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Abstract
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A Paradigm to Maximise Performance and Profitability of Engineering

Products in the Presence of Manufacturing Uncertainty

by Christopher DODD

Variation in the manufactured geometry of engineering components is perpetually present
in production. Random variation can arise due to slight differences in material prop-
erties, machines and tools, processes and even climatic conditions in the factory. To
guarantee the functionality or quality of individual components, features are inspected
to verify they conform to the tolerance limits imposed. It is undesirable to produce non-
conforming features, due to the cost of reworking features or scrapping components. In
practice, it is not always feasible to improve manufacturing capability (reduce varia-
tion), or design components to be less susceptible to variation; in such a situation the
cost of non-conformance should be minimised. Optimal Mean Setting, a methodology
to maximise profit from a production system where the manufacturing variation is often

greater than a feature’s tolerance limits, can be applied in these circumstances.

Although the principle of Optimal Mean Setting dates back over 60 years, its applica-
tion to engineering design is relatively undeveloped. A major part of this thesis was
devoted to developing a robust, reliable and generalised framework to practice Opti-
mal Mean Setting in engineering design. Errors were uncovered in previous attempts
in the literature relating to Optimal Mean Setting of simple systems. Improvements to
the maximum obtainable profit were also realised by implementing a new optimisation
strategy to that developed in the literature. Another innovation developed in this thesis
was the the application of copula function modelling to Optimal Mean Setting. Copulas
allowed joint distributions to be created from non-parametric (or non family specific)
feature variation distributions. This permitted Optimal Mean Setting to be applied to
components with several quality characteristics where different distributions modelled
the manufacturing variation. It also allowed the final geometry of a component to be
modelled to access the distribution of performance of a batch of components. Numerical

examples and the applications to real components are given.


University Web Site URL Here (include http://)
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

Acknowledgements

I would like to express special thanks to my academic supervisory team, Jim Scanlan and
Rob Marsh and my industrial supervisor Steve Wiseall who sadly passed away towards
the end of last year. I have had the privilege of having tremendous freedom in the
direction my research took, but always felt well supported in the work I was doing. I
thank them for their trust and confidence in the path I was taking, particularly in the
first three years of the EngD programme. Particular thanks must also go to Jim Scanlan
who managed to orchestrate numerous regular review meetings with academic and Rolls-
Royce personnel that regularly generated useful discussions and insights. Rob Marsh
has provided insightful feedback on all my major written contributions throughout my

thesis, I thank him greatly for the time he has taken doing this.

I am indebted to the numerous people in the Computational Engineering and Design
Group at the University of Southampton for their discussions and expertise. Similarly,
I thank the Product Cost Engineering group at Rolls-Royce who regularly attended
my talks and presentations despite their busy schedules and were always open for a
discussion. I will always be grateful to Steve Wiseall for his support at Rolls-Royce and

his help with introducing me to the right people.

Particular thanks go to my mother and father for supporting my education and for their
help proof reading sections of my thesis, as well as Bryony Meakins. Despite not having
engineering backgrounds they persisted in trying to understand what I was attempting

to articulate and this thesis is considerably improved due to them.

iii



Contents

Declaration of Authorship

Abstract

Acknowledgements

Contents

List of Figures

List of Tables

Definitions

Nomenclature

1 Introduction

1.1
1.2
1.3

1.4
1.5
1.6

1.7

Engineering Doctorate . . . . . . . ... L oo
Rolls-Royce . . . . . . o o
Project Background . . . . ... ...
1.3.1 Cost Modelling . . . . .. ... ..
1.3.2 Manufacturing Variability . . . . . ... ... ... ..
1.3.3 Manufacturing Capability and Process Control . . . . .. .. ...
1.3.4 Performance, Capability and Cost . . . . .. ... ... ......
Challenges . . . . . . . . . . e
Vision and Objectives . . . . . . . . . .
Contributions . . . . . . . .. L
1.6.1 Software . . . . . . . . ...
Description of Content . . . . . . . . . ... o o

2 Literature Review

2.1
2.2
2.3
2.4

Quality Engineering . . . . . . . . .. ...
Robust Design . . . . . . . . .. L
Reliability Engineering . . . . . . . .. ... oo oo
Axiomatic Design . . . . . . . .. ..

iv

ii

iii

iv

vii

xii

xiv

xvi



Contents v

2.5 Optimal Mean Setting Literature . . . . . . . .. . ... .. ... .. ... 29
2.5.1 Multiple Quality Characteristics . . . . . . .. .. ... ... ... 34
2.5.2  Summary of Optimal Mean Setting . . . . . . . ... ... ... .. 36

2.6 Cost Modelling . . . . . . . . . . e 37
2.6.1 Data Mining and Regression Based Costing Methods . . . . . . .. 38

2.6.1.1 Parametric Costing . . . . ... ... ... ... ... .. 39

2.6.1.2 Neural Networks . . . . . .. ... ... ... ... .... 40

2.6.2 Analogous Costing . . . . . . . . . . . ... 41

2.6.3 Detailed Costing Methods . . . . . .. ... ... .. ... ..... 42

2.7 Summary of Literature . . . . . . . . . .. ... 45

3 Optimal Mean Setting 47

3.1 TIterative Manufacturing Processes . . . . . . . .. .. ... ... ... .. 48
3.1.1 Single-Feature Iterative Manufacturing From First Principles . . . 48
3.1.2  Multiple-Feature Iterative Manufacturing from First Principles . . 55

3.2 Markovian Modelling . . . . . .. .. .. L 65
3.2.1 Markov Modelling of Serial Production Systems. . . . . . ... .. 66

3.2.1.1 Single Feature - Serial Production . . . . ... ... ... 66
3.2.1.2 Two Features - Serial Production . . .. ... ... ... 70
3.2.2  Markovian Modelling of Parallel Production Systems . . . . . . .. 73
3.2.2.1 General Solution for Parallel Production . . ... .. .. 84
3.2.2.2 Transition probabilities . . . . . . ... ... ... 89
3.2.2.3  General Solution for n-stage Serial and Parallel Production 91

3.3 Codification of Equation 3.78 . . . . . . . . .. ... ... ... ..., 96

3.4  Optimal Mean Setting Using Equation 3.78 - Numerical Examples . . . . 99
3.4.1 Serial Production . . . . . .. ... .. oo 99
3.4.2 Parallel Production . . . . . .. ... ... o oL 104

3.5 Optimal Mean Setting for Parallel Production . . . . . . .. ... ... .. 110
3.5.1 Comparison of Case I and Case II Optimal Mean Setting Method-

ologies for Two Features . . . . . . . ... ... ... ... ..., 111

3.5.2 Influence of Correlation . . . . .. ... ... ... ... ...... 114

3.5.3 Multiple Features - Case I and Case II Comparison . . . . . .. .. 117

4 Uncertainty Modelling with Non-Normal Distributions 119

4.1 Mixture Models for Truncated Normal Distributions . . . . . .. ... .. 120

4.2 Copulas . . . . . .. 124
4.2.1 Introduction to Copulas . . . . . . ... ... ... ... ... ... 124
4.2.2 Definition . . . . . ..o 125
4.2.3 Sklar’s Theorem . . . . . . ... ... ... 125
4.2.4  Fréchet-Hoeffding bounds . . . . . . .. ... ... ... .. 128
425 Typesof Copula . . . . . . .. .. .. . ... 129
4.2.6 Gaussian Copula . . . . . . ... oL oo 131
4.2.7 Archimedean Copulas . . . . . . ... ... ... ... ....... 133

4.27.1 Clayton Copula . . . . . ... ... ... ... ... 134
4.2.72 Frank Copula. . . . . . .. ... oo 136
4.2.8 Multivariate Copula Construction . . . . .. ... ... ... ... 138

4.3 Case Study - Connecting Rod . . . . . .. .. ... ... 140



Contents vi

5

g a & »

4.4 Optimal Mean Setting for Cooling Holes . . . . . . .. .. .. ... .... 147
4.4.1 Cooling Hole Geometry . . . . . .. ... .. ... ... ...... 147
4.4.2 Cooling Hole Manufacture . . . . . . .. .. .. ... ... ..... 149
4.4.3 Feasibility of Optimal Mean Setting to Film Cooling Hole Manu-

facture . . . . . . L 151
4.4.4 Cooling Hole - 2D, Two parameter . . . . ... ... ... ..... 152
4.4.5 Laser Drilling Costs . . . . . . . ... .. .. oL 154
4.4.6 Optimal Mean Setting - Film Cooling Hole . . . . .. .. .. ... 156

Conclusions and Future Work 168

5.1 Conclusion . . . . . . . .. e 168

5.2 Future Work . . . . . . .. 170
5.2.1 Optimise Functional Distributions . . . . ... ... ... ... .. 170
5.2.2  Copula Modelling Manufacturing Distributions . . . . . . . .. .. 170
5.2.3  Alternative Strategy to Evaluate F-matrix terms . . . . . . . . .. 171
5.2.4 Non-Exhaustive Mean Search . . . . . . ... ... ... ...... 172
5.2.5 Inclusion of Measurement Error . . . . . . . . ... ... ... ... 172
5.2.6 Holistic Integration . . . . . . . .. .. ... oL 173

The Nature of the Stationary Points 174

Total Profit for a Given Iteration 177

Equivalence of Profit Equations 182

Optimal Mean Setting for Parallel Production - Alternative Scrap Cost

Structure 183
D.1 Influence of Correlation . . . . . . . . . . . . . . .. . 185
Matlab Code 188
Case Study - Optimal Mean Setting 196

Aerothermal Analysis and Response Surface Methodology of a Film

Cooling Hole 202
G.1 Numerical Model . . . . . . . . . . .. 202
G.2 Turbulence Model . . . . . . . . . ... 203
G.3 Mesh Generation and Results Validation . . . . . . . ... ... ...... 205
G.4 Response Surface Methodology . . . . . . .. ... ... ... ... 212

Bibliography 213



List of Figures

1.1
1.2

1.3

1.4
1.5

2.1

2.2
2.3
2.4
2.5

2.6
2.7

2.8

2.9

2.10
2.11

2.12
2.13
2.14
2.15
2.16
2.17

3.1
3.2
3.3

Cost incurred during product introduction (Miles and Swift [1998]) . . . .
Figure . . . . . . . oL
(a) Ilustration of Cpr, . . . . . . . .. oL
(b) TIlustration of a control chart . . . . . ... ... ... ........
Illustration of the possibility of higher performance created by applying

more stringent tolerances . . . . . . ... ..o
Effect of moving the mean of the distribution . . . . . ... ... .. ...
Effect of moving the mean of the distribution . . . . . ... ... ... ..

Graphical illustration of robust design where uncertainties are illustrated
by typical input and output probability density functions (adapted from
Keane and Nair [2005]) . . . . . . . . . ... Lo
Ram airintake . . . . . . ... o
P-Diagram Phadke [1989] . . . . . . .. ... ... ... .. ...
Mlustration of a quality loss function Phadke [1989] . . . . . . . . ... ..
Ilustration of the differences between Robust Design and Reliability En-
gineering adapted from Huyse [2001] . . . . . . ... ... ... ... ...
[lustration of the probability of failure adapted from Zang et al. [2002]
Illustration of a limit state function on the design space, adapted from
Keane and Nair [2005] . . . . ... ... ... .. L o
Illustration of the a coupled and independent design solution for pitch
and yaw control of aircraft (NASA [2015]) . . . .. ... .. .. ... ...
Illustration of the functional and design spaces on functional domain
(adapted from Suh [2001]) . . . . . ...
The reflected normal loss function from Spiring [1993] . . . ... ... ..
The Differences between the non-conformance costs between single and
dual quality characteristics, adapted from Teeravaraprug and Cho [2002]
and Chan and Ibrahim [2004] . . . . . ... ... ... ... . ...
Hlustration of manufacturing feature cost from Tammineni et al. [2009] . .
Mlustration of parametric scaling from Langmaak et al. [2013] . . . . . . .
A typical neural net, Cavalieri [2004] . . . . . ... ... ... ..., ..
Cost model information flow [Tammineni et al., 2009] . . . .. ... ...
Example of a Vanguard Studio cost model . . . . . . . ... ... ... ..
Ilustration of a cost model linked to a computer geometry tool. . . . . . .

Process flow diagram with a rework loop . . . . . . .. .. ... ... ...
Two iterations of an iterative manufacturing process . . . .. .. ... ..
Probabilities of components in the rework, scrap and conforming states

for three iterations . . . . . . . . . . ... ...



List of Figures viii

3.4
3.5
3.6
3.7
3.8

3.9

3.10
3.11
3.12
3.13
3.14
3.15
3.16

3.17

3.18

3.19

3.20

3.21
3.22
3.23
3.24

3.25

3.26

3.27
3.28

Single variable normal manufacturing variation . . . . . ... ... .. .. 51
Manufacturing flow in two-feature parallel process . . . . .. .. ... .. 56
Dual feature rework, conformance and scrap . . . . . . .. .. .. ... .. 57
Dual feature rework, conformance and scrap with rearranged axes . .. . 59
Figure . . . . . . . L 61
(a) F (Ul, Ug) ................................. 61
(b)) F(L1,Ua) o o o oo 61
(C) F(Ul, LQ) ................................. 61
(d)  F(L1,La) - . oo oo 61
Probabilities of components in the scrap and rework states for four iterations 62
Scatter plot . . . . . . . 65
Random walk for the production of a single feature . . . . . . . . ... .. 66
The flow of 10,000 components with one inspectable feature through a
single stage serial production system . . . . . . .. ... ... 69
Random walk for the production of a two features in a serial production
System . . ... L e 70
The flow of 10,000 components with two inspectable features through a
two stage serial production system . . . . ... ..o oo 71
Random walk for the manufacture of two features in a parallel production
System . . . ... 73
The flow of 10,000 components with two inspectable features through a
dual stage production system . . . . .. .. Lo L oo 77
Comparison of profit surfaces between Khasawneh et al. [2008] and Equa-
tion 3.44 . . ..o 80
Figure . . . . . . . o 81
(a) Expected profit and optimal means versus process variation (o) . . . 81
(b) Transient state to scrap state probabilities for Case I and Case II
Versus process variation () . . .. ... Lo 81
Figure . . . . . 82
(a) Expected profit and optimal means versus scrap cost . . . . . . . . . 82
(b) Transient state to scrap state probabilities for Case I and Case 11
Versus scrap cost . . . .. ..o 82
Figure . . . . . Lo 83
(a) Expected profit and optimal means versus correlation (p) . . . . . . 83
(b) Transient state to scrap state probabilities for Case I and Case 11
versus correlation (p) . . . ... o Lo 83
Single-stage process . . . . ... Lo e 92
A two-stage serial production process. . . . . . ... ... 94

Diagrammatic overview of the code developed to calculate expected profit 97
Variation of expected profit, scrap, rework, and total production costs

with the mean () . . . .. ... Lo 101
Variation of expected profit, scrap, rework, and total production costs
with the means (pg, and fiy) - . o o o o o oo Lo 104
Variation of expected profit, scrap, rework, and total production costs
with the means (uz, and p,,) in a single manufacturing stage . . . . . . . 107
Possible manufacturing sequences for four features . . . . .. .. ... .. 108

Expected profit for the eight manufacturing sequences . . . . . . .. ... 110



List of Figures ix
3.29 Profit surfaces for Case I and Case II (optimisation of two and four means
respectively) . . . . L L 112
3.30 Scrap and rework costs from the initial and rework states . . . . ... .. 113
3.31 Scatter plot with correlation (p = —0.8 and p=0.8) . .. ... ... ... 114
3.32 Profit vs. correlation . . . . . ... 116
3.33 Profit and profit differences between Case I and Case II methodologies
for two, three and four features . . . . . .. . ... ... ... ....... 117
4.1 Difference between the manufactured geometry distributions using the
Case I and Case II optimal mean optimisation methodologies . . . . . . . 122
4.2 caption . . ... L 123
4.3 Mapping of random variables to joint distribution . . . . . .. .. ... .. 126
4.4 Figure . . . . L 127
(a) Copula CDF with no correlation . . . .. ... ... ... ...... 127
(b) Copula CDF with correlation . . . . . ... ... ... ........ 127
4.5 Graphical representation of the Fréchet-Hoeffding bounds for a bivariate
copula . . .o 128
4.6 Figure . . . . .. 132
(a) Spearman’s and Kendall’s
correlation versus Gaussian copula
dependence . . . . . ... 132
(b) Spearman’s and Kendall’s
correlation versus Clayton copula
dependence . . . . . ... 132
(¢c) Spearman’s and Kendall’s
correlation versus Frank copula
dependence . . . . . . ..o 132
(d) Copula dependency parameter values . . .. ... ... ... ... .. 132
4.7 Figure . . . . ..o 133
(a) w versus v from a Gaussian copula with p =0.8135 . . . . . . .. .. 133
(b)  Gaussian copula PDF with p=0.8135 . . . . .. ... ... ..... 133
4.8 Figure . . . . .. 136
(a) u versus v from a Clayton copula with # =3.1819 . . . ... .. .. 136
(b) Clayton copula PDF with  =3.1819 . . ... ... ... ...... 136
4.9 Figure . . . ... 138
(a) w versus v from a Frank Copula
with 6 =7.9019. . . . . . . . . . 138
(b) Frank copula PDF with # =7.9019 . . . . .. ... .. ... ..... 138
4.10 Figure . . . . . . . e 140
(a) PDF truncated at Uy =7 and Uy = 7, with no correlation . . . . . . 140
(b) PDF truncated at U; = 7 and Uy = 7, with correlation (p = 0.8) . . 140
4.11 Connection Rod from Aparisi et al. [1999] . . . . ... ... ... ... .. 140
4.12 Histogram and best fit continuous distribution for the diameter of the big
end (T1) v v v e e e e 142
4.13 Histogram and best fit continuous distribution for the diameter of the
small end (z3) . . . . . . . 142
4.14 Dependence between the x1 and xo features described by the Gaussian
copula with p = 0.7052 which returned NLogLL = -20.5485 . . . . . . . .. 144



List of Figures X

4.15

4.16

4.17
4.18
4.19
4.20

4.21
4.22
4.23
4.24
4.25
4.26

4.27
4.28
4.29

4.30

4.31

4.32

5.1

Al

D.1

D.2
D.3

Dependence between the x; and xzo features described by the Clayton

copula with § = 1.5955 which returned NLogl, = -17.8684 . . . . . . . .. 144
Dependence between the x1 and x5 features described by the Frank copula

with 6 = 5.8142 which returned NLogL, = -17.8611 . . . . . . ... .. .. 145
Finial Geometry distribution of the connecting rod zo and x5 features . . 146
A V2500 gas turbine NGV (Cleynen [2013]) . . . . . ... ... ... ... 147
Types of film cooling holes from Saumweber and Schulz [2012] . . . . .. 148
A laser drilled blade (left picture Wos [2010]) and an illustration of laser

drilling techniques (right figure Dhar et al. [2006]) . . . . ... ... ... 150
Laser drilling process steps from Poprawe et al. [2008]) . . . . . . ... .. 150
Overview of the 2D cooling hole computational domain (not to scale) . . . 153
Flow chart of the laser drilling, inspection and rework process . . . . . . . 155
Rework of the hole inclination angle . . . . .. ... ... ... ...... 156

Joint distribution of the diameter (x1) and inclination angle (z3) parameters157
Process flow and rework stages for the cooling hole diameter (z1) and

inclination angle (xz9) parameters . . . . . . ... ... L. 158
Cooling effectiveness in response to changes in the o and d parameters . . 158
Cooling effectiveness in response to changes in the o and d parameters . . 160
Figure . . . . . .o 162
(a) Standard production with n =0.77299 . . . . .. ... ... 162
(b)  Optimal Mean Setting production with n =0.77299 . . .. ... .. 162
(¢c) Standard production with n =0.77317 . . . . ... ... ... ... 162
(d) Optimal Mean Setting production with n =0.77317 . . . . ... .. 162
(e) Standard production with n =0.77336 . . . . . ... ... ... ... 162
(f)  Optimal Mean Setting production with n =0.77336 . . . . ... .. 162
Figure . . . . . . . o 164
(a) Standard production with n =0.77336 and p=—-0.8 . . . . ... .. 164
(b)  Optimal Mean Setting production with n = 0.77336 and p = —0.8 . 164
(¢) Standard production with n =0.77336 and p =08 . . . . . ... .. 164
(d) Optlmal Mean Setting production with n = 0.77336 and p = 0.8 . . 164
Figure . . . . . . . o 165
(a) Cooling effectivness comparision (n =0.77280) . . . .. ... .. .. 165
(b) Cooling effectivness comparision (n =0.77299) . . . . ... ... .. 165
(¢) Cooling effectivness comparision (n = 0.77317) . . . ... ... ... 165
(d) Coohng effectivness comparision (n =0.77336) . . . ... ... ... 165
FIGUIE o o o e e e e e 167
(a) Coohng effectivness comparision for n = 0.77336 and p = —0.8 . . . 167
(b)  Cooling effectivness comparision for n = 0.77336 and p = 0.8 . . . . 167
Illustration of a customised distribution fitted to the data points . . . . . 171
Hlustration of the A, B,{(p),&(v), G(u) functions for L = 4, U = 6 and

O =1 s 176
Profit surfaces for Case I and Case IT (optimisation of two and four means

respectively) . . . .. Lo 184
Scrap and rework costs from the initial and rework states . . ... .. .. 186
Profit vs. correlation . . . . . .. .. oL 187



List of Figures xi

F.1

F.2

F.3

G.1
G.2
G.3
G4

G.5
G.6

G.7

Figure . . . . . oo 197
(a) Casing cut-through . . . . . . ... ... .. L o 197
(b) Casing dimensional drawing . . . . . . . .. ... ... ... ..... 197
Figure . . . . . o 199
(a) Inner diameter and thickness distributions from the inital processing 199
(b) The fianl inner diameter and thickness distributions after rework . . 199
Figure . . . . . . . o 201
(a) Casing diameter distributions before and after rework . . . . . . .. 201
(b) Casing thickness distributions before and after rework . . . . . . .. 201
Overview of the 2D mesh . . . . . . . . . ... .. . . 205
Overview of the 2D cooling hole computational domain (not to scale) . . . 206
Cooling effectiveness versus downstream distance from the hole . . . . . . 208
Figure . . . . . . . o 209
(a) Cooling effectiveness versus downstream distance close to the hole
OPENING . « . .« v v vt e e e 209
(b)  Cooling effectiveness at 25 to 30 diameters down stream . . . . . . . 209
Cooling effectiveness versus downstream distance from the hole . . . . . . 209
Figure . . . . . . . L 210
(a) Contours of velocity over the whole domain . . . . .. ... ... .. 210

(b) Contours of temperature over the whole domain illustraties the ef-
fect film cooling has on segregating the hot gas from the airfoil surface210
(¢) Turbulent kinetic energy over the whole domain illustrating tur-
bulent forming in the hole and the turbulent mixing between the
coolant and hot gas . . . . . . . .. ..o 210
Figure . . . . . . oL 211
(a)  Velocity vectors in the cooling hole illustrating the major flow features211
(b) Pressure contours in the cooling hole . . . . . ... .. ... ... .. 211



List of Tables

3.1

3.2
3.3
3.4
3.5
3.6
3.7

3.8
3.9
3.10
3.11
3.12

3.13

4.1
4.2

4.3

4.4
4.5

4.6
4.7

4.8

D.1
D.2
D.3

F.1

Specification limits, process variation and cost from the numerical exam-

ple from Section 4 Khasawneh et al. [2008] . . . . . ... ... ... ....
Constants for one stage, one feature example . . . .. ... ... .. ...
Inputs for the plot in Figure 3.24 . . . . . . . ... ... ... ... ....
Constants for one stage, one feature example . . . . . ... .. ... ...
Inputs for the plot in Figure 3.24 . . . . . . . .. ... ... ... .....
Constants for one stage a two features . . . . .. ... ... ... .....
Specification limits, process variation and cost related for two features

produced in parallel in a single manufacturing stage . . . . . ... .. ..
Cost and process data for the four features . . . ... ... .. ... ...
Expected profit and means for the eight manufacturing sequences . . . . .
Dual feature numerical example input parameters . . . . . .. .. ... ..
Optimisation results . . . . . . . . . .. ... ...
Impact of correlation on the probability of components falling into rework,

scrap and conformance . . . . . . ... L.
Optimisation results for correlated features . . . . . . .. ... ... ...

Data for the connecting rod case study . . . . . . ... ... ... ...
BIC and AIC values for the top five best fit distributions returned by
allfitdist (Sheppard [2012]) . . . . . . . .. ...

Costs for the manufacture of the big end and small end diameters (features
x1 and xg) of the connecting rod in Figure 4.11 . . . . . .. ... .. ...
Laser drilling and inspection times . . . . . . . .. .. ... ...
Costs of rework, processing and selling price for the o and d parameters
of the film cooling hole . . . . . . . ... ...
Monte-Carlo verification results . . . . . .. .. ... 0oL
Optimisation results for a cooling hole manufactured using a standard
production technique . . . . . . . .. . ... ... L o
Optimisation results for a cooling hole manufactured using Optimal Mean
Setting . . . . . oL e

Dual feature numerical example input parameters .. . . . . . . .. .. ...
Optimisation results . . . . . . . . . . . .. ...
Optimisation results for correlated features . . . . .. ... ... .. ...

Specification limits, process variation and costs for the rocket casing case
study . ... e

xii



List of Tables xiii

G.1 Mesh sizing for each edge given in Figure 4.22 where the number of ele-
ments for each mesh were: LD= 38,962, MD= 73,427 and HD= 97, 622.
The letter ‘b’ indicates bilateral bias, i.e. the mesh density increased in
both positive and negative x-directions. . . . . . .. ... ... ... ... 207
G.2 Boundary conditions . . . . . .. .. Lo 207



Definitions

Feature

Rework

Rework Cost

Scrap

In this thesis a feature refers to a piece of geometry that requires in-
spection. Features are also referred to as quality characteristics in the
literature. In general, features may be classified as manufacturing or
design features, which are not necessarily equivalent. For example, the
wall thickness of a turned pressure vessel may be a design parameter but
it is created from the difference between two manufacturing features, the

outer turned diameter and the inner turned diameter.

Applies to a single feature of a component (although many features on
the same component may be reworked). If a feature is found to be
non-conforming but additional manufacturing operations can make that

feature conform, the feature may be reworked.

Is the cost of reworking a feature. This includes all the economic re-
sources required to get the component from the point at which it was
deemed rework, reprocessed and place it back in the manufacturing se-

quence.

Applies to a whole component, but is due to non-conformance from a
single feature. If a feature is found to be non-conforming, such that no
additional manufacturing processes can be used to convert that feature

into a conforming feature, the component is scrap.

Xiv
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p.q%

Scrap Cost

Sequence

Stage

State

Is the difference between the residual value of the component deemed
scrap, and the economic resources required to get the component to that

particular stage in the manufacturing process.

Refers to the position of an inspection process relative to the order
features are manufactured. For example, if two features were manufac-
tured prior to being inspected, this is considered a different sequence
compared to the manufacture and inspection of one feature followed by

the manufacture and inspection of the second feature.

Refers to the complete set of manufacturing processes required to man-
ufacture a feature. In this thesis, stages are numbered using Roman

numerals.

Refers to part of a manufacturing stage that a component or feature is
in. For example, within a manufacturing stage a rework loop may exist.
Conforming and scrap states also exist within a manufacturing sequence
depending on whether a feature conforms or does not conform from the
preceding states or stages. States are referred to using Arabic numerals

or C' and S to denote conforming and scrap states.
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Functions

standard deviation

shape parameter (tLocation scale distribution)
correlation matrix (Optimal Mean Setting)
correlation between two random variable (response surface)
correlation matrix (response surface modelling)
mean

Kronecker delta

noise in a system

upper specification limit

lower specification limit

vector of upper specification limits

vector of lower specification limits

selling price (monetary units)

processing cost (monetary units)

scrap cost (monetary units)

rework cost (monetary units)

standard normal probability distribution function
standard normal cumulative distribution function
error function

Gamma function

copula function

cumulative distribution function

probability distribution function
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Film Cooling Hole

mean component of velocity
fluctuating component of velocity
density

turbulent kinetic energy
turbulent dissipation rate
kinematic viscosity

normalised cooling effectiveness



Chapter 1

Introduction

1.1 Engineering Doctorate

The Engineering Doctorate (EngD) is a four year research programme combining Doctor
of Philosophy (PhD) level research with taught components in an industrial setting. A
proportion of these taught components are taken from a Masters of Business Adminis-
tration (MBA) course while the remaining elements are technically biased to the EngD
subject area. Each EngD programme is associated with an industrial sponsor with whom

the candidate spends around 75% of their time.

The author is currently enrolled on an EngD programme run by the University of
Southampton’s Industrial Doctoral Training Centre (IDTC) and partnered by Rolls-
Royce ple. Funding for this EngD programme is provided through the Engineering and
Physical Sciences Research Council (EPSRC) and Rolls-Royce ple. The Rolls-Royce
contribution is part of a Rolls-Royce led research programme; Strategic Investment in
Low Carbon Engine Technology (SILOET), which was instigated in 2009 to accelerate
the development of low carbon engine technologies. Support for SILOET has been pro-
vided by UK Government Department of Business, Innovation and Skills, managed by
the Technology Strategy Board. The author and his academic supervisors are affiliated
with the Computational Engineering and Design Group (CEDG) at the University of
Southampton which is a Rolls-Royce University Technology Centre (UTC). At Rolls-
Royce the author is based in the Product Cost Engineering (PCE) group which is part
of the Rolls-Royce Design System Engineering (DSE) department.
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1.2 Rolls-Royce

Rolls-Royce is a global provider of integrated power systems and services. The company

operates in five main sectors:

Civil aerospace

Defence aerospace

e Marine

Power Systems

Nuclear

In these sectors as much as 50% of business comes from providing service support in the
form of full-life care contracts between customers'. Rolls-Royce derives over 40% of its
revenue from the civil aerospace sector (Hollinger and Powley [2014]) which primarily
involves the design, manufacture and servicing of propulsive gas turbine engines. The
SILOET programme is primarily focussed in the civil aerospace sector and the work

undertaken in this report is contextualised around gas turbine engines.

1.3 Project Background

1.3.1 Cost Modelling

Part of the SILOET project, work package 2.5, relates to cost modelling which aims to:
“embed cost engineering processes, skills and tools into the organisation such that prod-
uct cost is understood and ‘traded’, enabling optimum business solutions (product and

supply chain) to be designed concurrently in a timely and efficient manner”.

Cost modelling is one of the more immature engineering disciplines within Rolls-Royce

and the overall objectives of SILOET work package 2.5 were to:

o “Improve existing unit cost capability at process and component level through to

whole engine level.”

'Retrieved from http://www.rolls-royce.com/careers/working_for_us/our_business/ - 21/10/2014
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o “Integrate this improved unit costing capability into design workflows; Key Sys-
tem at component and subsystem level and Enterprise/EPDS (Engine Preliminary

Design System) at whole engine level.”

The development of accurate cost models enables cost to be a mainstream engineering
parameter which, like stress, weight, aerodynamic flow and thermal transfer can be used
in design optimisation as an objective function or constraint. The cost of Rolls-Royce
engines is of fundamental economic importance to Rolls-Royce. Although the company
enjoys a 50% market share in the wide-body aircraft engine market?, it operates with a
9% to 14% profit margin compared to 19.8% from Rolls-Royce’s main rival in the civil
aerospace sector, General Electric (GE) (Hollinger and Powley [2014]). The calculation
of profit margin is multifaceted, involving not only the unit cost of engines but the many
operating costs of the company and profits derived from servicing operations. Never-
theless engine unit cost is clearly a significant contribution to profits achievable by the
company. The importance of calculating unit cost concurrently during the design pro-
cess was conceptually acknowledged by Miles and Swift [1998] as shown in Figure 1.1.
Cost is committed very early in the design process, determined by the product concept
which defines materials, geometry and to a large extent the manufacturing processes.
It becomes increasingly hard to alter this as the design progresses. Unlike typical engi-
neering variables, unit cost is not described by a governing physical equation, rather it
is a measure of all the economic resources required to create a product. Ultimately, this
manifests in a complex interrelationship between a supply chain and manufacturing pro-
cesses and practices. Many of these challenges to unit cost estimation were addressed by
a Rolls-Royce lead research programme DATUM (Design Analysis Tool for Unit-Cost
Modelling) which began in 2002. This led to the development a broadly generative
feature-based costing tool which linked design parameters and features to the method
of manufacture, capturing the allocation of resources required to realise a product defi-
nition (Scanlan et al. [2006]). The issues regarding cost modelling are discussed in more
detail in a review of the literature in Chapter 2, Section 2.6. The primary focus of this
thesis is not on the cost models themselves, but on the cost of non-conformance and its

impact on design.

1.3.2 Manufacturing Variability

Within the SILOET work package 2.5 one of the aims of task 2.5.2 - Tools and Method-

ology Development was to;

*Retrieved from http://www.rolls-royce.com/civil/customers/market_outlook/ 22/10/2014
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100% Quality cost and commitment
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Ease of change

Concept Implementation
Requirements Detail Manufacture

FIGURE 1.1: Cost incurred during product introduction (Miles and Swift [1998])

“relate more subtle ‘quality’ design parameters such as tolerances, surface finish and

shape accuracy to the process capability and scrap and re-work costs”.

Scrap and rework together with their associated costs arise due to non-conformance
and the terms are defined formally under the Definitions section. Non-conformance oc-
curs due to variation in the manufacturing process which results in features that do
not comply with the tolerance limits imposed upon them. These tolerances may be in
the form of dimensional constraints such as angles, thickness, diameters, lengths and

positions or more general constraints such as surface quality.

There are two main sources of variation that can cause non-conformance during manufac-
turing; common cause variation and special cause variation (Shewhart [1931]). Common
cause variation is constantly active within the system, it is probabilistically predicable
and is often referred to as noise in the system. Special cause variation is an unanticipated
phenomenon in the system and is probabilistically unpredictable. In manufacturing, tol-
erances are assigned to control the variability of a feature or product due to common
cause variation. This type of variation is implicit in every manufacturing operation and
is a fundamental property of nature®. Examples of common cause variation include tem-
perature variation, variation in material properties and tool properties, and variations in
how parts are loaded into holders. These uncertainties may conspire to cause variation
in a measured manufacturing feature such as diameter, thickness or position relative to
a datum. Special cause variation may also arise and a product may be deemed non-
conforming because of it. However, non-conformance due to special cause variation is
not necessarily due to a feature failing to conform within tolerance limits. By definition,
tolerance limits cannot be used to control special cause variation as the variation, and

the way it manifests in terms of variation to the geometry, is unpredictable. For example,

3Manufacturing a feature to an exact dimension was shown to require are infinite amount of infor-
mation by Wilson [1980] using Shannon’s theory of information (Shannon [1948]) and thus it is never
possible to create an exact dimension.
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a tool breakage during the manufacturing process and resulting surface imperfection it
may cause would be considered special cause variation. This won’t necessarily alter the
diameter of the feature but the feature may still be deemed non-conforming on visual
inspection?. Only common cause variation and the tolerances imposed to control it are

considered in the research contained within this thesis.

In general, the form of manufacturing variation tends to obey the central limit theorem

(according to Pyzdek [2001] from original studies by Shewhart [1931]), which states,

“the average of the sum of a large number of independent, identically distributed random
variables with finite means and variances converges “in distribution” to a normal random

”

variable®.

This permits common cause variation to be modelled using the normal distribution
(Gaussian distribution), which is used as a default way to describe variation throughout
this thesis. Nevertheless the normal distribution is not applicable in all cases (Pyzdek
[2001] and Pyzdek [2002]) and as described in Section 1.4, one of the challenges of the re-
search was to remove the reliance on the normal distribution to represent manufacturing

variation.

1.3.3 Manufacturing Capability and Process Control

Manufacturing capability is used as a measure of how likely it is a manufacturing process
will produce non-conforming features. There are a number of standard process capability
measures as described in Natrella et al. [2012]. Generally, a manufacturing process is
deemed capable if the variation is within the specification limits. The index Cp is a

commonly used metric where (Natrella et al. [2012]),

30 ' 30 (1.1)

Cpr, = min [U_M 'M_L} .
Most capability indices are variants of this form such as C),, where the denominator is
60 as opposed to 30, and Cj,,, which takes into account the fact that the target mean
may differ from the measured mean. The C index is used in this thesis to indicate
the relative capability of process, but any index which applies to normal distribution
could be used. Figure 1.2(a) indicates Cp;, < 1 as the manufacturing process variation

is greater than the upper and lower specification limits, resulting in non-conformance.

“If such a variation occurs, often a component will be examined by the design team to establish if it
will still perform its function as required, this is refereed to as a concession at Rolls-Royce.

SAccording to the definition given in the issizsigma.com dictionary. Retrieved from
http://www.isixsigma.com/dictionary/central-limit-theorem/ 23/10/2014.
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If the process variation is smaller than the upper and lower specification limits, Cpr > 1

and > 99.73% of items would conform®.
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(a) Ilustration of Cpg (b) Hlustration of a control chart

FIGURE 1.2: Statistical process control

A prerequisite to using process capability incidences is ensuring the process is in-control.
Shewhart [1931] was responsible for much of the early work on process control related
to manufacturing. The aim being to monitor the feature values produced by the man-
ufacturing process to ensure the process operates to its full potential (maximises con-
formance). Process control charts are commonly used to monitor the process (Natrella
et al. [2012]) as illustrated by Figure 1.2(b). The x-axis represents time, while the y-axis
corresponds to the value of the feature or quality characteristic. Upper and lower control
limits are specified to define whether the process is in or out-of-control. Shewhart [1931]
developed a set of rules, known as Western Electric Rules (Natrella et al. [2012]) which
define these control limits and whether the observations support the notion of an in-
control process. In essence, a process is deemed to be out-of-control if the observations
are found not to come from the same distribution as the data originally used to set up
the control chart. This implies the process has drifted, or the variance has changed,
such that there must be other sources of uncertainty that are unaccounted for (special
cause variation). The black points shown in Figure 1.2(b) (associated with the black
distribution in Figure 1.2(a)) represent observations analogous of an in-control process.
The points lie within the upper and lower control limits and there are no ‘improbable’
patterns amongst the points (they conform to the Western Electric Rules Natrella et al.
[2012]). The process is also capable as the variation is well within the upper and lower
specification limits, therefore Cp; > 1. No non-conforming features would be expected

from this process. The observations illustrated by the red points (and red distribution)

5The larger the denominator in Equation 1.1 the greater the conformance. A property of the normal
distribution is one standard deviation (o) accounts for 68.27% of components, 20 accounts for 95.54%,
40 accounts for 99.994%, 50 accounts for 99.99994% and 60 accounts for 99.9999998% of components.
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indicate an out-of-control process as there are points outside the control limits. In ad-
dition, some points fall outside the upper and lower specification limits, which would
cause Cpr, < 1 and non conforming features would be produced. It is possible to have
an out-of-control but capable process (Cpr > 1) where the control limits may be ex-
ceeded but the observations lie within the specification limits. The scope of this thesis

is delineated by in-control processes where Cpy < 1.

1.3.4 Performance, Capability and Cost

The interest in establishing the cost of non-conformance is not simply to offer better
cost prediction to enhance the capability of cost models, but also an opportunity to
maximise a component’s performance whilst minimising cost. The design of today’s gas
turbine engines is fuelled by an ever increasing demand for quieter, more environmen-
tally friendly engines with lower specific fuel consumption and reduced operating and
running costs. This drives the design of components and subsystems closer to what
is physically and materially possible, as a result variation can lead to an unwelcome
degradation in performance. To maintain performance levels, more stringent tolerances
must be applied and it is inevitable that in some cases the natural variations of some
manufacturing processes will be greater than the tolerances. This is resolved by fully in-
specting each component and reworking or scrapping the features and components that
do not conform. In fact, regardless of how large the capability gap is between tolerances
and manufacturing capability, it is always possible to produce components close to the
optimum performance point, although the cost of doing so may be prohibitively high
due to scrap and rework. Figure 1.3 illustrates the potential for improved profit for a
component where performance varies in response to two features X; and Xs. There are
two potential design points, design A and design B. Design A offers a higher average
performance (marked A in the z-axis in Figure 1.3), provided the variation in the design
parameters can be kept within AX; 4 and AXjy 4. Failure to do this would result in
a rapid degradation in Design A’s performance and give no better or even worse per-
formance than Design B, (due to the sensitivity of Design A’s performance to the X;
and Xy design parameters). Design B illustrates the more robust of the two designs
where the performance is considerably less sensitive to variations in the design parame-
ters. The same manufacturing method is considered for Design A and B, however, only
Design B can be manufactured without creating non-conformance. This indicates the
manufacturing variation is almost as large as the range AX; p and AX, . Although
it would be possible to produce design A, the cost of doing so would be considerably
greater as the variation would be greater than AX; 4 and AX5y 4. This would lead to

costly scrap and rework.
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A A: High Performance,
sensitive

B: Lower Performance,
robust

Performance

FiGure 1.3: Illustration of the possibility of higher performance created by applying
more stringent tolerances

A body of research known as Optimal Mean Setting explores the economic case of
producing components to tolerances that are smaller than the manufacturing variation.
The topic is reviewed in detail in Chapter 2, Section 2.5, although the fundamental
principle is summarised by Figure 1.4. Reworking a feature is often less costly than
scrapping a component, thus optimal mean setting aims to shift the manufacturing
distribution mean in favour of rework, to reduce the overall cost of production. The
terms U and L refer to the upper and lower specification limits and the difference
between them corresponds to the AX range in Figure 1.3. The manufacturing variation
is illustrated by the black curve. Scrap is produced, if on inspection, a feature is outside
the design specification such that no additional manufacturing process can bring the
feature within specification. Rework is required if a feature is found to be outside the
specification limits but additional manufacturing operations are able to bring it within
specification. By moving the mean of the manufacturing variation from p; to ps the
probability of producing scrap can be reduced and the probability of rework increased.
Since rework carries considerably less cost than scrap, it is likely setting the mean at uo
is less costly than in position p;. It would be possible to apply this technique to design
A, from Figure 1.3, in a bid to reduce the cost of manufacture (but gain the performance
benefit design A offers), thereby making it a more credible option. There are several
challenges and implications of applying Optimal Mean Setting to practical engineering

problems which are introduced in the following paragraphs (Section 1.4).
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FIGURE 1.4: Effect of moving the mean of the distribution

1.4 Challenges

The challenges involved in this thesis can be divided into two main categories. The first
challenge was to determine the cost of non-conformance itself. The second challenge
was to remove the necessity to use normal distributions to characterise the variability

of manufacturing processes.

