c ξ

f
hIF − λH+H−h

v
IS

∣∣∣2, (C58)

Γ(h → Zγ) =

√
2GFα

2
emm

3
h

128π3

(
1− m2

Z

m2
h

)3

×
∣∣∣sβ−αJV +

∑
f

QfN
f
c vfJF − λH+H−h

v

gZ
2
(c2W − s2W )JS

∣∣∣2, (C59)

Γ(h → gg) =

√
2GFα

2
sm

3
h

128π3

∣∣∣∑
q

ξqhIF

∣∣∣2, (C60)

The loop functions are defined as

IS =
2v2

m2
h

[1 + 2m2
H±C0(0, 0,m

2
h,mH± ,mH± ,mH±)], (C61)

IF = −8m2
f

m2
h

[
1 +

(
2m2

f − m2
h

2

)
C0(0, 0,m

2
h,mf ,mf ,mf )

]
, (C62)

IV =
2m2

W

m2
h

[
6 +

m2
h

m2
W

+ (12m2
W − 6m2

h)C0(0, 0,m
2
h,mW ,mW ,mW )

]
, (C63)
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and

JV =
2m2

W

sW cW (m2
h −m2

Z)

{[
c2W

(
5 +

m2
h

2m2
W

)
− s2W

(
1 +

m2
h

2m2
W

)]
[
1 + 2m2

WC0 +
m2

Z

m2
h −m2

W

(B0(m
2
h,mW ,mW )−B0(m

2
Z ,mW ,mW ))

]

− 6c2W (m2
h −m2

Z)C0 + 2s2W (m2
h −m2

Z)C0

}
, (C64)

JF = − 8m2
f

sW cW (m2
h −m2

Z)

[
1 +

1

2
(4m2

f −m2
h +m2

Z)C0(0,m
2
Z ,m

2
h,mf ,mf ,mf )

+
m2

Z

m2
h −m2

Z

(B0(m
2
h,mf ,mf )−B0(m

2
Z ,mf ,mf ))

]
, (C65)

JS =
2v2

e(m2
h −m2

Z)

{
1 + 2m2

H±C0(0,m
2
Z ,m

2
h,mH± ,mH± ,mH±)

+
m2

Z

m2
h −m2

Z

[
B0(m

2
h,mH± ,mH±)−B0(m

2
Z ,mH± ,mH±)

] }
. (C66)
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