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A Paradigm to Maximise Performance and Profitability of Engineering

Products in the Presence of Manufacturing Uncertainty

by Christopher Dodd

Variation in the manufactured geometry of engineering components is perpetually present

in production. Random variation can arise due to slight differences in material prop-

erties, machines and tools, processes and even climatic conditions in the factory. To

guarantee the functionality or quality of individual components, features are inspected

to verify they conform to the tolerance limits imposed. It is undesirable to produce non-

conforming features, due to the cost of reworking features or scrapping components. In

practice, it is not always feasible to improve manufacturing capability (reduce varia-

tion), or design components to be less susceptible to variation; in such a situation the

cost of non-conformance should be minimised. Optimal Mean Setting, a methodology

to maximise profit from a production system where the manufacturing variation is often

greater than a feature’s tolerance limits, can be applied in these circumstances.

Although the principle of Optimal Mean Setting dates back over 60 years, its applica-

tion to engineering design is relatively undeveloped. A major part of this thesis was

devoted to developing a robust, reliable and generalised framework to practice Opti-

mal Mean Setting in engineering design. Errors were uncovered in previous attempts

in the literature relating to Optimal Mean Setting of simple systems. Improvements to

the maximum obtainable profit were also realised by implementing a new optimisation

strategy to that developed in the literature. Another innovation developed in this thesis

was the the application of copula function modelling to Optimal Mean Setting. Copulas

allowed joint distributions to be created from non-parametric (or non family specific)

feature variation distributions. This permitted Optimal Mean Setting to be applied to

components with several quality characteristics where different distributions modelled

the manufacturing variation. It also allowed the final geometry of a component to be

modelled to access the distribution of performance of a batch of components. Numerical

examples and the applications to real components are given.
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Definitions

Feature In this thesis a feature refers to a piece of geometry that requires in-

spection. Features are also referred to as quality characteristics in the

literature. In general, features may be classified as manufacturing or

design features, which are not necessarily equivalent. For example, the

wall thickness of a turned pressure vessel may be a design parameter but

it is created from the difference between two manufacturing features, the

outer turned diameter and the inner turned diameter.

Rework Applies to a single feature of a component (although many features on

the same component may be reworked). If a feature is found to be

non-conforming but additional manufacturing operations can make that

feature conform, the feature may be reworked.

Rework Cost Is the cost of reworking a feature. This includes all the economic re-

sources required to get the component from the point at which it was

deemed rework, reprocessed and place it back in the manufacturing se-

quence.

Scrap Applies to a whole component, but is due to non-conformance from a

single feature. If a feature is found to be non-conforming, such that no

additional manufacturing processes can be used to convert that feature

into a conforming feature, the component is scrap.
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Definitions xv

Scrap Cost Is the difference between the residual value of the component deemed

scrap, and the economic resources required to get the component to that

particular stage in the manufacturing process.

Sequence Refers to the position of an inspection process relative to the order

features are manufactured. For example, if two features were manufac-

tured prior to being inspected, this is considered a different sequence

compared to the manufacture and inspection of one feature followed by

the manufacture and inspection of the second feature.

Stage Refers to the complete set of manufacturing processes required to man-

ufacture a feature. In this thesis, stages are numbered using Roman

numerals.

State Refers to part of a manufacturing stage that a component or feature is

in. For example, within a manufacturing stage a rework loop may exist.

Conforming and scrap states also exist within a manufacturing sequence

depending on whether a feature conforms or does not conform from the

preceding states or stages. States are referred to using Arabic numerals

or C and S to denote conforming and scrap states.



Nomenclature

σ standard deviation

ν shape parameter (tLocation scale distribution)

Σ correlation matrix (Optimal Mean Setting)

ψ correlation between two random variable (response surface)

Ψ correlation matrix (response surface modelling)

µ mean

δij Kronecker delta

ξ noise in a system

U upper specification limit

L lower specification limit

U vector of upper specification limits

L vector of lower specification limits

SP selling price (monetary units)

PC processing cost (monetary units)

Sc scrap cost (monetary units)

Rc rework cost (monetary units)

Functions

φ(•) standard normal probability distribution function

Φ(•) standard normal cumulative distribution function

ξ(•) error function

Γ(•) Gamma function

C(•) copula function

F (•) cumulative distribution function

f(•) probability distribution function
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Nomenclature xvii

Film Cooling Hole

ū mean component of velocity (m/s)

u
′

fluctuating component of velocity (m/s)

ρ density (kg/m3)

κ turbulent kinetic energy J/kg

ε turbulent dissipation rate J/kg s

ν kinematic viscosity m2/s

η normalised cooling effectiveness



Chapter 1

Introduction

1.1 Engineering Doctorate

The Engineering Doctorate (EngD) is a four year research programme combining Doctor

of Philosophy (PhD) level research with taught components in an industrial setting. A

proportion of these taught components are taken from a Masters of Business Adminis-

tration (MBA) course while the remaining elements are technically biased to the EngD

subject area. Each EngD programme is associated with an industrial sponsor with whom

the candidate spends around 75% of their time.

The author is currently enrolled on an EngD programme run by the University of

Southampton’s Industrial Doctoral Training Centre (IDTC) and partnered by Rolls-

Royce plc. Funding for this EngD programme is provided through the Engineering and

Physical Sciences Research Council (EPSRC) and Rolls-Royce plc. The Rolls-Royce

contribution is part of a Rolls-Royce led research programme; Strategic Investment in

Low Carbon Engine Technology (SILOET), which was instigated in 2009 to accelerate

the development of low carbon engine technologies. Support for SILOET has been pro-

vided by UK Government Department of Business, Innovation and Skills, managed by

the Technology Strategy Board. The author and his academic supervisors are affiliated

with the Computational Engineering and Design Group (CEDG) at the University of

Southampton which is a Rolls-Royce University Technology Centre (UTC). At Rolls-

Royce the author is based in the Product Cost Engineering (PCE) group which is part

of the Rolls-Royce Design System Engineering (DSE) department.

1
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1.2 Rolls-Royce

Rolls-Royce is a global provider of integrated power systems and services. The company

operates in five main sectors:

� Civil aerospace

� Defence aerospace

� Marine

� Power Systems

� Nuclear

In these sectors as much as 50% of business comes from providing service support in the

form of full-life care contracts between customers1. Rolls-Royce derives over 40% of its

revenue from the civil aerospace sector (Hollinger and Powley [2014]) which primarily

involves the design, manufacture and servicing of propulsive gas turbine engines. The

SILOET programme is primarily focussed in the civil aerospace sector and the work

undertaken in this report is contextualised around gas turbine engines.

1.3 Project Background

1.3.1 Cost Modelling

Part of the SILOET project, work package 2.5, relates to cost modelling which aims to:

“embed cost engineering processes, skills and tools into the organisation such that prod-

uct cost is understood and ‘traded’, enabling optimum business solutions (product and

supply chain) to be designed concurrently in a timely and efficient manner”.

Cost modelling is one of the more immature engineering disciplines within Rolls-Royce

and the overall objectives of SILOET work package 2.5 were to:

� “Improve existing unit cost capability at process and component level through to

whole engine level.”

1Retrieved from http://www.rolls-royce.com/careers/working for us/our business/ - 21/10/2014
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� “Integrate this improved unit costing capability into design workflows; Key Sys-

tem at component and subsystem level and Enterprise/EPDS (Engine Preliminary

Design System) at whole engine level.”

The development of accurate cost models enables cost to be a mainstream engineering

parameter which, like stress, weight, aerodynamic flow and thermal transfer can be used

in design optimisation as an objective function or constraint. The cost of Rolls-Royce

engines is of fundamental economic importance to Rolls-Royce. Although the company

enjoys a 50% market share in the wide-body aircraft engine market2, it operates with a

9% to 14% profit margin compared to 19.8% from Rolls-Royce’s main rival in the civil

aerospace sector, General Electric (GE) (Hollinger and Powley [2014]). The calculation

of profit margin is multifaceted, involving not only the unit cost of engines but the many

operating costs of the company and profits derived from servicing operations. Never-

theless engine unit cost is clearly a significant contribution to profits achievable by the

company. The importance of calculating unit cost concurrently during the design pro-

cess was conceptually acknowledged by Miles and Swift [1998] as shown in Figure 1.1.

Cost is committed very early in the design process, determined by the product concept

which defines materials, geometry and to a large extent the manufacturing processes.

It becomes increasingly hard to alter this as the design progresses. Unlike typical engi-

neering variables, unit cost is not described by a governing physical equation, rather it

is a measure of all the economic resources required to create a product. Ultimately, this

manifests in a complex interrelationship between a supply chain and manufacturing pro-

cesses and practices. Many of these challenges to unit cost estimation were addressed by

a Rolls-Royce lead research programme DATUM (Design Analysis Tool for Unit-Cost

Modelling) which began in 2002. This led to the development a broadly generative

feature-based costing tool which linked design parameters and features to the method

of manufacture, capturing the allocation of resources required to realise a product defi-

nition (Scanlan et al. [2006]). The issues regarding cost modelling are discussed in more

detail in a review of the literature in Chapter 2, Section 2.6. The primary focus of this

thesis is not on the cost models themselves, but on the cost of non-conformance and its

impact on design.

1.3.2 Manufacturing Variability

Within the SILOET work package 2.5 one of the aims of task 2.5.2 - Tools and Method-

ology Development was to;

2Retrieved from http://www.rolls-royce.com/civil/customers/market outlook/ 22/10/2014



Chapter 1. Introduction 4

Figure 1.1: Cost incurred during product introduction (Miles and Swift [1998])

“relate more subtle ‘quality’ design parameters such as tolerances, surface finish and

shape accuracy to the process capability and scrap and re-work costs”.

Scrap and rework together with their associated costs arise due to non-conformance

and the terms are defined formally under the Definitions section. Non-conformance oc-

curs due to variation in the manufacturing process which results in features that do

not comply with the tolerance limits imposed upon them. These tolerances may be in

the form of dimensional constraints such as angles, thickness, diameters, lengths and

positions or more general constraints such as surface quality.

There are two main sources of variation that can cause non-conformance during manufac-

turing; common cause variation and special cause variation (Shewhart [1931]). Common

cause variation is constantly active within the system, it is probabilistically predicable

and is often referred to as noise in the system. Special cause variation is an unanticipated

phenomenon in the system and is probabilistically unpredictable. In manufacturing, tol-

erances are assigned to control the variability of a feature or product due to common

cause variation. This type of variation is implicit in every manufacturing operation and

is a fundamental property of nature3. Examples of common cause variation include tem-

perature variation, variation in material properties and tool properties, and variations in

how parts are loaded into holders. These uncertainties may conspire to cause variation

in a measured manufacturing feature such as diameter, thickness or position relative to

a datum. Special cause variation may also arise and a product may be deemed non-

conforming because of it. However, non-conformance due to special cause variation is

not necessarily due to a feature failing to conform within tolerance limits. By definition,

tolerance limits cannot be used to control special cause variation as the variation, and

the way it manifests in terms of variation to the geometry, is unpredictable. For example,

3Manufacturing a feature to an exact dimension was shown to require are infinite amount of infor-
mation by Wilson [1980] using Shannon’s theory of information (Shannon [1948]) and thus it is never
possible to create an exact dimension.
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a tool breakage during the manufacturing process and resulting surface imperfection it

may cause would be considered special cause variation. This won’t necessarily alter the

diameter of the feature but the feature may still be deemed non-conforming on visual

inspection4. Only common cause variation and the tolerances imposed to control it are

considered in the research contained within this thesis.

In general, the form of manufacturing variation tends to obey the central limit theorem

(according to Pyzdek [2001] from original studies by Shewhart [1931]), which states,

“the average of the sum of a large number of independent, identically distributed random

variables with finite means and variances converges “in distribution” to a normal random

variable5.”

This permits common cause variation to be modelled using the normal distribution

(Gaussian distribution), which is used as a default way to describe variation throughout

this thesis. Nevertheless the normal distribution is not applicable in all cases (Pyzdek

[2001] and Pyzdek [2002]) and as described in Section 1.4, one of the challenges of the re-

search was to remove the reliance on the normal distribution to represent manufacturing

variation.

1.3.3 Manufacturing Capability and Process Control

Manufacturing capability is used as a measure of how likely it is a manufacturing process

will produce non-conforming features. There are a number of standard process capability

measures as described in Natrella et al. [2012]. Generally, a manufacturing process is

deemed capable if the variation is within the specification limits. The index Cpk is a

commonly used metric where (Natrella et al. [2012]),

Cpk = min

[
U − µ

3σ
,
µ− L

3σ

]
. (1.1)

Most capability indices are variants of this form such as Cp, where the denominator is

6σ as opposed to 3σ, and Cpm, which takes into account the fact that the target mean

may differ from the measured mean. The Cpk index is used in this thesis to indicate

the relative capability of process, but any index which applies to normal distribution

could be used. Figure 1.2(a) indicates Cpk < 1 as the manufacturing process variation

is greater than the upper and lower specification limits, resulting in non-conformance.

4If such a variation occurs, often a component will be examined by the design team to establish if it
will still perform its function as required, this is refereed to as a concession at Rolls-Royce.

5According to the definition given in the issixsigma.com dictionary. Retrieved from
http://www.isixsigma.com/dictionary/central-limit-theorem/ 23/10/2014.
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If the process variation is smaller than the upper and lower specification limits, Cpk > 1

and > 99.73% of items would conform6.

(a) Illustration of Cpk (b) Illustration of a control chart

Figure 1.2: Statistical process control

A prerequisite to using process capability incidences is ensuring the process is in-control.

Shewhart [1931] was responsible for much of the early work on process control related

to manufacturing. The aim being to monitor the feature values produced by the man-

ufacturing process to ensure the process operates to its full potential (maximises con-

formance). Process control charts are commonly used to monitor the process (Natrella

et al. [2012]) as illustrated by Figure 1.2(b). The x-axis represents time, while the y-axis

corresponds to the value of the feature or quality characteristic. Upper and lower control

limits are specified to define whether the process is in or out-of-control. Shewhart [1931]

developed a set of rules, known as Western Electric Rules (Natrella et al. [2012]) which

define these control limits and whether the observations support the notion of an in-

control process. In essence, a process is deemed to be out-of-control if the observations

are found not to come from the same distribution as the data originally used to set up

the control chart. This implies the process has drifted, or the variance has changed,

such that there must be other sources of uncertainty that are unaccounted for (special

cause variation). The black points shown in Figure 1.2(b) (associated with the black

distribution in Figure 1.2(a)) represent observations analogous of an in-control process.

The points lie within the upper and lower control limits and there are no ‘improbable’

patterns amongst the points (they conform to the Western Electric Rules Natrella et al.

[2012]). The process is also capable as the variation is well within the upper and lower

specification limits, therefore Cpk > 1. No non-conforming features would be expected

from this process. The observations illustrated by the red points (and red distribution)

6The larger the denominator in Equation 1.1 the greater the conformance. A property of the normal
distribution is one standard deviation (σ) accounts for 68.27% of components, 2σ accounts for 95.54%,
4σ accounts for 99.994%, 5σ accounts for 99.99994% and 6σ accounts for 99.9999998% of components.
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indicate an out-of-control process as there are points outside the control limits. In ad-

dition, some points fall outside the upper and lower specification limits, which would

cause Cpk < 1 and non conforming features would be produced. It is possible to have

an out-of-control but capable process (Cpk > 1) where the control limits may be ex-

ceeded but the observations lie within the specification limits. The scope of this thesis

is delineated by in-control processes where Cpk < 1.

1.3.4 Performance, Capability and Cost

The interest in establishing the cost of non-conformance is not simply to offer better

cost prediction to enhance the capability of cost models, but also an opportunity to

maximise a component’s performance whilst minimising cost. The design of today’s gas

turbine engines is fuelled by an ever increasing demand for quieter, more environmen-

tally friendly engines with lower specific fuel consumption and reduced operating and

running costs. This drives the design of components and subsystems closer to what

is physically and materially possible, as a result variation can lead to an unwelcome

degradation in performance. To maintain performance levels, more stringent tolerances

must be applied and it is inevitable that in some cases the natural variations of some

manufacturing processes will be greater than the tolerances. This is resolved by fully in-

specting each component and reworking or scrapping the features and components that

do not conform. In fact, regardless of how large the capability gap is between tolerances

and manufacturing capability, it is always possible to produce components close to the

optimum performance point, although the cost of doing so may be prohibitively high

due to scrap and rework. Figure 1.3 illustrates the potential for improved profit for a

component where performance varies in response to two features X1 and X2. There are

two potential design points, design A and design B. Design A offers a higher average

performance (marked A in the z-axis in Figure 1.3), provided the variation in the design

parameters can be kept within ∆X1,A and ∆X2,A. Failure to do this would result in

a rapid degradation in Design A’s performance and give no better or even worse per-

formance than Design B, (due to the sensitivity of Design A’s performance to the X1

and X2 design parameters). Design B illustrates the more robust of the two designs

where the performance is considerably less sensitive to variations in the design parame-

ters. The same manufacturing method is considered for Design A and B, however, only

Design B can be manufactured without creating non-conformance. This indicates the

manufacturing variation is almost as large as the range ∆X1,B and ∆X2,B. Although

it would be possible to produce design A, the cost of doing so would be considerably

greater as the variation would be greater than ∆X1,A and ∆X2,A. This would lead to

costly scrap and rework.
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Figure 1.3: Illustration of the possibility of higher performance created by applying
more stringent tolerances

A body of research known as Optimal Mean Setting explores the economic case of

producing components to tolerances that are smaller than the manufacturing variation.

The topic is reviewed in detail in Chapter 2, Section 2.5, although the fundamental

principle is summarised by Figure 1.4. Reworking a feature is often less costly than

scrapping a component, thus optimal mean setting aims to shift the manufacturing

distribution mean in favour of rework, to reduce the overall cost of production. The

terms U and L refer to the upper and lower specification limits and the difference

between them corresponds to the ∆X range in Figure 1.3. The manufacturing variation

is illustrated by the black curve. Scrap is produced, if on inspection, a feature is outside

the design specification such that no additional manufacturing process can bring the

feature within specification. Rework is required if a feature is found to be outside the

specification limits but additional manufacturing operations are able to bring it within

specification. By moving the mean of the manufacturing variation from µ1 to µ2 the

probability of producing scrap can be reduced and the probability of rework increased.

Since rework carries considerably less cost than scrap, it is likely setting the mean at µ2

is less costly than in position µ1. It would be possible to apply this technique to design

A, from Figure 1.3, in a bid to reduce the cost of manufacture (but gain the performance

benefit design A offers), thereby making it a more credible option. There are several

challenges and implications of applying Optimal Mean Setting to practical engineering

problems which are introduced in the following paragraphs (Section 1.4).
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Figure 1.4: Effect of moving the mean of the distribution

1.4 Challenges

The challenges involved in this thesis can be divided into two main categories. The first

challenge was to determine the cost of non-conformance itself. The second challenge

was to remove the necessity to use normal distributions to characterise the variability

of manufacturing processes.

Determine the cost of non-conformance: In accordance with SILOET work package

2.5 - task 2.5.2, a reliable method of calculating rework and scrap cost was required.

Even in the simplest case, when manufacturing a component with a single feature, the

cost of rework and scrap is not immediately obvious. Scrap and rework occurs due

to manufacturing variation where it is possible to estimate the probability of producing

scrap and rework by considering the area in the tails of the distribution above and below

the upper and lower specification limits (Figure 1.4). However, if rework is produced,

features are re-processed and there are additional probabilities of scrap, rework and

conformance for these reworked components. In a batch of components, this reworking

process would occur iteratively until all rework was complete. Determining the number

of times components are reworked and the final probabilities of scrap and conformance

is non-trivial, particularly where several features are considered. This problem has been

studied in the literature, however, the method presented was found to be incorrect which

is considered in more detail in Chapter 2, Section 2.5.

Non-normal distributions: Even if the manufacturing variation is normally dis-

tributed, feedback from the rework loop affects the shape of the final distribution of

manufactured geometry to a variant of a normal distribution. If the variation of the

manufacturing process is not normal or the inspectable feature (quality characteristic) is

a combination of other manufacturing features (which may not be normally distributed),

the manufactured geometry follows a variant of a normal distribution or a completely

different distribution all together. This brings up two related problems.
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� How to determine the scrap and rework probabilities if the manufacturing variation

is not normally distributed, particularly if multiple features are considered where

correlation exists between them.

� How to determine the distribution of the final geometry and how this influences

the performance distribution of the component. This is a challenge even if the

manufacturing variation is normally distributed due to the effect rework can have

with regard to modifying the shape of the original normally distributed features.

Optimal Mean Setting can have a significant impact on the performance distribution

by virtue of the fact the means are often biased towards rework. This point is illus-

trated in Figure 1.5. The function f(x), known as a transfer function, illustrates the

functional response due to changes in the feature (x). The variation in the feature (Man-

ufacturing distribution 1 ) was mapped to the y-axis representing performance, via the

transfer function f(x), yielding Performance distribution 1. Optimal Mean Setting has

the capacity to significantly skew the manufacturing distribution due to the shift in the

mean and rework feedback, as represented by Manufacturing distribution 2. When this

variation of the feature is mapped via the transfer function to the performance axis, the

performance distribution is seen to vary from Performance distribution 1 significantly.

Although the total performance variation remains constant, the mean and the mode

of Performance distribution 2 would be greater than Performance distribution 1. This

could have far-reaching implications particularly if the component was part of a larger

assembly of similar components such as turbine blades. The performance of a turbine

stage is dependent on the performance of each individual blade. If the mode and mean

of the performance change there would be a knock-on effect to the realised performance

of the turbine stage. In order to establish the performance variation, it is essential the

distributions of the manufactured components be accurately known if Optimal Means

Setting is applied.

1.5 Vision and Objectives

The overall objective of this thesis is to develop and apply the mathematical framework

necessary to practice Optimal Mean Setting and analyse the consequence of doing so

by establishing the resulting manufactured geometry distribution. Recall Optimal Mean

Setting is a methodology that can be implemented to minimise production cost when the

variation of the manufacturing processes is greater than the tolerances of the features

or quality characteristics. It has an application where a performance gain is achievable

from tolerance tightening. To achieve this vision, the challenges described in Section 1.4

must be overcome to accomplish the following objectives:
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Figure 1.5: Effect of moving the mean of the distribution

1. Develop and implement a methodology to accurately determine the cost of pro-

duction when the manufacturing variation is greater than the feature tolerance

limits. This involves finding the probabilities of scrap and conformance after all

rework cycles are complete as well as the average time features are reworked. The

methodology must be applicable to one or several features, recognising there may

be correlation between features.

2. It must be possible to achieve Objective 1, irrespective of the shape of the manufac-

turing process’s variation. This applies even if multiple features must be inspected,

each with different forms of variation (not all with normally distributed variation)7.

3. The effect that rework has on the final distribution of the manufactured geometry

must be considered such that it is possible to determine the associated effect on

performance. It is more important to consider the variation in performance if

Optimal Mean Setting is applied, as the resulting geometry distribution may be

significantly skewed, which is also likely to skew the performance distribution.

1.6 Contributions

The contributions made by this research fall into four categories.

1. The first contribution is the development of a robust and generalised mathematical

framework, enabling the conformance and scrap probabilities to be determined, as

7This implies standard multivariate parametric distribution functions cannot be used to find the joint
probability of conformance, scrap and rework
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well as the average time features spent being reworked. By extensively modelling

and understanding rules governing the probability of components transferring be-

tween various states in the manufacturing process from first principles, errors were

uncovered in the published research (Discussed in detail in Chapter 2, Section 2.5

and Chapter 4). The published literature used a Markovian model as a way to

circumvent and simplify modelling from first principles. The new understanding

that was gained from modelling from first principles allowed a correction to be

derived for the original Markovian methodology.

2. There are two principle manufacturing regimes associated with Optimal Mean

Setting. The first is where a feature is produced then immediately inspected,

known as serial production. The second is where several features are produced

before being inspected, known as parallel production. These concepts are explained

in greater detail in Chapter 4. The original literature regarding parallel processes

was restricted to considering just two features. This is generalised to n-features in

Chapter 3. The generalisation was non-trivial due to the number of interactions

that occur and ensuring all the possible probabilities of components transferring

between states were accounted for. A set of equations were generated that enabled

the probability of scrap, conformance and average time of rework to be computed

for n-features, without having to formulate the specific equations for each problem.

This method was combined with the serial production example for which an n-

feature equation had already been developed. This involved re-formulating the

serial equations such that they became a special case of the parallel equations

rather than a separate form.

3. The knowledge gained from understanding the probabilities of features transferring

between various states in the manufacturing process allowed an advancement in the

optimisation methodology applied to Optimal Mean Setting. The new approach

to Optimal Mean Setting outperformed the approach developed in the literature

for parallel production. The improvements made by this new methodology are

discussed in Chapter 3 - Section 3.5.1.

4. Copula functions are introduced to enable joint probability distributions to be cre-

ated, where non-normal and dissimilar distributions described the manufacturing

variation of the features (Chapter 4). This is vital to determine the conformance,

scrap and rework probabilities for parallel production. Copula functions and their

application to compute joint distributions is not novel, however, to the Author’s

knowledge this is the first time they have been applied to describe the variation of

manufacturing features. The impact of using copula modelling is two-fold:
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� There is no restriction on the shape of the distribution that describes the

manufacturing variation. Custom distributions can be created or even data

samples may be used, provided the shape of the distribution has an integral

of one (it must classify as a probability). A practical example is given in

Chapter 4 - Section 4.3 .

� Copulas enable the final geometry distribution to be found when optimal

mean setting has been applied. This allows the performance distribution to

be analysed. To the author’s knowledge, such a technique to determine the

distribution of the manufactured geometry has never been applied.

1.6.1 Software

Much of the work discussed in this project required the use of numerical simulations and

calculations to validate analytical results and run numerical experiments. A significant

proportion of the calculations required could not be expressed in closed form and the

work drew heavily on the use of statistical and probabilistic methods. Matlab was

chosen as the software package to develop simulations and experiments due to its highly

capable statistical and optimisation packages. Additionally, as a high-level programming

language it allows rapid development of functionally complex code.

In Chapter 4, a practical example of Optimal Means Setting was applied to a turbine

blade cooling hole. Ansys workbench 14.5 and Fluent were used to model and solve the

Navier-Stokes equations describing the flow of air through the hole and the cooling effect

on the airfoil surface.

1.7 Description of Content

The motif of this thesis is the effect variation has on the function and cost of products.

Quality Engineering embodies several paradigms that address this issue such as; Robust

Design, Reliability Engineering and Axiomatic Design. Optimal Mean Setting is also

a subset of Quality Engineering which specifically addresses the relationship between

product cost and non-conformance. A literature review is given in Chapter 2 which

discusses these various aspects of Quality Engineering. A comprehensive survey of cost

modelling methodologies follows, which is essential to practice Optimal Mean Setting.

Chapter 3 onwards contains the Author’s contributions to knowledge, expect where ex-

isting work is explicitly referenced . The Chapter opens with an introduction to the
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mathematical basis Optimal Mean Setting. Initially, single feature and two feature se-

rial and parallel cases are considered from first principles. The application of Markovian

modelling to the Optimal Mean Setting problem is discussed in Section 3.2 and the er-

rors in the literature (discovered from analysis from first principles) are examined. The

following Sections 3.2.2.1 to 3.2.2.3 describe the generalisation of a Markovian method

to establish the probability of scrap, conformance and the average time features spend

being reworked for n-features in any combination of serial and parallel manufacturing

stages. Section 3.4 offers a series of numerical examples utilising this new generalised

methodology. Both serial and parallel production are considered, as well as a combina-

tion of both. This is not practical without the generalised methodology (developed in

the preceding sections). The improved Optimal Mean Setting optimisation methodol-

ogy is shown in Section 3.5, where it outperforms the methodology from the literature,

yielding lower cost (higher profit). The impact of correlation between variables is also

studied in this Section.

Chapter 4 furthers the Author’s contribution to knowledge with the application of non-

normal distribution and Copula statistics to the Optimal Mean Setting paradigm. Sec-

tion 4.2.8 demonstrates how copulas apply to manufacturing distributions and Section

4.3 demonstrates how copulas can be used to model real manufacturing data. Their

use in determining the resulting distributions of the manufactured geometry is also de-

scribed. A practical example of Optimal Mean Setting, applied to a film cooling hole,

(turbine blade or nozzle guide vane) is introduced in Section 4.4. An overview of film

cooling holes, the manufacturing process and feasibility of applying Optimal Mean Set-

ting to the manufacturing process are given in Sections 4.4.1 through to 4.4.3. Sections

4.4.4 through to 4.4.6 describe the hole geometry, experimental computation set-up and

results.

Finally, a conclusion of the work is given and the future direction of Optimal Mean

Setting is discussed in Chapter 5.



Chapter 2

Literature Review

2.1 Quality Engineering

Successfully engineered products perform their intended function well over a range of

conditions in which they can reasonably be expected to operate. They are generally

characterised by high levels of reliability and offer low risk and low unit and life-cycle

cost. One of the greatest challenges to an engineer or designer is to ensure their product

meets these objectives in the light of uncertainty. These uncertainties may arise from

manufacturing, materials properties, operating environment or geometric changes over

the lifetime of the component. Quality engineering is a generic term used to describe

the methodologies aimed at reducing a product’s variation to realise or partially realise

these objectives, particularly with regard to minimising the effect of uncertainty.

There is no single reference for the origins of quality engineering but rather a number of

related methodologies with the objective of reducing product variation to uncertainty.

The origins of one of the most successful quality engineering practices Six Sigma, started

with the development of statistical process control by Walter Andrew Shewhart of West-

ern Electric. Later, Bill Smith of Motorola used Shewhart’s ideas in the development

of Six Sigma (Akpose [2010]). Walter Shewhart noted that the main cause of defects

in manufactured devices was due to variation and that monitoring of the output was

required to allow one to make adjustments to the process if the mean drifted too much.

Bill Smith championed the concept that to attain defect-free (or close to defect free)

production ±6 standard deviations should lie between the mean and nearest specifica-

tion limit. Over time, a 1.5 sigma shift may be expected, thus a defect rate of 3.4 parts

per million could be expected corresponding, to a 4.5 sigma capability. Although the

statistical aspects of Six Sigma are related to achieving a low defect rate, the overall aim

is to achieve high levels of customer satisfaction. In many ways it is a cultural shift to

15
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improve a company’s level of customer satisfaction, profitability and to gain a competi-

tive advantage. Indeed Pande et al. [2000] defined Six Sigma as “A comprehensive and

flexible system for achieving, sustaining and maximizing business success”. Variations

on this are possible but Six Sigma was chosen as a useful starting metric. The appli-

cation of Six Sigma methodologies to industry has been highly successful. To name a

few examples of successful Six Sigma implementation (Anbari et al. [2004]); Motorola

posted a $15 billion saving over 11 years, GE a saving of $2 billion after introducing Six

Sigma in 1999 and Huges Aircraft’s Missiles System Group reported 1000% increase in

quality and 500% improved productivity.

Six Sigma practices involve following DMAIC, or DMADV strategies (Pande et al. [2000],

Tutorialspoint [2014]) where

D : Define the problem and project goals,

M : Measure the problem and the responsible process,

A : Analyse the data and process to determine the root cause of the defect(s).

The last two letters are different for the DMAIC and DMADV methodologies respec-

tively where,

I : Improve the process,

C : Control, ensure the process is under control such that the improvements are

sustainable,

for the DMAIC, which is used for improving existing products or processes which are

under-performing. The last two letters from DMADV refer to,

D : Design a process that fulfils the customer requirements

V : Verify the design fulfils the customer requirements.

The DMADV is used to design or redesign products and processes to ensure a reliable

and defect free product. This is related to the concept of Design for Six Sigma (DFSS).

The exact strategy for DFSS may vary, for example the second ‘D’ in DMADV may be

replaced by ‘O’ referring to optimising the process capability and design.

The terminology used in Six Sigma is purposely equivocal as the methods are generic

and may be applied to physical products as well as services. Nevertheless, many of the

technical aspects of Six Sigma, such as design of experiment (DoE), optimisation and
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manufacutring capability apply to the design of physical products which are of inter-

est here. The following sections offer a general overview of Robust Design, reliability

methods and Axiomatic Design methods. Robust Design principles have also been in-

tegrated to the area of Optimal Mean Setting (the main aspect of this research) and a

detailed discussion of Robust Design in the context of Optimal Mean Setting is available

in Section 2.5.

Robust designs are typically achieved by employing methods that characterise non-

deterministic and uncertain parameters and their impact of the product. Two general

approaches may be employed, Reliability Design or Robust Design as outlined by Taguchi

(Taguchi [1986], Phadke [1989]). Reliability methods focus on the probability distribu-

tion of a system’s response to uncertainty in parameters with known distributions. The

aim is to minimise the risk of failure. This is fundamentally different to Robust Design

where the objective is to optimise mean performance and minimise variation. In the

latter, a system outside the specification limits is penalised but may be accepted, the

focus is on the mean of the distribution of the system response. In a reliability based

method a system outside the specification limits is not tolerated1 and the focus is on

the tails of the system response distribution.

2.2 Robust Design

Robust Design is a method of reducing the sensitivity of a product to variation. The

concept is generally accredited to Dr. Genichi Taguchi who originally developed his

ideas in Japan in the 1950s and 1960s. It wasn’t until the 1980’s when his work became

known to Western academics with the English translation of his research, Taguchi [1986]

and Phadke [1989]. However, Taguchi was not solely responsible for the concept of de-

scribing the statistical variation on an output or performance factor. In fact R.A Fisher

with contributions from F. Yates (Fisher [1935], Yates [1964]) developed the definitive

theory for accounting for variation in known and unknown factors and the impact on

the experimental output. Fisher’s method, known as Design of Experiment (DoE) was

developed and refined primarily during his tenure at the Rothamsted Experimental Sta-

tion in Harpenden, England. Rothamsted is an agricultural research establishment and

during the 1920s a significant amount of research effort was devoted to determining the

impact of various fertilisers on crops yields. Much of Fisher’s work was aimed at efficient

experimentation (Aldrich [2007]), “to conduct experimental and observational inquiries

so as to maximise the information obtained for a given expenditure” (Fisher [1951]).

Nevertheless, the long term aim of Rothamsted was to maximise crop yield in light of

1The probability of failure can never be eliminated but can be set very low, for example one failure
event in 10 million.
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Figure 2.1: Graphical illustration of robust design where uncertainties are illustrated
by typical input and output probability density functions (adapted from Keane and

Nair [2005])

many uncontrollable factors (variations) such as rainfall, air quality, sunlight, soil qual-

ity and terrain gradients. This has many similarities to the concept of Robust Design,

to minimise the sensitivity of the product output to variation, and indeed Fisher’s DoE

features heavily in modern day computational incarnations of Robust Design.

A robust design and a less robust design are illustrated in Figure 2.1. The horizontal

axis represents a change in the control parameter (design parameter) and the vertical

axis represents the output (performance). Two candidate solutions are shown where

variability is present in the nominal value of x due to manufacturing variation. The

manufacturing variation in both candidates is the same but, the first design (Candidate

1) suffers from greater variation in the output than Candidate 2 due to non-linearity

in the function f(x). Assuming low values of the output are desirable, the later design

is more robust but has a slight performance deficit. In general, a small reduction in

performance is acceptable if it results in a component that is more robust.

It is an engineer’s task to find the design parameters that optimise the objective function.

This can be expressed as a conventional optimisation problem (as described by Yao et al.

[2011]), written as; 

find: x

optimise: f(x, s)

subject to: g(x, s) ≤ 0

L ≤ x ≤ U .

(2.1)

The design parameters are given by the vector x, s are signal factors and represent

different configurations or operating conditions of the system. The objective function is
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Figure 2.2: Ram air intake

f(x, s), g(x, s) is an inequality constraint and L and U are the upper and lower bounds

on the design space. Assuming the optimum can be found, or at least an acceptable

output (f(x, s)), it is also an engineers role to determine how the output may be affected

by noise and explore other candidate solutions as in Figure 2.1. The objective function

then becomes f(x, s, ξ), where ξ are noise factors that may correspond to variations in

the design parameters (x) due to manufacturing variation or uncertainty in the system

configuration or operating conditions (s). For example, for the design of a ram air intake

(Figure 2.2), the signal factors would be the pressure (P ), velocity (U) and density (ρ) of

the air prior to entering the intake from the free-stream (subscript ∞), and the output

or response would be the pressure, velocity and density of the air inside the intake

(subscript I). Control factors are parameters governing the design of the product the

designer has control over. In the case of the intake, the control parameters would be

the geometry of the intake, such as the inlet diameter (area) and the spike angle. Noise

parameters are sources of variability in the system which may affect the signal or control

factors. For example, the ram air intake would be susceptible to pressure, velocity and

density changes due to altitude or Mach number. This is illustrated in the lower half of

Figure 2.2 where the inlet flow is at an angle of attack relative to the free-stream and the

velocity is greater. Manufacturing variation would affect the geometry of the duct, thus

also affecting its response. These parameters are typically visualised on a P-diagram

(Phadke [1989]) illustrated by Figure 2.3.

In a similar manner to Equation 2.1, a robust design can be written mathematically as

(adapted from Yao et al. [2011]),

find: x

optimise: f(x, s) = f(µ(x, s), σ(x, s))

subject to: g(x, s) ≤ 0

L ≤ x ≤ U .

(2.2)
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Figure 2.3: P-Diagram Phadke [1989]

Taguchi’s method of robust design can be thought of as two distinct steps; parameter

design and tolerance design. Parameter design is the process of exploiting non-linearities

in the function f(x) to reduce performance variation. Another way to improve average

performance is to reduce the variability. In product design, it is generally possible to

reduce the control parameter variation (σ(x)) by reducing the allowed manufacturing

variation. This is achieved by tightening the tolerances, however, this is widely recog-

nised to increase manufacturing cost proportional to the strictness of the tolerances

(Spotts [1973], Chase [1988], Chase [1990]). This increased cost may come from longer

run times (slower feed rates), increased non-conformance or investment to improve pro-

cess capability. On the other hand, parameter design is ‘free’, choosing another point

in the design space (moving to Candidate 2 rather than Candidate 1 in Figure 2.1) is

generally considered not to incur extra cost2. In practice these two steps can be per-

formed simultaneously as discussed by Li and Wu [1999]. In order to choose the correct

parameters so that the design solution is robust, Taguchi [1986] introduced the concept

of the quadratic loss function. Figure 2.4 illustrates this concept, where the quality loss

(L) experienced by the average customer is,

L = k(f(x)− t)2 where k = A0/∆
2
0.

Deviation from the target (t) is given by ∆0 and A0 is the loss experienced by the

customer. The least loss is experienced by exactly meeting the target. To quantify

the robustness of the design, Taguchi proposed using a signal-to-noise (SNR) ratio to

measure the mean squared deviation (MSD) of the response comparative to the target.

2In reality different design configurations are unlikely to have exactly the same manufacturing costs,
but the difference is generally considered to be less that the cost incurred through tolerance design Li
and Wu [1999], Zang et al. [2005], Park et al. [2006]
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Figure 2.4: Illustration of a quality loss function Phadke [1989]

This gives a quantifiable measure of robustness written as,

SNR = −10log10

(
1

n

n∑
i=1

(f(x, ξi)− t)2

)

where n represents the set of noise parameters that leads to the variability of the output,

f(x, ξ). This SNR is a nominal-the-best (NTB) type meaning that the loss is least

when the design is on the nominal, half way between the bounds. Taguchi proposed two

other possibilities; larger-the-better (LTB), where the design objective is to maximise

the value of the quality characteristic (for example tensile strength or component life),

and smaller-the-better (STB) where the design objective is to minimise the quality

characteristic (weight for example). The mean squared deviation for each case is given

by,

SNRLTB = −10log10

(
1

n

n∑
i=1

(f(x, ξi))
2

)
and

SNRSTB = −10log10

(
1

n

n∑
i=1

(f(x, ξi))
−2

)
.

Since Taguchi [1986] and Phadke [1989] a number of other loss functions have been

developed to meet specific requirements to different design problems. Asymmetric loss

functions are discussed in the next paragraph and loss functions based on inverted prob-

ability distributions are discussed in Section 2.5.

In the original formulation of Robust Design, quality loss was only experienced by the

customer. Since then researchers (Krishnaswami and Mayne [1994], Jeang [1997], Wu

and Tang [1998]) considered the idea that the cost of a product could be broken down

into two parts, the cost of manufacturing the product and the cost to the customer

due to variations in quality. Jeang [1997] developed a model to trade the increased

manufacturing cost of tight tolerances and the accompanying low quality loss. Wu and

Tang [1998] illustrated the fact that the quality loss may not be symmetric both sides

of the design nominal, such that if the design was off-nominal it would be preferable to

be one side of the nominal, than the other, in order to minimise quality loss. Wu and
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Tang [1998] utilised the reduced quality loss gradient one side of the nominal to shift

the target to minimise quality loss as well and manufacturing cost. Wu et al. [1998] also

considered asymmetric quality loss functions to minimise quality loss and manufacturing

cost with tolerance design. Jeang [2001] proposed the optimization of manufacturing cost

and quality loss. In this model, the optimal values of the process means and process

tolerances as well as the design tolerances were defined, giving the designer the ability to

specify the product parameters as well as the process parameters required to manufacture

it. Jeang [2010] offered an all encompassing model for manufacture and quality loss cost

by including machining cost, inspection cost, reworking cost and replacement cost if a

component were scrapped. Jeang and Lin [2013] extended the optimisation of quality

under a cost constraint to multiple features, again the optimum process means, process

tolerances and the design tolerances were computed by the model.

Process capability indices are widely used (Jeang and Chung [2008]) to quantify the

performance of a manufacturing process in terms of the relationship between the process

variation and the tolerance bounds. Naidu [2008] used a process capability index as

the basis for manufacturing and quality cost optimisation for a NTB case. Jeang and

Chung [2008] and Abdolshah et al. [2009] developed a new capability measure which

incorporated quality loss. A review of loss based capability indices are reviewed by

Abdolshah et al. [2011].

One limitation of these works is their applicability to multi-response systems, where

one wishes to consider two or more functional or quality characteristics simultaneously

[Abdul-Kader et al., 2010]. Practical design problems often have more than one goal, in

aerospace design it is common to aim for light weight, low cost and high performance

systems, all of which tend to be in tension with one-another. Engineering judgement is

often used to differentiate between different quality characteristics but this is ambiguous

and does not guarantee the same result from two different engineers. There are several

methods for systematically accounting for multiple quality responses, a detailed review

is provided by Jeyapaul et al. [2004], however a general overview is given here.

Assignment of weights: Shiau [1990], Tai et al. [1992] Antony [2001]assigned weight-

ing to each S/N ratio where the summation for all the weighted S/N ratios gave the

overall quality loss of the system. In a similar vain Wu and Chyu [2004] accounted

for multiple correlated quality characteristics by minimising the total average quality

loss. A drawback of assigning weights is the process is inherently based on engineering

judgement.

Principle Component Analysis (PCA): PCSA is a technique used to transform a

set of correlated responses in to a smaller number of uncorrelated parameters or design

variables. Antony [2000] used this technique on a submerged arc-welding process with
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Figure 2.5: Illustration of the differences between Robust Design and Reliability
Engineering adapted from Huyse [2001]

two responses. In general, the principle component has an eigenvalue greater than

one, however, it is possible to have multiple eigenvalues greater than one. In this case

a weighting has to be applied which is not desirable. Additionally the uncorrelated

parameters or design variables do not necessarily account for all the variability in the

response so it is possible the design will not be fully optimised.

Interpretation of Customer Requirements Quality function deployment (QFD)

was proposed by Akao [1972] to transform a set of qualitative customer requirements

into quantitative design parameters. The method was used by Kovach and Cho [2008]

to weight each quality characteristic. The relative importance of the design parameters

could then be ranked and the systems optimised based on relative importance.

2.3 Reliability Engineering

An area closely related to Robust Design is Reliability Engineering. The principle dif-

ference between the two methodologies is illustrated in Figure 2.5. Failure of a system

is not permitted in Reliability Engineering. The failure of a system in Robust Design

would be permitted, although the cost in terms of quality loss is high, the main objective

is to minimise overall loss. The left plot in Figure 2.5 shows reliability based designs

are engineered against failure when encountering infrequent but large perturbations to

their operating conditions, or in manufacturing, where a failure of the design would be

catastrophic. For example, the design of a building against collapse in an earthquake.

When the impact of small perturbations in operating conditions or manufacturing leads

to degradation in performance, but not catastrophic failure, Robust Design principles

are utilised. Thus, in terms of the probability density function, Robust Design is con-

cerned with the mean of the distribution whereas Reliability Engineering is concerned

with the red and green tails of the distribution, as illustrated by the right plot in Figure
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Figure 2.6: Illustration of the probability of failure adapted from Zang et al. [2002]

2.5. The value C is a constant, setting the number of standard deviations from the mean

(µ) to the upper and lower specification limits.

Traditionally the risk of catastrophic failure has been mitigated against by using Factors

of Safety for loads and knockdown factors for strengths, in the field of structural design.

However, this approach gives no indication of the likelihood of a load exceeding the

nominal design limit or the strength of the design being less than the nominal design.

Invariably, this leads to over-engineered and suboptimal design solutions, as it is not

possible to determine the relative importance of various design decisions on the reliability

and robustness of the design (Zang et al. [2002]). Reliability Engineering resolves these

shortcomings by using a probabilistic approach to determine the likelihood of the system

failing due to the variability of two or more uncertain factors as illustrated by Figure 2.6.

The area enclosed by the overlapping tails of the load and strength distribution defines

the probability of the design failing. Such techniques have been used in civil engineering

for many decades (Sundararajan [1995]), where engineering projects are governed by

standard design codes. These codes designate the reliability of structures in extreme

events of a given frequency, such as a 1 in 100 year earthquake. This specifies the size

of the overlapping region between load and reliability in Figure 2.6.

A limit state function is commonly used to specify the conditions at which the system will

fail and is illustrated in Figure 2.7. There are two design parameters x1 and x2, where

the goal is to ensure the design is as far away from the failure region as possible (given by

the limit state function g(x, s)) whilst optimising an objective function. Mathematically

this can be written as, 

find: x

optimise: f(x, s) = µ(x, s)

subject to: P [g(x, s) ≤ 0] ≤ r

L ≤ x ≤ U .