Determine the cost of non-conformance: In accordance with SILOET work package
2.5 - task 2.5.2, a reliable method of calculating rework and scrap cost was required.
Even in the simplest case, when manufacturing a component with a single feature, the
cost of rework and scrap is not immediately obvious. Scrap and rework occurs due
to manufacturing variation where it is possible to estimate the probability of producing
scrap and rework by considering the area in the tails of the distribution above and below
the upper and lower specification limits (Figure 1.4). However, if rework is produced,
features are re-processed and there are additional probabilities of scrap, rework and
conformance for these reworked components. In a batch of components, this reworking
process would occur iteratively until all rework was complete. Determining the number
of times components are reworked and the final probabilities of scrap and conformance
is non-trivial, particularly where several features are considered. This problem has been
studied in the literature, however, the method presented was found to be incorrect which

is considered in more detail in Chapter 2, Section 2.5.

Non-normal distributions: Even if the manufacturing variation is normally dis-
tributed, feedback from the rework loop affects the shape of the final distribution of
manufactured geometry to a variant of a normal distribution. If the variation of the
manufacturing process is not normal or the inspectable feature (quality characteristic) is
a combination of other manufacturing features (which may not be normally distributed),
the manufactured geometry follows a variant of a normal distribution or a completely

different distribution all together. This brings up two related problems.
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e How to determine the scrap and rework probabilities if the manufacturing variation
is not normally distributed, particularly if multiple features are considered where

correlation exists between them.

e How to determine the distribution of the final geometry and how this influences
the performance distribution of the component. This is a challenge even if the
manufacturing variation is normally distributed due to the effect rework can have

with regard to modifying the shape of the original normally distributed features.

Optimal Mean Setting can have a significant impact on the performance distribution
by virtue of the fact the means are often biased towards rework. This point is illus-
trated in Figure 1.5. The function f(z), known as a transfer function, illustrates the
functional response due to changes in the feature (z). The variation in the feature (Man-
ufacturing distribution 1) was mapped to the y-axis representing performance, via the
transfer function f(x), yielding Performance distribution 1. Optimal Mean Setting has
the capacity to significantly skew the manufacturing distribution due to the shift in the
mean and rework feedback, as represented by Manufacturing distribution 2. When this
variation of the feature is mapped via the transfer function to the performance axis, the
performance distribution is seen to vary from Performance distribution 1 significantly.
Although the total performance variation remains constant, the mean and the mode
of Performance distribution 2 would be greater than Performance distribution 1. This
could have far-reaching implications particularly if the component was part of a larger
assembly of similar components such as turbine blades. The performance of a turbine
stage is dependent on the performance of each individual blade. If the mode and mean
of the performance change there would be a knock-on effect to the realised performance
of the turbine stage. In order to establish the performance variation, it is essential the
distributions of the manufactured components be accurately known if Optimal Means

Setting is applied.

1.5 Vision and Objectives

The overall objective of this thesis is to develop and apply the mathematical framework
necessary to practice Optimal Mean Setting and analyse the consequence of doing so
by establishing the resulting manufactured geometry distribution. Recall Optimal Mean
Setting is a methodology that can be implemented to minimise production cost when the
variation of the manufacturing processes is greater than the tolerances of the features
or quality characteristics. It has an application where a performance gain is achievable
from tolerance tightening. To achieve this vision, the challenges described in Section 1.4

must be overcome to accomplish the following objectives:
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FIGURE 1.5: Effect of moving the mean of the distribution

1. Develop and implement a methodology to accurately determine the cost of pro-
duction when the manufacturing variation is greater than the feature tolerance
limits. This involves finding the probabilities of scrap and conformance after all
rework cycles are complete as well as the average time features are reworked. The
methodology must be applicable to one or several features, recognising there may

be correlation between features.

2. It must be possible to achieve Objective 1, irrespective of the shape of the manufac-
turing process’s variation. This applies even if multiple features must be inspected,

each with different forms of variation (not all with normally distributed variation)”.

3. The effect that rework has on the final distribution of the manufactured geometry
must be considered such that it is possible to determine the associated effect on
performance. It is more important to consider the variation in performance if
Optimal Mean Setting is applied, as the resulting geometry distribution may be

significantly skewed, which is also likely to skew the performance distribution.

1.6 Contributions

The contributions made by this research fall into four categories.

1. The first contribution is the development of a robust and generalised mathematical

framework, enabling the conformance and scrap probabilities to be determined, as

"This implies standard multivariate parametric distribution functions cannot be used to find the joint
probability of conformance, scrap and rework
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well as the average time features spent being reworked. By extensively modelling
and understanding rules governing the probability of components transferring be-
tween various states in the manufacturing process from first principles, errors were
uncovered in the published research (Discussed in detail in Chapter 2, Section 2.5
and Chapter 4). The published literature used a Markovian model as a way to
circumvent and simplify modelling from first principles. The new understanding
that was gained from modelling from first principles allowed a correction to be

derived for the original Markovian methodology.

2. There are two principle manufacturing regimes associated with Optimal Mean
Setting. The first is where a feature is produced then immediately inspected,
known as serial production. The second is where several features are produced
before being inspected, known as parallel production. These concepts are explained
in greater detail in Chapter 4. The original literature regarding parallel processes
was restricted to considering just two features. This is generalised to n-features in
Chapter 3. The generalisation was non-trivial due to the number of interactions
that occur and ensuring all the possible probabilities of components transferring
between states were accounted for. A set of equations were generated that enabled
the probability of scrap, conformance and average time of rework to be computed
for n-features, without having to formulate the specific equations for each problem.
This method was combined with the serial production example for which an n-
feature equation had already been developed. This involved re-formulating the
serial equations such that they became a special case of the parallel equations

rather than a separate form.

3. The knowledge gained from understanding the probabilities of features transferring
between various states in the manufacturing process allowed an advancement in the
optimisation methodology applied to Optimal Mean Setting. The new approach
to Optimal Mean Setting outperformed the approach developed in the literature
for parallel production. The improvements made by this new methodology are

discussed in Chapter 3 - Section 3.5.1.

4. Copula functions are introduced to enable joint probability distributions to be cre-
ated, where non-normal and dissimilar distributions described the manufacturing
variation of the features (Chapter 4). This is vital to determine the conformance,
scrap and rework probabilities for parallel production. Copula functions and their
application to compute joint distributions is not novel, however, to the Author’s
knowledge this is the first time they have been applied to describe the variation of

manufacturing features. The impact of using copula modelling is two-fold:
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e There is no restriction on the shape of the distribution that describes the
manufacturing variation. Custom distributions can be created or even data
samples may be used, provided the shape of the distribution has an integral
of one (it must classify as a probability). A practical example is given in
Chapter 4 - Section 4.3 .

e Copulas enable the final geometry distribution to be found when optimal
mean setting has been applied. This allows the performance distribution to
be analysed. To the author’s knowledge, such a technique to determine the

distribution of the manufactured geometry has never been applied.

1.6.1 Software

Much of the work discussed in this project required the use of numerical simulations and
calculations to validate analytical results and run numerical experiments. A significant
proportion of the calculations required could not be expressed in closed form and the
work drew heavily on the use of statistical and probabilistic methods. Matlab was
chosen as the software package to develop simulations and experiments due to its highly
capable statistical and optimisation packages. Additionally, as a high-level programming

language it allows rapid development of functionally complex code.

In Chapter 4, a practical example of Optimal Means Setting was applied to a turbine
blade cooling hole. Ansys workbench 14.5 and Fluent were used to model and solve the
Navier-Stokes equations describing the flow of air through the hole and the cooling effect

on the airfoil surface.

1.7 Description of Content

The motif of this thesis is the effect variation has on the function and cost of products.
Quality Engineering embodies several paradigms that address this issue such as; Robust
Design, Reliability Engineering and Axiomatic Design. Optimal Mean Setting is also
a subset of Quality Engineering which specifically addresses the relationship between
product cost and non-conformance. A literature review is given in Chapter 2 which
discusses these various aspects of Quality Engineering. A comprehensive survey of cost

modelling methodologies follows, which is essential to practice Optimal Mean Setting.

Chapter 3 onwards contains the Author’s contributions to knowledge, expect where ex-

isting work is explicitly referenced . The Chapter opens with an introduction to the
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mathematical basis Optimal Mean Setting. Initially, single feature and two feature se-
rial and parallel cases are considered from first principles. The application of Markovian
modelling to the Optimal Mean Setting problem is discussed in Section 3.2 and the er-
rors in the literature (discovered from analysis from first principles) are examined. The
following Sections 3.2.2.1 to 3.2.2.3 describe the generalisation of a Markovian method
to establish the probability of scrap, conformance and the average time features spend
being reworked for n-features in any combination of serial and parallel manufacturing
stages. Section 3.4 offers a series of numerical examples utilising this new generalised
methodology. Both serial and parallel production are considered, as well as a combina-
tion of both. This is not practical without the generalised methodology (developed in
the preceding sections). The improved Optimal Mean Setting optimisation methodol-
ogy is shown in Section 3.5, where it outperforms the methodology from the literature,
yielding lower cost (higher profit). The impact of correlation between variables is also

studied in this Section.

Chapter 4 furthers the Author’s contribution to knowledge with the application of non-
normal distribution and Copula statistics to the Optimal Mean Setting paradigm. Sec-
tion 4.2.8 demonstrates how copulas apply to manufacturing distributions and Section
4.3 demonstrates how copulas can be used to model real manufacturing data. Their
use in determining the resulting distributions of the manufactured geometry is also de-
scribed. A practical example of Optimal Mean Setting, applied to a film cooling hole,
(turbine blade or nozzle guide vane) is introduced in Section 4.4. An overview of film
cooling holes, the manufacturing process and feasibility of applying Optimal Mean Set-
ting to the manufacturing process are given in Sections 4.4.1 through to 4.4.3. Sections
4.4.4 through to 4.4.6 describe the hole geometry, experimental computation set-up and

results.

Finally, a conclusion of the work is given and the future direction of Optimal Mean

Setting is discussed in Chapter 5.



Chapter 2

Literature Review

2.1 Quality Engineering

Successfully engineered products perform their intended function well over a range of
conditions in which they can reasonably be expected to operate. They are generally
characterised by high levels of reliability and offer low risk and low unit and life-cycle
cost. One of the greatest challenges to an engineer or designer is to ensure their product
meets these objectives in the light of uncertainty. These uncertainties may arise from
manufacturing, materials properties, operating environment or geometric changes over
the lifetime of the component. Quality engineering is a generic term used to describe
the methodologies aimed at reducing a product’s variation to realise or partially realise

these objectives, particularly with regard to minimising the effect of uncertainty.

There is no single reference for the origins of quality engineering but rather a number of
related methodologies with the objective of reducing product variation to uncertainty.
The origins of one of the most successful quality engineering practices Six Sigma, started
with the development of statistical process control by Walter Andrew Shewhart of West-
ern Electric. Later, Bill Smith of Motorola used Shewhart’s ideas in the development
of Six Sigma (Akpose [2010]). Walter Shewhart noted that the main cause of defects
in manufactured devices was due to variation and that monitoring of the output was
required to allow one to make adjustments to the process if the mean drifted too much.
Bill Smith championed the concept that to attain defect-free (or close to defect free)
production +6 standard deviations should lie between the mean and nearest specifica-
tion limit. Over time, a 1.5 sigma shift may be expected, thus a defect rate of 3.4 parts
per million could be expected corresponding, to a 4.5 sigma capability. Although the
statistical aspects of Six Sigma are related to achieving a low defect rate, the overall aim

is to achieve high levels of customer satisfaction. In many ways it is a cultural shift to

15
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improve a company’s level of customer satisfaction, profitability and to gain a competi-
tive advantage. Indeed Pande et al. [2000] defined Six Sigma as “A comprehensive and
flexible system for achieving, sustaining and mazimizing business success”. Variations
on this are possible but Six Sigma was chosen as a useful starting metric. The appli-
cation of Six Sigma methodologies to industry has been highly successful. To name a
few examples of successful Six Sigma implementation (Anbari et al. [2004]); Motorola
posted a $15 billion saving over 11 years, GE a saving of $2 billion after introducing Six
Sigma in 1999 and Huges Aircraft’s Missiles System Group reported 1000% increase in
quality and 500% improved productivity.

Six Sigma practices involve following DMAIC, or DMADYV strategies (Pande et al. [2000],
Tutorialspoint [2014]) where

D : Define the problem and project goals,

M : Measure the problem and the responsible process,

A : Analyse the data and process to determine the root cause of the defect(s).
The last two letters are different for the DMAIC and DMADV methodologies respec-
tively where,

I : Improve the process,
C : Control, ensure the process is under control such that the improvements are

sustainable,

for the DMAIC, which is used for improving existing products or processes which are

under-performing. The last two letters from DMADYV refer to,

D : Design a process that fulfils the customer requirements

V : Verify the design fulfils the customer requirements.

The DMADYV is used to design or redesign products and processes to ensure a reliable
and defect free product. This is related to the concept of Design for Six Sigma (DFSS).
The exact strategy for DFSS may vary, for example the second ‘D’ in DMADV may be

replaced by ‘O’ referring to optimising the process capability and design.

The terminology used in Six Sigma is purposely equivocal as the methods are generic
and may be applied to physical products as well as services. Nevertheless, many of the

technical aspects of Six Sigma, such as design of experiment (DoE), optimisation and
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manufacutring capability apply to the design of physical products which are of inter-
est here. The following sections offer a general overview of Robust Design, reliability
methods and Axiomatic Design methods. Robust Design principles have also been in-
tegrated to the area of Optimal Mean Setting (the main aspect of this research) and a
detailed discussion of Robust Design in the context of Optimal Mean Setting is available

in Section 2.5.

Robust designs are typically achieved by employing methods that characterise non-
deterministic and uncertain parameters and their impact of the product. Two general
approaches may be employed, Reliability Design or Robust Design as outlined by Taguchi
(Taguchi [1986], Phadke [1989]). Reliability methods focus on the probability distribu-
tion of a system’s response to uncertainty in parameters with known distributions. The
aim is to minimise the risk of failure. This is fundamentally different to Robust Design
where the objective is to optimise mean performance and minimise variation. In the
latter, a system outside the specification limits is penalised but may be accepted, the
focus is on the mean of the distribution of the system response. In a reliability based
method a system outside the specification limits is not tolerated! and the focus is on

the tails of the system response distribution.

2.2 Robust Design

Robust Design is a method of reducing the sensitivity of a product to variation. The
concept is generally accredited to Dr. Genichi Taguchi who originally developed his
ideas in Japan in the 1950s and 1960s. It wasn’t until the 1980’s when his work became
known to Western academics with the English translation of his research, Taguchi [1986]
and Phadke [1989]. However, Taguchi was not solely responsible for the concept of de-
scribing the statistical variation on an output or performance factor. In fact R.A Fisher
with contributions from F. Yates (Fisher [1935], Yates [1964]) developed the definitive
theory for accounting for variation in known and unknown factors and the impact on
the experimental output. Fisher’s method, known as Design of Experiment (DoE) was
developed and refined primarily during his tenure at the Rothamsted Experimental Sta-
tion in Harpenden, England. Rothamsted is an agricultural research establishment and
during the 1920s a significant amount of research effort was devoted to determining the
impact of various fertilisers on crops yields. Much of Fisher’s work was aimed at efficient
experimentation (Aldrich [2007]), “to conduct experimental and observational inquiries
so as to maximise the information obtained for a given expenditure” (Fisher [1951]).

Nevertheless, the long term aim of Rothamsted was to maximise crop yield in light of

1The probability of failure can never be eliminated but can be set very low, for example one failure
event in 10 million.
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FI1GURE 2.1: Graphical illustration of robust design where uncertainties are illustrated
by typical input and output probability density functions (adapted from Keane and
Nair [2005])

many uncontrollable factors (variations) such as rainfall, air quality, sunlight, soil qual-
ity and terrain gradients. This has many similarities to the concept of Robust Design,
to minimise the sensitivity of the product output to variation, and indeed Fisher’s DoE

features heavily in modern day computational incarnations of Robust Design.

A robust design and a less robust design are illustrated in Figure 2.1. The horizontal
axis represents a change in the control parameter (design parameter) and the vertical
axis represents the output (performance). Two candidate solutions are shown where
variability is present in the nominal value of z due to manufacturing variation. The
manufacturing variation in both candidates is the same but, the first design (Candidate
1) suffers from greater variation in the output than Candidate 2 due to non-linearity
in the function f(z). Assuming low values of the output are desirable, the later design
is more robust but has a slight performance deficit. In general, a small reduction in

performance is acceptable if it results in a component that is more robust.

It is an engineer’s task to find the design parameters that optimise the objective function.
This can be expressed as a conventional optimisation problem (as described by Yao et al.

[2011]), written as;
)

find: x

optimise: x,s
p f(z,s) (2.1)
subject to: g(x,s) <0

L<x<U.

\
The design parameters are given by the vector x, s are signal factors and represent

different configurations or operating conditions of the system. The objective function is
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f(x, 8), g(x, s) is an inequality constraint and L and U are the upper and lower bounds
on the design space. Assuming the optimum can be found, or at least an acceptable
output (f(x, s)), it is also an engineers role to determine how the output may be affected
by noise and explore other candidate solutions as in Figure 2.1. The objective function
then becomes f(x, s, &), where € are noise factors that may correspond to variations in
the design parameters (x) due to manufacturing variation or uncertainty in the system
configuration or operating conditions (s). For example, for the design of a ram air intake
(Figure 2.2), the signal factors would be the pressure (P), velocity (U) and density (p) of
the air prior to entering the intake from the free-stream (subscript oo), and the output
or response would be the pressure, velocity and density of the air inside the intake
(subscript I). Control factors are parameters governing the design of the product the
designer has control over. In the case of the intake, the control parameters would be
the geometry of the intake, such as the inlet diameter (area) and the spike angle. Noise
parameters are sources of variability in the system which may affect the signal or control
factors. For example, the ram air intake would be susceptible to pressure, velocity and
density changes due to altitude or Mach number. This is illustrated in the lower half of
Figure 2.2 where the inlet flow is at an angle of attack relative to the free-stream and the
velocity is greater. Manufacturing variation would affect the geometry of the duct, thus
also affecting its response. These parameters are typically visualised on a P-diagram
(Phadke [1989)]) illustrated by Figure 2.3.

In a similar manner to Equation 2.1, a robust design can be written mathematically as
(adapted from Yao et al. [2011]),

find: T

optimise:  f(x,s) = f(u(x,s),o0(x, s)) (2.2)

subject to: g(x,s) <0
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FIGURE 2.3: P-Diagram Phadke [1989]

Taguchi’s method of robust design can be thought of as two distinct steps; parameter
design and tolerance design. Parameter design is the process of exploiting non-linearities
in the function f(x) to reduce performance variation. Another way to improve average
performance is to reduce the variability. In product design, it is generally possible to
reduce the control parameter variation (o(z)) by reducing the allowed manufacturing
variation. This is achieved by tightening the tolerances, however, this is widely recog-
nised to increase manufacturing cost proportional to the strictness of the tolerances
(Spotts [1973], Chase [1988], Chase [1990]). This increased cost may come from longer
run times (slower feed rates), increased non-conformance or investment to improve pro-
cess capability. On the other hand, parameter design is ‘free’, choosing another point
in the design space (moving to Candidate 2 rather than Candidate 1 in Figure 2.1) is
generally considered not to incur extra cost?. In practice these two steps can be per-
formed simultaneously as discussed by Li and Wu [1999]. In order to choose the correct
parameters so that the design solution is robust, Taguchi [1986] introduced the concept
of the quadratic loss function. Figure 2.4 illustrates this concept, where the quality loss

(L) experienced by the average customer is,

L=k(f(x) —t)*> where k= Ag/AZ

Deviation from the target (¢) is given by Ag and Ag is the loss experienced by the
customer. The least loss is experienced by exactly meeting the target. To quantify
the robustness of the design, Taguchi proposed using a signal-to-noise (SNR) ratio to

measure the mean squared deviation (MSD) of the response comparative to the target.

2In reality different design configurations are unlikely to have exactly the same manufacturing costs,
but the difference is generally considered to be less that the cost incurred through tolerance design Li
and Wu [1999], Zang et al. [2005], Park et al. [2006]
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FIGURE 2.4: Tllustration of a quality loss function Phadke [1989]

This gives a quantifiable measure of robustness written as,

1 n
SNR = —10log (n Z(f(wy &) — t)Q)
i=1
where n represents the set of noise parameters that leads to the variability of the output,
f(x,&). This SNR is a nominal-the-best (NTB) type meaning that the loss is least
when the design is on the nominal, half way between the bounds. Taguchi proposed two
other possibilities; larger-the-better (LTB), where the design objective is to maximise
the value of the quality characteristic (for example tensile strength or component life),
and smaller-the-better (STB) where the design objective is to minimise the quality
characteristic (weight for example). The mean squared deviation for each case is given
by,
1 n
SNRyrs = —10log; (n Z(f(w,ﬁi))2>
i=1
and
1 n
-2
SNRgrs = —10logyq (n z;(f(xaéz» ) :
1=

Since Taguchi [1986] and Phadke [1989] a number of other loss functions have been
developed to meet specific requirements to different design problems. Asymmetric loss
functions are discussed in the next paragraph and loss functions based on inverted prob-

ability distributions are discussed in Section 2.5.

In the original formulation of Robust Design, quality loss was only experienced by the
customer. Since then researchers (Krishnaswami and Mayne [1994], Jeang [1997], Wu
and Tang [1998]) considered the idea that the cost of a product could be broken down
into two parts, the cost of manufacturing the product and the cost to the customer
due to variations in quality. Jeang [1997] developed a model to trade the increased
manufacturing cost of tight tolerances and the accompanying low quality loss. Wu and
Tang [1998] illustrated the fact that the quality loss may not be symmetric both sides
of the design nominal, such that if the design was off-nominal it would be preferable to

be one side of the nominal, than the other, in order to minimise quality loss. Wu and
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Tang [1998] utilised the reduced quality loss gradient one side of the nominal to shift
the target to minimise quality loss as well and manufacturing cost. Wu et al. [1998] also
considered asymmetric quality loss functions to minimise quality loss and manufacturing
cost with tolerance design. Jeang [2001] proposed the optimization of manufacturing cost
and quality loss. In this model, the optimal values of the process means and process
tolerances as well as the design tolerances were defined, giving the designer the ability to
specify the product parameters as well as the process parameters required to manufacture
it. Jeang [2010] offered an all encompassing model for manufacture and quality loss cost
by including machining cost, inspection cost, reworking cost and replacement cost if a
component were scrapped. Jeang and Lin [2013] extended the optimisation of quality
under a cost constraint to multiple features, again the optimum process means, process

tolerances and the design tolerances were computed by the model.

Process capability indices are widely used (Jeang and Chung [2008]) to quantify the
performance of a manufacturing process in terms of the relationship between the process
variation and the tolerance bounds. Naidu [2008] used a process capability index as
the basis for manufacturing and quality cost optimisation for a NTB case. Jeang and
Chung [2008] and Abdolshah et al. [2009] developed a new capability measure which
incorporated quality loss. A review of loss based capability indices are reviewed by
Abdolshah et al. [2011].

One limitation of these works is their applicability to multi-response systems, where
one wishes to consider two or more functional or quality characteristics simultaneously
[Abdul-Kader et al., 2010]. Practical design problems often have more than one goal, in
aerospace design it is common to aim for light weight, low cost and high performance
systems, all of which tend to be in tension with one-another. Engineering judgement is
often used to differentiate between different quality characteristics but this is ambiguous
and does not guarantee the same result from two different engineers. There are several
methods for systematically accounting for multiple quality responses, a detailed review

is provided by Jeyapaul et al. [2004], however a general overview is given here.

Assignment of weights: Shiau [1990], Tai et al. [1992] Antony [2001]assigned weight-
ing to each S/N ratio where the summation for all the weighted S/N ratios gave the
overall quality loss of the system. In a similar vain Wu and Chyu [2004] accounted
for multiple correlated quality characteristics by minimising the total average quality
loss. A drawback of assigning weights is the process is inherently based on engineering

judgement.

Principle Component Analysis (PCA): PCSA is a technique used to transform a
set of correlated responses in to a smaller number of uncorrelated parameters or design

variables. Antony [2000] used this technique on a submerged arc-welding process with
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FiGure 2.5: Tlustration of the differences between Robust Design and Reliability
Engineering adapted from Huyse [2001]

two responses. In general, the principle component has an eigenvalue greater than
one, however, it is possible to have multiple eigenvalues greater than one. In this case
a weighting has to be applied which is not desirable. Additionally the uncorrelated
parameters or design variables do not necessarily account for all the variability in the

response so it is possible the design will not be fully optimised.

Interpretation of Customer Requirements Quality function deployment (QFD)
was proposed by Akao [1972] to transform a set of qualitative customer requirements
into quantitative design parameters. The method was used by Kovach and Cho [2008]
to weight each quality characteristic. The relative importance of the design parameters

could then be ranked and the systems optimised based on relative importance.

2.3 Reliability Engineering

An area closely related to Robust Design is Reliability Engineering. The principle dif-
ference between the two methodologies is illustrated in Figure 2.5. Failure of a system
is not permitted in Reliability Engineering. The failure of a system in Robust Design
would be permitted, although the cost in terms of quality loss is high, the main objective
is to minimise overall loss. The left plot in Figure 2.5 shows reliability based designs
are engineered against failure when encountering infrequent but large perturbations to
their operating conditions, or in manufacturing, where a failure of the design would be
catastrophic. For example, the design of a building against collapse in an earthquake.
When the impact of small perturbations in operating conditions or manufacturing leads
to degradation in performance, but not catastrophic failure, Robust Design principles
are utilised. Thus, in terms of the probability density function, Robust Design is con-
cerned with the mean of the distribution whereas Reliability Engineering is concerned

with the red and green tails of the distribution, as illustrated by the right plot in Figure
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2.5. The value C is a constant, setting the number of standard deviations from the mean

(1) to the upper and lower specification limits.

Traditionally the risk of catastrophic failure has been mitigated against by using Factors
of Safety for loads and knockdown factors for strengths, in the field of structural design.
However, this approach gives no indication of the likelihood of a load exceeding the
nominal design limit or the strength of the design being less than the nominal design.
Invariably, this leads to over-engineered and suboptimal design solutions, as it is not
possible to determine the relative importance of various design decisions on the reliability
and robustness of the design (Zang et al. [2002]). Reliability Engineering resolves these
shortcomings by using a probabilistic approach to determine the likelihood of the system
failing due to the variability of two or more uncertain factors as illustrated by Figure 2.6.
The area enclosed by the overlapping tails of the load and strength distribution defines
the probability of the design failing. Such techniques have been used in civil engineering
for many decades (Sundararajan [1995]), where engineering projects are governed by
standard design codes. These codes designate the reliability of structures in extreme
events of a given frequency, such as a 1 in 100 year earthquake. This specifies the size

of the overlapping region between load and reliability in Figure 2.6.

A limit state function is commonly used to specify the conditions at which the system will
fail and is illustrated in Figure 2.7. There are two design parameters x1 and zo, where
the goal is to ensure the design is as far away from the failure region as possible (given by
the limit state function g(x, s)) whilst optimising an objective function. Mathematically

this can be written as,

find: x

optimise: z,s) = u(x,s

P f(z,8) = p(z,s) (2.3)
subject to:  Plg(x,s) < 0] <r

L<x<U.




Chapter 2. Literature Review 25

X2

Safe Domain
g(x,s)>0

Failure Domain \\ Limit state Function
g(x,s) <0 glx,s)=0

X1

FiGURE 2.7: TIllustration of a limit state function on the design space, adapted from
Keane and Nair [2005]

as described by Yao et al. [2011]. The function PJe] is the probability that the bracketed
statement is true, while 7 is a scalar specifying the reliability requirement (i.e. the system
may fail once in 10® cycles). Thus, P[g < 0] is the probability of failure for a given set

of design parameters x, which must be less than a specified reliability level r.

Determining the probability of failure,

Pr = Plg(z,5) < 0] = /g RATLS (2.4)

is often computationally expensive due to the number of dimensions in the design domain
@, the complexity of the domain boundary g(x = 0) and it is often not possible to
express the failure domain analytically (Zang et al. [2002], Keane and Nair [2005]).
Monte Carlo simulation can be used to approximate the Pr, however a large number of
samples are required to estimate Pr to a reasonable degree of accuracy. To approximate
Pr to an order of magnitude 1075, over one million samples are required as the error
scales as O1/v/N where N is the number of samples. This is not practical if f(z) is
a computationally expensive function to evaluate. An alternative approach is the use
of First-Order and Second-Order Reliability Methods, FORM and SORM respectively.

There are four principal stages as cited in Zang et al. [2002],
1. Transform the physical space into standard normal space.
2. Determine the most probable point (MMP).

3. Approximate the limit state function at the MMP.

4. Determine the probability of failure using the approximate limit state function

from the previous step.
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The FORM method is less computationally expensive than the SORM approach as the
limit state function is approximated by a tangent whereas a quadratic approximation is
used by SORM. Consequently SORM gives a more accurate estimate of the probability
of failure. A detailed review of FORM and SORM methods are available from Robinson
[1998] and Rackwitz [2001]. Langley [1999] showed that reliability methods were special
cases of an asymptotic formulation based on the Laplace approximation. The reduction
of this asymptotic approximation to the FORM and SORM methods is illustrated by
Keane and Nair [2005].

In an analogous way to the Taguchi method of improving product quality Savage and
Swan [2001] proposed a reliability based quality improvement approach. The model
determines the nominal design parameter values to maximise the probability of multiple
quality characteristics being within the upper and lower specification limits. Since there
is no loss function, the quality of the design is the same, provided the design parameter
lies between the limits. Savage and Seshadri [2003] proposed a binary loss function to
account for the scrap and rework costs if a design was outside the specification limits.
The objective was to minimise the sum of the production cost (including inspection cost)
and cost of scrap and rework. Savage et al. [2006] further developed the concept of quality
optimisation through conformance-based design by introducing the NTB, STB and LTB
quality characteristics. The basic principles of Reliability Engineering, to minimise the
probability of failure are inversely analogous to another design methodology, Axiomatic
Design, where the objective is to maximise the probability of conformance. This design

method is discussed in the following section.

2.4 Axiomatic Design

Axiomatic Design was introduced by Nam Suh in the 1980s and provides a framework,
mapping the functional requirements (quality functions) of a system to the design pa-
rameters. These design parameters can also be mapped to manufacturing processes.
The methodology offers a scientific approach to design (Suh [1978], Suh [1990] and Suh
[2001]). The mainstays of the approach are the first and second axioms; the inde-
pendence axiom relating to how function requirements map to design parameters and
the information axiom relating to the likelihood of the system satisfying its functional
requirements when manufactured. Information reduction is analogous to the Taguchi
methodology of optimising the means to minimise variation in the performance outputs.
The reduction of information is also similar to reducing the probability of failure in

reliability based methods.
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Axiomatic design maps the functional requirements (F'Rs) of the system through a

design matrix (A) to the design parameters (DPs) as demonstrated in Equation 2.5,

FRy A A - Ayj| | DR
FRy Agr Az -+ Agj| | DP

=1 . o . : (2.5)
FR; A A -0 Ay | | DF;

The subscripts ¢ and j are the numbers of F'Rs and D Ps in the system. It is a necessary
condition of Axiomatic design that the numbers of F'Rs equal the number of DPs. The
system is said to be uncoupled if the elements A;; = 0V i = j, so that every F'R is
satisfied by exactly one DP. Such a design is easy to optimise as each F'R can be
determined independently of all the others. The design matrix A can also exist in upper
or lower triangular form representing a decoupled design, where some F'Rs depend on
two or more DPs. Nevertheless, at least one F'R is mapped to only one DP. Again it
is possible to satisfy each F'R, although the order each is solved is important. One must
first satisfy the independent FFR and DP pair before satisfying the next F'R, which
will depend on two DPs. If the design matrix A cannot be resolved into upper or
lower triangular form and it is not uncoupled, the system is said to be coupled. Such
a system is hard to optimise, since any change in one DP will affect multiple F Rs.
Figure 2.8 illustrates a coupled and uncoupled design solution for the pitch and yaw
control of aircraft. With reference to Equation 2.5, F Ry and F'Rs are the pitch and yaw
functionalities respectively. The DP; and DP, parameters correspond to the control
surfaces facilitating the yaw and pitch motions. The V-tail configuration of a General
Atomics Altair unmanned aircraft in the top of Figure 2.8 is a coupled design as a
deflection of the control surface would result in both pitch and yaw, thus Ayq, Ai2, Aoy
and Aso would be non-zero. The DC-8 aircraft in pictured in the lower half of Figure
2.8 has an uncoupled tail-plane design solution where the pitch and yaw functionalities

are satisfied independently by different control surfaces.

The information axiom states that the best design is the one with the least information
(Suh [1990], Suh [2001], Park [2004] and Park et al. [2006]), which is always an uncoupled
design. However, most practical cases involve coupled or decoupled designs (Park [2007]
provides an extensive discussion regarding the application of Axiomatic Design). Suh
[2001] states it is generally possible to reduce coupled designs to decoupled ones by
setting the least sensitive elements in the A matrix to zero. The information axiom
is closely related to the probability of failure integral from reliability based methods
(Equation 2.4). It requires the computation of the probability of success given by,

P :/ .../P(;Dpj ddDPj... Pspp, d0ODP,
Q
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Ficure 2.8: Illustration of the a coupled and independent design solution for pitch
and yaw control of aircraft (NASA [2015])

where () is the feasible design domain and Pspp, is the probability density function of
the nth design parameter. The term §D P, is the range on the manufacturing variability
of DP; such that —ADP; < 6DP; < ADP;. The design domain is prescribed by the
mapping (matrix A) between the FRs and the DPs. For a two variable problem, the

probability of success is given by,

b pd
P, = / / Pspp, Pspp, d6DPy d5DPy
a C

where the limits are,

AFRy AFRy —AFRy — A210DP; AFRy — A10DP;
—— b= , c= and d= )
All A11 A22 A22

a =

The term 6F R; is the acceptable range of the i functional requirement specified by
the customer such that —AFR; < 0FR; < AFR;. Figure 2.9 shows the functional
domain mapping for a two variable problem. The design domain is contained within
the parallelogram illustrated on Figure 2.9. The functional domain is indicated by
the partially obscured blue rectangle contained within —AFR; < §FR; < AFR; and
—AFRy < 6FRy < AFRs;. The probability of success is the area of the common
range, where the functional domain overlaps the design domain, indicated by the green
rectangle. If the functional domain were to increase in size, or the design domain decrease
in size, the probability of success would tend to zero at the point where the common

range was fully enclosed. Solving the Ps integral for a decoupled design was outlined
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by Frey et al. [2000] and Park [2004]. Park [2007] also offers an in-depth discussion
of Axiomatic Design, particularly regarding the information axiom, including worked

examples.

Axiomatic Design, like reliability based methods, is well suited for accounting for mul-
tiple system responses (quality characteristics) and design parameters. Optimisation
of the probability of success or probability of failure for the two respective approaches
determines the ‘best’ design. The ‘best’ design being the one that fulfils the functional
requirements with the least likelihood of producing non-conforming products or compo-
nents. With Axiomatic and reliability methods, the effect variability has on the func-
tional performance is minimised. However, unlike Taguchi based robust design methods,
there is no built-in mechanism for trading functional performance with increased pro-

duction cost from tolerance tightening.

2.5 Optimal Mean Setting Literature

Canning problem

Springer [1951] is widely credited with introducing the concept of Optimal Mean Setting
with the proposition of the can filling problem. The objective of Springer’s model was to
determine the optimum level to fill a can to minimise production cost. Under-filling the
can below a threshold level resulted in the contents being discarded or sold at a reduced

price. If the can were overfilled, it could be brought to market but would fetch the same
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price as cans with the ‘correct’ content level. Therefore, the extra amount by which the
can was overfilled resulted in lost revenue. In a general sense, the extra content in the
can is comparable to rework, while discarding a can’s contents or selling at a ‘knock-
down’ price due to under-filling, is comparable to scrap. Production cost was minimised
by slightly over filling the cans on average, to reduce the probability of discarding the
contents and accepting the small loss in revenue from over filling. Subsequent literature

on the canning problem can be subdivided into two main methodologies:

1 Those that define conforming and non-conforming items based on a lower specifi-

cation limit.

2 Those which define a movable upper limit in addition to the lower limit, i.e. con-
tainers with a contents above a threshold level are also non-conforming in addition

to those with a contents lower than the lower specification limit.

The methodology developed by Hunter and Kartha [1977] falls into the first category.
They specified two potential markets. Conforming items were those that fell above the
lower specification limit and were sold in the ‘primary’ market. Items that fell under the
lower specification limits were non-conforming and would be sold at a reduced price in
a secondary market. The optimal mean setting in Hunter and Kartha [1977] was based
on maximising profit rather than the minimisation of production cost as in Springer
[1951]. Profit was defined as the income from conforming items, the income from the
rejected items and the cost of contents or material. A similar model was presented by
Nelson [1978]. Considerably later, Das [1995] developed a faster solution methodology,
replacing the graphical-tabular solution from Hunter and Kartha [1977] with a numerical
technique based on standard lookup tables. Carlsson [1984] applied the optimal mean
setting approach to the steel beam industry and modified the profit function from Hunter
and Kartha [1977]. A premium was added for high quality beams, while a discount was
offered for low quality beams. Thus, there were an infinite range of prices for the beams,
reflecting how much greater or lower the manufactured quality was compared to the
target quality. Bisgaard et al. [1984] further developed the secondary market paradigm
and proposed that non-conforming items should be sold at a price proportional to how
much content was missing, (in a similar manner to lower quality beams fetching lower
prices from Carlsson [1984]). This ensured the price of secondary market items were
based on the level of ingredient, which prevented a situation where nearly empty cans
could be sold at the same price as almost full cans. The concept of a secondary market
was completely dropped by Golhar [1987], he proposed cans with content below the
lower limit should be emptied and re-filled and the sold in the regular market. This
was motivated by considering pharmaceutical products where there was no secondary

market.
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The motivation for the second category stems from the desire to reduce the cost of
overfilled containers being sold at a regular price. This was especially important for
products such as pharmaceuticals, liquor and perfume where the cost per millilitre or
gram is high. Bettes [1962] originally introduced the concept of defining an upper limit
such that items with ‘too much’ ingredient would be reprocessed at a fixed cost in a simi-
lar manner to under-filled containers. The lower specification limit was set by legislation
or legal requirements. The process mean and the upper specification limit were opti-
mised simultaneously. Setting the upper specification limit too high resulted in loss due
to ingredients going into the market free of charge. However, setting the upper specifi-
cation limit too close to the lower specification limit resulted in high reprocessing cost as
there was a high probability items would fall outside this range. The mean was adjusted
to maximise the probability of items falling in the range between the lower and upper
specification limits. Golhar and Pollock [1988] addressed the same problem as Bettes
[1962] but had a more systematic approach rather than the trial and error methodology
used by Bettes [1962]. Schmidt and Pfeifer [1991] also optimised both the mean and
upper specification limit where the filling capacity was limited such that the profit was
maximised per fill attempt. The paper also quantifies the increase in profit achieved
relative to only optimising the process mean. Liu and Raghavachari [1997] showed opti-
mising both the mean and upper specification limit always outperforms optimising only
one of these variables where the variability follows a continuous distribution. They also

considered normal, truncated normal, and truncated logistic distributions.

Both the first and second category approaches require 100% inspection plans. This
is not always economically viable as it is time consuming and costly to inspect every
quality characteristic. Sample inspection is an alternative strategy where a number of
representative items are inspected from a larger lot. The number of non-conforming

items from the sample determines whether the lot is deemed to conform.

Sampling Plans

Boucher and Jafari [1991] considered a lot-by-lot sampling plan based on attributes®.
Two price structures existed for items from accepted and rejected lots, where items from
rejected lots were sold to a secondary market. In addition to an attribute based sampling
plan Arcelus and Rahim [1990] developed a sampling plan for attributes and variables.
Carlsson [1989] considered a system where products were produced in lots and subject

to lot-by-lot inspection based on variables. The selling price for items was based on

3Sample inspection based on attributes is used where the measured characteristic either passes or fails
inspection (binary decision). Alternatively the measured characteristic may produce a discrete value,
thus it is possible to quantify by how much a characteristic misses or exceeds a quality requirement.
Such an inspection plan is referred to as inspection by variables.
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whether they were from an accepted or rejected lot and also proportional to quality.
Thus, a customer would pay one price for items from an accepted lot plus an extra
amount proportional to the extent to which the items exceeded the quality requirements.
Another price existed for items from a rejected lot where customers would pay even less
proportional to the extent individual items missed the required quality characteristic.
The price items were sold for is analogous to the principle set out by Carlsson [1984]. A
similar principle, where the price of items in the market is determined by their quality
relative to the target quality, was considered by Hong [1999]. They jointly optimised
the mean as well as the screening limits. Pulak and Al-Sultan [1996] modified the model
by Boucher and Jafari [1991] by implementing a rectifying inspection plan, where all
rejected lots underwent 100% inspection and all non-conforming items were reworked or
scrapped and replaced. This is applicable where a secondary market does not exist or
where other manufacturing stages follow, in a multi-stage manufacturing system. Al-
Sultan [1994] considered setting the means to maximise profit, where each product had
two attributes produced by two different machines in series. A sampling plan was used
to determine whether the attributes fell above or below a lower specification limit. A
two stage surrogate screening process was proposed by Lee and Elsayed [2002] where
the inspectable variable (weight of a cement bag) was not measured directly but by a
surrogate variable correlated with the inspectable variable (mil-ampere of the load cell)
instead. In this case it was considerably quicker to measure the amperage of the load
cell than determine the weight of the cement bag. Duffuaa et al. [2009] used a sampling
plan for two quality characteristics produced in series and recently Peng and Khasawneh
[2014] used a screening method (outlined in Montgomery [2009]) to determine the defect
rate for serial production systems. Peng’s article is considered in more detail in Section
2.5.2

Non-canning problems

In a departure from the filling of containers, Dodson [1993] considered the production
of rolled aluminium sheet. Undersized sheet would result in the scrapping of the whole
roll, the excess from an oversized sheet was removed and scrapped. Scrapping the excess
material was considerably less costly than scrapping the whole sheet. This is directly
analogous to rework in a material removal manufacturing operation. Wen and Mergen
[1999] were the first to consider optimal mean setting in the context of processing a
feature or component where the variability of the process is greater than the fixed
specification limits. Wen and Mergen [1999] optimised the mean setting to minimise

‘loss’. They used an example of the production of an inner ring of a bearing race (grinding
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process). This was a high precision component where the manufacturing variability was

normally distributed and greater than the specification limits.

