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Çağrı Koça, Tolga Bektaşa, Ola Jabalib,∗, Gilbert Laportec

aCORMSIS and Southampton Business School, University of Southampton, Southampton SO17 1BJ,
United Kingdom

bCIRRELT and HEC Montréal, 3000, chemin de la Côte-Sainte-Catherine, Montréal H3T 2A7, Canada
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Abstract

This paper presents a hybrid evolutionary algorithm (HEA) to solve heterogeneous fleet

vehicle routing problems with time windows. There are two main types of such problems,

namely the Fleet Size and Mix Vehicle Routing Problem with Time Windows (F) and

the Heterogeneous Fixed Fleet Vehicle Routing Problem with Time Windows (H), where

the latter, in contrast to the former, assumes a limited availability of vehicles. The main

objective is to minimize the fixed vehicle cost and the distribution cost, where the latter

can be defined with respect to en-route time (T) or distance (D). The proposed unified

algorithm is able to solve the four variants of heterogeneous fleet routing problem, called

FT, FD, HT and HD, where the last variant is new. The HEA successfully combines several

metaheuristics and offers a number of new advanced efficient procedures tailored to handle

the heterogeneous fleet dimension. Extensive computational experiments on benchmark

instances have shown that the HEA is highly effective on FT, FD and HT. In particular, out

of the 360 instances we obtained 75 new best solutions and matched 102 within reasonable

computational times. New benchmark results on HD are also presented.
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1. Introduction1

In heterogeneous fleet vehicle routing problems with time windows, one considers a fleet2

of vehicles with various capacities and vehicle-related costs, as well as a set of customers with3

known demands and time windows. These problems consist of determining a set of vehicle4

routes such that each customer is visited exactly once by a vehicle within a prespecified time5

window, all vehicles start and end their routes at a depot, and the load of each vehicle does6

not exceed its capacity. As is normally the case in vehicle routing problem with time windows7

(VRPTW), customer service must start within the time window, but the vehicle may wait8

at a customer location if it arrives before the beginning of the time window. There are two9

main categories of such problems, namely the Fleet Size and Mix Vehicle Routing Problem10

with Time Windows (F) and the Heterogeneous Fixed Fleet Vehicle Routing Problem with11

Time Windows (H). In category F, there is no limit in the number of available vehicles of12

each type, whereas such a limit exists in category H. Note that it is easy to find feasible13

solutions to the instances of category F since there always exists a feasible assignment of14

vehicles to routes. However, this is not always the case for the instances of category H.15

Two measures are used to compute the total cost to be minimized. The first is the sum16

of the fixed vehicle cost and of the en-route time (T), which includes traveling time and17

possible waiting time at the customer locations before the opening of their time windows18

(we assume that travel time and cost are equivalent). In this case, service times are only19

used to check feasibility and for performing adjustments to the departure time from the20

depot in order to minimize pre-service waiting times. The second cost measure is based on21

distance (D) and consists of the fixed vehicle cost and the distance traveled by the vehicle,22

as is the case in the standard VRPTW (Solomon, 1987).23

We differentiate between four variants defined with respect to the problem category and24

to the way in which the objective function is defined, namely FT, FD, HT and HD. The25

first variant is FT, described by Liu and Shen (1999b) and the second is FD, introduced by26

Bräysy et al. (2008). The third variant HT was defined and solved by Paraskevopoulos et al.27

(2008). Finally, HD is a new variant which we introduce in this paper. HD differs from HT28
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by considering the objective function D instead of T. This variant has never been studied29

before.30

Hoff et al. (2010) and Belfiore and Yoshizaki (2009) describe several industrial aspects and31

practical applications of heterogeneous vehicle routing problems. The most studied versions32

are the fleet size and mix vehicle routing problem, described by Golden et al. (1984), which33

considers an unlimited heterogeneous fleet, and the heterogeneous fixed fleet vehicle routing34

problem, proposed by Taillard (1999). For further details, the reader is referred to the35

surveys of Baldacci et al. (2008) and of Baldacci and Mingozzi (2009).36

The FT variant has several extensions, e.g., multiple depots (Dondo et al., 2007; Bet-37

tinelli et al., 2011), overloads (Kritikos and Ioannou, 2013), and split deliveries (Belfiore38

and Yoshizaki, 2009, 2013). There exist several exact algorithms for the capacitated vehicle39

routing problem (VRP) (Toth and Vigo, 2002; Baldacci et al., 2010), and for the hetero-40

geneous VRP (Baldacci and Mingozzi, 2009). However, to the best of our knowledge, no41

exact algorithm has been proposed for the heterogeneous VRP with time windows, i.e., FT,42

FD and HT. The existing heuristic algorithms for these three variants are briefly described43

below.44

Liu and Shen (1999b) proposed a heuristic for FT which starts by determining an initial45

solution through an adaptation of the Clarke and Wright (1964) savings algorithm, previ-46

ously presented by Golden et al. (1984). The second stage improves the initial solution by47

moving customers by means of parallel insertions. The algorithm was tested on a set of 16848

benchmark instances derived from the set of Solomon (1987) for the VRPTW. Dullaert et49

al. (2002) described a sequential construction algorithm for FT, which is an extension of the50

insertion heuristic of Golden et al. (1984). Dell’Amico et al. (2007) described a multi-start51

parallel regret construction heuristic for FT, which is embedded into a ruin and recreate52

metaheuristic. Bräysy et al. (2008) presented a deterministic annealing metaheuristic for53

FT and FD. In a later study, Bräysy et al. (2009) described a hybrid metaheuristic al-54

gorithm for large scale FD instances. Their algorithm combines the well-known threshold55

acceptance heuristic with a guided local search metaheuristic having several search limitation56

strategies. An adaptive memory programming algorithm was proposed by Repoussis and57
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Tarantilis (2010) for FT, which combines a probabilistic semi-parallel construction heuristic,58

a reconstruction mechanism and a tabu search algorithm. Computational results indicate59

that their method is highly successful and improves many best known solutions. In a re-60

cent study, Vidal et al. (2014) introduced a genetic algorithm based on a unified solution61

framework for different variants of the VRPs, including FT and FD. To our knowledge,62

Paraskevopoulos et al. (2008) are the only authors who have studied HT. Their two-phase63

solution methodology is based on a hybridized tabu search algorithm capable of solving both64

FT and HT.65

This brief review shows that the two problem categories F and H have already been66

solved independently through different methodologies. We believe there exists merit for the67

development of a unified algorithm capable of efficiently solving the two problem categories.68

This is the main motivation behind this paper.69

This paper makes three main scientific contributions. First, we develop a unified hybrid70

evolutionary algorithm (HEA) capable of handling the four variants of the problem. The71

HEA combines two state-of-the-art metaheuristic concepts which have proved highly suc-72

cessful on a variety of VRPs: Adaptive Large Neighborhood Search (ALNS) (see Ropke and73

Pisinger, 2006a; Pisinger and Ropke, 2007; Demir et al., 2012) and population based search74

(see Prins, 2004; Vidal et al., 2014). The second contribution is the introduction of sev-75

eral algorithmic improvements to the procedures developed by Prins (2009) and Vidal et al.76

(2012). We use a ALNS equipped with a range of operators as the main Education proce-77

dure within the search. We also propose an advanced version of the Split algorithm of Prins78

(2009) capable of handling infeasibilities. Finally, we introduce an innovative aggressive In-79

tensification procedure on elite solutions, as well as a new diversification scheme through80

the Regeneration and the Mutation procedures of solutions. The third contribution is81

to introduce HD as a new problem variant.82

The remainder of this paper is structured as follows. Section 2 presents a detailed descrip-83

tion of the HEA. Computational experiments are presented in Section 3, and conclusions84

are provided in Section 4.85
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2. Description of the Hybrid Evolutionary Algorithm86

We start by introducing the notation related to FT, FD, HT and HD. All problems are87

defined on a complete graph G = (N,A), where N = {0, . . . , n} is the set of nodes, and node88

0 corresponds to the depot. Let A = {(i, j) : 0 ≤ i, j} ≤ n, i 6= j} denote the set of arcs.89

The distance from i to j is denoted by dij. The customer set is Nc in which each customer90

i has a demand qi and a service time si, which must start within time window [ai, bi]. If a91

vehicle arrives at customer i before ai, it then waits until ai. Let K = {1, . . . , k} be the set92

of available vehicle types. Let ek and Qk denote the fixed vehicle cost and the capacity of93

vehicle type k, respectively. The travel time from i to j is denoted by tij and is independent94

of the vehicle type. The distribution cost from i to j associated with a vehicle of type k is95

ckij for all problem types. In HT and HD, the available number of vehicles of type k ∈ K is96

nk, whereas the constant can be set to an arbitrary large value for problems FT and FD.97

The objectives are as discussed in the Introduction.98

The remainder of this section introduces the main components of the HEA. A general99

overview of the HEA is given in Section 2.1. More specifically, Section 2.2 presents the100

offspring Education procedure. Section 2.3 presents the initialization of the population.101

The selection of parent solutions, the ordered crossover operator and the advanced algorithm102

Split are described in Sections 2.4, 2.5 and 2.6, respectively. Section 2.7 presents the103

Intensification procedure. The survivor selection mechanism is detailed in Section 2.8.104

Finally, the diversification stage, including the Regeneration and Mutation procedures,105

is described in Section 2.9.106

2.1. Overview of the Hybrid Evolutionary Algorithm107

The general structure of the HEA is presented in Algorithm 1. The modified version of108

the classical Clarke and Wright savings algorithm and the ALNS operators are combined to109

generate the initial population (Line 1). Two parents are selected (Line 3) through a binary110

tournament, following which the crossover operation (Line 4) generates a new offspring111

C. The advanced Split algorithm is applied to the offspring C (Line 5), which optimally112

segments the giant tour by choosing the vehicle type for each route. The Education113
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procedure (Line 6) uses the ALNS operators to educate offspring C and inserts it back into114

the population. If C is infeasible, the Education procedure is iteratively applied until a115

modified version of C is feasible, which is then inserted into the population.116

The probabilities associated with the operators used in the Education procedure and117

the penalty parameters are updated by means of an adaptive weight adjustment procedure118

(AWAP) (Line 7). Elite solutions are put through an aggressive Intensification proce-119

dure, based on the ALNS algorithm (Line 8) in order to improve their quality. If, at any120

iteration, the population size na reaches np + no, then a survivor selection mechanism is121

applied (Line 9). The population size, shown by na, changes during the algorithm as new122

offsprings are added, but is limited by np + no, where np is a constant denoting the size of123

the population initialized at the beginning of the algorithm and no is a constant showing the124

maximum allowable number of offsprings that can be inserted into the population. At each125

iteration of the algorithm, Mutation is applied to a randomly selected individual from the126

population with probability pm. If there are no improvements in the best known solution for127

a number of consecutive iterations itr, the entire population undergoes a Regeneration128

(Line 10). The HEA terminates when the number of iterations without improvement itt is129

reached (Line 11).130

Algorithm 1 The general framework of the HEA

1: Initialization: initialize a population with size np

2: while number of iterations without improvement < itt do
3: Parent selection: select parent solutions P1 and P2

4: Crossover : generate offspring C from P1 and P2

5: Split: partition C into routes
6: Education: educate C with ALNS and insert into population
7: AWAP : update probabilities of the ALNS operators
8: Intensification: intensify elite solution with ALNS
9: Survivor selection: if the population size na reaches np + no, then select survivors
10: Diversification: diversify the population with Mutation or Regeneration proce-

dures
11: end while

12: Return best feasible solution

6



2.2. Education131

The Education procedure is systematically applied to each offspring in order to improve132

its quality. The ALNS algorithm is used as a way of educating the solutions in the HEA. This133

is achieved by applying both the destroy and repair operators, and a number of removable134

nodes are modified in each iteration. An example of the removal and insertion phases is135

illustrated in Figure 1. The operators used within the HEA are either adapted or inspired136

from those employed by various authors (Ropke and Pisinger, 2006a,b; Pisinger and Ropke,137

2007; Demir et al., 2012; Paraskevopoulos et al., 2008).138
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Figure 1: Illustration of the Education procedure

The Education procedure is detailed in Algorithm 2. All operators are repeated O(n)139

times and the complexity given are the overall repeats. The removal procedure (line 4 of140

Algorithm 2) runs for n′ iterations, removes n′ customers from the solution and add to the141

removal list Lr, where n′ is in the interval of removable nodes [bel , b
e
u]. An insertion operator142

is then selected to iteratively insert the nodes, starting from the first customer of Lr, into143

the partially destroyed solution until Lr is empty (line 5). The feasibility conditions in terms144

of capacity and time windows for FT, FD, HT and HD, and in terms of fleet size for HT145

and HD, are always respected during the insertion process. We do not allow overcapacity146

of the vehicle and service start outside the time windows for all problem types, and we also147

do not allow the use of additional vehicles beyond the fixed fleet size for HT and HD. The148
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removal and insertion operators are randomly selected according to their past performance149

and a certain probability as explained further in Section 2.2.3. The cost of an individual C150

before the removal is denoted by ω(C), and its cost after the insertion is denoted by ω(C∗).151