(2.3)
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Figure 2.7: Illustration of a limit state function on the design space, adapted from
Keane and Nair [2005]

as described by Yao et al. [2011]. The function P [•] is the probability that the bracketed

statement is true, while r is a scalar specifying the reliability requirement (i.e. the system

may fail once in 106 cycles). Thus, P [g ≤ 0] is the probability of failure for a given set

of design parameters x, which must be less than a specified reliability level r.

Determining the probability of failure,

PF = P [g(x, s) ≤ 0] =

∫
g(x)≤0

fx(x) dx, (2.4)

is often computationally expensive due to the number of dimensions in the design domain

x, the complexity of the domain boundary g(x = 0) and it is often not possible to

express the failure domain analytically (Zang et al. [2002], Keane and Nair [2005]).

Monte Carlo simulation can be used to approximate the PF , however a large number of

samples are required to estimate PF to a reasonable degree of accuracy. To approximate

PF to an order of magnitude 10−6, over one million samples are required as the error

scales as O1/
√
N where N is the number of samples. This is not practical if f(x) is

a computationally expensive function to evaluate. An alternative approach is the use

of First-Order and Second-Order Reliability Methods, FORM and SORM respectively.

There are four principal stages as cited in Zang et al. [2002],

1. Transform the physical space into standard normal space.

2. Determine the most probable point (MMP).

3. Approximate the limit state function at the MMP.

4. Determine the probability of failure using the approximate limit state function

from the previous step.
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The FORM method is less computationally expensive than the SORM approach as the

limit state function is approximated by a tangent whereas a quadratic approximation is

used by SORM. Consequently SORM gives a more accurate estimate of the probability

of failure. A detailed review of FORM and SORM methods are available from Robinson

[1998] and Rackwitz [2001]. Langley [1999] showed that reliability methods were special

cases of an asymptotic formulation based on the Laplace approximation. The reduction

of this asymptotic approximation to the FORM and SORM methods is illustrated by

Keane and Nair [2005].

In an analogous way to the Taguchi method of improving product quality Savage and

Swan [2001] proposed a reliability based quality improvement approach. The model

determines the nominal design parameter values to maximise the probability of multiple

quality characteristics being within the upper and lower specification limits. Since there

is no loss function, the quality of the design is the same, provided the design parameter

lies between the limits. Savage and Seshadri [2003] proposed a binary loss function to

account for the scrap and rework costs if a design was outside the specification limits.

The objective was to minimise the sum of the production cost (including inspection cost)

and cost of scrap and rework. Savage et al. [2006] further developed the concept of quality

optimisation through conformance-based design by introducing the NTB, STB and LTB

quality characteristics. The basic principles of Reliability Engineering, to minimise the

probability of failure are inversely analogous to another design methodology, Axiomatic

Design, where the objective is to maximise the probability of conformance. This design

method is discussed in the following section.

2.4 Axiomatic Design

Axiomatic Design was introduced by Nam Suh in the 1980s and provides a framework,

mapping the functional requirements (quality functions) of a system to the design pa-

rameters. These design parameters can also be mapped to manufacturing processes.

The methodology offers a scientific approach to design (Suh [1978], Suh [1990] and Suh

[2001]). The mainstays of the approach are the first and second axioms; the inde-

pendence axiom relating to how function requirements map to design parameters and

the information axiom relating to the likelihood of the system satisfying its functional

requirements when manufactured. Information reduction is analogous to the Taguchi

methodology of optimising the means to minimise variation in the performance outputs.

The reduction of information is also similar to reducing the probability of failure in

reliability based methods.
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Axiomatic design maps the functional requirements (FRs) of the system through a

design matrix (A) to the design parameters (DP s) as demonstrated in Equation 2.5,
FR1

FR2

...

FRi


=


A11 A12 · · · A1j

A21 A22 · · · A2j

...
...

. . .
...

Ai1 Ai2 · · · Aij




DP1

DP2

...

DPj


. (2.5)

The subscripts i and j are the numbers of FRs and DP s in the system. It is a necessary

condition of Axiomatic design that the numbers of FRs equal the number of DP s. The

system is said to be uncoupled if the elements Aij = 0 ∀ i = j, so that every FR is

satisfied by exactly one DP . Such a design is easy to optimise as each FR can be

determined independently of all the others. The design matrix A can also exist in upper

or lower triangular form representing a decoupled design, where some FRs depend on

two or more DP s. Nevertheless, at least one FR is mapped to only one DP . Again it

is possible to satisfy each FR, although the order each is solved is important. One must

first satisfy the independent FR and DP pair before satisfying the next FR, which

will depend on two DP s. If the design matrix A cannot be resolved into upper or

lower triangular form and it is not uncoupled, the system is said to be coupled. Such

a system is hard to optimise, since any change in one DP will affect multiple FRs.

Figure 2.8 illustrates a coupled and uncoupled design solution for the pitch and yaw

control of aircraft. With reference to Equation 2.5, FR1 and FR2 are the pitch and yaw

functionalities respectively. The DP1 and DP2 parameters correspond to the control

surfaces facilitating the yaw and pitch motions. The V-tail configuration of a General

Atomics Altair unmanned aircraft in the top of Figure 2.8 is a coupled design as a

deflection of the control surface would result in both pitch and yaw, thus A11, A12, A21

and A22 would be non-zero. The DC-8 aircraft in pictured in the lower half of Figure

2.8 has an uncoupled tail-plane design solution where the pitch and yaw functionalities

are satisfied independently by different control surfaces.

The information axiom states that the best design is the one with the least information

(Suh [1990], Suh [2001], Park [2004] and Park et al. [2006]), which is always an uncoupled

design. However, most practical cases involve coupled or decoupled designs (Park [2007]

provides an extensive discussion regarding the application of Axiomatic Design). Suh

[2001] states it is generally possible to reduce coupled designs to decoupled ones by

setting the least sensitive elements in the A matrix to zero. The information axiom

is closely related to the probability of failure integral from reliability based methods

(Equation 2.4). It requires the computation of the probability of success given by,

Ps =

∫
Ω
. . .

∫
PδDPj dδDPj . . . PδDP1 dδDP1
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Figure 2.8: Illustration of the a coupled and independent design solution for pitch
and yaw control of aircraft (NASA [2015])

where Ω is the feasible design domain and PδDPn is the probability density function of

the nth design parameter. The term δDPn is the range on the manufacturing variability

of DPj such that −∆DPj ≤ δDPj ≤ ∆DPj . The design domain is prescribed by the

mapping (matrix A) between the FRs and the DP s. For a two variable problem, the

probability of success is given by,

Ps =

∫ b

a

∫ d

c
PδDP2PδDP1 dδDP2 dδDP1

where the limits are,

a = −∆FR1

A11
, b =

∆FR1

A11
, c =

−∆FR2 −A21δDP1

A22
and d =

∆FR2 −A21δDP1

A22
.

The term δFRi is the acceptable range of the ith functional requirement specified by

the customer such that −∆FRi ≤ δFRi ≤ ∆FRi. Figure 2.9 shows the functional

domain mapping for a two variable problem. The design domain is contained within

the parallelogram illustrated on Figure 2.9. The functional domain is indicated by

the partially obscured blue rectangle contained within −∆FR1 ≤ δFR1 ≤ ∆FR1 and

−∆FR2 ≤ δFR2 ≤ ∆FR2. The probability of success is the area of the common

range, where the functional domain overlaps the design domain, indicated by the green

rectangle. If the functional domain were to increase in size, or the design domain decrease

in size, the probability of success would tend to zero at the point where the common

range was fully enclosed. Solving the Ps integral for a decoupled design was outlined
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Figure 2.9: Illustration of the functional and design spaces on functional domain
(adapted from Suh [2001])

by Frey et al. [2000] and Park [2004]. Park [2007] also offers an in-depth discussion

of Axiomatic Design, particularly regarding the information axiom, including worked

examples.

Axiomatic Design, like reliability based methods, is well suited for accounting for mul-

tiple system responses (quality characteristics) and design parameters. Optimisation

of the probability of success or probability of failure for the two respective approaches

determines the ‘best’ design. The ‘best’ design being the one that fulfils the functional

requirements with the least likelihood of producing non-conforming products or compo-

nents. With Axiomatic and reliability methods, the effect variability has on the func-

tional performance is minimised. However, unlike Taguchi based robust design methods,

there is no built-in mechanism for trading functional performance with increased pro-

duction cost from tolerance tightening.

2.5 Optimal Mean Setting Literature

Canning problem

Springer [1951] is widely credited with introducing the concept of Optimal Mean Setting

with the proposition of the can filling problem. The objective of Springer’s model was to

determine the optimum level to fill a can to minimise production cost. Under-filling the

can below a threshold level resulted in the contents being discarded or sold at a reduced

price. If the can were overfilled, it could be brought to market but would fetch the same
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price as cans with the ‘correct’ content level. Therefore, the extra amount by which the

can was overfilled resulted in lost revenue. In a general sense, the extra content in the

can is comparable to rework, while discarding a can’s contents or selling at a ‘knock-

down’ price due to under-filling, is comparable to scrap. Production cost was minimised

by slightly over filling the cans on average, to reduce the probability of discarding the

contents and accepting the small loss in revenue from over filling. Subsequent literature

on the canning problem can be subdivided into two main methodologies:

1 Those that define conforming and non-conforming items based on a lower specifi-

cation limit.

2 Those which define a movable upper limit in addition to the lower limit, i.e. con-

tainers with a contents above a threshold level are also non-conforming in addition

to those with a contents lower than the lower specification limit.

The methodology developed by Hunter and Kartha [1977] falls into the first category.

They specified two potential markets. Conforming items were those that fell above the

lower specification limit and were sold in the ‘primary’ market. Items that fell under the

lower specification limits were non-conforming and would be sold at a reduced price in

a secondary market. The optimal mean setting in Hunter and Kartha [1977] was based

on maximising profit rather than the minimisation of production cost as in Springer

[1951]. Profit was defined as the income from conforming items, the income from the

rejected items and the cost of contents or material. A similar model was presented by

Nelson [1978]. Considerably later, Das [1995] developed a faster solution methodology,

replacing the graphical-tabular solution from Hunter and Kartha [1977] with a numerical

technique based on standard lookup tables. Carlsson [1984] applied the optimal mean

setting approach to the steel beam industry and modified the profit function from Hunter

and Kartha [1977]. A premium was added for high quality beams, while a discount was

offered for low quality beams. Thus, there were an infinite range of prices for the beams,

reflecting how much greater or lower the manufactured quality was compared to the

target quality. Bisgaard et al. [1984] further developed the secondary market paradigm

and proposed that non-conforming items should be sold at a price proportional to how

much content was missing, (in a similar manner to lower quality beams fetching lower

prices from Carlsson [1984]). This ensured the price of secondary market items were

based on the level of ingredient, which prevented a situation where nearly empty cans

could be sold at the same price as almost full cans. The concept of a secondary market

was completely dropped by Golhar [1987], he proposed cans with content below the

lower limit should be emptied and re-filled and the sold in the regular market. This

was motivated by considering pharmaceutical products where there was no secondary

market.
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The motivation for the second category stems from the desire to reduce the cost of

overfilled containers being sold at a regular price. This was especially important for

products such as pharmaceuticals, liquor and perfume where the cost per millilitre or

gram is high. Bettes [1962] originally introduced the concept of defining an upper limit

such that items with ‘too much’ ingredient would be reprocessed at a fixed cost in a simi-

lar manner to under-filled containers. The lower specification limit was set by legislation

or legal requirements. The process mean and the upper specification limit were opti-

mised simultaneously. Setting the upper specification limit too high resulted in loss due

to ingredients going into the market free of charge. However, setting the upper specifi-

cation limit too close to the lower specification limit resulted in high reprocessing cost as

there was a high probability items would fall outside this range. The mean was adjusted

to maximise the probability of items falling in the range between the lower and upper

specification limits. Golhar and Pollock [1988] addressed the same problem as Bettes

[1962] but had a more systematic approach rather than the trial and error methodology

used by Bettes [1962]. Schmidt and Pfeifer [1991] also optimised both the mean and

upper specification limit where the filling capacity was limited such that the profit was

maximised per fill attempt. The paper also quantifies the increase in profit achieved

relative to only optimising the process mean. Liu and Raghavachari [1997] showed opti-

mising both the mean and upper specification limit always outperforms optimising only

one of these variables where the variability follows a continuous distribution. They also

considered normal, truncated normal, and truncated logistic distributions.

Both the first and second category approaches require 100% inspection plans. This

is not always economically viable as it is time consuming and costly to inspect every

quality characteristic. Sample inspection is an alternative strategy where a number of

representative items are inspected from a larger lot. The number of non-conforming

items from the sample determines whether the lot is deemed to conform.

Sampling Plans

Boucher and Jafari [1991] considered a lot-by-lot sampling plan based on attributes3.

Two price structures existed for items from accepted and rejected lots, where items from

rejected lots were sold to a secondary market. In addition to an attribute based sampling

plan Arcelus and Rahim [1990] developed a sampling plan for attributes and variables.

Carlsson [1989] considered a system where products were produced in lots and subject

to lot-by-lot inspection based on variables. The selling price for items was based on

3Sample inspection based on attributes is used where the measured characteristic either passes or fails
inspection (binary decision). Alternatively the measured characteristic may produce a discrete value,
thus it is possible to quantify by how much a characteristic misses or exceeds a quality requirement.
Such an inspection plan is referred to as inspection by variables.
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whether they were from an accepted or rejected lot and also proportional to quality.

Thus, a customer would pay one price for items from an accepted lot plus an extra

amount proportional to the extent to which the items exceeded the quality requirements.

Another price existed for items from a rejected lot where customers would pay even less

proportional to the extent individual items missed the required quality characteristic.

The price items were sold for is analogous to the principle set out by Carlsson [1984]. A

similar principle, where the price of items in the market is determined by their quality

relative to the target quality, was considered by Hong [1999]. They jointly optimised

the mean as well as the screening limits. Pulak and Al-Sultan [1996] modified the model

by Boucher and Jafari [1991] by implementing a rectifying inspection plan, where all

rejected lots underwent 100% inspection and all non-conforming items were reworked or

scrapped and replaced. This is applicable where a secondary market does not exist or

where other manufacturing stages follow, in a multi-stage manufacturing system. Al-

Sultan [1994] considered setting the means to maximise profit, where each product had

two attributes produced by two different machines in series. A sampling plan was used

to determine whether the attributes fell above or below a lower specification limit. A

two stage surrogate screening process was proposed by Lee and Elsayed [2002] where

the inspectable variable (weight of a cement bag) was not measured directly but by a

surrogate variable correlated with the inspectable variable (mil-ampere of the load cell)

instead. In this case it was considerably quicker to measure the amperage of the load

cell than determine the weight of the cement bag. Duffuaa et al. [2009] used a sampling

plan for two quality characteristics produced in series and recently Peng and Khasawneh

[2014] used a screening method (outlined in Montgomery [2009]) to determine the defect

rate for serial production systems. Peng’s article is considered in more detail in Section

2.5.2

Non-canning problems

In a departure from the filling of containers, Dodson [1993] considered the production

of rolled aluminium sheet. Undersized sheet would result in the scrapping of the whole

roll, the excess from an oversized sheet was removed and scrapped. Scrapping the excess

material was considerably less costly than scrapping the whole sheet. This is directly

analogous to rework in a material removal manufacturing operation. Wen and Mergen

[1999] were the first to consider optimal mean setting in the context of processing a

feature or component where the variability of the process is greater than the fixed

specification limits. Wen and Mergen [1999] optimised the mean setting to minimise

‘loss’. They used an example of the production of an inner ring of a bearing race (grinding
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process). This was a high precision component where the manufacturing variability was

normally distributed and greater than the specification limits.

Taguchi Quality Loss

Taguchi introduced the concept that the further a product was away from a desirable

quality target, the greater the economic loss. This concept was introduced to the field

of optimal mean setting by Arcelus and Rahim [1996], Arcelus [1996], Elsayed and Chen

[1993]. The introduction of the loss function generates a tension to pull the mean to-

wards the target quality and limits the extent the mean might move towards rework.

Mukhopadhyay and Chakraborty [1995] investigated the effect of increased variance due

to general ageing and wear over time. A Taguchi loss function was used to balance

acceptable variance (which could be improved through machine and tool replacement)

with reduction in quality. Rahim and Al-sultan [2000] furthered the work by Mukhopad-

hyay and Chakraborty [1995] to also optimise the mean in addition to the variance. Both

Chen et al. [2002] and Ho and Quinino [2003] used the single feature optimal mean model

from Wen and Mergen [1999] and introduced a Taguchi quality loss function. Chen et al.

[2002] demonstrated a ±0.003 change in the mean and 3.4% to 26.0% difference in total

loss compared to the numerical example given by Wen and Mergen [1999] depending on

the type of quality loss function used. Teeravaraprug and Cho [2002] studied a multi-

variate quality loss function to capture customer dissatisfaction with product quality.

The mean settings for two quality characteristics were then optimised to determine the

most profitable mean values. Chen and Chou [2003] offered a similar paper where the

methodology was based on the single feature model by Wen and Mergen [1999]. Chen

and Lai [2007a] modified the sampling plan model from Pulak and Al-Sultan [1996]

under the quadratic quality loss condition. Duffuaa and El-Ga’aly [2013] developed a

multi-objective feature mean optimal setting methodology to maximise profit, income

and product uniformity, where Taguchi quadratic loss was used as a surrogate for prod-

uct uniformity.

An asymmetric quality loss function can be used as an alternative to the quadratic loss

function, where the loss is not equal both sides of the target. Kapur and Wang [1987]

were the first to introduce Optimal Mean Setting with an asymmetric loss function,

where a log-normal distribution was used to define the quality characteristic. Kapur

and Cho [1994] claimed using a Weibull distribution improved the flexibility of the

asymmetric distribution which better represented real situations. Similarly Moorhead

and WU [1998] practised optimal mean setting with an asymmetric loss function. Chen

et al. [2002] applied an asymmetric loss function to the Optimal Mean Setting model

proposed by Wen and Mergen [1999]. (Chen [2004]) took a similar approach but used
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a rectifying inspection plan proposed by Pulak and Al-Sultan [1996]. Chen and Lai

[2007b] applied an asymmetric quality loss function to the sampling plan model from

Pulak and Al-Sultan [1996], building on an earlier work (Chen and Lai [2007a]). They

also quantified the optimum lot size to maximise profit. Chen [2010] brought together

the literature by Al-Sultan [1994], Pulak and Al-Sultan [1996], Chen and Lai [2007a,b]

to determine the economic manufacturing quantity and optimum process mean under

the rectifying inspection plan with an asymmetric loss function for product in serial

production (multiple quality characteristics per product).

The quadratic loss function introduced by Taguchi and the derivative asymmetric loss

function assume that loss varies smoothly with deviations from the target quality. Mixed

quality loss functions allow transitions in the quality loss, for example a step change

in quality loss when the characteristic falls outside the upper or lower specification

limits. Cho and Leonard [1997] represented quality loss with a piecewise linear function

where loss was roughly proportional to the deviation from the quality target. Chen

[2005] used a mixed quality loss function that was quadratic inside the specification

limits and a piecewise linear loss function outside the specification limits. Cho [2002]

and Teeravaraprug [2006] tailored the loss function for a particular product based on

historical data concerning the performance of products with customers loss. Both articles

used statistical regression analysis to construct the loss function.

Another way to represent quality loss was proposed by Spiring [1993] who used a reflected

normal distribution function (Figure 2.10). The curve is useful because the loss is not

unbounded like the quadratic loss function. Drain and Gough [1996] applied this loss

function to a semi-conductor manufacturing process. They also extended its formulation

to include two quality characteristics, specifying a bivariate inverted normal quality loss

function. Sun et al. [1996] suggested the losses due to a feature being off-target were too

severe and modified the function accordingly. Other types of inverted probability density

functions were investigated as candidates for loss functions. Spiring and Yeung [1998]

considered the Gamma, the Tukey lambda and Laplace distributions. The inverted beta

function was considered by Leung and Spiring [2002] which allowed both symmetric and

asymmetric quality loss to be described. A comprehensive review of the use of inverted

probability functions as loss functions is given by Leung and Spring [2004].

2.5.1 Multiple Quality Characteristics

Products often have multiple quality characteristics. In general, there are two ways

in which quality characteristics can be manufactured. Each quality characteristic re-

quires a manufacturing stage followed by an inspection stage. However, multiple quality
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Figure 2.10: The reflected normal loss function from Spiring [1993]

characteristics could be manufactured before an inspection process, known as parallel

production: alternatively an inspection stage could be applied after each quality char-

acteristic, known as serial production.

The principle complication between the manufacture of quality characteristics in a se-

rial production system, and in a parallel production system is illustrated by Figure 2.11.

For a single quality characteristic, there is a cost (I) for being outside the specification

limits. The cost of being over the upper specification limit (CU ) and the cost of being

under the lower specification limit (CL) can also be differentiated as described by Wen

and Mergen [1999]. In a two feature parallel case, an additional cost is introduced (II)

to account for two features being outside the specification limits. In general the cost of

II is greater than I due to the added valued of manufacturing and then reworking or

scrapping two features, as opposed to the added value of just one feature (Teeravaraprug

and Cho [2002],Chan and Ibrahim [2004]). Elsayed and Chen [1993], Kapur and Cho

[1996] and Drain and Gough [1996] were the first to consider quality loss for parallel

production, where quality loss for two characteristics were modelled using the bivariate

normal distribution function. Chen and Chou [2003] used the bivariate quality charac-

teristics from Kapur and Cho [1996] but expanded the model by allowing for different

non-conformance costs, depending on whether a quality characteristic fell above or be-

low the upper and lower specification limits respectively, for each quality characteristic

(x1 and x2). Khasawneh et al. [2008] developed a similar model which led to six dif-

ferent non-conformance costs, illustrated in greater detail in Figure 3.6 under Section

3.1.2. Cho [2002] used the bivariate model with two non-conformance costs (I and II) to

construct a regression-based loss function. Teeravaraprug [2006] presented a similar pa-

per but extended the approach to multiple quality characteristics. Duffuaa et al. [2009]

developed an optimal mean model for two quality characteristics in series utilising a

sampling plan.

The optimal means for two manufacturing processes in series was studied by Al-Sultan
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Figure 2.11: The Differences between the non-conformance costs between single and
dual quality characteristics, adapted from Teeravaraprug and Cho [2002] and Chan and

Ibrahim [2004]

and Pulak [2000], which is an extension of Golhar [1987], but for two stages. Bowling

et al. [2004] developed models for one, two and n quality characteristics produced in

series. The work introduced Markov modelling to predict the long-term probabilities

of components conforming or being deemed scrap, and the average time features spent

being reworked. This more closely models reality, where features designated rework

may be re-processed several times. Previous literature essentially gave a snap-shot of

the short-term probability of features conforming, being scrapped or requiring rework.

Markovian modelling allowed the final proportion of scrap and conformance, as well as

average number of rework cycles to be calculated. Bowling et al. [2004] was the first

in a selection of articles (Bowling et al. [2004], Khasawneh et al. [2008], Selim and Al-

Zu’bi [2011] and Peng and Khasawneh [2014]) that utilised Markovian modelling. The

Markovian approach to Optimal Mean Setting is discussed in greater detail in Section 3

and 3.2. Some errors in the Markovian-based equation for expected profit from Bowling’s

2004 paper were uncovered by Selim and Al-Zu’bi [2011] (Section 3.1) who reformulated

the n stage model originally proposed by Bowling et al. [2004]. Peng and Khasawneh

[2014] introduced an Optimal Mean Setting model for a mixture of parallel and serial

production based on the models from Bowling et al. [2004] and Khasawneh et al. [2008].

A numerical example was given with four quality characteristics, two in parallel following

serially from another two produced in parallel. A sampling plan was used as opposed to

100% inspection.

2.5.2 Summary of Optimal Mean Setting

Optimal Mean Setting is the basis for the research in this thesis, therefore its key features

are summarised below, prior to the main literature review summary. The original use of

Optimal Mean Setting, to determine the optimum fill levels of containers to maximise

profit, is slightly different to its application to engineering design parameters in the
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presence of manufacturing variability. Wen and Mergen [1999] were the first to translate

the problem to the paradigm of engineering design. The next significant advancement

was the introduction of Markovian modelling (Bowling et al. [2004] and Selim and Al-

Zu’bi [2011]) to find the eventual probabilities of scrap and conformance accounting for

the possibility it could take several rework cycles to convert features requiring rework

into conforming or scrap components. The Markovian approach was applied to parallel

production systems by Khasawneh et al. [2008], although errors remain in this work.

The major limitations on the current state-of-the-art are errors in the Markovian model

for parallel features and the inability to account for more than two features in parallel

production. Furthermore there is no real generalisation between serial and parallel

processes 4. This makes it impractical to apply Optimal Mean Setting to the variety of

features and manufacturing sequences that exist for the production of a real product.

A more robust, correct and generalised framework to practice Optimal Mean Setting

is required which is the subject of Chapter 3 - Section 3. Before this, a review of the

literature encompassing cost modelling is undertaken. Optimal Mean Setting relies on

an accurate unit cost estimate as the procedure is essentially a cost balancing exercise.

2.6 Cost Modelling

Most design and optimisation methods do not include cost as a design parameter, either

as a constraint or as an objective function. A major reason for this is the inaccuracies

present in calculating the cost, particularly during the early stages of design, where

an exact geometry and method of manufacture have yet to be defined (Scanlan et al.

[2006]). Where cost modelling is used in Robust Design and Optimal Mean Setting

methodologies, it often applies only to a single or very few feature(s). Typically, these

are design features as they are connected with the quality or functional performance of

the product. However, design features are not necessarily the same as manufacturing

features which actually drive the cost of manufacturing a component. For example, the

wall thickness of a pressure vessel may be a design feature relating to the maximum

pressure a vessel can safely contain. Assuming the vessel was made from a metal billet,

a possible manufacturing method would be to turn the outer diameter and bore the

inner diameter to result in a wall thickness. Thus, two manufacturing features are re-

quired to produce the design feature, which in turn relates to the quality or performance

parameter. Typically, a gas turbine component will have several high level quality char-

acteristics that must be met, driven by many design parameters, which themselves will

4Peng and Khasawneh [2014] did offer an example for the production of four features in two stages
(serial production) with two features per stage (parallel production). However, a new set of equations
would have to be generated if one wanted to consider only three features or five features, or produce
three in parallel and only one in series.
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Figure 2.12: Illustration of manufacturing feature cost from Tammineni et al. [2009]

consist of several manufacturing features. Figure 2.12 indicates the costs associated with

each manufacturing process, which sum together to determine the total production cost.

A change in the design feature nominals will alter these manufactured features, as well

as filtering back to the condition of supply and raw material states as follows:

� Change in the design parameter nominal

– leads to changes in the manufacturing features

◦which will modify the condition of supply (COS)

· and alters the required raw material state

A gas turbine component may have hundreds or thousands of manufacturing features,

thus generating a cost model to this level of detail is a considerable undertaking. Not

surprisingly there are several cost modelling methodologies that aim to circumvent this

level of detail.

2.6.1 Data Mining and Regression Based Costing Methods

Data mining cost methods attempt to find statistical relationships between product

cost and one or more parameters, often through linear regression. They are typically
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beneficial in the conceptual stages of design where little geometric detail exists. Para-

metric and neural network models have been popular in cost modelling literature and

are discussed within this Section.

2.6.1.1 Parametric Costing

The use of parametric cost models in aerospace can be traced back to Wright [1936]

and an observation that the unit cost of an aircraft decreased with the number of air-

craft produced. The Rand Corporation’s work in the 1950s introduced the idea of cost

estimating relations (CERs), which were developed to aid the Department of Defence

(US) in estimating the cost of new military projects (Younossi et al. [2002]). Stahl

[2010] investigated the use of parametric models where several variables were found to

influence the cost of space telescopes. The Value Improvement team at Rolls-Royce also

employed parametric methods to predict component cost based on typical high level de-

sign parameter of a component. An example of this type of technique is shown in Figure

2.13 (Langmaak et al. [2013]), where the milling operation time was scaled against the

perimeter of a bladed disk (blisk). The red points indicate the known milling times for

five blisks that had previously been manufactured. The black line was fitted to using R2

regression and the red dashed lines indicate the confidence limits of the regression lines.

These confidence limits denote the boundaries in which 95% of the points would be ex-

pected to fall if more data was collected. Although a statistically significant relationship

may be found between cost and a parameter or parameters, it is not implicitly causal.

If enough data is available a proportion of a data set can be used to generate a scaling

parameter and the remaining portion can be used to test the relationship. Variables are

selected which are believed to have some significance to driving the cost of a product.

Rush and Roy [2001] discuss the application of ‘expert judgement’ for variable selection,

else variables may be chosen based on statistical or casual proof they affect cost. Anal-

ysis, correlation and regression follow from which CERs can be selected. Processes of

verification and validation are required before the predictions are used. Curran et al.

[2004] offers a more extensive review of these parametric costing methods.

The level of geometric detail within Optimal Mean Setting is high as it is applied to

individual design and manufacturing features. In contrast, regression is an approxima-

tion as to how many individual parameters change, in response to a principle driving

parameter or CER. Thus, a parametric model may not be sufficiently detailed for Op-

timal Mean Setting where one is interested in how cost varies in response to a few very

specific features.
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Figure 2.13: Illustration of parametric scaling from Langmaak et al. [2013]

2.6.1.2 Neural Networks

A popular model from the general arena of data mining is a neural network, which

is an attempt to mimic human brain functionality originally devised as a method of

pattern recognition. An implementation of such a method involves a network of nodes,

representing neurons, which are linked by weighted connections, symbolic of synapses.

The general arrangement is shown in Figure 2.14 from Cavalieri [2004]. To be useful

as a cost model, a data set is required to train the model. A set of inputs (design

parameters) are connected to the input layer and the weighted connections adjusted

until the output (cost) is correct. The model will then ‘know’ how the costs of previous

components were related to the inputs and can be used to make predictions about the

cost for a new product, provided the new product is a derivative of the components in

the training data set. Zhang et al. [1996] used a neural net approach to estimate the

cost of packing products based on geometric characteristics of the products. Cavalieri

[2004] also used the neural net method to estimate unit cost of brake disks. Both studies

found neural nets outperformed parametric regression type analysis, particularly with

regard to flexibility. As referred to by Cavalieri [2004], if a new production facility

was implemented, a neural net can simply be re-trained on the new data set, whereas

a parametric method would require rebuilding and validating. This is due to the fact

that a neural net will automatically find cost estimating relationships in a data set

during training, whereas a parametric model requires expert knowledge to define such

relationships.

A primary disadvantage of the neural net approach to cost estimating is that an extensive

data set is required to train the model, particularly when relationships are non-linear.

Typically, the Aerospace industry does not produce enough derivative products to en-

able this. Additionally there is no necessity for causal relations between inputs and
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outputs and the exact relationship can be hard to extract and comprehend. If a new

product is clearly outside the existing dataset, the model may not be able to produce

any worthwhile predictions. Again this type of approach is better suited to the early

stages of design, where one is willing to accept a ‘ballpark’ cost figure rather than an

exact calculation.

Figure 2.14: A typical neural net, Cavalieri [2004]

2.6.2 Analogous Costing

Analogous costing, like parametric costing, is typically used in the early design stages

where there is a lack of detailed geometry information (Rehman and Guenov [1998]). The

principle of an analogous costing technique is to adjust the cost of a target product based

on the differences between the target product and a similar known product. Taylor [1997]

applied such a technique to the cost of an engine nose-cowl. The effectiveness of the

method relies on the ability to differentiate between the two cases. Typically, analogous

estimates utilise a single historical data point as the basis for the new cost estimate.

This implicitly assumes the new product is similar technologically and discounts any

significant advances in manufacturing technology. A degree of ‘expert judgement’ is

also required, although the results are generally held in higher esteem than parametric

methods (Myrtveit and Stensrud [1999]). The generic form of an analogous cost estimate

is, CN = CP FC FM FP , Curran et al. [2004]. An initial estimate is based on the historic

cost, CP and modified by the three F ratios. Differences in complexity between the

historical component and the target component are accounted for by FC . Jenab and

Liu [2010] offer a concise account of determining the relative complexity between two

products. Miniaturisation factors, such as reducing subsystem size (for weight saving),

are accounted for by FM . Miniaturisation usually increases the cost. The term FP

relates to productivity improvements between the historical data point and the target.

Generally these factors are estimated through expert opinion.
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As with parametric methods, analogous cost methods are generally better suited to the

concept design phase as a cost prediction can be generated without specific geometric

detail. As a design becomes more detailed, geometry linked cost models may be created

which are preferable to analogous methods. Nevertheless, the principle of using previous

components as a basis for a new part cost is powerful. This principle is actually used

in generative feature-based cost models (discussed later) whereby the costs of common

manufacturing features are used and scaled to determine the cost of new components.

2.6.3 Detailed Costing Methods

Detailed costing methods include any method that attempts to model cost from the

bottom-up based on the manufacturing features of the component’s geometry. These

include; activity based costing (ABC), bottom-up and feature-based methods. Modelling

cost in this way ensures that there is a causal relationship between cost, and CERs. The

necessity for this is summarised by Collopy and Curran [2005a] and Collopy and Curran

[2005b]. Furthermore, changes in geometry explicitly relate to manufacturing features

enabling scrap and rework modelling, although this is not common-place.

To support Optimal Mean Setting analysis cost models are required that allow the cost

of individual design changes to be calculated and allow scrap and rework calculations

to be executed. Feature-based cost methods are inherently based on the manufacturing

process, inferring the time (and hence cost) required to manufacture a feature. The

cost is acquired by multiplying the manufacturing time by cost rates, dependent on

the operation. It was noted by Rush and Roy [2000] that manufacturers tend to have

large numbers of three dimensional CAD (Computer Aided Design) models that can

be decomposed into particular features required by the function of the part. These

design features can be decomposed into manufacturing features to allow one to assess

the cost of a design feature in terms of the constituent manufacturing features. Thus,

during design it would be possible to infer the manufacturing features and operations

and subsequently calculate the cost of the new design. Marx et al. [1995] noted this

required information was typically associated with detailed design and needed to be

pushed upstream. To facilitate such a capability Scanlan et al. [2006] outlined the

creation of an assessable library of knowledge that contains processes, work centres,

materials and historical components. These tools were developed by the Rolls-Royce

project, DATUM (Design Analysis Tool for Unit Cost Modelling). Tammineni et al.

[2009] outlined the way in which the knowledge was captured and used by the cost model

(Figure 2.15), as proposed by DECODE. As part of the DECODE programme, Vanguard

Studio was identified as a useful tool to create cost models. Figure 2.16 indicates a typical

model where inputs are geometric features pertinent to the component. The geometry is



Chapter 2. Literature Review 43

Figure 2.15: Cost model information flow [Tammineni et al., 2009]

Figure 2.16: Example of a Vanguard Studio cost model

parametrised thus changes to the ‘Inputs’ such as ‘Pocket Depth’ or ‘Boss Length’ apply

to the geometry of the whole component. The resource costs are high level parameters

that are generally independent of the geometry of a design, such as material cost rates,

energy cost rate and hourly wage. Outputs are costs and/or manufacturing times for the

overall process and sub-processes. The model has a horizontal tree breakdown structure,

where each node represents part of the total cost. For example, the ‘cost aggregation

node’ divides into four lower level costs; raw material cost, primary processing cost,

shaping cost and finishing cost. Each of these breaks-down further. For example, raw

material cost for a forged component (such as a turbine disk) is calculated from the

total volume of the forging. In the Vanguard Studio cost model, the forging volume

is determined by applying rules to the finish part volume. A change in the ‘Inputs’

will bring about a change in the finished parts volume and consequently the forging

volume which changes the raw material cost. The other three costs are similarly affected

by changes to the input values. Knowledge, such as determining a forging volume

and a condition of supply from the finished part geometry are contained within the
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model. Manufacturing knowledge relating to the cost of manufacturing a feature is also

contained within the model. For example, the cost of some features such as ‘Pocket

Depth’ may be related to the volume of material removed, whereas other features such

as ‘Hole Diameter’ may be a function of the material thickness. Several other articles use

Vanguard Studio to build a cost model. Keane and Scanlan [2007] gave an example of the

trade-off between the aerodynamic performance of an airliner wing and cost, where wing

cost was calculated using a Vanguard Studio cost model. Rao et al. [2007] applied a cost

and weight multi-objective optimisation to the design of a turbine disk. Cheung et al.

[2010] proposed the use of Vanguard Studio cost models in the calculation of manufacture

cost for a Value Driven Design application for gas-turbine design. Langmaak et al. [2013]

applied Vangaurd Studio cost model to determine the cost of bladed disks (blisks) for

gas-turbine engines.

The development of feature-based cost models within Rolls-Royce has allowed the vision

presented in Figure 2.15 to be realised. A featured-based cost tool, using data from

the manufacturing process, has been integrated into a geometry tool (Siemens NX) as

illustrated by Figure 2.175. A set of design features are presented on the left window

which can be scaled. The right window outputs the cost of each feature. This method

is somewhat constrained to scaled variations on existing components. Nevertheless, a

considerable proportion of new engine components are derivatives of past designs. The

Figure 2.17: Illustration of a cost model linked to a computer geometry tool.

cost of a component is driven by a detailed cost model. The level of detail present in

5Provided by Product Cost Engineering, Rolls-Royce



Chapter 2. Literature Review 45

these feature-based cost models and their integration into the computer geometry tool,

allow the geometry to be optimised for functional performance as well as cost.

Optimal Mean Setting requires a cost modelling capability to determine the manufac-

turing cost for design features and enable cost to update in response to changes in the

mean location. Detailed bottom-up costing methods fulfil this criteria and the tools

and methodology present in the literature required have been discussed (Section 2.6.3).

This thesis does not contribute to cost modelling methodologies, however, the concept of

attributing cost to specific features is used to determine scrap, rework and conformance

cost within the realm of Optimal Mean Setting.

2.7 Summary of Literature

A number of techniques and design principles around the area of Robust Design and

Reliability Engineering deal with the propagation of uncertainty to characterise the vari-

ation in the performance or functionality of products and systems (Sections 2.1 to 2.4).

These methods acknowledge manufacturing variability and all are united in maximising

the allowable amount of variability. Performance is sacrificial, provided the sensitivity of

the product to variation can be reduced (and product safety can be maintained). In con-

trast, the research in this thesis asks how might performance be preserved or maximised

most efficiently (in an economic sense) if the manufacturing variation is not seen as a

constraint. Reliability Engineering is the closest to this philosophy where a system is not

permitted to fail (performance must be maintained), however, there is no mechanism to

reduce manufacturing cost, nor consequently to improve economic efficiency. Optimal

Mean Setting offers a mechanism to reduce manufacturing costs when tolerances remain

tight to guarantee high performance. There are several areas of Optimal Mean Setting

which have not been tackled by existing research, listed below:

� There are errors in Khasawneh et al. [2008], relating to the numbers of components

moving between stages for parallel production systems. These are explained and

rectified in Section 3.2.2.

� Current literature only accounts for the possibility of two features being manufac-

tured before inspection in a Markovian based Optimal Mean Setting framework

(Khasawneh et al. [2008] and Peng and Khasawneh [2014]). A generalised case is

developed in Section 3.2.2.1. There is also a difference in the way serial and par-

allel processes are modelled in the literature (Bowling et al. [2004] and Selim and

Al-Zu’bi [2011] versus Khasawneh et al. [2008] and Peng and Khasawneh [2014],



Chapter 2. Literature Review 46

respectively). Section 3.2.2.3 develops a unified method of considering both serial

and parallel processes with one equation.

� A detailed understanding of how correlation affects the optimal mean and expected

profit for parallel operations is not present in the literature. This is considered

under Section 3.5.2.

� No papers exist that consider the impact of Optimal Mean Setting on the manufac-

tured geometry distribution of the component. As Optimal Mean Setting tends to

bias rework, the manufactured geometry distribution tends to be skewed towards

the rework specification limit. This is considered in Chapter 4. A case study ap-

plied to film cooling holes is presented in Section 4.4.2, which links the change in

the manufactured geometry distribution to the expected performance distribution

of the component. Again this has not been considered in the literature.



Chapter 3

Optimal Mean Setting

As discussed in the Introduction, Optimal Mean Setting is the principle of shifting

the process mean to maximise profit, when the variance of a manufacturing process is

larger than the tolerance limits. It relies on an asymmetry between the cost of scrap

and rework such that non-conformance may be biased towards one or other, (usually

rework). The objective of Optimal Mean Setting is illustrated by Equation 3.1 where

profit is maximised by changing the process mean.

Profit = Items Sold− Processing Cost

− Scrap Cost− Rework Cost.
(3.1)

The principle contribution to knowledge of this Chapter is the development of a gener-

alised expression for expected profit (item 2 from Section 1.6 in Chapter 1). The process

of generating a generalised methodology involved consideration of three major elements;

serial production (Section 3.1.1), production of multiple features (Section 3.1.2) and

Markovian modelling (Section 3.2). Each of these elements had been considered in lit-

erature previously but were not brought together in a generalised approach. Detailed

consideration from first principles of these elements also led to new and improved un-

derstanding, correcting errors in the parallel model (item 1 from Section 1.6 in Chapter

1) and developing an improved optimisation methodology (item 3 from Section 1.6 in

Chapter 1). Where this research draws from or compares against existing work is explic-

itly referenced. The Chapter closes with the application of the new generalised approach

to model problems (Section 3.4).

47
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Figure 3.1: Process flow diagram with a rework loop

Figure 3.2: Two iterations of an iterative manufacturing process

3.1 Iterative Manufacturing Processes

The principle objective in this section is to derive an expression for total profit for the

production of a feature which can be maximised by adjusting the process mean(s). It

is possible to manufacture one or multiple features in sequence, one after another with

an inspection process after each. This is known as serial production . Alternatively,

several features may be processed prior to inspection. This is known as parallel pro-

duction , although this does not imply features have to be manufactured simultaneously,

it is the location of the inspection process relative to the processing of features that is

important.

3.1.1 Single-Feature Iterative Manufacturing From First Principles

An iterative manufacturing method involves a rework loop which passes rework items

back for re-processing. The process starts with an initial manufacturing operation which

generates features in three states; rework, conforming and scrap. Several subsequent

iterations convert the rework into just two states, conforming and scrap. An inspection

process is used at each iteration to determine whether parts conform, are scrap, or require

rework. Figure 3.1 indicates these iterative steps and the final states; conformance or

scrap.
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The process is examined in more detail in Figure 3.2, where the distribution of each

iteration is assumed to be normally distributed. The dashed blue line, on the right plot

of Figure 3.2, indicates the distribution of manufactured geometry due to manufacturing

variation if the initial cut was set at 6.5 units. The red and green vertical lines locate

the lower and upper specification limits respectively. The target value for this process

would be five (mid way between the USL and LSL). Here, the mean was shifted to

reduce scrap in favour of increased rework. The green area represents the components

requiring rework. The green dashed line, on the right plot of Figure 3.2, shows the

resulting distribution from re-processing the rework parts. The solid magenta line, on

the right plot of Figure 3.2, is the sum of the conforming components from the first and

second iteration and represents the distribution of manufactured geometry after this

second iteration. The light blue dashed line, on the right plot of Figure 3.2, indicates

the original distribution from the first iteration. The dark green shaded region, on the

right plot of Figure 3.2, clearly indicates further rework is required, although less than

after the initial cut. Subsequent iterations would steadily reduce this area until the

integral of the magenta curve was equal to one, indicating all components were either

conforming or scrap.

To maximise profit from such a process, an optimal reworking strategy must be identified

specifically the mean values for each iteration. It would be feasible to alter the mean

values for each iteration such that the initial mean may be µx1 = 6.5, followed by a

different mean for subsequent iterations. However, it can be shown for the production

of a single feature only one optimal mean exists for the initial manufacturing stage and

all subsequent rework operations. There are several assumptions detailed as follows.

Assumptions

1. Products or features are produced continuously.

2. All manufacturing processes are under statistical control.

3. The manufacturing variation of the initial operation and all rework operations are

the same.

a. Assumes the same or similar machines are used for rework operations. For low

production volumes this is practical provided the machines are free, (not fully

utilised). It is also practical where rework is expected and the manufacturing

route is designed as such.

b. Assumes the manufacturing variation will not change with the differing vol-

umes of material to be removed, added or manipulated between components.

Typically the features requiring rework will be close to the target geometry
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Figure 3.3: Probabilities of components in the rework, scrap and conforming states
for three iterations

(within a few standard deviations of conformance) and so there are unlikely

to be great geometric differences between the components that require feature

rework.

4. The specification limits for the initial operation and all rework operations are the

same, i.e. the nominal geometry of the feature(s) are unchanged. In practical

situations this applies unless special authorisation is given, as the geometry will

differ from the original design specification (concessions).

5. The flow of features through the rework stages in a parallel manufacturing opera-

tion has a standard form discussed in Section 3.1.2 and further in Section 3.2.2. If

the manufacture of a specific product or features doesn’t exactly fit this standard

form the link between rework states may be broken as shown by worked examples

in Section 4.4 and Appendix F.

6. The inspection process used to determine whether a feature is scrap, rework or

conforming is assumed to be 100% accurate. Practically this implies the variation

of the inspection process is very much smaller than the variation of the manufac-

turing process.

The expected profit for the production of a single feature follows the general form given

by Equation 3.1. The probabilities of components occupying the three states (confirm-

ing, scrap and rework), for three iterations, is given by Figure 3.3. This diagram is

representative of Figure 3.1 except the inspection and decision stages are implicit in the

Process (I) box. The values R, C and S are the rework, conforming and scrap states

respectively. A superscript represents an iteration, while the subscripts indicate where

the features in that state originated (all from state I in this case). The function F (•) is
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Figure 3.4: Single variable normal manufacturing variation

the cumulative normal distribution function (CDF) given by,

F (X,µ, σ) = Pr[X ≤ x] =

∫ x

−∞
fX dt, (3.2)

where fX is the normal distribution function given by,

f(x, µ, σ) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
. (3.3)

The first terms (first iteration) for the rework, conformance and scrap states in Figure

3.3 correspond to the areas of the red, white and green regions in Figure 3.4. The second

iterations for the rework, conformance and scrap states are also the areas of the red,

white and green regions in Figure 3.4 but with a different target mean µ2. The terms

are also regulated by the probability of rework from the first iteration 1 − F (U, µ1, σ).

The rework, conformance and scrap for the third iteration again involve a different

target mean µ3 and are regulated by the probability of rework from the first and second

iterations. For n iterations the expected profit is given by,

E(PR) = SP

 n∑
i=1

Conformance︷ ︸︸ ︷
[F (U, µi, σ)− F (L, µi, σ)]

n∏
i=2

[1− F (U, µi−1, σ)]︸ ︷︷ ︸
Rework (previous iter.)