Taguchi Quality Loss

Taguchi introduced the concept that the further a product was away from a desirable
quality target, the greater the economic loss. This concept was introduced to the field
of optimal mean setting by Arcelus and Rahim [1996], Arcelus [1996], Elsayed and Chen
[1993]. The introduction of the loss function generates a tension to pull the mean to-
wards the target quality and limits the extent the mean might move towards rework.
Mukhopadhyay and Chakraborty [1995] investigated the effect of increased variance due
to general ageing and wear over time. A Taguchi loss function was used to balance
acceptable variance (which could be improved through machine and tool replacement)
with reduction in quality. Rahim and Al-sultan [2000] furthered the work by Mukhopad-
hyay and Chakraborty [1995] to also optimise the mean in addition to the variance. Both
Chen et al. [2002] and Ho and Quinino [2003] used the single feature optimal mean model
from Wen and Mergen [1999] and introduced a Taguchi quality loss function. Chen et al.
[2002] demonstrated a +0.003 change in the mean and 3.4% to 26.0% difference in total
loss compared to the numerical example given by Wen and Mergen [1999] depending on
the type of quality loss function used. Teeravaraprug and Cho [2002] studied a multi-
variate quality loss function to capture customer dissatisfaction with product quality.
The mean settings for two quality characteristics were then optimised to determine the
most profitable mean values. Chen and Chou [2003] offered a similar paper where the
methodology was based on the single feature model by Wen and Mergen [1999]. Chen
and Lai [2007a] modified the sampling plan model from Pulak and Al-Sultan [1996]
under the quadratic quality loss condition. Duffuaa and El-Ga’aly [2013] developed a
multi-objective feature mean optimal setting methodology to maximise profit, income
and product uniformity, where Taguchi quadratic loss was used as a surrogate for prod-

uct uniformity.

An asymmetric quality loss function can be used as an alternative to the quadratic loss
function, where the loss is not equal both sides of the target. Kapur and Wang [1987]
were the first to introduce Optimal Mean Setting with an asymmetric loss function,
where a log-normal distribution was used to define the quality characteristic. Kapur
and Cho [1994] claimed using a Weibull distribution improved the flexibility of the
asymmetric distribution which better represented real situations. Similarly Moorhead
and WU [1998] practised optimal mean setting with an asymmetric loss function. Chen
et al. [2002] applied an asymmetric loss function to the Optimal Mean Setting model
proposed by Wen and Mergen [1999]. (Chen [2004]) took a similar approach but used
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a rectifying inspection plan proposed by Pulak and Al-Sultan [1996]. Chen and Lai
[2007b] applied an asymmetric quality loss function to the sampling plan model from
Pulak and Al-Sultan [1996], building on an earlier work (Chen and Lai [2007a]). They
also quantified the optimum lot size to maximise profit. Chen [2010] brought together
the literature by Al-Sultan [1994], Pulak and Al-Sultan [1996], Chen and Lai [2007a,b]
to determine the economic manufacturing quantity and optimum process mean under
the rectifying inspection plan with an asymmetric loss function for product in serial

production (multiple quality characteristics per product).

The quadratic loss function introduced by Taguchi and the derivative asymmetric loss
function assume that loss varies smoothly with deviations from the target quality. Mixed
quality loss functions allow transitions in the quality loss, for example a step change
in quality loss when the characteristic falls outside the upper or lower specification
limits. Cho and Leonard [1997] represented quality loss with a piecewise linear function
where loss was roughly proportional to the deviation from the quality target. Chen
[2005] used a mixed quality loss function that was quadratic inside the specification
limits and a piecewise linear loss function outside the specification limits. Cho [2002]
and Teeravaraprug [2006] tailored the loss function for a particular product based on
historical data concerning the performance of products with customers loss. Both articles

used statistical regression analysis to construct the loss function.

Another way to represent quality loss was proposed by Spiring [1993] who used a reflected
normal distribution function (Figure 2.10). The curve is useful because the loss is not
unbounded like the quadratic loss function. Drain and Gough [1996] applied this loss
function to a semi-conductor manufacturing process. They also extended its formulation
to include two quality characteristics, specifying a bivariate inverted normal quality loss
function. Sun et al. [1996] suggested the losses due to a feature being off-target were too
severe and modified the function accordingly. Other types of inverted probability density
functions were investigated as candidates for loss functions. Spiring and Yeung [1998]
considered the Gamma, the Tukey lambda and Laplace distributions. The inverted beta
function was considered by Leung and Spiring [2002] which allowed both symmetric and
asymmetric quality loss to be described. A comprehensive review of the use of inverted

probability functions as loss functions is given by Leung and Spring [2004].

2.5.1 Multiple Quality Characteristics

Products often have multiple quality characteristics. In general, there are two ways
in which quality characteristics can be manufactured. Each quality characteristic re-

quires a manufacturing stage followed by an inspection stage. However, multiple quality
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FIGURE 2.10: The reflected normal loss function from Spiring [1993]

characteristics could be manufactured before an inspection process, known as parallel
production: alternatively an inspection stage could be applied after each quality char-

acteristic, known as serial production.

The principle complication between the manufacture of quality characteristics in a se-
rial production system, and in a parallel production system is illustrated by Figure 2.11.
For a single quality characteristic, there is a cost (I) for being outside the specification
limits. The cost of being over the upper specification limit (Cyy) and the cost of being
under the lower specification limit (C,) can also be differentiated as described by Wen
and Mergen [1999]. In a two feature parallel case, an additional cost is introduced (II)
to account for two features being outside the specification limits. In general the cost of
IT is greater than I due to the added valued of manufacturing and then reworking or
scrapping two features, as opposed to the added value of just one feature (Teeravaraprug
and Cho [2002],Chan and Ibrahim [2004]). Elsayed and Chen [1993], Kapur and Cho
[1996] and Drain and Gough [1996] were the first to consider quality loss for parallel
production, where quality loss for two characteristics were modelled using the bivariate
normal distribution function. Chen and Chou [2003] used the bivariate quality charac-
teristics from Kapur and Cho [1996] but expanded the model by allowing for different
non-conformance costs, depending on whether a quality characteristic fell above or be-
low the upper and lower specification limits respectively, for each quality characteristic
(z1 and z2). Khasawneh et al. [2008] developed a similar model which led to six dif-
ferent non-conformance costs, illustrated in greater detail in Figure 3.6 under Section
3.1.2. Cho [2002] used the bivariate model with two non-conformance costs (I and II) to
construct a regression-based loss function. Teeravaraprug [2006] presented a similar pa-
per but extended the approach to multiple quality characteristics. Duffuaa et al. [2009]
developed an optimal mean model for two quality characteristics in series utilising a

sampling plan.

The optimal means for two manufacturing processes in series was studied by Al-Sultan
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and Pulak [2000], which is an extension of Golhar [1987], but for two stages. Bowling
et al. [2004] developed models for one, two and n quality characteristics produced in
series. The work introduced Markov modelling to predict the long-term probabilities
of components conforming or being deemed scrap, and the average time features spent
being reworked. This more closely models reality, where features designated rework
may be re-processed several times. Previous literature essentially gave a snap-shot of
the short-term probability of features conforming, being scrapped or requiring rework.
Markovian modelling allowed the final proportion of scrap and conformance, as well as
average number of rework cycles to be calculated. Bowling et al. [2004] was the first
in a selection of articles (Bowling et al. [2004], Khasawneh et al. [2008], Selim and Al-
Zu’bi [2011] and Peng and Khasawneh [2014]) that utilised Markovian modelling. The
Markovian approach to Optimal Mean Setting is discussed in greater detail in Section 3
and 3.2. Some errors in the Markovian-based equation for expected profit from Bowling’s
2004 paper were uncovered by Selim and Al-Zu’bi [2011] (Section 3.1) who reformulated
the n stage model originally proposed by Bowling et al. [2004]. Peng and Khasawneh
[2014] introduced an Optimal Mean Setting model for a mixture of parallel and serial
production based on the models from Bowling et al. [2004] and Khasawneh et al. [2008].
A numerical example was given with four quality characteristics, two in parallel following
serially from another two produced in parallel. A sampling plan was used as opposed to

100% inspection.

2.5.2 Summary of Optimal Mean Setting

Optimal Mean Setting is the basis for the research in this thesis, therefore its key features
are summarised below, prior to the main literature review summary. The original use of
Optimal Mean Setting, to determine the optimum fill levels of containers to maximise

profit, is slightly different to its application to engineering design parameters in the



Chapter 2. Literature Review 37

presence of manufacturing variability. Wen and Mergen [1999] were the first to translate
the problem to the paradigm of engineering design. The next significant advancement
was the introduction of Markovian modelling (Bowling et al. [2004] and Selim and Al-
Zu’bi [2011]) to find the eventual probabilities of scrap and conformance accounting for
the possibility it could take several rework cycles to convert features requiring rework
into conforming or scrap components. The Markovian approach was applied to parallel
production systems by Khasawneh et al. [2008], although errors remain in this work.
The major limitations on the current state-of-the-art are errors in the Markovian model
for parallel features and the inability to account for more than two features in parallel
production. Furthermore there is no real generalisation between serial and parallel
processes 4. This makes it impractical to apply Optimal Mean Setting to the variety of
features and manufacturing sequences that exist for the production of a real product.
A more robust, correct and generalised framework to practice Optimal Mean Setting
is required which is the subject of Chapter 3 - Section 3. Before this, a review of the
literature encompassing cost modelling is undertaken. Optimal Mean Setting relies on

an accurate unit cost estimate as the procedure is essentially a cost balancing exercise.

2.6 Cost Modelling

Most design and optimisation methods do not include cost as a design parameter, either
as a constraint or as an objective function. A major reason for this is the inaccuracies
present in calculating the cost, particularly during the early stages of design, where
an exact geometry and method of manufacture have yet to be defined (Scanlan et al.
[2006]). Where cost modelling is used in Robust Design and Optimal Mean Setting
methodologies, it often applies only to a single or very few feature(s). Typically, these
are design features as they are connected with the quality or functional performance of
the product. However, design features are not necessarily the same as manufacturing
features which actually drive the cost of manufacturing a component. For example, the
wall thickness of a pressure vessel may be a design feature relating to the maximum
pressure a vessel can safely contain. Assuming the vessel was made from a metal billet,
a possible manufacturing method would be to turn the outer diameter and bore the
inner diameter to result in a wall thickness. Thus, two manufacturing features are re-
quired to produce the design feature, which in turn relates to the quality or performance
parameter. Typically, a gas turbine component will have several high level quality char-

acteristics that must be met, driven by many design parameters, which themselves will

“Peng and Khasawneh [2014] did offer an example for the production of four features in two stages
(serial production) with two features per stage (parallel production). However, a new set of equations
would have to be generated if one wanted to consider only three features or five features, or produce
three in parallel and only one in series.
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FIGURE 2.12: Tllustration of manufacturing feature cost from Tammineni et al. [2009]

consist of several manufacturing features. Figure 2.12 indicates the costs associated with
each manufacturing process, which sum together to determine the total production cost.
A change in the design feature nominals will alter these manufactured features, as well

as filtering back to the condition of supply and raw material states as follows:

e Change in the design parameter nominal
— leads to changes in the manufacturing features
owhich will modify the condition of supply (COS)

- and alters the required raw material state

A gas turbine component may have hundreds or thousands of manufacturing features,
thus generating a cost model to this level of detail is a considerable undertaking. Not
surprisingly there are several cost modelling methodologies that aim to circumvent this

level of detail.

2.6.1 Data Mining and Regression Based Costing Methods

Data mining cost methods attempt to find statistical relationships between product

cost and one or more parameters, often through linear regression. They are typically
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beneficial in the conceptual stages of design where little geometric detail exists. Para-
metric and neural network models have been popular in cost modelling literature and

are discussed within this Section.

2.6.1.1 Parametric Costing

The use of parametric cost models in aerospace can be traced back to Wright [1936]
and an observation that the unit cost of an aircraft decreased with the number of air-
craft produced. The Rand Corporation’s work in the 1950s introduced the idea of cost
estimating relations (CERs), which were developed to aid the Department of Defence
(US) in estimating the cost of new military projects (Younossi et al. [2002]). Stahl
[2010] investigated the use of parametric models where several variables were found to
influence the cost of space telescopes. The Value Improvement team at Rolls-Royce also
employed parametric methods to predict component cost based on typical high level de-
sign parameter of a component. An example of this type of technique is shown in Figure
2.13 (Langmaak et al. [2013]), where the milling operation time was scaled against the
perimeter of a bladed disk (blisk). The red points indicate the known milling times for
five blisks that had previously been manufactured. The black line was fitted to using R?
regression and the red dashed lines indicate the confidence limits of the regression lines.
These confidence limits denote the boundaries in which 95% of the points would be ex-
pected to fall if more data was collected. Although a statistically significant relationship
may be found between cost and a parameter or parameters, it is not implicitly causal.
If enough data is available a proportion of a data set can be used to generate a scaling
parameter and the remaining portion can be used to test the relationship. Variables are
selected which are believed to have some significance to driving the cost of a product.
Rush and Roy [2001] discuss the application of ‘expert judgement’ for variable selection,
else variables may be chosen based on statistical or casual proof they affect cost. Anal-
ysis, correlation and regression follow from which CERs can be selected. Processes of
verification and validation are required before the predictions are used. Curran et al.

[2004] offers a more extensive review of these parametric costing methods.

The level of geometric detail within Optimal Mean Setting is high as it is applied to
individual design and manufacturing features. In contrast, regression is an approxima-
tion as to how many individual parameters change, in response to a principle driving
parameter or CER. Thus, a parametric model may not be sufficiently detailed for Op-
timal Mean Setting where one is interested in how cost varies in response to a few very

specific features.
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FIGURE 2.13: Hlustration of parametric scaling from Langmaak et al. [2013]

2.6.1.2 Neural Networks

A popular model from the general arena of data mining is a neural network, which
is an attempt to mimic human brain functionality originally devised as a method of
pattern recognition. An implementation of such a method involves a network of nodes,
representing neurons, which are linked by weighted connections, symbolic of synapses.
The general arrangement is shown in Figure 2.14 from Cavalieri [2004]. To be useful
as a cost model, a data set is required to train the model. A set of inputs (design
parameters) are connected to the input layer and the weighted connections adjusted
until the output (cost) is correct. The model will then ‘know’ how the costs of previous
components were related to the inputs and can be used to make predictions about the
cost for a new product, provided the new product is a derivative of the components in
the training data set. Zhang et al. [1996] used a neural net approach to estimate the
cost of packing products based on geometric characteristics of the products. Cavalieri
[2004] also used the neural net method to estimate unit cost of brake disks. Both studies
found neural nets outperformed parametric regression type analysis, particularly with
regard to flexibility. As referred to by Cavalieri [2004], if a new production facility
was implemented, a neural net can simply be re-trained on the new data set, whereas
a parametric method would require rebuilding and validating. This is due to the fact
that a neural net will automatically find cost estimating relationships in a data set
during training, whereas a parametric model requires expert knowledge to define such

relationships.

A primary disadvantage of the neural net approach to cost estimating is that an extensive
data set is required to train the model, particularly when relationships are non-linear.
Typically, the Aerospace industry does not produce enough derivative products to en-

able this. Additionally there is no necessity for causal relations between inputs and
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outputs and the exact relationship can be hard to extract and comprehend. If a new
product is clearly outside the existing dataset, the model may not be able to produce
any worthwhile predictions. Again this type of approach is better suited to the early
stages of design, where one is willing to accept a ‘ballpark’ cost figure rather than an

exact calculation.

Input layer Hidden layers Output layer

O Neuron ——» Synapse

FIGURE 2.14: A typical neural net, Cavalieri [2004]

2.6.2 Analogous Costing

Analogous costing, like parametric costing, is typically used in the early design stages
where there is a lack of detailed geometry information (Rehman and Guenov [1998]). The
principle of an analogous costing technique is to adjust the cost of a target product based
on the differences between the target product and a similar known product. Taylor [1997]
applied such a technique to the cost of an engine nose-cowl. The effectiveness of the
method relies on the ability to differentiate between the two cases. Typically, analogous
estimates utilise a single historical data point as the basis for the new cost estimate.
This implicitly assumes the new product is similar technologically and discounts any
significant advances in manufacturing technology. A degree of ‘expert judgement’ is
also required, although the results are generally held in higher esteem than parametric
methods (Myrtveit and Stensrud [1999]). The generic form of an analogous cost estimate
is, Cn = Cp F¢ Fyy Fp, Curran et al. [2004]. An initial estimate is based on the historic
cost, Cp and modified by the three F' ratios. Differences in complexity between the
historical component and the target component are accounted for by Fo. Jenab and
Liu [2010] offer a concise account of determining the relative complexity between two
products. Miniaturisation factors, such as reducing subsystem size (for weight saving),
are accounted for by Fj;. Miniaturisation usually increases the cost. The term Fp
relates to productivity improvements between the historical data point and the target.

Generally these factors are estimated through expert opinion.
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As with parametric methods, analogous cost methods are generally better suited to the
concept design phase as a cost prediction can be generated without specific geometric
detail. As a design becomes more detailed, geometry linked cost models may be created
which are preferable to analogous methods. Nevertheless, the principle of using previous
components as a basis for a new part cost is powerful. This principle is actually used
in generative feature-based cost models (discussed later) whereby the costs of common

manufacturing features are used and scaled to determine the cost of new components.

2.6.3 Detailed Costing Methods

Detailed costing methods include any method that attempts to model cost from the
bottom-up based on the manufacturing features of the component’s geometry. These
include; activity based costing (ABC), bottom-up and feature-based methods. Modelling
cost in this way ensures that there is a causal relationship between cost, and CERs. The
necessity for this is summarised by Collopy and Curran [2005a] and Collopy and Curran
[2005b]. Furthermore, changes in geometry explicitly relate to manufacturing features

enabling scrap and rework modelling, although this is not common-place.

To support Optimal Mean Setting analysis cost models are required that allow the cost
of individual design changes to be calculated and allow scrap and rework calculations
to be executed. Feature-based cost methods are inherently based on the manufacturing
process, inferring the time (and hence cost) required to manufacture a feature. The
cost is acquired by multiplying the manufacturing time by cost rates, dependent on
the operation. It was noted by Rush and Roy [2000] that manufacturers tend to have
large numbers of three dimensional CAD (Computer Aided Design) models that can
be decomposed into particular features required by the function of the part. These
design features can be decomposed into manufacturing features to allow one to assess
the cost of a design feature in terms of the constituent manufacturing features. Thus,
during design it would be possible to infer the manufacturing features and operations
and subsequently calculate the cost of the new design. Marx et al. [1995] noted this
required information was typically associated with detailed design and needed to be
pushed upstream. To facilitate such a capability Scanlan et al. [2006] outlined the
creation of an assessable library of knowledge that contains processes, work centres,
materials and historical components. These tools were developed by the Rolls-Royce
project, DATUM (Design Analysis Tool for Unit Cost Modelling). Tammineni et al.
[2009] outlined the way in which the knowledge was captured and used by the cost model
(Figure 2.15), as proposed by DECODE. As part of the DECODE programme, Vanguard
Studio was identified as a useful tool to create cost models. Figure 2.16 indicates a typical

model where inputs are geometric features pertinent to the component. The geometry is
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FIGURE 2.16: Example of a Vanguard Studio cost model

parametrised thus changes to the ‘Inputs’ such as ‘Pocket Depth’ or ‘Boss Length’” apply
to the geometry of the whole component. The resource costs are high level parameters
that are generally independent of the geometry of a design, such as material cost rates,
energy cost rate and hourly wage. Outputs are costs and/or manufacturing times for the
overall process and sub-processes. The model has a horizontal tree breakdown structure,
where each node represents part of the total cost. For example, the ‘cost aggregation
node’ divides into four lower level costs; raw material cost, primary processing cost,
shaping cost and finishing cost. Each of these breaks-down further. For example, raw
material cost for a forged component (such as a turbine disk) is calculated from the
total volume of the forging. In the Vanguard Studio cost model, the forging volume
is determined by applying rules to the finish part volume. A change in the ‘Inputs’
will bring about a change in the finished parts volume and consequently the forging
volume which changes the raw material cost. The other three costs are similarly affected
by changes to the input values. Knowledge, such as determining a forging volume

and a condition of supply from the finished part geometry are contained within the
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model. Manufacturing knowledge relating to the cost of manufacturing a feature is also
contained within the model. For example, the cost of some features such as ‘Pocket
Depth’ may be related to the volume of material removed, whereas other features such
as ‘Hole Diameter’ may be a function of the material thickness. Several other articles use
Vanguard Studio to build a cost model. Keane and Scanlan [2007] gave an example of the
trade-off between the aerodynamic performance of an airliner wing and cost, where wing
cost was calculated using a Vanguard Studio cost model. Rao et al. [2007] applied a cost
and weight multi-objective optimisation to the design of a turbine disk. Cheung et al.
[2010] proposed the use of Vanguard Studio cost models in the calculation of manufacture
cost for a Value Driven Design application for gas-turbine design. Langmaak et al. [2013]
applied Vangaurd Studio cost model to determine the cost of bladed disks (blisks) for

gas-turbine engines.

The development of feature-based cost models within Rolls-Royce has allowed the vision
presented in Figure 2.15 to be realised. A featured-based cost tool, using data from
the manufacturing process, has been integrated into a geometry tool (Siemens NX) as
illustrated by Figure 2.17°. A set of design features are presented on the left window
which can be scaled. The right window outputs the cost of each feature. This method
is somewhat constrained to scaled variations on existing components. Nevertheless, a

considerable proportion of new engine components are derivatives of past designs. The
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F1GURE 2.17: Tlustration of a cost model linked to a computer geometry tool.

cost of a component is driven by a detailed cost model. The level of detail present in

5Provided by Product Cost Engineering, Rolls-Royce
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these feature-based cost models and their integration into the computer geometry tool,

allow the geometry to be optimised for functional performance as well as cost.

Optimal Mean Setting requires a cost modelling capability to determine the manufac-
turing cost for design features and enable cost to update in response to changes in the
mean location. Detailed bottom-up costing methods fulfil this criteria and the tools
and methodology present in the literature required have been discussed (Section 2.6.3).
This thesis does not contribute to cost modelling methodologies, however, the concept of
attributing cost to specific features is used to determine scrap, rework and conformance

cost within the realm of Optimal Mean Setting.

2.7 Summary of Literature

A number of techniques and design principles around the area of Robust Design and
Reliability Engineering deal with the propagation of uncertainty to characterise the vari-
ation in the performance or functionality of products and systems (Sections 2.1 to 2.4).
These methods acknowledge manufacturing variability and all are united in maximising
the allowable amount of variability. Performance is sacrificial, provided the sensitivity of
the product to variation can be reduced (and product safety can be maintained). In con-
trast, the research in this thesis asks how might performance be preserved or maximised
most efficiently (in an economic sense) if the manufacturing variation is not seen as a
constraint. Reliability Engineering is the closest to this philosophy where a system is not
permitted to fail (performance must be maintained), however, there is no mechanism to
reduce manufacturing cost, nor consequently to improve economic efficiency. Optimal
Mean Setting offers a mechanism to reduce manufacturing costs when tolerances remain
tight to guarantee high performance. There are several areas of Optimal Mean Setting

which have not been tackled by existing research, listed below:

e There are errors in Khasawneh et al. [2008], relating to the numbers of components
moving between stages for parallel production systems. These are explained and

rectified in Section 3.2.2.

e Current literature only accounts for the possibility of two features being manufac-
tured before inspection in a Markovian based Optimal Mean Setting framework
(Khasawneh et al. [2008] and Peng and Khasawneh [2014]). A generalised case is
developed in Section 3.2.2.1. There is also a difference in the way serial and par-
allel processes are modelled in the literature (Bowling et al. [2004] and Selim and
Al-Zu’bi [2011] versus Khasawneh et al. [2008] and Peng and Khasawneh [2014],
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respectively). Section 3.2.2.3 develops a unified method of considering both serial

and parallel processes with one equation.

e A detailed understanding of how correlation affects the optimal mean and expected
profit for parallel operations is not present in the literature. This is considered

under Section 3.5.2.

e No papers exist that consider the impact of Optimal Mean Setting on the manufac-
tured geometry distribution of the component. As Optimal Mean Setting tends to
bias rework, the manufactured geometry distribution tends to be skewed towards
the rework specification limit. This is considered in Chapter 4. A case study ap-
plied to film cooling holes is presented in Section 4.4.2, which links the change in
the manufactured geometry distribution to the expected performance distribution

of the component. Again this has not been considered in the literature.



Chapter 3

Optimal Mean Setting

As discussed in the Introduction, Optimal Mean Setting is the principle of shifting
the process mean to maximise profit, when the variance of a manufacturing process is
larger than the tolerance limits. It relies on an asymmetry between the cost of scrap
and rework such that non-conformance may be biased towards one or other, (usually
rework). The objective of Optimal Mean Setting is illustrated by Equation 3.1 where

profit is maximised by changing the process mean.

Profit = Items Sold — Processing Cost (3.1)
— Scrap Cost — Rework Cost.
The principle contribution to knowledge of this Chapter is the development of a gener-
alised expression for expected profit (item 2 from Section 1.6 in Chapter 1). The process
of generating a generalised methodology involved consideration of three major elements;
serial production (Section 3.1.1), production of multiple features (Section 3.1.2) and
Markovian modelling (Section 3.2). Each of these elements had been considered in lit-
erature previously but were not brought together in a generalised approach. Detailed
consideration from first principles of these elements also led to new and improved un-
derstanding, correcting errors in the parallel model (item 1 from Section 1.6 in Chapter
1) and developing an improved optimisation methodology (item 3 from Section 1.6 in
Chapter 1). Where this research draws from or compares against existing work is explic-
itly referenced. The Chapter closes with the application of the new generalised approach

to model problems (Section 3.4).

47
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3.1 Iterative Manufacturing Processes

The principle objective in this section is to derive an expression for total profit for the
production of a feature which can be maximised by adjusting the process mean(s). It
is possible to manufacture one or multiple features in sequence, one after another with
an inspection process after each. This is known as serial production. Alternatively,
several features may be processed prior to inspection. This is known as parallel pro-
duction, although this does not imply features have to be manufactured simultaneously,

it is the location of the inspection process relative to the processing of features that is

important.
3.1.1 Single-Feature Iterative Manufacturing From First Principles

An iterative manufacturing method involves a rework loop which passes rework items
back for re-processing. The process starts with an initial manufacturing operation which
generates features in three states; rework, conforming and scrap. Several subsequent
iterations convert the rework into just two states, conforming and scrap. An inspection
process is used at each iteration to determine whether parts conform, are scrap, or require

rework. Figure 3.1 indicates these iterative steps and the final states; conformance or

scrap.
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The process is examined in more detail in Figure 3.2, where the distribution of each
iteration is assumed to be normally distributed. The dashed blue line, on the right plot
of Figure 3.2, indicates the distribution of manufactured geometry due to manufacturing
variation if the initial cut was set at 6.5 units. The red and green vertical lines locate
the lower and upper specification limits respectively. The target value for this process
would be five (mid way between the USL and LSL). Here, the mean was shifted to
reduce scrap in favour of increased rework. The green area represents the components
requiring rework. The green dashed line, on the right plot of Figure 3.2, shows the
resulting distribution from re-processing the rework parts. The solid magenta line, on
the right plot of Figure 3.2, is the sum of the conforming components from the first and
second iteration and represents the distribution of manufactured geometry after this
second iteration. The light blue dashed line, on the right plot of Figure 3.2, indicates
the original distribution from the first iteration. The dark green shaded region, on the
right plot of Figure 3.2, clearly indicates further rework is required, although less than
after the initial cut. Subsequent iterations would steadily reduce this area until the
integral of the magenta curve was equal to one, indicating all components were either

conforming or scrap.

To maximise profit from such a process, an optimal reworking strategy must be identified
specifically the mean values for each iteration. It would be feasible to alter the mean
values for each iteration such that the initial mean may be p,, = 6.5, followed by a
different mean for subsequent iterations. However, it can be shown for the production
of a single feature only one optimal mean exists for the initial manufacturing stage and

all subsequent rework operations. There are several assumptions detailed as follows.

Assumptions

1. Products or features are produced continuously.
2. All manufacturing processes are under statistical control.

3. The manufacturing variation of the initial operation and all rework operations are

the same.

a. Assumes the same or similar machines are used for rework operations. For low
production volumes this is practical provided the machines are free, (not fully
utilised). It is also practical where rework is expected and the manufacturing

route is designed as such.

b. Assumes the manufacturing variation will not change with the differing vol-
umes of material to be removed, added or manipulated between components.

Typically the features requiring rework will be close to the target geometry
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FIGURE 3.3: Probabilities of components in the rework, scrap and conforming states
for three iterations

(within a few standard deviations of conformance) and so there are unlikely
to be great geometric differences between the components that require feature

rework.

4. The specification limits for the initial operation and all rework operations are the
same, i.e. the nominal geometry of the feature(s) are unchanged. In practical
situations this applies unless special authorisation is given, as the geometry will

differ from the original design specification (concessions).

5. The flow of features through the rework stages in a parallel manufacturing opera-
tion has a standard form discussed in Section 3.1.2 and further in Section 3.2.2. If
the manufacture of a specific product or features doesn’t exactly fit this standard
form the link between rework states may be broken as shown by worked examples

in Section 4.4 and Appendix F.

6. The inspection process used to determine whether a feature is scrap, rework or
conforming is assumed to be 100% accurate. Practically this implies the variation
of the inspection process is very much smaller than the variation of the manufac-

turing process.

The expected profit for the production of a single feature follows the general form given
by Equation 3.1. The probabilities of components occupying the three states (confirm-
ing, scrap and rework), for three iterations, is given by Figure 3.3. This diagram is
representative of Figure 3.1 except the inspection and decision stages are implicit in the
Process (I) box. The values R, C' and S are the rework, conforming and scrap states
respectively. A superscript represents an iteration, while the subscripts indicate where

the features in that state originated (all from state I in this case). The function F'(e) is
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the cumulative normal distribution function (CDF) given by,
x
F(X,pu,0)=Pr[X <z]= / fx dt, (3.2)
—0o0

where fx is the normal distribution function given by,

Fo o) = — exp<—(x_'u)2>. (3.3)

oV 2 202

The first terms (first iteration) for the rework, conformance and scrap states in Figure
3.3 correspond to the areas of the red, white and green regions in Figure 3.4. The second
iterations for the rework, conformance and scrap states are also the areas of the red,
white and green regions in Figure 3.4 but with a different target mean po. The terms
are also regulated by the probability of rework from the first iteration 1 — F(U, u1,0).
The rework, conformance and scrap for the third iteration again involve a different
target mean us and are regulated by the probability of rework from the first and second

iterations. For n iterations the expected profit is given by,

Conformance

B(PR) = 5P |S (U o) - FLom o [
=1 1=2
[1 - F(U, Hi—1, U)] - PC — Z Sc [F(L7 His U)] (3.4)
P —_———
Rework (previous iter.) Scrap

n

“Re (1= FUpn)] | T (L= FW.pecr.0)

i

Rework =2 Rework (previous iter.)

The first term in the square parenthesis is the probability of conformance after n iter-
ations. This will reproduce the terms in the conformance state (C') in Figure 3.3 The
second term in square parenthesis gives the probabilities of scrap and rework after n
iterations, reproducing the terms under the rework (R) and scrap (S) states in Figure

3.3. The constants, SP, PC, Sc, and Rc are the selling price, processing cost, scrap cost
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and rework cost respectively. The means, p; for ¢ = 1,2,..., 00, are the target means
for each iteration. The initial operation is ¢ = 1 and ¢ > 2 are rework iterations. For
practical situations n is a large number defining the total number of iterations necessary
to complete all the rework such that only scrap and conforming items remain. The

standard deviation is given by o.

Equation 3.4 determines the difference between the income generated from the compo-
nents that can be sold (first term) and the total production cost. The total production
cost includes the cost of scrap and rework, enclosed within the second set of large square

parenthesis and the initial processing cost (PC).

It is conjectured that to maximise the profit an optimal mean can be found which is the
same for every iteration (the initial processing and all rework iterations). This is proven

here.

Theorem 3.1. There is only one oy that satisfies

max {PR(H)} :

where p = [p11, 2, . . -, foo) . Such that p1; = pop:, Vi3 [1, 00].

. To avoid confusion with bracketed terms, let total profit (T'P) be equivalent to ex-
pected profit term (E(PR)) in Equation 3.4 (for this theorem and proof). Differentiating
Equation 3.4 with respect to each p; and setting to zero, T P;/0u; gives the stationary
point (maximum)! for each iteration i. A general expression for the maximum for each
iteration is sought. Although i — oo, in general the number of rework iterations for
a batch of components will be finite. However, there is always a diminishingly small
probability that rework will exist and more iterations will be required. Let the total
number of rework iterations be n, where in practical cases n will be a large number
but in the general case n = co. Consider the optimal means for the last three rework

iterations?,

20%1n [‘M} + L% - U2} , (3.5)

1
= 5

!The stationary point is shown to be a maximum after the proof is completed, rather than showing
each stationary point for ever ¢ is a maximum. This is shown in Appendix A
>The three expressions for Hopt, » Hopt,,, and popt  (Equations 3.5 to 3.7) are derived in Appendix

1
B by first considering a finite number of rework operations.
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1 1
Hopt,, 1 = m {202111 {20& (f(‘ﬁn)a

+&(vn)B + 3Rc+ 2SP + Scﬂ (3.6)

+L2—U2},

w2 = 57y {20 | 4 (€
—&(vp)B —3Rc—2SP — Sc) &(vp—1)
+&(pn)a + E(vn) B — 28 (pn—1)a

+7Rc—|—4SP+3Sc>] + L% — U2}.

There are two cost terms defined as &« = SP + Rc and 8 = SP + Sc and £ is the error

function given by,

2 et an U :i h et
£e) = = /O et and (v) = — /O at (3.8)

where,

\/5(_:“@' + L) and v; = \/i(_,ul + U) (39)

P 20 20
For i = n, pept, is purely a function of the relative costs and relationship between the
specification limits (L and U) and the manufacturing variation o. The second to last

optimal mean, fiopt, ,, is a function of the costs, specification limits, o and the last

P
optimal mean, popt . The third to last optimal mean, popt, ,, is a function of the costs,
specification limits, o and the last two optimal means, fiopt, , and fiept, - Notice that the
earlier optimal means are functions of all subsequent optimal means; thus to establish
the value of the first optimal mean, one must first establish the value of the last optimal
mean, then the second to last optimal mean and so on. Accordingly a new subscript j
is defined such that j = [n,n—1,...,1]. From Equations 3.5 to 3.7 a general expression

for Mopt,; can be constructed where,

2n—Jq

1 T,
Hort; = 5L {202111 [ L } + L7 — UQ} (3.10)
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and I'; is given by,

Lj =141 8(vj41)]
T+ 270000 1)

+ 2" I Re 4+ 2t gp 4 on=(+D) g,

The nt® term is always

flopt, = 2(L1_U) {202111 [i] + 12— U2} : (3.12)

Lemma 3.2. Given that L, U and o remain constant for each iteration, to prove the

conjecture, [; = opt, Vi3 [1,00], it must be shown,

T T
R which reduces to
a 2nitlal, (3.13)
Fj = 2Fj+1‘n—>oo'

The last three terms of I' (Equation 3.11) increase as a factor of two for each iteration.
The third term, 2"*(3'“)5(4,0%1)@, can increase up to a maximum of a factor of two
for each iteration, when ¢;41 = 1. Thus, it remains to be shown the maximum rate
of increase, per iteration, for the first two terms of I' is two, in the limit n — oo.
This is shown by applying linear stability analysis. A new subscript m is defined where
m=[n—1,n—2,...,1] where m is the next point after m + 1. Let f(I') =T',/2" "«
and let a fixed point be defined such that

Ly =T =17 = f(T). (3.14)
A small deviation from this fixed point is,
L1 =T 4+ 00 41.
Therefore at the next step,
ory, =T, — T

= f(Tmt1) — I (3.15)

= f(I™* + 6T pmq1) — I
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Since 0I',,,+1 << I'* a Taylor series expansion around I'* can be implemented giving,

d
f@* 46T 01) =T + 0T 47 + 00T, ).
dr I'=I"x
Close to the fixed point the second order terms O(6I'2,, ;) are very small and can be
neglected. Recognising f(I'*) = I'*, from Equation 3.14, the above equation can be

rewritten as

ST = f'(T*) 6T i1

where f" =df/dl" and
(%) = —£(v) + 1. (3.16)

The maximum value of Equation 3.16 is f/(I'*) = 2 for all values p 3 R. Thus, the equal-
ity in Equation 3.13 is satisfied in the limit as n — oo proving the lemma and completing
the proof, confirming the same optimal mean must be applied for each rework iteration
to maximise profit. Thus the Markovian method (outlined by Bowling et al. [2004] and
Selim and Al-Zu’bi [2011]) which implicitly uses the same mean for every iteration, is
justified and greatly simplifies the expression for total profit, given in Equation 3.4 in

iterative form. O

3.1.2 Multiple-Feature Iterative Manufacturing from First Principles

A logical extension to Optimal Mean Setting with one feature is the production of
multiple features. If multiple features are created in series the optimal mean for each
stage is the same as considering each one individually. However, several features may be
produced in one stage (parallel processing). This is fundamentally different as there are
multiple rework routes for each feature. The simplest type of parallel processing is dual
feature processing, where two features are created prior to inspection, a specific case of

a general parallel system.

Figure 3.5 indicates the processing of two features prior to inspection, reminiscent of the
one feature case in Figure 3.1. Inspection processes are implicit at the end of the initial
state and the three rework stages. The three rework states are initially fed from the first
manufacturing operation (I), which can also cause scrap and conformance. After initial
processing, the single feature rework states (2) and (3) may receive components from
themselves (i.e. items are reworked but still don’t conform and require further rework)
or from the dual feature rework state (4) (i.e. only one feature conforms when reworked
in state 4). The dual feature reworking state (4) may only receive components from the
initial operation and from itself, if after dual feature rework both features still require

rework. As in the single feature rework case, all components eventually conform or
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FicUure 3.5: Manufacturing flow in two-feature parallel process

are scrapped. The initial probabilities of scrap (prs), conformance (prc) and the three
rework states (pr2, pr3 and pr4) are illustrated on Figure 3.6. The Sx, and Ry, terms
indicate scrap and rework respectively for features where i defines the specific feature.
There are three separate probabilities for the rework region, prs to pr4, whilst the
scrap regions are grouped into one probability p; s, irrespective of what feature caused
the scrap. Scrap for any one feature results in the whole component being scrapped,
whereas one or more features can be reworked. Khasawneh et al. [2008] was the first
to define the probabilities of rework, scrap and conformance for dual features in this
way, however, their method does not allow for correlation between features, which may
occur particularly if two or more features are produced on the same machine or a single
machining operation is responsible for the creation of multiple features. For example,
the diameter and eccentricity of a hole may be inspectable features but produced from

a single drilling operation. The bivariate normal distribution allows for the possibility
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FIGURE 3.6: Dual feature rework, conformance and scrap

of correlation and is given by,

1 ~1 o1 — )\’
(a1, 22) = exp ( )
( ) 2ro1094/1 — p? 2(1—p?) o1

() e () () )

where p = corr(x1,x9) = cov(xy,z2)/0102. The cumulative distribution of this function

(3.17)

allows the rework, conformance and scrap probabilities to be calculated and is given by,

1 o
F(x1,23) :/ / f(t1,t2) dtg dty

In general there are no closed form solutions to this equation, but solutions exist in terms
of the error function and this form of integral is well supported in numerical packages

such as Matlab’s moncdf function (Mathworks [2012]). The probabilities pr 2 to pr g are
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computed as follows:

o Ug
Pr2 = / / f(t1,t2) dta dty = F(oo,Us) — F(Uy,Uy)
Ui Lo

- F(OO,L2)+F(U1,L2),

Ul o0
pr3 = / / f(t1,t2) dta diy = F(Ui,00) — F(Uy,Uy)
L1 Ug

- F(Ll,OO)+F(L1,U2),

Pr4 = / / f(t1,t2) dta dty = F(o00,Ug) — F(Uy,00)
Uq Usg
4+ F(ULUy),
(U1, 1) (3.18)
U1 U2
PL.C :/ / f(t1,t2) dta dty = F(U,Up) — F(Ly,Uy)
L1 Lo

—  F(Uy, L) + F(Ly, La),

L1 e’} e e} L2
PLS =/ / f(ti,t2) dta dty  + / / f(ti,t2) dto dty

L1 Lo
—/ / f(tl, tg) dty dty = F(Ll, OO) + F(OO, LQ)

—  F(Lq,Lo).

These initial probabilities determine the proportion of items going into the various states
illustrated in Figure 3.5. In total there are eight CDF evaluations in Equation 3.18 which
increase as 2”1, where n is the number of features. Although the computational expense
of evaluating CDF functions is relatively low, owing to the speed-up methods detailed
by Genz and Bretz [2002] and Genz [2004], it is simple to half the number of CDF
evaluations by rearranging the univariate distribution axes. The univariate axes can be

3

reversed so the axes run from oo to —oo”, such that rework occurs towards the origin as

shown in Figure 3.7.

For n-features, the rework, scrap and conformance probabilities can be calculated using

3Generally one would expect positive dimesnions for features, but since the dimension of a feature
is a function of the refernce measurement location, negative dimensions are possilbe. This justifies the
extension of the axes to —oo.



Chapter 3. Optimal Mean Setting 59

Key
D S: Scrap
LS R: Rework

pI,C Single feature
rework

pLZ Dual feature
rework

P
L4 Scrap

3

Feature X,

Conformance

Feature X,

FIGURE 3.7: Dual feature rework, conformance and scrap with rearranged axes

the approach to determine rectangular probabilities discussed in Nelsen [2006]. A rect-
angular region can be defined by L = (L1,...,L,) and U = (Uy,...,U,), where L; < U;
Vi=1,2,...,n and where (L,U) is an n-dimensional rectangle (n is the number of fea-
tures at a given stage). The vectors L and U represent the lower and upper specification
limits for each feature as indicated on Figure 3.7. Taking the Cartesian product of n
intervals, A = (L1,U;) x (La,U2)X, ..., x(Ly,Uy,). A cumulative distribution function
(CDF) F: R™ — [0, 1] is given by the integral of the multivariate distribution function,

T 1 1

Flapu, S :/ / I

@2 =] ) e
(3.19)

t—p)TS (-
exp{—( ) 5 ( N)}dtl...dtn,

where X is a k-dimensional random vector X = [X7, ..., Xi], p is a k-dimensional mean
vector p = [E[X1],..., E[X}]] and X is a kx k covariance matrix, ¥ = [Cov[X;, Xj]], i =

1,...,k; j=1,..., k. The probability enclosed in the rectangle A = (L, U) is given by:
PA:P(LI <X1 SUla"‘aLn <Xn§ Un);

which can be expressed as,

1 1 1

Pa= Z Z e Z (_1)i1+i2+m+inF (milﬂw’i2’ s 7$in) . (3'20)
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where,
Lij = Lj if ij = O,
Lij = Uj if ij =1

The probability of rework is simply,
Pry =F(U,pu,X) — Py
and the probability of scrap,
Ps, =1—-FU,pu,%). (3.21)

The mechanics of Equation 3.20 are illustrated in Figure 3.8 for a two feature example
with features X; and Xo. Let L = [L1, Lo] and U = [U;, Us] be the lower and upper
specification limits respectively. The means and covariance matrix are g = [u1, u2] and

3 = [02, po102; po102, 03]. Thus, the probability of conformance is,

P1,c

(3.22)

+ o+ o+

The first line of Equation 3.22 refers to calculating the probability enclosed within
the blue rectangle, shown in Figure 3.8(a). The second line of Equation 3.22 refers
to calculating the probability enclosed by the magenta rectangle in Figure 3.8(b) and
likewise for the remaining lines and figures. It follows that pro = F(L1,Usz) — F(L1, L2),
pi3 = F(Ur,Lg) — F(Ly, L), pra = F(L1, L) and prg = 1 — F(U;,Us). The number of
CDF evaluations increase by 2™ using this method. Therefore, only four CDF evaluations

are required in this two-dimensional case, as opposed to eight using Equation 3.18.