Algorithm 2 Education

1: ω(C∗) = 0, iteration = 0
2: while there is no improvement and C is feasible do

3: Lr = ∅ and select a removal operator
4: Apply a removal operator to the individual C to remove a set of nodes and add them

to Lr

5: Select an insertion operator and apply it to the partially destroyed individual C to
insert the nodes of Lr

6: Let C∗ be the new solution obtained by applying insertion operator
7: if ω(C∗) < ω(C) and C∗ is feasible then

8: ω(C)← ω(C∗)

9: iteration ← iteration + 1
10: end while

11: Return educated feasible solution

The heterogeneous fleet version of the ALNS that we use here was recently introduced152

by Koç et al. (2014). It educates solutions by considering the heterogeneous fleet aspect.153

The ALNS integrates fleet sizing within the destroy and repair operators. In particular, if154

a node is removed, we check whether the resulting route can be served by a smaller vehicle.155

We then update the solution accordingly. If inserting a node requires additional vehicle156

capacity we then consider the option of using larger vehicles. For each node i ∈ Nc\Lr, let157

fh(i) be the current vehicle fixed cost associated with the vehicle serving i. Let ∆(i) be the158

saving obtained as a result of using a removal operator on node i without considering the159

vehicle fixed cost. Let fh∗
1 (i) be the vehicle fixed cost after removal of node i. Consequently,160

fh∗
1 (i) < fh(i) only if the route containing node i can be served by a smaller vehicle when161

removing node i. The savings in vehicle fixed cost can be expressed as fh(i) − fh∗
1 (i),162

respectively. Thus, for each removal operator, the total savings of removing node i ∈ Nc\Lr,163

denoted RC(i), is calculated as follows:164

RC(i) = ∆(i) + (fh(i)− fh∗
1 (i)). (1)
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In a destroyed solution, the insertion cost of node j ∈ Lr after node i is defined as Ω(i, j)165

for a given node i ∈ Nc\Lr. Let fh∗
2 (i) be the vehicle fixed cost after the insertion of node166

i, i.e., fh∗
a > fh only if the route containing node i necessitates the use of a larger capacity167

vehicle after inserting node i. The cost differences in vehicle fixed cost can be expressed as168

fh∗
2 (i)− fh(i). Thus, the total insertion cost of node i ∈ Nc\Lr, for each insertion operator169

is170

IC(i) = Ω(i, j) + (fh∗
2 (i)− fh(i)). (2)

2.2.1. Removal Operators171

Nine removal operators are used in the destroy phase of the Education procedure and172

are described in detail below.173

1.Random removal (RR): The RR operator randomly selects a node j ∈ N\{0}\Lr,174

removes it from the solution. The worst-case time complexity of the RR operator is O(n).175

2.Worst distance removal (WDR): The purpose of the WDR operator is to choose a176

number of expensive nodes according to their distance based cost. The cost of a node j ∈177

N\{0}\Lr is the distance from its predecessor i and its distance to its successor k. The WDR178

operator iteratively removes nodes j∗ from the solution where j∗ = argmaxj∈N\{0}\Lr
{dij +179

djk + fh(i)− fh∗
1 (i)}. The time complexity of this operator is O(n2).180

3.Worst time removal (WTR): The WTR operator is a variant of the WDR operator.181

For each node j ∈ N\{0}\Lr costs are calculated, depending on the deviation between the182

arrival time zj and the beginning of the time window aj . The WTR operator iteratively183

removes customers from the solution, where j∗ = argmaxj∈N\{0}\Lr
{|zj−aj |+fh(i)−fh∗

1 (i)}.184

The ALNS iteratively applies this process to the solution after each removal. The WTR185

operator can be implemented in O(n2) time.186

4.Neighborhood removal (NR): In a given solution with a set ℜ of routes, the NR operator187

calculates an average distance d̄(R) =
∑

(i,j)∈R dij/|R| for each route R ∈ ℜ, and selects a188

node j∗ = argmax(R∈ℜ;j∈R){d̄(R)−dR\{j}+fh(i)−fh∗
1 (i)}, where dR\{j} denotes the average189

distance of route R excluding node j. The time complexity of this operator is O(n2).190

5. Shaw removal (SR): The general idea behind the SR operator, which was introduced191
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by Shaw (1998), is to remove a set of customers that are related in a predefined way and192

are therefore easy to change. The SR operator removes a set of n′ similar customers. The193

similarity between two customers i and j is defined by the relatedness measure δ(i, j). This194

includes four terms: a distance term dij, a time term |ai − aj |, a relation term lij , which is195

equal to −1 if i and j are in the same route, and 1 otherwise, and a demand term |qi − qj |.196

The relatedness measure is given by197

δ(i, j) = ϕ1dij + ϕ2|ai − aj|+ ϕ3lij + ϕ4|qi − qj |, (3)

where ϕ1 to ϕ4 are weights that are normalized to find the best candidate solution. The198

operator starts by randomly selecting a node i ∈ N\{0}\Lr, and selects the node j∗ to199

remove where j∗ = argminj∈N\{0}\Lr
{δ(i, j) + fh(i) − fh∗

1 (i)}. The operator is iteratively200

applied to select a node which is most similar to the one last added to Lr. The time201

complexity of this operator is O(n2).202

6. Proximity-based removal (PBR): This operator is a second variant of the classical203

Shaw removal operator. The selection criterion of a set of routes is solely based on the204

distance. Therefore, the weights are ϕ1 = 1 and ϕ2 = ϕ3 = ϕ4 = 0. The PBR operator can205

be implemented in O(n2) time.206

7. Time-based removal (TBR): The TBR operator removes a set of nodes that are207

related in terms of time. It is a special case of the Shaw removal operator where ϕ2 = 1 and208

ϕ1 = ϕ3 = ϕ4 = 0. Its time complexity is O(n2).209

8. Demand-based removal (DBR): The DBR operator is yet another variant of the Shaw210

removal operator with ϕ4 = 1 and ϕ1 = ϕ2 = ϕ3 = 0. It can be implemented in O(n2) time.211

9. Average cost per unit removal (ACUTR): The average cost per unit (ACUT) is212

described by Paraskevopoulos et al. (2008) to measure the utilization efficiency of a vehicle213

Π(R) on a given route R. Π(R) is expressed as the ratio of the total travel cost and fixed214

vehicle cost over the total demand carried by a vehicle k traversing route R:215

Π(R) =

∑
(i,j)∈A cijx

k
ij + ek

∑
i∈N\{0} qix

k
ij

. (4)
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The aim of the ACUTR operator is to calculate the cost of each route and remove the one216

with the least Π(R) value from the solution. The ACUTR operator can be implemented in217

O(n2) time.218

2.2.2. Insertion Operators219

Three insertion operators are used in the repair phase of the Education procedure.220

1. Greedy insertion (GI): The aim of this operator is to find the best possible insertion221

position for all nodes in Lr. For node i ∈ N\Lr succeeded in the destroyed solution by222

k ∈ N\{0}\Lr, and node j ∈ Lr we define γ(i, j) = dij + djk − dik. We find the least-cost223

insertion position for j ∈ Lr by i∗ = argmini∈N\Lr
{γ(i, j) + fh∗

2 (i)− fh(i)}. This process224

is iteratively applied to all nodes in Lr. The time complexity of this operator is O(n2).225

2. Greedy insertion with noise function (GINF): The GINF operator is based on the GI226

operator but extends it by allowing a degree of freedom in selecting the best place for a227

node. This is done by calculating the noise cost υ(i, j) = γ(i, j) + fh∗
2 (i)− fh(i) + dmaxpnǫ228

where dmax is the maximum distance between all nodes, pn is a noise parameter used for229

diversification and is set equal to 0.1, and ǫ is a random number in [−1, 1]. The time230

complexity of this operator is O(n2).231

3. Greedy insertion with en-route time (GIET): This operator calculates the en-route232

time difference η(i, j) between before and after inserting the customer j ∈ Lr. For node233

i ∈ N\Lr succeeded in the destroyed solution by k ∈ N\{0}\Lr, and node j ∈ Lr, we define234

η(i, j) = τij + τjk − τik where τij is the en-route time from node i to node j. We find the235

least-cost insertion position for j ∈ Lr by i∗ = argmini∈N\Lr
{η(i, j) + fh∗

2 (i)− fh(i)}. The236

GIET operator can be implemented in O(n2) time.237

2.2.3. Adaptive Weight Adjustment Procedure238

Each removal and insertion operator has a certain probability of being chosen in every239

iteration. The selection criterion is based on the historical performance of every operator and240

is calibrated by a roulette-wheel mechanism (Ropke and Pisinger, 2006a; Demir et al., 2012).241

After itw iterations of the roulette wheel segmentation, the probability of each operator is242

recalculated according to its total score. Initially, the probabilities of each removal and243
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insertion operator are equal. Let pti be the probability of operator i in the last itw iterations,244

pt+1
i = pti(1− rp)+ rpπi/τi, where rp is the roulette wheel probability, for operator i ; πi is its245

score and τi is the number times it was used during the last segment. At the start of each246

segment, the scores of all operators are set to zero. The scores are changed by σ1 if a new247

best solution is found, by σ2 if the new solution is better than the current solution and by248

σ3 if the new solution is worse than the current solution.249

2.3. Initialization250

The procedure used to generate the initial population is based on a modified version251

of the Clarke and Wright and ALNS algorithms. An initial individual solution is obtained252

by applying Clarke and Wright algorithm and by selecting the largest vehicle type for each253

route. Then, until the initial population size reaches np, new individuals are created by254

applying to the initial solution operators based on random removals and greedy insertions255

with a noise function (see Section 2.2). We have selected these two operators in order to256

diversify the initial population. The number of nodes removed is randomly chosen from the257

initialization interval [bil, b
i
u], which is defined by a lower and an upper bound calculated as258

a percentage of the total number of nodes in an instance.259

2.4. Parent Selection260

In evolutionary algorithms, the evaluation function of individuals is often based on the261

solution cost. However, this kind of evaluation, does not take into account other important262

factors such as the diversity of the population which plays a critical role. Vidal et al. (2012)263

proposed a new method, named biased fitness bf(C), to tackle this issue. This method264

considers the cost of an individual C, as well as its diversity contribution dc(C) to the265

population. This function is continuously updated and is used to measure the quality of266

individuals during selection phases. The dc(C) is defined as267

dc(C) =
1

nc

∑
C′∈Nc

β(C,C ′), (5)
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whereNc is the set of the nc closest neighbours of C in the population. Thus, dc(C) calculates268

the average distance between C and its neighbours in Nc. The distance between two parents269

β(C,C ′) is the number of pairs of adjacent requests in C which are no longer adjacent,270

(called broken), in C ′. For example, let C = {4, 5, 6, 7, 8, 9, 10} and C ′ = {10, 7, 8, 9, 5, 6, 4},271

in C ′ the pairs {4, 5}, {6, 7} and {9, 10} are broken and β(C,C ′) = 3. The algorithm selects272

the broken pairs distance (see Prins, 2009) to compute the distance β. The main idea behind273

dc(C) is to assess the differences between individuals.274

The evaluation function of an individual C in a population is275

bf(C) = rc(C) + (1−
ne

na

)rdc(C), (6)

which is based on the rank rc(C) of solution cost, and on the rank rdc(C) of the diversity276

contribution. The rank rdc(C) is based on the diversity contribution calculated in equation277

(5), according to which the solutions are ranked in decreasing order of their dc(C) value. In278

(6), ne is the number of elite individuals and na is the current number of individuals.279

The HEA selects two parents through a binary tournament to yield an offspring. The280

selection process randomly chooses two individuals from the population and keeps the one281

having the best biased fitness.282

2.5. Crossover283

Following the parent selection phase, two parents undergo the classicalOrdered Crossover284

or OX without trip delimiters. The OX operator is well suited for cyclic permutations, and285

the giant tour encoding allows recycling crossovers designed for the traveling salesman prob-286

lem (TSP) (see Prins, 2004, 2009). Initially, two positions i and j are randomly selected in287

the first parent P1. Subsequently, the substring (i, ..., j) is copied into the first offspring O1,288

at the same positions. The second parent P2 is then swept cyclically from position j + 1289

onwards to fill the empty positions in O1. The second offspring O2 is generated likewise by290

exchanging the roles of P1 and P2. In the original version of OX, two offsprings are obtained.291

However in the HEA, we only randomly select one offspring.292
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2.6. Split Algorithm293

This algorithm is a tour splitting procedure which optimally partitions a solution into294

feasible routes. Each solution is a permutation of customers without trip delimiters and295

can therefore be viewed as a giant TSP tour for a vehicle with a large enough capacity.296