− PC −
 n∑
i=1

Sc [F (L, µi, σ)]︸ ︷︷ ︸
Scrap

+Rc [1− F (U, µi, σ)]︸ ︷︷ ︸
Rework

 n∏
i=2

[1− F (U, µi−1, σ)]︸ ︷︷ ︸
Rework (previous iter.)

 .

(3.4)

The first term in the square parenthesis is the probability of conformance after n iter-

ations. This will reproduce the terms in the conformance state (C) in Figure 3.3 The

second term in square parenthesis gives the probabilities of scrap and rework after n

iterations, reproducing the terms under the rework (R) and scrap (S) states in Figure

3.3. The constants, SP , PC, Sc, and Rc are the selling price, processing cost, scrap cost
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and rework cost respectively. The means, µi for i = 1, 2, . . . ,∞, are the target means

for each iteration. The initial operation is i = 1 and i ≥ 2 are rework iterations. For

practical situations n is a large number defining the total number of iterations necessary

to complete all the rework such that only scrap and conforming items remain. The

standard deviation is given by σ.

Equation 3.4 determines the difference between the income generated from the compo-

nents that can be sold (first term) and the total production cost. The total production

cost includes the cost of scrap and rework, enclosed within the second set of large square

parenthesis and the initial processing cost (PC).

It is conjectured that to maximise the profit an optimal mean can be found which is the

same for every iteration (the initial processing and all rework iterations). This is proven

here.

Theorem 3.1. There is only one µopt that satisfies

max
µ∈R

{
PR(µ)

}
,

where µ = [µ1, µ2, . . . , µ∞]. Such that µi = µopt, ∀ i ∃ [1,∞].

. To avoid confusion with bracketed terms, let total profit (TP ) be equivalent to ex-

pected profit term (E(PR)) in Equation 3.4 (for this theorem and proof). Differentiating

Equation 3.4 with respect to each µi and setting to zero, ∂TPi/∂µi gives the stationary

point (maximum)1 for each iteration i. A general expression for the maximum for each

iteration is sought. Although i → ∞, in general the number of rework iterations for

a batch of components will be finite. However, there is always a diminishingly small

probability that rework will exist and more iterations will be required. Let the total

number of rework iterations be n, where in practical cases n will be a large number

but in the general case n = ∞. Consider the optimal means for the last three rework

iterations2,

µoptn =
1

2(L− U)

{
2σ2ln

[
SP +Rc

SP + Sc

]
+ L2 − U2

}
, (3.5)

1The stationary point is shown to be a maximum after the proof is completed, rather than showing
each stationary point for ever i is a maximum. This is shown in Appendix A

2The three expressions for µoptn
, µoptn−1

and µoptn−2
(Equations 3.5 to 3.7) are derived in Appendix

B by first considering a finite number of rework operations.
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µoptn−1
=

1

2(L− U)

{
2σ2ln

[
1

2α

(
ξ(ϕn)α

+ξ(υn)β + 3Rc+ 2SP + Sc

)]
+L2 − U2

}
,

(3.6)

µoptn−2
=

1

2(L− U)

{
2σ2ln

[
1

4α

(
(−ξ(ϕn)α

−ξ(υn)β − 3Rc− 2SP − Sc) ξ(υn−1)

+ξ(ϕn)α+ ξ(υn)β − 2ξ(ϕn−1)α

+7Rc+ 4SP + 3Sc

)]
+ L2 − U2

}
.

(3.7)

There are two cost terms defined as α = SP + Rc and β = SP + Sc and ξ is the error

function given by,

ξ(ϕi) =
2√
π

∫ ϕi

0
e−t dt and ξ(υi) =

2√
π

∫ υi

0
e−t dt (3.8)

where,

ϕi =

√
2(−µi + L)

2σ
and υi =

√
2(−µi + U)

2σ
(3.9)

For i = n, µoptn is purely a function of the relative costs and relationship between the

specification limits (L and U) and the manufacturing variation σ. The second to last

optimal mean, µoptn−1
, is a function of the costs, specification limits, σ and the last

optimal mean, µoptn . The third to last optimal mean, µoptn−2
, is a function of the costs,

specification limits, σ and the last two optimal means, µoptn−1
and µoptn . Notice that the

earlier optimal means are functions of all subsequent optimal means; thus to establish

the value of the first optimal mean, one must first establish the value of the last optimal

mean, then the second to last optimal mean and so on. Accordingly a new subscript j

is defined such that j = [n, n− 1, . . . , 1]. From Equations 3.5 to 3.7 a general expression

for µoptj can be constructed where,

µoptj =
1

2(L− U)

{
2σ2ln

[
Γj

2n−jα

]
+ L2 − U2

}
(3.10)
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and Γj is given by,

Γj =− 1[Γj+1 ξ(υj+1)]

+ Γj+1 + 2n−(j+1)ξ(ϕj+1)α

+ 2n−jRc+ 2n−(j+1)SP + 2n−(j+1)Sc.

(3.11)

The nth term is always

µoptn =
1

2(L− U)

{
2σ2ln

[
β

α

]
+ L2 − U2

}
. (3.12)

Lemma 3.2. Given that L, U and σ remain constant for each iteration, to prove the

conjecture, µi = µopt, ∀ i∃ [1,∞], it must be shown,

Γj
2n−jα

=
Γj+1

2n−j+1α

∣∣∣∣
n→∞

which reduces to

Γj = 2Γj+1

∣∣
n→∞.

(3.13)

The last three terms of Γ (Equation 3.11) increase as a factor of two for each iteration.

The third term, 2n−(j+1)ξ(ϕj+1)α, can increase up to a maximum of a factor of two

for each iteration, when ϕj+1 = 1. Thus, it remains to be shown the maximum rate

of increase, per iteration, for the first two terms of Γ is two, in the limit n → ∞.

This is shown by applying linear stability analysis. A new subscript m is defined where

m = [n− 1, n− 2, . . . , 1] where m is the next point after m+ 1. Let f(Γ) = Γm/2
n−mα

and let a fixed point be defined such that

Γm = Γm+1 = Γ∗ = f(Γ∗). (3.14)

A small deviation from this fixed point is,

Γm+1 = Γ∗ + δΓm+1.

Therefore at the next step,

δΓm = Γm − Γ∗

= f(Γm+1)− Γ∗

= f(Γ∗ + δΓm+1)− Γ∗.

(3.15)
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Since δΓm+1 << Γ∗ a Taylor series expansion around Γ∗ can be implemented giving,

f(Γ∗ + δΓm+1) = Γ∗ + δΓm+1

(
df

dΓ

)
Γ=Γ∗

+O(δΓ2
m+1).

Close to the fixed point the second order terms O(δΓ2
m+1) are very small and can be

neglected. Recognising f(Γ∗) = Γ∗, from Equation 3.14, the above equation can be

rewritten as

δΓm = f ′(Γ∗) δΓm+1

where f ′ = df/dΓ and

f ′(Γ∗) = −ξ(υ) + 1. (3.16)

The maximum value of Equation 3.16 is f ′(Γ∗) = 2 for all values µ ∃ R. Thus, the equal-

ity in Equation 3.13 is satisfied in the limit as n→∞ proving the lemma and completing

the proof, confirming the same optimal mean must be applied for each rework iteration

to maximise profit. Thus the Markovian method (outlined by Bowling et al. [2004] and

Selim and Al-Zu’bi [2011]) which implicitly uses the same mean for every iteration, is

justified and greatly simplifies the expression for total profit, given in Equation 3.4 in

iterative form.

3.1.2 Multiple-Feature Iterative Manufacturing from First Principles

A logical extension to Optimal Mean Setting with one feature is the production of

multiple features. If multiple features are created in series the optimal mean for each

stage is the same as considering each one individually. However, several features may be

produced in one stage (parallel processing). This is fundamentally different as there are

multiple rework routes for each feature. The simplest type of parallel processing is dual

feature processing, where two features are created prior to inspection, a specific case of

a general parallel system.

Figure 3.5 indicates the processing of two features prior to inspection, reminiscent of the

one feature case in Figure 3.1. Inspection processes are implicit at the end of the initial

state and the three rework stages. The three rework states are initially fed from the first

manufacturing operation (I), which can also cause scrap and conformance. After initial

processing, the single feature rework states (2) and (3) may receive components from

themselves (i.e. items are reworked but still don’t conform and require further rework)

or from the dual feature rework state (4) (i.e. only one feature conforms when reworked

in state 4). The dual feature reworking state (4) may only receive components from the

initial operation and from itself, if after dual feature rework both features still require

rework. As in the single feature rework case, all components eventually conform or
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Figure 3.5: Manufacturing flow in two-feature parallel process

are scrapped. The initial probabilities of scrap (pI,S), conformance (pI,C) and the three

rework states (pI,2, pI,3 and pI,4) are illustrated on Figure 3.6. The SXi and RXi terms

indicate scrap and rework respectively for features where i defines the specific feature.

There are three separate probabilities for the rework region, pI,2 to pI,4, whilst the

scrap regions are grouped into one probability pI,S, irrespective of what feature caused

the scrap. Scrap for any one feature results in the whole component being scrapped,

whereas one or more features can be reworked. Khasawneh et al. [2008] was the first

to define the probabilities of rework, scrap and conformance for dual features in this

way, however, their method does not allow for correlation between features, which may

occur particularly if two or more features are produced on the same machine or a single

machining operation is responsible for the creation of multiple features. For example,

the diameter and eccentricity of a hole may be inspectable features but produced from

a single drilling operation. The bivariate normal distribution allows for the possibility
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Figure 3.6: Dual feature rework, conformance and scrap

of correlation and is given by,

f(x1, x2) =
1

2πσ1σ2

√
1− ρ2

exp

{
−1

2(1− ρ2)

[(
x1 − µ1

σ1

)2

+

(
x2 − µ2

σ2

)2

− 2ρ

(
x1 − µ1

σ1

)(
x2 − µ2

σ2

)]} (3.17)

where ρ = corr(x1, x2) = cov(x1, x2)/σ1σ2. The cumulative distribution of this function

allows the rework, conformance and scrap probabilities to be calculated and is given by,

F (x1, x2) =

∫ x1

−∞

∫ x2

−∞
f(t1, t2) dt2 dt1

In general there are no closed form solutions to this equation, but solutions exist in terms

of the error function and this form of integral is well supported in numerical packages

such as Matlab’s mvncdf function (Mathworks [2012]). The probabilities pI,2 to pI,S are
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computed as follows:

pI,2 =

∫ ∞
U1

∫
U2

L2

f(t1, t2) dt2 dt1 = F (∞,U2)− F (U1,U2)

− F (∞,L2) + F (U1,L2),

pI,3 =

∫
U1

L1

∫ ∞
U2

f(t1, t2) dt2 dt1 = F (U1,∞)− F (U1,U2)

− F (L1,∞) + F (L1,U2),

pI,4 =

∫ ∞
U1

∫ ∞
U2

f(t1, t2) dt2 dt1 = F (∞,U2)− F (U1,∞)

+ F (U1,U2),

pI,C =

∫
U1

L1

∫
U2

L2

f(t1, t2) dt2 dt1 = F (U1,U2)− F (L1,U2)

− F (U1,L2) + F (L1,L2),

pI,S =

∫
L1

−∞

∫ ∞
−∞

f(t1, t2) dt2 dt1 +

∫ ∞
−∞

∫
L2

−∞
f(t1, t2) dt2 dt1

−
∫

L1

−∞

∫
L2

−∞
f(t1, t2) dt2 dt1 = F (L1,∞) + F (∞,L2)

− F (L1,L2).

(3.18)

These initial probabilities determine the proportion of items going into the various states

illustrated in Figure 3.5. In total there are eight CDF evaluations in Equation 3.18 which

increase as 2n+1, where n is the number of features. Although the computational expense

of evaluating CDF functions is relatively low, owing to the speed-up methods detailed

by Genz and Bretz [2002] and Genz [2004], it is simple to half the number of CDF

evaluations by rearranging the univariate distribution axes. The univariate axes can be

reversed so the axes run from ∞ to −∞3, such that rework occurs towards the origin as

shown in Figure 3.7.

For n-features, the rework, scrap and conformance probabilities can be calculated using

3Generally one would expect positive dimesnions for features, but since the dimension of a feature
is a function of the refernce measurement location, negative dimensions are possilbe. This justifies the
extension of the axes to −∞.
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Figure 3.7: Dual feature rework, conformance and scrap with rearranged axes

the approach to determine rectangular probabilities discussed in Nelsen [2006]. A rect-

angular region can be defined by L = (L1, . . . , Ln) and U = (U1, . . . , Un), where Li ≤ U i

∀ i = 1, 2, . . . , n and where (L,U) is an n-dimensional rectangle (n is the number of fea-

tures at a given stage). The vectors L and U represent the lower and upper specification

limits for each feature as indicated on Figure 3.7. Taking the Cartesian product of n

intervals, A = (L1, U1) × (L2, U2)×, . . . ,×(Ln, Un). A cumulative distribution function

(CDF) F: Rn → [0, 1] is given by the integral of the multivariate distribution function,

F (x,µ,Σ) =

∫ xn

−∞
. . .

∫ x1

−∞

1√
(2π)k|Σ|

exp

{
−
(
t− µ)TΣ−1(t− µ

)
2

}
dt1 . . . dtn,

(3.19)

whereX is a k-dimensional random vectorX = [X1, . . . , Xk], µ is a k-dimensional mean

vector µ = [E[X1], . . . , E[Xk]] and Σ is a k×k covariance matrix, Σ = [Cov[Xi, Xj ]] , i =

1, . . . , k; j = 1, . . . , k. The probability enclosed in the rectangle A = (L,U) is given by:

PA = P (L1 < X1 ≤ U1, . . . , Ln < Xn ≤ Un),

which can be expressed as,

PA =
1∑

i1=0

1∑
i2=0

· · ·
1∑

in=0

(−1)i1+i2+···+inF (xi1 ,xi2 , . . . ,xin) . (3.20)
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where, xij = Lj if ij = 0,

xij = U j if ij = 1
∀ j = 1, 2, . . . , n.

The probability of rework is simply,

PRw = F (U ,µ,Σ)− PA

and the probability of scrap,

PSr = 1− F (U ,µ,Σ). (3.21)

The mechanics of Equation 3.20 are illustrated in Figure 3.8 for a two feature example

with features X1 and X2. Let L = [L1, L2] and U = [U1, U2] be the lower and upper

specification limits respectively. The means and covariance matrix are µ = [µ1, µ2] and

Σ = [σ2
1, ρσ1σ2; ρσ1σ2, σ

2
2]. Thus, the probability of conformance is,

p1,C = (−1)2F (U1, U2)

+ (−1)1F (L1, U2)

+ (−1)1F (U1, L2)

+ (−1)0F (L1, L2).

(3.22)

The first line of Equation 3.22 refers to calculating the probability enclosed within

the blue rectangle, shown in Figure 3.8(a). The second line of Equation 3.22 refers

to calculating the probability enclosed by the magenta rectangle in Figure 3.8(b) and

likewise for the remaining lines and figures. It follows that pI,2 = F (L1, U2)−F (L1, L2),

pI,3 = F (U1, L2)−F (L1, L2), pI,4 = F (L1, L2) and pI,S = 1−F (U1, U2). The number of

CDF evaluations increase by 2n using this method. Therefore, only four CDF evaluations

are required in this two-dimensional case, as opposed to eight using Equation 3.18.

The profit equation for two features follows the same principles as the one feature profit

equation given in Equation 3.4, albeit the rework and scrap terms are more complex. The

flow of components through a dual feature manufacturing system and the probabilities

of components occupying each state for four iterations are illustrated by Figure 3.9.

Theorem 3.1 demonstrated there was only one optimal mean to maximise profit for

the production of one feature. However, Assumption 3 is not upheld in the case of

manufacturing dual features. This is because there are three varieties of rework, where

only dual feature rework (state 4), is equivalent to the initial manufacturing operation

(State I). The single feature rework states, (2) and (3), are each equivalent to the example

presented in Theorem 1, but the dual feature rework state (4) is clearly different as two



Chapter 3. Optimal Mean Setting 61

(a) F (U1, U2) (b) F (L1, U2)

(c) F (U1, L2) (d) F (L1, L2)

Figure 3.8: Evaluation of 2D rectangular probability

features are involved. By considering the flow of features through the manufacturing

process in Figure 3.9, it becomes clear the means for dual feature rework are different

to the means for single feature rework, even though the features are the same. The first

iteration (Figure 3.9) (superscript I), produces conformance, scrap and three varieties

of rework, represented by the blue, red and green regions in Figure 3.7. For the second

iteration (II), the probability term for the X1 rework state (2) is represented by the

RX1 rectangle in Figure 3.7. Similarly the probability term for X2 rework state (3)

is represented by the RX2 rectangle in Figure 3.7. The first probability value for the

dual feature rework stage (4) is given by the RX1,X2 rectangle in Figure 3.7. Features

processed by the single feature rework states (2) and (3) may require additional rework

even after processing. Thus, iteration III and IV for states (2) and (3) contain functions

of µ2,1, µ2,2 and σ, corresponding to processing a feature independently of the other

feature (i.e. only one feature required rework). Additionally, one or other of the features

reworked by the dual feature rework stage (4) may require single feature rework even

after dual feature processing. Therefore, iteration III and IV for states (2) and (3)

also contain functions of µ and Σ corresponding to features manufactured in parallel

(dual feature rework). It may also take several rework iterations to convert dual feature
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Figure 3.9: Probabilities of components in the scrap and rework states for four iter-
ations

rework to scrap or conformance, hence the squared and cubic powers for iterations III

and IV in state (4). The scrap terms for each iteration are the products between the

relevant rework terms and the probability of scrap for that rework state, F (L1, µ2,1, σ1),

F (L2, µ2,2, σ2) and F (L,µ1,Σ) for state (2), (3) and (4) respectively. The scrap and

rework terms for each rework state for n iterations, which are required to express the
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expected profit for a dual feature manufacturing system are given by,

RwP 2 = F ([U1, L2],µ,Σ)− F (L,µ,Σ)

+

∞∑
i=2

RwP 2i−1 [1− F (U1, µ2,1, σ1)] + F (L,µ,Σ)i−1

[F ([U1, L2],µ,Σ)− F (L,µ,Σ)] ,

RwP 3 = F ([L1, U2],µ,Σ)− F (L,µ,Σ)

+
∞∑
i=2

RwP 3i−1 [1− F (U2, µ2,2, σ2)] + F (L,µ,Σ)i−1

[F ([L1, U2],µ,Σ)− F (L,µ1,Σ)] ,

RwP 4 =
∞∑
i=2

F (L,µ,Σ)F (L,µ,Σ)i−1.

(3.23)

The scrap probabilities generated from the three rework states are given by Equation

3.24,

SrP 2 = {F ([L1, U2],µ,Σ)− F (L,µ,Σ)

+
∞∑
i=2

SrP 2i−1 [1− F (U1, µ2,1, σ1)] + F (L,µ,Σ)i−1

[F ([L1, U2],µ,Σ)− F (L,µ,Σ)]}F (L1, µ2,1, σ1)

SrP 3 = {F ([U1, L2],µ,Σ)− F (L,µ,Σ)

+

∞∑
i=2

SrP 3i−1 [1− F (U2, µ2,2, σ2)] + F (L,µ,Σ)i−1

[F ([U1, L2],µ,Σ)− F (L,µ,Σ)]}F (L2, µ2,2, σ2),

SrP 4 = SC4

∞∑
i=1

(1− F (U ,µ,Σ))F (L,µ,Σ)i.

(3.24)
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To condense the notation let TSrP = SrP 2 + SrP 3 + SrP 4. Also the initial scrap can

be written,

SrP I = 1− F (U ,µ,Σ), (3.25)

The total profit for this two feature example can be written as,

TP2 = SP [1− SrPI(µ)− (TSrP (µ, µ2,1, µ2,2)]

− [Rc2RwP 2(µ, µ2,1) +Rc3RwP 3(µ, µ2,2)

+Rc4RwP 4(µ) + ScP 2SrP 2(µ, µ2,1)

+Sc3SrP 3(µ, µ2,2) + Sc4SrP 4(µ)]− PC.

(3.26)

The single feature rework and scrap probabilities (RwP 2, RwP 3, SrP 2 and SrP 2) are

functions of four means, µ = [µ1,1, µ1,2] for dual feature rework, and µ2,1 and µ2,2 for the

two single feature reworks. The initial scrap probability (SrPI) and dual feature rework

state (4) are functions of two means µ = [µ1,1, µ1,2]. Although µ1,1 and µ2,1 both apply

to the feature X1, the first mean only applies when the second feature is also processed

along with the first feature, prior to inspection. The second mean (µ2,1), only applies

when the first feature is processed and inspected independently from the second feature.

This similarly applies to the X2 feature means. The distinction between the dual and

single feature means can be graphically illustrated by considering Figure 3.10, which

shows the scatter of 2000 points drawn randomly from a joint normal distribution. The

mean of the scattered points lies in the centre of the conformance region but due to the

geometry of the scrap and rework regions, a greater proportion of these points lie in

the scrap region since the scrap region is larger by 2L1L2 (difference between the scrap

and rework areas). To ensure equal scrap and rework probabilities for the illustration

in Figure 3.10, µx1 = µx2 = 5.0617. For a single feature (Figure 3.4) there are equal

probabilities of scrap and rework with the mean centred, µ = 5. To further complicate

the balance between scrap and rework cost, the various rework regions (Figure 3.10) may

have different costs associated with them and the cost of dual feature rework is likely

to be the sum of the single feature rework costs. Therefore, to maximise Equation 3.26,

which has a mixture of dual feature and single feature rework, a total of four means

must be adjusted such that,

µ̂opt = max
µ̂∈R

{
TP2(µ1,1, µ1,2, µ2,1, µ2,2)

}
. (3.27)

The vector, µ̂opt, is the four element vector containing the optimal means for the dual

features as well as the single features. Note that the dual feature scrap and rework

equation (RwP 4 and SrP 4) only involve dual feature probabilities and thus only the

first two means of µ̂opt apply to these states. Clearly the exact values of the optimal
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Figure 3.10: Scatter plot

means depends on the relative scrap and rework costs associated with the probabilities.

3.2 Markovian Modelling

The transitions of features and the associated components from one state to another

can be modelled using Markov chains. Bowling et al. [2004] introduced Markovian

modelling to the Optimal Mean Setting problem with subsequent contributions from

Khasawneh et al. [2008] for dual features and Selim and Al-Zu’bi [2011] for multiple

features manufactured in series. A Markovian approach allows the iterative expressions

for conformance, rework, scrap and ultimately expected profit (derived in Sections 3.1.1

and 3.1.2), to be simplified. Markovian modelling also allows a generalised expression for

expected profit to be derived, accounting for any number of features in any combination

of serial and parallel operations. Such a generalised expression has not been derived in

the literature.

This section introduces Markovian modelling to the problem of determining the expected

profit for manufactured features. This thesis makes no contribution to the field of

Markovian modelling but does to the application of Markovian modelling to Optimal

Mean Setting, specifically the contributions and objectives of this Section are:

1. Following existing literature, develop a Markovain model for the expected profit

from a single feature.
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Figure 3.11: Random walk for the production of a single feature

2. Following existing literature, expand the single feature model to the production of

two features in series with reference to Bowling et al. [2004] and the corrections

made by Selim and Al-Zu’bi [2011].

3. Develop a new Markovian model for two features produced in parallel (dual fea-

tures), correcting the errors made by Khasawneh et al. [2008]. A numerical com-

parison between the re-formulated method and Khasawneh et al. [2008] methods

is made.

4. Generalise the new Markovian model to enable expected profit co be calculated for

any number of features in any combination of parallel and serial manufacturing

sequences or a combination of both. This new expression is then applied to a

numerical example in Section 3.4.

3.2.1 Markov Modelling of Serial Production Systems

3.2.1.1 Single Feature - Serial Production

A serial production system strictly involves the manufacture of a single inspectable

feature prior to an inspection process. A component may comprise of several inspectable

features, which are created sequentially in a serial production system with an inspection

process at each stage. At each stage there are three possible states; conforming, scrap

and rework, which can be thought of as states of a random walk. The conforming and

scrap states are absorbing, such that if a component enters one of these states it cannot

move to another state. Rework is a transient state, since a component in a rework state

may move to a conforming, scrap or another rework state. Figure 3.1 illustrates the

manufacturing flow for a single feature, which can be depicted as a group of transient

and absorbing states shown in Figure 3.11. The arrows indicate the possible flow of

components from the input to the various states, conforming (C), Scrap (S) and rework

back into the initial state (I). The p values give the probability of transferring between

these states. All components entering at the input eventually end up in the scrap or
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conforming states. Once in an absorbing state it is impossible to leave it. The presence

of these absorbing states and the fact it is possible to enter the absorbing states from

the other state in a finite number of steps, make this an absorbing Markov chain. The

average time components spend being reworked and the final conformance and scrap

probabilities can be extracted from the fundamental matrix, (M) and the long-run

absorption matrix, (F ). The construction of these matrices is outlined by Bowling et al.

[2004], but elaborated here, drawing detail from Grinstead and Snell [2006].

The probabilities or going from one state to another (short term probabilities) in Figure

3.11 can be represented by the transition matrix P , given by,

P =


I C S

I pI,I pI,C pI,S

C 0 1 0

S 0 0 1

, (3.28)

where the values pI,I, pI,C and pI,S are the probability of rework, conformance and scrap

respectively. These correspond to the areas noted in Figure 3.4. These probabilities are

given by,

pI,I =

∫ ∞
L

1√
2πσ2

e
−(x−µ)2

2σ2 dx

pI,C =

∫ U

L

1√
2πσ2

e
−(x−µ)2

2σ2 dx

pI,S =

∫ L

−∞

1√
2πσ2

e
−(x−µ)2

2σ2 dx

(3.29)

These expressions correspond to the terms from the first iteration for the rework, con-

forming and scrap states on Figure 3.3. As already stated, an absorbing Markov chain

must have at least one state, i, that is absorbing such that P (i, i) = 1. Consequently

P (i, j) = 0, ∀ j 6= i since each row of the transition matrix P must sum to 1. States C

and S in Equation 3.31 satisfy this property. The transition matrix can be written in

canonical form,

[ TRS ABS

TRS Q R

ABS 0 I

]
. (3.30)

The sub-matrix Q is a t-by-t matrix giving the probabilities of going from a transient to

another/same transient state, where t is the number of transient states. The sub-matrix

R is a t-by-r matrix giving the probabilities of going from a transient to absorbing state.

The value r is the number of absorbing states. The 0 sub-matrix is a r-by-t zero matrix

and I is a r-by-r identity matrix. Iterated multiplication of the P matrix gives the
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probabilities of items transferring to other states for each iteration. For the first, second

and third iterations P is:

P 1 =

[
Q R

0 I

]
,

P 2 =

[
Q R

0 I

][
Q R

0 I

]
=

[
Q2 R+QI

0 I

]
,

P 3 =

[
Q2 R+QI

0 I

][
Q R

0 I

]
=

[
Q3 R+QR+Q2R

0 I

]
.

Let n be the number of iterations required such that all the components end up in either

the scrap of conforming states 4. Thus, by induction P n is5,

P n =

[
Qn (I +Q+Q2 + · · ·+Qn−1)R

0 I

]
.

In the limit6 as n→∞, the term Qn → 0. Let M be the infinite sequence,

M = I +Q+Q2 + · · ·+Q∞ =
1

I −Q
.

Thus, in the limit as n→∞, the P -matrix becomes,

P∞ =

[
0 MR

0 I

]
.

The matrix M in known as the fundamental matrix and gives the expected number of

times item spend in a transient state j, given they started in a transient state i. In the

context of Figure 3.11, this is the average number of times items are in the rework state.

The long term absorption probabilities are calculated from the product of the R-matrix

(probabilities of going from a transient to an absorbing state) and the M -matrix,

F = MR.

The F -matrix gives the long run absorption probability of items ending up in state j

after starting in state i. The M and F matrices are used to attribute the cost of rework

and scrap as well as determine the total number of conforming items that may be sold.

For the manufacturing sequence in Figure 3.11, given the transition matrix in Equation

4The QR terms are always the same size as the R-matrix (t-by-r), hence matrix addition is valid.
5Note a second identity matrix (I) appears when the like terms of R are collected outside the brackets

for the (1,2)44 entry of P n. This identity matrix (I) is the same size as QR rather than the I-matrix
which has size r-by-r.

6Since the rows of Q are strictly less than one. The largest eigenvalue of Q is less than one, thus
Qn → 0 as n→∞
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Figure 3.12: The flow of 10,000 components with one inspectable feature through a
single stage serial production system

3.28, the average time the feature is reworked and the final probabilities of conformance

and scrap are,

M = (I −Q)−1 =
[ I

I mI,I

]
=

1

1− pI,I

and

F = M ×R =

[ C S

I
pI,C

1− pI,I

pI,S

1− pI,I

]
.

The mechanism that generates the values determined by the M and F matrices can be

illustrated using a numerical example, shown in Figure 3.12. The figure describes the

flow of 10,000 components, with one inspectable feature, through a single stage serial

production system. The process means, variances and lower and upper specification

limits were arbitrarily chosen as µ = 5, σ = 1, L = 3 and U = 7 respectively. The

numbers of components in each state are illustrated by the length of the bars (Figure

3.12). The initial manufacturing operation produced 228 scrap and rework items while

9545 conformed. Of the 228 rework items, five were scrapped after the second iteration

and the remaining 223 conformed after two rework iterations. The average time the

items spent being reworked is the sum of the probabilities of items entering the rework

state, which is given by the geometric series,

pI,I + p2
I,I + p3

I,I + . . .
∞∑
r=1

prI,I =
1

1− pI,I
⇔ |pI,I| < 1.

This is the same value given by the M -matrix which corresponds to items spending

an average 1.0233 times being processed by Stage I (this can be verified from the nu-

merical values given in Figure 3.12). Similar sequences exist for the final conformance
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Figure 3.13: Random walk for the production of a two features in a serial production
system

probability,

pI,C + pI,C pI,I + pI,C p
2
I,I + . . .

∞∑
r=0

pI,C p
r
I,I =

pI,C

1− pI,I
⇔ |pI,I| < 1,

and the final scrap probability,

pI,S + pI,S pI,I + pI,S p
2
I,I + . . .

∞∑
r=0

pI,S p
r
I,I =

pI,S

1− pI,I
⇔ |pI,I| < 1,

where both expressions are given by the F -matrix. Markovian modelling allows these

expressions to be determined without having to generate them from first principles,

which would get overwhelmingly complex for a larger numbers of features. The same

expressions can be found by generalising the iterations shown in Figure 3.3 providing

the mean µ is kept constant for each iteration, in accordance with Theorem 3.1. The

expected profit for this one feature, serial manufacturing example is given by,

E(PR) = SP fI,C − PC − SC fI,3 −RC(mI,I − 1),

where RC, SC and PC are the rework, scrap and processing cost rates. The elements,

fI,j and mI,j are the elements of the M and F matrices.

3.2.1.2 Two Features - Serial Production

The errors made by Bowling et al. [2004] (corrected by Selim and Al-Zu’bi [2011]) for

the production of two features in series are explained in this Section.

Figure 3.13 shows the flow of components and the transition probabilities of items trans-

ferring between states for a two stage serial production system. The transition matrix



Chapter 3. Optimal Mean Setting 71

Figure 3.14: The flow of 10,000 components with two inspectable features through a
two stage serial production system

is given by,

P =



I II C S

I pI,I pI,II 0 pI,S

II 0 pII,II pII,C pII,S

C 0 0 1 0

S 0 0 0 1

. (3.31)

Following the analysis outlined for a single feature in Section 3.2.1.1 the M and F

matrices are,

M =


I II

I
1

1− pI,I

pI,C

(1− pI,I)(1− pII,II)

II 0
1

1− pII,II

 (3.32)

and

F =


C S

I
pI,II pII,C

(1− pI,I)(1− pII,II)

pI,S

1− pI,I
+

pI,II pII,S

(1− pI,I)(1− pII,II)

II
pII,C

1− pII,II

pII,S

1− pII,II

. (3.33)

Figure 3.14 illustrates the flow of 10,000 components through a two stage serial pro-

duction system where the process means and variances were chosen as µ1 = µ2 = 5

and σ1 = σ2 = 1. The lower and upper specification limits for each stage were chosen

as L1 = L2 = 3 and U1 = U2 = 7. The quotients under the conformance and scrap

bar charts (Figure 3.14) give the total numbers of scrap and conforming components
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after stage I (geometric series). As can be seen from the bar charts, only three itera-

tions were required to convert all 10,000 items into scrap or conforming items. Only

the 9767 (out of 10,000) conforming items from Stage I entered Stage II. Again three

iterations were required to convert these features into scrap and conforming items. The

total conforming and scrapped items from Stage II can be calculated from the F matrix

terms, fII,C and fII,S. The values of these terms requires careful interpretation as they

were wrongly interpreted by Bowling et al. [2004]. The fII,C and fII,S values give the

long term probability items passed to the conforming and scrap states from Stage II,

relative to the number of items that entered State II. However, fI,C gives the long term

probability that items successfully passed through both Stages I and II, the final con-

formance probability and not just the probability they successfully pass through Stage

I. In a similar manner, the fI,S term not only gives the probability items were scrapped

after Stage I, but also the probability that items passed Stage I before being scrapped

at Stage II. This clarification was originally given by Selim and Al-Zu’bi [2011]. Because

the fII,C and fII,S terms are relative to the number of items that entered Stage II, each

are multiplied by the quotient pI,C/(1 − pI,I), determining the total input from Stage

I into Stage II. The quotient from the M matrix, which gives the average time items

spent in rework for Stages I and II, is also displayed in Figure 3.14.

The expected profit for the system is,

E(PR) = SP fI,C −

PC1 + PC2

Confrom from I︷ ︸︸ ︷
pI,II

1− pI,I



−

SC1
pI,S

1− pI,I︸ ︷︷ ︸
Scrap from I

+SC2
pI,C

1− pI,I︸ ︷︷ ︸
Conform from I

fII,S



−

RC1 (mI,I − 1) +RC2 (mII,II − 1)
pI,C

1− pI,I︸ ︷︷ ︸
Conform from I

 .

(3.34)

This equation is different to Equations 1 and 2 from Selim and Al-Zu’bi [2011]. All

three solutions are correct however, the interpretation of the second scrap cost gives

rise to the difference in form. The scrap cost at Stage II in Selim and Al-Zu’bi [2011]

is the summation SC1 + SC2. In Equation 3.34 of this paper, SC2 is considered to

be the cost of scrapping an item at Stage II, which may or may not include the cost
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Figure 3.15: Random walk for the manufacture of two features in a parallel production
system

of scrap at Stage I7. Additionally the scrap value maybe rework dependent, such that

the scrap value may increase or decrease depending on the number of rework iterations.

For example, an additive rework operation may increase the scrap value of an item

with successive rework iterations. Provided the scrap costs are appropriately assigned

Equation 3.34 agrees with the solution presented in Selim and Al-Zu’bi [2011].

3.2.2 Markovian Modelling of Parallel Production Systems

The simplest form of a parallel system is the production of two features in parallel, dual

feature production. Figure 3.15 depicts the flow of items with dual features through

the initial processing stage (I) to the conforming or scrap states, C, and S respectively.

Items can pass directly into these absorbing states from state I, or via one of three types

of rework (transient states, 2, 3 and 4) associated with a transition probability pi,j . The

three rework states correspond to rework for the X1 feature, the X2 feature or both X1

and X2 features together. The associated transition matrix is,

7This is a decision that must be taken depending on the processes and the value assigned to the
item at various stages in the manufacturing route. The scrap value may depend on factors such as the
potential use for the item in another application or the amount of material that can be redeemed.
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P =



I 2 3 4 C S

I pI,I pI,2 pI,3 pI,4 pI,C pI,S

2 0 p2,2 0 0 p2,C p2,S

3 0 0 p3,3 0 p3,C p3,S

4 0 p4,2 p4,3 p4,4 p4,C p4,S

C 0 0 0 0 1 0

S 0 0 0 0 0 1


. (3.35)

The pi,j values are given from Equation 3.20 where i = I, 2, . . . , C, S, j = I, 2, . . . , C, S

for dual feature processing (the initial state (I) and dual feature rework state (4)). The

p-values for single feature rework probabilities are given by,

p2,2 = 1−Φ(U1),

p2,C = Φ(U1)−Φ(L1),

p2,S = Φ(L1),

p3,3 = 1−Φ(U2),

p3,C = Φ(U2)−Φ(L2),

p3,S = Φ(L2),

p4,i = pI,i for i = [2, 3, . . . , C, S].

(3.36)

Following the method outlined in Section 3.2.1.1 the M and F matrices are:

M =



I 2 3 4

I 1
pI,2

(1− p2,2)(1− p4,4)

pI,3
(1− p3,3)(1− p4,4)

pI,4
1− p4,4

2 0
1

1− p2,2
0 0

3 0 0
1

1− p3,3
0

4 0
p4,2

(1− p2,2)(1− p4,4)

p4,3

(1− p3,3)(1− p4,4)

1

1− p4,4


(3.37)

and
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F =



C S

I fI,C fI,S

2
p2,C

1− p2,2

p2,S

1− p2,2

3
p3,C

1− p3,3

p3,S

1− p3,3

4 f4,C f4,S


(3.38)

where,

fI,C = pI,C +
pI,2p2,C

(1− p2,2) (1− p4,4)
+

pI,3p3,C

(1− p3,3) (1− p4,4)
+
pI,4p4,C

1− p4,4
,

fI,S = pI,S +
pI,2p2,S

(1− p2,2) (1− p4,4)
+

pI,3p3,S

(1− p3,3) (1− p4,4)
+
pI,4p4,S

1− p4,4
,

f4,C =
p4,2p2,C

(1− p2,2)(1− p4,4)
+

p4,3p3,5

(1− p3,3) (1− p4,4)
+

p4,C

1− p4,4
,

f4,S =
p4,2p2,S

(1− p2,2)(1− p4,4)
+

p4,3p3,S

(1− p3,3) (1− p4,4)
+

p4,6

1− p4,4
.

(3.39)

Although Khasawneh et al. [2008] specified the system in this way, the meaning of the

entries in the F -matrix were incorrectly interpreted leading to an incorrect definition

of expected profit. The columns in the F -matrix correspond to the absorbing states,

conforming (C) and scrap (S). The rows in the F -matrix correspond to a particular

transient state; the initial processing stage, or one of three rework states. The first entry

in the F -matrix (fI,C), is the probability items eventually conform given the number of

items in the initial processing state (which is all the items). It gives the final probability

of conformance and the adjacent entry fI,S gives the final probability of scrap. Entry f2,C

is the probability items eventually conform given the total number of items that went

into the X1-feature rework state (state 2). This won’t be all the items, some will have

conformed or been scrapped directly from the initial process and others will only require

X2 rework or X1, X2 rework. The same principles apply to state 3, and the entry in the

F -matrix, f3,C . The entry, f4,C , defines the probability of components conforming given

the number of components in state 4, but irrespective of the path taken. Therefore, f4,C

is not only the probability of items going directly from state 4 to conformance but also

includes components that go from state 4 to state 2 or state 3 before finally conforming.
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The expected profit for a dual feature case is defined in general terms as,

E(PR) = SP DI,C − PC − (SC1DI,S+

+ SC2D2,S + SC3D3,S + SC4D4,S)

− (RC1mI,2 +RC1mI,3 +RC1mI,4),

(3.40)

where SP is the selling price, PC is processing cost, SC and RC are the scrap and

rework costs respectively. The subscripts refer to the costs at a given state. The D

values are the final probabilities of items going directly from one state (first subscript)

to the conforming or scrapped states (second subscript). The crucial difference between

D and the F -matrix values is that the D values only apply to the number of items in a

state going directly to an absorbing state. For the first term in Equation 3.40, we wish

to determine the income generated from the numbers of components that eventually

conform. Since all the components start in state I, DI,C = fI,C . However, this pattern

is not repeated for the other D probabilities. For example, D2,S and D3,S are the

probabilities items go from states 2 and 3 to the scrap state. The equivalent f2,S and

f3,S terms give the probabilities of items going from states 2 and 3 to the scrap state,

assuming they originally started in these states. This is not the case since all components

initially go through state I, and state 4 may feed states 2 and 3. To determine the total

proportion of items in the various states, the feed-ins and feed-outs of each state must be

known. Since the processing of rework is dynamic (it takes several iterations before all

rework is converted to conforming or scrapped items), a numerical illustration is helpful

to illustrate the flow of items through the system. Figure 3.16 describes the paths of

10,000 components where µ1 = µ2 = 5, σ1 = σ2 = 1.55 and the specification limits were

set at L1 = L2 = 3 and U1 = U2 = 7. The quantities represented by each D value are

explained with reference to Figure 3.16 under the bold headings below.

Explanation of the DI,S value

Multiple subscripts separated by a semicolon (Figure 3.16) indicate items have come

from more than one source. For example, CIII
2;3;4 indicates the conforming items at the

third iteration where the items have come from the second, third and fourth states.

Figure 3.16 shows the first iteration produced 1872 scrapped items and 6449 conforming

items. Therefore, the DI,S value is the initial probability of scrap, given by pI,S which

is illustrated by Figure 3.7, such that,

DI,S = pI,S .
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Figure 3.16: The flow of 10,000 components with two inspectable features through a
dual stage production system

Explanation of the D2,S and D3,S values

Additionally, during the first iteration all three varieties of rework totalling 1679 rework

items were produced. The probabilities of items entering the rework states (2, 3, and 4)

are pI,2, pI,2 and pI,4 (Figure 3.7). These inputs into states 2 and 3 only apply during the

first iteration however, there are other inputs during the second iteration. Processing

the single feature rework (states 2 and 3) during the second operation generated 78 scrap

and 635 conforming items. There were also 78 items each, feeding back into states 2 and

3 from the states themselves (rework requiring further rework). The stacked bar graphs,

RII
2;4 and RII

3;4 also indicate there was an additional smaller input of items from state 4.

This occurred as there was the possibility that after reworking the dual features, one

feature would conform but the other would require additional rework. The probability

that items fed into state 2 from state 4 is given by pI,4 pI,2. The total probability of

components from state 4 feeding state 2, over all iterations, is given by,

pI,4 pI,2 + pI,4 p
2
I,2 + pI,4 p

3
I,2 + · · · =

∞∑
r=1

pI,4 p
r
I,2,
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where r is the iteration number8. This a geometric series which can be written,

∞∑
r=1

pI,4 p
r
I,2 = pI,4

pI,2

1− pI,2
⇔ |pI,2| < 1. (3.41)

A similar argument exists for components feeding into state 3 from state 4. Iterations

III and IV convert the remaining single feature rework components into scrap and con-

forming items. The final output from states 2 and 3 into the absorbing states (scrap and

conformance) must account for the two inputs, one from the first iteration and another

from state 4. The output into the scrap state from state 2 (D2,S) is given by,

D2,S = f2,S

(
pI,4pI,2

(1− pI,2)
+ pI,2

)
. (3.42)

Similar terms apply to state 3 and the probability of items conforming from these single

feature rework states (the terms are shown in Figure 3.16 to the right of the rework

stages).

Explanation of the D4,S value

The dual feature rework state (4) initially received items from the first iteration with

probability pI,4. There were no other feed-ins to this state. The final output from state

4 into the absorbing scrap state must subtract the feed-outs into the two transient single

feature rework states (2 and 3). Recall the F -matrix value, f4,S , includes these feed-out

probabilities to states 2 and 3. The output from state 4 into the scrap state follows a

similar principle defined in Equation 3.41, given by,

D4,S = pI,4

(
pI,2

1− pI,4

)
. (3.43)

A similar equation exists to define the probability of components going straight from

state 4 to conformance, as illustrated in Figure 3.16.

The interpretation of the M−matrix elements by Khasawneh et al. [2008] was correct.

Never-the-less, the interpretation of the elements are restated here for clarity. The entry

mI,2 is the number of times the second state is occupied given the first state as the

starting point (hence mI,2 < 1). The same argument follows for mI,3 and mI,4. These

elements are used to determine the rework cost of the three rework states. The same

proportions can be found from m4,2 and m4,3 as the process is identical to the first state,

8In this discrete example, there are no further feed-outs from state 4 into states 2 and 3 after the
second iteration, however in a continuous production system there is always a diminishing probability
of feed-outs after r-iterations.
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Stats. Values Costs Values

L [8, 13] SP [120]

U [12, 17] PC [45]

σ σx1 = σx2 = 1 RC [0, 15, 12, 20]

SC [8, 9, 11, 14]

Table 3.1: Specification limits, process variation and cost from the numerical example
from Section 4 Khasawneh et al. [2008]

albeit with fewer components. Note, m4,4 is the probability the fourth state is occupied,

given the starting point is the fourth state, hence m4,4 ≥ 1, due to rework.

The final form of the expected profit for this dual feature process is given by,

E(PR) = SP fI,C − PC − SC1 pI,S

− SC2

(
pI,4

(
pI,2

1− pI,4

)
+ pI,2

)
f2,S

− SC3

(
pI,4

(
pI,3

1− pI,4

)
+ pI,3

)
f3,S

− SC4

(
pI,S

1− pI,4

)
pI,4 −RC2mI,2

− RC3mI,3 −RC4mI,4.

(3.44)

The probability terms multiplying the four scrap costs (SCI to SC4 in Equation 3.44)

are the difference between this correct expression for expected profit and Equation 5

from Khasawneh et al. [2008].

The impact of this revision on the optimal mean values and the expected profit was in-

vestigated by comparing the revision with the numerical example detailed under Section

4 from Khasawneh et al. [2008]. Table 3.1 outlines the specification limits, process vari-

ation and costs related to the numerical example. Figure 3.17 illustrates the expected

profit surfaces versus the process means, µX1 and µX2 . The expected profit from Kha-

sawneh et al. [2008] is represented by Case I and the expected profit given by Equation

3.44 is represented by Case II. The Case I expected profit was 71.1592 where the opti-

mal mean locations were µx1 = 10.5514 and µx2 = 15.6080 (Figure 3.17). The Case II

expected profit was 0.38% higher at 71.4287 with optimal means 0.38% and 0.27% lower

at µx1 = 10.5115 and µx2 = 15.5651, respectively. Although the impact of the feed-in

and feed-out terms is of the order 0.1%, the terms become more significant depending

on the relative costs and the capability of the manufacturing processes. Figures 3.18 to

3.20 illustrate the difference between the optimal means and expected profit from Case



Chapter 3. Optimal Mean Setting 80

Figure 3.17: Comparison of profit surfaces between Khasawneh et al. [2008] and
Equation 3.44

II compared to the Case I model for: (1) increased process variation (σ), (2) increased

scrap cost, (3) correlation between features (ρ). The numerical example detailed in

Khasawneh et al. [2008] was used as a reference set-up. The optimal means for each

case were found by maximising the expected profit (using Matlab’s fmincon function).