The profit equation for two features follows the same principles as the one feature profit
equation given in Equation 3.4, albeit the rework and scrap terms are more complex. The
flow of components through a dual feature manufacturing system and the probabilities
of components occupying each state for four iterations are illustrated by Figure 3.9.
Theorem 3.1 demonstrated there was only one optimal mean to maximise profit for
the production of one feature. However, Assumption 3 is not upheld in the case of
manufacturing dual features. This is because there are three varieties of rework, where
only dual feature rework (state 4), is equivalent to the initial manufacturing operation
(State I). The single feature rework states, (2) and (3), are each equivalent to the example

presented in Theorem 1, but the dual feature rework state (4) is clearly different as two
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F1GURE 3.8: Evaluation of 2D rectangular probability

features are involved. By considering the flow of features through the manufacturing
process in Figure 3.9, it becomes clear the means for dual feature rework are different
to the means for single feature rework, even though the features are the same. The first
iteration (Figure 3.9) (superscript I), produces conformance, scrap and three varieties
of rework, represented by the blue, red and green regions in Figure 3.7. For the second
iteration (II), the probability term for the X; rework state (2) is represented by the
Rx, rectangle in Figure 3.7. Similarly the probability term for Xy rework state (3)
is represented by the Ry, rectangle in Figure 3.7. The first probability value for the
dual feature rework stage (4) is given by the Rx, x, rectangle in Figure 3.7. Features
processed by the single feature rework states (2) and (3) may require additional rework
even after processing. Thus, iteration III and IV for states (2) and (3) contain functions
of pa1, p22 and o, corresponding to processing a feature independently of the other
feature (i.e. only one feature required rework). Additionally, one or other of the features
reworked by the dual feature rework stage (4) may require single feature rework even
after dual feature processing. Therefore, iteration III and IV for states (2) and (3)
also contain functions of pu and 3 corresponding to features manufactured in parallel

(dual feature rework). It may also take several rework iterations to convert dual feature
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F1GURE 3.9: Probabilities of components in the scrap and rework states for four iter-

ations

rework to scrap or conformance, hence the squared and cubic powers for iterations III

and IV in state (4).

The scrap terms for each iteration are the products between the

relevant rework terms and the probability of scrap for that rework state, F'(L1, pu21,01),
F(Lg, p22,02) and F(L, py, %) for state (2), (3) and (4) respectively. The scrap and

rework terms for each rework state for n iterations, which are required to express the
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expected profit for a dual feature manufacturing system are given by,

RwPy = F([Uy, L), 1, 8) — F(L, p, %)
+Y RwPy,_, [1 = F(Uy, p2y,01)] + F(L, , %)
=2

[F([U17L2]7u7 2) - F(L,/,L, 2)] )

RwPs = F([L,Us], p, X) — F(L, p, %) (3.23)

+> RwPy,_, [1 — F(Us, pa,09)] + F(L, 1, 2)' ™"
=2

[F([L17U2]7/~1‘72) - F(L7“172)]7

e.)
RwPy =Y F(L,pu,%)F(L,pu, %),
=2

The scrap probabilities generated from the three rework states are given by Equation
3.24,

ST’PQ = {F([Ll,UQ],[,L,Z) — F(L,[,L,E)

+ Z STP2i71 [1 — F(U17u271, 01)} + F(L, M, E)ifl
=2

I:F([Lly UQ], M, 2) — F(L,u, 2)]} F(Ll, /L271, 0'1)

STPS = {F([ULLZLVH 2) - F(L7H72)
+> SrPs,_, [1— F(Us, pia2,09)] + F(L, p, %) (3.24)
=2

[F([U17L2]7/J/72) - F(L7“72)]}F(L2aﬂ272702)’

STP4 == SC4Z (1 - F<U7/J‘72)) F(L7I~I/72)l
i=1
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To condense the notation let T'SrP = SrPy + SrP3 + SrP4. Also the initial scrap can
be written,
SrP,=1—-FU,u,), (3.25)

The total profit for this two feature example can be written as,

TPy =SP[1—SrP(pu) — (TSTP(p, 2,1, p12,2)]

— [Rea RwPs(p, pa1) + Res RwPs(p, p12.2)
(3.26)

+Rey RU)P4(M) + SCPQSTPQ(IJ,, ,UJ271)

+S¢c3SrP3(p, pi22) + ScaSrPy(p)] — PC.

The single feature rework and scrap probabilities (RwPsy, RwPs, SrPo and SrPs9) are
functions of four means, p = [p11 1, 11 2] for dual feature rework, and p9 1 and p9 o for the
two single feature reworks. The initial scrap probability (S7P,) and dual feature rework
state (4) are functions of two means p = 11,1, p1,2]. Although p; 1 and pa; both apply
to the feature X, the first mean only applies when the second feature is also processed
along with the first feature, prior to inspection. The second mean (yu2 1), only applies
when the first feature is processed and inspected independently from the second feature.
This similarly applies to the Xo feature means. The distinction between the dual and
single feature means can be graphically illustrated by considering Figure 3.10, which
shows the scatter of 2000 points drawn randomly from a joint normal distribution. The
mean of the scattered points lies in the centre of the conformance region but due to the
geometry of the scrap and rework regions, a greater proportion of these points lie in
the scrap region since the scrap region is larger by 2L;1Lo (difference between the scrap
and rework areas). To ensure equal scrap and rework probabilities for the illustration
in Figure 3.10, piy;, = pz, = 5.0617. For a single feature (Figure 3.4) there are equal
probabilities of scrap and rework with the mean centred, y = 5. To further complicate
the balance between scrap and rework cost, the various rework regions (Figure 3.10) may
have different costs associated with them and the cost of dual feature rework is likely
to be the sum of the single feature rework costs. Therefore, to maximise Equation 3.26,
which has a mixture of dual feature and single feature rework, a total of four means

must be adjusted such that,

ﬂ'opt = max {TP2(M1,1, H1,2, 42,1, #2,2)} . (3.27)
AER

The vector, ﬂoph is the four element vector containing the optimal means for the dual
features as well as the single features. Note that the dual feature scrap and rework
equation (RwP4 and SrP,4) only involve dual feature probabilities and thus only the

first two means of ﬁopt apply to these states. Clearly the exact values of the optimal
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FicURrE 3.10: Scatter plot

means depends on the relative scrap and rework costs associated with the probabilities.

3.2 Markovian Modelling

The transitions of features and the associated components from one state to another
can be modelled using Markov chains. Bowling et al. [2004] introduced Markovian
modelling to the Optimal Mean Setting problem with subsequent contributions from
Khasawneh et al. [2008] for dual features and Selim and Al-Zu’bi [2011] for multiple
features manufactured in series. A Markovian approach allows the iterative expressions
for conformance, rework, scrap and ultimately expected profit (derived in Sections 3.1.1
and 3.1.2), to be simplified. Markovian modelling also allows a generalised expression for
expected profit to be derived, accounting for any number of features in any combination
of serial and parallel operations. Such a generalised expression has not been derived in

the literature.

This section introduces Markovian modelling to the problem of determining the expected
profit for manufactured features. This thesis makes no contribution to the field of
Markovian modelling but does to the application of Markovian modelling to Optimal

Mean Setting, specifically the contributions and objectives of this Section are:

1. Following existing literature, develop a Markovain model for the expected profit

from a single feature.
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Process (I)

Ficure 3.11: Random walk for the production of a single feature

2. Following existing literature, expand the single feature model to the production of
two features in series with reference to Bowling et al. [2004] and the corrections
made by Selim and Al-Zu’bi [2011].

3. Develop a new Markovian model for two features produced in parallel (dual fea-
tures), correcting the errors made by Khasawneh et al. [2008]. A numerical com-
parison between the re-formulated method and Khasawneh et al. [2008] methods

is made.

4. Generalise the new Markovian model to enable expected profit co be calculated for
any number of features in any combination of parallel and serial manufacturing
sequences or a combination of both. This new expression is then applied to a

numerical example in Section 3.4.

3.2.1 Markov Modelling of Serial Production Systems

3.2.1.1 Single Feature - Serial Production

A serial production system strictly involves the manufacture of a single inspectable
feature prior to an inspection process. A component may comprise of several inspectable
features, which are created sequentially in a serial production system with an inspection
process at each stage. At each stage there are three possible states; conforming, scrap
and rework, which can be thought of as states of a random walk. The conforming and
scrap states are absorbing, such that if a component enters one of these states it cannot
move to another state. Rework is a transient state, since a component in a rework state
may move to a conforming, scrap or another rework state. Figure 3.1 illustrates the
manufacturing flow for a single feature, which can be depicted as a group of transient
and absorbing states shown in Figure 3.11. The arrows indicate the possible flow of
components from the input to the various states, conforming (C), Scrap (S) and rework
back into the initial state (I). The p values give the probability of transferring between

these states. All components entering at the input eventually end up in the scrap or
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conforming states. Once in an absorbing state it is impossible to leave it. The presence
of these absorbing states and the fact it is possible to enter the absorbing states from
the other state in a finite number of steps, make this an absorbing Markov chain. The
average time components spend being reworked and the final conformance and scrap
probabilities can be extracted from the fundamental matrix, (M) and the long-run
absorption matrix, (F'). The construction of these matrices is outlined by Bowling et al.
[2004], but elaborated here, drawing detail from Grinstead and Snell [2006].

The probabilities or going from one state to another (short term probabilities) in Figure

3.11 can be represented by the transition matrix P, given by,

I c S

I prL1 PLc PLs
P=c 0 1 0 , (3.28)
S 0 0 1

where the values pr1, p1.c and pr s are the probability of rework, conformance and scrap

respectively. These correspond to the areas noted in Figure 3.4. These probabilities are

*© 1 ~(e=pw)?
pri = e 22 dx
L 2mo?

given by,

/U 1 —ep? q
I,C = € 20 €T
b L V2mwo? (3.29)

L 1 — (=2
prs = e 22 dx
—oo V2102

These expressions correspond to the terms from the first iteration for the rework, con-
forming and scrap states on Figure 3.3. As already stated, an absorbing Markov chain
must have at least one state, 7, that is absorbing such that P(i,i) = 1. Consequently
P(i,j) =0, V j # i since each row of the transition matrix P must sum to 1. States C
and S in Equation 3.31 satisfy this property. The transition matrix can be written in

canonical form,

TRS ABS
TRS R

@ . (3.30)
ABS | 0 | I

The sub-matrix @ is a t-by-t matrix giving the probabilities of going from a transient to
another/same transient state, where t is the number of transient states. The sub-matrix
R is a t-by-r matrix giving the probabilities of going from a transient to absorbing state.
The value r is the number of absorbing states. The 0 sub-matrix is a r-by-t zero matrix

and I is a r-by-r identity matrix. Iterated multiplication of the P matrix gives the
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probabilities of items transferring to other states for each iteration. For the first, second

and third iterations P is:

0 I

pm_|Q@ R||Q R|_|Q R+QI
0 Ijlo I 0 I

i Q> R+QI
oo I

Q R| |Q R+QR+QR
0 I 0 I '
Let n be the number of iterations required such that all the components end up in either

the scrap of conforming states *. Thus, by induction P" is®,

pn:[Q" (I+Q+Q2+---+Q"1)R]
0 I '

In the limitS as n — oo, the term Q™ — 0. Let M be the infinite sequence,

1
— 2 “ e ©_ -
M=1+Q+@Q+ - +Q% =1

Thus, in the limit as n — oo, the P-matrix becomes,

0 MR
P> = .
0 I

The matrix M in known as the fundamental matrix and gives the expected number of
times item spend in a transient state j, given they started in a transient state 7. In the
context of Figure 3.11, this is the average number of times items are in the rework state.
The long term absorption probabilities are calculated from the product of the R-matrix

(probabilities of going from a transient to an absorbing state) and the M-matrix,
F =MR.

The F-matrix gives the long run absorption probability of items ending up in state j
after starting in state <. The M and F matrices are used to attribute the cost of rework
and scrap as well as determine the total number of conforming items that may be sold.

For the manufacturing sequence in Figure 3.11, given the transition matrix in Equation

“The QR terms are always the same size as the R-matrix (t-by-r), hence matrix addition is valid.

®Note a second identity matrix (I) appears when the like terms of R are collected outside the brackets
for the (1,2)44 entry of P". This identity matrix (I) is the same size as QR rather than the I-matrix
which has size r-by-r.

5Since the rows of Q are strictly less than one. The largest eigenvalue of Q is less than one, thus
Q" - 0asn—
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FicUure 3.12: The flow of 10,000 components with one inspectable feature through a
single stage serial production system

3.28, the average time the feature is reworked and the final probabilities of conformance

and scrap are,
I

1

M=(T-Q)'=; [m }:

(1-Q) ul=1om
and

c s

C .S

FeMxR=1 b1 b1
1—pir 1—p11

The mechanism that generates the values determined by the M and F matrices can be
illustrated using a numerical example, shown in Figure 3.12. The figure describes the
flow of 10,000 components, with one inspectable feature, through a single stage serial
production system. The process means, variances and lower and upper specification
limits were arbitrarily chosen as p =5, 0 = 1, L = 3 and U = 7 respectively. The
numbers of components in each state are illustrated by the length of the bars (Figure
3.12). The initial manufacturing operation produced 228 scrap and rework items while
9545 conformed. Of the 228 rework items, five were scrapped after the second iteration
and the remaining 223 conformed after two rework iterations. The average time the
items spent being reworked is the sum of the probabilities of items entering the rework

state, which is given by the geometric series,

1

< 1.
1 —p11

[e.e]
Pt Pi Pt Y Pl = < [pr
r=1
This is the same value given by the M-matrix which corresponds to items spending
an average 1.0233 times being processed by Stage I (this can be verified from the nu-

merical values given in Figure 3.12). Similar sequences exist for the final conformance
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Process (I)

F1cURrE 3.13: Random walk for the production of a two features in a serial production
system

probability,
pLC +pLcpLl +pLe p%,l +. ZPI cpr = 7 < |prif <1,

and the final scrap probability,

pLS + PLS PLI + PLS Pi1 + - ZPI SPLI =

where both expressions are given by the F-matrix. Markovian modelling allows these
expressions to be determined without having to generate them from first principles,
which would get overwhelmingly complex for a larger numbers of features. The same
expressions can be found by generalising the iterations shown in Figure 3.3 providing
the mean p is kept constant for each iteration, in accordance with Theorem 3.1. The

expected profit for this one feature, serial manufacturing example is given by,
E(PR) = SP fic — PC—SC fiz — RC(m11 — 1),
where RC', SC and PC are the rework, scrap and processing cost rates. The elements,

f1,; and my ; are the elements of the M and F' matrices.

3.2.1.2 Two Features - Serial Production

The errors made by Bowling et al. [2004] (corrected by Selim and Al-Zu’bi [2011]) for

the production of two features in series are explained in this Section.

Figure 3.13 shows the flow of components and the transition probabilities of items trans-

ferring between states for a two stage serial production system. The transition matrix
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F1GURE 3.14: The flow of 10,000 components with two inspectable features through a
two stage serial production system

is given by,

I II C S

I [ prr pn 0 prg
11 0 poun pioc pis
C 0 0 1 0
0 0 0 1

(3.31)

Following the analysis outlined for a single feature in Section 3.2.1.1 the M and F

matrices are,

1
1 PLC
I—prr (1=pr)(1—pmmn)
M = . (3.32)
11 0 T
1 —pn
and
C S
priipi,c YRS Pp111P1L,S
I-p)d—=pmu) 1—pr (1 —pr1)(1—pmmn)
F— . (3.33)
I PIL,C PILS
1 —pn 1 —pun

Figure 3.14 illustrates the flow of 10,000 components through a two stage serial pro-
duction system where the process means and variances were chosen as p; = g2 = 5
and 01 = 09 = 1. The lower and upper specification limits for each stage were chosen
as In = Ly = 3 and U; = Uy = 7. The quotients under the conformance and scrap

bar charts (Figure 3.14) give the total numbers of scrap and conforming components
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after stage I (geometric series). As can be seen from the bar charts, only three itera-
tions were required to convert all 10,000 items into scrap or conforming items. Only
the 9767 (out of 10,000) conforming items from Stage I entered Stage II. Again three
iterations were required to convert these features into scrap and conforming items. The
total conforming and scrapped items from Stage II can be calculated from the F matrix
terms, fiic and fir,s. The values of these terms requires careful interpretation as they
were wrongly interpreted by Bowling et al. [2004]. The fic and fir,g values give the
long term probability items passed to the conforming and scrap states from Stage II,
relative to the number of items that entered State II. However, fic gives the long term
probability that items successfully passed through both Stages I and II, the final con-
formance probability and not just the probability they successfully pass through Stage
I. In a similar manner, the f1g term not only gives the probability items were scrapped
after Stage I, but also the probability that items passed Stage I before being scrapped
at Stage II. This clarification was originally given by Selim and Al-Zu’bi [2011]. Because
the fiic and fi1 g terms are relative to the number of items that entered Stage II, each
are multiplied by the quotient prc/(1 — pr1), determining the total input from Stage
I into Stage II. The quotient from the M matrix, which gives the average time items

spent in rework for Stages I and II, is also displayed in Figure 3.14.

The expected profit for the system is,

Confrom from I

p
E(PR) = SP fic — |PCy1 + PCy —2
I —prr
p1s pLc
— | S8C ’ +S5Cy ——— 11.S
" 1-pu 1 —pr fo, (3.34)
SN—— SN——
Scrap from I Conform from I

prc

= | BC1 (g = 1) + RO, (mun = 1) 37
g

Conform from I

This equation is different to Equations 1 and 2 from Selim and Al-Zu’bi [2011]. All
three solutions are correct however, the interpretation of the second scrap cost gives
rise to the difference in form. The scrap cost at Stage II in Selim and Al-Zu’bi [2011]
is the summation SCj 4+ SCs. In Equation 3.34 of this paper, SCs is considered to

be the cost of scrapping an item at Stage II, which may or may not include the cost
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FI1GURE 3.15: Random walk for the manufacture of two features in a parallel production
system

of scrap at Stage I7. Additionally the scrap value maybe rework dependent, such that
the scrap value may increase or decrease depending on the number of rework iterations.
For example, an additive rework operation may increase the scrap value of an item
with successive rework iterations. Provided the scrap costs are appropriately assigned

Equation 3.34 agrees with the solution presented in Selim and Al-Zu’bi [2011].

3.2.2 Markovian Modelling of Parallel Production Systems

The simplest form of a parallel system is the production of two features in parallel, dual
feature production. Figure 3.15 depicts the flow of items with dual features through
the initial processing stage (I) to the conforming or scrap states, C, and S respectively.
Items can pass directly into these absorbing states from state I, or via one of three types
of rework (transient states, 2, 3 and 4) associated with a transition probability p; ;. The
three rework states correspond to rework for the X, feature, the X, feature or both X3

and X, features together. The associated transition matrix is,

"This is a decision that must be taken depending on the processes and the value assigned to the
item at various stages in the manufacturing route. The scrap value may depend on factors such as the
potential use for the item in another application or the amount of material that can be redeemed.
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I 2 3 4 c s
I pPr1 Pr2 PI3 P4 PLCc PLS
2 0 p22 O 0 pc p2s
3 0 0 0
p_ D33 P3,Cc  P3,S (3.35)
4 0 pa2 P43 Pa4a Pac PasS
e} 0 0 0 0 1 0
0 0 0 0 0 1 |

The p; ; values are given from Equation 3.20 where ¢« =1,2,...,C,S, j =1,2,...,C,S

for dual feature processing (the initial state (I) and dual feature rework state (4)). The

p-values for single feature rework probabilities are given by,

Following the method outlined in Section 3.2.1.1 the M and F matrices are:

and

I
1

0

p22 = 1-2(Uy),

p2c = P(Up)— @(Ly),

p2,s = P(Ly),

p33 = 1—®(Uy),

pc = @(U2) — @(La),

p3s = P(La),

pai = pi; for i=1[2,3,...,C,9].

2 3 4
D12 P13 Pr4
(1—p22)(1 —paa) (1—p33)(1—paa) 1—paa
1
0 0
1 —poo
0 1 0
1—ps33
D42 D43 1
(I—p2o)(1 —paa) (1 —p33)(1 —paa) 1—paa

(3.36)

(3.37)
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c s
I fic Ji,s
5 p2.c p2,s
I —poo 1—poo
F= 3 p3.c D38 (3-38)
1—p33 1-—p33
4 fac fas
where,
fro=pro+ Pb12P2,C P1,3P3.C Pr,4aP4a,C
’ ’ (1—p22) (1 —paa) (1—p33)(1—psa) 1—paa’
o p— P1,2P2,8 DP1,3P3,5 Pr1,4P4,S
’ ’ (1—po2) (1 —paa) (1—p33)(1—paa) 1—paa’ (3.39)
3.39
fic = Pa2p2,C D4,3P3,5 bac
’ (1—p22)(1—paa) (1—p33)(1—paa) 1—paa’
fig = P4a2p2,s P4,3P3.S P46

(1—p22)(1 —pas) (L—p33) (1 —paa) 1—pas

Although Khasawneh et al. [2008] specified the system in this way, the meaning of the
entries in the F-matrix were incorrectly interpreted leading to an incorrect definition
of expected profit. The columns in the F-matrix correspond to the absorbing states,
conforming (C) and scrap (S). The rows in the F-matrix correspond to a particular
transient state; the initial processing stage, or one of three rework states. The first entry
in the F-matrix (f1,c), is the probability items eventually conform given the number of
items in the initial processing state (which is all the items). It gives the final probability
of conformance and the adjacent entry fi g gives the final probability of scrap. Entry fo ¢
is the probability items eventually conform given the total number of items that went
into the X;j-feature rework state (state 2). This won’t be all the items, some will have
conformed or been scrapped directly from the initial process and others will only require
Xy rework or X7, Xo rework. The same principles apply to state 3, and the entry in the
F-matrix, f3 c. The entry, fs ¢, defines the probability of components conforming given
the number of components in state 4, but irrespective of the path taken. Therefore, f4 ¢
is not only the probability of items going directly from state 4 to conformance but also

includes components that go from state 4 to state 2 or state 3 before finally conforming.
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The expected profit for a dual feature case is defined in general terms as,

E(PR) = SPDLC — PC — (SCl DI,S+
+ S8Cy Dyg + SCy D3 s + SCy D4,s) (3.40)

— (R01 mio + RCq mi3 + RCq m1,4),

where SP is the selling price, PC' is processing cost, SC' and RC' are the scrap and
rework costs respectively. The subscripts refer to the costs at a given state. The D
values are the final probabilities of items going directly from one state (first subscript)
to the conforming or scrapped states (second subscript). The crucial difference between
D and the F-matrix values is that the D values only apply to the number of items in a
state going directly to an absorbing state. For the first term in Equation 3.40, we wish
to determine the income generated from the numbers of components that eventually
conform. Since all the components start in state I, Dy c = fic. However, this pattern
is not repeated for the other D probabilities. For example, Do and D3g are the
probabilities items go from states 2 and 3 to the scrap state. The equivalent fsg and
f3s terms give the probabilities of items going from states 2 and 3 to the scrap state,
assuming they originally started in these states. This is not the case since all components
initially go through state I, and state 4 may feed states 2 and 3. To determine the total
proportion of items in the various states, the feed-ins and feed-outs of each state must be
known. Since the processing of rework is dynamic (it takes several iterations before all
rework is converted to conforming or scrapped items), a numerical illustration is helpful
to illustrate the flow of items through the system. Figure 3.16 describes the paths of
10,000 components where p1 = pus = 5, 01 = 03 = 1.55 and the specification limits were
set at L1 = Ly = 3 and U; = Uy = 7. The quantities represented by each D value are
explained with reference to Figure 3.16 under the bold headings below.

Explanation of the Dy g value

Multiple subscripts separated by a semicolon (Figure 3.16) indicate items have come
from more than one source. For example, Cy 3, indicates the conforming items at the
third iteration where the items have come from the second, third and fourth states.
Figure 3.16 shows the first iteration produced 1872 scrapped items and 6449 conforming
items. Therefore, the Dy g value is the initial probability of scrap, given by p; s which

is illustrated by Figure 3.7, such that,

Dis =p1s.
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FI1GURE 3.16: The flow of 10,000 components with two inspectable features through a
dual stage production system

Explanation of the Dy ¢ and D3 ¢ values

Additionally, during the first iteration all three varieties of rework totalling 1679 rework
items were produced. The probabilities of items entering the rework states (2, 3, and 4)
are pr 2, pr2 and pra (Figure 3.7). These inputs into states 2 and 3 only apply during the
first iteration however, there are other inputs during the second iteration. Processing
the single feature rework (states 2 and 3) during the second operation generated 78 scrap
and 635 conforming items. There were also 78 items each, feeding back into states 2 and
3 from the states themselves (rework requiring further rework). The stacked bar graphs,

5.4 and Ry, also indicate there was an additional smaller input of items from state 4.
This occurred as there was the possibility that after reworking the dual features, one
feature would conform but the other would require additional rework. The probability
that items fed into state 2 from state 4 is given by prapr2. The total probability of

components from state 4 feeding state 2, over all iterations, is given by,

o
PLaPL2 + PLaPia + Prapis + - = Z PLAPL2
r=1
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where 7 is the iteration number®. This a geometric series which can be written,

(o]
P12
> prapis = pra : © [pra| < 1. (3.41)

— — P12
A similar argument exists for components feeding into state 3 from state 4. Iterations
IIT and IV convert the remaining single feature rework components into scrap and con-
forming items. The final output from states 2 and 3 into the absorbing states (scrap and
conformance) must account for the two inputs, one from the first iteration and another

from state 4. The output into the scrap state from state 2 (D3 g) is given by,

pLaPL,
Dos = fos ((11—4131122) + p1,2> . (3.42)

Similar terms apply to state 3 and the probability of items conforming from these single
feature rework states (the terms are shown in Figure 3.16 to the right of the rework

stages).

Explanation of the D, s value

The dual feature rework state (4) initially received items from the first iteration with
probability pr 4. There were no other feed-ins to this state. The final output from state
4 into the absorbing scrap state must subtract the feed-outs into the two transient single
feature rework states (2 and 3). Recall the F-matrix value, f4 g, includes these feed-out
probabilities to states 2 and 3. The output from state 4 into the scrap state follows a

similar principle defined in Equation 3.41, given by,

P12
Dyg = : . 3.43
s = (722 (3.43)

A similar equation exists to define the probability of components going straight from

state 4 to conformance, as illustrated in Figure 3.16.

The interpretation of the M —matrix elements by Khasawneh et al. [2008] was correct.
Never-the-less, the interpretation of the elements are restated here for clarity. The entry
mi2 is the number of times the second state is occupied given the first state as the
starting point (hence mya < 1). The same argument follows for my3 and mp4. These
elements are used to determine the rework cost of the three rework states. The same

proportions can be found from my 2 and my 3 as the process is identical to the first state,

8In this discrete example, there are no further feed-outs from state 4 into states 2 and 3 after the
second iteration, however in a continuous production system there is always a diminishing probability
of feed-outs after r-iterations.
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Stats. Values Costs Values
L [8,13] SP [120]
U [12,17] PC [45]

o Oz =0z, =1| RC [0,15,12,20]
SC | [8,9,11,14]

TABLE 3.1: Specification limits, process variation and cost from the numerical example
from Section 4 Khasawneh et al. [2008]

albeit with fewer components. Note, my 4 is the probability the fourth state is occupied,

given the starting point is the fourth state, hence m4 4 > 1, due to rework.

The final form of the expected profit for this dual feature process is given by,

E(PR) = SP fic—PC—-SCiprs

I
- SOy <p1,4 (1 P12 > +p1,2> fa,s
— P14

- S5Cs <P1,4 <1M3> +p1,3> /3,5 (3.44)
P14

— SCy <1 PLS > pra — RCoymy 2
— P14

)

- RCg mis3 — RC'4 mi4.

The probability terms multiplying the four scrap costs (SCt to SCy in Equation 3.44)
are the difference between this correct expression for expected profit and Equation 5
from Khasawneh et al. [2008].

The impact of this revision on the optimal mean values and the expected profit was in-
vestigated by comparing the revision with the numerical example detailed under Section
4 from Khasawneh et al. [2008]. Table 3.1 outlines the specification limits, process vari-
ation and costs related to the numerical example. Figure 3.17 illustrates the expected
profit surfaces versus the process means, py, and px,. The expected profit from Kha-
sawneh et al. [2008] is represented by Case I and the expected profit given by Equation
3.44 is represented by Case II. The Case I expected profit was 71.1592 where the opti-
mal mean locations were p,, = 10.5514 and p,, = 15.6080 (Figure 3.17). The Case II
expected profit was 0.38% higher at 71.4287 with optimal means 0.38% and 0.27% lower
at g, = 10.5115 and p,, = 15.5651, respectively. Although the impact of the feed-in
and feed-out terms is of the order 0.1%, the terms become more significant depending
on the relative costs and the capability of the manufacturing processes. Figures 3.18 to

3.20 illustrate the difference between the optimal means and expected profit from Case
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FIGURE 3.17: Comparison of profit surfaces between Khasawneh et al. [2008] and
Equation 3.44

IT compared to the Case I model for: (1) increased process variation (o), (2) increased
scrap cost, (3) correlation between features (p). The numerical example detailed in
Khasawneh et al. [2008] was used as a reference set-up. The optimal means for each
case were found by maximising the expected profit (using Matlab’s fmincon function).
Each point on Figures 3.18 to 3.20 was created by finding the maximum expected profit
and corresponding optimal means for each case. The difference between the expected
profits between Case I and Case I is defined as AE(PR) = E(PR)"! — E(PR)" where
the superscript defines the case. The difference between the optimal means is defined as
Apfx, = /1%1 — ﬂg(l, where the tilde notation is used to represent the optimal mean. A

similar argument applies to the X5 feature.

The difference between the Case I and Case II expected profit increased by 4% when
the process variation was doubled (Figure 3.18(a)). An accompanying change of 1% to
the optimal means was also observed, illustrated by Figure 3.18(a). These changes were
driven by increased rework, due to higher process variation, making the impact of the

feed-in and feed-out terms more significant. Figure 3.18(b) clearly indicates that the D
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terms are around an order of magnitude less than the f terms, (note the Dy g and D3 g
curves are very similar). This reduced the impact of the scrap costs for Case II compared
to Case I, ensuring Case II yielded a higher profit. The magnitude of AE(PR) and Afi
were small for 0 /& 1, since both D and f terms were small which limited the effect scrap
costs had on expected profit (Equation 3.44). Therefore, the introduction of feed-in and
feed-out modelling had less impact on the AFE(PR) and A when process variation was
low. The same effect would be seen by adjusting upper and lower specification limits
(U and L). This would also alter the rework probability and therefore the significance

of the feed-in and feed-out modelling.
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F1GURE 3.18: Sensitivity of Cost and feed-in and feed-out probabilities to versus pro-
cess variation (o)

The relationship between scrap cost, AF(PR) and Afi was explored in Figure 3.19. A
scrap cost ratio multiplied each of the scrap cost constants (SCy to SCy). There was
a 1.4% difference in expected profit between the two cases for a scrap cost ratio of five
(Figure 3.19(a)). This was accompanied by a difference in the order of 1% between the
optimal means. The values of the D and f terms in Figure 3.19(b) remained small,
only changing between 0.3% to 13% compared to the changes of between ~ 1200% and
~ 50000% for the D and f terms in Figure 3.18(b). These small variations were due
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to changes in the optimal means, which affected the rework probability and hence the
values of the D and f terms. Never-the-less, the two orders of magnitude absolute
difference between the D and f terms lead to differences between the Case II and Case

I expected profit and optimal mean values.

Varying the other cost values, SP, PC' and RC' also influenced the difference between
the Case II and Case I optimal means and expected profit. However, the influence is
orders of magnitude less than changes to the scrap costs so the results are not shown as

they are deemed insignificant”.
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F1GURE 3.19: Sensitivity of Cost and feed-in and feed-out probabilities to versus scrap
cost

Correlation between the features where, —1 < p < 1, affected AE(PR) between 0.24
and 0.3, decreasing with increased correlation. (Figure 3.20(a)). The values of AE(PR)
were an order of magnitude less sensitive to variations in correlation than with vari-
ations in process standard deviation and scrap costs. The effect on Aji was also an

order of magnitude less, with the greatest values at slight negative correlation (Figure

9The feed-in and feed-out terms affect the total scrap cost and therefore how far the means shift
towards rework. Altering the other costs will affect the cost balance and accordingly adjust the optimal
means. However, the effect is not very significant as the other costs are not directly related to the feed-in
and feed-out terms (Equation 3.44).
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3.20(a)). Figure 3.20(b) indicates the values of the D terms are an order of magnitude
less than the f terms. The values of the Dy g and D3 g terms initially rose with in-
creased correlation before reducing to close to zero. The inverse trend occurred with
the fo ¢ and f3 ¢ terms. The f; 5 and Dy g exhibited similar contrary behaviour. This
implies the Dy s/ fa,5, D35/ f3,s and Dy g terms are more significant than the fo g, f3 5
and f4 s terms, highlighting the importance of feed-in and feed-out modelling. Although
the AE(PR) and Afi values were small compared to the values in Figures 3.18(a) and
3.20(a), increased process standard deviation or greater scrap cost values would lead to
greater AE(PR) and Afi values. The exact difference feed-in and feed-out modelling
makes in Equation 3.40, compared to Equation 5 from Khasawneh et al. [2008], depends

on the exact parameters of the problem.
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F1GURE 3.20: Sensitivity of Cost and feed-in and feed-out probabilities to correlation

(p)

In all three sensitivity analyses (Figures 3.18 to 3.20), the AE(PR) values remained
positive while the Afi values were negative. The maximum value of Dy s/ f2 5, D3 s/ f3.5
and Dy g is one or less, thus the D terms are smaller than the f terms. As a consequence,

E(PR)! — E(PR)! > 0. Since the cost of scrap in Equation 3.40 is less than Equation
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5 from Khasawneh et al. [2008] (given the same costs and process variances), the Case

IT optimal means are more scrap biased (lower) than the Case I optimal means.

It has been shown that correctly modelling the flow of components feeding in and out
of rework states affects the expected profit and optimal means. The impact that these
feed-in and feed-out terms have depends on the process variation, the relative costs
(particularly scrap costs) and correlation. Hitherto, only feed-in and feed-out modelling
for dual features have been considered. As the number of features increases, these feed-in
and feed-out terms increase exponentially as 3" — 2™, where n is the number of features.
It quickly becomes impractical to work out which feed-ins and feed-outs apply to which
state and non-trivial to determine the expected profit equation. For just four features
produced in parallel, one must calculate 65 feed-in and feed-out terms and apply them
to the correct rework states. The next section develops a method for defining these
terms for n-features processed in parallel and applying them correctly to the correct
rework state. This method allows the expected profit equation to be written directly for

n-features processed in parallel.

3.2.2.1 General Solution for Parallel Production

The primary difficulty in developing a generalised solution was establishing the com-
binations of rework states and feed-ins, and the probability of components entering or
transitioning between states. This difficulty was overcome by setting up two types of
matrix. The S-matrix is a binary matrix and indicates the existence of rework states
and whether components could enter a particular state from another state. The D-
matrix has a similar form to the S-matrix but determines the number of components
transferring into each rework state. The combination of S and D matrices correctly
defines the feed-ins to each rework state, dependent on the number of features. For
example, consider the dual feature production system shown in Figure 3.15. There are
two possible types of rework, single feature and dual feature, and there are separate S
and D matrices for each. For single feature rework, the xi-feature rework in state 2
can only feed into itself. This gives a ‘1’ in the first entry in the 'S matrix (Equation
3.45), the second entry is zero since the second state cannot receive xs-feature rework.
Similarly the xo-feature rework in state 3 can only feed into itself. However, the dual
feature rework state (state 4) can output both xi-feature and xo-feature rework, hence
the two ‘1’ entries in the last row of the 1§ matrix. For dual feature rework, the dual

feature rework state (4) can only feed itself and there are no other combinations of dual
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feature rework. Therefore, 28 only contains one entry, a ‘1’

T1 X2
2 1 0 (.1‘1) T1,T2
IS =3 0 1 (.CEQ) and QS =4 [ 1 ] (l’l,xg) (345)

41 1 | (x9,29)

The D-matrix entries follow a standard pattern and get turned on or off by combining
with the S-matrix. The D-matrix entries for single feature and dual feautre rework
are shown in Equation 3.46. Multiplying each matrix entry from the S-matrix with
the corresponding entry in the D-matrix gives the total probabilities of feed-ins to each
rework state for all rework varieties (single or dual feature for this two feature example).
Here the entries in the standard form of the D-matrix are the same as the ‘1s’ in the S-
matrix, however, this is not the case when there are more than two features. Therefore,

the S-matrix acts to filter out impossible rework transfers.

2 3
2 P12 0 4
D=3| 0  ps and 2D — 4 { Pia ] . (3.46)

P1,4PL2  PL4PL3
1-pra  1-p1s

4
The remainder of this Section shows how the S and D matrix are generalised to a
standard form, such that when the number of features (n) is changed the correct matrices
are generated. The generalised form is given first and then applied to a three feature
problem. The final paragraph in this Section explains how the probabilities of feed-outs
are determined and how the S and D matrices are combined with the selling price, scrap

and rework costs.

Let X = [x1,22,...,2N] be a vector of inspectable features, where N is the total number
of inspectable features. The total number of processing states, including the initial

processing state is given by:

N

k=1""
where k is the number of features requiring rework at each state. Thus, a process
with three inspectable features requires an initial processing state, three single fea-

ture reworks, three dual feature reworks and one triple feature rework. Let *C =
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{*egi1,8cpya, ... Fegim) be the set containing the k-type combinations where m de-

termines the cardinality of the set,

N!

MV — R (348)

m =

corresponding to the number of k-type combinations. The value, 8, determines the

starting element for each k-type set where,

k-1 N
= —_ 3.49
-5 s o
For £k — 1 = 0, the 8 term is zero. Examining the combinations when £ = 1 a
three feature process, X = [v1,79,13], gives 1C = {lc1,b ol ez} = {[z1], [22], [23]}-

For k = 2 the combinations are 2C = {?c4,%¢5,2¢c6} = {[r1, 22, [21, 23], [12, 23]} and
3C = {3¢y} = {[x1, 22, 23]} for k = 3. All the possible combinations are given by Y
where {kC C T}Vke{l,z...,k}' The set Y is monotonic in k£ such that the first sub-
set of combinations, 'C always represents single feature rework(s). The second subset
of combinations, 2C, always contains dual feature rework and so on. In general form

YT ={'C?2C,...FC}. Thus, for three inspectable features,

T = {{!C},{*C},{’C}}
= {{la,t ot a3} {Pea 65,7 o}, {Per))

= {[le [.7}2], [x3]> [xl,xQ], [l‘1,x3], -

(3.50)

(29, 23], [x1, T2, 23]}

It is possible to construct a matrix whose elements determine the inputs into the various
rework states. The generalised form of such a matrix S is given by Equation 3.51. To
condense the subscript notation let § = S+ m. Each column in Equation 3.51 represents

a k-type combination while the rows represent each rework state.

Feg i Fepra Fes
a | Aa-1841 Aa—ipt2 0 Aa-is | (Ta-1)
a+1 A 1 A ,B+2 s A 5 (T )
kS = won e A (3.51)
no Apeiger Mgtz Ageig | Y, 1

Note the matrix rows start from «, given by,

NI b NI
=24 LN L;V k:!(N—k:)!]’ (3:52)
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where the minimum value of « is two, corresponding to the first possible rework state

as shown in Figures 3.15 and 3.16 . The matrix elements are given by,

0 <« Fe; B {X:};
Nijj = (3.53)
1l = ij 3 {'I‘Z},

where ¢ and j refer to row and column number respectively. The Y elements on the right
side of Equation 3.51 refer to the subsets of Y. For a three feature production system the
values \; ; are populated as follows: For k = 1, Equation 3.48 indicates there are three
k = 1 type combinations. The first k = 1 combination gives '¢; = [x1] and Y1 = [21]
thus Equation 3.53 indicates A1 1 = 1. The second element \; 2 = 0, as Loy = [x2] is not
part of the set Y1 = [z1] and similarly for c3. All the A values for the 1S are displayed
in Equation 3.54 where the c-values along the top row and Y-combinations on the right

column are written out.

8 8
[

8
w

1§=5 (3.54)

5
oy
8

N

5
2
8

N

= O = = O O
_ = O = O = O
_ = = O = O O

~~ o~
8
—_
8
no
~—

.%'1,.%'2,.’,173).

An S-matrix exists for all k, where the size of the matrix is (n — 1) x m where m is

k-dependent. The S*-matrix for k = 2 is given by,

1,2 X1,T3 T2,T3

5 1 0 0 (171,1'2)
6 0 0 )

2g _ (1, 23) (3.55)
7 0 0 1 (mg,xg)
8 1 1 1 (:L'l,xQ,.%'g,).

For k£ = 3 the S-matrix is,
X1,22,T3

38 =3 [ 1 } (z1, 29, x3). (3.56)

The S-matrix determines where the rework feed-ins come from for each rework state.