This algorithm was successfully applied in evolutionary based algorithms for several routing297

problems (Prins, 2004, 2009; Vidal et al., 2012, 2013).298

We propose an advanced tour splitting procedure, denoted by Split, which is embedded299

in the HEA to segment a giant tour and to determine the fleet mix composition. This is300

achieved through a controlled exploration of infeasible solutions (see Cordeau et al., 2001301

and Nagata et al., 2010), by relaxing the limits on time windows and vehicle capacities. Vi-302

olations of these limits are penalized through an objective function containing extra terms303

to acccount for infeasibilities. This is in contrast to Prins (2009) who does not allow in-304

feasibilities, and in turn solves a resource-constrained shortest path problem using dynamic305

programming to determine the best fleet mix on a given solution. Our implementation also306

differs from those of Vidal et al. (2013) since it allows for infeasibilities that are not just307

related to time windows or load, but also to the fleet size in the case of HT and HD.308

We now describe the Split algorithm. Let ℜ be the set of all routes in individual C,309

and let R be a route. While formally R is a vector, for convenience we denote the number310

of its components by |R|. Therefore, R = (i0 = 0, i1, i2, . . . , i|R|−1, i|R| = 0), we also write311

i ∈ R if i is a component of R, and (i, j) ∈ R if i and j appear in succession in R. Let zt312

be the arrival time at the tth customer in R, thus the time window violation of route R is313

∑|R|−1
t=1 max{zt − bit , 0}. The total load for route R is

∑|R|−1
t=1 qit , and we consider solutions314

with a total load not exceeding twice the capacity of the largest vehicle given by Qmax (Vidal315

et al., 2013). Furthermore, for route R and for each vehicle type k we compute y(k), which316

is the number of vehicles of type k used in the solution.317

Let λt, λl and λf represent the penalty values for any violations of the time windows, the318

vehicle capacity and the fleet size, respectively. The variable xk
ij is equal to 1 if customer i319

immediately precedes customer j visited by vehicle k. The fixed cost associated with using320

a vehicle of type k ∈ K is denoted by ek. For each route R ∈ ℜ traversed by vehicle k ∈ K,321
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the cost including penalties is322

ν(R, k) =
∑

(i,j)∈R

ckijx
k
ij + ek + λt

|R|−1∑

t=1

max{zt − bit , 0}+ λlmax{

|R|−1∑

t=1

qit −Qmax, 0}, (7)

which brings various objectives together to be able to guide to the search towards infeasible323

solutions. Thus, the total cost of individual C is324

∆(C) =
∑

R∈ℜ

∑

k∈K

ν(R, k) + λf

∑

k∈K

max{0, y(k)− nk}, (8)

where nk is set equal to a sufficiently large number (e.g., n) for FT and FD, in order for the325

last term in Equation (8) to be zero.326
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Figure 2: Illustration of procedure Split

Figure 2 shows the steps of this advanced procedure using on an FD instance. The arc327
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costs, demands and time windows are given in Figure 2.a. In particular, the number in328

bold within the parentheses associated with each node is the demand for that customer; the329

two numbers within brackets define the time window. Service times are identical and equal330

to 4 for each customer, and three different types of vehicles are available. The capacity qk331

and fixed cost ek of vehicles of type {1,2,3} are q1 = 10, q2 = 20, q3 = 30 and e1 = 6,332

e2 = 8, e3 = 10, respectively. The algorithm starts with a giant TSP tour which includes333

six customers and uses one vehicle with unlimited capacity. The Split algorithm computes334

an optimal compound segmentation in three routes corresponding to three sequences of335

customers {1,2}, {3,4,5} and {6} with three vehicle choices, Type 2, Type 3 and Type 1,336

respectively, as shown in Figure 2.b. The resulting solution is shown in Figure 2.c. An337

optimal partitioning of the giant tour into routes for offspring C corresponds to a minimum-338

cost path.339

The penalty parameters of the Split algorithm are initially set to an initial value and340

are dynamically adjusted during the algorithm. If an individual is still infeasible after the341

first Education procedure, then the penalty parameters are multiplied by λm and the342

Education procedure restarts. When this solution becomes feasible, the parameters are343

reset to their initial values. These values are λt = λl = λf = 3, λm = 10.344

2.7. Intensification345

We introduce a two-phase aggressive Intensification procedure to improve the quality346

of elite individuals. This procedure intensifies the search within promising regions of the347

solution space. The detailed pseude-code of this method is shown in Algorithm 3. The348

algorithm starts with an elite list of solutions Le, which takes the best ne individuals from349

the main population as measured by equation (2). Step 1 is similar to the main Education350

procedure (Section 2.2). Step 2 attempts to explore different regions of the search space351

with the RR operator, intensifies this area by applying the GI operator for FD and HD, and352

GIET for FT and HT, to a partially the destroyed solution. Steps 1 and 2 terminate when353

there is no improvement to the solution and the main loop terminates when ne successive354

iterations have been performed.355
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Due to the difficulty of the problems considered in this paper, we have developed a356

two-phase aggressive Intensification procedure after having tried several variants such as357

one-phase with only Step 1 or Step 2, three-phase with Step 1, Step 2 and Step 1 and various358

other combinations. We have also considered other operators. Our analysis has shown that359

this two-phase structure yields better solutions than all other considered variants.360

Algorithm 3 Intensification

1: Initialize Le = {χ1, . . . , χn}, i← 1
2: while all elite solutions are intensified do

3: χ← χi

4: Step 1
5: while there is improvement and elite solution χ is feasible do

6: Lr = ∅ and select a removal operator
7: Apply to the elite solution χ to remove nodes and add them to Lr

8: Select an insertion operator and apply it to the destroyed elite solution χ by
inserting the node of Lr

9: Let χ∗ be the new solution obtained by applying insertion operator
10: if ω(χ∗) < ω(χ) then
11: ω(χ)← ω(χ∗)

12: end while

13: Step 2
14: while there is improvement and χ∗ is feasible do

15: Lr = ∅ and apply RR operator to the elite solution χ to remove nodes and add
them to Lr

16: Apply GI or GIET operator to the partially destroyed elite solution χ by inserting
the node of Lr

17: Let χ∗ be the new elite solution obtained by applying insertion operator
18: if ω(χ∗) < ω(χ) then
19: ω(χ)← ω(χ∗)

20: end while

21: i← i+ 1
22: end while

23: Return elite solutions

2.8. Survivor Selection361

In population-based metaheuristics, avoiding premature convergence is a key challenge.362

Ensuring the diversity of the population, in other words to search a different location in the363

solution space during the algorithm, in the hope of being closer to the best known or optimal364
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solutions constitutes a major trade-off between solutions in a population. The method of365

Vidal et al. (2012), aims to ensure the diversity of the population and preserve the elite366

solutions. The second part of this method is the survivor selection process (the first part367

was discussed in Section 2.3). In this way, elite individuals are protected.368

2.9. Diversification369

The efficient management of feasible solutions plays a significant role in population di-370

versity. The performance of the HEA is improved by applying a Mutation after the Ed-371

ucation procedure. Over the iterations, individuals tend to become more similar, making372

it difficult to avoid premature convergence. To overcome this difficulty, we introduce a new373

scheme in order to increase the population diversity. The diversification stage includes two374

procedures, namely Regeneration and Mutation, representations of which are shown in375

Figure 3.376
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Figure 3: Illustration of the diversification stage

A Regeneration procedure (Figure 3.a) takes place when the maximum allowable377
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iterations for Regeneration itr is reached without an improvement in the best solution378

value. In this procedure, the ne elite individuals are preserved and are transferred to the379

next generation. The remaining np − ne individuals, which are ranked according to their380

biased fitness, are subjected to the RR and GINF operators, to create new individuals. At381

the end of this procedure, only np new individuals are kept in the population.382

The Mutation procedure is applied with probability pm. Figure 3.b illustrates the383

Mutation procedure. In this procedure, an individual C different from the best solution384

is randomly selected. Two randomized structure based ALNS operators, the RR and the385

GINF, are then used to change the positions of a specific number of nodes, which are chosen386

from the interval [bml , b
m
u ] of removable nodes in the Mutation procedure.387

3. Computational Experiments388

This section presents the results of computational experiments performed in order to389

assess the performance of the HEA. The HEA was implemented in C++ and run on a390

computer with one gigabyte RAM and Intel Xeon 2.6 GHz processor. We first describe the391

benchmark instances and the parameters used within the algorithm. This is followed by a392

presentation of the results.393

3.1. Data Sets and Experimental Settings394

The benchmark data sets of Liu and Shen (1999b), derived from the classical Solomon395

(1987) VRPTW instances with 100 nodes, are used as the test-bed. These sets include 56396

instances, split into a random data set R, a clustered data set C and a semi-clustered data397

set RC. Sets shown by R1, C1 and RC1 have a short scheduling horizon and small vehicle398

capacities, in contrast to sets denoted R2, C2 and RC2 with a long scheduling horizon and399

large vehicle capacities. Liu and Shen (1999b) introduced three types of cost structures,400

namely large, medium and small, and have denoted them by A, B and C, respectively. The401

authors also introduced several vehicle types with different capacities and fixed vehicle costs402

for each of the 56 instances. This results in a total of 168 benchmark instances for FT or403

FD.404
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The benchmark set used by Paraskevopoulos et al. (2008) for HT is a subset of the FT405

instances, in which the fleet size is set equal to that found in the best known solutions of Liu406

and Shen (1999a). In total, there are 24 benchmark instances derived from Liu and Shen407

(1999a) for HT. We use the same set for HD, with the new objective.408

Evolutionary algorithms use a set of correlated parameters and configuration decisions.409

In our implementation, we initially used the parameters suggested by Vidal et al. (2012,410

2013) for the genetic algorithm, but we have conducted several experiments to further fine-411

tune these parameters on instances C101A, C203A, R101A, R211A, RC105A and RC207A.412

Following these tests, the following parameter values were used in our experiments: itt =413

5000, itr = 2000, itw = 500, np = 25, no = 25, ne = 10, nc = 3, pm ∈ [0.4, 0.6], [bil, b
i
u] =414

[0.3, 0.8], [bel , b
e
u] = [0.1, 0.16], [bml , b

m
u ] = [0.1, 0.16], σ1 = 3, σ2 = 1, σ3 = 0. For the Adaptive415

Large Neighborhood Search (ALNS), we have used the same parameter values as in Demir416

et al. (2012), namely rp = 0.1, ϕ1 = 0.5, ϕ2 = 0.25, ϕ3 = 0.15, ϕ4 = 0.25. All of these settings417

are identical for all four considered problems.418

Table 1 presents the results of a fine-tuning experiment on parameters np and no, and to419

test the effect of these parameters on the solution quality.420

Table 1: Average percentage deviations of the solution values found by the HEA from best-known solution
values with varying np and no

no

np 10 25 50 75 100
10 0.42 0.26 0.38 0.56 0.69
25 0.19 0.11 0.26 0.37 0.49
50 0.39 0.29 0.30 0.45 0.57
75 0.56 0.42 0.51 0.61 0.68
100 0.67 0.53 0.61 0.72 0.78

The table shows the percent gap between the solution value obtained by the HEA and421

the best-known solution (BKS) value, averaged over the six chosen instances. The maximum422

population size is dependent on np and no, both of which have a significant impact on the423

solution quality, where the best setting is obtained with np = no = 25.424
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3.2. Comparative Analysis425

We now present a comparative analysis of the results of the HEA with those reported in426

the literature. In particular, we compare ourselves against LSa (Liu and Shen, 1999a), LSb427

(Liu and Shen, 1999b), T-RR-TW (Dell’Amico et al., 2007), ReVNTS (Paraskevopoulos et428

al., 2008), MDA (Bräysy et al., 2008), BPDRT (Bräysy et al., 2009), AMP (Repoussis and429

Tarantilis, 2010) and UHGS (Vidal et al., 2014). The comparisons are presented in tables,430

where the columns show the total cost (TC), and percent deviations (Dev) of the values431

of solutions found by each method with respect to the HEA. The first column displays the432

instance sets and the number of instances in each set in parentheses. The rows named Avg433

(%), Min (%) and Max (%) show the average, minimum and maximum deviations across all434

benchmark instances, respectively. A negative deviation shows that the solution found by435

the HEA is of better quality. In the column labeled BKS, “=” shows the total number of436

matches and “<” shows the number of new BKS found for each instance set.437

Ten separate runs are performed for each instance, the best one of which is reported.438

For each instance, a boldface refers to match with current BKS, where as a boldface with a439

“*” indicates new BKS. For detailed results, the reader is referred to Appendix A. Tables440

A.1-A.6 present the fixed vehicle cost (VC), the distribution cost (transportation cost) (DC),441

the computational time in minutes (Time) and the actual number of vehicles used (Mix),442

where the letters A–E correspond to the vehicle types and the upper numbers denote the443

number of each type of vehicle used. For example, (A2B1) indicates that two vehicles of444

type A and one vehicle of type B are used in the solution.445

Tables 2 and 3 summarize the average comparison results of the current state-of-the-art446

solution methods for FT and FD, compared with the HEA. According to Tables 2 and 3,447

the HEA is highly competitive, with average deviations ranging from −6.78% to 0.03% and448

a worst-case performance of 0.66% for FT. The average performance of our HEA is better449

than that of all the competitors for FT, except for the algorithm of Vidal et al. (2014) which450

is slightly better on average. However, the HEA found 17 new best solution and outperforms451

this algorithm on to the second type of FT instances, which are less tight in terms of vehicle452

capacity. As for FD, average cost reductions range from −0.90% to −0.02% and the worst-453
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case performance is 0.94%. The HEA outperforms all other algorithms in the literature for454