Each point on Figures 3.18 to 3.20 was created by finding the maximum expected profit

and corresponding optimal means for each case. The difference between the expected

profits between Case II and Case I is defined as ∆E(PR) = E(PR)II − E(PR)I where

the superscript defines the case. The difference between the optimal means is defined as

∆µ̃X1 = µ̃II
X1
− µ̃I

X1
, where the tilde notation is used to represent the optimal mean. A

similar argument applies to the X2 feature.

The difference between the Case I and Case II expected profit increased by 4% when

the process variation was doubled (Figure 3.18(a)). An accompanying change of 1% to

the optimal means was also observed, illustrated by Figure 3.18(a). These changes were

driven by increased rework, due to higher process variation, making the impact of the

feed-in and feed-out terms more significant. Figure 3.18(b) clearly indicates that the D
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terms are around an order of magnitude less than the f terms, (note the D2,S and D3,S

curves are very similar). This reduced the impact of the scrap costs for Case II compared

to Case I, ensuring Case II yielded a higher profit. The magnitude of ∆E(PR) and ∆µ̃

were small for σ ≈ 1, since both D and f terms were small which limited the effect scrap

costs had on expected profit (Equation 3.44). Therefore, the introduction of feed-in and

feed-out modelling had less impact on the ∆E(PR) and ∆µ̃ when process variation was

low. The same effect would be seen by adjusting upper and lower specification limits

(U and L). This would also alter the rework probability and therefore the significance

of the feed-in and feed-out modelling.

(a) Expected profit and optimal means versus process variation (σ)

(b) Transient state to scrap state probabilities for Case I and Case II versus process
variation (σ)

Figure 3.18: Sensitivity of Cost and feed-in and feed-out probabilities to versus pro-
cess variation (σ)

The relationship between scrap cost, ∆E(PR) and ∆µ̃ was explored in Figure 3.19. A

scrap cost ratio multiplied each of the scrap cost constants (SC1 to SC4). There was

a 1.4% difference in expected profit between the two cases for a scrap cost ratio of five

(Figure 3.19(a)). This was accompanied by a difference in the order of 1% between the

optimal means. The values of the D and f terms in Figure 3.19(b) remained small,

only changing between 0.3% to 13% compared to the changes of between ∼ 1200% and

∼ 50000% for the D and f terms in Figure 3.18(b). These small variations were due
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to changes in the optimal means, which affected the rework probability and hence the

values of the D and f terms. Never-the-less, the two orders of magnitude absolute

difference between the D and f terms lead to differences between the Case II and Case

I expected profit and optimal mean values.

Varying the other cost values, SP , PC and RC also influenced the difference between

the Case II and Case I optimal means and expected profit. However, the influence is

orders of magnitude less than changes to the scrap costs so the results are not shown as

they are deemed insignificant9.

(a) Expected profit and optimal means versus scrap cost

(b) Transient state to scrap state probabilities for Case I and Case II versus scrap cost

Figure 3.19: Sensitivity of Cost and feed-in and feed-out probabilities to versus scrap
cost

Correlation between the features where, −1 ≤ ρ ≤ 1, affected ∆E(PR) between 0.24

and 0.3, decreasing with increased correlation. (Figure 3.20(a)). The values of ∆E(PR)

were an order of magnitude less sensitive to variations in correlation than with vari-

ations in process standard deviation and scrap costs. The effect on ∆µ̃ was also an

order of magnitude less, with the greatest values at slight negative correlation (Figure

9The feed-in and feed-out terms affect the total scrap cost and therefore how far the means shift
towards rework. Altering the other costs will affect the cost balance and accordingly adjust the optimal
means. However, the effect is not very significant as the other costs are not directly related to the feed-in
and feed-out terms (Equation 3.44).
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3.20(a)). Figure 3.20(b) indicates the values of the D terms are an order of magnitude

less than the f terms. The values of the D2,S and D3,S terms initially rose with in-

creased correlation before reducing to close to zero. The inverse trend occurred with

the f2,S and f3,S terms. The f4,S and D4,S exhibited similar contrary behaviour. This

implies the D2,s/f2,S , D3,S/f3,S and D4,S terms are more significant than the f2,S , f3,S

and f4,S terms, highlighting the importance of feed-in and feed-out modelling. Although

the ∆E(PR) and ∆µ̃ values were small compared to the values in Figures 3.18(a) and

3.20(a), increased process standard deviation or greater scrap cost values would lead to

greater ∆E(PR) and ∆µ̃ values. The exact difference feed-in and feed-out modelling

makes in Equation 3.40, compared to Equation 5 from Khasawneh et al. [2008], depends

on the exact parameters of the problem.

(a) Expected profit and optimal means versus correlation (ρ)

(b) Transient state to scrap state probabilities for Case I and Case II versus correlation
(ρ)

Figure 3.20: Sensitivity of Cost and feed-in and feed-out probabilities to correlation
(ρ)

In all three sensitivity analyses (Figures 3.18 to 3.20), the ∆E(PR) values remained

positive while the ∆µ̃ values were negative. The maximum value of D2,S/f2,S , D3,S/f3,S

and D4,S is one or less, thus the D terms are smaller than the f terms. As a consequence,

E(PR)II − E(PR)I > 0. Since the cost of scrap in Equation 3.40 is less than Equation
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5 from Khasawneh et al. [2008] (given the same costs and process variances), the Case

II optimal means are more scrap biased (lower) than the Case I optimal means.

It has been shown that correctly modelling the flow of components feeding in and out

of rework states affects the expected profit and optimal means. The impact that these

feed-in and feed-out terms have depends on the process variation, the relative costs

(particularly scrap costs) and correlation. Hitherto, only feed-in and feed-out modelling

for dual features have been considered. As the number of features increases, these feed-in

and feed-out terms increase exponentially as 3n− 2n, where n is the number of features.

It quickly becomes impractical to work out which feed-ins and feed-outs apply to which

state and non-trivial to determine the expected profit equation. For just four features

produced in parallel, one must calculate 65 feed-in and feed-out terms and apply them

to the correct rework states. The next section develops a method for defining these

terms for n-features processed in parallel and applying them correctly to the correct

rework state. This method allows the expected profit equation to be written directly for

n-features processed in parallel.

3.2.2.1 General Solution for Parallel Production

The primary difficulty in developing a generalised solution was establishing the com-

binations of rework states and feed-ins, and the probability of components entering or

transitioning between states. This difficulty was overcome by setting up two types of

matrix. The S-matrix is a binary matrix and indicates the existence of rework states

and whether components could enter a particular state from another state. The D-

matrix has a similar form to the S-matrix but determines the number of components

transferring into each rework state. The combination of S and D matrices correctly

defines the feed-ins to each rework state, dependent on the number of features. For

example, consider the dual feature production system shown in Figure 3.15. There are

two possible types of rework, single feature and dual feature, and there are separate S

and D matrices for each. For single feature rework, the x1-feature rework in state 2

can only feed into itself. This gives a ‘1’ in the first entry in the 1S matrix (Equation

3.45), the second entry is zero since the second state cannot receive x2-feature rework.

Similarly the x2-feature rework in state 3 can only feed into itself. However, the dual

feature rework state (state 4) can output both x1-feature and x2-feature rework, hence

the two ‘1’ entries in the last row of the 1S matrix. For dual feature rework, the dual

feature rework state (4) can only feed itself and there are no other combinations of dual
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feature rework. Therefore, 2S only contains one entry, a ‘1’.

1S =


x1 x2

2 1 0

3 0 1

4 1 1


(x1)

(x2)

(x1, x2)

and 2S =
[ x1,x2

4 1
]

(x1, x2) (3.45)

The D-matrix entries follow a standard pattern and get turned on or off by combining

with the S-matrix. The D-matrix entries for single feature and dual feautre rework

are shown in Equation 3.46. Multiplying each matrix entry from the S-matrix with

the corresponding entry in the D-matrix gives the total probabilities of feed-ins to each

rework state for all rework varieties (single or dual feature for this two feature example).

Here the entries in the standard form of the D-matrix are the same as the ‘1s’ in the S-

matrix, however, this is not the case when there are more than two features. Therefore,

the S-matrix acts to filter out impossible rework transfers.

1D =


2 3

2 pI,2 0

3 0 pI,3

4
pI,4pI,2
1−pI,4

pI,4pI,3
1−pI,4

 and 2D =
[ 4

4 pI,4

]
. (3.46)

The remainder of this Section shows how the S and D matrix are generalised to a

standard form, such that when the number of features (n) is changed the correct matrices

are generated. The generalised form is given first and then applied to a three feature

problem. The final paragraph in this Section explains how the probabilities of feed-outs

are determined and how the S and D matrices are combined with the selling price, scrap

and rework costs.

LetX = [x1, x2, . . . , xN ] be a vector of inspectable features, where N is the total number

of inspectable features. The total number of processing states, including the initial

processing state is given by:

η = 1 +

N∑
k=1

N !

k!(N − k)!
(3.47)

where k is the number of features requiring rework at each state. Thus, a process

with three inspectable features requires an initial processing state, three single fea-

ture reworks, three dual feature reworks and one triple feature rework. Let kC =
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{kcβ+1,
k cβ+2, . . . ,

k cβ+m} be the set containing the k-type combinations where m de-

termines the cardinality of the set,

m =
N !

k!(N − k)!
, (3.48)

corresponding to the number of k-type combinations. The value, β, determines the

starting element for each k-type set where,

β =
k−1∑
k=1

N !

k!(N − k)!
. (3.49)

For k − 1 = 0, the β term is zero. Examining the combinations when k = 1 a

three feature process, X = [x1, x2, x3], gives 1C = {1c1,
1 c2,

1 c3} = {[x1], [x2], [x3]}.
For k = 2 the combinations are 2C = {2c4,

2 c5,
2 c6} = {[x1, x2], [x1, x3], [x2, x3]} and

3C = {3c7} = {[x1, x2, x3]} for k = 3. All the possible combinations are given by Υ

where
{
kC ⊂ Υ

}
∀ k∈{1,2,...,k}. The set Υ is monotonic in k such that the first sub-

set of combinations, 1C always represents single feature rework(s). The second subset

of combinations, 2C, always contains dual feature rework and so on. In general form

Υ = {1C,2C, . . . ,kC}. Thus, for three inspectable features,

Υ = {{1C}, {2C}, {3C}}

= {{1c1,
1 c2,

1 c3}, {2c4,
2 c5,

2 c6}, {3c7}}

= {[x1], [x2], [x3], [x1, x2], [x1, x3], . . .

[x2, x3], [x1, x2, x3]}.

(3.50)

It is possible to construct a matrix whose elements determine the inputs into the various

rework states. The generalised form of such a matrix S is given by Equation 3.51. To

condense the subscript notation let δ = β+m. Each column in Equation 3.51 represents

a k-type combination while the rows represent each rework state.

kS =



kcβ+1
kcβ+2 ··· kcδ

α λα−1,β+1 λα−1,β+2 · · · λα−1,δ

α+1 λα,β+1 λα,β+2 · · · λα,δ
...

...
...

. . .
...

η λη−1,β+1 λη−1,β+2 · · · λη−1,δ


(Υα−1)

(Υα)
...

Υη−1

(3.51)

Note the matrix rows start from α, given by,

α = 2 +

N∑
k=1

N !

k!(N − k)!
−

[
k∑

k=N

N !

k!(N − k)!

]
, (3.52)
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where the minimum value of α is two, corresponding to the first possible rework state

as shown in Figures 3.15 and 3.16 . The matrix elements are given by,

λi,j =


0 ⇐⇒ kcj @ {Υi} ;

1 ⇐⇒ kcj ∃ {Υi} ,
(3.53)

where i and j refer to row and column number respectively. The Υ elements on the right

side of Equation 3.51 refer to the subsets of Υ. For a three feature production system the

values λi,j are populated as follows: For k = 1, Equation 3.48 indicates there are three

k = 1 type combinations. The first k = 1 combination gives 1c1 = [x1] and Υ1 = [x1]

thus Equation 3.53 indicates λ1,1 = 1. The second element λ1,2 = 0, as 1c2 = [x2] is not

part of the set Υ1 = [x1] and similarly for 1c3. All the λ values for the 1S are displayed

in Equation 3.54 where the c-values along the top row and Υ-combinations on the right

column are written out.

1S =



x1 x2 x3

2 1 0 0

3 0 1 0

4 0 0 1

5 1 1 0

6 1 0 1

7 0 1 1

8 1 1 1



(x1)

(x2)

(x3)

(x1, x2)

(x1, x3)

(x2, x3)

(x1, x2, x3).

(3.54)

An S-matrix exists for all k, where the size of the matrix is (η − 1) × m where m is

k-dependent. The Sk-matrix for k = 2 is given by,

2S =



x1,x2 x1,x3 x2,x3

5 1 0 0

6 0 1 0

7 0 0 1

8 1 1 1


(x1, x2)

(x1, x3)

(x2, x3)

(x1, x2, x3).

(3.55)

For k = 3 the S-matrix is,

3S =
[ x1,x2,x3

8 1
]

(x1, x2, x3). (3.56)

The S-matrix determines where the rework feed-ins come from for each rework state.

The probabilities for each of these feed-ins is given by the D-matrix which has the
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general form,

kD =



α α+1 ··· δ+1

α pw,αw 0 · · · 0

αw+1 0 pw,αw+1 · · · 0
...

...
...

. . .
...

δ+1 0 0 · · · pw,δw+1

δ+2
pw,δw+2pw,αw

1−pw,δw+2

pw,δw+2pw,αw+1

1−pw,δw+2
· · · pw,δw+2pw,δw+1

1−pw,δw+2

...
...

...
. . .

...

η
pw,ηwpw,αw

1−pw,ηw
pw,ηwpw,αw+1

1−pw,ηw
· · · pw,ηwpw,δw+1

1−pw,ηw


. (3.57)

where a manufacturing stage is given by w = [I, II, III, . . . ,W ], where W is the final

manufacturing stage. Where only one manufacturing stage is present the w subscripts

can be ignored. TheD-matrix is the same size as the S-matrix where the top layer of the

matrix is a m×m matrix with only leading diagonal elements. These probabilities relate

to the probability of feed-ins to a rework state from the initial processing state. The

lower layer of the matrix has size (η−δ−1)×m, where the probabilities in each element

refer to rework feed-ins from other rework states. The D-matrices for k = [1, 2, 3], for a

three feature system are given below:

1D =



2 3 4

2 pI,2 0 0

3 0 pI,3 0

4 0 0 pI,4

5
pI,5pI,2
1−pI,5

pI,5pI,3
1−pI,5

pI,5pI,4
1−pI,5

6
pI,6pI,2
1−pI,6

pI,6pI,3
1−pI,6

pI,6pI,4
1−pI,6

7
pI,7pI,2
1−pI,7

pI,7pI,3
1−pI,7

pI,7pI,4
1−pI,7

8
pI,8pI,2
1−pI,8

pI,8pI,3
1−pI,8

pI,8pI,4
1−pI,8


,

2D =



5 6 7

5 pI,5 0 0

6 0 pI,6 0

7 0 0 pI,7

8
pI,8pI,5
1−pI,8

pI,8pI,6
1−pI,8

pI,8pI,7
1−pI,8

,

3D =
[ 8

8 pI,8

]
.
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The product of D-matrix columns and S-matrix columns determines the probability of

components entering rework states from other rework states and the initial processing

state. The expected profit for multiple features from a single-stage can be written as,

E(PR) = SP fI,C − PC − Sr −Rw, (3.58)

where,

Srw =SCw pw,S −
N∑
k=1

δ+1∑
j=α

(
SCjw

∑[
kS∀ [α,η],j

kD∀ [α,η],j
pjw,S

1− pjw,jw

])
,

Rww =

η∑
j=2

RCjw mw,jw .

(3.59)

For the scrap (Sr) term in Equation 3.59, i is the manufacturing stage (e.g. stage I or

stage II) and the column numbering of the S-matrices is the same as the D-matrices.

The fraction term (last term) of the scrap equation in Equation 3.59 determines the

output from each rework state. One will recall from Section 3.2.2, the terms in the

F -matrix refer to the probability that items passing though the ith stage will eventually

conform or become scrap. However, the exact route items take after passing through

the ith stage is not given. This is not an issue for single feature rework states but is for

multiple feature rework states. The fraction term discussed above strictly accounts for

items passing from the ith state to scrap or conformance.

3.2.2.2 Transition probabilities

The transition matrix is required to compute fI,C and the mI,j values in Equations 3.58

and 3.59. A generalised P -matrix is presented which can be determined from the S-

matrix. Computationally it is easy to generate the k-type combinations to find Υ using

a combination package such as ‘combinator ’ for Matlab (Fig [2009]). Thus, the S-matrix

is readily computable and the P -matrix can be found without further logical operations.



Chapter 3. Optimal Mean Setting 90

The general form of the P -matrix is given by Equation 3.60.

Pw =



I 2 3 ··· ··· ··· ··· η C S

w 0 pw,2 pw,3 · · · · · · · · · · · · pw,η pw,C pw,S

2 0 · · · · · · · · · 0 p2,C p2,S

...
... · · · · · · · · ·

...
...

...
...

... 1Γw
...

...
...

...
... 2Γw

...
...

...

η 0 kΓw pηw,C pηw,S

C 0 0 0 · · · · · · · · · · · · · · · 1 0

S 0 0 0 · · · · · · · · · · · · · · · 0 1



(3.60)

for every w stage. The Γ terms are k dependent such that,

kΓw =
∑

kS∀ [α,η],j
kJ∀ [α,η],j (3.61)

where j is the column number. The kJ terms are given by,

kJw =



α α+1 ··· δ+1

α pαw,αw pαw,αw+1 · · · pαw,δw+1

α+1 pαw+1,αw pαw+1,αw+1 · · · pαw+1,δw+1

...
...

...
. . .

...

η pηw,αw pηw,αw+1 · · · pηw,δw+1

, (3.62)

where both the subscripts α and δ are k-dependent. For a three feature example, the

following J -matrices are obtained (the w is dropped as only 1 stage is present):

1,2J =



2 3 4

2 p2,2 p2,3 p2,4

3 p3,2 p3,3 p3,4

4 p4,2 p4,3 p4,4

5 p5,2 p5,3 p5,4

6 p6,2 p6,3 p6,4

7 p7,2 p7,3 p7,4

8 p8,2 p8,3 p8,4


,



5 6 7

5 p5,5 p5,6 p5,7

6 p6,5 p6,6 p6,7

7 p7,5 p7,6 p7,7

8 p8,5 p8,6 p8,7


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and

3J =
[ 8

8 p8,8

]
.

Multiplying each column of kJ by each column of kS gives the kΓ entries of the transition

matrix (Equation 3.60). For a three feature example the transition matrix is given in

Equation 3.63.

P =



I 2 3 4 5 6 7 8 C S

I 0 pI,2 pI,3 pI,4 pI,5 pI,6 pI,7 pI,8 pI,C pI,S

2 0 p2,2 0 0 0 0 0 0 p2,C p2,S

3 0 0 p3,3 0 0 0 0 0 p3,C p3,S

4 0 0 0 p4,4 0 0 0 0 p4,C p4,S

5 0 p5,2 p5,3 0 p5,5 0 0 0 p5,C p5,S

6 0 p6,2 0 p6,4 0 p6,6 0 0 p6,C p6,S

7 0 0 p7,3 p7,4 0 0 p7,7 0 p7,C p7,S

8 0 p8,2 p8,3 p8,4 p8,5 p8,6 p8,7 p8,8 p8,C p8,S

C 0 0 0 0 0 0 0 0 1 0

S 0 0 0 0 0 0 0 0 0 1



(3.63)

Khasawneh et al. [2008] show how to translate the P -matrix into the M and F matrices

required for the f1,C and m1,j values in Equations 3.58 and 3.59.

3.2.2.3 General Solution for n-stage Serial and Parallel Production

A multi-stage production system may involve several parallel processes following serially

from one another, or parallel processes mixed with serial processes. Multi-stage serial

production systems were discussed by Bowling et al. [2004] and Selim and Al-Zu’bi [2011]

but could not deal with parallel production. A small but significant change is made here,

such that the formulation of the serial transition matrix and subsequent formulations

of the M and F matrices, are consistent with the methodology for parallel systems

discussed in the previous section. Figure 3.21 shows an initial processing stage (I), from

which scrap, rework and conforming items are generated. A distinction is made between

the rework state (2) and initial processing (I) such that rework is a separate operation to

the initial processing stage. This may or may-not accurately describe the flow through

a real production process (rework may occur on the same machine as the initial cut)

but only the cost value is relevant. This is conceptually different from past literature

where rework simply fed back into the initial processing stage. Figure 3.21 indicates the

feed-ins and feed-outs of each state. The transition matrix for this process is,
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Figure 3.21: Single-stage process

P =



I 2 C S

I 0 pI,2I pI,C pI,S

2 0 p2I,2I p2I,C p2I,S

C 0 0 1 0

S 0 0 0 1

, (3.64)

where 2I indicates stage one rework (state 2). For a single rework state process, the

probabilities of conformance, rework and scrap are identical to the initial probabilities

of conformance, rework and scrap. Therefore, the following simplifying conditions are

met,

pI,2I = p2I,2I , and pI,C = p2I,C. (3.65)

The corresponding F and M matrices are,

M =


I 2

I 1
pI,2I

1−pI,2I

2 0 1
1−pI,2I

. (3.66)

and

F =


C S

I
pI,C

1−pI,2I
pI,S

1−pI,2I

2
pI,C

1−pI,2I
pI,S

1−pI,2I

. (3.67)
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The expected profit for this one feature example is,

E(PR) =

Conformance︷ ︸︸ ︷
SP

pI,C
1− p2I,2I

−PC1 −
Scrap 1st state︷ ︸︸ ︷
SCIpI,S

− SC2I

pI,2I p2I,S

1− p2I,2I︸ ︷︷ ︸
Scrap 2nd state

−RCII

1

1− p2I,2I︸ ︷︷ ︸
Rework 2nd state

.
(3.68)

Equation 3.68 reduces to Equation 3.70 by acknowledging the scrap terms can be reduced

by writing,

C = SCI pI,S + SC2I

pI,2Ip2I,S

1− p2I,2I

where the cost of scrap is the same from state I and from state 2I hence, SCI = SC2I .

The probability of scrap from state I is the same as the probability of scrap from state

2I hence, pI,S = p2I,S . The probability of rework components feeding into state 2I from

state I is the same as the probability of rework from state 2I back to state 2I hence,

pI,2I = p2I,2I , therefore,

C(1− pI,2I) =(1− pI,2I)SCI pI,S − SCI pI,2I pI,S

C(1− pI,2I) =SCI pI,S(1− p2I,2I + pI,2I)

C =SCI

pI,S
1− pI,2I

.

(3.69)

Hence the expected profit is,

E(PR) =SP
pI,C

1− pI,2I
− PC − SCI

pI,S
1− pI,2I

−RCII

pI,2I
1− pI,2I

,

(3.70)

which is identical in form to Equation 2 from Bowling et al. [2004] and Selim and Al-Zu’bi

[2011].

The format shown in Figure 3.21 can easily be extended to a multi-stage process. An

absorbing Markov chain was developed for a two-stage example as shown by Figure 3.22.

As in Figure 3.21, the probability feed-ins and feed-outs to each stage are illustrated.

Examination of the F and M matrices from this two-stage process reveal a general

method by which the scrap, rework and conformance terms in Equation 3.59 can be

used recursively to model a multi-stage process where each stage can have multiple

features produced in parallel. The transition matrices for the two stage I and II are

given by Equation 3.71,
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Figure 3.22: A two-stage serial production process

P I =



I 2 C S

I 0 pI,2I pI,C pI,S

2 0 p2I,2I p2I,C p2I,S

C 0 0 1 0

S 0 0 0 1

, and P II =



I 2 C S

I 0 pII,2II pII,C pII,S

2 0 p2II,2II p2II,C p2II,S

C 0 0 1 0

S 0 0 0 1.


(3.71)

where 2I indicates the rework state from the first stage and 2II is the rework state from

the second stage. Additionally to Equation 3.65, the probabilities of conformance, scrap

and rework in the rework state (2) for the second stage are identical to the initial stage

probabilities such that,

pII,2II = p2I,2II and pII,C = p2II,C. (3.72)

The F and M matrices for both stages are,

F I =


C S

I
pI,C

1−pI,2I
pI,S

1−pI,2I

2I
pI,C

1−pI,2I
pI,S

1−pI,2I

 for stage I F II =


C S

II
pII,C

1−pII,2II
pII,S

1−pII,2II

2II
pII,C

1−pII,2II
pII,S

1−pII,2II

 for stage II

(3.73)

and

M I =


I 2I

I 1
pI,2I

1−pI,2I

2I 0 1
1−pI,2I

 for stage I M II =


I 2II

II 1
pII,2II

1−pII,2II

2II 0 1
1−pII,2II

 for stage II. (3.74)
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The expected profit is given by,

E(PR) =

Final conformance︷ ︸︸ ︷
SP fI,C fII,C −PCI −

Scrap I 1st state︷ ︸︸ ︷
SCI pI,S −

Scrap I 2nd state︷ ︸︸ ︷
SC2I

pI,2I p2I,S

1− pI,2I

−

Rework I 2nd state︷ ︸︸ ︷
RC2I

1

1− pI,2I
−

PCII − SCII pII,SI︸ ︷︷ ︸
Scrap II 1st state

− SC2II

pII,2II p2II,S

1− pII,2II︸ ︷︷ ︸
Scrap II 2nd state

−RC2II

1

1− pII,2II︸ ︷︷ ︸
Rework II 2nd state

 fI,C

(3.75)

In the same manner to Equation 3.69, the scrap terms related to the scrap from stage I

are reduced to,

SCI

pI,S
1− pI,2I

.

The scrap terms related to scrap from stage II can be written as follows,

C = SCII pII,S + SC2II

pII,2II p2II,S

1− p2II,2II

,

where the cost of scrap is the same irrespective whether the scrap originates from state II

or 2II, SCII = SC2,II. The probability of scrap from state II is the same as the probability

of scrap from state 2II hence, pII,S = p2II,S . The probability of rework components feeding

into state 2II from state II is the same as the probability of rework from state 2II back

to state 2II hence, pI,2II = p2I,2I , therefore,

C(1− pII,2II) =(1− p2II,2II)SCII pII,S − SCII pII,2II pII,S

C(1− pII,2I) =SCII pII,S(1− p2II,2II + pII,2II)

C =SCII

pII,S
1− pII,2II

.

(3.76)

Therefore Equation 3.75 can be written in a reduced form as,

E(PR) =SP fI,CfII,C − (PCI + PCII fI,C)

−
[
SCI

(
pI,S

1− p2I,2I

)
+ SCII

(
pII,S

1− pII,2II

)
fI,C

]
−RC2I mI,2I −RC2II mII,2II fI,C

(3.77)

This Equation also corresponds to Selim’s Equation 2 for two features which is illustrated
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in Appendix C since the two equations are not as obviously equivalent as the one feature

case (Equation 3.70). Notice that the second stage scrap and rework terms are multiplied

by the final conformance probability from the previous stage pI,C/(1−pI,2I). This allows

each stage to be modelled as a single-stage process reminiscent of Equations 3.64, 3.66

and 3.67. In essence, the scrap, rework and conformance probabilities from each stage

are multiplied by the final conformance from the previous stage (for the first stage this

is one). Thus, the expected profit can be written as

E(PR) =SP
w∏
i=I

fi,C

−
w∑
i=I

{(PCi + Sri +Rwi)}
l−I∏
l=I

fl,C ,

(3.78)

where W is the total number of stages. This Equation is similar to Equation 2 from

Selim and Al-Zu’bi [2011], however, it is necessary to use the fi,C and fl,C terms to allow

for a multi-state stage (a stage with parallel processing). The Sri and Rwi terms are

given from Equation 3.78.

3.3 Codification of Equation 3.78

The calculations and logic required to determine Equation 3.78 (detailed in Sections

3.2.2.1, 3.2.2.2 and 3.2.2.3) were codified in Matlab to enable automatic computation of

expected profit for a given number for features with a combination of serial of parallel

operations. The Matlab code is given in Appendix E. The main function, StageCostFun,

requires the following inputs;

MU: The means for each feature

sigs: Standard deviation of the manufacturing process for each feature

rho: Correlation matrix determining the correlation between features

U: Upper specification limit for each feature

L: Lower specification limits for each feature

R Cost: Rework cost vector for the rework costs for each state of each feature

S Cost: Scrap cost vector for the scrap costs for each state of each feature
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Figure 3.23: Diagrammatic overview of the code developed to calculate expected
profit

StageCostFun

The main function, StageCostFun, returns the elements necessary to compute Equation

3.78 where the major elements of the function are shown in Figure 3.23. The first

operation determines all possible permutations of rework, as shown in mathematical form

in Equation 3.50. The Matlab function combinator (Fig [2009]) is used to determine

all permutations given the total number of features (N) and the number of features

requiring rework (k). From this the S-matrix can be found and the binary γ-values

determined (Equations 3.51 and 3.53). The probabilities of components transferring

between sates is computed by an axillary function, Probs nVars, which is explained in

more detail under the proceeding headings. The three outputs from the Probs nVars
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function feed back to the StageCostFun function. The first, pSs , is a vector containing

the probabilities components are scrapped. This is used by the Scrap terms (Sri) section

of the code, which is a codified version of the Srw term given in Equation 3.59. The

second output, P , is the transition matrix which is used to generate the F and M -

matrices as described by Equation 3.30 and the description in Section 3.2. The F -

matrix terms are used to define the final conformance from a particular stage and the

scrap quantities. The Rework terms section of the code requires the M -matrix (Rww,

Equation 3.59). The third output from Probs nVars, PIs , contains all the probabilities

of components going from a stage I, II, III, . . . to another state. These terms are required

by the kDMatrix function, discussed below. The three outputs from this StageCostFun

function correspond to the Sri, Rwi, Fi,C and Fl,C terms in Equation 3.78.

kSMatrix

The function kSMatrix is an auxiliary function that takes inputs relating to all the pos-

sible rework permutations (UP and UPv) and returns the S-matrix into StageCostFun.

The other inputs are constants given in Section 3.2. The function uses the permutations

provided by combinator (Fig [2009]), from within StageCostFun, and determines the

binary values of the γ elements of the S-matrix (Equations 3.51 and 3.53).

kDMatrix

This auxiliary function is used by StageCostFun to determine the D-matrix which is

used in the computation of the scrap terms, Srw, in Equation 3.59. The probabilities

of components transferring between states is given by the PIs vector which is present in

StageCostFun and computed by Probs nVars.

Probs nVars

The principle purpose of this function is to return the transition matrix (P ) to the

StageCostFun function. The PIs and PSs vectors, which are also outputs, are part of

the complete transition matrix. The code first determines all the possible probabilities

of transferring from one state to another (PPS vector). The Matlab function mvncdf

(Mathworks [2012]) is used to determine the values of these probabilities, which assumes

the distributions are normally distributed. This is a codified version of Equation 3.19

which utilises the procedures illustrated by Genz and Bretz [2002] and Genz [2004].

Although normal distributions are assumed, this is not a limiting assumption and the

mvncdf function (Mathworks [2012]) can be replaced by another function to compute
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probabilities for distributions that are non-normal (see Chapter 4). The S-matrix is

used in conjunction with the PPS vector to generate the transition matrix for a given

number of features.

3.4 Optimal Mean Setting Using Equation 3.78 - Numer-

ical Examples

To demonstrate the use and application of Equation 3.78 and the code described in

Section 3.3, a series of numerical examples are given.

a. Single stage, single feature, serial production.

b. Two stage, two feature, serial production.

c. Single stage, two feature, parallel production.

d. Multiple stages, multiple features, combined serial and parallel production.

Section 3.1.2 showed in order to find optimal means for the processing of dual features,

the means for single feature rework and dual feature rework must be optimised sepa-

rately. This was contrary to the literature where no distinction was made between single

feature and dual feature rework. The numerical examples given in items a to d do not

use this new method (single and dual feature rework are not optimised independently),

which is covered in detail in the proceeding Section 3.5.

For each example the steps involved in obtaining the expected profit equation are de-

tailed. This is intended as a useful reference on the application of Equations 3.78 and

3.59 as well as demonstrating the effectiveness of these equations over the methodology

in the current literature; which are wrong for parallel cases and require the expected

profit equations to be derived from first principles for serial cases.

3.4.1 Serial Production

a. Single Feature Numerical Example

For the production of a single feature in a single manufacturing stage, w = I and the

constants in Table 3.2 from Section 3.2.2.1 apply.
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1-feature m β α η δ

k= 1 1 0 2 2 1

Table 3.2: Constants for one stage, one feature example

Equation 3.78 is,

E(PR) = SP
I∏
i=I

fi,C −
I∑
i=I

{(PCi + Sri +Rwi)}
0∏
l=I

fl,C ,

where the S and D matrices required for SrI are,

1S =
[ x1

2 1
]

(x1) and
1
D =

[ 2

2 pI,2I

]
(2).

This makes the SrI and RwI terms,

Srw = SCw pw,S −
1∑

k=1

2∑
j=2

(
SCj

[
kS2,j

kD2,j
pj,S

1− pj,j

])
,

SrI = SCI pI,S −
(
SC2

[
pI,2

pI,S
1− p2,2

])
,

RwI = RC2mI,2.

Therefore, the expected profit as generated by Equations 3.78 and 3.59 is

E(PR) =SP fI,C − PC1 − SCIpI,S − SC2
pI,2I p2I,S

1− p2I,2I

−RC2mI,2. (3.79)

The F and M matrices are found using the method described in Section 3.2, which

contains the f and m terms in Equation 3.79. The transition matrix (P ), which is

necessary for the computation of the F and M matrices, is found using Equation 3.61

from Section 3.2.2.2 where,

1Γ =
∑

1S∀ [2,2],2
1J∀ [2,2],2 and 1J =

[ 2

2 p2,2

]
.

Substituting this value into the general formulation for the transition matrix (Equation

3.60), gives the Transition matrix shown in Equation 3.64 in Section 3.2.2.3. The F

and M matrices (Equations 3.66 and 3.66 ) are also given providing all the elements

required to compute Equation 3.79.
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Figure 3.24: Variation of expected profit, scrap, rework, and total production costs
with the mean (µ)

The specification limits, process variability and costs are shown in Table 3.3. These

values are the same as ‘Numerical example - 5.1 Single-Stage system’ from Bowling

et al. [2004] and the numerical example from Selim and Al-Zu’bi [2011]. The profit,

scrap cost, rework cost and total production cost (from Equation 3.79) are plotted in

Figure 3.24 versus the mean (µ). Production cost is E(PR) − SP fI,C , rework cost is

RC2mI,2 and scrap cost SCIpI,S + SC2
pI,2I p2I,S
1−p2I,2I

. The plot clearly reveals the optimal

mean to minimise the production cost, µopt = 10.09 (obtained using Matlab’s fmincon

function (Mathworks [2012])), is not the same as the optimum mean for maximum profit,

µopt = 10.61, located by the markers. Thus, finding the optimal mean to minimise

the scrap and rework cost will not maximise the profit since it may pay to have a

greater rework cost if it increases the number of conforming components that can be

sold (reducing scrap).

Variable Value Costs Value

U 12 SP 120

L 8 PC 25

σ 1 RC 10

SC 15

Table 3.3: Inputs for the plot in Figure 3.24

b. Two Features, Two Stage Numerical Example

For the production of two features in two manufacturing stages W = II and the following

constants from Section 3.2.2.1 apply.
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1-feature m β α η δ

k = 1 2 0 2 0 2

Table 3.4: Constants for one stage, one feature example

The general equation for expected profit becomes,

E(PR) = SP
II∏
i=I

fi,C −
II∑
i=I

{(PCi + Sri +Rwi)}
I∏
l=I

fl,C . (3.80)

The S and D matrices for each of the stages, I and II, have the same form as the single

feature case given by,

1S =
[ x1

2 1
]

(x1) and
1
D =

[ 2

2 pI,2I

]
(2),

for the first stage (I) and

1S =
[ x1

2 1
]

(x1) and
1
D =

[ 2

2 pII,2II

]
(2),

for the second stage (II). The Srw terms are given by,

Srw = SCw pw,S −
1∑

k=1

2∑
j=2

(
SCj

[
kS2,j

kD2,j
pjw,S

1− pjw,jw

])
,

where the unbounded summation term is not present as there is only one term inside

the square brackets. Each of the iterations for the I and II stages are,

SrI = SCI pI,S −
(
SC2I

[
pI,2I

pI,S

1− p2I,2I

])
for stage I

SrII = SCII pII,S −
(
SC2II

[
pII,2II

pII,S

1− p2II,2II

])
for stage II

The rework terms for the two stages are,

RwI = RC2I mI,2I and RwII = RC2II mII,2II .

For both manufacturing stages (I and II), the expected profit Equation 3.80 becomes,

E(PR) =SP fI,C fII,C − PCI − SCI pI,S − SC2I

pI,2I p2I,S

1− pI,2I
−RC2I mI,2I

−
[
PCII − SCII pII,SI

− SC2II

pII,2II p2II,S

1− pII,2II
−RC2II mII,2II

]
fI,C .

(3.81)
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As in the previous example, a single feature and a single manufacturing stage, the

transition matrix (P ) is required to establish the F and M matrices which contain the

f and m terms. As there are two stages, there are two transition matrices and hence

two Γ values given by,
1Γw =

∑
1S∀ [2,2],2

1J∀ [2,2],2,

where

1J I =
[ 2

2 p2I,2I

]
for stage I and 1J II =

[ 2

2 p2II,2II

]
for stage II.

Substituting these value into the general formulation for the transition matrix (Equation

3.60), gives the Transition matrices shown in Equation 3.71 in Section 3.2.2.3. The F

and M matrices (Equations 3.73 and 3.74) are also given, providing all the elements

required to compute Equation 3.81.

The process specification limits, variability and costs are shown in Table 3.5. The data

is the same as ‘Numerical example - 5.2 Two-stage system’ from Bowling et al. [2004] the

numerical example in Selim and Al-Zu’bi [2011]. Note the scrap cost from the second

stage in the literature is defined as SC′2 = SC′1 + SC2 = 10 + 12 = 27.10 Figure 3.25

Variable Value Costs Value

U [12 17] SP 120

L [8 13] PC [25 20]

σ σx1 = σx2 = 1 RC [15 12]

SC [10 27]

Table 3.5: Inputs for the plot in Figure 3.24

illustrates the production, scrap and rework costs as well as profit in a two-dimensional

version of the plot in Figure 3.24. Profit is given from Equation 3.81, where production

cost is E(PR) − SP fI,C fII,C . Rework costs and scrap costs are associated with RC2I

and RC2II , and SCI, SC2I , SCII and SC2II respectively. The highest profit (71.41) was

obtained from Matlab’s fmincon function (Mathworks [2012]) with µx1 = 10.466 and

µx2 = 15.591, the same as Selim and Al-Zu’bi [2011]11. The minimum production cost

is shown at the extreme low end of the µx1 range (µx1 = 8). This is because production

cost includes the cost of production in the first and second stages. If µx1 was positioned

at the low end of the range, the majority of items would be scrap and would never

enter the second stage, therefore, they wouldn’t incur the second stage production cost.

10In this thesis SC2 is the cost of scrapping a component at the second stage which is inclusive all the
value added through the second stage manufacturing process. Thus SC2 in this thesis is equivalent to
SC′2 in the literature.

11The two stage, two feature numerical example given by Bowling et al. [2004] was incorrect due to
errors in the expected profit equation detailed in Section 2.5.
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Figure 3.25: Variation of expected profit, scrap, rework, and total production costs
with the means (µx1

and µx2
)

However, only a few items would conform after the second stage (few items to sell),

hence the profit is low. This highlights the importance of maximising profit rather than

attempting to reduce production cost.

3.4.2 Parallel Production

c. Two Features, One Stage Numerical Example

The production of two features in a single manufacturing stage is the simplest type of

parallel production, often refereed to as dual quality characteristics in the literature.

The value W = I and the following constants apply,

1-feature m β α η δ

k = 1 2 0 2 2 2

k = 2 1 2 4 4 3

Table 3.6: Constants for one stage a two features

The general equation for expected profit for two features manufactured in a single stage

is,

E(PR) = SP

I∏
i=I

fi,C −
I∑
i=I

{(PCi + Sri +Rwi)}
0∏
l=I

fl,C . (3.82)
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The S and D matrices are for k = 1 are given by,

1S =


x1 x2

2 1 0

3 0 1

4 1 1


(x1)

(x2)

(x1, x2)

and 1D =


2 3

2 pI,2 0

3 0 pI,3

4
pI,4pI,2
1−pI,4

pI,4pI,3
1−pI,4

.
For k = 2 the S and D matrices are,

2S =
[ x1,x2

4 1
]

(x1, x2) and
2
D =

[ 4

4 pI,4

]
.

The construction of the scrap terms is more involved for two features produced in par-

allel, due to the multiple terms in the S and D matrices and the two k-values and

consequently α and δ values. The w subscripts are not shown as there is only one stage.

SrI =SCI pI,S −
2∑

k=1

δ+1∑
j=α

(
SCj

∑[
kS∀ [α,4],j

kD∀ [α,4],j
pj,S

1− pj,j

])
.

For k = 1 and k = 2 the scrap terms are

SrI = SCI pI,S − SC2

[(
pI,2 +

pI,4pI,2
1− pI,4

)
p2,S

1− p2,2

]
for k = 1

− SC3

[(
pI,3 +

pI,4pI,3
1− pI,4

)
p3,S

1− p3,3

]

− SC4

[
pI,4 p4,S

1− p4,4

]
. for k = 2

There are three rework terms for this single manufacturing stage (I), given by,

RwI = RC2mI,2 +RC3mI,3 +RC4mI,4

Thus the expected profit from Equation 3.82 is,

E(PR) = SP fI,C − PC − SC1 pI,S − SC2

(
pI,4

(
pI,2

1− pI,4

)
+ pI,2

)
f2,S

− SC3

(
pI,4

(
pI,3

1− pI,4

)
+ pI,3

)
f3,S − SC4

(
pI,S

1− pI,4

)
pI,4

− RC2mI,2 −RC3mI,3 −RC4mI,4.

As before, the transition matrix (P ) is required to establish the F and M matrices,

which contain the f and m terms. As k = [1, 2], there are two Γ-matrices corresponding
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Stats. Values Costs Values

L [8, 13] SP [120]

U [12, 17] PC [45]

σ σx1 = σx2 = 1 RC [15, 12, 27]

SC [27, 27, 27, 27]

Table 3.7: Specification limits, process variation and cost related for two features
produced in parallel in a single manufacturing stage

to each k-value, where the parameters of the J and S-matrices vary according to the α

and η terms (given in Table 3.6).

kΓw =
∑

1S∀ [α,η],j
1J∀ [α,η],j

The k dependent J terms are,

1J =


2 3

2 p2,2 p2,3

3 p3,2 p3,3

4 p4,2 p4,3

 and 2J =
[ 4

4 p4,4

]
,

from which the transition matrix (Equation 3.60) can be constructed. The resulting

transition matrix is the same as Equation 3.35 shown in Section 3.2.2. The M and

F matrices are also illustrated in this Section (Equations 3.38 and 3.37 respectively).

This completes the information required to compute the expected profit for two features

produced in parallel in a single stage.

The process specification limits, variability and costs are shown in Table 3.7. To make

this example comparable to the production of two features in two manufacturing stages

the same data was used (Table 3.5 determined by summing the production cost for stage

I and II from Table 3.5. Similarly, the rework cost for dual feature rework was the sum

of the rework cost for each feature independently and the scrap cost was the sum of the

costs associated with scrapping each component independently. The scrap costs were

the same irrespective of which feature caused scrap, since a single scrap feature caused

the whole component to be designated scrap. Note, although a dual stage process was

examined in Section 3.2.2 (see input data in Table 3.1), the input data was changed to

match the serial production examples in Section 3.4.1.

Figure 3.26 illustrates the production, scrap and rework costs as well as profit versus

the mean settings µx1 and µx2 . While profit is given by Equation 3.82, production cost

is E(PR) − SP fI,C . Rework cost and scrap cost are also contained within Equation

3.82. The highest profit 71.17 (obtained using Matlab’s fmincon function (Mathworks
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Figure 3.26: Variation of expected profit, scrap, rework, and total production costs
with the means (µx1

and µx2
) in a single manufacturing stage

[2012])), with µx1 = 10.537 and µx2 = 15.590 was ≈ 0.3% less than achieved when each

feature was manufactured independently (previous example). The minimum production

cost was 46.753, located at µx1 = 10.128 and µx1 = 15.181. Since there was only one

manufacturing stage there was no monetary benefit to biasing scrap for the first feature

to reduce production cost, as was observed in the previous example.

d. Multiple Features, Multiple Stages

Equation 3.78 was derived in order to specify the expected profit for the production

of any number of features in any combination of serial and parallel operations. The

expected profit for all eight possible permutations for the production of four features

is illustrated here. This study gives the optimum number of inspection stations to

maximise the profit for the production of features. Since parallel operations combine

the production of at least two features, this removes at least one dedicated feature

inspection stage. Removing an inspection stage may have a financial benefit, but also

increases the risk of scrapping a component. Such a principle is analogous to a study

by Mittal and McNally [1994] (with a numerical example in Marsh et al. [2010]), where

the number of inspection stages were optimised to maximise profit for semiconductor

manufacturing. A numerical example is given here, derived from the production of four

features used by Bowling et al. [2004] and Selim and Al-Zu’bi [2011].

Bowling et al. [2004] and Selim and Al-Zu’bi [2011] showed the expected profit for the

four features produced in series, the other seven combinations of series and parallel



Chapter 3. Optimal Mean Setting 108

Figure 3.27: Possible manufacturing sequences for four features

operations are considered are detailed by Figure 3.27. As was implicitly assumed in the

example from Bowling et al. [2004] and Selim and Al-Zu’bi [2011], the order the features

are produced is considered important, such that the first feature must be produced before

the second and so on. The inspection processes are not shown in Figure 3.27, but an

inspection process is implicit after each stage (after each block or column of blocks) and

applies just to the feature or features in that block or column. Therefore, Sequence 1

had four inspection processes, Sequence 2 had three inspection processes and Sequence 8

had just one inspection process, inspecting all four features in one inspection operation.