The probabilities for each of these feed-ins is given by the D-matrix which has the
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general form,

« a+1
a Pw, oy 0
ayw+1 0 Pw,ou+1
k
D= 541 0 0
542 Pw, 5w +2Pw,aqw Pw, s +2Pw,cqp+1
l_pw,Ew—Q—Q l_pw,éu)+2
n Pw,nywPw,aw Pw,nwPw,aw+1

l_pw,nw

l_pwﬂlw

6+1

Pw,bp+1

Pw, 5 +2Pw, 5y +1

l_pw751u +2

Pw,nwPw, 6y +1
1=pw,nw

(3.57)

where a manufacturing stage is given by w = [[,ILIII,..., W], where W is the final

manufacturing stage. Where only one manufacturing stage is present the w subscripts

can be ignored. The D-matrix is the same size as the S-matrix where the top layer of the

matrix is a m X m matrix with only leading diagonal elements. These probabilities relate

to the probability of feed-ins to a rework state from the initial processing state. The

lower layer of the matrix has size (n—0 — 1) x m, where the probabilities in each element

refer to rework feed-ins from other rework states. The D-matrices for k = [1,2, 3], for a

three feature system are given below:

QD:

2 3
P12 0

0 Pr3

0 0

P1,5P1,2  PI1,5P1,3

4

0
0

D14

P1,5P1,4

1-p15 1-p15
PL6PL2  PL6PL3

1-p15

P1,6P1,4

1-pr6 1-p16
PL7PL2  PL7PL3

1—p16

P1,7P1,4

1-pr1,7 1-pr1,7
P1,8P1,2 P1,8P1,3

1-pr1,7

P1,8P1,4

1-p1s 1-p1s

5 6

P15 0
0 Pr6
0 0

P1,8P1,5  P1,8P1,6

1-p18

7
0
0

b7

P1,8P1,7

1-p1,8 1-pr1,8

8

1-p1,8

3D:8 [pLS]
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The product of D-matrix columns and S-matrix columns determines the probability of
components entering rework states from other rework states and the initial processing

state. The expected profit for multiple features from a single-stage can be written as,

E(PR) = SP fic — PC — Sr — Ruw, (3.58)
where,
N §+1
Srw =SCuw Pus — > (S(Jjw > [’fs\, (] j
k=1 j=a
k Djw,S
Dyiami—"—1 )
v[ 777]’.7 1 _ pjw,jw:| ) (359)

n
wa = E RCjw mw,jw.
Jj=2

For the scrap (Sr) term in Equation 3.59, ¢ is the manufacturing stage (e.g. stage I or
stage II) and the column numbering of the S-matrices is the same as the D-matrices.
The fraction term (last term) of the scrap equation in Equation 3.59 determines the
output from each rework state. One will recall from Section 3.2.2, the terms in the
F-matrix refer to the probability that items passing though the i*" stage will eventually
conform or become scrap. However, the exact route items take after passing through
the i*? stage is not given. This is not an issue for single feature rework states but is for
multiple feature rework states. The fraction term discussed above strictly accounts for

items passing from the i*" state to scrap or conformance.

3.2.2.2 Transition probabilities

The transition matrix is required to compute fic and the my; values in Equations 3.58
and 3.59. A generalised P-matrix is presented which can be determined from the S-
matrix. Computationally it is easy to generate the k-type combinations to find Y using
a combination package such as ‘combinator’ for Matlab (Fig [2009]). Thus, the S-matrix

is readily computable and the P-matrix can be found without further logical operations.
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The general form of the P-matrix is given by Equation 3.60.

I 2 3 n C S
w 0 pw2 Pw3z -+ 0 e Pwn  Pw,C Pw,S
2 0 0 pQ,C p2,s
S T : : :
P, = v (3.60)
S 1, : : :
n 0 krw Pnw,C Pny,S
cl o o0 0 cor e el el 1 0
S _0 0 S 0 1 |

for every w stage. The I' terms are k dependent such that,

k k k
Ly = Z Svlami Jviam)i (3.61)

where j is the column number. The ¥J terms are given by,

«a a+1 6+1
a pawyaw pawyaw+1 T pawaéw‘f‘l
a+1 Paw+1l,00 Paw+law+l " Poayw+1,60+1
n L pﬂwaaw pnwvaw‘i‘l e pnw,(sw‘f’l

where both the subscripts a and § are k-dependent. For a three feature example, the

following J-matrices are obtained (the w is dropped as only 1 stage is present):

2 P22 P23 D24

3 | P32 P33 D34 " 7
5 | P55 P56 P57
4 | P42 D43 Dagd
1.9 6 | Des5 D66 P67
“J =5 | ps2 P53 P54 |
7T | prs Pre D7
6 | P62 D63 P64
8 | P85 P86 P87
7| P12 P13 P14 - -

8 D82 D83 P84
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and
8

T = [Ps,g}-

Multiplying each column of ¥.J by each column of *S gives the *T" entries of the transition
matrix (Equation 3.60). For a three feature example the transition matrix is given in

Equation 3.63.

—
N
w
=
ot
[«
~
o
Q
n

P2 P,3 P14 P15 P16 Pu7 P8 PL,c PLs
p22 0 0 0 0 0 0 p2c pos
0 p3’3 0 0

0 P3,C D3,
0 0 pga 0 O
0

b4,c P4,S

p53 0 pss

0
0
0

(3.63)
0

P2 0 psa 0  pegs

0

0

0 psc pss
0 psc pes
0

0 prs pra 0 0 pr7 prc DP1,S
P82 D83 Ps4 Ds5 Ps6 Ds7 P88 DsC Ds.S
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

ot
O O O O O O o o o o
)
&
[\

Khasawneh et al. [2008] show how to translate the P-matrix into the M and F' matrices

required for the fic and mq; values in Equations 3.58 and 3.59.

3.2.2.3 General Solution for n-stage Serial and Parallel Production

A multi-stage production system may involve several parallel processes following serially
from one another, or parallel processes mixed with serial processes. Multi-stage serial
production systems were discussed by Bowling et al. [2004] and Selim and Al-Zu’bi [2011]
but could not deal with parallel production. A small but significant change is made here,
such that the formulation of the serial transition matrix and subsequent formulations
of the M and F matrices, are consistent with the methodology for parallel systems
discussed in the previous section. Figure 3.21 shows an initial processing stage (I), from
which scrap, rework and conforming items are generated. A distinction is made between
the rework state (2) and initial processing (I) such that rework is a separate operation to
the initial processing stage. This may or may-not accurately describe the flow through
a real production process (rework may occur on the same machine as the initial cut)
but only the cost value is relevant. This is conceptually different from past literature
where rework simply fed back into the initial processing stage. Figure 3.21 indicates the

feed-ins and feed-outs of each state. The transition matrix for this process is,
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Input Stage P Prc +pae XiNishe
_—
Q0T I O \
pI,Si f
Pl,zll ' b
1
P2, i
)| Rework [~ LD ¥ P
P2z | (2)  L.i._.._ P23 |
| |
o fis

FIGURE 3.21: Single-stage process

I 2 C S

1|10 pi2y prc DPLS

2 0
p_ P21,21 P21, P28 , (364)

c|0 O 1 0
s10 O 0 1

where 2, indicates stage one rework (state 2). For a single rework state process, the
probabilities of conformance, rework and scrap are identical to the initial probabilities
of conformance, rework and scrap. Therefore, the following simplifying conditions are
met,

Pr2; = P2y,215 and p1.c = P2;,C- (365)

The corresponding F' and M matrices are,

1,2
I jR——t

1—py,
M = Tl (3.66)
1
2 0 1—=pr1,2;
and
C S
p1,Cc p1,s
I 1=pr2; 1-p1,2
F = : (3.67)
9 pb1,C p1,s

I—pr2;  1-pro
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The expected profit for this one feature example is,

Conformance Scrap 15t state

E . y4%e; _—
(PR)=SP ——— —PC — SCipr,s

— D21,
3.68
o 502 pI,QI p21,S —RC 1 ( )
"1 p217211 " 1- P2y,2

Scrap ond giate Rework 214 state
Equation 3.68 reduces to Equation 3.70 by acknowledging the scrap terms can be reduced

by writing,

C = SCipy,s + SCy Pe2P205
’ 1 —pa2
where the cost of scrap is the same from state I and from state 2; hence, SC; = SCq,.
The probability of scrap from state I is the same as the probability of scrap from state
2; hence, p; g = pa;,5. The probability of rework components feeding into state 2; from
state I is the same as the probability of rework from state 2; back to state 2; hence,

Pr,2; = D2;,2;, therefore,

C(l _p1,21) :(1 _p1,21)SCI P15 — SC; P12 P1,8

C(l _p1721> :SCI pI,S(l - p21,21 +p1,21) (369)
C =8¢, 5
1- pI,QI

Hence the expected profit is,

E(PR) —sp-PC _ po_so PS5
1 _pI,QI 1 _p1721
(3.70)
— ROy, P2
1 _p1721

which is identical in form to Equation 2 from Bowling et al. [2004] and Selim and Al-Zu’bi
[2011].

The format shown in Figure 3.21 can easily be extended to a multi-stage process. An
absorbing Markov chain was developed for a two-stage example as shown by Figure 3.22.
As in Figure 3.21, the probability feed-ins and feed-outs to each stage are illustrated.
Examination of the F and M matrices from this two-stage process reveal a general
method by which the scrap, rework and conformance terms in Equation 3.59 can be
used recursively to model a multi-stage process where each stage can have multiple
features produced in parallel. The transition matrices for the two stage I and II are

given by Equation 3.71,
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InpUt Stage Prc Prc&p2c Stage Piic Puc & P2y 0 |n(|;5:i)1e
o [T -] . m [T
Pis | Pus :
Pz, | , ' Pzy ,; '
Pz2.c ! P20 !
Pz[z_._ Rework [ i Penzu Rework 1
! (20 L._._._._. ' E (P21 B R :
! i Pa.s I 1 ! Poys I
e : | e e e ' i
I
_____ _________
Piss Paysr Pzys & P2y,
FIGURE 3.22: A two-stage serial production process
I 2 C S 1 2 C S
I 0 pi2, pPe DPus I 0 pu2y Puc  Pus
2 | 0 p22 P20 P2, 2 | 0 poy2n P2, P21,S

Py = 1,21 I, I . and Ppy= 11,211 11, 11,

C 0 0 1 0 c 0 0 1 0

s |0 0 0 1 s |0 0 0 1.

i i i (3.71)

where 21 indicates the rework state from the first stage and 21 is the rework state from

the second stage. Additionally to Equation 3.65, the probabilities of conformance, scrap

and rework in the rework state (2) for the second stage are identical to the initial stage

probabilities such that,

Pi1,2;; = P2y,2y;

The F' and M matrices for both stages are,

F,

and

21

and  pr,c = p2y,C-

(3.72)

C S C S
pLC PLS I piL,C PI1,S
1-p1,2 1-pr12 1-pi1,2 1-pi1,2
! U | for stage I Fp = u I | for stage 11
pLC PLS 9 pi,C PI1,S
1-prz;  1-prz I 1-pme; 1-piey
(3.73)
I 21 I 21
1,2 11,2
1 121;112 1 1 151);1121
1| for stage 1 M, = 1| for stage I1. (3.74)
1 1
0 1—pr,2; 2 0 1=pr1,2;
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The expected profit is given by,

2nd

Final conformance Scrap I 15t state Scrap I state
~ . N Pr2; P2;,5
E(PR) = SP fI,C’ fH,C _PCI - SCIPI,S _SCQI#
1 - pI,QI
Rework I 274 state
—_—N—
1
— RCy —— — |PCyu—  SCupns,
L= proy —_—— (3.75)
Scrap 11 15% state
211 P211,8 1
— SOy, PSS pey 2 fc
1 - pII,QH 1 - pII,QH

Scrap II 209 gtate Rework II 214 state

In the same manner to Equation 3.69, the scrap terms related to the scrap from stage I
are reduced to,
P18

SC, .
11 - pI,QI

The scrap terms related to scrap from stage II can be written as follows,

C = SCy pus + SCy P2 205
1 — pay,2n
where the cost of scrap is the same irrespective whether the scrap originates from state 11
or 2y, SCy; = SCy ;1. The probability of scrap from state II is the same as the probability
of scrap from state 2;; hence, pi;, 5 = pa;;,.5. The probability of rework components feeding
into state 2;; from state II is the same as the probability of rework from state 2;; back

to state 2;; hence, p; o, = po, 2;, therefore,

C(l - pn,zn) :(1 - p211,2n) SCII DPu,s — SCH D121 P11, S

C(l - p11,21) =5Cq pII,S(1 — P211,21r +p11,2n) (3.76)
C =SCy —5
1 - pII,2H

Therefore Equation 3.75 can be written in a reduced form as,

E(PR) =SP ficfuc — (PCy+ PCy fic)

- [SC’I (pIS) 4+ SCy <p“5> fI,C] (3.77)
1 - p21,21 1 - pII,QH

— RCy mpo, — RCyy, minoy, fic

This Equation also corresponds to Selim’s Equation 2 for two features which is illustrated
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in Appendix C since the two equations are not as obviously equivalent as the one feature
case (Equation 3.70). Notice that the second stage scrap and rework terms are multiplied
by the final conformance probability from the previous stage pr.c/(1—pr2,). This allows
each stage to be modelled as a single-stage process reminiscent of Equations 3.64, 3.66
and 3.67. In essence, the scrap, rework and conformance probabilities from each stage
are multiplied by the final conformance from the previous stage (for the first stage this

is one). Thus, the expected profit can be written as

E(PR) =SP[] fic
= . (3.78)

— Z {(PCi + Sr; + Rwi)} H fhc,

i=I =1

where W is the total number of stages. This Equation is similar to Equation 2 from
Selim and Al-Zu’bi [2011], however, it is necessary to use the f; ¢ and f; ¢ terms to allow
for a multi-state stage (a stage with parallel processing). The Sr; and Rw; terms are

given from Equation 3.78.

3.3 Codification of Equation 3.78

The calculations and logic required to determine Equation 3.78 (detailed in Sections
3.2.2.1, 3.2.2.2 and 3.2.2.3) were codified in Matlab to enable automatic computation of
expected profit for a given number for features with a combination of serial of parallel
operations. The Matlab code is given in Appendix E. The main function, StageCostFun,
requires the following inputs;
MU: The means for each feature
sigs: Standard deviation of the manufacturing process for each feature
rho: Correlation matrix determining the correlation between features

U: Upper specification limit for each feature

L: Lower specification limits for each feature

R_Cost: Rework cost vector for the rework costs for each state of each feature

S_Cost: Scrap cost vector for the scrap costs for each state of each feature
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Key

| Outputs from StageCostFun into auxiliary functions

—L) Output from auxiliary functions into StageCostFun

Connections within function

1

SMat = kSMatrix (Dl'la: = kDMatrix

Coms = combinator(N,k) (k,alpha,eta,m,UP,UPv) m,PIs,alpha,delta,eta)

Output permutations Initialise SMat Initialise DMat
Check Compute
membership prob. terms

[PIs PSs PMat] = Probs nVars
(MU,L,U,sigs,rho)

Probability of transferring bet tat
robabllity ottransierring between states Determine all Probabilities for
possible rework each
Ps, |r— P — Py, combinationsfor Combo. P
T all states P
]
—| F-Matrix | | M-Matrix |
T
v )
Scrap Rework P-Matrix ( P
Terms (Sri) Terms (Rwi)

P-Matrix

FiGURE 3.23: Diagrammatic overview of the code developed to calculate expected
profit

StageCostFun

The main function, StageCostFun, returns the elements necessary to compute Equation
3.78 where the major elements of the function are shown in Figure 3.23. The first
operation determines all possible permutations of rework, as shown in mathematical form
in Equation 3.50. The Matlab function combinator (Fig [2009]) is used to determine
all permutations given the total number of features (V) and the number of features
requiring rework (k). From this the S-matrix can be found and the binary ~-values
determined (Equations 3.51 and 3.53). The probabilities of components transferring
between sates is computed by an axillary function, Probs_nVars, which is explained in

more detail under the proceeding headings. The three outputs from the Probs_nVars
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function feed back to the StageCostFun function. The first, pg,, is a vector containing

the probabilities components are scrapped. This is used by the Scrap terms (Sri) section
of the code, which is a codified version of the Sr, term given in Equation 3.59. The
second output, P, is the transition matrix which is used to generate the F and M-
matrices as described by Equation 3.30 and the description in Section 3.2. The F'-
matrix terms are used to define the final conformance from a particular stage and the
scrap quantities. The Rework terms section of the code requires the M-matrix (Rw,,,
Equation 3.59). The third output from Probs_nVars, P,, contains all the probabilities
of components going from a stage I, I, II1, ... to another state. These terms are required

by the kDMatriz function, discussed below. The three outputs from this StageCostFun

function correspond to the Sr;, Rw;, F; c and F} ¢ terms in Equation 3.78.

kSMatrix

The function kSMatriz is an auxiliary function that takes inputs relating to all the pos-
sible rework permutations (UP and UPv) and returns the S-matrix into StageCostFun.
The other inputs are constants given in Section 3.2. The function uses the permutations
provided by combinator (Fig [2009]), from within StageCostFun, and determines the
binary values of the v elements of the S-matrix (Equations 3.51 and 3.53).

kDMatrix

This auxiliary function is used by StageCostFun to determine the D-matrix which is
used in the computation of the scrap terms, Sr,, in Equation 3.59. The probabilities
of components transferring between states is given by the Pj, vector which is present in

StageCostFun and computed by Probs_nVars.

Probs_nVars

The principle purpose of this function is to return the transition matrix (P) to the
StageCostFun function. The Pr, and Pg, vectors, which are also outputs, are part of
the complete transition matrix. The code first determines all the possible probabilities
of transferring from one state to another (Ppy vector). The Matlab function muncdf
(Mathworks [2012]) is used to determine the values of these probabilities, which assumes
the distributions are normally distributed. This is a codified version of Equation 3.19
which utilises the procedures illustrated by Genz and Bretz [2002] and Genz [2004].
Although normal distributions are assumed, this is not a limiting assumption and the

moncdf function (Mathworks [2012]) can be replaced by another function to compute
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probabilities for distributions that are non-normal (see Chapter 4). The S-matrix is
used in conjunction with the Ppg vector to generate the transition matrix for a given

number of features.

3.4 Optimal Mean Setting Using Equation 3.78 - Numer-

ical Examples

To demonstrate the use and application of Equation 3.78 and the code described in

Section 3.3, a series of numerical examples are given.

a. Single stage, single feature, serial production.
b. Two stage, two feature, serial production.
c. Single stage, two feature, parallel production.

d. Multiple stages, multiple features, combined serial and parallel production.

Section 3.1.2 showed in order to find optimal means for the processing of dual features,
the means for single feature rework and dual feature rework must be optimised sepa-
rately. This was contrary to the literature where no distinction was made between single
feature and dual feature rework. The numerical examples given in items a to d do not
use this new method (single and dual feature rework are not optimised independently),

which is covered in detail in the proceeding Section 3.5.

For each example the steps involved in obtaining the expected profit equation are de-
tailed. This is intended as a useful reference on the application of Equations 3.78 and
3.59 as well as demonstrating the effectiveness of these equations over the methodology
in the current literature; which are wrong for parallel cases and require the expected

profit equations to be derived from first principles for serial cases.

3.4.1 Serial Production
a. Single Feature Numerical Example

For the production of a single feature in a single manufacturing stage, w = I and the

constants in Table 3.2 from Section 3.2.2.1 apply.
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1-feature | m | B | a |
k=1 110|212

1

TABLE 3.2: Constants for one stage, one feature example

Equation 3.78 is,
I I 0
E(PR) = SP[] fic = Y_{(PCi+ Sri+ Rw)} [ fic:
i=I i=I =1

where the S and D matrices required for Sry are,

x1 2

1
'S=2 1] (@) amd D=2|py | @
This makes the Sr; and Rwp terms,
1 2

Srw=S5Cupus— 3> (Scj [’“52,]- kD, S D ,

2,j
’ 1 M. -
k=1 j=2 Pj.i

Sri = SCipys — <S(12 {pm 1“D ,
— D22

RwI = RCQ mp2.
Therefore, the expected profit as generated by Equations 3.78 and 3.59 is

2 S
E(PR) =SP fic — PC) — SCipys — 502% ~ RCymua.  (3.79)

1,41
The F' and M matrices are found using the method described in Section 3.2, which
contains the f and m terms in Equation 3.79. The transition matrix (P), which is
necessary for the computation of the F and M matrices, is found using Equation 3.61

from Section 3.2.2.2 where,

2
'T= ZISV[2,2],2 1-]\1[2,2],2 and 1J =2 [pg}z } )

Substituting this value into the general formulation for the transition matrix (Equation
3.60), gives the Transition matrix shown in Equation 3.64 in Section 3.2.2.3. The F
and M matrices (Equations 3.66 and 3.66 ) are also given providing all the elements

required to compute Equation 3.79.
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F1GURE 3.24: Variation of expected profit, scrap, rework, and total production costs
with the mean (u)

The specification limits, process variability and costs are shown in Table 3.3. These
values are the same as ‘Numerical example - 5.1 Single-Stage system’ from Bowling
et al. [2004] and the numerical example from Selim and Al-Zu’bi [2011]. The profit,
scrap cost, rework cost and total production cost (from Equation 3.79) are plotted in
Figure 3.24 versus the mean (u). Production cost is E(PR) — SP fic, rework cost is
RCom,; 2 and scrap cost SCip; s + SCQ%.

mean to minimise the production cost, Hopt = 10.09 (obtained using Matlab’s fmincon

The plot clearly reveals the optimal

function (Mathworks [2012])), is not the same as the optimum mean for maximum profit,
topt = 10.61, located by the markers. Thus, finding the optimal mean to minimise
the scrap and rework cost will not maximise the profit since it may pay to have a
greater rework cost if it increases the number of conforming components that can be

sold (reducing scrap).

Variable | Value | Costs | Value
U 12 SP 120
L 8 PC 25
o 1 RC 10
SC 15

TABLE 3.3: Inputs for the plot in Figure 3.24

b. Two Features, Two Stage Numerical Example

For the production of two features in two manufacturing stages W = II and the following

constants from Section 3.2.2.1 apply.
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1-feature | m | B |a | n |6
k=1 2101210

TABLE 3.4: Constants for one stage, one feature example

The general equation for expected profit becomes,

II
=SP][] fic Z{ (PC; + Sri + Rw;) }Hflc (3.80)
=1

=1

The S and D matrices for each of the stages, I and II, have the same form as the single

feature case given by,

x1 2

1
1s=» [ 1 } (x1) and D=2 {pml] (2),
for the first stage (I) and

T 2

1§ = [ 1 ] (x1) and 1D:2 [pII,QH} (2),

for the second stage (II). The Sr,, terms are given by,

Srw—Sprws—ZZ<SC [527] pﬂws])

7]
k=1 j=2 ]'_p]un]w

where the unbounded summation term is not present as there is only one term inside

the square brackets. Each of the iterations for the I and II stages are,

Sry = SCrprs — (SC’zI [pl 21 1])151]) for stage 1
— P21,
11,5
Sty = SCrpir,s — <SCQH [pn 2 1]9}> for stage 11
— P211,211

The rework terms for the two stages are,
RwI — RCQI mLQI and RU}H — RCQH mILQH.
For both manufacturing stages (I and II), the expected profit Equation 3.80 becomes,

E(PR) =SP fI,C fII,C — PC, — SC; P1,s — SC: 1% RCQI my 2;
— D1
I (3.81)

P21 P211,S
— |PCy — SCIIpH,SI - SC2Hﬁ — RCQH Mi2n fLC'
— P2
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As in the previous example, a single feature and a single manufacturing stage, the
transition matrix (P) is required to establish the F' and M matrices which contain the
f and m terms. As there are two stages, there are two transition matrices and hence

two I' values given by,
lr — IS 1J
w E v[2,2,2 Jv[2,2],2

where

2 2

Lri=o [ D2r,21 ] for stage I and 'Jp = 2 [ D2y1.21 } for stage II.

Substituting these value into the general formulation for the transition matrix (Equation
3.60), gives the Transition matrices shown in Equation 3.71 in Section 3.2.2.3. The F
and M matrices (Equations 3.73 and 3.74) are also given, providing all the elements

required to compute Equation 3.81.

The process specification limits, variability and costs are shown in Table 3.5. The data
is the same as ‘Numerical example - 5.2 Two-stage system’ from Bowling et al. [2004] the
numerical example in Selim and Al-Zu’bi [2011]. Note the scrap cost from the second

stage in the literature is defined as SC) = SC} 4+ SCy = 10 + 12 = 27.1° Figure 3.25

Variable Value Costs | Value
U [12 17] SP 120

L [8 13] PC [25 20]

o Oy, =0z, =1| RC | [1512]

SC [10 27]

TABLE 3.5: Inputs for the plot in Figure 3.24

illustrates the production, scrap and rework costs as well as profit in a two-dimensional
version of the plot in Figure 3.24. Profit is given from Equation 3.81, where production
cost is E(PR) — SP fic fu,c. Rework costs and scrap costs are associated with RCy,
and RCy,, and SCy, SCy, SCy; and SCy, respectively. The highest profit (71.41) was
obtained from Matlab’s fmincon function (Mathworks [2012]) with p,, = 10.466 and
fz, = 15.591, the same as Selim and Al-Zu’bi [2011]!!. The minimum production cost
is shown at the extreme low end of the p;, range (u,, = 8). This is because production
cost includes the cost of production in the first and second stages. If u,, was positioned
at the low end of the range, the majority of items would be scrap and would never

enter the second stage, therefore, they wouldn’t incur the second stage production cost.

1071 this thesis SCz is the cost of scrapping a component at the second stage which is inclusive all the
value added through the second stage manufacturing process. Thus SCs in this thesis is equivalent to
SC% in the literature.

"The two stage, two feature numerical example given by Bowling et al. [2004] was incorrect due to
errors in the expected profit equation detailed in Section 2.5.
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F1cURE 3.25: Variation of expected profit, scrap, rework, and total production costs
with the means (u,, and )

However, only a few items would conform after the second stage (few items to sell),
hence the profit is low. This highlights the importance of maximising profit rather than

attempting to reduce production cost.

3.4.2 Parallel Production
c. Two Features, One Stage Numerical Example

The production of two features in a single manufacturing stage is the simplest type of
parallel production, often refereed to as dual quality characteristics in the literature.

The value W =1 and the following constants apply,

1-feature | m | B |a | n |6
k=1 21012(2)|2
k=2 1124143

TABLE 3.6: Constants for one stage a two features

The general equation for expected profit for two features manufactured in a single stage

is,

I I 0
E(PR) = SP[] fic = Y _{(PCi+ Sri + Rwi)} [[ frc- (3.82)
i=I i=I I=I



Chapter 3. Optimal Mean Setting 105

The S and D matrices are for kK = 1 are given by,

1 T2 2 3
2 | 1 0 | (=) 2 P12 0
1S=3]10 1] (22 and 'D =3 0 D13

P1,4PL2  PL4PL3
1—pr,a 1—-pra

4 1 1 (azl,xg) 4

For k = 2 the § and D matrices are,

T1,r2 4

2524[ 1 }(161,1‘2) and 2D=4 [plA}.

The construction of the scrap terms is more involved for two features produced in par-
allel, due to the multiple terms in the S and D matrices and the two k-values and

consequently « and § values. The w subscripts are not shown as there is only one stage.

2 0+1 .
Sri =SCiprs =y <SCJ- ) [’“Sv o Dt 7 D ‘
oot 5,J

For k =1 and k = 2 the scrap terms are

Sri = SCiprs — SCy <p1,2 + Prabu > P2, } for k =1
L I1—pia) 1—pop

_ SC3 <p1’3 + p174p1,3> p3,5 :|
L 1—pa) 1—p33

— S0, p"“p“] for k = 2
|1 —paa

There are three rework terms for this single manufacturing stage (I), given by,
Rw; = RCy my2 + RCs4 my3 + RCy my4

Thus the expected profit from Equation 3.82 is,

1—prg

bL3 pLs
- 803 <p1,4 ( ) +p1,3> f3,5 = SCy ( >p1,4
1—pra 1—pra

)

E(PR) = SPfic—PC—5Ciprs—SCy <p1,4 ( P2 ) +p1,2> fo.s

- RCQ mLQ — RCg ng — RC4 m174.

As before, the transition matrix (P) is required to establish the F' and M matrices,

which contain the f and m terms. As k = [1, 2], there are two I'-matrices corresponding
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Stats. Values Costs Values
L [8,13] SP [120]
U [12,17] PC [45]
o Ogy = Ogy =1 RC [15,12,27]
SC [27,27,27,27]

TABLE 3.7: Specification limits, process variation and cost related for two features
produced in parallel in a single manufacturing stage

to each k-value, where the parameters of the J and S-matrices vary according to the

and 7 terms (given in Table 3.6).

k 1 1
Ly = Z SVianli Vi
The k dependent J terms are,

2 3
2 | P22 P23 4
1 2
J=3| p32 D33 and “J =4 [p4,4 },

4 | P42 P43

from which the transition matrix (Equation 3.60) can be constructed. The resulting
transition matrix is the same as Equation 3.35 shown in Section 3.2.2. The M and
F matrices are also illustrated in this Section (Equations 3.38 and 3.37 respectively).
This completes the information required to compute the expected profit for two features

produced in parallel in a single stage.

The process specification limits, variability and costs are shown in Table 3.7. To make
this example comparable to the production of two features in two manufacturing stages
the same data was used (Table 3.5 determined by summing the production cost for stage
I and II from Table 3.5. Similarly, the rework cost for dual feature rework was the sum
of the rework cost for each feature independently and the scrap cost was the sum of the
costs associated with scrapping each component independently. The scrap costs were
the same irrespective of which feature caused scrap, since a single scrap feature caused
the whole component to be designated scrap. Note, although a dual stage process was
examined in Section 3.2.2 (see input data in Table 3.1), the input data was changed to

match the serial production examples in Section 3.4.1.

Figure 3.26 illustrates the production, scrap and rework costs as well as profit versus
the mean settings p,, and pz,. While profit is given by Equation 3.82, production cost
is E(PR) — SP fic. Rework cost and scrap cost are also contained within Equation
3.82. The highest profit 71.17 (obtained using Matlab’s fmincon function (Mathworks
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F1GURE 3.26: Variation of expected profit, scrap, rework, and total production costs
with the means (p, and pu,,) in a single manufacturing stage

[2012])), with p,, = 10.537 and py, = 15.590 was =~ 0.3% less than achieved when each
feature was manufactured independently (previous example). The minimum production
cost was 46.753, located at p,, = 10.128 and p,, = 15.181. Since there was only one
manufacturing stage there was no monetary benefit to biasing scrap for the first feature

to reduce production cost, as was observed in the previous example.

d. Multiple Features, Multiple Stages

Equation 3.78 was derived in order to specify the expected profit for the production
of any number of features in any combination of serial and parallel operations. The
expected profit for all eight possible permutations for the production of four features
is illustrated here. This study gives the optimum number of inspection stations to
maximise the profit for the production of features. Since parallel operations combine
the production of at least two features, this removes at least one dedicated feature
inspection stage. Removing an inspection stage may have a financial benefit, but also
increases the risk of scrapping a component. Such a principle is analogous to a study
by Mittal and McNally [1994] (with a numerical example in Marsh et al. [2010]), where
the number of inspection stages were optimised to maximise profit for semiconductor
manufacturing. A numerical example is given here, derived from the production of four
features used by Bowling et al. [2004] and Selim and Al-Zu’bi [2011].

Bowling et al. [2004] and Selim and Al-Zu’bi [2011] showed the expected profit for the

four features produced in series, the other seven combinations of series and parallel
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FIGURE 3.27: Possible manufacturing sequences for four features

operations are considered are detailed by Figure 3.27. As was implicitly assumed in the

example from Bowling et al. [2004] and Selim and Al-Zu’bi [2011], the order the features

are produced is considered important, such that the first feature must be produced before

the second and so on. The inspection processes are not shown in Figure 3.27, but an

inspection process is implicit after each stage (after each block or column of blocks) and

applies just to the feature or features in that block or column. Therefore, Sequence 1

had four inspection processes, Sequence 2 had three inspection processes and Sequence 8

had just one inspection process, inspecting all four features in one inspection operation.

Table 3.8 gives the costs, process variations and upper and lower specification limits

used by the numerical example, which are the same data used by Bowling et al. [2004]

and Selim and Al-Zu’bi [2011]. The selling price was 120 units.

Feature
Parameter | 1 | 2 | 3 | 4
PC 25 1201|1215
RC 15|12 | 8 | 10
SC 10|17 ] 5 | 12
L 8 |13 ]10| 7
U 12 |17 | 14 | 11
o 111111

TABLE 3.8: Cost and process data for the four features

The scrap, processing and rework costs from the serial examples given by Bowling et al.

[2004] and Selim and Al-Zu’bi [2011] are not directly applicable to parallel processes.

To ensure continuity between the eight manufacturing sequences costs were allocated as

follows:
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e The scrap costs for parallel processes were cumulative. Therefore, if any one feature
was scrap, the sum of all the feature scrap costs in that parallel process were taken
as the realised scrap cost. For example, if feature 2 was scrap from Sequence 3
(Figure 3.27), the scrap cost was calculated as 10 + 17 + 5 = 32. Even though
features 1 and 3 may have conformed, the item was still scrap (due to feature 2).

Therefore it incurred the feature 3 scrap cost (as feature 3 was still manufactured).

e The processing costs were also cumulative. Thus, the processing cost for a parallel
operation was the sum of all the feature processing costs in that parallel operation.
Therefore, the processing cost for the second stage of Sequence 3 was, 20+ 12 = 32

(the feature 2 and feature 3 PC's).

e Rework created from parallel operations could apply to single or multiple features.
For the parallel operation (stage 2) in Sequence 3, the rework operations were
either single feature rework on feature 2 or feature 3, or dual feature rework on

both features 2 and 3. The rework costs were 12, 8 and 20, respectively.

Equation 3.78 was used to determine the expressions for expected profit for each of the
eight sequences shown in Figure 3.27. The means for each feature were then optimised to
maximise profit using Matlab’s fmincon function Mathworks [2012]. Two sets of results
were obtained, E(PR) and E(PR)—1I (Figure 3.28). The value E(PR) is the result from
Equation 3.78 while the E(PR) — I accounts for the cost of an inspection station, given
the inspection cost I. The presence of an inspection operation incurred a cost of 0.5
units with a further 0.5 units for each feature inspected. The inspection costs for each
sequence are tabulated in Table 3.9. The variation of the inspection costs was designed
to represent the likelihood that it would cost less to inspect several features together,
than to have a dedicated inspection stop for each feature, before manufacturing the next

feature.

The E(PR) results show Sequence 1 was the most profitable method of manufactur-
ing the four features and Sequence 8 the least profitable (Figure 3.28 and Table 3.9).
Sequence 1 was more profitable as total scrap cost was minimised, since the failure of
any feature to conform only resulted in the scrap cost up to that point. The failure
of any feature to conform in Sequence 8 resulted in the scrap cost for all four features,
irrespective of which one failed. For example, consider the possibility that feature 2 was
designated scrap in both sequences. The total scrap cost for Sequence 1 would be the
sum of the scrap costs for the first and second features, 27 units. The total scrap cost
for Sequence 2 would be 44 units, since the whole item would be scrapped despite the
fact that the other three features may have conformed. The E(PR) — I results show

Sequence 1 was the least profitable and Sequence 6 was the most profitable. Reducing
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Seq. Optimal Means E(PR) | I | E(PR)—1I | Rank 1 | Rank 2
1 [10.389, 15.537,12.674,9.660] | 41.7523 | 4 37.7523 1 8
2 | [10.482,15.535,12.667,9.660] | 41.4665 | 3.5 | 37.9665 4 7
3 | [10.388,15.570,12.666,9.660] | 41.6588 | 3.5 | 38.1588 2 5
4 [10.388,15.537,12.711,9.659] | 41.6501 | 3.5 38.1501 3 6
) [10.482,15.535,12.711,9.659] | 41.3642 | 3 38.3642 6 4
6 [10.388,15.615,12.710,9.657] | 41.4215 | 3 38.9215 ) 1
7 [10.516, 15.568,12.664,9.660] | 41.2628 | 3 38.7628 7 3
8 [10.560, 15.613,12.708,9.656] | 40.8657 | 3 38.8657 8 2

TABLE 3.9: Expected profit and means for the eight manufacturing sequences
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F1GURE 3.28: Expected profit for the eight manufacturing sequences

the number of inspection operations was clearly beneficial, however, not worth the ex-
tra scrap cost risk by producing all four features in parallel (Sequence 8). Despite the
similarity between Sequences 6 and 7, Sequence 6 was ranked 1 while Sequence 7 was
ranked 3 (heading ‘Rank 2’ on Table 3.9). The relatively high cost of scrap for feature
4 was the primary factor in this. While it was worth the higher scrap cost to reduce the
number of inspection operations in Sequence 6, this was not the case in Sequence 7 as

the increased scrap cost of feature 4 was too great.

3.5 Optimal Mean Setting for Parallel Production

Section 3.1.2 revealed that greater profit could be gained from parallel production sys-
tems by optimising the feature means separately depending on the number of features in
a rework stage. This new optimisation procedure for Optimal Mean Setting is referred

to a Case II while the conventional methodology present in the literature is referred to
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as Case I. In this section the corrected Markovian methodology (from Section 3.2.2) was

used to compare the Case II Optimal Mean Setting method with the Case I method.

3.5.1 Comparison of Case I and Case II Optimal Mean Setting Method-

ologies for Two Features

The flow of features through a dual feature production system was illustrated by Figure
3.5. For the Case I methodology, the mean settings for features x1 and xo in the initial
state and state 4 are the same as x; in state 2 and zo in state 3. In the Case II
methodology, the mean settings for features 1 and 2 in the initial state and state 4 are
optimised separately to the single feature rework in states 2 and 3. Therefore, two means
were optimised using the case I methodology and four means were optimised in the case
IT methodology. Two sets of cost values and statistical moments applicable to the dual
feature Optimal Mean Setting problem were available from Khasawneh et al. [2008] and
Peng and Khasawneh [2014]. Different values have been used here to better graphically
highlight the profit differences between the Case I and Case II methods. The cost values
and statistical moments of the problem are shown in Table 3.10. The scrap costs are the
same irrespective of which state a component is in when it gets designated scrap. Both
Khasawneh et al. [2008] and Peng and Khasawneh [2014] used different values depending
on the scrap state. For example, the scrap cost for a component scrapped from state 2
was less than the scrap cost for a component scrapped in state 4. This implies that the
rework operations add value to a component. This is true for certain operations such as
additive manufacturing processes, however, it is not necessarily true for material removal
operations. Ultimately the cost of scrap at various states depends on the specifics of the
component, features, process and the manufacturer’s contracts in the way scrap cost is
determined. A flat cost value for each state was used for this example as it simplifies
the subsequent analysis for determining the effect of the Case II optimisation method
versus the Case I optimisation method. An example of varying scrap costs for each

rework state is given in Appendix D. The expected profit given from Equation 3.78

Variable Value

U 6 6]

L [4 4]

Re [25 25 50]

Sc [150, 150, 150, 150]
SP 500

PC 50

b (2,0;0,2]

TABLE 3.10: Dual feature numerical example input parameters
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FIGURE 3.29: Profit surfaces for Case I and Case II (optimisation of two and four
means respectively)

was plotted for values of p11 and p; 2 in Figure 3.29. Case I represents the variability
of expected profit for pi1 and pq2. The case II surface was generated by inputting a
H1,1, f1,2 pair and resolving the po 1 and pg 2 values by satisfying Equation 3.78 for the
specified p11 and 12 inputs'?. The Matlab function ‘fmincon’ (Mathworks [2012]) was
used to implement this. The case II surface is higher at every point due to optimising the
single feature rework means separately from dual feature processing. This also yielded
slightly different p1 1 and p11 2 optimum values, as there was no compromise between dual
feature and single feature cost. The dual feature means were lower than the single feature
means, primarily due to the Ry, x, rectangle in (Figure 3.31). Components falling into
this region (Rx, x, rectangle) experienced double the single feature rework cost as well
as the increased probability of further rework. The double feature rework state did not
exist for a single feature, which allowed the single feature means to be biased to a greater
extent towards rework than the double feature case, without incurring a cost penalty.
The profits and Optimal Mean Settings are displayed in Table 3.11 which corresponds

to the markers on Figure 3.29.

The bar plot in Figure 3.30 shows the rework and scrap costs from the initial and
rework states, that were described on Figure 3.5. The initial scrap cost was less for
Case I compared to Case II (Sry bar in Figure 3.30)) as p} | and p} 5 were more rework
biased than pY'; and pf'y. Consequentially, the dual feature rework cost (Rwy) for
Case I was comparatively high due to this rework bias. The last two Case II means,
py 1 and py o, which applied to single feature rework, were higher than pj ; and pj o,

generating less Sro and Srs scrap from Case II, but more Rwy and Rws rework. There

2For Case II, p1,1, p1,2 are the means applied when both features are manufactured or reworked
prior to an inspection process. The po 1 and p2 2 means are applied when features are manufactured or
reworked independently.
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Value

Case I Profit 40.87

Case II Profit 41.66

Case I Production Cost 146.44

Case II Production Cost 145.75

Case I means (u 1, /4] 2) 6.85, 6.85

Case Il means (p 1, 19, 151, H39) | 6.75, 6.75, 7.02, 7.02

Case I Final Conformance Prob. 0.5933

Case II Final Conformance Prob. 0.5935

Case I Final Scrap Prob. 0.4067

Case II Final Scrap Prob. 0.4065

TABLE 3.11: Optimisation results
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FI1GURE 3.30: Scrap and rework costs from the initial and rework states

was a slightly higher production of dual feature scrap, Sry, for Case I compared to Case
II. The reason for this is multifaceted; firstly the probability of scrap from the dual
feature rework state (state 4) for Case I was 0.1481, but greater for Case II at 0.1622.
However, the probability of producing dual feature rework was greater for Case I with the
probability py 4 = ps 4 = 0.4418 compared to 0.4171 for Case II. Accounting for the initial
probability of components feeding into the dual feature rework state (state 4) and the
probability of rework back into the dual feature rework state, the probability for Case 1
was pra/(1—paa) = 0.7914 and 0.7155 for Case II. Thus the probability of scrap from the
state 4, for Case I was (pr4/(1 —pa4))*pss = 0.7914%0.1481 = 0.1172. For Case II the
scrap probability from the state 4 was lower at (pra/(1—paa))*pss = 0.7155%0.1622 =
0.1161, hence the lower scrap cost for Case II relative to Case I. Overall, the reduced
scrap and dual feature rework costs from the case II led to a reduced production cost
and a 1.93% increase in profit over Case I. The number of items eventually conforming

was also slightly higher in Case II.
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1q09876543210
FIGURE 3.31: Scatter plot with correlation (p = —0.8 and p = 0.8)
3.5.2 Influence of Correlation

Correlation alters the probability of components falling into single and dual feature

rework states, which in turn may influence the optimal means. Figure 3.31 indicates the

scatter of points with correlation, p = 0.8 and p = —0.8 where the correlation matrix is,
o 010
o 1 pPO102 '
pPO102 (o]

The black points correspond to the p = 0.8 value, while the blue points correspond to
p = —0.8. Table 3.12 indicates the differences between the number of points falling in
the various regions after one processing operation (defined in Figure 3.7) compared to
the uncorrelated example, where p = 0. Both positive and negative correlation almost
halved the probability of points falling in the single feature rework regions compared to
no correlation. Conformance was increased in both cases. The changes in scrap and dual
feature rework depended on the sign of the correlation parameter p. Positive correlation
almost quadrupled the probability of dual feature rework and reduced the probability of
scrap by around a quarter. Negative correlation reduced the probability of dual feature
rework by a factor of over 500 and slightly increased the probability of scrap. This is

clear from the orientations of the point clusters in Figure 3.31.