FD, including the UHGS of Vidal et al. (2014).455

Table 2: Average results for FT
Instance set T-RR-TW ReVNTS MDA AMP UHGS HEA BKS

TC Dev TC Dev TC Dev TC Dev TC Dev TC = <
R1A (12) 4180.83 −1.51 4128.48 −0.24 4131.31 −0.31 4113.89 0.12 4103.16 0.38 4118.70 0 0
R1B (12) 1927.57 −1.65 1902.19 −0.31 1898.88 −0.13 1896.83 −0.03 1891.63 0.25 1896.35 0 1*

R1C (12) 1615.44 −2.56 1582.18 −0.45 1579.17 −0.26 1578.12 −0.19 1574.32 0.05 1575.09 1 0
C1A (9) 7229.02 −1.20 7143.35 0.00 7141.15 0.03 7139.96 0.05 7138.93 0.06 7143.35 2 0
C1B (9) 2384.77 −0.99 2361.78 −0.02 2365.49 −0.18 2359.82 0.06 2359.63 0.07 2361.29 2 1*

C1C (9) 1629.70 −0.62 1621.09 −0.09 1621.83 −0.14 1618.91 0.04 1619.18 0.00 1619.18 6 0
RC1A (8) 5117.96 −3.49 4961.69 −0.33 4948.53 −0.07 4948.02 −0.06 4915.10 0.61 4945.14 0 0
RC1B (8) 2163.51 −1.35 2142.65 −0.37 2129.60 0.24 2136.73 −0.09 2129.04 0.27 2134.74 0 2*

RC1C (8) 1784.51 −1.36 1769.93 −0.53 1758.29 0.13 1762.34 −0.10 1752.19 0.48 1760.59 0 0
R2A (11) 3568.97 −9.06 3304.57 −0.98 3310.70 −1.17 3287.80 −0.47 3267.31 0.16 3272.48 2 1*

R2B (11) 1727.04 −17.40 1498.97 −1.88 1495.37 −1.64 1487.09 −1.08 1480.30 −0.61 1471.27* 1 7*

R2C (11) 1436.22 −15.30 1281.31 −2.84 1257.65 −0.94 1260.97 −1.20 1237.79 0.66 1245.97 0 0
C2A (8) 6267.75 −9.07 5759.02 −0.22 5797.38 −0.89 5749.98 −0.06 5760.29 −0.24 5746.44* 4 0
C2B (8) 1897.62 −8.53 1754.07 −0.32 1756.08 −0.43 1748.99 −0.03 1750.37 −0.11 1748.52* 2 1*

C2C (8) 1276.29 −4.78 1232.98 −1.22 1223.86 −0.47 1224.08 −0.49 1221.17 −0.25 1218.12* 4 2*

RC2A (8) 4752.95 −8.24 4406.28 −0.34 4399.12 −0.18 4388.88 0.05 4381.73 0.21 4391.16 0 0
RC2B (8) 2156.11 −15.40 1888.83 −1.13 1899.20 −1.68 1874.86 −0.38 1877.84 −0.54 1867.80* 0 2*

RC2C (8) 1828.95 −19.50 1567.22 −2.43 1562.19 −2.10 1541.13 −0.72 1545.29 −0.99 1530.08* 0 0

Min (%) −19.50 −2.84 −2.10 −1.20 −0.99
Avg (%) −6.78 −0.76 −0.57 −0.25 0.03
Max (%) −0.62 0.00 0.24 0.12 0.66
All 24 17*

Runs 1 1 3 1 10 10
Processor P 600M PIV 1.5GHz Ath 2.6GHz PIV 3.4GHz Opt 2.2GHz Xe 2.6GHz
Avg Time 14.15 20.00 10.97 16.67 5.08 4.83

Table 4 presents the comparison results for each HT instance against LSa and ReVNTS.456

We note that LSa only solved FT and not HT, which was the basis for setting the number457

of available vehicles in ReVNTS. The results show that the HEA outperforms both methods458

and yields higher quality solutions within short computation times. On average, the total459

cost reductions obtained were −12.68% and −0.34% compared to LSa and ReVNTS, with460

minimum deviations of −29.47% and −2.01% and maximum deviations of −1.26% and461

0.35%, respectively. Finally, Table 5 shows the results obtained on the newly introduced462

HD.463

Looking at the results obtained on the HT instances, on average the HEA yields 1.23%464

and 0.13% lower vehicle fixed costs than the LSa and ReVNTS, respectively. The HEA465

decreases the distribution cost (en-route time based cost) by 42.19% and 1.03%, compared466

with LSa and ReVNTS, respectively. These results indicate that the HEA is able find better467
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Table 3: Average results for FD
Instance set MDA BPDRT UHGS HEA BKS

TC Dev TC Dev TC Dev TC = <
R1A (12) 4068.59 −0.67 4060.96 −0.48 4031.28 0.25 4041.46 0 0
R1B (12) 1854.60 −0.82 − − 1841.43 −0.11 1839.39* 0 4*

R1C (12) 1539.48 −0.91 1539.90 −0.93 1530.25 −0.30 1525.56* 0 8*

C1A (9) 7085.56 −0.03 7085.91 −0.04 7082.98 0.00 7082.98 9 0
C1B (9) 2335.11 −0.09 − − 2332.89 0.00 2332.90 9 0
C1C (9) 1615.75 −0.02 1615.40 −0.01 1615.49 −0.01 1615.38* 9 0

RC1A (8) 4944.48 −0.57 4935.52 −0.38 4891.25 0.51 4916.41 0 0
RC1B (8) 2121.62 −0.87 − − 2107.08 −0.18 2103.21* 0 7*

RC1C (8) 1741.78 −0.94 1749.66 −1.40 1734.36 −0.51 1725.44* 2 6*

R2A (11) 3193.41 −1.36 3180.59 −0.96 3151.96 −0.05 3150.29* 7 4*

R2B(11) 1392.92 −3.06 − − 1351.905 −0.02 1351.52* 4 2*

R2C (11) 1149.65 −2.06 1149.11 −2.01 1128.708 −0.20 1126.42* 5 4*

C2A (8) 5690.87 −0.07 5689.40 −0.04 5686.75 0.00 5686.75 8 0
C2B (8) 1698.51 −0.69 − − 1686.75 0.00 1686.75 8 0
C2C (8) 1186.03 −0.07 1185.70 −0.04 1185.19 0.00 1185.19 8 0
RC2A (8) 4241.33 −0.73 4231.25 −0.49 4210.10 0.00 4210.10 5 1*

RC2B (8) 1704.13 −1.04 − − 1686.63 −0.01 1686.47* 0 5*

RC2C (8) 1374.55 −1.11 1385.32 −1.91 1358.24 0.08 1359.33 1 3*

Min (%) −4.30 −7.74 −1.49
Avg (%) −0.90 −0.74 −0.02
Max (%) 0.07 0.10 0.94
All 75 44*

Runs 3 1 10 10
Processor Ath 2.6G Duo 2.4G Opt 2.2G Xe 2.6G
Avg Time 3.56 − 4.72 4.56

fleet mix composition and lower distribution costs than the other methods.468

In summary, the HEA was able to find 41 BKS for 168 FT instances, where 17 are strictly469

better than those obtained by competing heuristics. As for FD, the algorithm has identified470

119 BKS out of the 168 instances, 44 of which are strictly better than those obtained by471

previous heuristics. The results are even more striking for HT, with 17 BKS on the 24472

instances, 14 of which are strictly better than those reported earlier. Overall, the HEA473

improves 75 BKS and matches 102 BKS out of 360 benchmark instances.474

4. Conclusions475

We have proposed a unified heuristic for four types of heterogeneous fleet vehicle routing476

problems with time windows. The first two are the Fleet Size and Mix Vehicle Routing Prob-477

lem with Time Windows (F) and the Heterogeneous Fixed Fleet Vehicle Routing Problem478

with Time Windows (H). Each of these two problems was solved under a time and a dis-479

tance objective, yielding the four variants FT, FD, HT and HD. We have developed a unified480

hybrid evolutionary algorithm (HEA) capable of solving all variants without any modifica-481
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Table 4: Results for HT

Instance set LSa ReVNTS HEA BKS
Mix TC Dev Mix TC Dev DC VC Mix TC Time = <

R101A A1B11C11D1 5061 −10.29 B10C11D1 4583.99 0.10 1998.76 2590 B10C11D1 4588.76 5.49 0 0
R102A A1B4C14D2 5013 −13.25 B3C14D2 4420.68 0.13 1736.54 2640 A1B4C13D2 4376.54* 6.78 0 1*

R103A B7C15 4772 −13.57 B6C15 4195.05 0.16 1621.71 2580 B6C15 4201.71 7.45 0 0
R104A B9C14 4455 −10.61 B8C14 4065.52 −0.94 1487.69 2540 B9C13 4027.69* 6.14 0 1*

C101A A1B10 9272 −5.02 B10 8828.93 0.00 828.93 8000 B10 8828.93 3.67 1 0
C102A A19 8433 −17.89 A19 7137.79 0.21 1453.13 5700 A19 7153.13 4.12 0 0
C103A A19 8033 −12.78 A19 7143.88 −0.30 1422.57 5700 A19 7122.57* 3.45 0 1*

C104A A19 7384 −4.25 A19 7104.96 −0.30 1383.74 5700 A19 7083.74* 3.13 0 1*

RC101A A7B7C7 5687 −7.99 A4B7C7 5279.92 −0.26 1876.36 3390 A4B7C7 5266.36* 5.73 0 1*

RC102A A5B6C8 5649 −10.77 A4B5C8 5149.95 −0.99 1709.55 3390 A4B5C8 5099.55* 5.14 0 1*

RC103A A11B2C8 5419 −8.58 A10B2C8 5002.41 −0.22 1691.29 3300 A10B2C8 4991.29* 4.90 0 1*

RC104A A2B13C3D1 5189 −3.43 A2B13C3D1 5024.25 −0.15 1596.97 3420 A2B13C3D1 5016.97* 5.21 0 1*

R201A A5 4593 −21.43 A5 3779.12 0.09 1532.49 2250 A5 3782.49 7.45 0 0
R202A A5 4331 −20.85 A5 3578.91 0.14 1333.92 2250 A5 3583.92 8.45 0 0
R203A A4B1 4220 −18.74 A4B1 3582.54 −0.81 1053.92 2500 A4B1 3553.92* 7.12 0 1*

R204A A5 3849 −24.89 A5 3143.68 −2.01 831.80 2250 A5 3081.80* 6.99 0 1*

C201A A4B1 6711 −9.29 A4B1 6140.64 0.00 740.64 5400 A4B1 6140.64 4.89 1 0
C202A A1C3 7720 −1.26 A1C3 7752.88 −1.69 623.96 7000 A1C3 7623.96* 4.26 0 1*

C203A C2D1 7466 −2.23 C2D1 7303.37 0.00 603.37 6700 C2D1 7303.37 4.37 1 0
C204A A5 6744 −18.72 A5 5721.09 −0.72 680.46 5000 A5 5680.46* 5.29 0 1*

RC201A C1E3 5871 −6.08 C1E3 5523.15 0.21 1684.59 3850 C1E3 5534.59 6.47 0 0
RC202A A1C1D1E2 5945 −15.43 A1C1D1E2 5132.08 0.35 1450.23 3700 A1C1D1E2 5150.23 6.35 0 0
RC203A A1B1C5 5790 −29.47 A1B1C5 4508.27 −0.81 1221.92 3250 A1B1C5 4471.92* 6.01 0 1*

RC204A A14B2 4983 −17.47 A14B2 4252.87 −0.26 1441.83 2800 A14B2 4241.83* 5.87 0 1*

Min (%) −29.47 −2.01
Avg (%) −12.68 −0.34
Max (%) −1.26 0.35
Total 3 14*

Runs 3 1 10
Processor P 233M PIV 1.5GHz Xe 2.6GHz
Avg Time − 20.00 5.61
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Table 5: Results for HD
Instance set HEA