Table 3.8 gives the costs, process variations and upper and lower specification limits

used by the numerical example, which are the same data used by Bowling et al. [2004]

and Selim and Al-Zu’bi [2011]. The selling price was 120 units.

Feature

Parameter 1 2 3 4

PC 25 20 12 15

RC 15 12 8 10

SC 10 17 5 12

L 8 13 10 7

U 12 17 14 11

σ 1 1 1 1

Table 3.8: Cost and process data for the four features

The scrap, processing and rework costs from the serial examples given by Bowling et al.

[2004] and Selim and Al-Zu’bi [2011] are not directly applicable to parallel processes.

To ensure continuity between the eight manufacturing sequences costs were allocated as

follows:
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� The scrap costs for parallel processes were cumulative. Therefore, if any one feature

was scrap, the sum of all the feature scrap costs in that parallel process were taken

as the realised scrap cost. For example, if feature 2 was scrap from Sequence 3

(Figure 3.27), the scrap cost was calculated as 10 + 17 + 5 = 32. Even though

features 1 and 3 may have conformed, the item was still scrap (due to feature 2).

Therefore it incurred the feature 3 scrap cost (as feature 3 was still manufactured).

� The processing costs were also cumulative. Thus, the processing cost for a parallel

operation was the sum of all the feature processing costs in that parallel operation.

Therefore, the processing cost for the second stage of Sequence 3 was, 20+12 = 32

(the feature 2 and feature 3 PCs).

� Rework created from parallel operations could apply to single or multiple features.

For the parallel operation (stage 2) in Sequence 3, the rework operations were

either single feature rework on feature 2 or feature 3, or dual feature rework on

both features 2 and 3. The rework costs were 12, 8 and 20, respectively.

Equation 3.78 was used to determine the expressions for expected profit for each of the

eight sequences shown in Figure 3.27. The means for each feature were then optimised to

maximise profit using Matlab’s fmincon function Mathworks [2012]. Two sets of results

were obtained, E(PR) and E(PR)−I (Figure 3.28). The value E(PR) is the result from

Equation 3.78 while the E(PR)− I accounts for the cost of an inspection station, given

the inspection cost I. The presence of an inspection operation incurred a cost of 0.5

units with a further 0.5 units for each feature inspected. The inspection costs for each

sequence are tabulated in Table 3.9. The variation of the inspection costs was designed

to represent the likelihood that it would cost less to inspect several features together,

than to have a dedicated inspection stop for each feature, before manufacturing the next

feature.

The E(PR) results show Sequence 1 was the most profitable method of manufactur-

ing the four features and Sequence 8 the least profitable (Figure 3.28 and Table 3.9).

Sequence 1 was more profitable as total scrap cost was minimised, since the failure of

any feature to conform only resulted in the scrap cost up to that point. The failure

of any feature to conform in Sequence 8 resulted in the scrap cost for all four features,

irrespective of which one failed. For example, consider the possibility that feature 2 was

designated scrap in both sequences. The total scrap cost for Sequence 1 would be the

sum of the scrap costs for the first and second features, 27 units. The total scrap cost

for Sequence 2 would be 44 units, since the whole item would be scrapped despite the

fact that the other three features may have conformed. The E(PR) − I results show

Sequence 1 was the least profitable and Sequence 6 was the most profitable. Reducing
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Seq. Optimal Means E(PR) I E(PR)− I Rank 1 Rank 2

1 [10.389, 15.537, 12.674, 9.660] 41.7523 4 37.7523 1 8

2 [10.482, 15.535, 12.667, 9.660] 41.4665 3.5 37.9665 4 7

3 [10.388, 15.570, 12.666, 9.660] 41.6588 3.5 38.1588 2 5

4 [10.388, 15.537, 12.711, 9.659] 41.6501 3.5 38.1501 3 6

5 [10.482, 15.535, 12.711, 9.659] 41.3642 3 38.3642 6 4

6 [10.388, 15.615, 12.710, 9.657] 41.4215 3 38.9215 5 1

7 [10.516, 15.568, 12.664, 9.660] 41.2628 3 38.7628 7 3

8 [10.560, 15.613, 12.708, 9.656] 40.8657 3 38.8657 8 2

Table 3.9: Expected profit and means for the eight manufacturing sequences

Figure 3.28: Expected profit for the eight manufacturing sequences

the number of inspection operations was clearly beneficial, however, not worth the ex-

tra scrap cost risk by producing all four features in parallel (Sequence 8). Despite the

similarity between Sequences 6 and 7, Sequence 6 was ranked 1 while Sequence 7 was

ranked 3 (heading ‘Rank 2’ on Table 3.9). The relatively high cost of scrap for feature

4 was the primary factor in this. While it was worth the higher scrap cost to reduce the

number of inspection operations in Sequence 6, this was not the case in Sequence 7 as

the increased scrap cost of feature 4 was too great.

3.5 Optimal Mean Setting for Parallel Production

Section 3.1.2 revealed that greater profit could be gained from parallel production sys-

tems by optimising the feature means separately depending on the number of features in

a rework stage. This new optimisation procedure for Optimal Mean Setting is referred

to a Case II while the conventional methodology present in the literature is referred to



Chapter 3. Optimal Mean Setting 111

as Case I. In this section the corrected Markovian methodology (from Section 3.2.2) was

used to compare the Case II Optimal Mean Setting method with the Case I method.

3.5.1 Comparison of Case I and Case II Optimal Mean Setting Method-

ologies for Two Features

The flow of features through a dual feature production system was illustrated by Figure

3.5. For the Case I methodology, the mean settings for features x1 and x2 in the initial

state and state 4 are the same as x1 in state 2 and x2 in state 3. In the Case II

methodology, the mean settings for features x1 and x2 in the initial state and state 4 are

optimised separately to the single feature rework in states 2 and 3. Therefore, two means

were optimised using the case I methodology and four means were optimised in the case

II methodology. Two sets of cost values and statistical moments applicable to the dual

feature Optimal Mean Setting problem were available from Khasawneh et al. [2008] and

Peng and Khasawneh [2014]. Different values have been used here to better graphically

highlight the profit differences between the Case I and Case II methods. The cost values

and statistical moments of the problem are shown in Table 3.10. The scrap costs are the

same irrespective of which state a component is in when it gets designated scrap. Both

Khasawneh et al. [2008] and Peng and Khasawneh [2014] used different values depending

on the scrap state. For example, the scrap cost for a component scrapped from state 2

was less than the scrap cost for a component scrapped in state 4. This implies that the

rework operations add value to a component. This is true for certain operations such as

additive manufacturing processes, however, it is not necessarily true for material removal

operations. Ultimately the cost of scrap at various states depends on the specifics of the

component, features, process and the manufacturer’s contracts in the way scrap cost is

determined. A flat cost value for each state was used for this example as it simplifies

the subsequent analysis for determining the effect of the Case II optimisation method

versus the Case I optimisation method. An example of varying scrap costs for each

rework state is given in Appendix D. The expected profit given from Equation 3.78

Variable Value

U [6 6]

L [4 4]

Rc [25 25 50]

Sc [150, 150, 150, 150]

SP 500

PC 50

Σ [2, 0; 0, 2]

Table 3.10: Dual feature numerical example input parameters
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Figure 3.29: Profit surfaces for Case I and Case II (optimisation of two and four
means respectively)

was plotted for values of µ1,1 and µ1,2 in Figure 3.29. Case I represents the variability

of expected profit for µ1,1 and µ1,2. The case II surface was generated by inputting a

µ1,1, µ1,2 pair and resolving the µ2,1 and µ2,2 values by satisfying Equation 3.78 for the

specified µ1,1 and µ1,2 inputs12. The Matlab function ‘fmincon’ (Mathworks [2012]) was

used to implement this. The case II surface is higher at every point due to optimising the

single feature rework means separately from dual feature processing. This also yielded

slightly different µ1,1 and µ1,2 optimum values, as there was no compromise between dual

feature and single feature cost. The dual feature means were lower than the single feature

means, primarily due to the RX1,X2 rectangle in (Figure 3.31). Components falling into

this region (RX1,X2 rectangle) experienced double the single feature rework cost as well

as the increased probability of further rework. The double feature rework state did not

exist for a single feature, which allowed the single feature means to be biased to a greater

extent towards rework than the double feature case, without incurring a cost penalty.

The profits and Optimal Mean Settings are displayed in Table 3.11 which corresponds

to the markers on Figure 3.29.

The bar plot in Figure 3.30 shows the rework and scrap costs from the initial and

rework states, that were described on Figure 3.5. The initial scrap cost was less for

Case I compared to Case II (SrI bar in Figure 3.30)) as µI
1,1 and µI

1,2 were more rework

biased than µII
1,1 and µII

1,2. Consequentially, the dual feature rework cost (Rw4) for

Case I was comparatively high due to this rework bias. The last two Case II means,

µII
2,1 and µII

2,2, which applied to single feature rework, were higher than µI
1,1 and µI

1,2,

generating less Sr2 and Sr3 scrap from Case II, but more Rw2 and Rw3 rework. There

12For Case II, µ1,1, µ1,2 are the means applied when both features are manufactured or reworked
prior to an inspection process. The µ2,1 and µ2,2 means are applied when features are manufactured or
reworked independently.
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Value

Case I Profit 40.87

Case II Profit 41.66

Case I Production Cost 146.44

Case II Production Cost 145.75

Case I means (µI
1,1, µ

I
1,2) 6.85, 6.85

Case II means (µII
1,1, µ

II
1,2, µ

II
2,1, µ

II
2,2) 6.75, 6.75, 7.02, 7.02

Case I Final Conformance Prob. 0.5933

Case II Final Conformance Prob. 0.5935

Case I Final Scrap Prob. 0.4067

Case II Final Scrap Prob. 0.4065

Table 3.11: Optimisation results

Figure 3.30: Scrap and rework costs from the initial and rework states

was a slightly higher production of dual feature scrap, Sr4, for Case I compared to Case

II. The reason for this is multifaceted; firstly the probability of scrap from the dual

feature rework state (state 4) for Case I was 0.1481, but greater for Case II at 0.1622.

However, the probability of producing dual feature rework was greater for Case I with the

probability pI,4 = p4,4 = 0.4418 compared to 0.4171 for Case II. Accounting for the initial

probability of components feeding into the dual feature rework state (state 4) and the

probability of rework back into the dual feature rework state, the probability for Case I

was pI,4/(1−p4,4) = 0.7914 and 0.7155 for Case II. Thus the probability of scrap from the

state 4, for Case I was (pI,4/(1− p4,4)) ∗ p4,S = 0.7914 ∗ 0.1481 = 0.1172. For Case II the

scrap probability from the state 4 was lower at (pI,4/(1−p4,4))∗p4,S = 0.7155∗0.1622 =

0.1161, hence the lower scrap cost for Case II relative to Case I. Overall, the reduced

scrap and dual feature rework costs from the case II led to a reduced production cost

and a 1.93% increase in profit over Case I. The number of items eventually conforming

was also slightly higher in Case II.
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Figure 3.31: Scatter plot with correlation (ρ = −0.8 and ρ = 0.8)

3.5.2 Influence of Correlation

Correlation alters the probability of components falling into single and dual feature

rework states, which in turn may influence the optimal means. Figure 3.31 indicates the

scatter of points with correlation, ρ = 0.8 and ρ = −0.8 where the correlation matrix is,

Σ =

[
σ1 ρσ1σ2

ρσ1σ2 σ2

]
.

The black points correspond to the ρ = 0.8 value, while the blue points correspond to

ρ = −0.8. Table 3.12 indicates the differences between the number of points falling in

the various regions after one processing operation (defined in Figure 3.7) compared to

the uncorrelated example, where ρ = 0. Both positive and negative correlation almost

halved the probability of points falling in the single feature rework regions compared to

no correlation. Conformance was increased in both cases. The changes in scrap and dual

feature rework depended on the sign of the correlation parameter ρ. Positive correlation

almost quadrupled the probability of dual feature rework and reduced the probability of

scrap by around a quarter. Negative correlation reduced the probability of dual feature

rework by a factor of over 500 and slightly increased the probability of scrap. This is

clear from the orientations of the point clusters in Figure 3.31.

The effect of correlation on the optimal means and profits are tabulated in Table 3.13.

For ρ = 0.8, profits were greater for both Case I and II over the uncorrelated example due

to a reduced scrap and rework cost and higher overall conformance. The profit increase

when ρ = −0.8, for Cases I and II, was solely due to the reduction in production cost

(scrap and rework cost); the final conformance was slightly lower than the uncorrelated

example (Table 3.11).
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Region ρ = 0.8 ρ = 0 ρ = −0.8 Ratio, ρ = 0.8 Ratio, ρ = −0.8

Rx1 0.0610 0.1083 0.0610 0.5632 0.5623

Rx2 0.0610 0.1083 0.0610 0.5632 0.5623

Rx1,x1 0.0976 0.0252 5.62E-5 3.8730 0.0022

C 0.5608 0.4661 0.5608 1.203 1.203

S 0.2196 0.2922 0.3173 0.7515 1.0860

Table 3.12: Impact of correlation on the probability of components falling into rework,
scrap and conformance

The Case I means for ρ = 0.8 were lower than the Case I means with no correlation,

ρ = 0, to reduce the proportion of components falling into the RX1,X2 region, given

positive correlation increased the probability of RX1,X2 rework. The µII
1,1 and µII

1,2 means

for ρ = 0.8 were lower than the µII
1,1 and µII

1,2 means for ρ = 0, for the same reason. They

were also lower than the µI
1,1 and µI

1,2 means (for ρ = 0.8), as they were optimised

separately to the single feature means. Note, the µII
2,1 and µII

2,2 means are very similar

to the uncorrelated case (ρ = 0) indicating correlation did not affect the Optimal Mean

Setting for the single feature rework means.

The Case I means for ρ = −0.8 were also lower than in the uncorrelated case. To reduce

cost, the extremities of the negatively correlated scatter region in Figure 3.31 moved to

reduce the probability of scrap but not so far to make rework, specifically Rx1Rx2 rework,

too significant. This was achieved by shifting the mean of the distribution towards to

(0,0) compared to the uncorrelated case (ρ = 0), but to a lesser extent than in the

positive correlated case (ρ = 0.8). The µII
1,1 and µII

1,2 means of Case II, where ρ = −0.8,

were also lower than the uncorrelated case for the same reason and again lower than

µI
1,1 and µI

1,2 due to the differences between the case I and case II methodologies (as

explained in Section 3.2.2). The µII
2,1 and µII

2,2 means from Case II were the same as the

uncorrelated and positive correlated cases as they only applied to single feature rework

and therefore were not affected by correlation.

The sensitivity of profit to correlation is plotted in Figure 3.32 for both cases. The

difference between the two cases is shown by the orange line and corresponds to the scale

on right hand y-axis. In general, the greater the degree of positive or negative correlation

the higher the profit with a minimum profit existing at ρ ≈ 0.22. The actual minimum

profit for a given correlation depended on the geometry of the scrap and rework regions

and relative standard deviations and tolerance bounds of each feature. As ρ → 1 the

difference between the two and four mean case diminished as all components designated

rework lay in the dual feature rework region. Thus, the benefit of separately optimising

the single feature rework means was lost as there was negligible single feature rework.

This is evident by considering Figure 3.31, the black points would converge on a single

diagonal as ρ → 1. The same converging effect occurs for ρ → −1, although the line
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ρ Cases Value

0.8 Case I Profit 56.4038

0.8 Case II Profit 58.3309

0.8 Case I Production Cost 140.24

0.8 Case II Production Cost 138.93

0.8 Case I Final Conformance 0.6166

0.8 Case II Final Conformance 0.6181

0.8 Case I means (µI
1,1, µ

I
1,2) 6.65, 6.65

0.8 Case II means (µII
1,1, µ

II
1,2, µ

II
2,1, µ

II
2,2) 6.52, 6.52, 7.02, 7.02

−0.8 Case I Profit 45.11

−0.8 Case II Profit 47.10

−0.8 Case I Production Cost 139.65

−0.8 Case II Production Cost 136.60

−0.8 Case I Final Conformance 0.5869

−0.8 Case II Final Conformance 0.5842

−0.8 Case I means (µI
1,1, µ

I
1,2) 6.80, 6.80

−0.8 Case II means (µII
1,1, µ

II
1,2, µ

II
2,1, µ

II
2,2) 6.57, 6.57, 7.02, 7.02

Table 3.13: Optimisation results for correlated features

Figure 3.32: Profit vs. correlation

orientation is changed by 90 degrees. However, as can be seen from Figure 3.31, the blue

points would remain in the single feature rework regions as ρ→ −1. It is also likely dual

feature rework would exist (depending on the geometry of the scrap and rework regions

and the standard deviation), thus there would still be a benefit to optimising dual and

single feature means separately. This led to the profit difference between Case I and II

for negative correlation.
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Figure 3.33: Profit and profit differences between Case I and Case II methodologies
for two, three and four features

3.5.3 Multiple Features - Case I and Case II Comparison

The greater the number of features being manufacturing prior to an inspection operation

(parallel production), the greater the potential benefit of the Case II methodology over

the Case I methodology. This statement is supported by Figure 3.33. Profit is shown

in the left y-axis while the difference between the Case I and Case II methodologies is

indicated on the right y-axis. The x-axis represents selling price which determines the

maximum profit for each two, three and four feature example. The profits for each of

the two, three and four feature examples were optimised with both the Case I and Case

II methodologies (solid lines on Figure 3.33). The profit differences between Case II and

Case I methods are illustrated by the dashed lines on Figure 3.33. As the number of

features increased, there was a clear trend for the differences between the profits (Case

II minus Case I) to also increase for all profit levels. The difference for the two feature

example was around 0.8, while the profit difference for the four features case varied

between ∼ 2.1 to ∼ 2.8. The statistical moments and costs were kept consistent for each

example where L = 4, U = 6, σ = 2 and correlation was kept at zero (ρ = 0). As the

number of features increased, the processing and rework costs remained at PC = 25,

RC = 25 respectively. Scrap cost (SC) was 100 plus the processing cost for each feature

(25). Thus, for two features, SC = 150, three features, SC = 175 and for four features

SC = 200. Multi-feature rework cost was the sum of the rework costs for each feature,

thus for two features RC = 50, three feature RC = 75 and four features RC = 100.

The Case II methodology has clear profit advantage over the Case I methodology used

in the literature. The increased effectiveness of the Case II methodology has sound

principles discussed in detail in Section 3.1.2 but stems from the fact the Optimal Mean
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Settings to maximise profit are different for multi-feature rework compared to single

feature rework. The means optimised via the Case I method are a compromise between

all rework costs.

The practicality of using the Case II methodology is limited by the ability of the opti-

misation algorithm to handle large numbers of dimensions due to the matrix inversion

(To find the M -matrix, shown in Section 3.2). The number of means required to be

optimised with the Case II methodology scales as N2, where N is the number of features.

In contrast, the number of means required to be optimised with the Case I methodology

scales with the number of features, N . As was shown in Appendix A, the profit function

is convex and therefore local search optimisation algorithms are suited to the task such

as Matlab’s fminsearch (Mathworks [2012]). If speed of optimisation is critical (for high

N) it may be possible to reduce the dimensionality of the problem, since the probability

of rework for single and low combinations of features is higher than for rework involving

all or most of the features. Therefore, it may be practical to leave out the means for

rework with high numbers of features, as these are unlikely to make a significant impact

on profit. Alternatively Section 5.2.3 of the Future Work section discusses a method to

avoid the matrix inversion in the first place removing this limitation.

The performance of the Case II method over the Case I method is dependent on the

exact nature of the problem in terms of statistical moments, specification limits and the

costs and selling price. The conditions under which the Case II method has advantages

over the Case I method are:

a. Where the cost of rework involving multiple features is greater than the cost of

rework involving low numbers of features, or single features.

b. Where correlation biases the probability of particular type or types of rework. If

all types of rework were equally probable, and the rework costs were all equal, the

Case II method would return the same result as the Case I method.



Chapter 4

Uncertainty Modelling with

Non-Normal Distributions

This Chapter investigates the outcome of using Optimal Mean Setting on the distribu-

tion of the manufactured geometry. The act of processing rework modifies the feature

distribution from the original normal distribution to some truncated form. In the case

of parallel production utilising Optimal Mean Setting several optimal means exist (de-

pending on the type of rework), which make the feature distribution non-normal. These

features either progress to subsequent manufacturing stages or form part of the final

geometry of the component. It is important to establish the shape of feature distribu-

tions as it may impact the rework and scrap probabilities of subsequent manufacturing

operations and will affect the performance distribution of the finished component.

The effect of non-normal distributions (created from applying Optimal Mean Setting) on

the final manufactured distribution of components has not been studied in the literature.

Although Bowling et al. [2004], Khasawneh et al. [2008], Selim and Al-Zu’bi [2011]

and Peng and Khasawneh [2014] all studied the final shape of feature distributions

after rework, the final shape of the manufactured component, comprising of several

features is only given by studying the joint distribution. Parametric distributions, like

the normal distribution, often have multivariate forms which can be used to model the

joint distribution for several features. However, this requires that all of the component’s

feature distributions can be represented by a univariate (marginal) version of the joint

parametric distribution. As was seen in Section 3.1.2 in Chapter 3, Optimal Mean

Setting for parallel production will not give normal feature distributions (even if the

process variation is inherently normal), as the single feature rework mean is different

to the dual feature mean. Furthermore, the manufacturing process variation may not

be normal in the first place. In these cases the joint distribution cannot be given by a

119
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multivariate parametric distribution, as the distributions for the features may be from

different parametric families1. For variations of truncated normal distributions this

problem can be solved by utilising mixture models, this is investigated in Section 4.1.

However, for generalised cases the mathematical concept of copulas functions are used to

create joint distributions for any general feature distribution (Section 4.2). This Chapter

describes the application of copula functions to the area of Optimal Mean Setting which

is the primary contribution to knowledge, (as implied in point 4, Section 1.6 in Chapter

1). A practical case study is used in Section 4.3 to illustrate how copulas can be utilised

in conjunction with Optimal Mean Setting to produce the inner diameters of the big

and small ends of a connecting rod to high precision. The Chapter closes with an

in-depth case study of how Optimal Mean Setting may be applied to maximise the

performance of a film cooling hole by tolerance tightening (Section 4.4). A comparison

is made between the cost of producing the cooling hole using Optimal Mean Setting and

a standard production technique. The manufacturing cost is vastly reduced by using

Optimal Mean Setting.

4.1 Mixture Models for Truncated Normal Distributions

An illustration of the truncated distribution of a single feature subject to rework was

shown in Figure 3.2 (pink line). Given the variation of the manufacturing process is

normally distributed the equation for such a distribution follows from the definition

of the normal probability density and cumulative density distributions (Wilhelm et al.

[2010]),

f(x,µ,σ,L,U) =
exp{−1

2(x− µ)TΣ−1(x− µ)}∫ U

L
exp{−1

2
(x− µ)TΣ−1(x− µ)} dx

(4.1)

This distribution assumes the nominal mean for the reworked features is the same as

the nominal mean for the initial operation. Chapter 2 showed the maximum profit

for parallel manufacturing systems was generated by optimising the means separately

depending on the number of features being processed. Thus the nominal mean for the

reworked components was not necessarily the same as the initial operation. Consequently

the distribution of conforming components after rework, for parallel operations, is highly

likely to be non-normally distributed2. One way to model the shape of the distribution

1If there is no correlation between the features the joint distribution is simply the product of the two
univariate distributions for each feature.

2Unless the costs and statistical moments of the problem happen to generate the same optimal means
for all rework states, which is highly improbable.
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of conforming components, where the means have been optimised using the Case II

(multiple mean) methodology, is to construct a Gaussian mixture model,

f(x|λ) =
N∑
i=I

wi f(x|µi,Σi) (4.2)

where λ = {wi,µi,Σi} for i = 1, 2, . . . , N and f(x|µi,Σi) is given by Equation 3.19 if

the features are normally distributed and Equation 4.1 if the feature distributions are

truncated. The weighting term, wi, is the probability of features exiting a particular

rework state or the initial operation. For example, in dual feature case, wI = pI,C , w2 =

f2,C

(
pI,4pI,2
(1−pI,2) + pI,2

)
, w3 = f3,C

(
pI,4pI,3
(1−pI,3) + pI,3

)
and w4 = pI,4

(
pI,S

1−pI,4

)
corresponding to

the quantities labelled in Figure 3.16 in Section 3.2.2. At the end of each stage in a

multi-stage system the probability density, f(x|λ), must also be multiplied by fi,C to

give the distribution of only conforming components.

The difference between the manufactured geometry for a two feature parallel production

example, obtained using the Case I and Case II optimisation methodologies, is illustrated

by Figure 4.1. The specification limits were, L = [3, 3], U = [7, 7], standard deviations

were σµ1 = σµ2 = 1, there was no correlation (ρ = 0) and the Case I means were

µI = [5.5, 5.5] while the Case II means were, µII = [5.5, 5.5, 7.0, 7.0]. The means were

arbitrarily chosen (no cost data or optimisation was performed) to illustrate the different

geometry distributions, but are similar to what would be expected from an optimisation,

where the Case II single feature rework means are more rework biased than the dual

feature means. The integral under both surfaces is one, however, the Case II (blue)

surface has a flatter peak skewed towards the upper specification limits. This was due

to the optimal mean of single feature reworks having values of 7.0 as opposed to 5.5 for

the initial operation and dual feature rework stage (stage 4).

In order to establish the distribution of the individual features it is possible to integrate

over the probability density surface. The marginal distribution for the x1-feature can be

obtained by integrating f (Figure 4.1) over x2. Similarly, integrating over x1 gives the

marginal density for the x2-feature. Since the x1 and x2 features have the same distri-

butions it is only necessary to perform the integration over one feature. The marginal

distribution for the Case I surface was computed from,

f I
X1

(x1) =

∞∫
−∞

exp{−1
2(x− µI)TΣ−1(x− µI)}∫ U

−∞
exp{−1

2
(x− µI)TΣ−1(x− µI)} dx

dx2. (4.3)

For the Case II surface let the means for manufacturing dual and single features be

differentiated by subscripts α and β. Thus, dual feature manufacturing means are µII
α =
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Figure 4.1: Difference between the manufactured geometry distributions using the
Case I and Case II optimal mean optimisation methodologies

[5.5, 5.5] and the single feature manufacturing means are µII
β = [7, 7]. The distribution

of the x1-feature is then,

f II
X1

(x1) =

∞∫
−∞


 exp{−1

2(x− µII
α)TΣ−1(x− µII

α)}∫ U

−∞
exp{−1

2
(x− µII

α)TΣ−1(x− µII
α)} dx

 (wI + w4)

+

 exp{−1
2(x− µII

β)TΣ−1(x− µII
β)}∫ U

−∞
exp{−1

2
(x− µII

β)TΣ−1(x− µII
β)} dx

 (w2 + w3)

 dx2,

(4.4)

with a similar expression for the x2 − feature marginal distribution. Notice in both

cases the limits of the integral in the denominator were set at −∞, this includes all the

scrap that would be produced during manufacture. If subsequent manufacturing stages

followed it would be necessary to include the lower specification limits L, to truncate the

distribution at the lower specification limits. The shape of the marginal distributions are

shown in Figure 4.2 for both cases (the distributions for the x1-feature and x2-feature

are the same hence only one feature for each case is plotted). The introduction of the

single feature rework with higher means skewed the distribution mean and mode towards

the upper specification limit.
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Figure 4.2: caption

The weighted sum model (Equation 4.2) is effective in modelling the resulting joint

distribution where the Case II optimal mean methodology is applied. However, the mul-

tivariate normal distribution model (Equations 4.3 and 4.4) is restrictive in describing

the possible shape of variation of manufacturing processes as manufacturing processes

are not necessarily normally distributed. One of the earliest examples in the published

literature relating to the shape of manufacture geometry is Mansoor [1963]. Here, the

likely statistical variations for typical engineering processes such as milling, grinding and

reaming were discussed. In more recent examples, Aparisi et al. [1999] and Shorey et al.

[2014] indicated the process itself may define the shape of the variation while Singh et al.

[2009] noted even inherently normal processes may yield non-normal distributions due

to factors such as tool wear and variation in material properties. Ideally it would be

possible to model any manufacturing distribution and combine it with other types of

distribution to build an exact multivariate representation from the unique marginal dis-

tributions. This prohibits the use of parametric distributions, such as the multivariate

normal and Student-t distributions, as the marginals must also be part of the multi-

variate distribution family3. Fortunately, a Mathematical construct known as a copula

allows any univariate (marginal) distribution to be combined with any other univariate

3Often the maximum likelihood function is used to fit parametric distributions to observed data (see
Cousineau et al. [2004] for a review and applications of such methods). The same principle could be
applied to build fitted multivariate distributions by sampling non-similar parametric marginal distribu-
tions, however, the resulting multivariate distribution is only an approximation to the real (observed)
distribution. Thus, the scrap, rework and conformance probabilities would not be exact using a fitted
model. This would lead to inaccurate optimal means and potentially great differences between theoreti-
cal and actual profits. Since copulas allow exact multivariate representations to be generated the fitting
of multivariate parametric models is not considered.
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distribution, with a specified dependence structure to give a joint (multivariate) dis-

tribution. Different copulas allow a wide variety of dependence structures between the

univariate distributions. Where there is no dependence between univariate distributions,

the joint distribution is the product of the univariate distributions (as shown in Section

4.2.3). Copula modelling allows the probabilities of scrap, rework and conformance to be

calculated exactly (providing the dependence between the univariate distributions can

be modelled) for multivariate distributions. Recall multivariate distributions are created

where two or more features are manufactured prior to inspection (parallel processing).

4.2 Copulas

Copulas are functions for modelling the dependence and interrelationships between ran-

dom variables, first introduced by Sklar [1959]. They allow one to construct a multi-

variate distribution from any combination of univariate distributions and apply a range

of dependence structures, including non-linear dependence.

The most cited paper in copula literature is David X. Li’s paper on default correlation (Li

[2000]) which transformed the way collateralised debt obligations (CDOs) were accessed

and traded in the early 2000s. More recently the use of copula statistics in financial

mathematics has been widely criticised in popular literature. Copula modelling and

Li’s paper are generally attributed to the collapse of the global financial system in 2008

(Salmon [2009], Jones [2009], Lohr [2009]). It is important to note copula statistics

is mathematically sound and many criticisms of the application of the model to CDO

pricing are based on an inherent misunderstanding of mathematical modelling 4

4.2.1 Introduction to Copulas

As demonstrated at the beginning of Chapter 4, processing rework can affect the shape of

the manufacturing feature variation resulting in a truncated normal distribution, which

represents the variability of the finished manufactured feature. If two or more depen-

dent features have such a distribution, the variability of the manufactured geometry

(comprising of two or more features) is modelled by a multivariate truncated normal

distribution. Such a distribution can be constructed using a copula function, or alterna-

tively one could use the multivariate truncated normal distribution, however the types

4Li’s model used the Gaussian copula dependence structure to map correlations between various
assets in a CDO portfolio. It was assumed future correlations would follow a similar structure but were
subject to change. While the original assumption proved successful for some five years, the dependence
structure between assets did alter, thus the inherent CDO risk was miscalculated. Due to the popularity
of the model most CDOs were accessed using Li’s model which lead to a cascade of defaults in 2007/2008.



Chapter 4. Uncertainty Modelling with Non-Normal Distributions 125

of dependence structure are limited. Copulas allow complete freedom of the univariate

distribution shape and dependence structure, making them more versatile enough to fit

to any manufacturing variation. Furthermore, if an inspectable feature is a result of two

or more manufacturing distributions, the resulting variation is unlikely to be a standard

parametrised distribution type. Unless this unique distribution can be modelled, it is

not possible to accurately calculate the rework, conformance and scrap probabilities or

determine the shape of the manufactured geometry variation. Such a situation can be

avoided by using copulas to build an exact multivariate representation from the unique

marginal distributions.

4.2.2 Definition

Consider the joint cumulative distribution of a set of random variables. In order to

gain an understanding of copulas, a bivariate case is considered where the set of random

variables are X and Y . The marginal distributions are found from,

FX(x) = Pr [X ≤ x] and FY (y) = Pr [Y ≤ y].

These univariate marginal distributions are joined to form the joint distribution function,

FXY (x, y) = Pr [X ≤ x, Y ≤ y].

A copula is a function that represents this joint distribution FXY which exists on the unit

cube [0, 1]n where n characterises the dimensionality of the distribution. By definition

FX(x) and FY (y) are restricted to the bound [0, 1] so that a pair of real numbers (x, y)

leads to a point (FX(x), FY (y)) on the unit cube [0, 1]2. This is depicted in Figure 4.3

where a copula is the mapping which assigns a value to each pair of real numbers of the

marginal distributions to form the joint distribution F (x, y). Thus the joint distribution

FXY , represented by a copula is,

FXY (x, y) = C (FX(x), FY (y)) = C(u, v). (4.5)

where u = FX(x) and v = FY (y).

4.2.3 Sklar’s Theorem

Sklar’s theorem [Sklar, 1959] asserts that irrespective of the shape of the joint distribu-

tion there will be a unique copula satisfying Equation 4.5 given X,Y are continuous. If

X,Y are not continuous C is unique for the range RanF1×, . . . ,×RanFn where RanFn
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Figure 4.3: Mapping of random variables to joint distribution

is the range of the nth CDF. Note that u, v are uniformly distributed variables on [0, 1],

regardless of the functions FX and FY . The arguments of C are also uniformly dis-

tributed random variables so all that remains is the dependence structure between the

distributions which is modelled by C. Equation 4.5 can be rewritten in terms of C by

recognising x = F−1
X (u) and y = F−1

Y (v),

C(u, v) = FXY (F−1
X (u), F−1

Y (v)).

If F1 and F2 are independent then the copula becomes the product of the random

variables C(u, v) = uv. This is expected as it is analogous to the probability of two

independent events occurring simultaneously. The form of the function C is restricted

under the following definitions:

(i) C(0, u) = C(v, 0) = 0:- Grounded.

(ii) C(u, 1) = u and C(1, v) = v:- For v = 1, C(u, 1) = u increases from 0 to 1 as u

increases from 0 to 1 and similarly for v.

(iii) C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0,

∀ 0 ≤ u1 ≤ u2 ≤ 1 and 0 ≤ v1 ≤ v2 ≤ 1:- 2-increasing, where C(u, v) is

increasing for both u and v.

It should be noted these conditions apply for a copula with n dimensions although

considerably harder to visualise. Nelsen [2006] and Schmidt [2006] are useful references

for the general formulations. The three conditions are graphically represented for the

bivariate case in Figure 4.4(a). The copula in this figure is the independent copula

C(u, v) = uv, thus the surface is simply the product of u and v. Figure 4.4(b) indicates

the shape of a copula where there is positive dependence between u and v. Positive

dependence implies for any given value of u there is a higher probability that u = v than

would be expected if the events were independent. This leads to the distinct ridge or

pyramidal shape of Figure 4.4(b)



Chapter 4. Uncertainty Modelling with Non-Normal Distributions 127

(a) Copula CDF with no correlation (b) Copula CDF with correlation

Figure 4.4: Copula CDFs

The joint density function from the copula formulation is required to model the final

manufactured geometry distribution of the component once rework has been carried out

on non-conforming features. The density distribution is the derivative of the cumulative

distribution,

fXY (x, y) =
∂2FXY (x, y)

∂x ∂y
.

Noting Equation 4.5 and recognising,

∂

∂v

(
∂

∂u
C(u, v)

)
=

∂

∂x
FX(x) and

∂

∂u

(
∂

∂v
C(u, v)

)
=

∂

∂y
FY (y)

the joint density function in terms of a bivariate copula can be written

fXY (x, y) =
∂2C(u, v)

∂u ∂v

∂FX(x)

∂x

∂FY (y)

∂y
= c(u, v)fX(x)fY (y) (4.6)

where fX and fY are the univariate density distributions of X and Y , respectively. Both

this and Equation 4.5 are used in the Optimal Mean Setting process. Equation 4.6 can

be used to determine the distribution of the final manufactured geometry after rework

with dependence, while Equation 4.5 may be used to determine the scrap and rework

probabilities if the marginal distributions are not normal. Such a case would arise if the

inspectable parameters were a result of two or more manufacturing features. Alterna-

tively it is possible for a feature to have dependence on another feature produced by

a process with a different form of univariate margin. Thus the probability of rework,

conformance and scrap is the joint distribution of the two different univariate marginals

including the dependence structure.
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Figure 4.5: Graphical representation of the Fréchet-Hoeffding bounds for a bivariate
copula

4.2.4 Fréchet-Hoeffding bounds

The Fréchet-Hoeffding bounds restrict the shape of the bivariate copula, such that it

lies within a pyramid as shown in Figure 4.5. This comes about due to the extremes

of dependence between variables. Consider the extreme monotonic case, where two

uniformly distributed random variables are dependent such that U = V , the copula is

given by,

C(u, v) = Pr(U ≤ u, V ≤ v) = min(u, v).

This gives rise to the front face of the pyramid in Figure 4.5. The independence case

shown graphically in Figure 4.4(a) actually sits in the middle of this pyramid structure.

The back face of the pyramid is achieved from the opposite dependence such that the

uniformly distributed random variables are V = 1− U . This gives,

C(u, v) = Pr(U ≤ u, 1− U ≤ v)

+ Pr(U ≤ u, 1− v ≤ U) = u+ v − 1,

leading to the bound,

max(u+ v − 1, 0) ≤ C(u, v) ≤ min(u, v),

which also exists for n dimensions.
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4.2.5 Types of Copula

The principal difference between copulas is the types of dependence they model between

random variables. Dependence between random variables may occur when two or more

features are produced on the same machine. Datum planes or fixings are also likely to

be correlated to other features. The choice of copula determines the type and variety

of dependence structures one wishes to model. The most common copula types are the

Gaussian copula and the Archimedean family of copulas that include Clayton, Gumbel,

Frank, Ali-Mikhail-Haq and Joe varieties, where each characterises a particular form of

dependence (Nelsen [2006]). The independence copula is also part of the Archimedean

family of copulas. A particularly useful characteristic of Archimedean copulas is that

they are described by explicit expressions, permitting analytical solutions, unlike the

Gaussian copula.

The dependency structure of the Gaussian, Clayton and Frank copulas are considered in

this report. The discussion is limited to these copulas principally because the dependence

structure these copula models exhibit is not unlike the dependence structure from the

covariance matrix used in the multivariate normal distribution model (Equation 3.17).

Ultimately, the dependency between features in a production environment and thus the

choice of copula requires a copula fitting process. Such techniques are not examined

in this report but an overview is given by Schmidt [2006] with a detailed analysis in

Matteis [2001]. The three copulas discussed here are sufficient to demonstrate the power

of using copula techniques in Optimal Mean Setting analysis. However, they are by no

means the only copulas that could be used to model dependence between manufacturing

features in practice.

In order to compare different copulas, it is important to measure dependence independent

of the marginal distributions. There are a number of ways to quantify dependence

but the most common are; the Pearson product-moment correlation, Spearman rank

correlation and Kendall rank correlation. The Pearson correlation coefficient is defined

as,

ρp =
cov(X,Y )

σX σY
=
E[(X − µX)(Y − µY )]

σX σY

which, for a sample size of n is,

ρ =

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2
√∑n

i=1(Yi − Ȳ )2

where X̄, Ȳ refer to the means of the X and Y variables. This is a linear measure

of dependence between the two variables X and Y where ρ = [−1, 1]. However, it

is also dependent on the marginal distributions as illustrated in Section 2.2 of Tops
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[2010], although first described by Lehmann [1966]. Since it is dependent on the uni-

variate distribution, it is not a suitable coefficient for comparing copula dependence.

The Spearman correlation coefficient is derived from the Pearson correlation coefficient

and has the same form except the variables are ranked. For a sample of size n, the raw

variables Xi, Yi are converted into ranks xi, yi to give

ρs =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2

where ρs = [−1, 1]. The Spearman rank coefficient measures the monotone dependence

between variables rather than the linear dependence and thus can be defined using a

copula function independent of the marginal distributions such that,

ρs = 12

∫ 1

0

∫ 1

0
[C(u, v)− u v] dudv. (4.7)

This result is considered in more detail by Schweizer and Wolff [1981] but also discussed

in more modern literature Fredricks and Nelsen [2007] and Tops [2010]. Another pop-

ular correlation coefficient is Kendall’s tau which, like Spearman’s coefficient, is a rank

correlation independent of the marginal distributions. Kendall’s tau is the difference

between the number of concordant pairs (C) and discordant pairs (D), divided by the

total number of pair combinations. Concordance and discordance are defined as follows:

Let (x1, y1), (x2, y2), . . . , (xn, yn) be a set of observations from the joint random variables

X,Y . Assuming xi and yi are unique, any pair of joint observations (xi, yi) and (xj , yj)

are concordant if xi > xj and yi > yj or alternatively if xi < xj and yi < yj . A pair

is discordant if xi > xj and yi < yj or conversely if xi < xj and yi > yj . Hence the

Kendall correlation coefficient is given by

τ =
C −D
n(n− 1)

where τ = [−1, 1] and n is the sample size. As shown by Schweizer and Wolff [1981],

Fredricks and Nelsen [2007] and Tops [2010], Kendall’s correlation coefficient can be

written in terms of copulas as,

τ = 4

∫ 1

0

∫ 1

0
[C(u, v) C. (u, v)− 1.

The Spearman rank correlation and the Kendall tau correlation are both commonly used

to define correlation between sets of data and in general there is no strong reason to

prefer one over the other as commented by Colwell and Gillett [1982]. Typically, the

Spearman rank coefficient is larger in absolute value than Kendall’s tau, while Kendall’s

tau coefficient is generally harder to calculate. There are subtle practical difference
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between the coefficients: Kendall’s tau penalises a disparity between the two ranks as

the distance of that disparity, whereas, Spearman’s rho penalises the same disparity as

the square of the distance. For example let the ranks between two sets of correlated

data be x = [1, 2, 3, 4], ya = [2, 1, 4, 3]. Kendall’s correlation coefficient τ = 0.33 and

Spearman’s ρ = 0.6. However, if the ranks are changed to represent a different set

of data yb = [3, 1, 2, 4] Spearman’s coefficient reduces to ρ = 0.4 while Kendall’s tau

remains at τ = 0.33. The reason for this is the difference between the ranks x and ya

was one, for each element. However, for the second data set x and yb, the rank of the

first element was greater by two and the second and third elements differed by one, while

the fourth element remained unchanged. Since the distance of the disparity of the first

element is twice as great, Spearman’s coefficient penalises this to a greater extent than

Kendall’s tau. The total distance of disparities in each case is four, hence Kendall’s tau

remains the same.

In order to compare the dependency structure of the Gaussian, Clayton and Frank

copulas, the dependency parameter for each copula was set using Equation 4.7, where

ρs = 0.8. This was solved numerically using Matlab’s fzero function (Mathworks [2012]),

although it is possible to find an analytical solution provided C(u, v) can be expressed

explicitly. Figures 4.6(a), 4.6(b) and 4.6(c) show how Spearman’s and Kendall’s coef-

ficients relate to the Gaussian, Clayton and Frank copulas, respectively. The values of

the three copula dependence parameters for ρs = 0.8 are shown in the table in Figure

4.6(d).

4.2.6 Gaussian Copula

A Gaussian coupla is written as,

C(u, v) = ΦΣ(Φ−1(u),Φ−1(v)), (4.8)

where Σ is the bivariate covariance matrix,

Σ =

[
σ2
u ρσuσv

ρσuσv σ2
v

]

and ρ∀ ∈ [0, 1] is the Pearson correlation coefficient. We can investigate the type

of dependence structure this copula gives by generating the u and v values from this

copula. Recall the bivariate density function was given in Equation 3.17. Under the

normalisation z1 = (x1 − µ1)/σ1 and z2 = (x2 − µ2)σ2 the bivariate density function
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(a) Spearman’s and Kendall’s
correlation versus Gaussian copula
dependence

(b) Spearman’s and Kendall’s
correlation versus Clayton copula
dependence

(c) Spearman’s and Kendall’s
correlation versus Frank copula
dependence

(d) Copula dependency parameter values

Figure 4.6: Relationships between Spearman’s and Kendall’s correlation coefficients
and copula dependency parameters

(Equation 3.17) can be written as,

f(x1, x2) =
1

2π
√

1− ρ2
exp

(
−z

2
1 + z2

2 − 2ρz1z2

2(1− ρ2)

)
.

Integrating z1 and z2 from −∞ to the inverse CDFs the Gaussian copula can be written

[Nelsen, 2006],

C(u, v) =

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞

1

2π
√

1− ρ2
exp

(
−z

2
1 + z2

2 − 2ρz1z2

2(1− ρ2)

)
z.1z.2

which has no general closed form solution but can be solved efficiently with standard rou-

tines in most numerical software packages. When ρ = 0 the fraction inside the integral

goes to zero, thus the Gaussian copula reduces to the independent copula C(u, v) = uv.

To investigate the dependence structure of this copula, V was plotted against U , for

positive correlation between the random variables where ρ ≥ 0. The procedure for this

plot was as follows: From Equation 4.8, U = Φ(X) and V = Φ(Y ) where X,Y are the
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random vectors created by Φ−1(u) and Φ−1(v). Most numerical packages, such as Mat-

lab, efficiently generate these random vectors from a multivariate normal distribution

(mvnrnd). Once vectors U and V are generated, the cumulative distribution functions

for each vector can be computed. Figure 4.7(a) plots for V against U , where ρ = 0.8

and shows a concentration of points towards the tails. The PDF of the same copula is

represented in Figure 4.7(b). The sharp peaks towards u = v = 0 and at u = v = 1 mir-

ror the high dependence shown in Figure 4.7(a), where the concentration of the points is

greater. For ρ = 0, the surface in Figure 4.7(b) would be a flat surface and the adjacent

scatter plot would show no clustering.