The effect of correlation on the optimal means and profits are tabulated in Table 3.13.
For p = 0.8, profits were greater for both Case I and II over the uncorrelated example due
to a reduced scrap and rework cost and higher overall conformance. The profit increase
when p = —0.8, for Cases I and II, was solely due to the reduction in production cost
(scrap and rework cost); the final conformance was slightly lower than the uncorrelated
example (Table 3.11).
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Region | p=08| p=0 | p=—0.8 | Ratio, p = 0.8 | Ratio, p = —0.8
Ry 0.0610 | 0.1083 | 0.0610 0.5632 0.5623
Ry9 0.0610 | 0.1083 | 0.0610 0.5632 0.5623

Ry1x1 | 0.0976 | 0.0252 | 5.62E-5 3.8730 0.0022

C 0.5608 | 0.4661 | 0.5608 1.203 1.203
S 0.2196 | 0.2922 | 0.3173 0.7515 1.0860

TABLE 3.12: Impact of correlation on the probability of components falling into rework,
scrap and conformance

The Case I means for p = 0.8 were lower than the Case I means with no correlation,
p = 0, to reduce the proportion of components falling into the Rx, x, region, given
positive correlation increased the probability of Rx, x, rework. The p}'; and uj', means
for p = 0.8 were lower than the '} and i, means for p = 0, for the same reason. They
were also lower than the pj, and ), means (for p = 0.8), as they were optimised
separately to the single feature means. Note, the uj; and uy, means are very similar
to the uncorrelated case (p = 0) indicating correlation did not affect the Optimal Mean

Setting for the single feature rework means.

The Case I means for p = —0.8 were also lower than in the uncorrelated case. To reduce
cost, the extremities of the negatively correlated scatter region in Figure 3.31 moved to
reduce the probability of scrap but not so far to make rework, specifically R;, R, rework,
too significant. This was achieved by shifting the mean of the distribution towards to
(0,0) compared to the uncorrelated case (p = 0), but to a lesser extent than in the
positive correlated case (p = 0.8). The uj'; and pj's means of Case II, where p = —0.8,
were also lower than the uncorrelated case for the same reason and again lower than
pi1 and pj o due to the differences between the case I and case II methodologies (as
explained in Section 3.2.2). The puy, and py, means from Case II were the same as the
uncorrelated and positive correlated cases as they only applied to single feature rework

and therefore were not affected by correlation.

The sensitivity of profit to correlation is plotted in Figure 3.32 for both cases. The
difference between the two cases is shown by the orange line and corresponds to the scale
on right hand y-axis. In general, the greater the degree of positive or negative correlation
the higher the profit with a minimum profit existing at p &~ 0.22. The actual minimum
profit for a given correlation depended on the geometry of the scrap and rework regions
and relative standard deviations and tolerance bounds of each feature. As p — 1 the
difference between the two and four mean case diminished as all components designated
rework lay in the dual feature rework region. Thus, the benefit of separately optimising
the single feature rework means was lost as there was negligible single feature rework.
This is evident by considering Figure 3.31, the black points would converge on a single

diagonal as p — 1. The same converging effect occurs for p — —1, although the line
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0 Cases Value
0.8 Case I Profit 56.4038
0.8 Case 1I Profit 58.3309
0.8 Case I Production Cost 140.24
0.8 Case II Production Cost 138.93
0.8 Case I Final Conformance 0.6166
0.8 Case II Final Conformance 0.6181
0.8 Case I means (p] 1, 4} o) 6.65, 6.65
0.8 | Case Il means (p7'y, ui'9, 1515 My o) | 6.52, 6.52, 7.02, 7.02
—0.8 Case I Profit 45.11
—0.8 Case II Profit 47.10
—0.8 Case I Production Cost 139.65
-0.8 Case II Production Cost 136.60
—-0.8 Case I Final Conformance 0.5869
—-0.8 Case II Final Conformance 0.5842
—0.8 Case I means (u] 1, 4] o) 6.80, 6.80
—0.8 | Case IT means (pf'y, ui'9, 151, My o) | 6.57, 6.57, 7.02, 7.02

TABLE 3.13: Optimisation results for correlated features
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FIGURE 3.32: Profit vs. correlation

orientation is changed by 90 degrees. However, as can be seen from Figure 3.31, the blue
points would remain in the single feature rework regions as p — —1. It is also likely dual
feature rework would exist (depending on the geometry of the scrap and rework regions
and the standard deviation), thus there would still be a benefit to optimising dual and
single feature means separately. This led to the profit difference between Case I and II

for negative correlation.
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Ficure 3.33: Profit and profit differences between Case I and Case II methodologies
for two, three and four features

3.5.3 Multiple Features - Case I and Case II Comparison

The greater the number of features being manufacturing prior to an inspection operation
(parallel production), the greater the potential benefit of the Case II methodology over
the Case I methodology. This statement is supported by Figure 3.33. Profit is shown
in the left y-axis while the difference between the Case I and Case II methodologies is
indicated on the right y-axis. The x-axis represents selling price which determines the
maximum profit for each two, three and four feature example. The profits for each of
the two, three and four feature examples were optimised with both the Case I and Case
IT methodologies (solid lines on Figure 3.33). The profit differences between Case II and
Case I methods are illustrated by the dashed lines on Figure 3.33. As the number of
features increased, there was a clear trend for the differences between the profits (Case
IT minus Case I) to also increase for all profit levels. The difference for the two feature
example was around 0.8, while the profit difference for the four features case varied
between ~ 2.1 to ~ 2.8. The statistical moments and costs were kept consistent for each
example where L = 4, U = 6, 0 = 2 and correlation was kept at zero (p = 0). As the
number of features increased, the processing and rework costs remained at PC' = 25,
RC = 25 respectively. Scrap cost (SC') was 100 plus the processing cost for each feature
(25). Thus, for two features, SC = 150, three features, SC = 175 and for four features
SC = 200. Multi-feature rework cost was the sum of the rework costs for each feature,

thus for two features RC' = 50, three feature RC' = 75 and four features RC = 100.

The Case II methodology has clear profit advantage over the Case I methodology used
in the literature. The increased effectiveness of the Case II methodology has sound

principles discussed in detail in Section 3.1.2 but stems from the fact the Optimal Mean

Difference
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Settings to maximise profit are different for multi-feature rework compared to single
feature rework. The means optimised via the Case I method are a compromise between

all rework costs.

The practicality of using the Case II methodology is limited by the ability of the opti-
misation algorithm to handle large numbers of dimensions due to the matrix inversion
(To find the M-matrix, shown in Section 3.2). The number of means required to be
optimised with the Case I methodology scales as N2, where N is the number of features.
In contrast, the number of means required to be optimised with the Case I methodology
scales with the number of features, N. As was shown in Appendix A, the profit function
is convex and therefore local search optimisation algorithms are suited to the task such
as Matlab’s fminsearch (Mathworks [2012]). If speed of optimisation is critical (for high
N) it may be possible to reduce the dimensionality of the problem, since the probability
of rework for single and low combinations of features is higher than for rework involving
all or most of the features. Therefore, it may be practical to leave out the means for
rework with high numbers of features, as these are unlikely to make a significant impact
on profit. Alternatively Section 5.2.3 of the Future Work section discusses a method to

avoid the matrix inversion in the first place removing this limitation.

The performance of the Case II method over the Case I method is dependent on the
exact nature of the problem in terms of statistical moments, specification limits and the
costs and selling price. The conditions under which the Case II method has advantages

over the Case I method are:

a. Where the cost of rework involving multiple features is greater than the cost of

rework involving low numbers of features, or single features.

b. Where correlation biases the probability of particular type or types of rework. If
all types of rework were equally probable, and the rework costs were all equal, the

Case II method would return the same result as the Case I method.



Chapter 4

Uncertainty Modelling with

Non-Normal Distributions

This Chapter investigates the outcome of using Optimal Mean Setting on the distribu-
tion of the manufactured geometry. The act of processing rework modifies the feature
distribution from the original normal distribution to some truncated form. In the case
of parallel production utilising Optimal Mean Setting several optimal means exist (de-
pending on the type of rework), which make the feature distribution non-normal. These
features either progress to subsequent manufacturing stages or form part of the final
geometry of the component. It is important to establish the shape of feature distribu-
tions as it may impact the rework and scrap probabilities of subsequent manufacturing

operations and will affect the performance distribution of the finished component.

The effect of non-normal distributions (created from applying Optimal Mean Setting) on
the final manufactured distribution of components has not been studied in the literature.
Although Bowling et al. [2004], Khasawneh et al. [2008], Selim and Al-Zu’bi [2011]
and Peng and Khasawneh [2014] all studied the final shape of feature distributions
after rework, the final shape of the manufactured component, comprising of several
features is only given by studying the joint distribution. Parametric distributions, like
the normal distribution, often have multivariate forms which can be used to model the
joint distribution for several features. However, this requires that all of the component’s
feature distributions can be represented by a univariate (marginal) version of the joint
parametric distribution. As was seen in Section 3.1.2 in Chapter 3, Optimal Mean
Setting for parallel production will not give normal feature distributions (even if the
process variation is inherently normal), as the single feature rework mean is different
to the dual feature mean. Furthermore, the manufacturing process variation may not

be normal in the first place. In these cases the joint distribution cannot be given by a

119
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multivariate parametric distribution, as the distributions for the features may be from
different parametric families'. For variations of truncated normal distributions this
problem can be solved by utilising mixture models, this is investigated in Section 4.1.
However, for generalised cases the mathematical concept of copulas functions are used to
create joint distributions for any general feature distribution (Section 4.2). This Chapter
describes the application of copula functions to the area of Optimal Mean Setting which
is the primary contribution to knowledge, (as implied in point 4, Section 1.6 in Chapter
1). A practical case study is used in Section 4.3 to illustrate how copulas can be utilised
in conjunction with Optimal Mean Setting to produce the inner diameters of the big
and small ends of a connecting rod to high precision. The Chapter closes with an
in-depth case study of how Optimal Mean Setting may be applied to maximise the
performance of a film cooling hole by tolerance tightening (Section 4.4). A comparison
is made between the cost of producing the cooling hole using Optimal Mean Setting and
a standard production technique. The manufacturing cost is vastly reduced by using

Optimal Mean Setting.

4.1 Mixture Models for Truncated Normal Distributions

An illustration of the truncated distribution of a single feature subject to rework was
shown in Figure 3.2 (pink line). Given the variation of the manufacturing process is
normally distributed the equation for such a distribution follows from the definition
of the normal probability density and cumulative density distributions (Wilhelm et al.
[2010]),

exp{—3 (@ — )" (x — p)}

U 1
/ exp{— (@ — )5 @ — o)} da
L

f(e,p,0,L,U) = (4.1)

This distribution assumes the nominal mean for the reworked features is the same as
the nominal mean for the initial operation. Chapter 2 showed the maximum profit
for parallel manufacturing systems was generated by optimising the means separately
depending on the number of features being processed. Thus the nominal mean for the
reworked components was not necessarily the same as the initial operation. Consequently
the distribution of conforming components after rework, for parallel operations, is highly

likely to be non-normally distributed?. One way to model the shape of the distribution

Hf there is no correlation between the features the joint distribution is simply the product of the two
univariate distributions for each feature.

2Unless the costs and statistical moments of the problem happen to generate the same optimal means
for all rework states, which is highly improbable.
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of conforming components, where the means have been optimised using the Case II

(multiple mean) methodology, is to construct a Gaussian mixture model,

N
F@XN) = w; f(w|p;, Zi) (4.2)

i=I
where A = {w;, p;, 2;} for i = 1,2,...,N and f(x|p;, ;) is given by Equation 3.19 if
the features are normally distributed and Equation 4.1 if the feature distributions are
truncated. The weighting term, w;, is the probability of features exiting a particular

rework state or the initial operation. For example, in dual feature case, w; = p; ¢, w2 =

P1,4P1,2 _ P1,4P1,3 _ P1,S .
fo.c <(1_p172) +p1,2), w3 = f3c <(1_p1’3) +p1,3> and wg = pra <1,pl74) corresponding to

the quantities labelled in Figure 3.16 in Section 3.2.2. At the end of each stage in a

multi-stage system the probability density, f(x|A), must also be multiplied by fic to

give the distribution of only conforming components.

The difference between the manufactured geometry for a two feature parallel production
example, obtained using the Case I and Case II optimisation methodologies, is illustrated
by Figure 4.1. The specification limits were, L = [3,3], U = [7, 7], standard deviations
were 0,, = 0y, = 1, there was no correlation (p = 0) and the Case I means were
p' = [5.5,5.5] while the Case II means were, p" = [5.5,5.5,7.0,7.0]. The means were
arbitrarily chosen (no cost data or optimisation was performed) to illustrate the different
geometry distributions, but are similar to what would be expected from an optimisation,
where the Case II single feature rework means are more rework biased than the dual
feature means. The integral under both surfaces is one, however, the Case II (blue)
surface has a flatter peak skewed towards the upper specification limits. This was due
to the optimal mean of single feature reworks having values of 7.0 as opposed to 5.5 for

the initial operation and dual feature rework stage (stage 4).

In order to establish the distribution of the individual features it is possible to integrate
over the probability density surface. The marginal distribution for the x|-feature can be
obtained by integrating f (Figure 4.1) over x5. Similarly, integrating over x; gives the
marginal density for the xs-feature. Since the x; and xo features have the same distri-
butions it is only necessary to perform the integration over one feature. The marginal

distribution for the Case I surface was computed from,
o
exp{—3(z —p)"'S" (z — p")}

= N dzs. (4.3)
J [ ewi-je - n S a- u) de

fx, (x1) =

For the Case II surface let the means for manufacturing dual and single features be

differentiated by subscripts o and . Thus, dual feature manufacturing means are p; =
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FIGURE 4.1: Difference between the manufactured geometry distributions using the
Case I and Case II optimal mean optimisation methodologies

[5.5,5.5] and the single feature manufacturing means are M% = [7,7]. The distribution

of the zi-feature is then,

exp{—3(z — pl)"Z ! (x — p)}

v 1 Ty —1 11
J / exp{—i(cc —pg) X (- py)} de
> - (4.4)

fx, (1) = (wr + wy)

exp{—g(x — )" S (x — )}

U
1 _
[ el mTs e - ) do

—00

(wg + wg) dzs,

with a similar expression for the xo — feature marginal distribution. Notice in both
cases the limits of the integral in the denominator were set at —oo, this includes all the
scrap that would be produced during manufacture. If subsequent manufacturing stages
followed it would be necessary to include the lower specification limits L, to truncate the
distribution at the lower specification limits. The shape of the marginal distributions are
shown in Figure 4.2 for both cases (the distributions for the xi-feature and zo-feature
are the same hence only one feature for each case is plotted). The introduction of the
single feature rework with higher means skewed the distribution mean and mode towards

the upper specification limit.
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FIGURE 4.2: caption

The weighted sum model (Equation 4.2) is effective in modelling the resulting joint
distribution where the Case II optimal mean methodology is applied. However, the mul-
tivariate normal distribution model (Equations 4.3 and 4.4) is restrictive in describing
the possible shape of variation of manufacturing processes as manufacturing processes
are not necessarily normally distributed. One of the earliest examples in the published
literature relating to the shape of manufacture geometry is Mansoor [1963]. Here, the
likely statistical variations for typical engineering processes such as milling, grinding and
reaming were discussed. In more recent examples, Aparisi et al. [1999] and Shorey et al.
[2014] indicated the process itself may define the shape of the variation while Singh et al.
[2009] noted even inherently normal processes may yield non-normal distributions due
to factors such as tool wear and variation in material properties. Ideally it would be
possible to model any manufacturing distribution and combine it with other types of
distribution to build an exact multivariate representation from the unique marginal dis-
tributions. This prohibits the use of parametric distributions, such as the multivariate
normal and Student-t distributions, as the marginals must also be part of the multi-
variate distribution family®. Fortunately, a Mathematical construct known as a copula

allows any univariate (marginal) distribution to be combined with any other univariate

30ften the maximum likelihood function is used to fit parametric distributions to observed data (see
Cousineau et al. [2004] for a review and applications of such methods). The same principle could be
applied to build fitted multivariate distributions by sampling non-similar parametric marginal distribu-
tions, however, the resulting multivariate distribution is only an approximation to the real (observed)
distribution. Thus, the scrap, rework and conformance probabilities would not be exact using a fitted
model. This would lead to inaccurate optimal means and potentially great differences between theoreti-
cal and actual profits. Since copulas allow exact multivariate representations to be generated the fitting
of multivariate parametric models is not considered.
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distribution, with a specified dependence structure to give a joint (multivariate) dis-
tribution. Different copulas allow a wide variety of dependence structures between the
univariate distributions. Where there is no dependence between univariate distributions,
the joint distribution is the product of the univariate distributions (as shown in Section
4.2.3). Copula modelling allows the probabilities of scrap, rework and conformance to be
calculated exactly (providing the dependence between the univariate distributions can
be modelled) for multivariate distributions. Recall multivariate distributions are created

where two or more features are manufactured prior to inspection (parallel processing).

4.2 Copulas

Copulas are functions for modelling the dependence and interrelationships between ran-
dom variables, first introduced by Sklar [1959]. They allow one to construct a multi-
variate distribution from any combination of univariate distributions and apply a range

of dependence structures, including non-linear dependence.

The most cited paper in copula literature is David X. Li’s paper on default correlation (Li
[2000]) which transformed the way collateralised debt obligations (CDOs) were accessed
and traded in the early 2000s. More recently the use of copula statistics in financial
mathematics has been widely criticised in popular literature. Copula modelling and
Li’s paper are generally attributed to the collapse of the global financial system in 2008
(Salmon [2009], Jones [2009], Lohr [2009]). It is important to note copula statistics
is mathematically sound and many criticisms of the application of the model to CDO

pricing are based on an inherent misunderstanding of mathematical modelling

4.2.1 Introduction to Copulas

As demonstrated at the beginning of Chapter 4, processing rework can affect the shape of
the manufacturing feature variation resulting in a truncated normal distribution, which
represents the variability of the finished manufactured feature. If two or more depen-
dent features have such a distribution, the variability of the manufactured geometry
(comprising of two or more features) is modelled by a multivariate truncated normal
distribution. Such a distribution can be constructed using a copula function, or alterna-

tively one could use the multivariate truncated normal distribution, however the types

4Li’s model used the Gaussian copula dependence structure to map correlations between various
assets in a CDO portfolio. It was assumed future correlations would follow a similar structure but were
subject to change. While the original assumption proved successful for some five years, the dependence
structure between assets did alter, thus the inherent CDO risk was miscalculated. Due to the popularity
of the model most CDOs were accessed using Li’s model which lead to a cascade of defaults in 2007 /2008.
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of dependence structure are limited. Copulas allow complete freedom of the univariate
distribution shape and dependence structure, making them more versatile enough to fit
to any manufacturing variation. Furthermore, if an inspectable feature is a result of two
or more manufacturing distributions, the resulting variation is unlikely to be a standard
parametrised distribution type. Unless this unique distribution can be modelled, it is
not possible to accurately calculate the rework, conformance and scrap probabilities or
determine the shape of the manufactured geometry variation. Such a situation can be
avoided by using copulas to build an exact multivariate representation from the unique

marginal distributions.

4.2.2 Definition

Consider the joint cumulative distribution of a set of random variables. In order to
gain an understanding of copulas, a bivariate case is considered where the set of random

variables are X and Y. The marginal distributions are found from,
Fx(z)=Pr[X <z] and Fy(y)=Pr[Y <y).
These univariate marginal distributions are joined to form the joint distribution function,
Fxy(z,y) =Pr[X <z,Y <yl

A copula is a function that represents this joint distribution Fxy which exists on the unit
cube [0, 1]"™ where n characterises the dimensionality of the distribution. By definition
Fx(z) and Fy(y) are restricted to the bound [0, 1] so that a pair of real numbers (z,y)
leads to a point (Fx(x), Fy(y)) on the unit cube [0, 1]2. This is depicted in Figure 4.3
where a copula is the mapping which assigns a value to each pair of real numbers of the
marginal distributions to form the joint distribution F'(z,y). Thus the joint distribution

Fxy, represented by a copula is,

where u = Fx(z) and v = Fy (y).

4.2.3 Sklar’s Theorem

Sklar’s theorem [Sklar, 1959] asserts that irrespective of the shape of the joint distribu-

tion there will be a unique copula satisfying Equation 4.5 given X, Y are continuous. If

X,Y are not continuous C' is unique for the range Ran F X, ..., xRan F;, where Ran F},
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FIGURE 4.3: Mapping of random variables to joint distribution

is the range of the n** CDF. Note that u, v are uniformly distributed variables on [0, 1],
regardless of the functions Fx and Fy. The arguments of C are also uniformly dis-
tributed random variables so all that remains is the dependence structure between the
distributions which is modelled by C'. Equation 4.5 can be rewritten in terms of C by

recognising z = Fy;'(u) and y = Fy ' (v),
Clu,v) = Fxy (Fx' (u), Fy ' (v),

If F1 and F, are independent then the copula becomes the product of the random
variables C'(u,v) = uwv. This is expected as it is analogous to the probability of two
independent events occurring simultaneously. The form of the function C' is restricted

under the following definitions:

(i) C(0,u) = C(v,0) = 0:- Grounded.

(ii) C(u,1) = w and C(1,v) = v:- For v = 1, C(u, 1) = u increases from 0 to 1 as u

increases from 0 to 1 and similarly for v.

(111) C(UQ,’UQ) — C(UQ, Ul) — C(Ul,vg) + C’(ul,vl)

> 0,
V 0<u <up <1 and 0 < v < vy < 1i-

2-increasing, where C(u,v) is

increasing for both u and v.

It should be noted these conditions apply for a copula with n dimensions although
considerably harder to visualise. Nelsen [2006] and Schmidt [2006] are useful references
for the general formulations. The three conditions are graphically represented for the
bivariate case in Figure 4.4(a). The copula in this figure is the independent copula
C(u,v) = uv, thus the surface is simply the product of u and v. Figure 4.4(b) indicates
the shape of a copula where there is positive dependence between u and v. Positive
dependence implies for any given value of u there is a higher probability that u = v than
would be expected if the events were independent. This leads to the distinct ridge or

pyramidal shape of Figure 4.4(b)



Chapter 4. Uncertainty Modelling with Non-Normal Distributions 127

g 1y C(ur 1)_ 3 C(l'v) =7V g 1
a T\ G o a
208 B : - 208
206 % 206
5 4 3

& 044 & 044
2 2
502 2-increaseing 5§02+
E o E ol
(&} o 1

cC=0

-

(a) Copula CDF with no correlation (b) Copula CDF with correlation

FI1GURE 4.4: Copula CDFs

The joint density function from the copula formulation is required to model the final
manufactured geometry distribution of the component once rework has been carried out
on non-conforming features. The density distribution is the derivative of the cumulative

distribution,
82ny($, y)

Noting Equation 4.5 and recognising,

a% (;uc(u,v)> = %Fx(a@) and (% <;C(u,v)> = aayFy(y)

the joint density function in terms of a bivariate copula can be written

9?C(u,v) OFx (x) OFy (y)
Ou Ov ox oy

fxy(z,y) = = c(u,v) fx () fy (y) (4.6)

where fx and fy are the univariate density distributions of X and Y, respectively. Both
this and Equation 4.5 are used in the Optimal Mean Setting process. Equation 4.6 can
be used to determine the distribution of the final manufactured geometry after rework
with dependence, while Equation 4.5 may be used to determine the scrap and rework
probabilities if the marginal distributions are not normal. Such a case would arise if the
inspectable parameters were a result of two or more manufacturing features. Alterna-
tively it is possible for a feature to have dependence on another feature produced by
a process with a different form of univariate margin. Thus the probability of rework,
conformance and scrap is the joint distribution of the two different univariate marginals

including the dependence structure.
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FIGURE 4.5: Graphical representation of the Fréchet-Hoeffding bounds for a bivariate
copula

4.2.4 Fréchet-Hoeffding bounds

The Fréchet-Hoeffding bounds restrict the shape of the bivariate copula, such that it
lies within a pyramid as shown in Figure 4.5. This comes about due to the extremes
of dependence between variables. Consider the extreme monotonic case, where two
uniformly distributed random variables are dependent such that U = V, the copula is
given by,

C(u,v) =Pr(U <,V <v) =min(u,v).

This gives rise to the front face of the pyramid in Figure 4.5. The independence case
shown graphically in Figure 4.4(a) actually sits in the middle of this pyramid structure.
The back face of the pyramid is achieved from the opposite dependence such that the

uniformly distributed random variables are V' =1 — U. This gives,

C(u,v) = Pr(U<u,1-U <)
+ PriU<u,l—-v<U)=u+v—-1,

leading to the bound,
max(u+ v — 1,0) < C(u,v) < min(u, v),

which also exists for n dimensions.
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4.2.5 Types of Copula

The principal difference between copulas is the types of dependence they model between
random variables. Dependence between random variables may occur when two or more
features are produced on the same machine. Datum planes or fixings are also likely to
be correlated to other features. The choice of copula determines the type and variety
of dependence structures one wishes to model. The most common copula types are the
Gaussian copula and the Archimedean family of copulas that include Clayton, Gumbel,
Frank, Ali-Mikhail-Haq and Joe varieties, where each characterises a particular form of
dependence (Nelsen [2006]). The independence copula is also part of the Archimedean
family of copulas. A particularly useful characteristic of Archimedean copulas is that
they are described by explicit expressions, permitting analytical solutions, unlike the

Gaussian copula.

The dependency structure of the Gaussian, Clayton and Frank copulas are considered in
this report. The discussion is limited to these copulas principally because the dependence
structure these copula models exhibit is not unlike the dependence structure from the
covariance matrix used in the multivariate normal distribution model (Equation 3.17).
Ultimately, the dependency between features in a production environment and thus the
choice of copula requires a copula fitting process. Such techniques are not examined
in this report but an overview is given by Schmidt [2006] with a detailed analysis in
Matteis [2001]. The three copulas discussed here are sufficient to demonstrate the power
of using copula techniques in Optimal Mean Setting analysis. However, they are by no
means the only copulas that could be used to model dependence between manufacturing

features in practice.

In order to compare different copulas, it is important to measure dependence independent
of the marginal distributions. There are a number of ways to quantify dependence
but the most common are; the Pearson product-moment correlation, Spearman rank
correlation and Kendall rank correlation. The Pearson correlation coefficient is defined
as,

cov(X,Y) E[(X —px)Y — puy)]

ox Oy 00X 0y

Pp
which, for a sample size of n is,
. S (X - X)(Yi-Y)
Vi (X = X2/ (v - 72

where X,Y refer to the means of the X and Y variables. This is a linear measure
of dependence between the two variables X and Y where p = [—1,1]. However, it

is also dependent on the marginal distributions as illustrated in Section 2.2 of Tops
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[2010], although first described by Lehmann [1966]. Since it is dependent on the uni-
variate distribution, it is not a suitable coefficient for comparing copula dependence.
The Spearman correlation coefficient is derived from the Pearson correlation coefficient
and has the same form except the variables are ranked. For a sample of size n, the raw

variables X;,Y; are converted into ranks z;,y; to give

D> )
Ps =
VI = 2 S (s~ 9)°

where ps = [—1,1]. The Spearman rank coefficient measures the monotone dependence
between variables rather than the linear dependence and thus can be defined using a

copula function independent of the marginal distributions such that,

11
ps = 12/0 /0 [C(u,v) — uv]dudo. (4.7)

This result is considered in more detail by Schweizer and Wolff [1981] but also discussed
in more modern literature Fredricks and Nelsen [2007] and Tops [2010]. Another pop-
ular correlation coefficient is Kendall’s tau which, like Spearman’s coefficient, is a rank
correlation independent of the marginal distributions. Kendall’s tau is the difference
between the number of concordant pairs (C) and discordant pairs (D), divided by the
total number of pair combinations. Concordance and discordance are defined as follows:
Let (z1,91), (z2,92), ..., (Zn,yn) be a set of observations from the joint random variables
X, Y. Assuming x; and y; are unique, any pair of joint observations (z;,y;) and (z},y;)
are concordant if x; > x; and y; > y; or alternatively if z; < x; and y; < y;. A pair
is discordant if x; > z; and y; < y; or conversely if z; < x; and y; > y;. Hence the

Kendall correlation coefficient is given by

C-D
T = ——
n(n—1)
where 7 = [—1,1] and n is the sample size. As shown by Schweizer and Wolff [1981],

Fredricks and Nelsen [2007] and Tops [2010], Kendall’s correlation coefficient can be

written in terms of copulas as,

7:4/01/01[c<u,v>c<u,v>—1-

The Spearman rank correlation and the Kendall tau correlation are both commonly used
to define correlation between sets of data and in general there is no strong reason to
prefer one over the other as commented by Colwell and Gillett [1982]. Typically, the
Spearman rank coefficient is larger in absolute value than Kendall’s tau, while Kendall’s

tau coefficient is generally harder to calculate. There are subtle practical difference
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between the coefficients: Kendall’s tau penalises a disparity between the two ranks as
the distance of that disparity, whereas, Spearman’s rho penalises the same disparity as
the square of the distance. For example let the ranks between two sets of correlated
data be x = [1,2,3,4], y, = [2,1,4,3]. Kendall’s correlation coefficient 7 = 0.33 and
Spearman’s p = 0.6. However, if the ranks are changed to represent a different set
of data y, = [3,1,2,4] Spearman’s coefficient reduces to p = 0.4 while Kendall’s tau
remains at 7 = 0.33. The reason for this is the difference between the ranks = and y,
was one, for each element. However, for the second data set x and yp, the rank of the
first element was greater by two and the second and third elements differed by one, while
the fourth element remained unchanged. Since the distance of the disparity of the first
element is twice as great, Spearman’s coefficient penalises this to a greater extent than
Kendall’s tau. The total distance of disparities in each case is four, hence Kendall’s tau

remains the same.

In order to compare the dependency structure of the Gaussian, Clayton and Frank
copulas, the dependency parameter for each copula was set using Equation 4.7, where
ps = 0.8. This was solved numerically using Matlab’s fzero function (Mathworks [2012]),
although it is possible to find an analytical solution provided C(u,v) can be expressed
explicitly. Figures 4.6(a), 4.6(b) and 4.6(c) show how Spearman’s and Kendall’s coef-
ficients relate to the Gaussian, Clayton and Frank copulas, respectively. The values of

the three copula dependence parameters for ps; = 0.8 are shown in the table in Figure
4.6(d).

4.2.6 Gaussian Copula
A Gaussian coupla is written as,
Clu,v) = (@ (), @ (1)), (4.8)

where X is the bivariate covariance matrix,

2:
2

2
o POy ]

POLOy 1o

and pV € [0,1] is the Pearson correlation coefficient. We can investigate the type
of dependence structure this copula gives by generating the u and v values from this
copula. Recall the bivariate density function was given in Equation 3.17. Under the

normalisation z; = (z1 — p1)/0o1 and z2 = (x2 — p2)o the bivariate density function
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FIGURE 4.6: Relationships between Spearman’s and Kendall’s correlation coefficients
and copula dependency parameters

(Equation 3.17) can be written as,

1 2 2 _ o
f(x1,m9) = ————=exp <21 + 25 ,02122) '

2my/1 — p2 2(1— p?)

Integrating z; and zy from —oo to the inverse CDF's the Gaussian copula can be written
[Nelsen, 2006/,

® 1(u) @ 1(v) 1 P + 22 _9
_ A TR apzize
Olu.v) = /_oo /_oo o /T2 P ( 21— p?) ) ik

which has no general closed form solution but can be solved efficiently with standard rou-

tines in most numerical software packages. When p = 0 the fraction inside the integral
goes to zero, thus the Gaussian copula reduces to the independent copula C'(u,v) = uv.
To investigate the dependence structure of this copula, V' was plotted against U, for
positive correlation between the random variables where p > 0. The procedure for this

plot was as follows: From Equation 4.8, U = ®(X) and V = ®(Y') where X,Y are the
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random vectors created by @ ~!(u) and ®!(v). Most numerical packages, such as Mat-
lab, efficiently generate these random vectors from a multivariate normal distribution
(monrnd). Once vectors U and V are generated, the cumulative distribution functions
for each vector can be computed. Figure 4.7(a) plots for V' against U, where p = 0.8
and shows a concentration of points towards the tails. The PDF of the same copula is
represented in Figure 4.7(b). The sharp peaks towards « = v = 0 and at v = v = 1 mir-
ror the high dependence shown in Figure 4.7(a), where the concentration of the points is

greater. For p = 0, the surface in Figure 4.7(b) would be a flat surface and the adjacent

scatter plot would show no clustering.

—
(5]

Probability Density

FIGURE 4.7: Gaussian copula dependence

4.2.7 Archimedean Copulas

Archimedean copulas differ from the Gaussian copula in that they can be written ex-
plicitly. For clarity, only bivariate copulas are discussed, but a primary advantage of
Archimedean copulas is their ability to model dependence for an arbitrary number of
dimensions. All bivariate Archimedean copulas C(u,v) can be generated from [Nelsen,
2006],

*(C) = ¢(u) + ¢(v) (4.9)

where ¢ is known as a generator whose inverse is ¢~!. The function ¢ is monotone,
strictly decreasing from [0, 1] to [0, 00] where ¢(0) = oo and ¢(1) = 0 as discussed in
Nelsen [2006] pages 91 to 92. The copula C(u,v) is given by

C(u,v) = ¢~ ($(u) + ¢(v)). (4.10)
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With a generator function it is possible to construct a number of copulas from the
Archimedean family. Although only the Clayton and Frank copulas are considered here
Nelsen [2006] and Schmidt [2006] offer a more in-depth discussion.

4.2.7.1 Clayton Copula

The generator function for the Clayton copula is,

o(z) = 7(1 - 2_9) (4.11)

where z is a place-holder. From Equation 4.11 we require ¢! given by,

2= 17 @) = 67 ) = (14627

Therefore from Equation 4.11,
Clu,v) = ¢ (D(u) + d(v)) = [1 +0(B(u) + H(v))] "/’

= [1 +6 <_91(1 —u ) + _71(1 - v“’))} o (4.12)

— [u—e + vt — 1]—1/9

where 6 € R[—1,00]\0. It is possible to rearrange Equation 4.9 so that ¢(v) = ¢(C) —
@(u) to get,
v=0¢""(¢(C) - d(u)). (4.13)

To define the argument C' in ¢(C) let & = dC/Ou and let h represent the inverse of ¢’
where the ' notation is used to represent the first derivative with respect to the argument.
Therefore h(d¢(2)/0z) = h(¢'(z)) = z. From Equation 4.10 we can determine dC/du

so that
oCc

oo #(w)
ou ’

£
Using the function h (defined above), it is possible to define the argument C' in terms

of u and £ such that,

¢'(C) ¢'(u) = ¢'(C) =

MW@»:C:h<d$0'

Equation 4.13 can now be written in terms of the calculable augments

v=¢! {¢ [h (‘z’/é“))} - ¢(u)} . (4.14)
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As the composite function is relatively complex® , it is easiest to tackle in stages, thus

—1
¢poh(z)=—-(1- h9).
where h is defined from,
P(2) = — 0l o = —h(z)_e_1
h(z) = —1/(=0-1)

Therefore,

¢poh(z)= _71(1 + 29%)

Replacing the argument z with ¢(u)/§ from Equation 4.14 yields,

$oh (d"(u)) i <¢'§u)>eil] |

£ 0
Considering ¢'(u) = —u~%"! the argument of ¢! from Equation 4.14 can now be
written as,
¢/(u) Sl Ol Sl BT
h - S— “1-u?=Q.
bon(Fg0) s = |1+ () T g0

Substituting this expression onto the inverse function completes the right hand side of

Equation 4.14,

0 ~1/6
vo= (bl(Q):{l—z [1—1—(“21)9“] +g(1_u—9)}
— [5—0/(14—0)”—9 —uf 1] -1/0

giving an expression for v in terms of v and &.

To examine the dependence structure created by this copula, we can plot V against
U. For a uniformly distributed set of random variables u,£ € [0,1] we can generate the
corresponding vector v where the dependence between the two random vectors is defined
by 4.12. Figure 4.8(a) shows u and v are closely correlated for small values but the cor-
relation becomes less pronounced as the values become larger. The PDF of this Clayton
copula is represented in Figure 4.8(b) (note the axes have been reversed for clarity of
visualising the spike). The spike towards u = v = 0 reflects the high dependence shown

in Figure 4.8(a) at low values of u and v. Like the Gaussian copula, if the dependence

5The ‘o’ symbol is the function composition operator
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parameter § = 0, the surface in Figure 4.8(b) would be a flat surface representing no
dependence between the random variables. Due to the restriction on the dependence
parameter 6 noted under Equation 4.12, the Clayton copula cannot be used to model

negative dependence.

Probability Density

a) u versus v from a Clayton copula with 6 = (b) Clayton copula PDF with 6 = 3.1819
3.1819

FI1GURE 4.8: Clayton copula dependence

4.2.7.2 Frank Copula

The Frank copula is generated in a similar fashion to the Clayton copula above. The

generator function for the Frank copula as given by Nelsen [2006] is,

6(2) = —log <1_66> (4.15)

1—e?

Using the Equation 4.9 the Frank copula is generated from,

1— e—OC’ 1— e—@u 1— 6—911
“Jog ([ )= —log(—" ) —log [ =— "
which needs to be rearranged making C' the subject. Taking the exponent of both sides

and simplifying gives,

—1+e (—1+e79)?

-1+ e—@C (_1 + e—@u) (_1 + 6—91))’

which can be rearranged into the Frank copula,

(1 _ e—eu) (1 _ e—Gv)
1—e? ’

C(u,v) = *71105; - (4.16)
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where 6 € R\{0}. Again, in order to gain an understanding of the dependence structure
of this copula, as before v is sought for an input w. Equation 4.14 can be used to
determine v for a given w input, as was shown with the Clayton copula. In order to

compute Equation 4.14, the functions ¢, ¢!, ¢ and h are required. The generator

function ¢ is given in Equation 4.15, where the inverse is given by,

—1
7 (2) = 7105;(6_”9 —e “+1).

The derivative of ¢ with respect to z is,

—fe Y% 0
T 10z 1_ b

P'(2)

The inverse of this derivative is h given by

h(z) = %log (1 - Z) .

The argument of ¢~! in Equation 4.14 is broken down into stages, firstly

poh(z) = —log <1“‘"’>

1—ef

g (Lo OO log1 -0/

1—e?
= log [(% — 1) (1 — e’e)} .

The argument ¢'(u)/& can now be inserted for the place-holder z,

oon(#) - w5 )

= log {((161"”‘)59 - 1> (1- 6—9)] :

The whole argument for ¢! is,

boh (dé“)) —¢u) = log [<(1—619u)50 - 1> (1 6_0):| +10g<
= s [ =

1_6—0u
1—e

—0

)
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An expression for v is therefore written,

v=¢7'(Q) = logll— (1)
(4.17)
e o P Sl
T 9 B T Tretue 1o

Equation 4.17 is used to generate the vector v from a set of uniformly distributed random
variables u,£ € [0,1]. The scatter plot in Figure 4.9(a) allows the visualisation of the
dependence structure modelled by this Frank copula (Equation 4.16). The adjacent
Figure 4.9(b) shows the probability density plot which is not unlike the Gaussian copula.
The principal differences are in tail dependences, which are less pronounced and a more
uniform dependence along the diagonal v = v. Like the Gaussian copula, the Frank
copula can account for negative dependence but not for § = 0, as noted under Equation
4.16.

0.8+ 6
=
B

0.6 34y
>
> =
0

© 24
04r g
o

0

0.2

(a) u versus v from a Frank Copula (b) Frank copula PDF with § = 7.9019
with 8 = 7.9019

FI1GURE 4.9: Clayton copula dependence

4.2.8 Multivariate Copula Construction

The geometry distribution of manufactured features can be modelled using a copula.
To demonstrate this, the multivariate distribution created using the Gaussian mixture
model (Equation 4.2) depicted by Figure 4.1 was recreated using a copula. The approach
is very similar to the method used to obtain the results shown in Figure 4.1 however, a
multivariate truncated distribution is built from the two normal marginal distributions

using a copula. The weighted sum of the multivariate distributions form the complete
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multivariate distribution analogous to Figure 4.1. The weights are determined by eval-
uating the probability of conformance and scrap from the initial state and each rework

state (as was done for Figure 4.1)

The truncated copula distribution has the form®.

f _ C(Fxl (w1)7FX2 (372))fX1 (xl)sz (1‘2)
%2 T O (Fx, (Uh), Fx,(U2)) — C(Fx, (L1), Fx,(L2))

(4.18)

for all L < z1,29 < U, where the marginal distributions fx, and fx, are given by the

normal distribution function,

exp (—(561 — Ml)Q) and fx, =

2
207

fxy = W) . (4.19)

1 1
o1V 2m o2V 2T < 203
The cumulative distributions, F'x, and F, are the integrals of the respective marginal

distributions thus,

t1 to
Fxlz/ fx,dt1  and FXQZ/ fx, dta. (4.20)

—00 —0o0

The CDFs in the denominator of Equation 4.18 are the CDF's evaluated at specific points
corresponding to the upper and lower specification limits (U, Uz and Li, Lg); this in-
volves changing the upper integral limits in Equation 4.20 to the appropriate U or L
values. Thus, the denominator acts to truncate the PDF at the lower and upper spec-
ification limits. The copula function, C, can take a number of forms depending on the
correlation between the two features, X; and Xs. In this first case a Gaussian copula is
used as described in Equation 4.8. Figure 4.10 shows the comparison between the PDF
surfaces created with the truncated Gaussian copula (Equations 4.18 and 4.8) and the
truncated normal distribution function (Equation 4.4), evaluated at the red points. The
two functions create the same PDF with and without correlation given by Spearman’s
p. The maximum difference between red points and the surface evaluated at the same
locations was 8.327717, which is less than machine precision verifying the equivalence be-
tween the Gaussian copula distribution and truncated multivariate normal distribution.
As alluded to at the beginning of Chapter 4, a significant advantage of copula models
is their flexibility with regards to modelling dependencies between variables as well as
permitting any form for the marginal distributions. The following Case Study examines
the manufacture of a connection rod from a reciprocating engine which demonstrates

the use of copula statistics on a physical product.