DC VC Mix TC Time
R101A 1765.41 2590 B10C11D1 4355.41 5.19
R102A 1716.44 2640 B4C13D2 4356.44 6.24
R103A 1500.16 2580 B6C15 4080.16 6.57
R104A 1434.72 2520 B7C14 3954.72 5.89
C101A 828.94 8000 B10 8828.94 4.25
C102A 1380.17 5700 A19 7080.17 3.97
C103A 1379.21 5700 A19 7079.21 3.99
C104A 1375.06 5700 A19 7075.06 2.98
RC101A 1772.28 3390 A4B7C7 5162.28 6.41
RC102A 1598.05 3420 A2B6C8 5018.05 5.24
RC103A 1626.55 3300 A10B2C8 4926.55 4.39
RC104A 1575.91 3420 A2B13C3D1 4995.91 4.88
R201A 1198.76 2250 A5 3448.76 6.74
R202A 1058.16 2250 A5 3308.16 8.13
R203A 882.39 2500 A4B1 3382.39 7.49
R204A 768.14 2250 A5 3018.14 5.47
C201A 682.38 5400 A4B1 6082.38 4.21
C202A 618.62 7000 A1C3 7618.62 3.69
C203A 603.37 6700 C2D1 7303.37 3.67
C204A 677.66 5000 A5 5677.66 5.11
RC201A 1494.47 3850 C1E3 5344.47 6.72
RC202A 1156.02 3700 A1C1D1E2 4856.02 6.48
RC203A 996.25 3250 A1B1C5 4246.25 6.93
RC204A 1395.32 2800 A14B2 4195.32 6.17
Average 5224.77 5.45

Runs 10
Processor Xe 2.6GHz
Avg Time 5.45
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tion. This heuristic combines state-of-the-art metaheuristic principles such as heterogeneous482

adaptive large scale neighborhood search and population search. We have integrated within483

our HEA an innovative Intensification strategy on elite solutions and we have developed484

a new diversification scheme based on the Regeneration and the Mutation of solutions.485

We have also developed an advanced version of the Split algorithm of Prins (2009) to de-486

termine the best fleet mix for a set of routes. Finally, we have introduced the new variant487

HD. Extensive computational experiments were carried out on benchmark instances. In the488

case of FT, our HEA clearly outperforms all previous algorithms except that of Vidal et al.489

(2014). It performs slightly worse on average, but is superior on instances which are less490

tight in terms of vehicle capacity. On the FD instances, our HEA outperforms the three491

existing algorithms. Overall, the HEA has identified 160 new best solutions out of 336 on492

the F instances, 61 of which are strictly better than previously known solutions. On the493

HT instances, our HEA outperforms the two existing algorithms and has identified 17 best494

known solutions out of 24, 14 of which are strictly better than previously found solutions.495

The HD instances are solved here for the first time. Overall, we have improved 75 solutions496

out of 360 instances, and we have matched 102 others. All instances were solved within a497

modest computational effort. Our algorithm is not only highly competitive, but it is also498

flexible in that it can solve four problem classes with the same parameter settings.499
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Table A.1 to A.6 present the detailed results on all benchmark instances for FT and FD.506
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Bräysy, O., Dullaert, W., Hasle, G., Mester, D., M. Gendreau. 2008. An effective multirestart deterministic522

annealing metaheuristic for the fleet size and mix vehicle routing problem with time windows. Trans-523

portation Science 42, 371–386.524
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Table A.1: Results for FT for cost structure A

Instance set ReVNTS MDA AMP UHGS HEA
TC Dev TC Dev TC Dev TC Dev DC VC Mix TC Time

R101A 4539.99 0.04 4631.31 −1.97 4536.4 0.12 4608.62 −1.50 1951.70 2590 A1B2C17 4541.70 5.26
R102A 4375.70 −0.47 4401.31 −1.06 4348.92 0.14 4369.74 −0.30 1775.10 2580 B6C15 4355.10 5.87
R103A 4120.63 0.26 4182.16 −1.23 4119.04 0.30 4145.68 −0.30 1551.23 2580 B6C15 4131.23 4.19
R104A 3992.65 −0.01 3981.28 0.27 3986.35 0.14 3961.39 0.77 1302.10 2690 B5C11D3 3992.10 5.02
R105A 4229.69 0.07 4236.84 −0.10 4229.67 0.07 4209.84 0.54 1672.54 2560 B4C16 4232.54 4.73
R106A 4137.96 0.01 4118.48 0.48 4130.82 0.18 4109.08 0.71 1538.30 2600 B1C18 4138.30 5.13
R107A 4061.10 −0.66 4035.96 −0.04 4031.16 0.08 4007.87 0.66 1474.32 2560 B4C16 4034.32 5.4
R108A 3986.07 −0.50 3970.26 −0.10 3962.2 0.10 3934.48 0.80 1406.10 2560 B4C16 3966.10 4.78
R109A 4086.72 −0.68 4060.17 −0.03 4052.21 0.17 4020.75 0.94 1429.02 2630 C17D1 4059.02 4.6
R110A 4030.85 −0.86 3995.18 0.03 3999.09 −0.07 3965.88 0.76 1436.31 2560 B4C16 3996.31 4.17
R111A 4018.80 0.03 4017.81 0.06 4016.19 0.10 3985.68 0.86 1460.10 2560 B4C13D2 4020.10 4.98
R112A 3961.63 −0.10 3947.30 0.26 3954.65 0.07 3918.88 0.98 1397.60 2560 B4C16 3957.60 5.78
C101A 7226.51 0.00 7226.51 0.00 7226.51 0.00 7226.51 0.00 1526.51 5700 A19 7226.51 2.97
C102A 7137.79 0.11 7119.35 0.37 7137.79 0.11 7119.35 0.37 1445.65 5700 A19 7145.65 3.10
C103A 7143.88 0.00 7107.01 0.52 7141.03 0.04 7102.86 0.57 1443.88 5700 A19 7143.88 2.70
C104A 7104.96 −0.31 7081.50 0.02 7086.70 −0.05 7081.51 0.02 1382.92 5700 A19 7082.92 2.01
C105A 7171.48 0.05 7199.36 −0.34 7169.08 0.08 7196.06 −0.3 1475.00 5700 A19 7175.00 2.45
C106A 7157.13 0.09 7180.03 −0.23 7157.13 0.09 7176.68 −0.20 1463.32 5700 A19 7163.32 3.01
C107A 7135.43 0.07 7149.17 −0.13 7135.38 0.07 7144.49 −0.10 1440.20 5700 A19 7140.20 2.78
C108A 7115.71 0.07 7115.81 0.07 7113.57 0.10 7111.23 0.14 1420.98 5700 A19 7120.98 2.45
C109A 7095.55 −0.05 7094.65 −0.04 7092.49 −0.01 7091.66 0.00 1391.66 5700 A19 7091.66 2.37
RC101A 5253.86 −0.35 5253.97 −0.35 5237.19 −0.03 5217.90 0.33 1815.42 3420 A2B8C7 5235.42 4.97
RC102A 5053.48 −0.47 5059.58 −0.59 5053.62 −0.48 5018.47 0.22 1639.69 3390 A4B3C9 5029.69 5.64
RC103A 4892.80 −0.47 4868.94 0.02 4885.58 −0.32 4822.21 0.98 1480.00 3390 A4B3C9 4870.00 5.14
RC104A 4783.31 −0.29 4762.85 0.14 4761.28 0.17 4737.00 0.68 1289.30 3480 A3B1C9D1 4769.30 4.97
RC105A 5112.91 0.10 5119.80 −0.03 5110.86 0.14 5097.35 0.41 1788.10 3330 A3B11C5 5118.10 5.32
RC106A 4997.98 −0.79 4960.78 −0.04 4966.27 −0.15 4935.91 0.46 1568.62 3390 A4B9C6 4958.62 6.01
RC107A 4862.67 −0.78 4828.17 −0.06 4819.91 0.11 4783.08 0.87 1405.21 3420 A4B7C7 4825.21 5.37
RC108A 4736.50 0.38 4734.15 0.43 4749.44 0.11 4708.85 0.97 1244.77 3510 A1B2C9D1 4754.77 4.71
R201A 3779.12 −0.50 3922.00 −4.3 3753.42 0.19 3782.88 −0.6 1510.43 2250 A5 3760.43 8.97
R202A 3578.91 −0.70 3610.38 −1.58 3551.12 0.09 3540.03 0.40 1304.20 2250 A5 3554.20 9.98
R203A 3334.08 −0.56 3350.18 −1.05 3336.60 −0.64 3311.35 0.13 1065.50 2250 A5 3315.50 8.76
R204A 3143.68 −2.20 3390.14 −10.20 3103.84 −0.91 3075.95 0.00 825.95 2250 A5 3075.95 7.98
R205A 3371.47 −1.12 3465.81 −3.95 3367.90 −1.01 3334.27 0.00 1084.27 2250 A5 3334.27 8.45
R206A 3272.79 −0.29 3268.36 −0.15 3264.70 −0.04 3242.40 0.64 1013.40 2250 A5 3263.40 8.17
R207A 3213.60 −1.94 3231.26 −2.51 3158.69 −0.20 3145.08 0.23 902.29 2250 A5 3152.29 9.29
R208A 3064.76 −1.58 3063.10 −1.52 3056.45 −1.30 3017.52 −0.01 767.12 2250 A5 3017.12* 8.51
R209A 3191.63 0.08 3192.95 0.04 3194.74 −0.01 3183.36 0.34 944.28 2250 A5 3194.28 9.37
R210A 3338.75 −0.89 3375.38 −2.00 3325.28 −0.48 3287.66 0.65 1059.26 2250 A5 3309.26 8.79
R211A 3061.47 −1.35 3042.48 −0.73 3053.08 −1.08 3019.93 0.02 770.56 2250 A5 3020.56 7.99
C201A 5820.78 0.16 5891.45 −1.05 5820.78 0.16 5878.54 −0.80 830.20 5000 A5 5830.20 5.00
C202A 5779.59 −0.05 5850.26 −1.27 5783.76 −0.12 5776.88 0.00 776.88 5000 A5 5776.88 5.17
C203A 5750.58 −0.15 5741.90 −0.00 5736.94 0.09 5741.12 0.00 741.89 5000 A5 5741.12 4.76
C204A 5721.09 −0.72 5691.51 −0.19 5718.49 −0.67 5680.46 0.00 680.46 5000 A5 5680.46 4.21
C205A 5750.53 0.02 5786.71 −0.61 5747.67 0.06 5781.15 −0.50 751.40 5000 A5 5751.40 6.79
C206A 5757.93 −0.29 5795.15 −0.94 5738.09 0.06 5767.70 −0.50 741.30 5000 A5 5741.30 4.3
C207A 5723.91 0.02 5743.52 −0.32 5721.16 0.07 5731.44 −0.10 725.10 5000 A5 5725.10 4.17
C208A 5767.78 −0.75 5884.20 −2.78 5732.95 −0.14 5725.03 0.00 725.03 5000 A5 5725.03 5.21
RC201A 4726.22 −0.39 4740.21 −0.69 4701.88 0.13 4737.59 −0.60 2007.80 2700 A18 4707.80 4.50
RC202A 4518.49 0.02 4522.36 −0.07 4509.11 0.23 4487.48 0.71 1619.40 2900 A10B4 4519.40 4.67
RC203A 4327.57 −0.20 4312.52 0.15 4313.42 0.13 4305.49 0.32 1469.10 2850 A12B3 4319.10 5.27
RC204A 4166.73 −0.26 4141.04 0.35 4157.32 −0.04 4137.93 0.43 1005.77 3150 A2B5C2 4155.77 5.19
RC205A 4645.41 −1.08 4652.57 −1.24 4585.20 0.23 4615.04 −0.40 1795.67 2800 A14B2 4595.67 6.89
RC206A 4416.41 0.40 4431.64 0.06 4427.73 0.15 4405.16 0.66 1584.30 2850 A9B3C1 4434.30 5.03
RC207A 4338.94 −0.53 4310.11 0.13 4313.07 0.07 4290.14 0.60 1215.90 3100 A4B7 4315.90 6.27
RC208A 4109.90 −0.70 4091.92 −0.26 4103.31 −0.54 4075.04 0.16 1031.37 3050 A5B5C1 4081.37 5.17
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Table A.2: Results for FT for cost structure B

Instance set ReVNTS MDA AMP UHGS HEA
TC Dev TC Dev TC Dev TC Dev DC VC Mix TC Time