(a) u versus v from a Gaussian copula with ρ =
0.8135

(b) Gaussian copula PDF with ρ = 0.8135

Figure 4.7: Gaussian copula dependence

4.2.7 Archimedean Copulas

Archimedean copulas differ from the Gaussian copula in that they can be written ex-

plicitly. For clarity, only bivariate copulas are discussed, but a primary advantage of

Archimedean copulas is their ability to model dependence for an arbitrary number of

dimensions. All bivariate Archimedean copulas C(u, v) can be generated from [Nelsen,

2006],

φ(C) = φ(u) + φ(v) (4.9)

where φ is known as a generator whose inverse is φ−1. The function φ is monotone,

strictly decreasing from [0, 1] to [0,∞] where φ(0) = ∞ and φ(1) = 0 as discussed in

Nelsen [2006] pages 91 to 92. The copula C(u, v) is given by

C(u, v) = φ−1(φ(u) + φ(v)). (4.10)
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With a generator function it is possible to construct a number of copulas from the

Archimedean family. Although only the Clayton and Frank copulas are considered here

Nelsen [2006] and Schmidt [2006] offer a more in-depth discussion.

4.2.7.1 Clayton Copula

The generator function for the Clayton copula is,

φ(z) =
−1

θ
(1− z−θ) (4.11)

where z is a place-holder. From Equation 4.11 we require φ−1 given by,

z =
−1

θ
(1− φ−1(z))−θ ⇒ φ−1(z) = (1 + θz)−1/θ.

Therefore from Equation 4.11,

C(u, v) = φ−1(φ(u) + φ(v)) = [1 + θ (φ(u) + φ(v))]−1/θ

=

[
1 + θ

(
−1

θ
(1− u−θ) +

−1

θ
(1− v−θ)

)]−1/θ

= [u−θ + v−θ − 1]−1/θ

(4.12)

where θ ∈ R[−1,∞]\0. It is possible to rearrange Equation 4.9 so that φ(v) = φ(C)−
φ(u) to get,

v = φ−1(φ(C)− φ(u)). (4.13)

To define the argument C in φ(C) let ξ = ∂C/∂u and let h represent the inverse of φ′

where the ′ notation is used to represent the first derivative with respect to the argument.

Therefore h(∂φ(z)/∂z) = h(φ′(z)) = z. From Equation 4.10 we can determine ∂C/∂u

so that

φ′(C)
∂C

∂u
= φ′(u) ⇒ φ′(C) =

φ′(u)

ξ
.

Using the function h (defined above), it is possible to define the argument C in terms

of u and ξ such that,

h(φ′(C)) = C = h

(
φ′(u)

ξ

)
.

Equation 4.13 can now be written in terms of the calculable augments

v = φ−1

{
φ

[
h

(
φ′(u)

ξ

)]
− φ(u)

}
. (4.14)
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As the composite function is relatively complex5 , it is easiest to tackle in stages, thus

φ ◦ h(z) =
−1

θ
(1− h−θ).

where h is defined from,

φ′(z) = −z−θ−1 ⇒ z = −h(z)−θ−1

h(z) = −z1/(−θ−1).

Therefore,

φ ◦ h(z) =
−1

θ
(1 + z

θ
θ+1 ).

Replacing the argument z with φ(u)/ξ from Equation 4.14 yields,

φ ◦ h
(
φ′(u)

ξ

)
=
−1

θ

[
1 +

(
φ′(u)

ξ

) θ
θ+1

]
.

Considering φ′(u) = −u−θ−1 the argument of φ−1 from Equation 4.14 can now be

written as,

φ ◦ h
(
φ′(u)

ξ

)
− φ(u) =

−1

θ

1 +

(
u−θ−1

ξ

) θ
θ+1

+
1

θ
(1− u−θ) = Ω.

Substituting this expression onto the inverse function completes the right hand side of

Equation 4.14,

v = φ−1(Ω) =

{
1− θ

θ

[
1 +

(
u−θ−1

ξ

) θ
θ+1

]
+ θ

θ (1− u−θ)
}−1/θ

=
[
ξ−θ/(1+θ)u−θ − u−θ + 1

]−1/θ

giving an expression for v in terms of u and ξ.

To examine the dependence structure created by this copula, we can plot V against

U . For a uniformly distributed set of random variables u, ξ ∈ [0, 1] we can generate the

corresponding vector v where the dependence between the two random vectors is defined

by 4.12. Figure 4.8(a) shows u and v are closely correlated for small values but the cor-

relation becomes less pronounced as the values become larger. The PDF of this Clayton

copula is represented in Figure 4.8(b) (note the axes have been reversed for clarity of

visualising the spike). The spike towards u = v = 0 reflects the high dependence shown

in Figure 4.8(a) at low values of u and v. Like the Gaussian copula, if the dependence

5The ‘◦’ symbol is the function composition operator



Chapter 4. Uncertainty Modelling with Non-Normal Distributions 136

parameter θ = 0, the surface in Figure 4.8(b) would be a flat surface representing no

dependence between the random variables. Due to the restriction on the dependence

parameter θ noted under Equation 4.12, the Clayton copula cannot be used to model

negative dependence.

(a) u versus v from a Clayton copula with θ =
3.1819

(b) Clayton copula PDF with θ = 3.1819

Figure 4.8: Clayton copula dependence

4.2.7.2 Frank Copula

The Frank copula is generated in a similar fashion to the Clayton copula above. The

generator function for the Frank copula as given by Nelsen [2006] is,

φ(z) = −log

(
1− e−θz

1− e−θ

)
(4.15)

Using the Equation 4.9 the Frank copula is generated from,

−log

(
1− e−θC

1− e−θ

)
= −log

(
1− e−θu

1− e−θ

)
− log

(
1− e−θv

1− e−θ

)
,

which needs to be rearranged making C the subject. Taking the exponent of both sides

and simplifying gives,

−1 + e−θ

−1 + e−θC
=

(−1 + e−θ)2

(−1 + e−θu) (−1 + e−θv)
,

which can be rearranged into the Frank copula,

C(u, v) =
−1

θ
log

[
1− (1− e−θu) (1− e−θv)

1− e−θ

]
, (4.16)
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where θ ∈ R\{0}. Again, in order to gain an understanding of the dependence structure

of this copula, as before v is sought for an input u. Equation 4.14 can be used to

determine v for a given u input, as was shown with the Clayton copula. In order to

compute Equation 4.14, the functions φ, φ−1, φ′ and h are required. The generator

function φ is given in Equation 4.15, where the inverse is given by,

φ−1(z) =
−1

θ
log(e−z+θ − e−z + 1).

The derivative of φ with respect to z is,

φ′(z) =
−θe−θz

1− e−θz
=

θ

1− eθz
.

The inverse of this derivative is h given by

h(z) =
1

θ
log

(
1− θ

z

)
.

The argument of φ−1 in Equation 4.14 is broken down into stages, firstly

φ ◦ h(z) = −log

(
1− e−θh

1− e−θ

)

= −log

(
1− exp {−θ [1/θ( log(1− θ/z))]}

1− e−θ

)
= log

[(z
θ
− 1
) (

1− e−θ
)]
.

The argument φ′(u)/ξ can now be inserted for the place-holder z,

φ ◦ h
(
φ′(u)

ξ

)
= log

[(
φ′(u)

ξ θ
− 1

)(
1− e−θ

)]

= log

[(
1

(1− eθu)ξ θ
− 1

)(
1− e−θ

)]
.

The whole argument for φ−1 is,

φ ◦ h
(
φ′(u)

ξ

)
− φ(u) = log

[(
1

(1− eθu)ξ θ
− 1

)(
1− e−θ

)]
+ log

(
1− e−θu

1− e−θ

)

= log

[
1− e−θu

(1− eθu)ξ − 1

]
= Ω.
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An expression for v is therefore written,

v = φ−1(Ω) =
−1

θ
log[1− e−Ω(1− e−θ)]

=
−1

θ
log

[
1− 1− e−θ

1 + e−θu(ξ−1 − 1)

] (4.17)

Equation 4.17 is used to generate the vector v from a set of uniformly distributed random

variables u, ξ ∈ [0, 1]. The scatter plot in Figure 4.9(a) allows the visualisation of the

dependence structure modelled by this Frank copula (Equation 4.16). The adjacent

Figure 4.9(b) shows the probability density plot which is not unlike the Gaussian copula.

The principal differences are in tail dependences, which are less pronounced and a more

uniform dependence along the diagonal u = v. Like the Gaussian copula, the Frank

copula can account for negative dependence but not for θ = 0, as noted under Equation

4.16.

(a) u versus v from a Frank Copula
with θ = 7.9019

(b) Frank copula PDF with θ = 7.9019

Figure 4.9: Clayton copula dependence

4.2.8 Multivariate Copula Construction

The geometry distribution of manufactured features can be modelled using a copula.

To demonstrate this, the multivariate distribution created using the Gaussian mixture

model (Equation 4.2) depicted by Figure 4.1 was recreated using a copula. The approach

is very similar to the method used to obtain the results shown in Figure 4.1 however, a

multivariate truncated distribution is built from the two normal marginal distributions

using a copula. The weighted sum of the multivariate distributions form the complete
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multivariate distribution analogous to Figure 4.1. The weights are determined by eval-

uating the probability of conformance and scrap from the initial state and each rework

state (as was done for Figure 4.1)

The truncated copula distribution has the form6.

fX1X2 =
C(FX1(x1), FX2(x2))fX1(x1)fX2(x2)

C(FX1(U1), FX2(U2))− C(FX1(L1), FX2(L2))
(4.18)

for all L ≤ x1, x2 ≤ U , where the marginal distributions fX1 and fX2 are given by the

normal distribution function,

fX1 =
1

σ1

√
2π

exp

(
−(x1 − µ1)2

2σ2
1

)
and fX2 =

1

σ2

√
2π

exp

(
−(x2 − µ)2

2σ2
2

)
. (4.19)

The cumulative distributions, FX1 and FX2 are the integrals of the respective marginal

distributions thus,

FX1 =

∫ t1

−∞
fX1 dt1 and FX2 =

∫ t2

−∞
fX2 dt2. (4.20)

The CDFs in the denominator of Equation 4.18 are the CDFs evaluated at specific points

corresponding to the upper and lower specification limits (U1, U2 and L1, L2); this in-

volves changing the upper integral limits in Equation 4.20 to the appropriate U or L

values. Thus, the denominator acts to truncate the PDF at the lower and upper spec-

ification limits. The copula function, C, can take a number of forms depending on the

correlation between the two features, X1 and X2. In this first case a Gaussian copula is

used as described in Equation 4.8. Figure 4.10 shows the comparison between the PDF

surfaces created with the truncated Gaussian copula (Equations 4.18 and 4.8) and the

truncated normal distribution function (Equation 4.4), evaluated at the red points. The

two functions create the same PDF with and without correlation given by Spearman’s

ρ. The maximum difference between red points and the surface evaluated at the same

locations was 8.327−17, which is less than machine precision verifying the equivalence be-

tween the Gaussian copula distribution and truncated multivariate normal distribution.

As alluded to at the beginning of Chapter 4, a significant advantage of copula models

is their flexibility with regards to modelling dependencies between variables as well as

permitting any form for the marginal distributions. The following Case Study examines

the manufacture of a connection rod from a reciprocating engine which demonstrates

the use of copula statistics on a physical product.

6Note a numerical index is used for variables from henceforth as this approach is more applicable to
multivariate cases. The variable x is referred to as x1 while y becomes x2. Similarly u becomes u1 and
v becomes u2.
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(a) PDF truncated at U1 = 7 and U2 = 7, with no
correlation

(b) PDF truncated at U1 = 7 and U2 = 7, with
correlation (ρ = 0.8)

Figure 4.10: Comparison between the PDF surfaces created using a Copula function
(Equation 4.18) and the truncated normal distribution (Equation 4.4)

Figure 4.11: Connection Rod from Aparisi et al. [1999]

Feature Nominal
(mm)

Mean
(mm)

LSL
(mm)

USL
(mm)

σ Cpk

Diameter big end (x1) 70.00 70.02 69.00 71.00 1.362 0.24

Diameter small end (x2) 40.00 40.13 39.25 40.75 0.50 0.71

Table 4.1: Data for the connecting rod case study

4.3 Case Study - Connecting Rod

Aparisi et al. [1999] introduced a case study of a connecting rod visualised in Figure

4.11. There were two inspectable features; the diameter of the big end (x1) and the

diameter of the small end (x2). The nominal means for these features were given in

the data contained in Aparisi et al. [1999], but the specification limits were not. For

the purposes of this Case Study the specification limits were chosen arbitrarily and are

given in Table 4.1. The manufactured values for each of the two features were tabulated
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Distribution BIC AIC

t-location scale -113.3 -119.5

Logistic -113.1 -117.3

Log log logistic -112.6 -116.8

Rician -105.6 -109.8

Normal -105.6 -109.8

Table 4.2: BIC and AIC values for the top five best fit distributions returned by
allfitdist (Sheppard [2012])

by Aparisi et al. [1999] (also available in Costa and Machado [2008]). Histograms of

the raw manufacturing data for each feature are given in Figures 4.12 and 4.13. A Chi-

Squared test was used to establish if the distributions were likely to come from a normal

distribution. The x1 feature passed the test to a 1% confidence interval indicating it was

probable the variations in the diameter of the big end (x1) were normally distributed.

The p-values and fitted normal distribution are shown for the x1 feature in Figure 4.12.

The x2 feature failed the Chi-Squared test so an alternate continuous probability dis-

tribution was sought. A best fitting probability distribution was determined by testing

a number of parametric distributions (17 in total). The Matlab function allfitdist, de-

veloped by Sheppard [2012] was used for this task. The goodness of fit was determined

by the Bayesian Information Criterion (BIC) and Akaike Information Criterion (AIC)

metrics. These metrics are based on minimising the log-likelihood but account for the

number of parameters in the fitted model and therefore offer a justifiable comparison be-

tween different parametric distributions (Helie [2006], Dziak et al. [2012]). As noted by

Dziak et al. [2012], the most likely modelling error when minimising BIC is under-fitting

the model, whereas the most likely modelling error in minimising AIC is an over-fitted

model. The fact that the tLocation-Scale distribution was judged to be the best fit to

the x2 feature data by both the BIC and AIC metrics, helps to justify its use. The dis-

tribution is commonly used for distributions with heavy tails, prone to outliers (Walck

[2007])7. Figure 4.13 indicates the difference in shape of the tLocation-Scale distribution

(blue line) in comparison to the best fit Gaussian distribution (red line). The PDF for

the tLocation-Scale distribution (as given in Section 38 of Walck [2007]) is,

f(x, µ, σ, ν) =

Γ

(
ν + 1

2

)
σ
√
νπΓ

(ν
2

)

ν +

(
x− µ
σ

)2

ν


−
(
ν + 1

2

)

,

7The machining process used to finish the small end (x1 feature) was different to the process used to
finish the big end (x1 feature), hence the different distributions. Although the manufacturing processes
are not specified it is likely the big end (x1 feature) was reamed, while the small end finishing process
was grinding
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Figure 4.12: Histogram and best fit continuous distribution for the diameter of the
big end (x1)

Figure 4.13: Histogram and best fit continuous distribution for the diameter of the
small end (x3)

where Γ is the gamma function given by,

Γ(t) =

∫ ∞
0

xt−1e−x dx.

The upper and lower specification limits in Table 4.1 are visualised by the green and

red lines in Figures 4.12 and 4.13. The variations for the two diameter distributions

(x1 and x2) are outside the specification limits indicating the manufacturing processes

are incapable (Cpk < 1, Table 4.1) and non-conforming features would be produced. It

would be beneficial to apply Optimal Mean Setting to the manufacture of these features

to maximise profit. Since the univariate (marginal) distributions are different, copula
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modelling was utilised to create an exact multivariate model of the x1 and x2 features

including the dependence structure8. Figures 4.14 to 4.16 illustrate the dependence

between the x1 and x2 features modelled using a Gaussian, Clayton and Frank Copula.

The most appropriate copula model to chose depends on a number of factors such as:

� Whether the model will be used as a predictive model outside the current data

range or within the current data range.

� The quality of the source data.

� The quantity of the source data, for example some data could be used for cross

validation.

� Causal relations between the features may influence the copula choice. For exam-

ple, the Clayton copula would be a suitable model if there was a causal reason

why smaller values of x1 would imply smaller values for x2, whilst larger values of

x1 would not influence x2. This is not the case for the connecting rod case study.

For this case study, the Matlab function copulafit (Mathworks [2012]) was used to deter-

mine the value of the correlation parameter for each copula (ρ for the Gaussian copula

and θ for the Clayton and Frank copulas). The copulafit function minimises the nega-

tive log likelihood (NLogL) in order to determine the correlation parameter using the

procedure outlined by Bouye et al. [2000]9. The red points on Figures 4.14 to 4.16 show

the original data while the blue points are 5000 random sample points drawn from the

fitted copula model using the Matlab function copularnd (Mathworks [2012]). As indi-

cated in the captions of each figure the Gaussian copula yielded the lowest NLogL, so

this copula was chosen as the ‘best model’ of the data. Fitting copula models to data

is an active area of research and several papers discuss suitable ways to establish the

‘goodness of fit’ (Yan [2007]). The maximum likelihood method is often general practice

in evaluating the fit of a Copula to sampled data (Yan [2007]) and considered sufficient

for this illustrative example. Nevertheless, there are several alternative approaches, such

as Bootstrap methods, probability integral transformation and distance based methods.

Fermanian et al. [2012] provides a comprehensive overview. Genest and Favre [2007]

offers a good overview of graphical goodness of fit tests and Wang [2010] investigated

goodness of fit test for Archimedean copula models.

8The tLocation-Scale distribution approaches normal distribution as ν → ∞. Therefore it would
be possible to define the x1 distribution using a tLocation-Scale distribution and create a multivariate
model of the x1 and x2 features using a multivariate tLocation-Scale distribution. However, changes
to either of the univariate distributions, which may come as a result of reviewing data or alternative
fitting techniques, would render the multivariate parametric model inaccurate. A copula model allows
any form of marginal distribution and allows any changes in dependence to be updated independently.

9As there is only one parameter to change in each copula model, the minimisation of negative log
likelihood is a valid comparison between the different copula models, one does not have to use the BIC
or AIC metrics to account for differing numbers of parameters in the different models.
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Figure 4.14: Dependence between the x1 and x2 features described by the Gaussian
copula with ρ = 0.7052 which returned NLogL = -20.5485

Figure 4.15: Dependence between the x1 and x2 features described by the Clayton
copula with θ = 1.5955 which returned NLogL = -17.8684
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Figure 4.16: Dependence between the x1 and x2 features described by the Frank
copula with θ = 5.8142 which returned NLogL = -17.8611

The costs parameters required for the Optimal Mean Setting procedure are given in

Table 4.3, these were chosen arbitrarily as there were no cost data given in the original

data source (Aparisi et al. [1999]). The Optimal Mean Setting and achieved profit are

also presented in Table 4.3. The first two values in the µ vector correspond to dual

feature rework, while the last two values correspond to single feature rework. The profit

achieved through Optimal Mean Setting was 83% higher than the profit achieved by

setting all the means to the nominal mean settings (given in Table 4.1). The final

distribution of the manufactured geometry is illustrated by the blue joint distribution

in Figure 4.17, this includes components that would be scrapped (diameters larger than

the upper specification limits) but models the joint distribution where rework has been

completed.

Variable Value

Rc [5 5 10]

Sc [50 50 50 50]

SP 100

PC 20

µ [6.8737 3.9514 6.8441 3.9486]

Profit 44.47

Table 4.3: Costs for the manufacture of the big end and small end diameters (features
x1 and x2) of the connecting rod in Figure 4.11
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Figure 4.17: Finial Geometry distribution of the connecting rod x2 and x3 features

The case study demonstrates the applicability of copula modelling to the field of Optimal

Mean Setting, where the different manufacturing processes used to create the x1 and

x2 features produced manufacturing variability best modelled using different parametric

distributions. Such an exercise is simply not achievable using a parametric multivariate

distributions, as the marginal distributions are from separate parametric families. The

benefit of copula functions is also explored in a case study in Appendix F. Here a non-

normal distribution is created where a feature is created as a result of another feature.

This additional case study also demonstrates how easily the Optimal Mean Setting

framework and Equation 3.78 can be fitted to a non-standard example.
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Figure 4.18: A V2500 gas turbine NGV (Cleynen [2013])

4.4 Optimal Mean Setting for Cooling Holes

Modern gas turbine engines rely on film cooling to ensure components in the ‘hot’ part of

the engine stay within the material’s thermal limits. Typically the combuster, turbine

blade and nozzle guide vanes (NGVs) experience the greatest temperatures and film

cooling research is devoted heavily to these components. In this thesis, the film cooling

holes associated with high pressure turbine blade and guide vanes are studied. The

geometry of these film cooling holes is designed to release coolant air in such a way that

it forms a protective layer of cool air between the surface of the component and the

hot gas. The effectiveness of this coolant layer depends very much on the geometry of

the hole where small variations in the hole geometry can lead to large changes in the

film cooling effectiveness. The effectiveness of the film cooling determines the surface

temperature of the blade which has a significant impact on blade life. Indeed, Bunker

[2009] estimated the variations that occur during manufacture could lead to a 20oC

increase in surface temperature (worst case) which would decrease blade life by up to

33%.

4.4.1 Cooling Hole Geometry

Cooling holes are manufactured through the surface of a hollow blade or vane and allow

coolant air (taken from the compressor stage) form a film over the surface. Figure 4.18

illustrates these holes on a V2500 engine nozzle guide vane (NGV). Two types of hole

are present, straight round holes and laidback holes which have an expansion angle

relative to the main hole. The white coating is the ceramic thermal barrier coating used

to protect the nickel alloy from excessive heat on the surface. The influence of hole

geometry and hole configuration in relation to cooling effectiveness has been studied

since the 1960s (Goldstein et al. [1968], Goldstein et al. [1974]). There are a variety of

hole shapes that have been developed in the literature, the main variations are shown
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Figure 4.19: Types of film cooling holes from Saumweber and Schulz [2012]

in Figure 4.19 from Saumweber and Schulz [2012]. Goldstein et al. [1974], Makki and

Jakubowski [1986] and Yu et al. [2002] were among the first to investigate the differences

between round (Cylindrical Holes in Figure 4.19) and laidback holes, where the exit of

the hole is expanded to diffuse the coolant flow. Gritsch et al. [1998], Thole et al.

[1998] and Gritsch et al. [2000] confirmed the advantages of diffuser type holes with

regard to cooling effectiveness. Holes that diffused in the lateral direction as well as

in the stream-wise direction (laidback fan-shaped hole, Figure 4.19) were also favoured

compared to holes that expanded only in one direction (laidback and fan-shaped hole,

Figure 4.19). Guangchao et al. [2008] also offers an illustrative comparison between

round and diffusing holes with regard to cooling effectiveness downstream of the hole.

The benefit of diffusion shaped holes was also confirmed through an extensive review

by Bunker [2005] who noted: “The benefits of shaped hole film cooling are real and

substantial, so much so that these types of film holes are used whenever possible in the

practice of cooling gas turbines.”. A relatively modern class of hole was developed at

Oxford University (Sargison et al. [2001] and Sargison et al. [2002]), where, as opposed

to expanding the coolant flow, the coolant was accelerated as the hole morphed from

a cylindrical entrance into a convergent slot exit. The principle of this CONverging

Slot hOLE (CONSOLE) was to re-laminarize the flow as it passed from the internal

passages of the blade (or vane), through the hole onto the airfoil surface. The goal was

to establish a laminar boundary layer at the slot exit to reduce mixing with the hot gas.

Although the cooling performance of CONSOLE holes is similar to fan shaped holes, the

aerodynamic losses are far less. This is because the coolant emitted from a CONSOLE

hole forms a laminar boundary layer far less thick than the turbulent boundary layer

that forms behind a fan-shaped hole.
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As well as changing the type of hole (say, from cylindrical to a laidback fan-shape), the

geometric parameters of a particular class of hole can also impact the cooling effective-

ness. Such a study was performed by Kohli and Thole [1998] and Hyams and Leylek

[2000] where the flow field was found to be highly complex and heavily influenced by

the hole’s geometric parameters which had a major impact on the cooling effectiveness.

Gritsch et al. [2005] was the first to specifically analyse the effects of geometry param-

eters on cooling effectiveness and Bunker [2009] gave a highly comprehensive review

regarding the effects of manufacturing tolerances on film cooling. Lee and Kim [2010],

Lee et al. [2010] and Lee and Kim [2011] also investigated multiple variations of fan

and laidback fan holes to find an optimum hole geometry. They considered inclination

angle (α in Figure 4.19), laidback angle (γ in Figure 4.19), lateral expansion angle (β

in Figure 4.19) and length to diameter ratio (L/D). Saumweber and Schulz [2012] gave

a detailed investigation regarding the influence of several geometric hole parameters on

cooling effectiveness, and analysed the local effectiveness in response to these to geom-

etry changes. The lateral expansion angle (β in Figure 4.19), inclination angle (α in

Figure 4.19) and the length to diameter ratio (L/D) parameters were studied. Signifi-

cant changes to the local cooling effect lead to large differences in the average cooling

effectiveness although the variations were typically much greater than would be seen

due to manufacturing variation (4 degree increments in β, 15 degree increments in α

and L/D = [6, 10]). The relationships between cooling effectiveness and hole shape are

also influenced by variation in the external flow (such as cross flow and turbulence in-

tensity (Saumweber et al. [2003], D Ammaro and Montomoli [2013])), variations in the

inlet conditions and hole entrance (Saumweber and Schulz [2008] and D Ammaro and

Montomoli [2013]), as well as operating conditions such as the density ratio between the

hot gas and coolant and the blowing ratio of the holes. It is also important to consider

the amount of air required for cooling, ideally one aims for low mass flow of coolant

and high cooling effectiveness but exactly what the trade-off should be depends on the

overall engine performance and operating conditions The overall relationship between a

hole’s geometric parameters and the cooling efficiency is therefore complex and it is nec-

essary to carefully consider the operating conditions in evaluating the effects of a hole’s

geometry on cooling performance (see Conclusion of Saumweber and Schulz [2012]).

4.4.2 Cooling Hole Manufacture

Cooling holes are often manufactured by electro discharge machining (EDM), or laser

drilling (Bunker [2009]). In this case study the laser drilling process is considered. A

detailed review of the Laser drilling process is available from Dhar et al. [2006] and

Kreutz [2007] giving more details regarding 5-axis Laser drilling for the creation of
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Figure 4.20: A laser drilled blade (left picture Wos [2010]) and an illustration of laser
drilling techniques (right figure Dhar et al. [2006])

Figure 4.21: Laser drilling process steps from Poprawe et al. [2008])

shaped holes. McNally et al. [2004] discussed some of the challenges of Laser drilling

particularly in regard to drilling through the thermal barrier coating. Poprawe et al.

[2008] also details the Laser drilling process of a shaped hole (which was designed for

easy manufacture) with a thermal barrier coating. In general, there are several steps to

creating a shaped hole, which vary depending on the hole geometry. The steps involved

in creating a laidback fan-shaped hole are detailed in Figure 4.21, from Poprawe et al.

[2008] (the laidback angle is small for this hole (γ = 10, which makes it difficult to

visually differentiate this as a laidback hole). The first stage (1) involves percussive

drilling to form the centre of the hole. The diameter of the hole is increased by two

trepanning cycles (step (2)), which results in a near net shape hole. The third step (3),

involves four trepanning cycles at an increasing feed rate to finalise the hole geometry.

Inspecting cooling holes to ensure geometric conformance is problematic due to their

diminutive nature, typically diameters are tenths of millimetres (< 1 mm). Nevertheless,

there are several methods for ensuring cooling holes conform to the specification limits.

A holistic measure to verify that the average hole geometry is within the specification,

can be achieved through flow rate analysis, where the mass flow rate of air through the

blade is measured. This does not establish if individual holes conform, as a blockage in
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one hole may be compensated for by an oversized hole elsewhere. Bunker et al. [2011]

offered an advance on standard mass flow rate inspection by measuring the transient

thermal response of an internal surface beneath the downstream jet emitted from the

cooling hole. If the geometry of the hole performed correctly, the transient response

would match the theoretical calculation for transient heating. A more direct method

of evaluating the geometry of holes is though direct inspection with calibrated pins.

The diameters of these pins increases incrementally and the ‘snuggest’ fit indicates the

approximate diameter of the hole (Shetty et al. [2008]). This method is time consuming

and only reveals the smallest hole diameter, it does not pick up defects and cannot be

used to verify angles accurately. Shetty et al. [2008] developed an approach to optically

determine the diameter and depth of holes. A camera and image recognition algorithm

was used to visualise and inspect the hole diameter, while a precision diffractive light

tube was used to determine the hole depth. A camera inspection system was also

developed by Ho et al. [2012], to determine breakthrough (when the laser penetrates

the total thickness of the surface). It is important to monitor breakthrough to help

ensure the quality of the hole and prevent damage to the internal geometry of the blade.

Another type of visual inspection was developed by Schneider et al. [2010], where x-ray

radiography was used to analyse the cross-section of the holes, known as DODO (Direct

Observation of Drilled hOle). The method allows measurement of all hole characteristics

as well as manufacturing imperfections such as the re-cast layer formed due to melt rather

than vaporisation during the Laser drilling process.

4.4.3 Feasibility of Optimal Mean Setting to Film Cooling Hole Man-

ufacture

The following Section considers the parameter and tolerance design of a film cooling

hole in relation to Optimal Mean Setting. The literature discussed hitherto indicates

the cooling effectiveness of cooling holes can be highly dependent on the geometry of

the hole. Tightening the tolerances controlling the geometry of the hole can lead to

improvements in the cooling effectiveness. Optimal Mean Setting can be applied to

maximise the profit when these tight tolerances lead to non-conformance due to the

variation of the manufacturing process.

A fundamental requirement of Optimal Mean Setting is the ability to inspect and rework

features. The discussion in Section 4.4.2 clearly indicate it is possible to rework and

inspect holes10. However, there are challenges to implementing such a system in an

industrial environment.

10The current laser drilling method illustrated by Figure 4.21 is tantamount to a series of rework steps
where the hole is created over a number of drilling cycles
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� Inspection of the hole’s geometric parameters should take place in-situ to pre-

vent large increases in manufacturing time (if components have to be removed,

inspected and then repositioned for re-drilling). In-situ inspection would also pre-

vent inaccuracies emerging from variation in the positioning of components on an

inspection jig and then replacement on the drilling jig.

� Rework must also take place in-situ to avoid large increases in manufacturing

time and inaccuracies due to replacement of components. This leads to potential

complications with regard to adjusting hole inclination angles or diameters as the

beam may damage the internal geometry of the blade or vane if breakthrough had

already occurred. It may be possible to fill the blade with a substance to block or

absorb the beam or ensure breakthrough would not occur until rework on other

parameters has been completed.

The application of Optimal Mean Setting to the manufacture of features ultimately de-

pends on whether the benefits achievable through tighter tolerances outweigh the extra

manufacturing costs. All tolerances would be tightened (provided there was some ben-

efit to doing so) if the cost was low enough. There is no intrinsic technical reason why

inspection and rework could not be applied to the manufacture of film cooling holes,

although the expense may be prohibitive. With this in mind an Optimal Mean Setting

analysis was implemented to establish the likely performance benefits and a sensitiv-

ity analysis was performed to determine when such a strategy would be economically

beneficial.

4.4.4 Cooling Hole - 2D, Two parameter

An initial study was set up to investigate the application of Optimal Mean Setting to

a cylindrical hole governed by two geometric parameters, the inclination angle (α) and

the hole diameter d. The performance of a cooling hole was evaluated by calculating the

adiabatic film effectiveness down-stream of the hole where adiabatic effectiveness was

given by,

η =
(Tg − Ts)
Tg − Tj

. (4.21)

The temperature of the hot gas in the main duct was Tg, Ts was the temperature at the

surface of the airfoil and Tj was the temperature of the coolant jet. A two-dimensional

analysis was performed rather than a three-dimensional study, due to computational

constraints in solving the thermal effectiveness at enough design points to ensure the

variation in thermal effectiveness scaled realistically with the small variations in α and

d. An illustration of the 2D domain is given in Figure 4.22, which follows the con-

ventions of the majority of the literature discussed above. The domain is somewhat
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Figure 4.22: Overview of the 2D cooling hole computational domain (not to scale)

simplified from a hole on a curved airfoil surface, nor is there any global pressure dif-

ferential between the main duct velocity inlet and pressure outlet, as would occur on

the suction side of an airfoil surface as flow would be accelerated. The principle reason

for limiting the complexity of the domain was to ensure the numerical results obtained

from computation fluid dynamics (CFD) could be compared to the experimental obser-

vations from laboratory experiments in the published literature. Laboratory conditions

also used lower temperatures, pressures, heat flux and lower velocity than real engine

conditions11. Furthermore, the airfoil wall material and holes themselves differ from real

engines conditions. Typically, laboratory experiment holes are > 4 mm for manufac-

turability (Schroeder and Thole [2014]), while real engines cooling holes are < 1 mm.

Nevertheless, the discussions are based on normalised values of thermal effectiveness (η)

and the fundamental flow physics is broadly unchanged between laboratory conditions

and elevated real engine conditions (Wang and Zhao [2011]).

Appendix G details the numerical aerothermal approach taken to establish the jet, gas

and surface temperatures downstream of the hole (required in Equation 4.21). The

commercial CDF package, Ansys Fluent 14.5 was used to evaluate discrete design points

and a Gaussian process regression (Kriging) response surface methodology was used to

produce a surrogate model to map changes in the cooling effectiveness with the design

features.

11A significant challenge in modelling film cooling effectiveness at real engine conditions is acquiring
accurate surface temperature readings at elevated temperature. Measuring surface temperatures using
thermocouples or film gauges is near impossible due to the extreme temperatures. Infra red techniques
can lead to large errors in readings and ensuring access or line of sight for infra red spectrometers or
cameras is challenging due to high temperature and pressures (Reagle [2009])
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4.4.5 Laser Drilling Costs

A percussive laser drilling process can be used for the production of round holes, as

illustrated by process 2 in Figure 4.20. The industry standard technique to produce

such holes relies on the use of a flash-lamp pumped Nd:YAG laser. Based on discus-

sions in McNally et al. [2004], Chien and Hou [2006], Kreutz [2007] and Walther et al.

[2008] a pulse frequency of 14 Hz and 10 pulses per hole were chosen a suitable drilling

parameters. Typically holes with diameters in the range 0.5 mm to 1 mm can be drilled

in this way12.

An illustration of the laser drilling process is shown by the flow chart in Figure 4.24.

The drilling process itself is contained by the green box and is generally representative

of a percussive drilling process. The inspection process is optically based and is believed

to be representative. However, no such process currently exists for the optical inspection

of film cooling holes at Rolls-Royce. Nevertheless, a similar optical inspection process is

used (in a trial capacity) for the inspection of combuster cooling holes. The inspection

process illustrated in Figure 4.24 is based on this combuster cooling hole inspection

routine. Typically a blade or vane is also filled with a beam blocking substance to

prevent the laser from damaging the internal surfaces of the blade or vane. Often this is

a wax as described by Philby and Davies or a gel type substance as shown by Williams

[2012]. It is assumed filling the blade with a beam blocking substance is done prior to

loading the component in the laser drilling cell and the quality of the beam blocking

substance is assumed to maintain its properties irrespective of the number of rework

cycles. Thus, the blade does not have to be refilled with a beam blocking substance

before rework. Any changes to these assumption simply increase the cost of rework

which would affect the positioning of the optimal means but not effect the fundamentals

of Optimal Mean Setting (provided a rework method can be implemented).

A breakdown of the times and total time for the drilling and inspection operations are

given in Table 4.4. A pulse frequency of 14 Hz and a total of 10 pulse was used to

calculate the drill time. Approximately half the total drilling time is accounted for

by communication between the machine controller and drill head (coms), the shutter

movement, dwell time and index time in order to move the component or drill head to

the new position. The image analysis and communication time make up around 80% of

the total inspection time. A factory cost rate of 60 £/hr was assumed thus the total

drilling processing cost was estimated at 0.0196 £ per hole while the inspection cost was

12The diameters of the holes from the CFD study were in the range 6.46 mm to 8.8 mm, to ensure
the CDF results could be compared directly to experimental evidence.
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Figure 4.23: Flow chart of the laser drilling, inspection and rework process

estimated to be 0.0125 £ per hole13. A rework operation was determined by the sum of

the drilling process cost and inspection cost of 0.0321 £.

Drill Processes Time (s) Inspect Processes Time (s)

Drill 0.714 Communication 0.1

Communication 0.25 Take image 0.1

Shutter move 0.1 Analyse image 0.5

Dwell 0.1

Index 0.01

TOTAL 1.174 TOTAL 0.75

Table 4.4: Laser drilling and inspection times

The costs required for Optimal Means Setting are given in Table 4.5.

13This inspection cost figure is less reliable than the drilling time figure as there is no such inspection
process currently in operation so it is based on the optical inspection process for the inspection of
combuster holes.
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Rc (£) [0.0321, 0.0321, 0.0642]

Sc (£) [1000 1000 1000 1000]

SP (£) 0.03914

PC (£) 0.0321

Table 4.5: Costs of rework, processing and selling price for the α and d parameters
of the film cooling hole

Figure 4.24: Rework of the hole inclination angle

4.4.6 Optimal Mean Setting - Film Cooling Hole

As the laser drilling process creates the two features (the inclination angle α and diameter

d) in a single process, there is a deterministic relationship between the reworking of the

angle and the diameter. It is not possible to rework the angle independently of the

diameter, as illustrated by Figure 4.24. Here, the angle of the drilled hole, α
′

is less

than the required angle α. The hole may be reworked to increase this angle, however,

in doing so the diameter d will also change by 2 ε where ε is given by,

ε = tan(|α− α′ |) h

cos(90− α)
.

The same formula is applicable if the drilled angle were greater than the required angle,

where rework would be required to reduce the inclination angle to ensure conformance.

Since the inclination angle may always be reworked (in the range of the variation in the

study), the only scrap probability was due to the increase in diameter from reworking the

angle, and the probability the diameter was too large from the initial operation. Figure

4.24 illustrates the dependence between the diameter and reworking the angle. Small

alterations to α will result in small ε values and hence small increases to the diameter

d relative to d
′
. However, large differences between α

′
and α lead to large ε values

which substantially increased d. The joint probability of scrap, conformance and rework

is illustrated by Figure 4.25 where the angle can be reworked if it is greater than the

upper specification limit or lower than the lower specification. limit. It follows that pI,2 =
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Figure 4.25: Joint distribution of the diameter (x1) and inclination angle (x2) pa-
rameters

F (L1, U2)− F (L1, L2), pI,3 = 0, pI,C = F (U1, U2)− F (L1, U2)− F (U1, L2)− F (L1, L2),

pI,4 = F (U1) − pI,C − pI,2 and pI,S = 1 − F (U1). The pI,3 term is zero because there

can be no ‘angle only ’ rework. Any rework of the angle implicitly involves rework of

the diameter, thus the probability of features being in the pI,3 region in Figure 4.25

(F (U1, L2)− F (L1, L2)) is incorporated in pI,4 term (dual feature rework).

The process flow and rework stages are illustrated by Figure 4.26 where the feed-in to

state 3 from the initial processing state (I), goes into the dual feature rework state (4).

Despite the slight change in the joint distribution from the standard set up (comparing

Figure 4.25 to Figure 3.6 on page 57) the same model and subsequent expected profit

equations can be used (Equation 3.78) by just modifying the probabilities associated

with state 3.

The variation in cooling efficiency was plotted against the α and d parameters in Figure

4.27, which was created using the response surface methodology discussed in Section

G.4. The black points are the CDF evaluations of the initial sample points from the

DoE.

Parameter and Tolerance Design

The trade-off study was performed to establish the Pareto front of profit versus cool-

ing efficiency. Eight minimum cooling efficiency points were selected in the range

0.77270 ≤ η ≤ 0.77345. The means and tolerances for the angle and diameter of the

hole were optimised to yield highest profit for standard and Optimal Mean Setting pro-

duction techniques. A Monte-Carlo simulation was performed for each set of means and

standard deviations (defined from the optimiser) and the proportion of points yielding



Chapter 4. Uncertainty Modelling with Non-Normal Distributions 158

Figure 4.26: Process flow and rework stages for the cooling hole diameter (x1) and
inclination angle (x2) parameters

Figure 4.27: Cooling effectiveness in response to changes in the α and d parameters
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better or equal to the minimum cooling effectiveness was verified. The optimisation

strategy is outlined in Equation 4.22 where EP (•) is the expected profit function, η(•)
is the function of a cooling effectiveness and r is a reliability constraint specifying the

required conformance from the Monte-Carlo run. The reliability constraint R = 0.9938

corresponding to a 4 sigma level, which implies 99.38% of the points would meet the min-

imum cooling effectiveness level, ηmin. Failure to comply with this requirement invoked

a penalty for the expected profit of −1× 109 units



find: µ and σ

maximise: EP (µ,σ),

subject to: P [η(µ,σ) ≥ ηmin] ≤ r

L ≤ µ ≤ U .

(4.22)

Optimisation Strategy

For each ηmin, a set of initial starting means and z values were given, where µ =

[0.5, 0.5, 0.5] and z = [1, 1]. Since the standard deviations of the manufacturing pro-

cess were set at σ = [0.1097, 0.1026]14 the z-values determined the upper and lower

specification limits, where L = µ − z σ and U = µ + z σ. Four parameters were op-

timised for the standard production technique, two related to the angle and diameter

means. There was no angle rework mean as there was no benefit to allowing the angle

mean to deviate from the nominal and there was no option to rework the angle inde-

pendently of the diameter. Rework for the diameter was set using the same mean as the

initial processing for this standard production technique. The remaining two param-

eters related to the z-values for the angle and diameter, determining the specification

limits. Two extra optimisation parameters were included for the Optimal Mean Setting

production; a diameter rework mean, and a separate z-value parameter allowing the

mean to be off-centre relative to the specification limits. This allowed the diameter to

be biased towards the upper or lower specification limits by specifying the upper and

lower specification limits as U = µd + zdu σd and L = µd − zdl σd, respectively.

A two stage optimisation approach was used, where a genetic algorithm was applied to

find the local optima in the design space, followed by a local optimiser. The Matlab

genetic algorithm (ga.m) was used with a population size of 50 for the standard pro-

duction technique and 60 for the Optimal Mean Setting technique, the mutation rate

14The process standard deviations for the hole angle and diameter were defined from a nominal hole
with absolute dimensions α = 33 degrees and d = 7.7 mm. Normalising the standard deviation and
assuming all values would be encompassed by ± = 3σ from the nominals gave the standard deviations
noted above.
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Figure 4.28: Cooling effectiveness in response to changes in the α and d parameters

and crossover probability were kept at the default setting. The optimiser was run for

100 generations equating to 5000 evaluations for the standard production technique and

6000 evaluations for the Optimal Mean Setting technique. The optimum means and

z-values formed the inputs for the local optimisation run which used the fmincon.m al-

gorithm (Mathworks [2012]). This was run for a maximum of 800 evaluations or until

the change in expected profit (EP ) was no more than 1× 10−4. Each Monte-Carlo run

was performed with 1×106 which lead to each function evaluation taking approximately

1.1 seconds on a 3.4 GHz Intel Core i7 processor.

Figure 4.28 illustrates the expected profit from the standard production system and

Optimal Mean Setting method for increasing cooling effectiveness. Six verification points

were run to justify the use of 1× 106 points for the Monte-Carlo runs. Each verification

point was evaluated with 1× 107 points. The absolute values from the two Monte-Carlo

η = 0.7729 η = 0.7730 η = 0.7731 η = 0.7732 η = 0.7733 η = 0.7734

106 pnts -4.02 -15.81 -48.33 -95.80 -225.66 -448.27

107 pnts -4.00 -15.62 -40.46 -95.04 -229.41 -419.94

difference 0.51% 1.21% 0.28% 0.80% 1.64% 6.75%

Table 4.6: Monte-Carlo verification results

resolutions are given in Table 4.6, where the percentage differences were considered

sufficiently small to justify the use of 1× 106 points for each Monte-Carlo run.

Figure 4.28 clearly demonstrates the benefit of using Optimal Mean Setting to increase

profit relative to a standard production technique. At the lowest value of η, the ex-

pected profit from both techniques was the same, 0.0070. As the minimum η value was

increased, the production cost of the standard production technique rose rapidly, conse-

quently reducing profit to a greater extent than the Optimal Means Setting method. At

the highest level of cooling effectiveness, η = 0.77345, the profit from Optimal Mean Set-

ting was −0.070 £ while the profit from a hole produced using conventional methodology
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was −957.35 £15. The difference in surface temperature between these two extremes is

0.6 K using the real engine conditions given in Wang and Zhao [2011] where the tem-

perature of the gas in the duct was 1400 K and the coolant jet was at 750 K. For

reasons discussed Section G.3, the response surface is likely have a greater gradient for

3D conditions, thus the surface temperature difference between the two design is likely

to be exaggerated. The 0.6 K improvement is not economic for a standard production

technique, incurring a production cost of 957.35 £ per hole. The Optimal Mean Setting

technique indicates a production cost for the same minimum η of just 0.086 £ per hole.

This is 2.7 times greater than the cost of producing a hole which incurs no scrap or

rework, but the extra cost is relatively insignificant compared to the value of a blade.

The means, z-values, profits and production costs from the standard production and

Optimal Means Setting techniques are shown in Tables 4.7 and 4.8 respectively.