SNote a numerical index is used for variables from henceforth as this approach is more applicable to
multivariate cases. The variable x is referred to as x1 while y becomes 2. Similarly u becomes u; and
v becomes us.
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FIGURE 4.10: Comparison between the PDF surfaces created using a Copula function
(Equation 4.18) and the truncated normal distribution (Equation 4.4)

Diameter small end 40mm

Diafreter big end 70mm

FIGURE 4.11: Connection Rod from Aparisi et al. [1999]

Feature Nominal | Mean LSL USL o Cpk

(nm) | (um) | (mm) | (mm)
Diameter big end (x1) | 70.00 70.02 69.00 71.00 1.362 | 0.24
Diameter small end (z2) | 40.00 40.13 39.25 40.75 0.50 | 0.71

TABLE 4.1: Data for the connecting rod case study

4.3 Case Study - Connecting Rod

Aparisi et al. [1999] introduced a case study of a connecting rod visualised in Figure
4.11. There were two inspectable features; the diameter of the big end (z;) and the
diameter of the small end (z2). The nominal means for these features were given in
the data contained in Aparisi et al. [1999], but the specification limits were not. For
the purposes of this Case Study the specification limits were chosen arbitrarily and are

given in Table 4.1. The manufactured values for each of the two features were tabulated
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Distribution BIC AIC
t-location scale | -113.3 | -119.5

Logistic -113.1 | -117.3
Log log logistic | -112.6 | -116.8
Rician -105.6 | -109.8
Normal -105.6 | -109.8

TABLE 4.2: BIC and AIC values for the top five best fit distributions returned by
allfitdist (Sheppard [2012])

by Aparisi et al. [1999] (also available in Costa and Machado [2008]). Histograms of
the raw manufacturing data for each feature are given in Figures 4.12 and 4.13. A Chi-
Squared test was used to establish if the distributions were likely to come from a normal
distribution. The x; feature passed the test to a 1% confidence interval indicating it was
probable the variations in the diameter of the big end (z1) were normally distributed.
The p-values and fitted normal distribution are shown for the x; feature in Figure 4.12.
The xo feature failed the Chi-Squared test so an alternate continuous probability dis-
tribution was sought. A best fitting probability distribution was determined by testing
a number of parametric distributions (17 in total). The Matlab function allfitdist, de-
veloped by Sheppard [2012] was used for this task. The goodness of fit was determined
by the Bayesian Information Criterion (BIC) and Akaike Information Criterion (AIC)
metrics. These metrics are based on minimising the log-likelihood but account for the
number of parameters in the fitted model and therefore offer a justifiable comparison be-
tween different parametric distributions (Helie [2006], Dziak et al. [2012]). As noted by
Dziak et al. [2012], the most likely modelling error when minimising BIC is under-fitting
the model, whereas the most likely modelling error in minimising AIC is an over-fitted
model. The fact that the tLocation-Scale distribution was judged to be the best fit to
the z9 feature data by both the BIC and AIC metrics, helps to justify its use. The dis-
tribution is commonly used for distributions with heavy tails, prone to outliers (Walck
[2007])7. Figure 4.13 indicates the difference in shape of the tLocation-Scale distribution
(blue line) in comparison to the best fit Gaussian distribution (red line). The PDF for
the tLocation-Scale distribution (as given in Section 38 of Walck [2007]) is,

5 )

)|

f(x’/"t70-’ V) =

"The machining process used to finish the small end (z; feature) was different to the process used to
finish the big end (z1 feature), hence the different distributions. Although the manufacturing processes
are not specified it is likely the big end (z1 feature) was reamed, while the small end finishing process
was grinding
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FI1GURE 4.13: Histogram and best fit continuous distribution for the diameter of the
small end (z3)

where I' is the gamma function given by,

The upper and lower specification limits in Table 4.1 are visualised by the green and
red lines in Figures 4.12 and 4.13. The variations for the two diameter distributions
(z1 and x9) are outside the specification limits indicating the manufacturing processes
are incapable (Cpi, < 1, Table 4.1) and non-conforming features would be produced. It
would be beneficial to apply Optimal Mean Setting to the manufacture of these features

to maximise profit. Since the univariate (marginal) distributions are different, copula
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modelling was utilised to create an exact multivariate model of the x; and z9 features
including the dependence structure®. Figures 4.14 to 4.16 illustrate the dependence
between the x1 and zg features modelled using a Gaussian, Clayton and Frank Copula.

The most appropriate copula model to chose depends on a number of factors such as:

e Whether the model will be used as a predictive model outside the current data

range or within the current data range.
e The quality of the source data.

e The quantity of the source data, for example some data could be used for cross

validation.

e Causal relations between the features may influence the copula choice. For exam-
ple, the Clayton copula would be a suitable model if there was a causal reason
why smaller values of 1 would imply smaller values for x5, whilst larger values of

21 would not influence zs. This is not the case for the connecting rod case study.

For this case study, the Matlab function copulafit (Mathworks [2012]) was used to deter-
mine the value of the correlation parameter for each copula (p for the Gaussian copula
and 0 for the Clayton and Frank copulas). The copulafit function minimises the nega-
tive log likelihood (NLogL) in order to determine the correlation parameter using the
procedure outlined by Bouye et al. [2000]?. The red points on Figures 4.14 to 4.16 show
the original data while the blue points are 5000 random sample points drawn from the
fitted copula model using the Matlab function copularnd (Mathworks [2012]). As indi-
cated in the captions of each figure the Gaussian copula yielded the lowest NLogL, so
this copula was chosen as the ‘best model’ of the data. Fitting copula models to data
is an active area of research and several papers discuss suitable ways to establish the
‘goodness of fit’ (Yan [2007]). The maximum likelihood method is often general practice
in evaluating the fit of a Copula to sampled data (Yan [2007]) and considered sufficient
for this illustrative example. Nevertheless, there are several alternative approaches, such
as Bootstrap methods, probability integral transformation and distance based methods.
Fermanian et al. [2012] provides a comprehensive overview. Genest and Favre [2007]
offers a good overview of graphical goodness of fit tests and Wang [2010] investigated

goodness of fit test for Archimedean copula models.

8The tLocation-Scale distribution approaches normal distribution as ¥ — oco. Therefore it would
be possible to define the x; distribution using a tLocation-Scale distribution and create a multivariate
model of the x1 and x2 features using a multivariate tLocation-Scale distribution. However, changes
to either of the univariate distributions, which may come as a result of reviewing data or alternative
fitting techniques, would render the multivariate parametric model inaccurate. A copula model allows
any form of marginal distribution and allows any changes in dependence to be updated independently.

9As there is only one parameter to change in each copula model, the minimisation of negative log
likelihood is a valid comparison between the different copula models, one does not have to use the BIC
or AIC metrics to account for differing numbers of parameters in the different models.
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FIGURE 4.14: Dependence between the x; and zo features described by the Gaussian
copula with p = 0.7052 which returned NLogLL = -20.5485

FIGURE 4.15: Dependence between the x1 and x5 features described by the Clayton
copula with 8 = 1.5955 which returned NLogL. = -17.8684
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FIGURE 4.16: Dependence between the z; and x5 features described by the Frank
copula with # = 5.8142 which returned NLogLL = -17.8611

The costs parameters required for the Optimal Mean Setting procedure are given in
Table 4.3, these were chosen arbitrarily as there were no cost data given in the original
data source (Aparisi et al. [1999]). The Optimal Mean Setting and achieved profit are
also presented in Table 4.3. The first two values in the p vector correspond to dual
feature rework, while the last two values correspond to single feature rework. The profit
achieved through Optimal Mean Setting was 83% higher than the profit achieved by
setting all the means to the nominal mean settings (given in Table 4.1). The final
distribution of the manufactured geometry is illustrated by the blue joint distribution
in Figure 4.17, this includes components that would be scrapped (diameters larger than

the upper specification limits) but models the joint distribution where rework has been

completed.

Variable Value
Rc [5 5 10]
Sc [50 50 50 50]
SP 100
PC 20
I [6.8737 3.9514 6.8441 3.9486]

Profit 44.47

TABLE 4.3: Costs for the manufacture of the big end and small end diameters (features
x1 and x2) of the connecting rod in Figure 4.11
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FIGURE 4.17: Finial Geometry distribution of the connecting rod x5 and z3 features

The case study demonstrates the applicability of copula modelling to the field of Optimal
Mean Setting, where the different manufacturing processes used to create the z; and
x9 features produced manufacturing variability best modelled using different parametric
distributions. Such an exercise is simply not achievable using a parametric multivariate
distributions, as the marginal distributions are from separate parametric families. The
benefit of copula functions is also explored in a case study in Appendix F. Here a non-
normal distribution is created where a feature is created as a result of another feature.
This additional case study also demonstrates how easily the Optimal Mean Setting

framework and Equation 3.78 can be fitted to a non-standard example.



Chapter 4. Uncertainty Modelling with Non-Normal Distributions 147

Round leading edge holes

.
.

’ '. LI
- e s/’ ,
PUNEC n '.Q.l
. e, KR . )
L e Laidback cooling holes
-
o il ;“‘-‘ K -
S G Trailing edge
S i
2 oty Interface slot for next NGV
.

group

FIGURE 4.18: A V2500 gas turbine NGV (Cleynen [2013])

4.4 Optimal Mean Setting for Cooling Holes

Modern gas turbine engines rely on film cooling to ensure components in the ‘hot’ part of
the engine stay within the material’s thermal limits. Typically the combuster, turbine
blade and nozzle guide vanes (NGVs) experience the greatest temperatures and film
cooling research is devoted heavily to these components. In this thesis, the film cooling
holes associated with high pressure turbine blade and guide vanes are studied. The
geometry of these film cooling holes is designed to release coolant air in such a way that
it forms a protective layer of cool air between the surface of the component and the
hot gas. The effectiveness of this coolant layer depends very much on the geometry of
the hole where small variations in the hole geometry can lead to large changes in the
film cooling effectiveness. The effectiveness of the film cooling determines the surface
temperature of the blade which has a significant impact on blade life. Indeed, Bunker
[2009] estimated the variations that occur during manufacture could lead to a 20°C
increase in surface temperature (worst case) which would decrease blade life by up to

33%.

4.4.1 Cooling Hole Geometry

Cooling holes are manufactured through the surface of a hollow blade or vane and allow
coolant air (taken from the compressor stage) form a film over the surface. Figure 4.18
illustrates these holes on a V2500 engine nozzle guide vane (NGV). Two types of hole
are present, straight round holes and laidback holes which have an expansion angle
relative to the main hole. The white coating is the ceramic thermal barrier coating used
to protect the nickel alloy from excessive heat on the surface. The influence of hole
geometry and hole configuration in relation to cooling effectiveness has been studied
since the 1960s (Goldstein et al. [1968], Goldstein et al. [1974]). There are a variety of

hole shapes that have been developed in the literature, the main variations are shown
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FIGURE 4.19: Types of film cooling holes from Saumweber and Schulz [2012]

in Figure 4.19 from Saumweber and Schulz [2012]. Goldstein et al. [1974], Makki and
Jakubowski [1986] and Yu et al. [2002] were among the first to investigate the differences
between round (Cylindrical Holes in Figure 4.19) and laidback holes, where the exit of
the hole is expanded to diffuse the coolant flow. Gritsch et al. [1998], Thole et al.
[1998] and Gritsch et al. [2000] confirmed the advantages of diffuser type holes with
regard to cooling effectiveness. Holes that diffused in the lateral direction as well as
in the stream-wise direction (laidback fan-shaped hole, Figure 4.19) were also favoured
compared to holes that expanded only in one direction (laidback and fan-shaped hole,
Figure 4.19). Guangchao et al. [2008] also offers an illustrative comparison between
round and diffusing holes with regard to cooling effectiveness downstream of the hole.
The benefit of diffusion shaped holes was also confirmed through an extensive review
by Bunker [2005] who noted: “The benefits of shaped hole film cooling are real and
substantial, so much so that these types of film holes are used whenever possible in the
practice of cooling gas turbines.”. A relatively modern class of hole was developed at
Oxford University (Sargison et al. [2001] and Sargison et al. [2002]), where, as opposed
to expanding the coolant flow, the coolant was accelerated as the hole morphed from
a cylindrical entrance into a convergent slot exit. The principle of this CONverging
Slot hOLE (CONSOLE) was to re-laminarize the flow as it passed from the internal
passages of the blade (or vane), through the hole onto the airfoil surface. The goal was
to establish a laminar boundary layer at the slot exit to reduce mixing with the hot gas.
Although the cooling performance of CONSOLE holes is similar to fan shaped holes, the
aerodynamic losses are far less. This is because the coolant emitted from a CONSOLE
hole forms a laminar boundary layer far less thick than the turbulent boundary layer

that forms behind a fan-shaped hole.
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As well as changing the type of hole (say, from cylindrical to a laidback fan-shape), the
geometric parameters of a particular class of hole can also impact the cooling effective-
ness. Such a study was performed by Kohli and Thole [1998] and Hyams and Leylek
[2000] where the flow field was found to be highly complex and heavily influenced by
the hole’s geometric parameters which had a major impact on the cooling effectiveness.
Gritsch et al. [2005] was the first to specifically analyse the effects of geometry param-
eters on cooling effectiveness and Bunker [2009] gave a highly comprehensive review
regarding the effects of manufacturing tolerances on film cooling. Lee and Kim [2010],
Lee et al. [2010] and Lee and Kim [2011] also investigated multiple variations of fan
and laidback fan holes to find an optimum hole geometry. They considered inclination
angle (« in Figure 4.19), laidback angle (v in Figure 4.19), lateral expansion angle (8
in Figure 4.19) and length to diameter ratio (L/D). Saumweber and Schulz [2012] gave
a detailed investigation regarding the influence of several geometric hole parameters on
cooling effectiveness, and analysed the local effectiveness in response to these to geom-
etry changes. The lateral expansion angle (5 in Figure 4.19), inclination angle (a in
Figure 4.19) and the length to diameter ratio (L/D) parameters were studied. Signifi-
cant changes to the local cooling effect lead to large differences in the average cooling
effectiveness although the variations were typically much greater than would be seen
due to manufacturing variation (4 degree increments in 3, 15 degree increments in «
and L/D = [6,10]). The relationships between cooling effectiveness and hole shape are
also influenced by variation in the external flow (such as cross flow and turbulence in-
tensity (Saumweber et al. [2003], D Ammaro and Montomoli [2013])), variations in the
inlet conditions and hole entrance (Saumweber and Schulz [2008] and D Ammaro and
Montomoli [2013]), as well as operating conditions such as the density ratio between the
hot gas and coolant and the blowing ratio of the holes. It is also important to consider
the amount of air required for cooling, ideally one aims for low mass flow of coolant
and high cooling effectiveness but exactly what the trade-off should be depends on the
overall engine performance and operating conditions The overall relationship between a
hole’s geometric parameters and the cooling efficiency is therefore complex and it is nec-
essary to carefully consider the operating conditions in evaluating the effects of a hole’s

geometry on cooling performance (see Conclusion of Saumweber and Schulz [2012]).

4.4.2 Cooling Hole Manufacture

Cooling holes are often manufactured by electro discharge machining (EDM), or laser
drilling (Bunker [2009]). In this case study the laser drilling process is considered. A
detailed review of the Laser drilling process is available from Dhar et al. [2006] and

Kreutz [2007] giving more details regarding 5-axis Laser drilling for the creation of
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FIGURE 4.20: A laser drilled blade (left picture Wos [2010]) and an illustration of laser
drilling techniques (right figure Dhar et al. [2006])
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FIGURE 4.21: Laser drilling process steps from Poprawe et al. [2008])

shaped holes. McNally et al. [2004] discussed some of the challenges of Laser drilling
particularly in regard to drilling through the thermal barrier coating. Poprawe et al.
[2008] also details the Laser drilling process of a shaped hole (which was designed for
easy manufacture) with a thermal barrier coating. In general, there are several steps to
creating a shaped hole, which vary depending on the hole geometry. The steps involved
in creating a laidback fan-shaped hole are detailed in Figure 4.21, from Poprawe et al.
[2008] (the laidback angle is small for this hole (y = 10, which makes it difficult to
visually differentiate this as a laidback hole). The first stage (1) involves percussive
drilling to form the centre of the hole. The diameter of the hole is increased by two
trepanning cycles (step (2)), which results in a near net shape hole. The third step (3),

involves four trepanning cycles at an increasing feed rate to finalise the hole geometry.

Inspecting cooling holes to ensure geometric conformance is problematic due to their
diminutive nature, typically diameters are tenths of millimetres (< 1 mm). Nevertheless,
there are several methods for ensuring cooling holes conform to the specification limits.
A holistic measure to verify that the average hole geometry is within the specification,
can be achieved through flow rate analysis, where the mass flow rate of air through the

blade is measured. This does not establish if individual holes conform, as a blockage in



Chapter 4. Uncertainty Modelling with Non-Normal Distributions 151

one hole may be compensated for by an oversized hole elsewhere. Bunker et al. [2011]
offered an advance on standard mass flow rate inspection by measuring the transient
thermal response of an internal surface beneath the downstream jet emitted from the
cooling hole. If the geometry of the hole performed correctly, the transient response
would match the theoretical calculation for transient heating. A more direct method
of evaluating the geometry of holes is though direct inspection with calibrated pins.
The diameters of these pins increases incrementally and the ‘snuggest’ fit indicates the
approximate diameter of the hole (Shetty et al. [2008]). This method is time consuming
and only reveals the smallest hole diameter, it does not pick up defects and cannot be
used to verify angles accurately. Shetty et al. [2008] developed an approach to optically
determine the diameter and depth of holes. A camera and image recognition algorithm
was used to visualise and inspect the hole diameter, while a precision diffractive light
tube was used to determine the hole depth. A camera inspection system was also
developed by Ho et al. [2012], to determine breakthrough (when the laser penetrates
the total thickness of the surface). It is important to monitor breakthrough to help
ensure the quality of the hole and prevent damage to the internal geometry of the blade.
Another type of visual inspection was developed by Schneider et al. [2010], where x-ray
radiography was used to analyse the cross-section of the holes, known as DODO (Direct
Observation of Drilled hOle). The method allows measurement of all hole characteristics
as well as manufacturing imperfections such as the re-cast layer formed due to melt rather

than vaporisation during the Laser drilling process.

4.4.3 Feasibility of Optimal Mean Setting to Film Cooling Hole Man-

ufacture

The following Section considers the parameter and tolerance design of a film cooling
hole in relation to Optimal Mean Setting. The literature discussed hitherto indicates
the cooling effectiveness of cooling holes can be highly dependent on the geometry of
the hole. Tightening the tolerances controlling the geometry of the hole can lead to
improvements in the cooling effectiveness. Optimal Mean Setting can be applied to
maximise the profit when these tight tolerances lead to non-conformance due to the

variation of the manufacturing process.

A fundamental requirement of Optimal Mean Setting is the ability to inspect and rework
features. The discussion in Section 4.4.2 clearly indicate it is possible to rework and
inspect holes!?. However, there are challenges to implementing such a system in an

industrial environment.

0The current laser drilling method illustrated by Figure 4.21 is tantamount to a series of rework steps
where the hole is created over a number of drilling cycles
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e Inspection of the hole’s geometric parameters should take place in-situ to pre-
vent large increases in manufacturing time (if components have to be removed,
inspected and then repositioned for re-drilling). In-situ inspection would also pre-
vent inaccuracies emerging from variation in the positioning of components on an

inspection jig and then replacement on the drilling jig.

e Rework must also take place in-situ to avoid large increases in manufacturing
time and inaccuracies due to replacement of components. This leads to potential
complications with regard to adjusting hole inclination angles or diameters as the
beam may damage the internal geometry of the blade or vane if breakthrough had
already occurred. It may be possible to fill the blade with a substance to block or
absorb the beam or ensure breakthrough would not occur until rework on other

parameters has been completed.

The application of Optimal Mean Setting to the manufacture of features ultimately de-
pends on whether the benefits achievable through tighter tolerances outweigh the extra
manufacturing costs. All tolerances would be tightened (provided there was some ben-
efit to doing so) if the cost was low enough. There is no intrinsic technical reason why
inspection and rework could not be applied to the manufacture of film cooling holes,
although the expense may be prohibitive. With this in mind an Optimal Mean Setting
analysis was implemented to establish the likely performance benefits and a sensitiv-
ity analysis was performed to determine when such a strategy would be economically

beneficial.

4.4.4 Cooling Hole - 2D, Two parameter

An initial study was set up to investigate the application of Optimal Mean Setting to
a cylindrical hole governed by two geometric parameters, the inclination angle («) and
the hole diameter d. The performance of a cooling hole was evaluated by calculating the
adiabatic film effectiveness down-stream of the hole where adiabatic effectiveness was

given by,

7= %:? (4.21)
The temperature of the hot gas in the main duct was Ty, T was the temperature at the
surface of the airfoil and T} was the temperature of the coolant jet. A two-dimensional
analysis was performed rather than a three-dimensional study, due to computational
constraints in solving the thermal effectiveness at enough design points to ensure the
variation in thermal effectiveness scaled realistically with the small variations in « and
d. An illustration of the 2D domain is given in Figure 4.22, which follows the con-

ventions of the majority of the literature discussed above. The domain is somewhat
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FIGURE 4.22: Overview of the 2D cooling hole computational domain (not to scale)

simplified from a hole on a curved airfoil surface, nor is there any global pressure dif-
ferential between the main duct velocity inlet and pressure outlet, as would occur on
the suction side of an airfoil surface as flow would be accelerated. The principle reason
for limiting the complexity of the domain was to ensure the numerical results obtained
from computation fluid dynamics (CFD) could be compared to the experimental obser-
vations from laboratory experiments in the published literature. Laboratory conditions
also used lower temperatures, pressures, heat flux and lower velocity than real engine
conditions'!. Furthermore, the airfoil wall material and holes themselves differ from real
engines conditions. Typically, laboratory experiment holes are > 4 mm for manufac-
turability (Schroeder and Thole [2014]), while real engines cooling holes are < 1 mm.
Nevertheless, the discussions are based on normalised values of thermal effectiveness (7)
and the fundamental flow physics is broadly unchanged between laboratory conditions

and elevated real engine conditions (Wang and Zhao [2011]).

Appendix G details the numerical aerothermal approach taken to establish the jet, gas
and surface temperatures downstream of the hole (required in Equation 4.21). The
commercial CDF package, Ansys Fluent 14.5 was used to evaluate discrete design points
and a Gaussian process regression (Kriging) response surface methodology was used to
produce a surrogate model to map changes in the cooling effectiveness with the design

features.

' A significant challenge in modelling film cooling effectiveness at real engine conditions is acquiring
accurate surface temperature readings at elevated temperature. Measuring surface temperatures using
thermocouples or film gauges is near impossible due to the extreme temperatures. Infra red techniques
can lead to large errors in readings and ensuring access or line of sight for infra red spectrometers or
cameras is challenging due to high temperature and pressures (Reagle [2009])
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4.4.5 Laser Drilling Costs

A percussive laser drilling process can be used for the production of round holes, as
illustrated by process 2 in Figure 4.20. The industry standard technique to produce
such holes relies on the use of a flash-lamp pumped Nd:YAG laser. Based on discus-
sions in McNally et al. [2004], Chien and Hou [2006], Kreutz [2007] and Walther et al.
[2008] a pulse frequency of 14 Hz and 10 pulses per hole were chosen a suitable drilling
parameters. Typically holes with diameters in the range 0.5 mm to 1 mm can be drilled

in this way'2.

An illustration of the laser drilling process is shown by the flow chart in Figure 4.24.
The drilling process itself is contained by the green box and is generally representative
of a percussive drilling process. The inspection process is optically based and is believed
to be representative. However, no such process currently exists for the optical inspection
of film cooling holes at Rolls-Royce. Nevertheless, a similar optical inspection process is
used (in a trial capacity) for the inspection of combuster cooling holes. The inspection
process illustrated in Figure 4.24 is based on this combuster cooling hole inspection
routine. Typically a blade or vane is also filled with a beam blocking substance to
prevent the laser from damaging the internal surfaces of the blade or vane. Often this is
a wax as described by Philby and Davies or a gel type substance as shown by Williams
[2012]. It is assumed filling the blade with a beam blocking substance is done prior to
loading the component in the laser drilling cell and the quality of the beam blocking
substance is assumed to maintain its properties irrespective of the number of rework
cycles. Thus, the blade does not have to be refilled with a beam blocking substance
before rework. Any changes to these assumption simply increase the cost of rework
which would affect the positioning of the optimal means but not effect the fundamentals

of Optimal Mean Setting (provided a rework method can be implemented).

A breakdown of the times and total time for the drilling and inspection operations are
given in Table 4.4. A pulse frequency of 14 Hz and a total of 10 pulse was used to
calculate the drill time. Approximately half the total drilling time is accounted for
by communication between the machine controller and drill head (coms), the shutter
movement, dwell time and index time in order to move the component or drill head to
the new position. The image analysis and communication time make up around 80% of
the total inspection time. A factory cost rate of 60 £/hr was assumed thus the total

drilling processing cost was estimated at 0.0196 £ per hole while the inspection cost was

12The diameters of the holes from the CFD study were in the range 6.46 mm to 8.8 mm, to ensure
the CDF results could be compared directly to experimental evidence.
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FIGURE 4.23: Flow chart of the laser drilling, inspection and rework process

estimated to be 0.0125 £ per hole'®. A rework operation was determined by the sum of

the drilling process cost and inspection cost of 0.0321 £.

Drill Processes | Time (s) | Inspect Processes | Time (s)
Drill 0.714 Communication 0.1
Communication 0.25 Take image 0.1
Shutter move 0.1 Analyse image 0.5
Dwell 0.1
Index 0.01
TOTAL 1.174 TOTAL 0.75

TABLE 4.4: Laser drilling and inspection times

The costs required for Optimal Means Setting are given in Table 4.5.

13This inspection cost figure is less reliable than the drilling time figure as there is no such inspection
process currently in operation so it is based on the optical inspection process for the inspection of
combuster holes.
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Re (£) | [0.0321, 0.0321, 0.0642]
Sc (£) | [1000 1000 1000 1000]
SP (£) 0.03914
PC (%) 0.0321

TABLE 4.5: Costs of rework, processing and selling price for the « and d parameters
of the film cooling hole

' // Original hole

s ]

- -
P Reworked hole
-

FIGURE 4.24: Rework of the hole inclination angle
4.4.6 Optimal Mean Setting - Film Cooling Hole

As the laser drilling process creates the two features (the inclination angle a and diameter
d) in a single process, there is a deterministic relationship between the reworking of the
angle and the diameter. It is not possible to rework the angle independently of the
diameter, as illustrated by Figure 4.24. Here, the angle of the drilled hole, o is less
than the required angle a. The hole may be reworked to increase this angle, however,

in doing so the diameter d will also change by 2¢ where ¢ is given by,

h

=t —a)—
e = tan(ja O[|)cos(90—04)

The same formula is applicable if the drilled angle were greater than the required angle,
where rework would be required to reduce the inclination angle to ensure conformance.
Since the inclination angle may always be reworked (in the range of the variation in the
study), the only scrap probability was due to the increase in diameter from reworking the
angle, and the probability the diameter was too large from the initial operation. Figure
4.24 illustrates the dependence between the diameter and reworking the angle. Small
alterations to « will result in small € values and hence small increases to the diameter
d relative to d'. However, large differences between o and a lead to large e values
which substantially increased d. The joint probability of scrap, conformance and rework
is illustrated by Figure 4.25 where the angle can be reworked if it is greater than the

upper specification limit or lower than the lower specification. limit. It follows that pro =
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FIGURE 4.25: Joint distribution of the diameter (z1) and inclination angle (x2) pa-
rameters

F(Ly,U3) — F(L1,L2), p13 =0, pr.c = F(U1,Us) — F(L1,Us) — F(Uy, Lg) — F (L1, La),
pra = F(U1) —prc — pr2 and prg = 1 — F(Uy). The pr3 term is zero because there
can be no ‘angle only’ rework. Any rework of the angle implicitly involves rework of
the diameter, thus the probability of features being in the p;3 region in Figure 4.25
(F'(Uy, L) — F (L1, Ly)) is incorporated in py4 term (dual feature rework).

The process flow and rework stages are illustrated by Figure 4.26 where the feed-in to
state 3 from the initial processing state (I), goes into the dual feature rework state (4).
Despite the slight change in the joint distribution from the standard set up (comparing
Figure 4.25 to Figure 3.6 on page 57) the same model and subsequent expected profit
equations can be used (Equation 3.78) by just modifying the probabilities associated
with state 3.

The variation in cooling efficiency was plotted against the a and d parameters in Figure
4.27, which was created using the response surface methodology discussed in Section
G.4. The black points are the CDF evaluations of the initial sample points from the
DoE.

Parameter and Tolerance Design

The trade-off study was performed to establish the Pareto front of profit versus cool-
ing efficiency. Eight minimum cooling efficiency points were selected in the range
0.77270 < 5 < 0.77345. The means and tolerances for the angle and diameter of the
hole were optimised to yield highest profit for standard and Optimal Mean Setting pro-
duction techniques. A Monte-Carlo simulation was performed for each set of means and

standard deviations (defined from the optimiser) and the proportion of points yielding
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better or equal to the minimum cooling effectiveness was verified. The optimisation
strategy is outlined in Equation 4.22 where EP(e) is the expected profit function, 7(e)
is the function of a cooling effectiveness and r is a reliability constraint specifying the
required conformance from the Monte-Carlo run. The reliability constraint R = 0.9938
corresponding to a 4 sigma level, which implies 99.38% of the points would meet the min-
imum cooling effectiveness level, nyi,. Failure to comply with this requirement invoked

a penalty for the expected profit of —1 x 107 units

find: pu and o
maximise: FEP(u,o),

(. ) (4.22)
subject to:  P[(tt,) = thain] < 7

L<pu<U.

Optimisation Strategy

For each 7min, & set of initial starting means and z values were given, where pu =
[0.5,0.5,0.5] and z = [1,1]. Since the standard deviations of the manufacturing pro-
cess were set at o = [0.1097,0.1026]'* the z-values determined the upper and lower
specification limits, where L = pu — zo and U = p + zo. Four parameters were op-
timised for the standard production technique, two related to the angle and diameter
means. There was no angle rework mean as there was no benefit to allowing the angle
mean to deviate from the nominal and there was no option to rework the angle inde-
pendently of the diameter. Rework for the diameter was set using the same mean as the
initial processing for this standard production technique. The remaining two param-
eters related to the z-values for the angle and diameter, determining the specification
limits. Two extra optimisation parameters were included for the Optimal Mean Setting
production; a diameter rework mean, and a separate z-value parameter allowing the
mean to be off-centre relative to the specification limits. This allowed the diameter to
be biased towards the upper or lower specification limits by specifying the upper and

lower specification limits as U = g + 24, 0q and L = pg — 24, 04, respectively.

A two stage optimisation approach was used, where a genetic algorithm was applied to
find the local optima in the design space, followed by a local optimiser. The Matlab
genetic algorithm (ga.m) was used with a population size of 50 for the standard pro-

duction technique and 60 for the Optimal Mean Setting technique, the mutation rate

The process standard deviations for the hole angle and diameter were defined from a nominal hole
with absolute dimensions a = 33 degrees and d = 7.7 mm. Normalising the standard deviation and
assuming all values would be encompassed by + = 30 from the nominals gave the standard deviations
noted above.
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FI1GURE 4.28: Cooling effectiveness in response to changes in the o and d parameters

and crossover probability were kept at the default setting. The optimiser was run for
100 generations equating to 5000 evaluations for the standard production technique and
6000 evaluations for the Optimal Mean Setting technique. The optimum means and
z-values formed the inputs for the local optimisation run which used the fmincon.m al-
gorithm (Mathworks [2012]). This was run for a maximum of 800 evaluations or until
the change in expected profit (EP) was no more than 1 x 10~4. Each Monte-Carlo run
was performed with 1 x 108 which lead to each function evaluation taking approximately

1.1 seconds on a 3.4 GHz Intel Core i7 processor.

Figure 4.28 illustrates the expected profit from the standard production system and
Optimal Mean Setting method for increasing cooling effectiveness. Six verification points
were run to justify the use of 1 x 10% points for the Monte-Carlo runs. Each verification

point was evaluated with 1 x 107 points. The absolute values from the two Monte-Carlo

=0.7729 | n=0.7730 | n=0.7731 | n=0.7732 | n=0.7733 | n =0.7734
109 pnts -4.02 -15.81 -48.33 -95.80 -225.66 -448.27
107 pnts -4.00 -15.62 -40.46 -95.04 -229.41 -419.94
difference 0.51% 1.21% 0.28% 0.80% 1.64% 6.75%

TABLE 4.6: Monte-Carlo verification results

resolutions are given in Table 4.6, where the percentage differences were considered

sufficiently small to justify the use of 1 x 10° points for each Monte-Carlo run.

Figure 4.28 clearly demonstrates the benefit of using Optimal Mean Setting to increase
profit relative to a standard production technique. At the lowest value of 7, the ex-
pected profit from both techniques was the same, 0.0070. As the minimum 7 value was
increased, the production cost of the standard production technique rose rapidly, conse-
quently reducing profit to a greater extent than the Optimal Means Setting method. At
the highest level of cooling effectiveness, n = 0.77345, the profit from Optimal Mean Set-

ting was —0.070 £ while the profit from a hole produced using conventional methodology
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was —957.35 £1°. The difference in surface temperature between these two extremes is
0.6 K using the real engine conditions given in Wang and Zhao [2011] where the tem-
perature of the gas in the duct was 1400 K and the coolant jet was at 750 K. For
reasons discussed Section G.3, the response surface is likely have a greater gradient for
3D conditions, thus the surface temperature difference between the two design is likely
to be exaggerated. The 0.6 K improvement is not economic for a standard production
technique, incurring a production cost of 957.35 £ per hole. The Optimal Mean Setting
technique indicates a production cost for the same minimum 7 of just 0.086 £ per hole.
This is 2.7 times greater than the cost of producing a hole which incurs no scrap or
rework, but the extra cost is relatively insignificant compared to the value of a blade.
The means, z-values, profits and production costs from the standard production and

Optimal Means Setting techniques are shown in Tables 4.7 and 4.8 respectively.

Means z-values Currency (£)

n p Ld Lo 2d, ., Zo E(PR) | Prod. cost
0.77252 | 0 | 0.6105 | 0.5602 | 9.0299 | 8.4327 0.0070 0.0321
0.77261 | 0 | 0.6500 | 0.6346 | 8.5249 | 9.1047 0.0070 0.0321
0.77271 | 0 | 0.5671 | 0.5156 | 7.4019 | 3.9059 0.0070 0.0321
0.77280 | 0 | 0.5599 | 0.4881 | 4.5472 | 0.7156 | -0.0471 0.0677
0.77289 | 0 | 0.5671 | 0.5517 | 2.8315 | 0.8082 | -4.0225 4.0452
0.77299 | 0 | 0.5494 | 0.5421 | 2.2913 | 1.0305 | -15.8104 15.8374
0.77308 | 0 | 0.5304 | 0.5646 | 1.9382 | 0.7398 | -48.3268 48.3474
0.77317 | 0 | 0.5068 | 0.5543 | 1.4989 | 1.0711 | -95.7987 95.8247
0.77326 | 0 | 0.4894 | 0.6004 | 1.0974 | 0.8568 | -225.6591 | 225.6791
0.77336 | 0 | 0.4534 | 0.5376 | 0.6585 | 0.7909 | -448.2683 | 448.2830
0.77345 | 0 | 0.4154 | 0.5390 | 0.0909 | 0.2232 | -957.3500 | 957.3508
0.77336 | -.8 | 0.5756 | 0.6015 | 1.9096 | 0.4291 | -78.1628 78.1758
0.77336 | .8 | 0.5654 | 0.5734 | 1.7036 | 0.7393 | -76.3840 | 76.4050

TABLE 4.7: Optimisation results for a cooling hole manufactured using a standard
production technique

Finished geometry with no correlation between d and «

The positioning of the means and tolerance limits (given from the z-values) is illustrated
by the three Figure pairs representing the standard production technique and Optimal
Mean Setting in Figure 4.29. The solid green points represent the optimal means for
initial processing, while the green star on the right hand plots illustrate the optimal
means for the single feature rework. Each plot also displays contours illustrating the final
distribution of the manufactured geometry after rework. The hole diameter distributions
are truncated towards the diameter rework specification limit (left white line) while

the inclination angle distributions are truncated at both specification limits. This was

15The profit is negative due to the relatively low selling price of 0.03914 £ in Table 4.5.



Chapter 4. Uncertainty Modelling with Non-Normal Distributions 162

0.7735 0.7735
0.773 0.773
— 0.7725 0.7725
k=
2 0.772 0.772
=
-]
5 0.7715 0.7715
S
-% 0.771 0.771
£
0.7705 0.7705
0.77 0.77
0.7695 0.7685
Diameter (d)
(a) Standard production with n = 0.77299 Optimal Mean Setting production with n =
0.7735 0.7735
0.773 0.773
- 0.7725 0.7725
3
g 0.772 0.772
=
o
5 0.7715 0.7715
£
% 0.771 0.771
£
0.7705 0.7705
0.77 0.77
0.7695 = i 0.7685
0.2 04 0.6 0.8
Diameter (d) Diameter (d)
(c¢) Standard production with n = 0.77317 d) Optimal Mean Setting production with n =
0.77317
0.7735 0.7735
0.773 0.773
. 0.7725 . 0.7725
3 )
z 0.772 z 0.772
= =
[ o
£ 0.7715 = 0.7715
= B
£ 0.771 £ 0.771
Q [£]
£ £
0.7705 0.7705
0.77 0.77
0.7695 0.7695
04 . 04
Diameter {d) Diameter (d)
(e) Standard production with n = 0.77336 f) Optimal Mean Setting production with n =

)
0.77336

FI1GURE 4.29: Optimal means and geometry distributions for varying cooling effective-
ness (1)
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Means z-values Currency (£)

i p L L e, oor 2d, Zd,, Za E(PR) | Prod. cost
0.77252 | 0 | 0.5807 | 0.5866 | 0.6294 | 8.3502 | 9.4241 | 8.4647 | 0.0070 0.0321
0.77261 | 0 | 0.6058 | 0.5764 | 0.4307 | 8.2938 | 8.5425 | 9.1149 | 0.0070 0.0321
0.77271 | 0 | 0.5958 | 0.5994 | 0.4280 | 8.3307 | 9.1901 | 8.6448 | 0.0070 0.0321
0.77280 | 0 | 0.5314 | 0.5461 | 0.6709 | 2.5341 | 9.9954 | 9.2156 | 0.0069 0.0323
0.77289 | 0 | 0.5292 | 0.5365 | 0.5844 | 2.1123 | 9.9091 | 9.9972 | 0.0065 0.0327
0.77299 | 0 | 0.5012 | 0.5452 | 0.5294 | 1.5232 | 9.7337 | 9.3185 | 0.0049 0.0342
0.77308 | 0 | 0.4933 | 0.5519 | 0.5165 | 1.2423 | 9.7009 | 2.6737 | 0.0026 0.0363
0.77317 | 0 | 0.4747 | 0.5490 | 0.5018 | 0.9694 | 9.9257 | 2.0922 | -0.0025 0.0402
0.77326 | 0 | 0.4445 | 0.5293 | 0.4519 | 0.6342 | 9.5717 | 1.8807 | -0.0096 0.0464
0.77336 | 0 | 0.4213 | 0.5353 | 0.4477 | 0.2260 | 9.9546 | 1.3290 | -0.0278 0.0597
0.77345 | 0 | 0.4121 | 0.5245 | 0.3811 | 0.0099 | 9.6017 | 0.5592 | -0.0697 0.0863
0.77336 | -.8 | 0.5006 | 0.5947 | 0.5017 | 9.5944 | 9.4981 | 1.2743 | -0.0248 | 0.0561
0.77336 | .8 | 0.4977 | 0.5131 | 0.4877 | 0.7947 | 9.9010 | 1.8665 | -0.0072 |  0.0439

TABLE 4.8: Optimisation results for a cooling hole manufactured using Optimal Mean
Setting

because it was always possible to rework the inclination angle if it were less than or
greater than the lower and upper specification limits respectively. However, rework on
the inclination angle enlarged the hole diameter, hence scrap was produced due to too
great a hole diameter. The increase in 7 from 0.77299 to 0.77336 was accompanied by a
shift left of both the standard production and Optimal Means Setting means (Figures
4.29(a) to 4.29(f)). In a pragmatic sense, an initially undersized hole diameter was
created, to allow rework and reduced the probability of scrap if the angle («) did not
initially conform. There was very little variation in the optimal mean for the hole angle
(a), as the rework cost was equal for features greater than the upper specification limit
and less than the lower specification limit. It is noticeable only one specification limit
is shown on Figure 4.29(b) and the diameter upper specification limit is not visible
in the remaining Optimal Mean Setting Figures (Figures 4.29(d) and 4.29(f)). The
generic reason for this is the absence of non-conformance for the specified optimal means
and reliability constraint of R = 99.38%. Both the initial and rework means for the
diameter (d) parameter are lower in Figure 4.29(b) than the adjacent Figure 4.29(a),
which reduced the probability of components falling into the response surface hollow,
located around [0.85 0.72] and the yellow shaded region around [0.8 0.4]. This negated
the requirement for angle («) specification limits. The upper specification limit for
Figures 4.29(b) to 4.29(f) are never required as the left hand bias of the optimal means
reduced the probability of non-conformance (due to too large a diameter), to less than
0.62%.

The shape of the performance distribution between the standard and Optimal Mean

Setting production techniques is visualised in Figures 4.31(a) to 4.31(d). In addition to
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FIGURE 4.30: Optimal means and geometry distributions for varying cooling effective-
ness (n) and correlation (p)

the three 1 values chosen for the plots in Figure 4.29, an additional n-value (n = 0.77280)
was plotted (Figure 4.31(a)) to give a holistic picture of the change in the performance
distribution with increasing 1. The mean performance (1) was always less for the Opti-
mal Mean Setting production technique compared with the standard production. This
was because g was always less for Optimal Mean Setting production, which produced
components with slightly lower 1 on average. Additionally, Figures 4.31(a) to 4.31(d)
for the Optimal Mean Setting production technique, show a greater number of compo-
nents with middling values of 1 compared to the standard production technique. This
was again due to the lower pg value (for the Optimal Mean Setting technique), which
corresponds to lower 7 values than the standard production technique. The Optimal
Mean Setting technique also exhibited slightly bimodal behaviour particularly in Fig-
ures 4.31(c) and 4.31(d), where an inflection point formed for middling n values (due

to the lower p4), before the peak for high n values. The higher peak was bolstered by
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the rework mean fi,,,q, where the mean for the reworked diameters was larger than the
initial mean (u4), and more in-line for pg for the standard production technique. Since
only a proportion of the initial batch of components were reworked the high n peak is

lower for Optimal Mean Setting than the standard production technique.
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FIGURE 4.31: Performance distributions for varying cooling effectiveness (7)

Correlation between d and o

The effect of negative and positive correlation between the d and « parameters is il-
lustrated by Figure 4.30(a) to 4.30(d). In practice the correlation between the hole
diameter and inclination angle would be fitted from data, as shown in Section 4.3. As
no data existed for this case, two prospective negative and positive correlations were
specified where a Gaussian dependence structure was implemented via a Gaussian cop-
ula. Positive correlation effectively caused a diagonal ridge of high probability density

with a negative slope (Figures 4.30(a) and 4.30(b)). In contrast the areas of high n for
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the response surface were aligned with a slightly positive diagonal. This mismatch be-
tween the natural orientation of the manufactured geometry distribution and the ridge
of high 7 significantly reduced the tolerance of the inclination angle («) compared to the
uncorrelated case. Conversely, the hole diameter (d) tolerances were widened since the
variation along the o dimension was reduced. The geometry produced using the Optimal
Mean Setting method (Figure 4.30(b)), showed the means were shifted closer to the di-
ameter rework specification limit, this reduced the probability of geometry being created
with too large a diameter (right hand side of the response surface). As a consequence,
the inclination angle upper and lower specification limits were relaxed compared to the
standard production case (Figure 4.30(a)), as the discrete variation of the hole diame-

16

ter was lower *°. Hence, there was a reduced probability of producing nonconforming

geometry at the corners, where the diameter and angle specification limits intersect.