R101B 2421.19 0.16 2486.76 −2.54 2421.19 0.16 2421.19 0.16 1849.10 576 A1B4C9D5 2425.10 3.78
R102B 2219.03 −0.30 2227.48 −0.68 2209.50 0.13 2209.50 0.13 1608.37 604 A2B1C6D8 2212.37 3.97
R103B 1955.57 −0.18 1938.93 0.67 1953.50 −0.08 1938.93 0.67 1313.99 638 A1B1C4D6E2 1951.99 4.28
R104B 1732.26 −1.01 1714.73 0.01 1713.36 0.09 1713.36 0.09 1026.86 688 A1C1D5E4 1714.86 4.01
R105B 2030.83 −0.29 2027.98 −0.15 2030.83 −0.29 2027.98 −0.15 1436.91 588 B3C5D8 2024.91* 3.68
R106B 1924.03 −0.1 1919.03 0.16 1919.02 0.16 1919.02 0.16 1338.10 584 B1C6D8 1922.10 4.19
R107B 1781.01 0.12 1789.58 −0.36 1780.52 0.15 1780.52 0.15 1127.20 656 C2D8E2 1783.20 5.30
R108B 1667.51 −0.36 1649.24 0.74 1665.78 −0.25 1649.24 0.74 983.58 678 C1D5E4 1661.58 4.78
R109B 1844.99 −0.87 1828.63 0.03 1840.54 −0.63 1828.63 0.03 1185.10 644 B1C1D10E1 1829.10 4.91
R110B 1792.75 −0.78 1774.46 0.24 1788.18 −0.53 1774.46 0.24 1178.80 600 B1C3D10 1778.80 5.21
R111B 1780.03 −0.27 1769.71 0.31 1772.51 0.15 1769.71 0.31 1141.24 634 C3D7E2 1775.24 4.78
R112B 1677.13 −0.01 1669.78 0.43 1667.00 0.60 1667.00 0.60 1071.00 606 C2D11 1677.00 6.21
C101B 2417.52 0.00 2417.52 0.00 2417.52 0.00 2417.52 0.00 977.52 1440 A8B6 2417.52 1.99
C102B 2350.54 0.00 2350.54 0.00 2350.54 0.00 2350.54 0.00 930.54 1420 A5B7 2350.54 2.45
C103B 2349.42 −0.18 2353.64 −0.36 2347.99 −0.11 2347.99 −0.11 925.31 1420 A5B7 2345.31* 3.47
C104B 2332.94 −0.10 2328.62 0.08 2325.78 0.21 2325.78 0.21 950.59 1380 A7B6 2330.59 3.09
C105B 2374.01 0.10 2373.53 0.12 2375.04 0.06 2373.53 0.12 956.45 1420 A5B7 2376.45 3.06
C106B 2381.14 0.22 2404.56 −0.76 2381.14 0.22 2381.14 0.22 966.43 1420 A5B7 2386.43 2.95
C107B 2357.52 0.06 2370 −0.47 2357.67 0.06 2357.52 0.06 939.00 1420 A5B7 2359.00 2.45
C108B 2346.38 0.08 2346.38 0.08 2346.38 0.08 2346.38 0.08 968.15 1380 A7B6 2348.15 2.79
C109B 2346.58 −0.38 2339.89 −0.10 2336.29 0.06 2336.29 0.06 957.6 1380 A7B6 2337.60 2.56
RC101B 2469.50 −0.22 2462.60 0.06 2464.66 −0.02 2462.60 0.06 1732.19 732 A1B4C10 2464.19 4.47
RC102B 2277.79 −0.32 2263.45 0.31 2272.68 −0.10 2263.45 0.31 1538.43 732 A1B3C9D1 2270.43 4.12
RC103B 2057.55 −0.80 2035.62 0.27 2041.24 −0.00 2035.62 0.27 1291.20 750 B1C9D2 2041.20 3.98
RC104B 1914.93 0.38 1905.06 0.90 1916.85 0.28 1905.06 0.90 1172.27 750 B1C6D4 1922.27 4.21
RC105B 2337.93 −0.44 2308.59 0.82 2325.99 0.07 2308.59 0.82 1625.70 702 A1B7C8 2327.70 4.56
RC106B 2168.44 −0.99 2149.56 −0.11 2160.45 −0.62 2149.56 −0.11 1415.14 732 A1B2C8D2 2147.14* 4.21
RC107B 2008.39 −0.62 2000.77 −0.23 2003.26 −0.36 2000.77 −0.23 1264.09 732 A1B2C5D4 1996.09* 4.19
RC108B 1906.69 0.12 1910.83 −0.10 1908.72 0.01 1906.69 0.12 1176.89 732 A1B1C7D3 1908.89 3.11
R201B 1965.10 −0.45 2002.53 −2.37 1953.42 0.14 1953.42 0.14 1456.21 500 A4B1 1956.21 6.21
R202B 1765.09 −0.72 1790.38 −2.17 1751.12 0.07 1751.12 0.07 1302.4 450 A5 1752.40 8.00
R203B 1535.08 −1.31 1541.19 −1.72 1536.60 −1.41 1535.08 −1.31 1065.17 450 A5 1515.17* 5.78
R204B 1306.72 −2.12 1284.33 −0.37 1303.84 −1.90 1284.33 −0.37 829.57 450 A5 1279.57* 6.89
R205B 1575.75 −1.70 1563.62 −0.92 1560.07 −0.69 1560.07 −0.69 1099.39 450 A5 1549.39* 6.49
R206B 1477.34 −1.86 1464.53 −0.98 1464.70 −0.99 1464.53 −0.98 1000.37 450 A5 1450.37* 5.21
R207B 1386.84 −2.04 1380.41 −1.56 1358.69 0.04 1358.69 0.04 909.18 450 A5 1359.18 6.31
R208B 1261.09 −3.34 1244.74 −2.00 1256.45 −2.96 1244.74 −2.00 770.36 450 A5 1220.36* 5.47
R209B 1418.51 −2.37 1431.37 −3.30 1394.74 −0.66 1394.74 −0.66 935.65 450 A5 1385.65* 7.14
R210B 1529.04 −2.23 1516.66 −1.40 1525.28 −1.97 1516.66 −1.40 1045.75 450 A5 1495.75* 6.93
R211B 1268.14 −3.95 1255.06 −2.88 1253.08 −2.72 1219.93 0.00 770.56 450 A5 1219.93 7.45
C201B 1816.14 0.25 1820.64 0.00 1816.14 0.25 1820.64 0.00 740.64 1080 A4B1 1820.64 3.11
C202B 1768.51 0.09 1795.40 −1.43 1768.51 0.09 1768.51 0.09 690.10 1080 A2B1C1 1770.10 4.58
C203B 1744.28 −0.61 1733.63 0.00 1734.82 −0.07 1733.63 0.00 653.63 1080 A2B1C1 1733.63 3.19
C204B 1736.09 −3.31 1708.69 −1.68 1716.18 −2.13 1680.46 0.00 680.46 1000 A5 1680.46 3.17
C205B 1747.68 0.50 1782.74 −1.49 1747.68 0.50 1778.30 −1.24 716.54 1040 A1B3 1756.54 5.21
C206B 1756.93 0.92 1772.87 0.02 1756.01 0.97 1767.70 0.31 733.17 1040 A1B3 1773.17 3.46
C207B 1732.20 −0.16 1729.49 −0.01 1729.39 −0.00 1729.49 −0.01 689.39 1040 A1B3 1729.39* 2.97
C208B 1730.72 −0.38 1724.2 0.00 1723.2 0.06 1724.20 0.00 684.20 1040 A1B3 1724.20 3.13
RC201B 2231.69 0.19 2343.79 −4.83 2230.54 0.24 2329.59 −4.19 1615.90 620 A4B4C2 2235.90 4.17
RC202B 2002.62 0.96 2091.53 −3.44 2022.54 −0.03 2057.66 −1.76 1392.00 630 A3B3C3 2022.00* 5.47
RC203B 1843.72 −0.18 1852.74 −0.67 1841.26 −0.05 1824.54 0.86 1190.40 650 B3C4 1840.40 5.12
RC204B 1611.28 −3.57 1565.31 −0.62 1575.18 −1.25 1555.75 −0.01 885.74 670 B1C4D1 1555.74* 4.98
RC205B 2195.62 −1.23 2195.75 −1.23 2166.62 0.11 2174.74 −0.26 1529.00 640 A2B2C4 2169.00 6.47
RC206B 1887.23 0.60 1923.56 −1.31 1893.13 0.29 1883.08 0.82 1218.70 680 B5C1D1 1898.70 4.14
RC207B 1780.72 −2.93 1745.85 −0.92 1743.23 −0.76 1714.14 0.92 1080.00 650 B3C4 1730.00 5.14
RC208B 1557.74 −4.50 1488.19 0.16 1526.78 −2.42 1483.20 0.50 830.64 660 C6 1490.64 4.43
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Table A.3: Results for FT for cost structure C

Instance set ReVNTS MDA AMP UHGS HEA
TC Dev TC Dev TC Dev TC Dev DC VC Mix TC Time

R101C 2134.90 0.11 2199.78 −2.93 2134.90 0.11 2199.79 −2.93 1840.20 297 A1B2C9D6 2137.20 3.14
R102C 1913.37 0.08 1925.55 −0.56 1913.37 0.08 1925.56 −0.56 1599.87 315 A2B3C4D7E1 1914.87 6.21
R103C 1633.62 −0.77 1609.94 0.69 1631.47 −0.63 1615.38 0.36 1310.20 311 A1C4D8E1 1621.20 3.24
R104C 1382.82 −0.52 1370.84 0.35 1377.81 −0.16 1363.26 0.90 1025.60 350 D8E3 1375.60 4.47
R105C 1729.57 −0.44 1722.05 0.00 1729.57 −0.44 1722.05 0.00 1403.05 319 B2C2D11 1722.05 3.17
R106C 1607.96 0.15 1602.87 0.47 1607.96 0.15 1599.04 0.71 1285.40 325 A1C5D6E2 1610.40 4.08
R107C 1455.09 −0.05 1456.02 −0.12 1452.52 0.12 1442.97 0.78 1126.30 328 C2D8E2 1454.30 3.51
R108C 1331.54 −0.12 1336.28 −0.48 1330.28 −0.03 1321.68 0.62 979.92 350 D6E4 1329.92 5.33
R109C 1525.65 −1.23 1507.77 −0.04 1519.37 −0.81 1505.59 0.10 1185.10 322 B1C1D10E1 1507.10 4.73
R110C 1463.91 −0.89 1446.41 0.32 1457.43 −0.44 1443.92 0.49 1109.06 342 C3D4E4 1451.06 5.46
R111C 1451.92 −1.09 1447.88 −0.80 1443.34 −0.49 1423.47 0.89 1098.32 338 B1D9E2 1436.32 6.14
R112C 1355.78 −1.09 1335.41 0.42 1339.44 0.12 1329.07 0.90 988.10 353 C2D5E4 1341.10 4.17
C101C 1628.94 0.00 1628.31 0.04 1628.94 0.00 1628.94 0.00 828.94 800 B10 1628.94 1.97
C102C 1610.96 0.00 1610.96 0.00 1610.96 0.00 1610.96 0.00 860.96 750 A1B9 1610.96 2.53
C103C 1611.14 −0.25 1619.68 −0.78 1607.14 0.00 1607.14 0.00 857.14 750 A1B9 1607.14 3.79
C104C 1610.07 −0.68 1613.96 −0.92 1598.50 0.04 1599.90 −0.04 869.21 730 A3B8 1599.21 2.89
C105C 1628.94 0.00 1628.38 0.03 1628.94 0.00 1628.94 0.00 828.94 800 B10 1628.94 1.97
C106C 1628.94 0.00 1628.94 0.00 1628.94 0.00 1628.94 0.00 828.94 800 B10 1628.94 2.01
C107C 1628.94 0.00 1628.38 0.03 1628.94 0.00 1628.94 0.00 828.94 800 B10 1628.94 1.99
C108C 1622.89 0.13 1622.89 0.13 1622.89 0.13 1622.89 0.13 825 800 B10 1625.00 2.45
C109C 1619.02 −0.03 1614.99 0.22 1614.99 0.22 1615.93 0.17 888.61 730 A3B8 1618.61 3.54
RC101C 2089.37 0.13 2084.48 0.36 2089.37 0.13 2082.95 0.44 1702.10 390 B7C5D3 2092.10 4.54
RC102C 1918.96 −0.90 1895.92 0.31 1906.68 −0.25 1895.05 0.36 1529.89 372 A2B2C8D2 1901.89 4.19
RC103C 1674.50 −0.83 1660.62 0.00 1666.24 −0.33 1650.30 0.63 1300.7 360 C12 1660.70 3.56
RC104C 1543.55 −0.19 1537.09 0.23 1540.13 0.03 1526.04 0.95 1159.60 381 A1C5D5 1540.60 3.47
RC105C 1972.57 −0.84 1957.52 −0.07 1953.99 0.11 1957.14 −0.05 1584.09 372 A2B2C8D2 1956.09 4.16
RC106C 1793.12 −0.71 1776.08 0.25 1787.69 −0.41 1774.94 0.31 1393.45 387 A2B1C6D4 1780.45 3.49
RC107C 1635.65 −0.95 1614.04 0.39 1622.90 −0.16 1607.11 0.81 1245.30 375 B3C5D4 1620.30 3.07
RC108C 1531.69 0.06 1535.14 −0.17 1531.69 0.06 1523.96 0.56 1157.60 375 B2C6D4 1532.60 3.56
R201C 1745.39 −0.82 1729.92 0.07 1728.42 0.16 1716.02 0.88 1461.20 270 A6 1731.20 6.78
R202C 1537.33 −0.50 1537.35 −0.50 1527.92 0.12 1515.96 0.90 1304.70 225 A5 1529.70 8.14
R203C 1338.42 −3.22 1308.70 −0.92 1311.60 −1.15 1286.35 0.80 1071.72 225 A5 1296.72 6.50
R204C 1080.66 −2.64 1062.46 −0.91 1085.71 −3.12 1050.95 0.19 802.90 250 A5 1052.90 7.89
R205C 1350.12 −2.66 1311.84 0.26 1335.07 −1.51 1309.27 0.45 1090.20 225 A5 1315.20 6.71
R206C 1254.67 −2.26 1251.51 −2.00 1239.70 −1.04 1216.35 0.86 1001.93 225 A5 1226.93 6.59
R207C 1186.05 −5.38 1149.23 −2.11 1139.61 −1.25 1120.08 0.48 900.50 225 A5 1125.50 6.98
R208C 1022.31 −2.44 1009.26 −1.13 1022.11 −2.42 992.12 0.59 772.97 225 A5 997.97 5.87
R209C 1233.07 −5.91 1178.45 −1.21 1171.41 −0.61 1155.79 0.73 939.31 225 A4B1 1164.31 7.14
R210C 1284.72 −1.18 1289.35 −1.55 1281.08 −0.90 1257.89 0.93 1019.70 250 A4B1 1269.70 6.14
R211C 1061.70 −6.64 1013.84 −1.83 1028.08 −3.26 994.93 0.07 770.58 225 A5 995.58 6.17
C201C 1269.41 −1.47 1269.41 −1.47 1269.41 −1.47 1269.41 −1.47 650.97 600 A2C2 1250.97* 2.97
C202C 1252.24 −0.92 1242.66 −0.15 1244.54 −0.30 1239.54 0.11 700.86 540 A2B1C1 1240.86 3.54
C203C 1228.13 −2.89 1193.63 0.00 1203.42 −0.82 1193.63 0.00 653.63 540 A2B1C1 1193.63 3.14
C204C 1207.03 −2.59 1176.52 0.00 1188.18 −0.99 1176.52 0.00 636.52 540 A2B1C1 1176.52 3.67
C205C 1245.51 −0.44 1245.62 −0.45 1239.60 0.04 1238.30 0.15 640.1 600 A2B2 1240.10 4.29
C206C 1229.63 −0.03 1245.05 −1.29 1229.23 0.00 1238.30 −0.74 629.23 600 A2C2 1229.23 4.38
C207C 1221.16 −0.97 1215.42 −0.49 1213.07 −0.30 1209.49 −0.01 689.48 520 A2B1C1 1209.48* 3.56
C208C 1210.72 −0.54 1204.20 0.00 1205.18 −0.08 1204.20 0.00 684.2 520 A1B3 1204.20 3.01
RC201C 1957.60 −2.07 2004.53 −4.52 1915.42 0.13 1996.79 −4.11 1577.90 340 A3B3C2D1 1917.90 4.65
RC202C 1699.48 −1.16 1766.52 −5.15 1677.62 0.14 1732.66 −3.13 1355.00 325 A1B5C1D1 1680.00 6.10
RC203C 1510.13 −0.66 1517.98 −1.19 1504.35 −0.28 1496.11 0.27 1160.20 340 A2B1C3E1 1500.20 6.27
RC204C 1256.91 −2.84 1238.66 −1.35 1241.45 −1.58 1220.75 0.12 887.16 335 B1C4E1 1222.16 5.47
RC205C 1901.71 −4.32 1854.22 −1.71 1822.07 0.05 1844.74 −1.19 1453 370 B2C4D1 1823.00 5.29
RC206C 1598.84 −2.21 1590.22 −1.66 1586.61 −1.43 1553.65 0.68 1224.3 340 B5C1E1 1564.30 4.70
RC207C 1431.65 −3.61 1396.16 −1.05 1406.26 −1.78 1377.52 0.30 1026.71 355 C3D1E1 1381.71 5.67
RC208C 1181.47 −2.61 1145.84 0.48 1175.23 −2.07 1140.10 0.98 821.40 330 C6 1151.40 5.17