Means z-values Currency (£)

η ρ µd µα zdl,u zα E(PR) Prod. cost

0.77252 0 0.6105 0.5602 9.0299 8.4327 0.0070 0.0321

0.77261 0 0.6500 0.6346 8.5249 9.1047 0.0070 0.0321

0.77271 0 0.5671 0.5156 7.4019 3.9059 0.0070 0.0321

0.77280 0 0.5599 0.4881 4.5472 0.7156 -0.0471 0.0677

0.77289 0 0.5671 0.5517 2.8315 0.8082 -4.0225 4.0452

0.77299 0 0.5494 0.5421 2.2913 1.0305 -15.8104 15.8374

0.77308 0 0.5304 0.5646 1.9382 0.7398 -48.3268 48.3474

0.77317 0 0.5068 0.5543 1.4989 1.0711 -95.7987 95.8247

0.77326 0 0.4894 0.6004 1.0974 0.8568 -225.6591 225.6791

0.77336 0 0.4534 0.5376 0.6585 0.7909 -448.2683 448.2830

0.77345 0 0.4154 0.5390 0.0909 0.2232 -957.3500 957.3508

0.77336 -.8 0.5756 0.6015 1.9096 0.4291 -78.1628 78.1758

0.77336 .8 0.5654 0.5734 1.7036 0.7393 -76.3840 76.4050

Table 4.7: Optimisation results for a cooling hole manufactured using a standard
production technique

Finished geometry with no correlation between d and α

The positioning of the means and tolerance limits (given from the z-values) is illustrated

by the three Figure pairs representing the standard production technique and Optimal

Mean Setting in Figure 4.29. The solid green points represent the optimal means for

initial processing, while the green star on the right hand plots illustrate the optimal

means for the single feature rework. Each plot also displays contours illustrating the final

distribution of the manufactured geometry after rework. The hole diameter distributions

are truncated towards the diameter rework specification limit (left white line) while

the inclination angle distributions are truncated at both specification limits. This was

15The profit is negative due to the relatively low selling price of 0.03914 £ in Table 4.5.
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(a) Standard production with η = 0.77299 (b) Optimal Mean Setting production with η =
0.77299

(c) Standard production with η = 0.77317 (d) Optimal Mean Setting production with η =
0.77317

(e) Standard production with η = 0.77336 (f) Optimal Mean Setting production with η =
0.77336

Figure 4.29: Optimal means and geometry distributions for varying cooling effective-
ness (η)
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Means z-values Currency (£)

η ρ µd µα µdrework
zdl zdu zα E(PR) Prod. cost

0.77252 0 0.5807 0.5866 0.6294 8.3502 9.4241 8.4647 0.0070 0.0321

0.77261 0 0.6058 0.5764 0.4307 8.2938 8.5425 9.1149 0.0070 0.0321

0.77271 0 0.5958 0.5994 0.4280 8.3307 9.1901 8.6448 0.0070 0.0321

0.77280 0 0.5314 0.5461 0.6709 2.5341 9.9954 9.2156 0.0069 0.0323

0.77289 0 0.5292 0.5365 0.5844 2.1123 9.9091 9.9972 0.0065 0.0327

0.77299 0 0.5012 0.5452 0.5294 1.5232 9.7337 9.3185 0.0049 0.0342

0.77308 0 0.4933 0.5519 0.5165 1.2423 9.7009 2.6737 0.0026 0.0363

0.77317 0 0.4747 0.5490 0.5018 0.9694 9.9257 2.0922 -0.0025 0.0402

0.77326 0 0.4445 0.5293 0.4519 0.6342 9.5717 1.8807 -0.0096 0.0464

0.77336 0 0.4213 0.5353 0.4477 0.2260 9.9546 1.3290 -0.0278 0.0597

0.77345 0 0.4121 0.5245 0.3811 0.0099 9.6017 0.5592 -0.0697 0.0863

0.77336 -.8 0.5006 0.5947 0.5017 9.5944 9.4981 1.2743 -0.0248 0.0561

0.77336 .8 0.4977 0.5131 0.4877 0.7947 9.9010 1.8665 -0.0072 0.0439

Table 4.8: Optimisation results for a cooling hole manufactured using Optimal Mean
Setting

because it was always possible to rework the inclination angle if it were less than or

greater than the lower and upper specification limits respectively. However, rework on

the inclination angle enlarged the hole diameter, hence scrap was produced due to too

great a hole diameter. The increase in η from 0.77299 to 0.77336 was accompanied by a

shift left of both the standard production and Optimal Means Setting means (Figures

4.29(a) to 4.29(f)). In a pragmatic sense, an initially undersized hole diameter was

created, to allow rework and reduced the probability of scrap if the angle (α) did not

initially conform. There was very little variation in the optimal mean for the hole angle

(α), as the rework cost was equal for features greater than the upper specification limit

and less than the lower specification limit. It is noticeable only one specification limit

is shown on Figure 4.29(b) and the diameter upper specification limit is not visible

in the remaining Optimal Mean Setting Figures (Figures 4.29(d) and 4.29(f)). The

generic reason for this is the absence of non-conformance for the specified optimal means

and reliability constraint of R = 99.38%. Both the initial and rework means for the

diameter (d) parameter are lower in Figure 4.29(b) than the adjacent Figure 4.29(a),

which reduced the probability of components falling into the response surface hollow,

located around [0.85 0.72] and the yellow shaded region around [0.8 0.4]. This negated

the requirement for angle (α) specification limits. The upper specification limit for

Figures 4.29(b) to 4.29(f) are never required as the left hand bias of the optimal means

reduced the probability of non-conformance (due to too large a diameter), to less than

0.62%.

The shape of the performance distribution between the standard and Optimal Mean

Setting production techniques is visualised in Figures 4.31(a) to 4.31(d). In addition to
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(a) Standard production with η = 0.77336 and ρ =
−0.8

(b) Optimal Mean Setting production with η =
0.77336 and ρ = −0.8

(c) Standard production with η = 0.77336 and ρ =
0.8

(d) Optimal Mean Setting production with η =
0.77336 and ρ = 0.8

Figure 4.30: Optimal means and geometry distributions for varying cooling effective-
ness (η) and correlation (ρ)

the three η values chosen for the plots in Figure 4.29, an additional η-value (η = 0.77280)

was plotted (Figure 4.31(a)) to give a holistic picture of the change in the performance

distribution with increasing η. The mean performance (η) was always less for the Opti-

mal Mean Setting production technique compared with the standard production. This

was because µd was always less for Optimal Mean Setting production, which produced

components with slightly lower η on average. Additionally, Figures 4.31(a) to 4.31(d)

for the Optimal Mean Setting production technique, show a greater number of compo-

nents with middling values of η compared to the standard production technique. This

was again due to the lower µd value (for the Optimal Mean Setting technique), which

corresponds to lower η values than the standard production technique. The Optimal

Mean Setting technique also exhibited slightly bimodal behaviour particularly in Fig-

ures 4.31(c) and 4.31(d), where an inflection point formed for middling η values (due

to the lower µd), before the peak for high η values. The higher peak was bolstered by
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the rework mean µrwd, where the mean for the reworked diameters was larger than the

initial mean (µd), and more in-line for µd for the standard production technique. Since

only a proportion of the initial batch of components were reworked the high η peak is

lower for Optimal Mean Setting than the standard production technique.

(a) Cooling effectivness comparision (η = 0.77280) (b) Cooling effectivness comparision (η = 0.77299)

(c) Cooling effectivness comparision (η = 0.77317) (d) Cooling effectivness comparision (η = 0.77336)

Figure 4.31: Performance distributions for varying cooling effectiveness (η)

Correlation between d and α

The effect of negative and positive correlation between the d and α parameters is il-

lustrated by Figure 4.30(a) to 4.30(d). In practice the correlation between the hole

diameter and inclination angle would be fitted from data, as shown in Section 4.3. As

no data existed for this case, two prospective negative and positive correlations were

specified where a Gaussian dependence structure was implemented via a Gaussian cop-

ula. Positive correlation effectively caused a diagonal ridge of high probability density

with a negative slope (Figures 4.30(a) and 4.30(b)). In contrast the areas of high η for
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the response surface were aligned with a slightly positive diagonal. This mismatch be-

tween the natural orientation of the manufactured geometry distribution and the ridge

of high η significantly reduced the tolerance of the inclination angle (α) compared to the

uncorrelated case. Conversely, the hole diameter (d) tolerances were widened since the

variation along the α dimension was reduced. The geometry produced using the Optimal

Mean Setting method (Figure 4.30(b)), showed the means were shifted closer to the di-

ameter rework specification limit, this reduced the probability of geometry being created

with too large a diameter (right hand side of the response surface). As a consequence,

the inclination angle upper and lower specification limits were relaxed compared to the

standard production case (Figure 4.30(a)), as the discrete variation of the hole diame-

ter was lower 16. Hence, there was a reduced probability of producing nonconforming

geometry at the corners, where the diameter and angle specification limits intersect.

Figures 4.30(c) and 4.30(d) illustrate the geometry distribution and response surface for

positive correlation. The better alignment between the diagonal slope of the geometry

distribution and the response surface led to an improvement in expected profit for both

the standard and Optimal Mean Setting techniques. The tolerances were set wider apart

in Figures 4.30(c) and 4.30(d) compared to 4.30(a) and 4.30(b). Tables 4.7 and 4.8 also

verify lower production costs and high profits for the positively correlated cases. The

distribution of the performance of the manufactured geometry is shown in Figures 4.32(a)

and 4.32(b) for negative and positive correlation, respectively. The principle difference

between the correlated and uncorrelated cases is the truncation around η = 0.7734.

Both the d and α distributions are truncated in the uncorrelated case (Figures 4.29(e)

and 4.29(f). The distributions are less truncated for the correlated cases (Figure 4.30)

particularly in regard to the hole diameter. This leads to a less truncated shape for the

performance distributions (Figure 4.32).

Cooling Hole Study Conclusion

The average performance of a cooling hole could be improved by tightening the tolerances

for the hole diameter and inclination angle. The cost of doing this using a standard

method of manufacture was economically infeasible. The same minimum performance

was achieved using Optimal Mean Setting with an increased of production cost of 0.086

£ per hole, compared to the original cost of 0.032 £. The mean hole performance

was slightly less using Optimal Mean Setting compared to the standard production

technique. The degree to which the average performance was lower depended on the

minimum cooling effectiveness (η) and the correlation between the hole diameter and

16The total variation remained unchanged but the probability was less dense at the periphery. Notice
the largest diameter contour on Figure 4.30(b) has a density of 0.8 and the equivalent contour on Figure
4.30(a) has a density of 1.37.
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(a) Cooling effectivness comparision for η =
0.77336 and ρ = −0.8

(b) Cooling effectivness comparision for η =
0.77336 and ρ = 0.8

Figure 4.32: Performance distributions for positive and negative correlation (ρ)

inclination angle. In summary, performance gains by tolerance tightening using standard

production techniques would be economically impractical, Optimal Mean Setting makes

such a suggestion economically possible.



Chapter 5

Conclusions and Future Work

5.1 Conclusion

Optimal Mean Setting is a technique that can be used to reduce the cost of manufac-

tured features and components when the manufacturing variation is greater than the

tolerance limits. It has applications where the performance of the feature or component

necessitates tight tolerances and it is not practical or possible to reduce the inherent

variation in the manufacturing process. Typically, this would lead to non-conformance

and the expense of reworking and scrapping components. Optimal Mean Setting can be

used to ensure the non-conformance that is created is primarily rework, as opposed to

more costly scrap. In this manner, the tolerances can remain tight but the cost of pro-

duction can be minimised. This thesis sets out the framework necessary to determine the

feature mean values to maximise profit. The process effectively modifies the shape of the

manufacturing feature distributions to achieve the most profitable component geometry

within the specification limits. Chapter 3 developed the ideas of a generalised approach

to Optimal Mean Setting for idealised examples. The case studies in Chapter 4 and

in Appendix F showed how the method could be applied to non-ideal real components.

Several contributions to five key topics were made and are detailed below.

� A literature review uncovered an error in the methodology of previous research,

related to the application of Optimal Mean Setting to parallel manufacturing pro-

cesses. A part of the research in this thesis was devoted to correcting this error and

generalising the methodology. The generalisation enabled a mixture of serial and

parallel processes to be considered for n-features. This is the first time a robust,

generalised method has existed and does not restrict the application of Optimal

Mean Setting to a small number of features (two for parallel production) and a

specific sequence of manufacture (serial or parallel).

168
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� The optimisation methodologies discussed in previous literature were found to

be sub-optimal for determining the mean settings to maximise profit for features

produced in parallel. An optimal strategy was discussed in Section 3.1.2 and

proven to outperform the literature in Section 3.5.1 using like-for-like examples.

� A fundamental restriction identified in previous work was the inability to evalu-

ate the scrap, conformance and rework probabilities for parallel production where

the feature distribution were not normally distributed or where different distri-

butions families modelled the manufacturing variably of each feature1. Copulas

were introduced to remove this restriction, which allowed the joint distribution to

be calculated (to yield the scrap, conformance and rework probabilities) irrespec-

tive of the type of distribution used to model the variation of the manufacturing

features.

� The effect Optimal Mean Setting has on the final manufactured distribution had

not been considered previously. Optimal Mean Setting yields means that are usu-

ally biased towards one of the specification limits. Moreover, the mean of rework

processes can be different to the original mean, which can further modify the distri-

bution of the manufactured geometry. Since it is the final manufactured geometry

that governs the performance distribution of the components, it is important to

be able to predict the distribution. Again copula functions were used to model the

final distribution of the manufactured geometry, as there was no restriction of the

shape of the feature distributions.

The source of uncertainties in manufactured products will never be eliminated (Wilson

[1980]). Therefore, the performance of products will vary depending on the sensitiv-

ity to the product’s geometry and to the precision the geometry can be manufactured

to. Thus, there will always be potential to improve a product’s functional performance

through tolerance tightening and manufacturing a more precise product. The change of

a product’s geometry through service must also be considered to prevent over precision

engineering components that will immediately deform in service. Nevertheless, the gen-

eralised approach of Optimal Mean Setting presented in this thesis allows engineers to

consider increasing the precision of a product through a coupling of design and manu-

facturing knowledge. It allows manipulation of the shape of uncertainty to create better

value engineering products.

1More correctly the literature is limited to features where the variation is approximated by the same
distribution family for each feature. In parallel production, the joint probability of scrap, conformance
and rework must be evaluated which involves solving the multivariate distribution function. Most para-
metric distribution families have a multivariate distribution function but different distribution families
cannot be mixed, unless copulas are used.
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5.2 Future Work

5.2.1 Optimise Functional Distributions

Much of the literature inspired by Taguchi discussed in Chapter 2 is associated with

achieving desirable functional distributions, such as larger-the-better, nominal-the-best

and smaller-the-better. The cooling effectiveness distribution of the film cooling hole

case study, in Chapter 5, is an example of a larger-the-better distribution. A further

area for investigation would be to attempt to optimise the functional distribution by

applying Optimal Mean Setting. By altering the proportion of rework on a feature, and

modifying the mean values for different rework iterations, Optimal Mean Setting can

modify the feature distributions, ultimately changing the functional distribution of the

component. This is in contrast to the well established principles of Six Sigma, where one

of the implementation corollaries is to acknowledge variation exists but set up processes

to minimise the affect on the product. Future work should examine the benefits of

implementing Optimal Mean Setting to achieve desirable performance characteristics.

One significant advantage of the Optimal Mean Setting approach is tolerance tightening

and product performance can be improved without expensive re-design or vast capital

expenditure to improve manufacturing capability.

Trade-offs between performance gains brought about through Optimal Mean setting,

improved manufacturing capability or redesign are all value related and fall into the

remit of Value Drive Design (Collopy and Hollingsworth [2009] and Cheung et al. [2010]).

The objective of this area of research aims to quantify ‘best’ design and decisions by

maximising value.

The performance of assemblies can also be associated with Optimal Mean Setting. For

example, many gas turbine assemblies are annular in nature and composed of several

components, such as a ring of nozzle guide vanes. Variation in the geometry of these

vanes or vane pairs impacts how cylindrical this annular assembly is. Variation at

component level and the affect of assembly performance is an active research area (Lowth

and Axinte [2014]). Optimal Mean Setting could be applied to such areas of research to

guarantee assembly performance by impacting tolerances at component level

5.2.2 Copula Modelling Manufacturing Distributions

The research presented in this thesis was the first application of copula functions to

model the variation in manufacturing features. There is great potential in this approach

to propagate manufacturing variation through to performance variation in engineering
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Figure 5.1: Illustration of a customised distribution fitted to the data points

quantities such as stress, aerodynamic performance and thermal transfer. As examined

in this thesis, different families of parametric distributions can be used to model the

manufacturing variation. However, it is not even necessary to fit a parametric distribu-

tion to data, the data could be used explicitly. This concept is expressed in Figure 5.1

which illustrates how a distribution might be explicitly fitted to the sample points from

the manufacturing data in Section 4.3 (black line). There are two potential challenges:

� There is a danger of over customizing distributions to data samples. Although

the distribution in Figure 5.1 represents the variation in the feature (x3) well

for this sample, it is questionable if this is really representative of the process

variation if a larger number of samples were taken. If enough data samples were

available it would be possible to use a proportion to customise a distribution and

the remainder to verify if the customized distribution really was representative of

the manufacturing process variation.

� Optimal Mean Setting also requires the mean to be shifted. If customizable dis-

tributions were created, it would be important to establish how the shape of the

distribution would change with the process mean.

5.2.3 Alternative Strategy to Evaluate F -matrix terms

One of the time consuming elements of the Optimal Mean Setting methodology set-out

in this thesis is the matrix inversion (I−Q)−1 which is used to determine the M -matrix

terms the F -matrix. As the number of features increase, the I and Q matrices become

larger, increasing the time it takes to execute the inversion.
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While the M -matrix probabilities follow a sequence related to the geometric series, the

F -matrix probabilities are more complex to determine without the Markovian method.

Rudolph [1999] and Uem [2009] offer tantalising mathematical models of random walks

that have similar characteristics to the rework, scrap and conformance states involved

in Optimal Mean Setting. It may be possible to adapt and further their research and

avoid the matrix inversion, which has the potential to reduce the computational time for

greater numbers of features. This is a purely mathematical exercise but a comparison

of computational time versus number of features for the Markovian method and an

alternative would be of practical benefit.

5.2.4 Non-Exhaustive Mean Search

Selim and Al-Zu’bi [2011] introduced a method to enable the optimal means for the

manufacture of components in series to be found without exhaustive search. This is

advantageous as it reduces the computational time necessary to find the optimal mean

setting. It is possible this work could be incorporated with the research in this thesis in

two main ways.

� Although the methodology presented in Selim and Al-Zu’bi [2011] is restricted

to a the manufacturing of a single feature at each stage, it may be possible to

apply a similar strategy to parallel production. The mathematical framework

regarding parallel production presented in this thesis is a starting point for such

an investigation.

� If the preceding bullet point could be achieved, it would then be possible to derive a

method to allow the means for n-features in any combination of serial and parallel

operations to be found, utilising the basis of Selim’s method

5.2.5 Inclusion of Measurement Error

The Optimal Mean Setting framework discussed in this thesis did not model the effect of

measurement uncertainty due to the inherent design of measurement systems and fluc-

tuation in environmental conditions. Measurement error would predominately influence

the measurements that were in close proximity to the specification limits. This topic

has been associated with Optimal Mean Setting and process targeting, for example,

Duffuaa and Siddiqui [2003] investigated the losses in profit due to product misclassi-

fication. Feng and Kapur [2008] developed a model to specify optimum specification

limits for bivariate quality characteristics with penalty costs for misclassification. An
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area for future study is the inclusion of measurement error to the generalised Optimal

Mean Setting approach developed in this thesis.

5.2.6 Holistic Integration

As described by Shukor and Axinte [2009], “Traditionally, the translation of a concep-

tual design into a final product has been accomplished by repetitive iterations between

design and manufacturing stages of the product development life cycle”. Designers may

operate with little knowledge of the manufacturing process, which can lead to non-

manufacturable designs resulting in time-consuming iterations between the design de-

partment and manufacturing. The specification of tolerances is one such area. To better

design for manufacture, Manufacturing Analysis Systems (MAS) have been developed to

pull manufacturing aspects into the design stages (Gupta et al. [1997] reviewed in Shukor

and Axinte [2009]). In the case of tolerance specification and Optimal Mean Setting, the

manufacturing capability and variation distribution are required at the design stage. A

complex but powerful research area would be to bring such information into the design

environment which would empower designers and manufacturing engineers to optimise

products in light of the likely variation they would encounter during manufacture.



Appendix A

The Nature of the Stationary

Points

Theorem 3.1 was proven and total profit is maximised when the same optimal mean is

applied over all rework iterations such that, µ = µopt. Thus, the expression for total

profit, Equation 3.4, can be formulated as a geometric series and written,

TP = SP

(
F (U, µ, σ)− F (L, µ, σ)

1− [1− F (U, µ, σ)]

)
− PC − Sc

(
F (L, µ, σ)

1− [1− F (U, µ, σ)]

)
−Rc

(
1

1− [1− F (U, µ, σ)]
− 1

)
.

(A.1)

The nature of the stationary point which maximises TP is given by,

d2TP

dµ2
=

√
2√

πσ3G(µ)

(
(L− µ)A(µ)ξ(υ)α

−(U − µ)B(µ)ξ(ϕ)α− (2Rc+ α)(U − µ)B(µ)

+(L− µ)A(µ)

)
+

4B(µ)

πσ2G(µ)3
(A(µ)ξ(υ)α

−B(µ)ξ(ϕ)α+ (2Rc+ α)B(µ)−A(µ)α

)
.

(A.2)

The functions A,B and G are given by,

A(µ) = exp

(
−(L− µ)2

2σ2

)
,
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B(µ) = exp

(
−(U − µ)2

2σ2

)
,

G(µ) = 1 +
2√
π

∫ (U−µ)
√

2

2σ2

0
e−t dt

The stationary point of Equation A.1 is only a maximum when d2TP/dµ2 < 0. This

condition is generally satisfied for SP > Sc > Rc, which ensures that the optimal

mean lies to the right of the nominal mean, µnom. While µopt < USL, there are only

two positive contributing terms in Equation A.1, the third and eighth terms, −(U −
µ)B(µ)ξ(ϕ)α and −B(µ)ξ(ϕ)α, because ξ(ϕ) may be negative as indicated by Figure

A.1. However, the absolute value of the fourth and ninth terms is always greater than

the third and eighth respectively such that,

|(2Rc+ α)(U − µ)B(µ)ξ(ϕ)| > |(U − µ)B(µ)ξ(ϕ)α|

and

|(2Rc+ α)B(µ)| > |B(µ)ξ(ϕ)α|

making the sum negative, and thus Equation A.2 remains negative.

While µopt > USL, the second and seventh terms from Equation A.2 make a positive

contribution due to ξ(υ) becoming negative, as illustrated on Figure A.1. Nevertheless

the absolute value of the fifth term and tenth terms are greater than the second and

seventh terms respectively such that,

|(L− µ)A(µ)| ≥ |(L− µ)A(µ)ξ(υ)|

and

|A(µ)α| ≥ |A(µ)ξ(υ)α|

which again ensures Equation A.2 is negative confirming the stationary point is a max-

imum ∀µ ∈ R where µopt > µnom. It is worth clarifying in practical cases µopt > µnom

is generally satisfied, since the selling price must be greater than the scrap cost, which

in turn is greater than the rework cost (SP > Sc > Rc).
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Figure A.1: Illustration of the A,B, ξ(ϕ), ξ(υ), G(µ) functions for L = 4, U = 6 and
σ = 1



Appendix B

Total Profit for a Given Iteration

Equations 3.5 to 3.7 were derived from specific instances of the single feature total profit

expression, Equation 3.4. These specific instances for total profit for n = 1, n = 2 and

n = 3 are derived in this Appendix. Given the process standard deviation (σ) and the

feature specification limits (U and L) remained constant, the following substitutions

were made to condense the notation. Let Ui = F (U, µi, σ) and Li = F (L, µi, σ), where i

is an iteration number, such that i = 1, 2, . . . , n. The optimal mean for a single iteration

is considered below.

Optimal mean for n=1

TP = SP (U1 − L1)− PC − Sc(L1) +Rc(1− U1) (B.1)

To determine the optimal mean, the expression must be differentiated with respect to

µ1, thus it is convenient to rearrange Equation B.1 in terms of U1(µ1) and L1(µ1).

TP = U1(SP +Rc)− L1(SP + Sc)− PC −Rc. (B.2)

Setting Equation B.2 to zero and differentiating with respect to µ1, yields the maximum

of the TP1 expression (note this was shown to be a maximum in Appendix A),

∂TP

∂µ1
=

√
2

2
√
πσ

{
(SP + Sc) exp

[
−(µ1 − L)2

2σ2

]

− (SP +Rc) exp

[
−(µ1 − U)2

2σ2

]}
= 0.
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This can be rearranged by making µ1 the subject to give,

µ1 =
1

2(L− U)

{
2σ2ln

[
SP +Rc

SP + Sc

]
+ L2 − U2

}
,

which is the optimal mean setting for a single iteration.

Optimal mean for n=2

The total profit for n = 2 is given by,

TP = SP {(U1 − L1) + (U2 − L2)(1− U1)}

− PC − {[Sc(L1) +Rc(1− U1)]

+ [Sc(L2)(1− U1) +Rc(1− U2)(1− U1)]} .

(B.3)

Collecting like terms of U and L gives,

TP = U1(SP + 2Rc)− L1(SP + Sr)

− 2Rc− PC + U2(SP +Rc)− L2(SP + Sc)

+ L2 U1(SP + Sc)− U2 U1(SP +Rc).

(B.4)

By setting Equation B.4 to zero and differentiating with respect to µ1 and µ2 yields,

∂TP

∂µ1
=

√
2

2
√
πσ

{
1

2

[
(SP + Sc) ξ(−ϕ1)

−(SP +Rc) ξ(−υ1)− Sc− 2SP − 3Rc

]

exp

[
−(µ1 − U)2

2σ2

]
+ exp

[
−(µ1 − L)2

2σ2

]
(SP +Rc)

}
= 0.

(B.5)

∂TP

∂µ2
=

√
2

4
√
πσ

(
ξ(−υ1) + 1

)(
exp

[
−(µ2 − L)2

2σ2

]
(SP + Sc)

−exp

[
−(µ2 − U)2

2σ2

]
(SP +Rc)

)
= 0.

(B.6)
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Both Equations B.5 and B.6 can be solved for µ1 and µ2 respectively yielding,

µ1 =
1

2(L− U)

{
2σ2ln

[
1

2(SP + Sc)

(
(SP + Sc)ξ(ϕ2)

−(SP +Rc)ξ(υ2) + 3Rc+ 2SP + Sc

)]
+L2 − U2

}
,

(B.7)

and

µ2 =
1

2(L− U)

{
2σ2ln

[
SP +Rc

SP + Sc

]
+ L2 − U2

}
. (B.8)

The last iteration (Equation B.8), where i = 2, is the same as the iteration from n = 1.

The first iteration, where n = 2 (Equation B.7), is dependent on the last iteration.

Optimal mean for n=3

The total profit for n = 3 is given by,

TP = SP {(U1 − L1) + (U2 − L2)(1− U1)

+ (U3 − L3)(1− U2)(1− U1)} − PC

− {[Sc(L1) +Rc(1− U1)] + [Sc(L2)(1− U1)

+Rc(1− U2)(1− U1)] + Sc(L3)(1− U2)(1− U1)

+ Rc(1− U3)(1− U2)(1− U1)} .

(B.9)

Collecting like terms of U and L gives,

TP = U1(SP + 3Rc)− L1(SP + Sr)

− 3Rc− PC + U2(SP + 2Rc)− L2(SP + Sc)

+ L2 U1(SP + Sc)− U2 U1(SP +Rc)

+ U3(SP +Rc)− L3(SP + Sc)

− U3 U2(SP +Rc)− U3 U1(SP +Rc) + L3 U2(SP + Sc)

+ L3 U1(SP + Sc) + U3 U2 U1(SP +Rc)− L3 U2 U1(SP + Sc)

(B.10)
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Setting Equation B.10 to zero and differentiating with respect to µ1, µ2 and µ3 yields,

∂TP

∂µ1
=

√
2

2
√
πσ

{
1

4

([
(SP + Sc) ξ(−ϕ3)− (SP +Rc) ξ(−υ3)

−Sc− 2SP − 3Rc

]
ξ(−υ2) + (SP + Sc)ξ(−ϕ2)

−(SP +Rc)ξ(−υ3) + (2SP + 2Sc)ξ(−ϕ2)

−3Sc− 4SP − 7Rc

)
exp

[
−(µ1 − U)2

2σ2

]

+exp

[
−(µ1 − L)2

2σ2

]
(SP +Rc)

}
= 0,

(B.11)

∂TP

∂µ2
=

√
2

4
√
πσ

(
ξ(−υ1) + 1

){
1

2

[
(SP + Sc) ξ(−ϕ3)

−(SP +Rc) ξ(−υ3)− Sc− 2SP − 3Rc

]

exp

[
−(µ2 − U)2

2σ2

]
+ exp

[
−(µ2 − L)2

2σ2

]
(SP +Rc)

}
= 0

(B.12)

and

∂TP

∂µ3
=

√
2

8
√
πσ

(
ξ(−ϕ1) + 1

)(
ξ(−ϕ2) + 1

)
(

exp

[
−(µ3 − L)2

2σ2

]
(SP + Sc)

−exp

[
−(µ3 − U)2

2σ2

]
(SP +Rc)

)
= 0.

(B.13)

Solving Equations B.11, B.12 and B.13 for µ1, µ2 and µ3 respectively gives,

µ1 =
1

2(L− U)

{
2σ2ln

[
1

4(SP + Sc)

(
− (SP + Sc)(ξ(υ2)− 1)ξ(ϕ3)

−(SP +Rc)(ξ(υ2)− 1)ξ(υ3) + 2(SP + Sc)ξ(ϕ2)

−(3Rc+ 2SP + Sc)ξ(υ2) + 7Rc+ 4SP + 3Sc

)]
+L2 − U2

}
,

(B.14)
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µ2 =
1

2(L− U)

{
2σ2ln

[
1

2(SP + Sc)

(
(SP + Sc)ξ(ϕ3)

−(SP +Rc)ξ(υ3) + 3Rc+ 2SP + Sc

)]
+L2 − U2

} (B.15)

and

µ3 =
1

2(L− U)

{
2σ2ln

[
SP +Rc

SP + Sc

]
+ L2 − U2

}
.

It is evident a pattern is emerging, where the last mean, µn, is always a function of the

selling price, scrap and rework costs, manufacturing variation and the upper and lower

specification limits. The second to last term is also a function of these variables as well

as the µn. The third to last term is a function of the costs, manufacturing variation,

specification limits as well as the last and second to last terms, µn and µn−1. The form

of the terms remains constant. This pattern was generalised in Equations 3.10 and 3.61

in Section 3.1.1.



Appendix C

Equivalence of Profit Equations

Equation 2 from Selim and Al-Zu’bi [2011] expanded for two features is,

E(PR) =SP
p1,A

1− p1,A

p2,A

1− p2,A
−
(
PC1 + PC2

p1,A

1− p1,A

)
−
[
SC1

(
p1,S

1− p1,R

)
+ SC2

(
p1,S

1− p1,R

)
p1,A

1− p1,A

]
−
[
RC1

p1R

1− p1,R
−RC2

p2,R

1− p2,R

p1,A

1− p1,A

] (C.1)

this is equivalent Equation 3.77,

E(PR) =SP fI,CfII,C − (PCI + PCII fI,C)

−
[
SCI

(
pI,S

1− p2I,2I

)
+ SCII

(
pII,S

1− pII,2II

)
fI,C

]
−RC1mI,2I −RC2mII,2II fI,C

(C.2)

since

fI,C =
pI,C

1− pI,2I
=

p1,A

1− p1,A

fII,C =
pII,C

1− pII,2II
=

p2,A

1− p2,A

mI,2I =
pI,2I

1− pI,2I
=

p1R

1− p1,R

mII,2II =
pII,2II

1− pII,2II
=

p2,R

1− p2,R
.

(C.3)

Substitution of the expressions in Equation C.3 show Equation C.2 and Equation C.1

are equivalent.
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Appendix D

Optimal Mean Setting for

Parallel Production - Alternative

Scrap Cost Structure

This appendix offers an alternative formulation to the example in Section 3.5.1. In a

similar manner to the literature (Khasawneh et al. [2008] and Peng and Khasawneh

[2014]), the scrap cost was adjusted depending on the state at which a component

was deemed to be scrap. In a parallel production system, this implicitly implies the

rework operations add value to the component. Normally a manufacturing process

does add value to a component, however, a rework operation is a repeat or partial

repeat of the original process. Thus, rework has a cost due to machine utilisation,

tool wear, energy use and operator time but it does not necessarily increase the value

over a similar component that conformed in the first iteration. An exception would be

additive manufacturing processes, where the material volume increases with each rework

operation, hence the value of the component will increase. The literature (Khasawneh

et al. [2008] and Peng and Khasawneh [2014]) used a static scrap cost for each state,

here a dynamic scrap cost is used where the scrap cost at each state is proportional to

the number of times a feature was reworked as shown in Table D.1 (Section 3.5.1 used

a flat cost of 150 units irrespective of which state caused the scrap). It was assumed

rework cost per feature was 25 units , and 50 units for dual feature rework. All other

costs were the same as the example in Section 3.5.1.

The expected profit versus the dual feature means were plotted in Figure D.1 in a similar

manner to Figure 3.29 from Section 3.5.1. As the scrap cost structure is different, the

two examples are not directly comparable. Nevertheless some observations can be made

relating to impact of the two different cost structures. The location of the optimal means
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Figure D.1: Profit surfaces for Case I and Case II (optimisation of two and four means
respectively)

between the two Cases (Case I and Case II) followed the same principles as the example

in Section 3.5.1. The Case I means were greater than the dual feature Case II means

and the Case II single feature rework means were more rework biased than the Case I

means. However, the difference between the dual and single feature rework means were

greater than the example from Section 3.5.1. The reason for this lies in the difference

between the single and dual feature scrap costs. The dual feature rework cost is at least

150 units, while the single feature rework cost is at least 125 units; the rework cost in

the example in Section 3.5.1 was 150 units irrespective of whether the rework was single

or dual feature. Therefore, the single feature rework means in Table D.1 could afford

to be more rework biased relative to the dual feature rework means in the example in

Section 3.5.1.

Variable Value

U [6 6]

L [4 4]

Rc [25 25 50]

Sc [100, 100 + 25(1 +mI,2), 100 + 25(1 +mI,3), 100 + 50(1 +mI,4)]

SP 400

PC 50

Σ [2, 0; 0, 2]

Table D.1: Dual feature numerical example input parameters

The bar plot in Figure D.2 shows the rework and scrap costs from the initial and rework

states. There are two primary differences between the plot in Figure D.2 and Figure
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3.30 from Section 3.5.1, relating to the values of the rework costs and the value of the

dual feature scrap cost (Sr4). (1) The total rework costs Rw2 to Rw4 are all lower in

Figure D.2 compared to Figure 3.30. The rework costs in both examples are the same

but the means for both Cases (Case I and Case II) in Section 3.5.1 are higher than the

equivalent means in the current example. (2) The absolute value of Sr4 in Figure D.2 is

greater than in Figure 3.30. The values of Sr4 relative to Sr2 and Sr3 from Figure D.2

are also higher compared to the relative differences in Figure 3.30. The increase in Sr4

was caused by the lower means relative to the example in Section 3.5.1. The Sr2 and

Sr3 values remain approximately the same between both examples due to the different

cost structure. While the probability of producing Sr2 and Sr3 scrap in the example in

Section 3.5.1 is low, the scrap cost is also higher at 150 units compared to at least 125

units in the current example. Thus, the differences approximately cancel out for Sr2

and Sr3. This also explains why the difference between the Sr4, and Sr2 and Sr3 values

are greater in the current example. The scrap costs for Sr4 are approximately the same

for both examples but the probability of dual feature scrap is greater in the current

example, leading to a greater difference between the Sr4, and Sr2 and Sr3 values.

Value

Case I Profit 45.20

Case II Profit 47.27

Case I Production Cost 131.77

Case II Production Cost 129.48

Case I means (µI
1,1, µ

I
1,2) 6.67, 6.67

Case II means (µII
1,1, µ

II
1,2, µ

II
2,1, µ

II
2,2) 6.50, 6.50, 6.97, 6.97

Case I Final Conformance Prob. 0.5674

Case II Final Conformance Prob. 0.5669

Case I Final Scrap Prob. 0.4326

Case II Final Scrap Prob. 0.4331

Table D.2: Optimisation results

D.1 Influence of Correlation

Correlation alters the probability of components falling into single and dual feature

rework states, in the same way as described by Figure 3.31 from Section 3.5.1.

The effect of correlation on the optimal means and profits are tabulated in Table D.3.

Profits for both cases were higher with the new scrap cost structure, due to reduced

production cost, which was also observed in Table D.2 for no correlation. The difference

between the dual feature and single feature means was also increased relative to the ex-

ample from Section 3.5.1. However, there was no fundamental change to the results as a

consequence of the alternative scrap cost structure. Nevertheless, Figure D.3 illustrates
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Figure D.2: Scrap and rework costs from the initial and rework states

the difference between the profits of the Case I and Case II optimisation methods was

greater with the dynamic scrap cost structure, compared to Figure 3.32 from Section

3.5.1. The reason for this was due to the less costly single feature scrap cost compared

to dual feature scrap cost. The means settings in the Case I methodology was a com-

promise between single and dual feature rework. Since the Case II methodology could

optimise both rework types independently it could take advantage of the lower single

feature rework cost rate. Since a flat scrap cost was used in the Section 3.5.1 exam-

ple, the advantage of optimising the single feature rework means separately was not as

pronounced.

ρ Cases Value

0.8 Case I Profit 57.15

0.8 Case II Profit 60.55

0.8 Case I Production Cost 128.97

0.8 Case II Production Cost 126.14

0.8 Case I Final Conformance 0.5903

0.8 Case II Final Conformance 0.5917

0.8 Case I means (µI
1,1, µ

I
1,2) 6.44, 6.44

0.8 Case II means (µII
1,1, µ

II
1,2, µ

II
2,1, µ

II
2,2) 6.26, 6.26, 6.97, 6.97

−0.8 Case I Profit 52.63

−0.8 Case II Profit 57.81

−0.8 Case I Production Cost 119.40

−0.8 Case II Production Cost 111.81

−0.8 Case I Final Conformance 0.5551

−0.8 Case II Final Conformance 0.5491

−0.8 Case I means (µI
1,1, µ

I
1,2) 6.57, 6.57

−0.8 Case II means (µII
1,1, µ

II
1,2, µ

II
2,1, µ

II
2,2) 6.21, 6.21, 6.97, 6.97

Table D.3: Optimisation results for correlated features
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Figure D.3: Profit vs. correlation



Appendix E

Matlab Code

The StageCostFun function

function [F stageC,pIC,Rwi,Sri] = StageCostFun MultiMu(MU,sigs,rho,U,L,R Cost,S Cost)

% Computes the final probability items through a manufacturing process with

% rework will conform.

% Christopher Dodd - 2014 - Chris.S.Dodd@Gmail.com

% INPUTS - MU: A 1 by n vector of process means

% sigs: Correlation matrix with size n by n

% U: A 1 by 2 vector of upper specification limits

% L: A 1 by 2 vector of lower specification limits

% RC: The rework costs for each rework stage

% SC: The scrap costs for each rework stage and inital stage

% OUTPUTS - F stageC: Final probability of conformance

% pIC: Probability of conformance from the inital

% operation

% Rwi: Vector of rework probabilities

% Sri: Vector of scrap probabilities

N = size(MU,2); % Total number of features at stage

eta = 1; % Initiate eta value

for k = 1:N % eta for given N and k - Equation 2.45 Dodd [2014]

eta c = factorial(N)/(factorial(k)*(factorial(N-k)));

eta = eta + eta c;

end

% Determine all possible permutations

for k = 1:N

UP{k} = combinator(N,k,'c');

end

% create an Upsilon vector with all the combinations

188
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% i.e. [1]

% [2]

% [3]

% [1 2]

% :

% [1 2 3]

c = 1;

for k = 1:N

Coms = combinator(N,k,'c');

sizeComs = size(Coms);

for j = 1:sizeComs(1)

UPv{c,:} = Coms(j,:);

c = c+1;

end

k=k+1;

end

%% calculate S-Matrix

beta = 0;

for k = 1:N % Generate S-matrix for each k- value

for i = 1:k-1 % Calculate beta

beta c = factorial(N)/(factorial(i)*(factorial(N-i)));

beta = beta + beta c;

end

alpha l = 0;

for i = N:-1:k % Calculate alpha

alpha c = (factorial(N)/(factorial(i)*(factorial(N-i))));

alpha l = alpha l + alpha c; % Determine last term in alpha eqn

end % alpha is k-dependent

alpha = 2 + (eta-1) - alpha l; % alpha eqn

m = (factorial(N)/(factorial(k)*(factorial(N-k)))); % m equation

delta = beta+m;

SMat = kSMatrix(k,alpha,eta,m,UP,UPv); % S-Matrix function

SMat Cell{k} = SMat; % Store S-Matrices in a cell array

beta = 0; % reset beta to zero

end

%% probability vecotrs

[PIs PSs PMat] = Probs nVars MultiMu(MU,L,U,sigs,rho);

%% Transition Matrix

P=PMat;

Q = P(1:eta,1:eta); % Q Matrix (prob of transient to transient)

R = P(1:eta,eta+1:end); % R Matrix (prob of transient to absorbing)

I = eye(length(Q)); % Identiy matrix

M = (I-Q)ˆ-1; % average time in transient states

F = M*R; % Final probabilities of absorbtion

temp = Q.*eye(eta,eta); PRR = temp(temp>0)'; % Determine the
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% state-back-to-state rework

% vector from Q matrix

%% Scrap costs

SCP Cost = 0; % initilize Scrap cost

for k = 1:N

for i = 1:k-1 % Calculate beta

beta c = factorial(N)/(factorial(i)*(factorial(N-i)));

beta = beta + beta c;

end

alpha l = 0;

for i = N:-1:k % Calculate alpha

alpha c = (factorial(N)/(factorial(i)*(factorial(N-i))));

alpha l = alpha l + alpha c; % Determine last term in alpha eqn

end % alpha is k-dependent

alpha = 2 + (eta-1) - alpha l; % alpha eqn

m = (factorial(N)/(factorial(k)*(factorial(N-k)))); % m equation

delta = beta+m; % delta equation

DMat = kDMatrix(m,PIs,alpha,delta,eta); % compute the D-matrix

% JMat = kJMatrix(m,PIs,alpha,delta,eta)

SDMat = SMat Cell{k}.*DMat;
beta = 0; % reset beta to zero

for j = 1:m

a = alpha + j - 2;

% Scrap cost Equation

% Note for 1 state (p Is/(1-p Ir))*p Ir + p Is = p Is/(1-p Ir)

% where p Is: prob from I to scrap, p Ir: prob from I to rework

kSCPi = S Cost(a+1)*sum([SDMat(:,j).*(PSs(a+1)/(1-PRR(a)))]);

% Scrap cost for each k

SCP Cost = SCP Cost + kSCPi; % total scrap cost for all k

end

end

%% Rework Costs

for i = 1:eta-1 % Rework cost

rw(i) = R Cost(i)*M(1,i+1);

end

SCPCOST = SCP Cost;

Sri = SCP Cost + PSs(1)*S Cost(1);

Rwi = sum(rw);

pIC = 1-PSs(1);

F stageC = F(1,1);

The kSMatrix function
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function SMat = kSMatrix(k,alpha,eta,m,UP,UPv)

% Compute the S matrix

% Christopher Dodd - 2014 - Chris.S.Dodd@Gmail.com

% INPUTS - k: Scalr giving the k conbination, e.g. 1,2,3,...,n.

% There is an S-matrix for each k value.

% alpha: Scalar computed from Equation 3.50

% eta: Total number of rework states including inital process

% m: Scalar computed from Equation 3.46

% UP: The Upsilon set, Equation 3.48

% UPv A k subset from the Upsilon set.

%

% OUTPUTS - SMat: The S-Matrix

Ctemp = UP{k};
for i = 1:eta - alpha + 1

z = alpha - 2 + i;

for j = 1:m

mem = ismember(Ctemp(j,:),UPv{z}); % check is C vals are part of

% UPSILON set

gamma = all(mem == 1); % make sure all member of C are

% part of UPSILON set

SMat(i,j) = gamma; % populate S-matrix. Recall there

end % is an S-matrix for every k-value.

end

The kDMatrix function

function DMat = kDMatrix(m,PIs,alpha,delta,eta)

function DMat = kDMatrix(m,PIs,alpha,delta,eta)

% Compute the S matrix

% Christopher Dodd - 2014 - Chris.S.Dodd@Gmail.com

% INPUTS - m: Scalar computed from Equation 3.46

% PIs: Vector of transistion probabilities, e.g for 2

% features PIs = [pI2,pI3,pI4,pIC,pIS]. Computed from

% the Probs nVars MultiM.m function

% alpha: Scalar computed from Equation 3.50

% delta: Scalar given from beta + m, where beta is given from

% Equation 3.47.

% eta: Total number of rework states including inital process

%

% OUTPUTS - SMat: The D-Matrix

DMat = ones(eta-(alpha-1),m);

DMat(1:m,1:m) = bsxfun(@times,eye(m),PIs(alpha-1:delta));

w = delta+1; % counter for accessing relevent elemts from PIs
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for i = m+1:eta-(alpha-1) % i goes from 4:7, 4:4 and 2:1 (i.e. 0) for N=3.

v = alpha-1; % counter for accessing relevent elemts from PIs

for j = 1:m

DMat(i,j) = PIs(w)*PIs(v)/(1-PIs(w)); % probabiliy fraction

v = v+1;

end

w = w + 1;

end

The Probs nVars function

% Determine the probabilities in the transition matrix

% for any number of features.

% Christopher Dodd - 2014 - Chris.S.Dodd@Gmail.com

% INPUTS - MU: A 1 by n vector of process means

% U: A 1 by n vector of upper specification limits

% L: A 1 by n vector of lower specification limits

% sigs: Correlation matrix with size n by n

% rho: Correlation parameter

%

% OUTPUTS - PIs: Vector of transistion probabilities, e.g for 2

% features PIs = [pI2,pI3,pI4,pIC,pIS]

% PSs: Vector of transition to scrap probabilities, eg for 2

% features PSs = [pIS,p2S,p3S,p4S]

% PMat: Transition matrix

num vars = size(MU,2); % Number of variables

%% Determine the Multi feature means through to single feature means

% e.g. 2 features MU = [mu1 2f, mu2 2f;

% mu1 1f, mu2 1f] where f:=feature

for i=1:size(MU,1)

MU R(i,:) = L+(U-MU(i,:)); % reverse the axes

end

eta = 1;

for i = 1:num vars

eta c = factorial(num vars)/(factorial(i)*(factorial(num vars-i)));

eta = eta + eta c;

end

eta;

%% ---------- Pps probs ----------

% This section determines the probabilities of the rework regions

% e.g. in 3D:
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% pI2 = F([-inf L2 L3],[L1 U2 U3]) x 1 rework only

% pI3 = F([L1 -inf L3],[U1 L2 U3]) x 2 rework only

% pI4 = F([L1 L2 -inf],[U1 U2 L3]) x 3 rework only

% pI5 = F([-inf -inf L3],[L1 L2 U3]) x 1 & x 2 rework

% pI6 = F([-inf L2 -inf],[L1 U2 L3]) x 1 & x 3 rework

% pI7 = F([L1 -inf -inf],[U1 L2 L3]) x 2 & x 3 rework

% pI8 = F([-inf -inf -inf],[L1 L2 L3]) x 1, x 2 & x 3 rework

ic = 1; % initiate 'ic' counter

Rw vars{1,:} = combinator(num vars,num vars,'c');

for i = 1:num vars-1 % determine all possilbe combinations of reworks

ic = ic+1; % counter to define rows of pRWs

%'----------------- All possilbe RW combos-----------------'

Rw vars{ic,:} = combinator(num vars,i,'c'); % e.g. x1,x2,x3 and x1,x2

% or x1,x3 or x2,x3 etc

end

c = 0; % initiate 'c' counter

cc = 0; % initiate 'cc' counter

for j = 1:size(Rw vars,1)

%'----------------- Local Rw Operations -----------------'

RwIter = Rw vars{j};
for k = 1:size(RwIter,1)

%r = r+1

%'----------------- Define Local MUs and Sigmas -----------------'

MU Ri = MU R(j,RwIter(k,:)); % only selct the mean for the

% relevant features

% Build covariance matrix for all featuers including correlation

% (rho)

CorrMatrix = rho.*(ones(length(MU Ri),length(MU Ri)));

CorrMatrix(logical(eye(size(CorrMatrix))))=1;

SIGMA = corr2cov(sigs(RwIter(k,:)), CorrMatrix);

Lvars = L(RwIter(k,:)); % Get the right Lower and upper bounds for

Uvars = U(RwIter(k,:)); % the particular means.