32



Table A.4: Results for FD for cost structure A
Instance set MDA BPDRT UHGS HEA

TC Dev TC Dev TC Dev DC VC Mix TC Time
R101A 4349.80 −0.75 4342.72 −0.58 4314.36 0.07 1787.52 2530 A1B10C12 4317.52 4.14
R102A 4196.46 −0.54 4189.21 −0.37 4166.28 0.18 1623.84 2550 A1B5C15 4173.84 5.98
R103A 4052.85 −0.53 4051.62 −0.50 4027.36 0.10 1401.40 2630 B1C18 4031.40 5.21
R104A 3978.48 −0.81 3972.65 −0.66 3936.40 0.25 1276.44 2670 B3C15D1 3946.44 4.12
R105A 4161.72 −0.67 4152.50 −0.45 4122.50 0.28 1574.06 2560 A1B5C15 4134.06 6.01
R106A 4095.20 −0.87 4085.30 −0.62 4048.59 0.28 1500.05 2560 B4C16 4060.05 5.12
R107A 4006.61 −0.54 3996.74 −0.29 3970.51 0.37 1395.12 2590 B3C15D1 3985.12 4.78
R108A 3961.38 −0.73 3949.50 −0.43 3928.12 0.11 1342.60 2590 B3C15D1 3932.60 6.54
R109A 4048.29 −0.58 4035.89 −0.27 4015.71 0.23 1464.83 2560 B4C16 4024.83 6.12
R110A 3997.88 −0.61 3991.63 −0.46 3961.68 0.30 1373.51 2600 B1C18 3973.51 5.21
R111A 4011.63 −0.59 4009.61 −0.54 3964.99 0.58 1368.00 2620 B3C15D1 3988.00 5.12
R112A 3962.73 −0.83 3954.19 −0.61 3918.88 0.29 1300.19 2630 C17D1 3930.19 4.71
C101A 7098.04 −0.06 7097.93 −0.06 7093.45 0.00 1393.45 5700 A19 7093.45 2.47
C102A 7086.11 −0.08 7085.47 −0.07 7080.17 0.00 1380.17 5700 A19 7080.17 2.65
C103A 7080.35 −0.02 7080.41 −0.02 7079.21 0.00 1379.21 5700 A19 7079.21 2.01
C104A 7076.90 −0.03 7075.06 0.00 7075.06 0.00 1375.06 5700 A19 7075.06 1.97
C105A 7096.19 −0.04 7096.22 −0.04 7093.45 0.00 1393.45 5700 A19 7093.45 2.65
C106A 7086.91 −0.04 7088.35 −0.06 7083.87 0.00 1383.87 5700 A19 7083.87 2.17
C107A 7084.92 −0.00 7090.91 −0.09 7084.61 0.00 1384.61 5700 A19 7084.61 2.39
C108A 7082.49 −0.04 7081.18 −0.02 7079.66 0.00 1379.66 5700 A19 7079.66 1.97
C109A 7078.13 −0.01 7077.68 −0.01 7077.30 0.00 1377.30 5700 A19 7077.30 2.19
RC101A 5180.74 −0.14 5168.23 0.10 5150.86 0.44 1843.47 3330 A3B13C4 5173.47 5.14
RC102A 5029.59 −0.21 5025.22 −0.13 4987.24 0.63 1658.83 3360 A6B6C7 5018.83 4.26
RC103A 4895.57 −0.94 4888.53 −0.79 4804.61 0.94 1430.20 3420 A2B6C8 4850.20 6.47
RC104A 4760.56 −0.74 4747.38 −0.47 4717.63 0.16 1395.40 3330 A3B2C8D1 4725.40 5.29
RC105A 5060.37 −0.23 5068.54 −0.39 5035.35 0.27 1748.86 3300 A5B8C6 5048.86 4.78
RC106A 4997.86 −0.68 4972.11 −0.16 4936.74 0.55 1514.13 3450 B7C8 4964.13 5.29
RC107A 4865.76 −0.83 4861.04 −0.73 4788.69 0.76 1435.60 3390 A4B5C8 4825.60 4.17
RC108A 4765.37 −0.86 4753.12 −0.60 4708.85 0.34 1334.79 3390 A4B2C8D1 4724.79 4.63
R201A 3484.95 −1.11 3530.24 −2.42 3446.78 0.00 1196.78 2250 A5 3446.78 6.13
R202A 3335.95 −1.17 3335.61 −1.16 3308.16 −0.33 1047.42 2250 A5 3297.42* 7.46
R203A 3173.95 −1.05 3164.03 −0.73 3141.09 0.00 891.09 2250 A5 3141.09 6.14
R204A 3065.15 −1.56 3029.83 −0.39 3018.14 0.00 768.14 2250 A5 3018.14 6.28
R205A 3277.69 −1.82 3261.19 −1.31 3218.97 0.00 968.97 2250 A5 3218.97 6.38
R206A 3173.30 −0.86 3165.85 −0.62 3146.34 0.00 896.34 2250 A5 3146.34 8.14
R207A 3136.47 −1.92 3102.79 −0.83 3077.58 −0.01 827.36 2250 A5 3077.36* 6.47
R208A 3050.00 −1.76 3009.13 −0.40 2997.24 0.00 747.25 2250 A5 2997.25 6.34
R209A 3155.73 −1.16 3155.60 −1.16 3122.42 −0.09 869.56 2250 A5 3119.56* 4.99
R210A 3219.23 −1.54 3206.23 −1.13 3174.85 −0.14 920.41 2250 A5 3170.41* 5.47
R211A 3055.04 −1.16 3026.02 −0.20 3019.93 0.00 769.93 2250 A5 3019.93 7.93
C201A 5701.45 −0.11 5700.87 −0.10 5695.02 0.00 695.02 5000 A5 5695.02 3.46
C202A 5689.70 −0.08 5689.70 −0.08 5685.24 0.00 685.24 5000 A5 5685.24 3.17
C203A 5685.82 −0.08 5681.55 0.00 5681.55 0.00 681.55 5000 A5 5681.55 4.29
C204A 5690.30 −0.22 5677.69 0.00 5677.66 0.00 677.67 5000 A5 5677.66 3.97
C205A 5691.70 −0.01 5691.70 −0.01 5691.36 0.00 691.36 5000 A5 5691.36 3.46
C206A 5691.70 −0.04 5691.70 −0.04 5689.32 0.00 689.32 5000 A5 5689.32 2.97
C207A 5689.82 −0.04 5692.36 −0.09 5687.35 0.00 687.35 5000 A5 5687.35 4.10
C208A 5686.50 0.00 5689.59 −0.05 5686.50 0.00 686.50 5000 A5 5686.50 3.56
RC201A 4407.68 −0.71 4404.07 −0.62 4374.09 0.06 1476.82 2900 A10B4 4376.82 5.14
RC202A 4277.67 −0.78 4266.96 −0.53 4244.63 0.00 1294.63 2950 A8B5 4244.63 4.26
RC203A 4204.85 −0.83 4189.94 −0.47 4170.17 0.00 1120.17 3050 A6B3C2 4170.17 6.14
RC204A 4109.86 −0.56 4098.34 −0.27 4087.11 0.00 937.112 3150 A5B2C3 4087.11 5.47
RC205A 4329.96 −0.84 4304.52 −0.25 4291.93 0.04 1343.73 2950 A8B5 4293.73 4.19
RC206A 4272.08 −0.48 4272.82 −0.49 4251.88 0.00 1251.88 3000 A6B6 4251.88 4.27
RC207A 4232.81 −1.20 4219.52 −0.89 4185.98 −0.08 1182.44 3000 A6B6 4182.44* 5.64
RC208A 4095.71 −0.51 4093.83 −0.46 4075.04 0.00 975.04 3100 A4B4C2 4075.04 5.31
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Table A.5: Results for FD for cost structure B
Instance set MDA BPDRT UHGS HEA

TC Dev TC Dev TC Dev DC VC Mix TC Time
R101B 2226.94 −0.20 − − 2228.67 −0.27 1664.56 558 B5C13D2 2222.56* 4.27
R102B 2071.90 −1.16 − − 2073.63 −1.25 1476.12 572 A1B2C10D5 2048.12* 3.28
R103B 1857.22 −0.08 − − 1853.66 0.11 1249.74 606 A1C7D6E1 1855.74 5.27
R104B 1707.31 −1.24 − − 1683.33 0.18 1026.42 660 A1C1D10E1 1686.42 5.09
R105B 1995.07 −0.71 − − 1988.86 −0.40 1390.96 590 C10D6 1980.96* 3.37
R106B 1903.95 −0.72 − − 1888.31 0.10 1290.28 600 C9D5E1 1890.28 4.19
R107B 1766.18 −0.81 − − 1753.35 −0.08 1140.02 612 C4D8E1 1752.02* 5.26
R108B 1666.89 −1.06 − − 1647.88 0.09 983.37 666 B1C1D8E1 1649.37 3.97
R109B 1833.54 −0.79 − − 1818.15 0.05 1209.10 610 B1C4D8E1 1819.10 3.99
R110B 1781.74 −1.12 − − 1758.64 0.19 1161.96 600 C2D11 1761.96 5.47
R111B 1768.74 −1.47 − − 1740.86 0.13 1121.16 622 C4D8E1 1743.16 5.69
R112B 1675.76 −0.76 − − 1661.85 0.07 1029.09 634 C1D10E1 1663.09 5.01
C101B 2340.98 −0.04 − − 2340.15 0.00 960.15 1380 A7B6 2340.15 2.98
C102B 2326.53 −0.04 − − 2325.70 0.00 945.70 1380 A7B6 2325.70 2.73
C103B 2325.61 −0.04 − − 2324.60 0.00 944.60 1380 A7B6 2324.60 3.64
C104B 2318.04 0.00 − − 2318.04 0.00 938.04 1380 A7B6 2318.04 2.98
C105B 2344.64 −0.19 − − 2340.15 0.00 960.15 1380 A7B6 2340.15 2.71
C106B 2345.85 −0.24 − − 2340.15 0.00 960.15 1380 A7B6 2340.15 3.19
C107B 2345.60 −0.23 − − 2340.15 0.00 960.15 1380 A7B6 2340.15 2.94
C108B 2340.17 −0.07 − − 2338.58 0.00 958.58 1380 A7B6 2338.58 3.88
C109B 2328.55 0.00 − − 2328.55 0.00 948.55 1380 A7B6 2328.55 3.12
RC101B 2417.16 −0.40 − − 2412.71 −0.22 1693.43 714 A2B7C8 2407.43* 3.46
RC102B 2234.47 −0.69 − − 2213.92 0.24 1487.23 732 A2B7C5D2 2219.23 5.14
RC103B 2025.74 −0.51 − − 2016.28 −0.04 1295.55 720 B1C10D1 2015.55* 3.69
RC104B 1912.65 −0.86 − − 1897.04 −0.03 1146.40 750 B1C6D4 1896.40* 4.57
RC105B 2296.16 −0.96 − − 2287.51 −0.58 1530.28 744 A1B6C6D2 2274.28* 5.69
RC106B 2157.84 −1.21 − − 2140.86 −0.41 1400.13 732 A1B2C8D2 2132.13* 3.12
RC107B 2008.02 −1.18 − − 1989.34 −0.24 1252.67 732 A1B2C5D1 1984.67* 2.45
RC108B 1920.91 −1.32 − − 1898.96 −0.16 1133.97 762 B1C6D4 1895.97* 2.67
R201B 1687.44 −2.47 − − 1646.78 0.00 1196.78 450 A5 1646.78* 6.79
R202B 1527.74 −1.73 − − 1508.16 −0.42 1051.81 450 A5 1501.81* 7.23
R203B 1379.15 −2.84 − − 1341.09 0.00 891.092 450 A5 1341.09 4.56
R204B 1243.56 −2.09 − − 1218.14 0.00 768.14 450 A5 1218.14 4.11
R205B 1471.97 −3.60 − − 1418.97 0.13 970.81 450 A5 1420.81 6.47
R206B 1400.84 −3.97 − − 1346.34 0.08 897.41 450 A5 1347.41 6.99
R207B 1333.53 −4.30 − − 1277.58 0.08 828.57 450 A5 1278.57 6.78
R208B 1225.37 −2.23 − − 1197.24 0.12 748.6 450 A5 1198.70 5.47
R209B 1370.30 −3.62 − − 1322.42 0.00 872.42 450 A5 1322.42 5.47
R210B 1418.54 −3.51 − − 1374.31 −0.28 920.41 450 A5 1370.41* 5.93
R211B 1263.72 −3.54 − − 1219.93 0.05 770.57 450 A5 1220.57 7.81
C201B 1700.87 −0.35 − − 1695.02 0.00 695.02 1000 A5 1695.02 2.11
C202B 1687.84 −0.15 − − 1685.24 0.00 685.24 1000 A5 1685.24 2.33
C203B 1696.25 −0.87 − − 1681.55 0.00 681.55 1000 A5 1681.55 2.57
C204B 1705.94 −1.69 − − 1677.66 0.00 677.66 1000 A5 1677.66 3.69
C205B 1711.00 −1.16 − − 1691.36 0.00 691.36 1000 A5 1691.36 3.07
C206B 1691.70 −0.14 − − 1689.32 0.00 689.32 1000 A5 1689.32 3.19
C207B 1704.88 −1.04 − − 1687.35 0.00 687.35 1000 A5 1687.35 3.76
C208B 1689.59 −0.18 − − 1686.50 0.00 686.50 1000 A5 1686.50 2.41
RC201B 1965.31 −1.24 − − 1938.36 0.14 1321.16 620 A4B1C4 1941.16 6.98
RC202B 1771.87 −0.22 − − 1772.81 −0.27 1128.04 640 A1B1C5 1768.04* 6.47
RC203B 1619.55 −1.00 − − 1604.04 −0.03 943.548 660 A1B1C5 1603.55* 6.15
RC204B 1501.10 −0.79 − − 1490.25 −0.07 829.27 660 C6 1489.27* 3.47
RC205B 1853.58 −1.10 − − 1832.53 0.04 1193.34 640 A1B7C1 1833.34 3.98
RC206B 1761.49 −2.15 − − 1725.44 −0.06 1074.41 650 A3B1C3D1 1724.41* 4.54
RC207B 1666.03 −0.96 − − 1646.37 0.23 1000.23 650 B3C4 1650.23 5.01
RC208B 1494.11 −0.83 − − 1483.20 −0.1 821.743 660 C6 1481.74* 4.08
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Table A.6: Results for FD for cost structure C
Instance set MDA BPDRT UHGS HEA

TC Dev TC Dev TC Dev DC VC Mix TC Time
R101C 1951.20 −0.71 1951.89 −0.75 1951.20 −0.71 1629.38 308 A1B8C5D6 1937.38* 4.17
R102C 1770.40 −0.46 1778.29 −0.91 1785.35 −1.31 1465.22 297 A2C11D5 1762.22* 3.23
R103C 1558.17 −0.72 1555.26 −0.54 1552.34 −0.35 1224.98 322 A1C6D7E1 1546.98* 3.69
R104C 1367.82 −1.14 1372.08 −1.46 1355.15 −0.21 1013.37 339 A1C1D5E4 1352.37* 5.17
R105C 1696.67 −0.91 1698.26 −1.00 1694.56 −0.78 1381.44 300 B3C4D9 1681.44* 4.13
R106C 1589.25 −0.23 1590.11 −0.28 1583.17 0.16 1274.65 311 B2C5D7E1 1585.65 3.67
R107C 1435.21 −0.76 1439.81 −1.08 1428.08 −0.26 1080.37 344 A1C1D7E3 1424.37* 5.98
R108C 1334.75 −1.24 1334.68 −1.23 1314.88 0.27 968.444 350 A1C1D5E4 1318.44 4.78
R109C 1515.22 −0.54 1514.13 −0.47 1506.59 0.03 1185.1 322 B1C1D10E1 1507.10 4.11
R110C 1457.42 −0.97 1461.85 −1.28 1443.92 −0.04 1101.37 342 B1C1D10E1 1443.37* 4.78
R111C 1439.43 −1.41 1439.14 −1.39 1420.15 −0.05 1089.43 330 A1B1D7E3 1419.43* 5.14
R112C 1358.17 −2.27 1343.26 −1.15 1327.58 0.03 989.01 339 C1D7E3 1328.01 4.67
C101C 1628.94 0.00 1628.94 0.00 1628.94 0.00 828.94 800 B10 1628.94 1.99
C102C 1597.66 0.00 1597.66 0.00 1597.66 0.00 847.66 750 A1B9 1597.66 2.14
C103C 1596.56 0.00 1596.56 0.00 1596.56 0.00 846.56 750 A1B9 1596.56 2.65
C104C 1594.06 −0.21 1590.86 −0.01 1590.76 0.00 840.76 750 A1B9 1590.76 2.11
C105C 1628.94 0.00 1628.94 0.00 1628.94 0.00 828.94 800 B10 1628.94 2.41
C106C 1628.94 0.00 1628.94 0.00 1628.94 0.00 828.94 800 B10 1628.94 1.74
C107C 1628.94 0.00 1628.94 0.00 1628.94 0.00 828.94 800 B10 1628.94 2.03
C108C 1622.75 0.00 1622.75 0.00 1622.75 0.00 892.75 730 A3B8 1622.75 2.56
C109C 1614.99 0.00 1614.99 0.00 1615.93 0.06 864.99 750 A1B9 1614.99 2.97
RC101C 2048.44 −0.72 2053.55 −0.97 2043.48 −0.47 1637.89 396 A1B6C8D1 2033.89* 4.16
RC102C 1860.48 −0.68 1872.49 −1.33 1847.92 0.00 1481.92 366 A1B5C5D3 1847.92 4.03
RC103C 1660.81 −0.88 1663.08 −1.02 1646.35 0.00 1271.35 375 C8D3 1646.35 4.17
RC104C 1536.24 −1.14 1540.61 −1.43 1522.04 −0.20 1143.96 375 C4D6 1518.96* 5.14
RC105C 1913.09 −1.49 1929.89 −2.39 1913.06 −1.49 1497.92 387 A2B3C8D2 1884.92* 4.57
RC106C 1772.05 −1.03 1776.52 −1.28 1770.95 −0.97 1372.99 381 A1B2C8D2 1753.99* 3.44
RC107C 1615.74 −0.91 1633.29 −2.01 1607.11 −0.37 1211.12 390 B1C6D4 1601.12* 3.47
RC108C 1527.35 −0.72 1527.87 −0.76 1523.96 −0.50 1126.36 390 A1C4D6 1516.36* 3.64
R201C 1441.46 −0.84 1466.13 −2.56 1443.41 −0.97 1204.50 225 A5 1429.50* 4.54
R202C 1298.10 −1.96 1296.78 −1.86 1283.16 −0.79 1048.11 225 A5 1273.11* 7.12
R203C 1145.38 −2.62 1127.28 −1.00 1116.09 0.00 891.09 225 A5 1116.09 4.58
R204C 1019.77 −2.68 1000.89 −0.78 993.14 0.00 768.14 225 A5 993.14 6.81
R205C 1222.03 −2.19 1240.74 −3.76 1193.97 0.15 970.81 225 A5 1195.81 6.21
R206C 1138.26 −1.51 1141.13 −1.76 1121.34 0.00 896.34 225 A5 1121.34 5.14
R207C 1086.42 −3.21 1067.97 −1.46 1052.58 0.00 827.58 225 A5 1052.58 5.23
R208C 976.11 −0.25 979.50 −0.60 969.90 0.39 748.70 225 A5 973.70 5.47
R209C 1140.96 −4.20 1140.96 −4.20 1097.42 −0.22 869.97 225 A5 1094.97* 5.64
R210C 1161.87 −1.43 1170.29 −2.17 1149.85 −0.38 920.48 225 A5 1145.48* 6.17
R211C 1015.84 −2.10 1008.54 −1.37 994.93 0.00 769.93 225 A5 994.93 6.17
C201C 1194.33 0.00 1194.33 0.00 1194.33 0.00 694.33 500 A5 1194.33 4.50
C202C 1189.35 −0.35 1185.24 0.00 1185.24 0.00 685.24 500 A5 1185.24 2.36
C203C 1176.25 0.00 1176.25 0.00 1176.25 0.00 656.25 520 A1B3 1176.25 3.07
C204C 1176.55 −0.10 1176.55 −0.10 1175.37 0.00 675.37 500 A5 1175.37 3.09
C205C 1190.36 0.00 1190.36 0.00 1190.36 0.00 690.36 500 A5 1190.36 4.50
C206C 1188.62 0.00 1188.62 0.00 1188.62 0.00 668.62 520 A1B3 1188.62 3.99
C207C 1184.88 0.00 1187.71 −0.24 1184.88 0.00 684.88 500 A5 1184.88 3.17
C208C 1187.86 −0.11 1186.50 0.00 1186.50 0.00 686.50 500 A5 1186.50 2.87
RC201C 1632.41 −0.41 1630.53 −0.30 1623.36 0.14 1285.71 340 A1B7C1 1625.71 6.01
RC202C 1459.84 −1.02 1461.44 −1.13 1447.27 −0.15 1095.12 350 A1B3C4 1445.12* 4.12
RC203C 1295.07 −1.69 1292.92 −1.52 1274.04 −0.04 943.55 330 B3C4 1273.55* 3.67
RC204C 1171.26 −1.15 1162.91 −0.43 1159.00 −0.09 807.94 350 C2D3 1157.94* 5.14
RC205C 1525.28 −0.66 1632.67 −7.74 1512.53 0.19 1180.34 335 A1B4C3 1515.34 5.01
RC206C 1425.15 −1.84 1420.89 −1.53 1395.18 0.30 1074.41 325 A1B1C5 1399.41 3.27
RC207C 1332.40 −1.13 1328.29 −0.82 1314.44 0.23 987.50 330 C6 1317.50 5.47
RC208C 1155.02 −1.31 1152.92 −1.12 1140.10 0.00 790.09 350 C2D3 1140.10 5.99
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