LocalVars = length(MU Ri);% Length of the mean vector, for the

% relevant means

cc = cc+1;

% Probabilities from state to conformance

PCs(cc) = mvncdf(Lvars,Uvars,MU Ri,SIGMA);

% Probabilities from state to scrap

PSs(cc) = 1-mvncdf(Uvars,MU Ri,SIGMA);

for m = 1:LocalVars%:-1:1

%'----------------- Define Combins-----------------'

nvar = nchoosek(LocalVars,m);

combins = combinator(LocalVars,m,'c');

for v = 1:nvar

c = c+1; % counter i++
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% substitute -inf for relevent lower limits

Llim = Lvars; Llim(combins(v,:)) = -inf;

% subsitute L for relevent upper limits

Ulim = Uvars; Ulim(combins(v,:)) = Lvars(combins(v,:));

Pps(c) = mvncdf(Llim,Ulim,MU Ri,SIGMA); % these are all the

% probability terms in the P-Matrix but just a long vector

% not in the correct places

end

end

end

end

%% calculate S-Matrix

SMAT = zeros(eta-1,eta-1);

for k = 1:num vars

UP{k} = combinator(num vars,k,'c');

end

% create an Upsilon vector with all the combinations

% i.e. [1]

% [2]

% [3]

% [1 2]

% :

% [1 2 3]

c = 1;

for k = 1:num vars

Coms = combinator(num vars,k,'c');

sizeComs = size(Coms);

for j = 1:sizeComs(1)

UPv{c,:} = Coms(j,:);

c = c+1;

end

k=k+1;

end

beta = 0;

%SCP Cost = 0; % initilize Scrap cost

for k = 1:num vars % Generate S-matrix for each k- value

for i = 1:k-1

beta c = factorial(num vars)/(factorial(i)*(factorial(num vars-i)));

beta = beta + beta c;

end

alpha l = 0;

for i = num vars:-1:k

alpha c = (factorial(num vars)/(factorial(i)*(factorial(num vars-i))));

alpha l = alpha l + alpha c; % Determine last term in alpha eqn

end % alpha is k-dependent
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alpha = 2 + (eta-1) - alpha l; % alpha eqn

% Compute the m equation (k-dependent)

m = (factorial(num vars)/(factorial(k)*(factorial(num vars-k))));

delta = beta+m;

SMat = kSMatrix(k,alpha,eta,m,UP,UPv); % S-Matrix function

% Store S-Matrices in a cell array

SMAT(alpha-1:eta-1,alpha-1:delta) = SMat;

beta = 0; % reset beta to zero

end

%% Compute the tranistion (Pmatrix)

[col row] = find(SMAT(1:eta-2,:)'==1);

PMat = zeros(eta+2,eta+2);

for i = 1:length(row)

PMat(row(i)+1,col(i)+1) = Pps(eta-1+i);

end

PMat(1,2:eta) = Pps(1:eta-1); %input the values for the first row

PMat(eta,2:eta) = Pps(1:eta-1); % input the values for the eta row

PMat(end,end) = 1; PMat(end-1,end-1) = 1; % Input 1s for absorbing states

%% Now we need the Probs to conformance and probs to scrap

% Conformance prob vector, e.g. 2 vars PSs = [pIC,p2C,p3C,p4C];

PCs = [PCs, PCs(1)];

% Scrap vector, e.g. 2 vars PSs = [pIS,p2S,p3S,p4S];

PSs = [PSs, PSs(1)];

PMat(1:eta,eta+1) = PCs;

PMat(1:eta,eta+2) = PSs;

%% Define PIs vector

% Define the PIs vec, e.g 2 vars PIs = [pI2,pI3,pI4,pIC,pIS];

PIs = [Pps(1:eta-1) PCs(1) PSs(1)];
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Case Study - Optimal Mean

Setting

The primary purpose of this case study was to demonstrate the use of copula functions

when the distributions of inspectable features were not normal. Additionally the case

study demonstrates the application of Optimal Mean Setting to a non-standard case,

where one manufacturing operation produced more than one inspectable feature1. A

boring operation was used to create a hollow cylinder with an inspectable inner diame-

ter. As a result a wall thickness was created, which also required inspection. Optimal

Mean Setting was used to establish the economically optimal target mean for the inner

diameter, given the inner diameter and wall thickness tolerances. The distribution of

the wall thickness was a convolution between the outer and inner diameters and not

a parametric distribution, thus a copula function was necessary to establish the final

geometry distribution. An alternative method of manufacture would be to create the

wall thickness by turning the outer diameter (d1) after boring the inner diameter (d3).

However, this would have added an extra manufacturing operation, which was avoided

using the aforementioned method.

Figure F.1 illustrates a test casing for solid or hybrid rocket motors. The left opening

permits a variety of graphite nozzles to be tested; while the right opening allows a plug

and oxidizer injector to be fitted as well as an opening to insert the graphite nozzle.

There are two critical dimensions, the inner diameter (d3) and casing thickness (t1).

An upper tolerance was specified on the inner diameter to prevent the presence of a

gap between the graphite nozzle and the inner wall, which would allow the ingress of

combustion gasses. A lower tolerance was specified to ensure the graphite nozzle could

be inserted into the casing. Tolerances were specified on the wall thickness to ensure

1The Optimal Mean Setting framework presented hitherto dealt with independent features.

196
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(a) Casing cut-through

(b) Casing dimensional drawing

Figure F.1: Case study - rocket motor test casing

Stats. Values Costs Values

L Ld3 = 3.9, Lt1 = 0.8 SP [100]

U Ud3 = 4.3, Ut1 = 1.0 PC [10]

σ σd1 = 0.05, σd3 = 0.08 RC [0,−,−, 10]

µnominal µd1 = 5, µd3 = 4.1, µt1 = 0.9 SC [15,−,−, 15]

µopt d3 4.0304 EPopt 80.8982

ρD3,T1 -0.8480

Table F.1: Specification limits, process variation and costs for the rocket casing case
study

the wall was thick enough to withstand the pressure created through combustion but

excessive thickness increased mass. The nominal means, upper and lower specification

limits and standard deviation of the manufacturing operations are given in Table F.1.

The Optimal Mean Setting equation for this two feature case is similar to Equation 3.44

from Chapter 3. However, there are differences since it was not possible to rework the

inner diameter or wall thickness independently of each other. The f2,S and f3,S terms
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are zero and the pI,4 term becomes,

pI,4 = F ([L1, U2],µ,Σ) + F ([U1, L2],µ,Σ)− F ([L1, L2],µ,Σ).

This accounts for the proportion of single feature rework components where both fea-

tures were reworked, since the inner diameter and wall thickness were not independent.

Expected profit for the manufacture of the inner diameter and wall thickness was given

by,

E(PR) = SP fI,C − PC − SC1 pI,S

− SC4

(
pI,S

1− pI,4

)
pI,4 −RC4mI,4.

(F.1)

The casing was assumed to be a near net shape forging, where machining was only

required to complete the inner diameter (d3). The outer diameter (d1) was assumed to

have a normal distribution where the mean and standard deviation are given in Table

F.1. Equation F.1 was optimised with Matlab using fminsearchcon.m developed by

Errico [2006], recognising scrap occurred if features were produced greater than the

upper specification limits and rework occurred where features were produced lower than

the lower specification limit. The distribution of the wall thickness (ft1), is given by

the difference between the outer diameter distribution (fd1) and the inner distribution

(fd3). Since both the outer and inner diameter distributions are normal, the initial wall

thickness distribution is also a normal distribution where the mean is µt1 = µd1−d3 =

µd1 −µd3 and the variance is σ2
t1 = σ2

d1−d3 = σ2
d1

+σ2
d3

. The probability of scrap, rework

and conformance was given by the joint normal distribution fd3,t1 , as was first discussed

in Section 3.1.2 in Chapter 3. The dependence between d3 and t1 was modelled using

correlation of the form,

ρD3,T1 =
E[(D3 − µD3)(T1 − µT1)]

σD3σT1
,

where D3 and T1 are random variables of the inner diameter and thickness. The random

variables, D3, were generated by using the Matlab normrnd.m function Mathworks

[2012] while T1 = D1 −D3, where normrnd.m was also used to generate the D1 vector.

The value for correlation was given in Table F.1.

Figure F.2(a) shows the probability density distribution for the initial operation. The

upper and lower specification limits are represented by the red and green lines, respec-

tively. There was non-conformance caused from the inner diameter (the variance was

such that scrap and or rework were always created), thus rework was required which

led to a truncated inner diameter distribution (fd3). Since the inner diameter was trun-

cated the distribution of wall thickness was no longer given by a normal distribution
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(a) Inner diameter and thickness distributions from
the inital processing

(b) The fianl inner diameter and thickness distribu-
tions after rework

Figure F.2: Inner diameter and wall thickness probability plots for the distributions
before and after rework

but from the convolution difference between the outer and inner diameters, such that

ft1 = fd1 + (−fd3). The distribution of wall thickness is written,

ft1(t1) =

∫ ∞
−∞

fd3(d3) fd1(t1 − (−d3)) d. 3, (F.2)

where the outer diameter, fd1(d1) is a normal distribution,

fd1(d1) =
1√

2πσ2
d1

exp

(
−(d1 − µd1)

2σ2
d1

)
. (F.3)

Let,

κ =
µd3 −USLd3

σd3
and λ =

µd3 − LSLd3
σd3

,

allowing fd3(d3) from Equation F.2 to be written as the truncated normal distribution

due to rework,

fd3(d3) =
1√

2πσ2
d3

[Φ (λ)−Φ (κ)]
exp

(
−(d3 − µd3)

2σ2
d3

)
. (F.4)

To simplify the expression for the thickness distribution ft1 , let

Γ =
1

2πσd1σd3 [Φ (λ)−Φ (κ)]
.
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Then substituting Equation F.3 and F.4 into Equation F.2 yields,

f(t1) = Γ

∫ USLd1−t1

LSLd3−t1
exp

[
−(d3 − µd3)2

2σ2
d3

]
exp

[
−(t1 − d3 − µd1)2

2σ2
d1

]
d. 3. (F.5)

This has no closed form solution but can be solved in terms of the error function which

has the general form,

erf(x) =
2√
π

∫ x

0
exp(−t2) t..

Maple was used to determine the integral in terms of the error function giving,

f(t1) =

√
2π σd1σd3√
σ2
d1

+ σ2
d3

exp

(
−(µd1 − µd3 + t1)2

2(σd1
2 + σd3

2)

)
×

[
erf

(√
2

2

(
(USLd3 − µd3)σ2

d1
+ σ2

d3
(USLd3 − t1 − µd1)

)
(σd1σd3

√
σd1

2 + σd3
2)

)

− erf

(√
2

2

(
(LSLd3 − µd3)σ2

d1
+ σ2

d3
(LSLd3 − t1 − µd1)

)
(σd1σd3

√
σd1

2 + σd3
2)

)]
.

(F.6)

The µd3 parameter was optimised to maximise the expected profit given by Equation

F.1; the optimal mean (µopt d3) and expected profit (EPopt) are given in Table F.1. The

resulting fd3 distribution is illustrated by Figure F.3(a). The initial distribution (be-

fore rework), truncated distribution (after rework and without scrap), and the optimal

mean are shown by the grey, blue and black lines respectively. The upper and lower

specification limits are also shown. The green line represents the rework limit, where

outside this limit rework is possible, the red line indicates the scrap limit. The thickness

distribution, resulting from the convolution between the outer and inner diameter distri-

butions is shown in Figure F.3(b). The shape of the initial distribution (grey line) is not

normal, there is some positive skew. The distribution became truncated due to rework

on the d3 parameter, as illustrated by the blue line in Figure F.3(b). Both the µd3 and

µt1 parameters shifted toward the respective rework limits as due to the reduced cost

of rework compared to scrap. The final distribution of the geometry was determined by

establishing the joint distribution between the correlated truncated normal, fd3 , and the

truncated skewed ft1 distribution (Figure F.2(b)).

This example demonstrated the use of optimal mean setting where one of the design

parameters (wall thickness) was a result of another design feature (inner diameter).

Although the optimisation of expected profit did not follow the standard set-up de-

scribed in Chapter 3, it was simple to fit the case study to the existing framework. The

final manufactured geometry was obtained and shown in Figure F.2(b). Due to the
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(a) Casing diameter distributions before and after
rework

(b) Casing thickness distributions before and after
rework

Figure F.3: Distributions of the inner diameter and thickness features before and
after rework

non-normal wall thickness distribution, the joint distribution of the final manufactured

geometry was only calculable due to the freedom offered by copula functions.



Appendix G

Aerothermal Analysis and

Response Surface Methodology of

a Film Cooling Hole

G.1 Numerical Model

The temperature on the lower duct surface, down stream of the hole (TS), was computed

by solving the 2-D time-averaged steady-state Navier-Stokes equations where continuity

was given by,
∂

∂xi
(ρui) = 0 (G.1)

and momentum was,

∂

∂xj

(
ρuiuj

)
= − ∂P̄

∂xi
+

∂

∂xj

[
µ

(
∂ūi
∂xj

+
∂ūj
∂xi
− 2

3
δij
∂ūl
∂xl

)]
+

∂

∂xj

(
−ρu′iu

′
j

)
. (G.2)

In Equations G.1 and G.2, ρ̄ is mean density, ū is the mean component of velocity, P̄

is mean pressure and µ is the molecular viscosity. The δij term in the Kronecker delta,

which is 0 when i 6= j and 1 if i = j. The −ρu′iu
′
j are the Reynolds stresses accounting

for the turbulent fluctuation in the fluid momentum. The Reynolds stress terms must

be modelled to satisfy the so called ‘closure problem’ (Pope [2009]). The Boussineq

hypothesis is employed to related the Reynolds stresses with the mean velocity gradient

of the flow, such that the Reynolds stresses become,

− ρu′iu
′
j = µt

(
∂ūi
∂xj

+
∂ūj
∂xi

)
− 2

3

(
ρk + µ

∂ūi
∂xi

)
δij . (G.3)
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The k term is the turbulent kinetic energy and µt is the turbulent viscosity given by,

µt = ρCµk
2/ε, (G.4)

for which Cµ is a constant and ε is the dissipation rate. The Realizable k-ε model (Shih

et al. [1995] based on the original k-ε model proposed by Launder and Spalding [1972]),

was chosen to model the turbulence. While the standard k-ε model is robust and offers

reasonable accuracy over a wide range of turbulent flows, the realizable formulation

more accurately predicts the spreading rate for planar and round jets (Fluent [2012])

and therefore beneficial for the modelling of a coolant jet.

G.2 Turbulence Model

The turbulent kinetic energy (k) and dissipation rate (ε) can obtained from the transport

equations. For steady-state incompressible flow the transport equation given in Fluent

[2012] reduce to,

∂

∂xi
(ρkūi) =

∂

∂xj

[(
µ+

µt
σk

)
∂ε

∂xj

]
+Gk − Yk (G.5)

∂

∂xi
(ρεūi) =

∂

∂xj

[(
µ+

µt
σε

)
∂ε

∂xj

]
+Gε − Yε (G.6)

The σk and σε terms are the turbulent Prandtl number for the turbulent kinetic energy

(k) and dissipation rate (ε), respectively. The Gk term represents the generation of

turbulent kinetic energy (Gk = −ρu′iu
′
j
∂uj
∂xi

) due to the average velocity gradient. In is

approximated using the Boussinesq hypothesis such that,

Gk = µtS
2,

where S is the average rate-of-strain tensor given by,

S =
√

2SijSij , where Sij =
1

2

(
∂ūj
∂xj

+
∂ūi
∂xj

)
.

The Yk term accounts for the dissipation of turbulent kinetic energy defined by Yk = ρε.

The ‘k’ part of the transport equation (Equation G.5) for the standard k-ε model and

the realisable k-ε model are the same. However, the production and diffusion terms in

the ‘ε’ part of the transport equation (Equation G.6) differ between the standard and

realisable forms of the k-ε model. For the realisable model,

Gε = ρC1Sε, where C1 = max

[
0.43,

ζ

ζ + 5

]
and ζ = S

k

ε
. (G.7)
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The diffusion term is given by,

Yε = ρC2
ε2

k +
√
νε

(G.8)

where C2 is a constant. Turbulent viscosity is computed using Equation G.4 however,

Cµ is not constant for the realisable k-ε model but found from,

Cµ =
1

A0 +As
kU∗

ε

(G.9)

The velocity component U∗ is given by,

U∗ ≡
√
SijSij + Ω̄ijΩ̄ij where Ω̄ij =

1

2

(
∂ūi
∂xj
− ∂ūj
∂xi

)
. (G.10)

The A0 term is a constant and the remaining term As is given by

As =
√

6 cos

(
1

3
cos−1

(
√

6
Sij√
SijSij

))
(G.11)

The constants for the model, as given by Fluent [2012], are A0 = 4.04, C2 = 1.9, σk = 1.0

and σε = 1.2.

The realisable k-ε model is generally valid for fully turbulent flows which is not nec-

essarily the case at the wall, where the Reynolds number is low in the vicinity of the

boundary layer. For this reason an Enhanced Wall Function (Fluent [2012]) treatment

was used to model the near wall flow downstream of the hole (a similar approach was

used for the 2D analysis conducted by Li and Wang [2007] and Wang and Zhao [2011]).

The whole domain was segregated into a viscosity-affected region and a fully turbulent

region by specifying the turbulent Reynolds number,

Rey ≡
ρy
√
k

µ
,

where y was the normal distance from the wall. For Rey > 200 the realisable k-ε model

was used. Towards the wall, where Rey < 200 in the viscosity-affected region the one-

equation Wolfstein model was used (Wolfshtein [1969]). The transition between the

turbulent viscosities in the fully turbulent and viscosity-affected regions were smoothed

by using the blending function proposed by Jongen [1998],

µt,enhanced = λεµt + (1− λε)µt,one.

Viscosity from the realisable k-ε model is µt while µt,one represents the viscosity form

the one-equation model.
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Figure G.1: Overview of the 2D mesh

G.3 Mesh Generation and Results Validation

The domain illustrated in Figure 4.22 was meshed using the Ansys meshing tool where

the domain sizing broadly follows that of Li and Wang [2007]. The mesh was updated

parametrically with changes to the domain geometry (α and d parameters), which re-

quired the addition and removal of cells to maintain the mesh density and cell aspect

ratios. The density of the mesh was bias towards the lower section of the main duct to

capture the coolant and hot gas mixing, and satisfy the condition of the enhanced wall

treatment method, which required a y+ ≈ 1 (Section G.2). The value y+ was calculated

from y+ ≡ ufy/ν, where y was the distance to the nearest wall, uf was friction velocity

and ν was the local kinematic viscosity. Since the last two terms are properties of the

fluid and global domain, the only way to ensure y+ ≈ 1 was to run the case, measure y+

and resize until y+ ≈ 1 was achieved. The mesh density also increased in the vicinity of

the hole to capture the mixing of the coolant and hot gas. Sargison et al. [2001] found

the geometry at the hole entry could impact the flow in the hole and affect the cooling

effectiveness. Therefore, the grid density close to the hole in the plenum was increased

to ensure the flow was accurately modelled at the hole entrance.

Three mesh densities were tested to ensure mesh convergence, the details regarding the

edge sizing and biases are tabulated in Table G.1. The hole was defined in accordance

with the standardised public hole described by Schroeder and Thole [2014], where the

laidback angle was set to zero. The diameter, d = 4, and the inclination angle, α = 30,
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Figure G.2: Overview of the 2D cooling hole computational domain (not to scale)

in accordance with Schroeder and Thole [2014]. The boundary conditions noted in Ta-

ble G.2 were also taken from Schroeder and Thole [2014]. Based on these condition the

blowing ratio, M = 0.98, and the density ratio was 1.51, which are representative of

engine conditions (Schroeder and Thole [2014]). Following the 2D analysis by Wang and

Zhao [2011], the air was modelled as an incompressible ideal gas, where specific heat ca-

pacity was modelled as a piecewise polynomial function with two temperature sub ranges

of 100 - 1000 K and 1000 - 2000 K respectively. The thermal conductivity was 0.0242

(w/mK) and viscosity was modelled using a piecewise polynomial with values dependent

on the temperature in the plenum and the duct (see table G.2). The Reynolds number

based on the hydraulic diameter of the main duct, was Reduct = 83500 and the Reynolds

number, based on the inlet hole velocity and hole diameter was Rehole = 3580. The

commercial CDF package, Ansys Fluent 14.5 was used to solve the Reynolds Averaged

Navier-Stokes (RANS) equations (Detailed in Section G.1). The computational time

was between seven and 15 minutes (dependent on the number of cells which changed

depending on the α and d parameters), running on seven cores of a 3.4 GHz Intel Core

i7 processor with 16 GB of installed RAM.

The thermal effectiveness (η) obtained from the three meshes was plotted in Figure G.3.

Experimental results from Schroeder and Thole [2014] and Rhee et al. [2002] (blue crosses

and magenta points) are also shown, where cooling effectiveness was measured along the

centreline, downstream of the holes. Numerical results from Wang and Zhao [2011]

are also shown. Clearly there is a mismatch between the numerical solutions and the

results obtained by Schroeder and Thole [2014], which had the same boundary conditions

and hole geometry. The results from Rhee et al. [2002] also indicate a lower η than
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Low Density Medium Density High Density

Edge Spacing Bias Spacing Bias Spacing Bias

A 1.0× 10−3 1.04 0.667× 10−3 1.37 0.667× 10−3 1.037

B 1.185× 10−3 1.03 0.79× 10−3 1.03 0.60× 10−3 1.02

C 1.185× 10−3 1.03 0.79× 10−3 1.01 0.60× 10−3 1.008

D 0.27× 10−3 1.03 b 0.18× 10−3 1.03 b 0.1× 10−3 1.03 b

E 0.285× 10−3 1.03 0.285× 10−3 1.03 0.285× 10−3 1.03

F 0.285× 10−3 1.03 0.285× 10−3 1.03 0.285× 10−3 1.03

G 0.27× 10−3 1.01 0.18× 10−3 1.01 0.12× 10−3 1.03

Table G.1: Mesh sizing for each edge given in Figure 4.22 where the number of
elements for each mesh were: LD= 38, 962, MD= 73, 427 and HD= 97, 622. The letter
‘b’ indicates bilateral bias, i.e. the mesh density increased in both positive and negative

x-directions.

Duct Plenum

Inlet Velocity 10.0 (m/s) 1.13 (m/s)

Turbulent intensity 0.5 % 0.5 %

Turbulent length scale 0.0090 (m) 0.0020 (m)

Temperature 295 (K) 195 (K)

Viscosity 1.846× 10−5 (kg/ms) 1.307× 10−5 (kg/ms)

Hydraulic diameter 0.1288 (m) 0.0286 (m)

Table G.2: Boundary conditions

predicted by the numerical analysis1. Wang and Zhao [2011] attributed this mismatch

to a conjugate heat transfer effect, where the surface temperature was higher than the

coolant, due to heat transfer from the hot gas to the surface, further downstream or

upstream in the test section. Wang postulated conduction through the surface increased

the surface temperature near the hole, above what would be expected if only mixing had

occurred between the coolant and hot gas. Immediately adjacent to the hole the surface

temperature would be expected to be the same as the coolant, as no mixing would

have taken place. However, this explanation is not valid for the difference between the

numerical results and the data from Schroeder and Thole [2014], as a foam surface was

used with a thermal conductivity of just 0.029 W/mK, making any conductive transfer

negligible. Schroeder and Thole [2014] also calculated an uncertainty of ±0.024 for the

η measurement, but this is insufficient to explain the higher η obtained by the numerical

solutions. The most likely explanation is due to lateral mixing in the 3D coolant (z-

direction) jet, lowering the centreline effectiveness. Clearly these 3D effects are not

applicable to the 2D numerical studies. The 3D effects on the centreline effectiveness are

1The results from Rhee et al. [2002] and Wang and Zhao [2011] were obtained using slightly different
boundary conditions and hole geometry to Schroeder and Thole [2014] and the numerical results run for
this thesis. The inclination angle was 35 degrees (5 degrees greater), higher turbulence intensity of 5%
was used, the density ratio was 1.3 as opposed to 1.5 and the blowing ratio was 1.3 as opposed to ∼ 1.
Nevertheless as η is a normalised value, provided the flow physics is captured correctly the differences
are minimal as indicated by Figure G.3
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Figure G.3: Cooling effectiveness versus downstream distance from the hole

likely to be greater for the cylindrical fan shaped hole exits of Schroeder and Thole [2014]

than for the wider rectangular holes from Rhee et al. [2002], which may explain why the

experimental η values predicted by Rhee et al. [2002] are greater than those predicted

by Schroeder and Thole [2014]. Despite the differences between the numerical solutions

and the experimental evidence, the numerical solutions (in this thesis) generally agree

well with the numerical solution from Wang and Zhao [2011]. Since the application of

Optimal Mean Setting for the cooling hole geometry only requires the relative differences

in cooling effectiveness, ensuring the numerical solutions match the lab solutions is not

essential, provided the global flow physics is modelled correctly (indeed the lab solutions

only approximate real engines conditions). Figures G.4(a) and G.4(b) provide greater

detail on the differences between the η values from the three meshes and the numerical

solution from Wang and Zhao [2011]. The low density mesh (LD) produced lower values

of η close to the hole and higher values further downstream. The difference between

the medium and high density meshes (MD and HD) was 0.0022 at three diameters

downstream, as opposed to 0.0061 and 0.0083 for the LD mesh compared to the MD

and HD meshes respectively. At 30 diameters downstream the difference between the

MD and HD meshes was 0.0003 while the difference between the LD mesh and the

MD and HD meshes was 0.0021 and 0.0018 respectively. The HD mesh was considered

to be converged due to the closeness of the η values at all points downstream of the

hole between the MD and HD meshes. Figure G.5 shows the variation in y+ with

downstream distance from the hole. The LD mesh exhibited values of y∼3. The size of

the elements in close proximity to the surface were reduced for the MD and HD meshes

giving a y+ < 1 everywhere on the surface, in accordance with the use of the enhanced

wall treatment discussed in Section G.2. Figure G.6 illustrates the velocity temperature

and turbulent kinetic energy in the domain. There is a clear segregation between the hot

gas and coolant which gradually becomes less contrasting as the coolant and hot gas mix.

The flow becomes turbulent at the hole entrance and develops in the hole itself. The
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(a) Cooling effectiveness versus downstream dis-
tance close to the hole opening

(b) Cooling effectiveness at 25 to 30 diameters down
stream

Figure G.4: Cooling effectiveness close to the hole and around 25 to 30 diameters
downstream

Figure G.5: Cooling effectiveness versus downstream distance from the hole

turbulent kinetic energy is broadly representative of the turbulent intensity illustrated

by Gritsch et al. [1998]. Figures G.7(a) and G.7(b) illustrate the flow through the hole in

greater detail. The presence of the separation bubbles and jetting effects were similarly

shown by Saumweber and Schulz [2012]. The separation bubble at the downstream exit

of the hole is similar to that predicted by the standard k-ε turbulence model detailed

by Li and Wang [2007].

Overall the flow characteristics are in good agreement with experimental data and other

numerical results available in the literature. The discrepancies between the predicted

η values and the experimental results (particularly Schroeder and Thole [2014]) are
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(a) Contours of velocity over the whole domain

(b) Contours of temperature over the whole domain illustraties the effect film cooling has on segregating the
hot gas from the airfoil surface

(c) Turbulent kinetic energy over the whole domain illustrating turbulent forming in the hole and the
turbulent mixing between the coolant and hot gas

Figure G.6: Contour plots illustrating the velocity, temperature and turbulent kinetic
energy over the whole domain
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(a) Velocity vectors in the cooling hole illustrating the major flow features

(b) Pressure contours in the cooling hole

Figure G.7: Detailed illustration of the velocity and pressure in the cooling hole
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most likely due to 3D effects that were not modelled in the 2D scheme presented here.

Nevertheless they do correspond well to the 2D numerical results from Wang and Zhao

[2011].

G.4 Response Surface Methodology

A response surface was created to establish the variation in cooling efficiency (η) with

the cooling hole’s inclination angle (α) and diameter (d). The cooling hole geometry

and mesh were built parametrically in Ansys Workbench 14.5 with α and d parameters.

The α and d sample points were selected following design of experiment principles using

a space filling Latin hypercube (following Forrester et al. [2008]). A total of 177 samples

points were chosen, where 6.46 ≤ d ≤ 8.8 and 27.75 ≤ α ≤ 37.5. The minimum hole

diameter was larger than the nominal hole diameter used for the mesh convergence

study. This was not planned, but it was observed that cooling efficiency improved with

the hole diameter despite a reduced blowing ratio (as the coolant inlet velocity remained

fixed). A greater hole diameter allowed a thicker film over the surface, which increased

the separation between the hot gas and the surface leading to a better cooling efficiency.

This was beneficial until the movement of coolant was sufficiently slow that the heat

transfer from the hot gas heated the coolant before new coolant passed through. For a

3D hole the coolant is heated and mixing occurs from the sides as well as from the top

surface, reducing the cooling effectiveness of the coolant faster. Thus, the benefit of a

thicker but slower coolant layer would be less prolonged for a 3D hole.

A response surface was created using a Kriging estimate following the methodology

presented in Section 2.4 of Forrester et al. [2008]. The text also provides a Description

of the Matlab code necessary to implement the procedure.
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Rackwitz, Rüdiger. Reliability analysis—a review and some perspectives. Structural

Safety, 23(4):365–395, October 2001.

Rahim, M A and Al-sultan, Khaled S. Joint determination of the optimum target mean

and variance of a process. pages 192–199, 2000.

Rao, A. R.; Scanlan, J. P., and Keane, A. J. Technical Review: Applying Multiobjective

Cost and Weight Optimization to the Initial Design of Turbine Disks. Journal of

Mechanical Design, 129(12):1303–1310, 2007.

Reagle, Colin J. Heat Transfer Measurements Using Thin Film Gauges and Infrared

Thermography on a Film Cooled Transonic Vane. Masters thesis, Virginia Polytechnic

Institute and State University, 2009.

Rehman, Sumaira and Guenov, Marin D. A methodology for modelling manufacturing

costs at conceptual design. Computers & Industrial Engineering, 35(3-4):623–626,

December 1998.

Rhee, Dong Ho; Lee, Youn Seok, and Cho, Hyung Hee. Film Cooling Effectiveness and

Heat Transfer of Rectangular-Shaped Film Cooling Holes. In Turbo Expo 2002, Parts

A and B, pages 21–32, Amsterdam, The Netherlands, 2002. ASME. ISBN 0-7918-

3608-8.

Robinson, David G. A Survey of Probabilistic Methods Used in Reliability Risk and

Uncertainty Analysis. Technical report, Sandia National Laboratories, 1998.

Rudolph, G Unter. The Fundamental Matrix of the General Random Walk with Ab-

sorbing Boundaries . Technical Report Sfb 531, Technical Report of the Collaborative

Research Center - Comptational Intelligence, University of Dortmund, Dortmund,

1999.

Rush, Christopher and Roy, Rajkumar. Analysis of cost estimating processes used

within a concurrent engineering environment throughout a product life cycle. In

Seventh ISPE International Conference on Concurrent Engineering: Research and

Application, volume 44, Lyon, France, 2000. Technomic.

http://www.qualityamerica.com/Knowledgecenter/statisticalinference/non% _normal_distributions_in_the_real_world.asp
http://www.qualityamerica.com/Knowledgecenter/statisticalinference/non% _normal_distributions_in_the_real_world.asp
http://www.qualityamerica.com/Knowledgecenter/statisticalinference/non% _normal_distributions_in_the_real_world.asp


Bibliography 226

Rush, Christopher and Roy, Rajkumar. Expert judgement in cost estimating: Modelling

the reasoning process. Concurrent Engineering: Research & Applications (CERA), 9

(4), 2001.

Salmon, Felix. Recipe for Disaster: The Formula That Killed Wall Street. Wired

Magazine, 2009.

Sargison, J. E.; Guo, S. M.; Oldfield, M. L. G.; Lock, G. D., and Rawlinson, A. J. A Con-

verging Slot Hole Film Cooling Geometry Part 1 Low Speed Flat-Plate Heat Transfer

and Loss. In Volume 3: Heat Transfer; Electric Power; Industrial and Cogeneration.

ASME, June 2001. ISBN 978-0-7918-7852-1.

Sargison, J. E.; Guo, S. M.; Oldfield, M. L. G.; Lock, G. D., and Rawlinson, A. J. A

Converging Slot Hole Film Cooling Geometry Part 2 Transonic Nozzle Guide Vane

Heat Transfer and Loss. Journal of Turbomachinery, 124(3):461, 2002.

Saumweber, Christian and Schulz, Achmed. Comparison the Cooling Performance of

Cylindrical and Fan-Shaped Cooling Holes With Special Emphasis on the Effect of

Internal Coolant Cross-Flow. In Volume 4: Heat Transfer, Parts A and B, pages

893–903. ASME, 2008. ISBN 978-0-7918-4314-7.

Saumweber, Christian and Schulz, Achmed. Effect of Geometry Variations on the Cool-

ing Performance of Fan-Shaped Cooling Holes. Journal of Turbomachinery, 134(6):

061008, 2012.

Saumweber, Christian; Schulz, Achmed, and Wittig, Sigmar. Free-Stream Turbulence

Effects on Film Cooling With Shaped Holes. Journal of Turbomachinery, 125(1):65,

2003.

Savage, G. J.; Tong, D., and Carr, S.M. Optimal Mean and Tolerance Allocation Using

Conformance-based Design. Quality and Reliability Engineering International, 22(4):

445–472, June 2006.

Savage, G.J. and Seshadri, R. Minimizing Cost of Multiple Response Systems by Prob-

abilistic Robust Design. Quality Engineering, 16(1):67–74, January 2003.

Savage, G.J. and Swan, D.A. Probabilisitc Robust Design with Multiple Quality Char-

acteristics. Quality Engineering, 13(4):629–640, June 2001.

Scanlan, James; Rao, Abhijit; Bru, Christophe; Hale, Peter, and Marsh, Rob. DATUM

Project: Cost Estimating Environment for Support of Aerospace Design Decision

Making. Journal of Aircraft, 43(4):1022–1028, July 2006.



Bibliography 227

Schmidt, R. and Pfeifer, P. Economic Selection of the Mean and Upper Limit for a

Canning Problem with Limited Capacity. Journal of Quality Technology, 23(4):312–

317, 1991.

Schmidt, Thorsten. Coping with Copulas. In Rank, Jorn, editor, Copulas - From Theory

to Applications in Finance, chapter 1. Risk Books, London, 1st edition, 2006.

Schneider, M.; Berthe, L.; Muller, M., and Fabbro, R. A fast method for morphological

analysis of laser drilling holes. Journal of Laser Applications, 22(4):127, 2010.

Schroeder, Robert P and Thole, Karen A. Adiabatic Effectiveness Measurements for a

Baseline Shaped Film Cooling Hole. pages 1–13, 2014.

Schweizer, B. and Wolff, E.F. On Nonparametric Measures of Dependence for Random

Variables. The Annals of Statistics, 9(4):879–885, 1981.

Selim, Shokri Z. and Al-Zu’bi, Walid K. Optimal means for continuous processes in

series. European Journal of Operational Research, 210(3):618–623, May 2011.

Shannon, C E. The mathematical theory of communication. The Bell System Technical

Journal, 27:379–423, 1948.

Sheppard, Mike. Allfitdist, 2012. URL http:

//www.mathworks.co.uk/matlabcentral/fileexchange/

34943-fit-all-valid-parametric-probability-distributions-to-data/

content/allfitdist.m.

Shetty, Devdas; Eppes, Tom; Campana, Claudio; Filburn, Thomas, and Nazaryan, Niko-

lai. New Approach to the Inspection of Cooling Holes in Aero-Engines. pages 129–135,

2008.

Shewhart, Walter. Economic control of quality of manufactured product. D. Van Nos-

trand Company, Inc., New York, the bell edition, 1931.

Shiau, G.H. A Study of the Sintering Properties of Iron Ores using Taguchi’s Parameter

Design. Journal of the Chinese Statistical Association, 28:253–275, 1990.

Shih, Tsan-Hsing; Liou, William W.; Shabbir, Aamir; Yang, Zhigang, and Zhu, Jiang.

A new k-e eddy viscosity model for high reynolds number turbulent flows. Computers

& Fluids, 24(3):227–238, March 1995.

Shorey, A.B.; Piech, G.A.; Li, X.; Thomas, J.C.; Keech, J.T.; Domey, J.J., and Shustack,

P.J. Sacrificial Cover Layers For Laser Drilling Substrates and Methods Thereof,

volume 1. Corning Incorporated, 2014.

http://www.mathworks.co.uk/matlabcentral/fileexchange/34943-fit-all-valid-parametric-probability-distributions-to-data/content/allfitdist.m
http://www.mathworks.co.uk/matlabcentral/fileexchange/34943-fit-all-valid-parametric-probability-distributions-to-data/content/allfitdist.m
http://www.mathworks.co.uk/matlabcentral/fileexchange/34943-fit-all-valid-parametric-probability-distributions-to-data/content/allfitdist.m
http://www.mathworks.co.uk/matlabcentral/fileexchange/34943-fit-all-valid-parametric-probability-distributions-to-data/content/allfitdist.m


Bibliography 228

Shukor, S.a. and Axinte, D. Manufacturability analysis system: issues and future trends.

International Journal of Production Research, 47(5):1369–1390, March 2009.

Singh, P K; Jain, P K, and Jain, S C. Important issues in tolerance design of mechanical

assemblies. Part 1: tolerance analysis. Proceedings of the Institution of Mechanical

Engineers, Part B: Journal of Engineering Manufacture, 223(10):1225–1247, October

2009.

Sklar, A. Fonctions de repartition a n dimensions e leurs marges. Publications de

l’Institut de Statistique de l’Univiversit´ e de Paris, Paris, 1959.

Spiring, F.A. The reflected normal loss function. The Canadian Journal of Statistics,

21(3):321–330, 1993.

Spiring, F.A. and Yeung, A.S. A general class of loss functions with industrial applica-

tions. Journal of Quality Technology, 30(48):152–162, 1998.

Spotts, W.F. Allocanon of tolerance to minimize cost of assembly. Journal of Engineer-

ing for Industry, pages 762–764, 1973.

Springer, C. A Method for Determining the Most Economic Position of a Process Mean.

Industrial Quality Control, 8(1):36–39, 1951.

Stahl, H. Philip. Survey of cost models for space telescopes. Optical Engineering, 49(5):

053005, 2010.

Suh, Nam P. On an axiomatic approach to manufacturing systems. Journal of Engi-

neering for Industry Trans. ASME, 100:27–130, 1978.

Suh, Nam P. The Principles of Design. Oxford University Press, New York, 1st edition,

1990.

Suh, Nam P. Axiomatic Design - Advances and Applications. Oxford University Press,

New York, 2001.

Sun, F.; Laramee, J., and Ramberg, J. On Spiring’s inverted normal loss function. The

Canadian Journal of Statistics, 24:241–249, 1996.

Sundararajan, C.R. Probabilistic structural mechanics handbook: theory and industrial

applications. Chapman & Hall, 1st edition, 1995.

Taguchi, G. Introduction to Quality Engineering. Asian Producatvity Organization,

Minato-ku, Tokyo, 1986.

Tai, C.Y.; Chen, T.S., and Wu, M.C. An Enhanced Taguchi Method for Optimizing

SMT Process. Journal of Electronics Manufacutring, 2:91–100, 1992.



Bibliography 229

Tammineni, S. V.; Rao, a. R.; Scanlan, J. P.; a.S. Reed, P., and Keane, a. J. A knowledge-

based system for cost modelling of aircraft gas turbines. 20(3):289–305, June 2009.

Taylor, N. I. Cost Engineering. In 85th Meeting of the AGARD Structures and Material

Panel, Neuilly-Sur-Seine France, 1997.

Teeravaraprug, Jirarat. Targets for Multiple Optimum Process Quality Characteristics

Analysis Using Regression. 2006.

Teeravaraprug, Jirarat and Cho, Byung Rae. Designing the optimal process target levels

for multiple quality characteristics. International Journal of Production Research, 40

(1):37–54, January 2002.

Thole, K.; Gritsch, M.; Schulz, A., and Wittig, S. Flowfield Measurements for Film-

Cooling Holes With Expanded Exits. Journal of Turbomachinery, 120(2):327, 1998.

Tops, Robbin. Copulas and Correlation in Credit Risk “ Who will pay the difference ?”.

PhD thesis, University of Amsterdam, 2010.

Tutorialspoint, . Six Sigma Methodology, 2014. URL http://www.tutorialspoint.

com/six_sigma/index.htm.

Uem, Theo Van. Modified discrete random walk with variable absorption probabilties.

Technical report, Amsterdam School of Technology, Amsterdam, The Netherlands,

2009.

Walck, Christian. Hand-book on Statistical Distribtuions for Experimentalists. Number

September. Particle Physics Group - University of Stockholm, Stockholm, 2007.

Walther, K; Brajdic, M; Dietrich, J; Hermans, M; Horn, A; Kelbassa, I, and Poprawe, R.

Manufacturing of Shaped Holes in Multi-Layer Plates by Laser Drilling. In Proceed-

ings of the 3rd Pacific International Conference on Application of Lasers and Optics,

number 1001, Beijing, China, 2008.

Wang, Antai. Goodness-of-fit Test for Archimedean Copula Models. Statistica Sinica,

20:441–453, 2010.

Wang, Ting and Zhao, Lei. Discussions of some myths and concerned practices of film

cooling research. International Journal of Heat and Mass Transfer, 54(9-10):2207–

2221, April 2011.

Wen, D and Mergen, A.E. Running a process with poor capability. Quality Engineering,

11(4):505–509, July 1999.

http://www.tutorialspoint.com/six_sigma/index.htm
http://www.tutorialspoint.com/six_sigma/index.htm


Bibliography 230

Wilhelm, Stefan; Manjunath, B G; Carlo, Monte, and Gibbs, The. tmvtnorm : A

Package for the Truncated Multivariate Normal Distribution Generation of random

numbers computation of marginal densities. 2(June):25–29, 2010.

Williams, Paul E. Laser Drilling Components. US Patent, 8 164 026B2, 2012.

Wilson, David Robert. An Exploratory Study of Complexity in Axiomatic Design. PhD

thesis, Massachusetts Institute of Technology, 1980.

Wolfshtein, M. The velocity and temperature distribution in one-dimensional flow with

turbulence augmentation and pressure gradient. International Journal of Heat and

Mass Transfer, 12(3):301–318, March 1969.

Wos, F.J. Laser Hole-Shaping Improves Combustion Turbine Efficiency. POWER, 2010.

Wright, T. P. Factors affecting the cost of airplanes. Journal of Aeronautical Science, 3

(2), 1936.

Wu, C. C. and Tang, G.R. Tolerance design for products with asymmetric quality losses.

International Journal of Production Research, 36(9):2529–2541, September 1998.

Wu, Chin-Chung; Chen, Zhuoning, and Tang, Geo-ry. Component tolerance design for

minimum quality loss and manufacturing cost. Computer In Industry, 35:223–232,

1998.

Wu, Ful-Chiang and Chyu, Chiuh-Cheng. Optimization of robust design for multiple

quality characteristics. International Journal of Production Research, 42(2):337–354,

January 2004.

Yan, Jun. Enjoy the Joy of Copulas : With a Package copula. Journal of Statistical

Software, 21(4), 2007.

Yao, Wen; Chen, Xiaoqian; Luo, Wencai; van Tooren, Michel, and Guo, Jian. Review

of uncertainty-based multidisciplinary design optimization methods for aerospace ve-

hicles. Progress in Aerospace Sciences, 47(6):450–479, August 2011.

Yates, F. Sir Ronald Fisher and the Design of Experiments. Biometrics, 20(2):307–321,

1964.

Younossi, O.; Arena, M.V.; Moore, R.M.; M., Lorell; Mason, J., and Graser, J.C. Mil-

itary Jet Engine Acquisition: technology basics and cost-estimating methodology.

Technical report, US Air Force, RAND, Santa Monica, CA, USA, 153, 2002.

Yu, Y.; Yen, C.H.; Shih, T. I.-P.; Chyu, M. K., and Gogineni, S. Film Cooling Effec-

tiveness and Heat Transfer Coefficient Distributions Around Diffusion Shaped Holes.

Journal of Heat Transfer, 124(5):820, 2002.



Bibliography 231

Zang, C.; Friswell, M.I., and Mottershead, J.E. A review of robust optimal design and

its application in dynamics. Computers & Structures, 83(4-5):315–326, January 2005.

Zang, T.A.; Hemsch, M.J.; Hilburger, M.W.; Kenny, S.P.; Luckring, J.M.; Maghami,

P.; Padula, S.L., and Jefferson, W.J. Needs Based and Opportunities Multidisci-

plinary Vehicles for Uncertainty- Design Methods for Aerospace. Technical Report

July, NASA, 2002.

Zhang, Y F; Fuh, J Y H, and Chan, W T. Feature-based cost estimation for packaging

networks products using neural networks. Computers in Industry, 32:95–113, 1996.