Figures 4.30(c) and 4.30(d) illustrate the geometry distribution and response surface for
positive correlation. The better alignment between the diagonal slope of the geometry
distribution and the response surface led to an improvement in expected profit for both
the standard and Optimal Mean Setting techniques. The tolerances were set wider apart
in Figures 4.30(c) and 4.30(d) compared to 4.30(a) and 4.30(b). Tables 4.7 and 4.8 also
verify lower production costs and high profits for the positively correlated cases. The
distribution of the performance of the manufactured geometry is shown in Figures 4.32(a)
and 4.32(b) for negative and positive correlation, respectively. The principle difference
between the correlated and uncorrelated cases is the truncation around n = 0.7734.
Both the d and « distributions are truncated in the uncorrelated case (Figures 4.29(e)
and 4.29(f). The distributions are less truncated for the correlated cases (Figure 4.30)
particularly in regard to the hole diameter. This leads to a less truncated shape for the

performance distributions (Figure 4.32).

Cooling Hole Study Conclusion

The average performance of a cooling hole could be improved by tightening the tolerances
for the hole diameter and inclination angle. The cost of doing this using a standard
method of manufacture was economically infeasible. The same minimum performance
was achieved using Optimal Mean Setting with an increased of production cost of 0.086
£ per hole, compared to the original cost of 0.032 £. The mean hole performance
was slightly less using Optimal Mean Setting compared to the standard production
technique. The degree to which the average performance was lower depended on the

minimum cooling effectiveness () and the correlation between the hole diameter and

16The total variation remained unchanged but the probability was less dense at the periphery. Notice
the largest diameter contour on Figure 4.30(b) has a density of 0.8 and the equivalent contour on Figure
4.30(a) has a density of 1.37.
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FIGURE 4.32: Performance distributions for positive and negative correlation (p)

inclination angle. In summary, performance gains by tolerance tightening using standard
production techniques would be economically impractical, Optimal Mean Setting makes

such a suggestion economically possible.



Chapter 5

Conclusions and Future Work

5.1 Conclusion

Optimal Mean Setting is a technique that can be used to reduce the cost of manufac-
tured features and components when the manufacturing variation is greater than the
tolerance limits. It has applications where the performance of the feature or component
necessitates tight tolerances and it is not practical or possible to reduce the inherent
variation in the manufacturing process. Typically, this would lead to non-conformance
and the expense of reworking and scrapping components. Optimal Mean Setting can be
used to ensure the non-conformance that is created is primarily rework, as opposed to
more costly scrap. In this manner, the tolerances can remain tight but the cost of pro-
duction can be minimised. This thesis sets out the framework necessary to determine the
feature mean values to maximise profit. The process effectively modifies the shape of the
manufacturing feature distributions to achieve the most profitable component geometry
within the specification limits. Chapter 3 developed the ideas of a generalised approach
to Optimal Mean Setting for idealised examples. The case studies in Chapter 4 and
in Appendix F showed how the method could be applied to non-ideal real components.

Several contributions to five key topics were made and are detailed below.

e A literature review uncovered an error in the methodology of previous research,
related to the application of Optimal Mean Setting to parallel manufacturing pro-
cesses. A part of the research in this thesis was devoted to correcting this error and
generalising the methodology. The generalisation enabled a mixture of serial and
parallel processes to be considered for n-features. This is the first time a robust,
generalised method has existed and does not restrict the application of Optimal
Mean Setting to a small number of features (two for parallel production) and a

specific sequence of manufacture (serial or parallel).

168
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e The optimisation methodologies discussed in previous literature were found to
be sub-optimal for determining the mean settings to maximise profit for features
produced in parallel. An optimal strategy was discussed in Section 3.1.2 and

proven to outperform the literature in Section 3.5.1 using like-for-like examples.

e A fundamental restriction identified in previous work was the inability to evalu-
ate the scrap, conformance and rework probabilities for parallel production where
the feature distribution were not normally distributed or where different distri-

butions families modelled the manufacturing variably of each feature!

. Copulas
were introduced to remove this restriction, which allowed the joint distribution to
be calculated (to yield the scrap, conformance and rework probabilities) irrespec-
tive of the type of distribution used to model the variation of the manufacturing

features.

e The effect Optimal Mean Setting has on the final manufactured distribution had
not been considered previously. Optimal Mean Setting yields means that are usu-
ally biased towards one of the specification limits. Moreover, the mean of rework
processes can be different to the original mean, which can further modify the distri-
bution of the manufactured geometry. Since it is the final manufactured geometry
that governs the performance distribution of the components, it is important to
be able to predict the distribution. Again copula functions were used to model the
final distribution of the manufactured geometry, as there was no restriction of the

shape of the feature distributions.

The source of uncertainties in manufactured products will never be eliminated (Wilson
[1980]). Therefore, the performance of products will vary depending on the sensitiv-
ity to the product’s geometry and to the precision the geometry can be manufactured
to. Thus, there will always be potential to improve a product’s functional performance
through tolerance tightening and manufacturing a more precise product. The change of
a product’s geometry through service must also be considered to prevent over precision
engineering components that will immediately deform in service. Nevertheless, the gen-
eralised approach of Optimal Mean Setting presented in this thesis allows engineers to
consider increasing the precision of a product through a coupling of design and manu-
facturing knowledge. It allows manipulation of the shape of uncertainty to create better

value engineering products.

!More correctly the literature is limited to features where the variation is approximated by the same
distribution family for each feature. In parallel production, the joint probability of scrap, conformance
and rework must be evaluated which involves solving the multivariate distribution function. Most para-
metric distribution families have a multivariate distribution function but different distribution families
cannot be mixed, unless copulas are used.
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5.2 Future Work

5.2.1 Optimise Functional Distributions

Much of the literature inspired by Taguchi discussed in Chapter 2 is associated with
achieving desirable functional distributions, such as larger-the-better, nominal-the-best
and smaller-the-better. The cooling effectiveness distribution of the film cooling hole
case study, in Chapter 5, is an example of a larger-the-better distribution. A further
area for investigation would be to attempt to optimise the functional distribution by
applying Optimal Mean Setting. By altering the proportion of rework on a feature, and
modifying the mean values for different rework iterations, Optimal Mean Setting can
modify the feature distributions, ultimately changing the functional distribution of the
component. This is in contrast to the well established principles of Six Sigma, where one
of the implementation corollaries is to acknowledge variation exists but set up processes
to minimise the affect on the product. Future work should examine the benefits of
implementing Optimal Mean Setting to achieve desirable performance characteristics.
One significant advantage of the Optimal Mean Setting approach is tolerance tightening
and product performance can be improved without expensive re-design or vast capital

expenditure to improve manufacturing capability.

Trade-offs between performance gains brought about through Optimal Mean setting,
improved manufacturing capability or redesign are all value related and fall into the
remit of Value Drive Design (Collopy and Hollingsworth [2009] and Cheung et al. [2010]).
The objective of this area of research aims to quantify ‘best’ design and decisions by

maximising value.

The performance of assemblies can also be associated with Optimal Mean Setting. For
example, many gas turbine assemblies are annular in nature and composed of several
components, such as a ring of nozzle guide vanes. Variation in the geometry of these
vanes or vane pairs impacts how cylindrical this annular assembly is. Variation at
component level and the affect of assembly performance is an active research area (Lowth
and Axinte [2014]). Optimal Mean Setting could be applied to such areas of research to

guarantee assembly performance by impacting tolerances at component level

5.2.2 Copula Modelling Manufacturing Distributions

The research presented in this thesis was the first application of copula functions to
model the variation in manufacturing features. There is great potential in this approach

to propagate manufacturing variation through to performance variation in engineering
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FIGURE 5.1: Illustration of a customised distribution fitted to the data points

quantities such as stress, aerodynamic performance and thermal transfer. As examined
in this thesis, different families of parametric distributions can be used to model the
manufacturing variation. However, it is not even necessary to fit a parametric distribu-
tion to data, the data could be used explicitly. This concept is expressed in Figure 5.1
which illustrates how a distribution might be explicitly fitted to the sample points from

the manufacturing data in Section 4.3 (black line). There are two potential challenges:

e There is a danger of over customizing distributions to data samples. Although
the distribution in Figure 5.1 represents the variation in the feature (x3) well
for this sample, it is questionable if this is really representative of the process
variation if a larger number of samples were taken. If enough data samples were
available it would be possible to use a proportion to customise a distribution and
the remainder to verify if the customized distribution really was representative of

the manufacturing process variation.

e Optimal Mean Setting also requires the mean to be shifted. If customizable dis-
tributions were created, it would be important to establish how the shape of the

distribution would change with the process mean.

5.2.3 Alternative Strategy to Evaluate F-matrix terms

One of the time consuming elements of the Optimal Mean Setting methodology set-out
in this thesis is the matrix inversion (I —Q)~! which is used to determine the M-matrix
terms the F-matrix. As the number of features increase, the I and @ matrices become

larger, increasing the time it takes to execute the inversion.
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While the M-matrix probabilities follow a sequence related to the geometric series, the
F-matrix probabilities are more complex to determine without the Markovian method.
Rudolph [1999] and Uem [2009] offer tantalising mathematical models of random walks
that have similar characteristics to the rework, scrap and conformance states involved
in Optimal Mean Setting. It may be possible to adapt and further their research and
avoid the matrix inversion, which has the potential to reduce the computational time for
greater numbers of features. This is a purely mathematical exercise but a comparison
of computational time versus number of features for the Markovian method and an

alternative would be of practical benefit.

5.2.4 Non-Exhaustive Mean Search

Selim and Al-Zu’bi [2011] introduced a method to enable the optimal means for the
manufacture of components in series to be found without exhaustive search. This is
advantageous as it reduces the computational time necessary to find the optimal mean
setting. It is possible this work could be incorporated with the research in this thesis in

two main ways.

e Although the methodology presented in Selim and Al-Zu’bi [2011] is restricted
to a the manufacturing of a single feature at each stage, it may be possible to
apply a similar strategy to parallel production. The mathematical framework
regarding parallel production presented in this thesis is a starting point for such

an investigation.

e If the preceding bullet point could be achieved, it would then be possible to derive a
method to allow the means for n-features in any combination of serial and parallel

operations to be found, utilising the basis of Selim’s method

5.2.5 Inclusion of Measurement Error

The Optimal Mean Setting framework discussed in this thesis did not model the effect of
measurement uncertainty due to the inherent design of measurement systems and fluc-
tuation in environmental conditions. Measurement error would predominately influence
the measurements that were in close proximity to the specification limits. This topic
has been associated with Optimal Mean Setting and process targeting, for example,
Duffuaa and Siddiqui [2003] investigated the losses in profit due to product misclassi-
fication. Feng and Kapur [2008] developed a model to specify optimum specification

limits for bivariate quality characteristics with penalty costs for misclassification. An
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area for future study is the inclusion of measurement error to the generalised Optimal

Mean Setting approach developed in this thesis.

5.2.6 Holistic Integration

As described by Shukor and Axinte [2009], “Traditionally, the translation of a concep-
tual design into a final product has been accomplished by repetitive iterations between
design and manufacturing stages of the product development life cycle”. Designers may
operate with little knowledge of the manufacturing process, which can lead to non-
manufacturable designs resulting in time-consuming iterations between the design de-
partment and manufacturing. The specification of tolerances is one such area. To better
design for manufacture, Manufacturing Analysis Systems (MAS) have been developed to
pull manufacturing aspects into the design stages (Gupta et al. [1997] reviewed in Shukor
and Axinte [2009]). In the case of tolerance specification and Optimal Mean Setting, the
manufacturing capability and variation distribution are required at the design stage. A
complex but powerful research area would be to bring such information into the design
environment which would empower designers and manufacturing engineers to optimise

products in light of the likely variation they would encounter during manufacture.



Appendix A

The Nature of the Stationary

Points

Theorem 3.1 was proven and total profit is maximised when the same optimal mean is
applied over all rework iterations such that, yu = Hopt - Thus, the expression for total

profit, Equation 3.4, can be formulated as a geometric series and written,

TP = SP (FW% o) - F(L,u,a>>

1-[1-F(U,u,o0)]

F(L,p, o)
_PC_SC(l_[l_F(UHU’aU)]) <A1)

~Re( o rwa Y-

The nature of the stationary point which maximises TP is given by,

TP V2
dp? VoSG (p)
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The functions A, B and G are given by,

Ao =exp (510,
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B(p) = exp (—(U_”)Q> ,
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The stationary point of Equation A.1 is only a maximum when d*T P/du? < 0. This
condition is generally satisfied for SP > Sc¢ > Rec, which ensures that the optimal
mean lies to the right of the nominal mean, pnom. While Popt < USL, there are only
two positive contributing terms in Equation A.1, the third and eighth terms, —(U —
w)B(p)é(p)a and —B(n)é(p)a, because £(¢) may be negative as indicated by Figure
A.1. However, the absolute value of the fourth and ninth terms is always greater than

the third and eighth respectively such that,

[(2Re + a)(U — p) B(p)&(e)| > [(U — p)B(p)é(p)e

and

|2Re+ a)B(u)| > [B(n)é(p)al

making the sum negative, and thus Equation A.2 remains negative.

While Popt > USL, the second and seventh terms from Equation A.2 make a positive
contribution due to £(v) becoming negative, as illustrated on Figure A.1. Nevertheless
the absolute value of the fifth term and tenth terms are greater than the second and

seventh terms respectively such that,

(L — p)A()| > [(L — p) A(p)é(v)]

and
|[A(p)al > [A(p)§(v)al

which again ensures Equation A.2 is negative confirming the stationary point is a max-
imum V€ R where fiopt > finom- It is worth clarifying in practical cases popt > finom
is generally satisfied, since the selling price must be greater than the scrap cost, which

in turn is greater than the rework cost (SP > Sc > Rc).
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FIGURE A.1: Illustration of the A, B,£&(y),&(v), G(u) functions for L =4, U = 6 and



Appendix B

Total Profit for a Given Iteration

Equations 3.5 to 3.7 were derived from specific instances of the single feature total profit
expression, Equation 3.4. These specific instances for total profit for n = 1, n = 2 and
n = 3 are derived in this Appendix. Given the process standard deviation (o) and the
feature specification limits (U and L) remained constant, the following substitutions
were made to condense the notation. Let U; = F (U, p;,0) and L; = F(L, u;,0), where i
is an iteration number, such that i = 1,2,...,n. The optimal mean for a single iteration

is considered below.

Optimal mean for n=1

TP = SP(Z/[l — El) - PC — Sc(ﬁl) + RC(l —Z/[l) (B.l)

To determine the optimal mean, the expression must be differentiated with respect to

1, thus it is convenient to rearrange Equation B.1 in terms of U;(u1) and L£q(p1).
TPZU1(5P+RC) *£1(5P+SC) — PC — Re. (B2)

Setting Equation B.2 to zero and differentiating with respect to p1, yields the maximum

of the T'P; expression (note this was shown to be a maximum in Appendix A),

%T;f :2\\20 {(SP + Sc) exp [_("210_2”2]
— (SP + Re) exp [_(M%_ZU)T } _
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This can be rearranged by making p; the subject to give,

1 SP + Re
I P L i B B
H 2(L—U){JH[SP+Sc]+ U}’

which is the optimal mean setting for a single iteration.

Optimal mean for n=2

The total profit for n = 2 is given by,
TP =SP{(U — L1)+ (U — L2)(1 —Uh)}
— PC — {[Sc(L1) + Re(1 — Uy)]
+[Se(L2)(1 = Ur) + Re(1 —Us)(1 = Uh)]}.
Collecting like terms of U and L gives,

TP = Ul(SP + 2RC) — ﬁl(SP + S’I“)
—9Re— PC +Us(SP + Re) — L2(SP + Se)

+ £2u1(5P+ SC) —Uzul(SP—I—RC).

(B.3)

(B.4)

By setting Equation B.4 to zero and differentiating with respect to p1 and us yields,

oTP 2 {1

T :m 3 {(SP—#— Sc)&(—p1)

—(SP + Re)&€(—vy) — Sc — 2SP — 3Rc}

202 20

exp [_(‘“_U)T + exp [_(‘“;L)z] (SP + Rc)} =0.

%Tu]: :4:/20 (5(—01) + 1) <exp [W] (SP + Sc)

—exp [_(“Q;U)Q] (SP+ Rc)) = 0.

(B.5)

(B.6)
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Both Equations B.5 and B.6 can be solved for p; and po respectively yielding,

= 2(Ll—U) {202111 [M ((SP + 5¢)(p2)

—(SP + Rc)é(v2) + 3Rc+ 2S5P + Sc)] (B.7)
+1° - U2} :

and
[y = Q(Ll_U) {2021n [m] + 12— U2} . (B.8)

The last iteration (Equation B.8), where i = 2, is the same as the iteration from n = 1.

The first iteration, where n = 2 (Equation B.7), is dependent on the last iteration.

Optimal mean for n=3

The total profit for n = 3 is given by,

TP =SP{(U — L)+ (U — L2)(1 —Uy)
+ (Us — L3)(1 —U)(1 —Uy)} — PC
— {[Se(Ly) + Re(1 — Uh)] + [Se(La) (1 — Uy) (B.9)
+Re(1 — Uy)(1 — )] + Se(L3)(1 — Up) (1 — Uy)
+ Re(1 —Us)(1 — Us)(1 — Uy)} -

Collecting like terms of U and L gives,

TP :ul(SP+3RC) —£1(SP+ST‘)
—3Rc— PC +Uy(SP + 2Rc) — Lo(SP + Sc)
—|—£2U1(SP+Sc) —UQZ/fl(SP—I—RC)
(B.10)
+ U3(SP + Rc) — L3(SP + Sc)
—UsUs(SP + Rc) —UsUy(SP + Re) + L3U(SP + Se)

+£3Z/{1(SP+SC) +U3UQZ/{1(SP+RC) —ﬁgUgul(SP—l—SC)
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Setting Equation B.10 to zero and differentiating with respect to p1, po and ps yields,

oTP 2
8/“ _Qﬁd

{i <[(sp + S¢) E(—¢3) — (SP + Re) E(—v3)

—Sc—2SP — 3Rc] E(—v2) + (SP 4+ Sc)é(—p2)

—(SP + Rc)é(—v3) + (2SP + 25c¢)é(—p2) (B.11)
—3Sc—45P — 7Rc) exp [_(M;U_QU)T

+exp [(“;(IQL)T (SP + Rc)} =0,

oTP V2 1
o =1y (e 1) {5 |57+ 506
—(SP + Re) &(—wv3) SCQSPBRC] (B.12)

exp [_(“20_2(])2] + exp [_(M;a_?L)T (SP + Rc)} —0

and

P (e +1) (e +1)

<exp [_(“;O__QL)T (SP + Sc) (B.13)

—(u3 —U)?
Solving Equations B.11, B.12 and B.13 for 1, po and ps respectively gives,

. 2(L1_U) {Qazln [M < _(SP + S¢)(E(wva) — 1)é(es)

—(SP + Re)(§(v2) — 1)&(vs) + 2(SP + Sc)é(p2)

(B.14)
—(BRc+2SP + Sc)é(va) + TRc + 4SP + 350)]

+L2—U2},
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iy = 2(L1_U) {20% [Q(SPIJFSC) ((SP + 5¢)é(ps3)

—(SP + Rc)é(vs) + 3Rc+25P + Sc)] (B.15)
+L% — U2}

and

1 SP + Re
b o, [SEER e 2l
Hs 2(L—U){J “[sp+sc]+ U}

It is evident a pattern is emerging, where the last mean, u,, is always a function of the
selling price, scrap and rework costs, manufacturing variation and the upper and lower
specification limits. The second to last term is also a function of these variables as well
as the p,. The third to last term is a function of the costs, manufacturing variation,
specification limits as well as the last and second to last terms, u, and p,—1. The form
of the terms remains constant. This pattern was generalised in Equations 3.10 and 3.61

in Section 3.1.1.
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Equivalence of Profit Equations

Equation 2 from Selim and Al-Zu’bi [2011] expanded for two features is,

E(PR) =sp 1A P24 —@mﬁpgmﬂ>
1—pral—p2a 1—pia

—[SC’l< p1s )+SCQ< PLs > P1,A } (1)
1—pir l—=pir/) 1—p1,A

B [RCl PIR __ po, P2R__PLA ]
I=pir IL—p2r1—p1,a

this is equivalent Equation 3.77,

E(PR) =SP ficfuc — (PCy+ PCYy fic)

—FG(M5)+&%<mﬂ>h% (C.2)
1 - p21,21 1 - pII,QH

— RCymio, — RComiay, fio

since
fI o= pI,C — pl,A
’ 1—pi2y, 1-p1a
firo = Pu,c _ D2,A
’ 1-— pII,QII 1-—- p2,A
(C.3)
e P12 _ PiR
M l-py, l1—pig
pH,QH pQ,R
mIL2; = =

1 _pII,2H 1 _pQ,R'

Substitution of the expressions in Equation C.3 show Equation C.2 and Equation C.1

are equivalent.
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Appendix D

Optimal Mean Setting for
Parallel Production - Alternative

Scrap Cost Structure

This appendix offers an alternative formulation to the example in Section 3.5.1. In a
similar manner to the literature (Khasawneh et al. [2008] and Peng and Khasawneh
[2014]), the scrap cost was adjusted depending on the state at which a component
was deemed to be scrap. In a parallel production system, this implicitly implies the
rework operations add value to the component. Normally a manufacturing process
does add value to a component, however, a rework operation is a repeat or partial
repeat of the original process. Thus, rework has a cost due to machine utilisation,
tool wear, energy use and operator time but it does not necessarily increase the value
over a similar component that conformed in the first iteration. An exception would be
additive manufacturing processes, where the material volume increases with each rework
operation, hence the value of the component will increase. The literature (Khasawneh
et al. [2008] and Peng and Khasawneh [2014]) used a static scrap cost for each state,
here a dynamic scrap cost is used where the scrap cost at each state is proportional to
the number of times a feature was reworked as shown in Table D.1 (Section 3.5.1 used
a flat cost of 150 units irrespective of which state caused the scrap). It was assumed
rework cost per feature was 25 units , and 50 units for dual feature rework. All other

costs were the same as the example in Section 3.5.1.

The expected profit versus the dual feature means were plotted in Figure D.1 in a similar
manner to Figure 3.29 from Section 3.5.1. As the scrap cost structure is different, the
two examples are not directly comparable. Nevertheless some observations can be made

relating to impact of the two different cost structures. The location of the optimal means
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" [_ICase | surface

100 < [ Icase Il surface
' ® Case I”opt
50 Jo ¥ Case ||Mopt

Expected Profit (EP)

FIGURE D.1: Profit surfaces for Case I and Case II (optimisation of two and four means
respectively)

between the two Cases (Case I and Case II) followed the same principles as the example
in Section 3.5.1. The Case I means were greater than the dual feature Case II means
and the Case II single feature rework means were more rework biased than the Case I
means. However, the difference between the dual and single feature rework means were
greater than the example from Section 3.5.1. The reason for this lies in the difference
between the single and dual feature scrap costs. The dual feature rework cost is at least
150 units, while the single feature rework cost is at least 125 units; the rework cost in
the example in Section 3.5.1 was 150 units irrespective of whether the rework was single
or dual feature. Therefore, the single feature rework means in Table D.1 could afford
to be more rework biased relative to the dual feature rework means in the example in

Section 3.5.1.

Variable Value
U 6 6]
L [4 4]
Rc [25 25 50]
Sc [100, 100 + 25(1 4+ my2), 100 + 25(1 4 my 3), 100 + 50(1 + my 4)]
SP 400
PC 50
) (2,0;0,2]

TABLE D.1: Dual feature numerical example input parameters

The bar plot in Figure D.2 shows the rework and scrap costs from the initial and rework

states. There are two primary differences between the plot in Figure D.2 and Figure
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3.30 from Section 3.5.1, relating to the values of the rework costs and the value of the
dual feature scrap cost (Srs). (1) The total rework costs Rwy to Rwy are all lower in
Figure D.2 compared to Figure 3.30. The rework costs in both examples are the same
but the means for both Cases (Case I and Case II) in Section 3.5.1 are higher than the
equivalent means in the current example. (2) The absolute value of Sty in Figure D.2 is
greater than in Figure 3.30. The values of Sry relative to Sry and Srs from Figure D.2
are also higher compared to the relative differences in Figure 3.30. The increase in Sry
was caused by the lower means relative to the example in Section 3.5.1. The Sr9 and
Srs values remain approximately the same between both examples due to the different
cost structure. While the probability of producing Sry and Srs scrap in the example in
Section 3.5.1 is low, the scrap cost is also higher at 150 units compared to at least 125
units in the current example. Thus, the differences approximately cancel out for Sro
and Srs. This also explains why the difference between the Sry, and Sre and Srs values
are greater in the current example. The scrap costs for Sry are approximately the same
for both examples but the probability of dual feature scrap is greater in the current

example, leading to a greater difference between the Sry, and Sry and Srg values.

Value

Case I Profit 45.20

Case II Profit 47.27

Case I Production Cost 131.77

Case II Production Cost 129.48

Case I means (uj 1, 1 2) 6.67, 6.67

Case II means (uf'y, 47’9, 151, My o) | 6.50, 6.50, 6.97, 6.97

Case I Final Conformance Prob. 0.5674

Case II Final Conformance Prob. 0.5669

Case I Final Scrap Prob. 0.4326

Case II Final Scrap Prob. 0.4331

TABLE D.2: Optimisation results

D.1 Influence of Correlation

Correlation alters the probability of components falling into single and dual feature

rework states, in the same way as described by Figure 3.31 from Section 3.5.1.

The effect of correlation on the optimal means and profits are tabulated in Table D.3.
Profits for both cases were higher with the new scrap cost structure, due to reduced
production cost, which was also observed in Table D.2 for no correlation. The difference
between the dual feature and single feature means was also increased relative to the ex-
ample from Section 3.5.1. However, there was no fundamental change to the results as a

consequence of the alternative scrap cost structure. Nevertheless, Figure D.3 illustrates
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F1GURE D.2: Scrap and rework costs from the initial and rework states

the difference between the profits of the Case I and Case II optimisation methods was

greater with the dynamic scrap cost structure, compared to Figure 3.32 from Section

3.5.1. The reason for this was due to the less costly single feature scrap cost compared

to dual feature scrap cost. The means settings in the Case I methodology was a com-

promise between single and dual feature rework. Since the Case II methodology could

optimise both rework types independently it could take advantage of the lower single

feature rework cost rate. Since a flat scrap cost was used in the Section 3.5.1 exam-

ple, the advantage of optimising the single feature rework means separately was not as

pronounced.
P Cases Value
0.8 Case I Profit 57.15
0.8 Case II Profit 60.55
0.8 Case I Production Cost 128.97
0.8 Case II Production Cost 126.14
0.8 Case I Final Conformance 0.5903
0.8 Case II Final Conformance 0.5917
0.8 Case I means (u] 1,4} o) 6.44, 6.44
0.8 | Case Il means (u7'y, ui'9, 191, Mo o) | 6.26, 6.26, 6.97, 6.97
—0.8 Case I Profit 52.63
—0.8 Case II Profit 57.81
-0.8 Case I Production Cost 119.40
—-0.8 Case II Production Cost 111.81
—-0.8 Case I Final Conformance 0.5551
—-0.8 Case II Final Conformance 0.5491
-0.8 Case I means (u] 1,14 o) 6.57, 6.57
—0.8 | Case IT means (u7'y, 47’9, 151, My o) | 6.21, 6.21, 6.97, 6.97

TABLE D.3: Optimisation results for correlated features
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FIGURE D.3: Profit vs. correlation
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Matlab Code

The StageCostFun function

function [F_stageC,pIC,Rwi,Sri] = StageCostFun_MultiMu (MU, sigs,rho,U,L,R_Cost, S_Cost)
% Computes the final probability items through a manufacturing process with
% rework will conform.

% Christopher Dodd - 2014 - Chris.S.Dodd@Gmail.com

% INPUTS - MU: A 1 by n vector of process means

% sigs: Correlation matrix with size n by n

% U: A 1 by 2 vector of upper specification limits
% L: A 1 by 2 vector of lower specification limits
% RC: The rework costs for each rework stage

% SC: The scrap costs for each rework stage and inital stage
% OUTPUTS - F_stageC: Final probability of conformance

% pIC: Probability of conformance from the inital
% operation

% Rwi: Vector of rework probabilities

% Sri: Vector of scrap probabilities

N = size(MU,2); % Total number of features at stage

eta = 1; % Initiate eta value
for k = 1:N % eta for given N and k - Equation 2.45 Dodd [2014]

eta_c = factorial (N)/ (factorial (k) (factorial (N-k)));
eta = eta + eta_c;

end

% Determine all possible permutations

for k = 1:N
UP{k} = combinator(N,k,'c');

end

)

% create an Upsilon vector with all the combinations

188
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% i.e. [1]
% (2]
% [3]
% [1 2]
% [1 2 3]
c =1;
for k = 1:N
Coms = combinator (N,k,'c');
sizeComs = size (Coms);
for 3 = l:sizeComs (1)
UPv{c,:} = Coms (3, :);
c = c+l;
end
k=k+1;
end
%% calculate S-Matrix
beta = 0;
for k = 1:N $ Generate S-matrix for each k- value
for i = 1:k-1 § Calculate beta
beta_c = factorial (N)/ (factorial (i) * (factorial (N-i)));
beta = beta + beta_c;
end
alpha.l = 0;
for i = N:-1:k % Calculate alpha
alpha_c = (factorial(N)/ (factorial (i)« (factorial (N-1))));
alpha_l = alpha.l + alpha.c; % Determine last term in alpha egn
end % alpha is k-dependent
alpha = 2 + (eta-1) - alpha.l; % alpha egn
m = (factorial (N)/ (factorial (k) (factorial (N-k)))); % m equation
delta = beta+m;
SMat = kSMatrix(k,alpha,eta,m,UP,UPv); % S-Matrix function
SMat_Cell{k} = SMat; % Store S-Matrices in a cell array

beta = 0; % reset beta to zero

%% probability vecotrs

—

PIs PSs PMat] = Probs.nVars_MultiMu (MU,L,U,sigs, rho);

o\°

% Transition Matrix
=PMat;

= P(l:eta,l:eta); % Q Matrix (prob of transient to transient)

P
Q
R = P(l:eta,etatl:end); $ R Matrix (prob of transient to absorbing)
I = eye(length(Q)); % Identiy matrix

M = (I-Q)"-1; % average time in transient states

F = MxR; % Final probabilities of absorbtion

temp = Q.xeye(eta,eta); PRR = temp(temp>0)'; % Determine the
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%% Scrap costs

SCP_Cost = 0;

for 1 = 1:k-1 % Calculate beta

% initilize Scrap cost

% state-back-to-state rework

)

% vector from Q matrix

beta_c = factorial (N)/ (factorial (i) * (factorial (N-i)));

beta = beta + beta_c;
end
alpha.l = 0;

for 1 = N:-1:k % Calculate alpha

alpha_c = (factorial(N)/ (factorial (i)« (factorial (N-1))));

alpha_.l = alpha.l + alpha.c;

% Determine last term in alpha egn

end % alpha is k-dependent
alpha = 2 + (eta-1) - alpha.l; % alpha egn
m = (factorial (N)/ (factorial (k)* (factorial (N-k)))); % m equation

delta = beta+m;

)

DMat = kDMatrix (m,PIs,alpha,delta,eta); % compute the D-matrix

% JMat = kJMatrix(m,PIs,alpha,delta,eta)

SDMat = SMat_Cell{k}.xDMat;

beta = 0; % reset beta to zero

for 3 = 1:m

a = alpha + j - 2;

o

Scrap cost Equation

o

o\

Note for 1 state (p-Is/(l-p-Ir))+*p-Ir + p_-Is = p_-Is/(l-p-Ir)

where p_Is: prob from I to scrap, p-Ir: prob from I to rework

kSCPi = S_Cost (a+l)*sum([SDMat (:, j) .x (PSs(a+1l)/ (1-PRR(a)))1]);

% Scrap cost for each k

SCP_Cost = SCP_Cost + kSCPi;

end

%% Rework Costs

for i = l:eta-1 % Rework cost
rw (i) = R_Cost (i)=*M(1,i+1);
end

SCPCOST = SCP_Cost;

Sri = SCP_Cost + PSs(1l)*S_Cost (1);
Rwi = sum(rw);

pIC = 1-PSs(1);

F_stageC = F(1,1);

o

% total scrap cost for all k

% delta equation

The kSMatrixz function
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function SMat = kSMatrix(k,alpha,eta,m,UP,UPv)

% Compute the S matrix

o

¥ Christopher Dodd - 2014 - Chris.S.Dodd@Gmail.com

\o

> INPUTS - k: Scalr giving the k conbination, e.g. 1,2,3,...,n.

o\

There is an S-matrix for each k value.

o°

alpha: Scalar computed from Equation 3.50

% eta: Total number of rework states including inital process
% m: Scalar computed from Equation 3.46

% UP: The Upsilon set, Equation 3.48

% UPv A k subset from the Upsilon set.

% OUTPUTS - SMat: The S-Matrix

Ctemp = UP{k};
for i = l:eta - alpha + 1
z = alpha - 2 + 1i;
for j = 1:mm
mem = ismember (Ctemp(j,:),UPv{z}); % check is C vals are part of
% UPSILON set
gamma = all (mem == 1); % make sure all member of C are

% part of UPSILON set

SMat (i, j) = gamma; % populate S-matrix. Recall there
end % 1is an S-matrix for every k-value.

end

The kDMatrixz function

function DMat = kDMatrix(m,PIs,alpha,delta,eta)
function DMat = kDMatrix (m,PIs,alpha,delta,eta)
% Compute the S matrix

% Christopher Dodd - 2014 - Chris.S.Dodd@Gmail.com

% INPUTS - m: Scalar computed from Equation 3.46
% PIs: Vector of transistion probabilities, e.g for 2
% features PIs = [pI2,pI3,pl4,pIC,pIS]. Computed from

oe

the Probs_.nVars_MultiM.m function

o°

alpha: Scalar computed from Equation 3.50

% delta: Scalar given from beta + m, where beta is given from

o°

Equation 3.47.

o°

eta: Total number of rework states including inital process

o°

OUTPUTS - SMat: The D-Matrix

DMat = ones(eta-(alpha-1),m);

DMat (1:m,1l:m) = bsxfun(@times,eye(m),PIs(alpha-l:delta));

w = delta+l; % counter for accessing relevent elemts from PIs
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for i = m+l:eta-(alpha-1) % i goes from 4:7, 4:4 and 2:1 (i.e. 0) for N=3.
v = alpha-1; % counter for accessing relevent elemts from PIs

for §J = 1l:m

DMat (i, j) = PIs(w)*PIs(v)/(1-PIs(w));
v = v+l;

end

w=w + 1;

)

% probabiliy fraction

The Probs_nVars function

% Determine the probabilities in the transition matrix

% for any number of features.

% Christopher Dodd - 2014 - Chris.S.

Dodd@Gmail.com

% INPUTS - MU: A 1 by n vector of process means

% U: A 1 by n vector of upper specification limits
% L: A 1 by n vector of lower specification limits
% sigs: Correlation matrix with size n by n

% rho: Correlation parameter

% OUTPUTS - PIs: Vector of transistion probabilities, e.g for 2
% features PIs = [pI2,pI3,pl4,pIC,pIS]

% PSs: Vector of transition to scrap probabilities, eg for 2
% features PSs = [pIS,p2S,p3S,p4S]

% PMat : Transition matrix

num_vars = size (MU, 2); % Number of variables

%% Determine the Multi feature means through to single feature means

o°

o\

for i=l:size (MU, 1)

e.g. 2 features MU = [mul_2f, mu2.2f;
mul_1f, mu2_1f]

where

f:=feature

MUR(i,:) = L+(U-MU(i,:)); % reverse the axes

end
eta = 1;
for 1 = l:num_vars
eta_c = factorial (num_vars)/ (factorial (i) * (factorial (num_vars—-1i)));

eta = eta + eta_c;

%% —————————— Pps probs —————————-

o\

% e.g. in 3D:

This section determines the probabilities of the rework regions
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% pl2 = F([-inf L2 L3], [L1 U2 U3]) x_1 rework only

% pI3 = F([LlL -inf L3],[Ul L2 U3]) x_2 rework only

% pI4 = F([Ll1 L2 -inf], [Ul U2 L3]) x_3 rework only

% pI5 = F([-inf —-inf L3], [L1 L2 U3]) x_.1 & x_.2 rework

% pl6 = F([-inf L2 -inf], [L1 U2 L3]) x_1 & x_3 rework

% pl7 = F([LlL —-inf —-inf], [Ul L2 L3]) xX_2 & x_3 rework

% pI8 = F([-inf —-inf —-inf], [L1 L2 L3]) x_1, x.2 & x_3 rework

ic = 1; % initiate 'ic' counter

Rw_vars{l, :} = combinator (num_vars,num.vars,'c');

for i = l:num.vars-1 % determine all possilbe combinations of reworks
ic = ic+l; % counter to define rows of pRWs
Sl All possilbe RW combos————————————————— !

Rw_vars{ic, :}

combinator (num_vars,i, 'c'); %

e.g. x1,x2,x3 and x1,x2

% or x1,x3 or x2,x3 etc

end
c = 0; % initiate 'c' counter
cc = 0; % initiate 'cc' counter
for j = l:size(Rw.vars,l)
Sl Local Rw Operations —-———————————————— !
Rwliter = Rw.vars{j};
for k = 1l:size(Rwlter,1)
Sr = r+l
Sl Define Local MUs and Sigmas ————————————————— !
MU_Ri = MU_R(j,RwlIter(k,:)); % only selct the mean for the
% relevant features
% Build covariance matrix for all featuers including correlation
% (rho)
CorrMatrix = rho.x (ones(length(MU_Ri),length (MU_Ri)));

CorrMatrix (logical (eye(size (CorrMatrix))))=1;

SIGMA = corr2cov(sigs (RwIter(k,:)),
Lvars = L(Rwlter(k, :));

Uvars = U(Rwlter(k, :)); %
LocalVars = length(MU_Ri) ;%

o

cc = cc+l;

o

PCs (cc)

o
S

Probabilities from state to scrap

PSs (cc)

for m l:LocalVars%:—-1:1

> Define Combins

nvar

nchoosek (LocalVars,m) ;

combins

for v 1l:nvar

c = c+l; % counter i++

Length of the mean vector,

CorrMatrix);

% Get the right Lower and upper bounds for

the particular means.

for the

5 relevant means

> Probabilities from state to conformance

mvncdf (Lvars, Uvars, MU_Ri, SIGMA) ;

l-mvncdf (Uvars, MU_Ri, SIGMA) ;

combinator (LocalVars,m, 'c');
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% substitute -inf for relevent lower limits
Llim = Lvars; Llim(combins(v,:)) = —-inf;
% subsitute L for relevent upper limits
Ulim = Uvars; Ulim(combins (v, :)) = Lvars (combins (v, :));
Pps(c) = mvncdf (Llim,Ulim,MU_Ri,SIGMA); % these are all the
% probability terms in the P-Matrix but just a long vector
% not in the correct places
end

end

end

end

%% calculate S-Matrix
SMAT = zeros (eta-1,eta-1);
for k = l:num_vars
UP{k} = combinator (num.vars,k,'c');
end

% create an Upsilon vector with all the combinations

% i.e. [1]

% [2]

% [3]

% [1 2]

% [1 2 3]

c =1;

for k = l:num.vars
Coms = combinator (num_vars,k, 'c');
sizeComs = size (Coms);
for 7 = l:sizeComs (1)

Upv{c,:} = Coms (3, :);
c = c+l;
end
k=k+1;
end
beta = 0;
%$SCP_Cost

0; % initilize Scrap cost
for k = l:num_vars % Generate S-matrix for each k- value
for i = 1:k-1
beta_c = factorial (num_vars)/ (factorial (i) * (factorial (num_vars—-i)));
beta = beta + beta_c;
end
alpha_.l = 0;

for 1 = num_.vars:-1:k

alpha_c = (factorial (num_vars)/ (factorial (i)« (factorial (num_vars-1i))));

alpha_.l = alpha.l + alpha.c; % Determine last term in alpha egn

o)

end % alpha is k-dependent
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alpha = 2 + (eta-1) - alpha_l; % alpha eqgn

% Compute the m equation (k-dependent)

m = (factorial (num_vars)/ (factorial (k) * (factorial (num_vars-k))));
delta = beta+m;

SMat = kSMatrix(k,alpha,eta,m,UP,UPv); % S-Matrix function

o)

% Store S-Matrices in a cell array

SMAT (alpha-l:eta-1,alpha-1l:delta) = SMat;

beta = 0; % reset beta to zero

end

%% Compute the tranistion (Pmatrix)

[col row] = find(SMAT (l:eta-2,:)'==1);

PMat = zeros(etat2,eta+2);
for i = l:length(row)
PMat (row (i)+1,col (i)+1) = Pps(eta-1+1i);

end
PMat (1,2:eta) = Pps(l:eta-1); Sinput the values for the first row
PMat (eta,2:eta) = Pps(l:eta-1); % input the values for the eta row

PMat (end,end) = 1; PMat(end-1,end-1) = 1; % Input ls for absorbing states

%% Now we need the Probs to conformance and probs to scrap

% Conformance prob vector, e.g. 2 vars PSs = [pIC,p2C,p3C,p4C];
PCs = [PCs, PCs(1)];

% Scrap vector, e.g. 2 vars PSs = [pIS,p2S,p3S,p4S];

PSs = [PSs, PSs(1)];

PMat (l:eta,eta+l) = PCs;

PMat (l:eta,eta+2) = PSs;

%% Define PIs vector
% Define the PIs vec, e.g 2 vars PIs = [pl2,pI3,pl4,pIC,pIS];
PIs = [Pps(l:eta-1) PCs(l) PSs(1l)];




Appendix F

Case Study - Optimal Mean
Setting

The primary purpose of this case study was to demonstrate the use of copula functions
when the distributions of inspectable features were not normal. Additionally the case
study demonstrates the application of Optimal Mean Setting to a non-standard case,
where one manufacturing operation produced more than one inspectable feature'. A
boring operation was used to create a hollow cylinder with an inspectable inner diame-
ter. As a result a wall thickness was created, which also required inspection. Optimal
Mean Setting was used to establish the economically optimal target mean for the inner
diameter, given the inner diameter and wall thickness tolerances. The distribution of
the wall thickness was a convolution between the outer and inner diameters and not
a parametric distribution, thus a copula function was necessary to establish the final
geometry distribution. An alternative method of manufacture would be to create the
wall thickness by turning the outer diameter (di) after boring the inner diameter (d3).
However, this would have added an extra manufacturing operation, which was avoided

using the aforementioned method.

Figure F.1 illustrates a test casing for solid or hybrid rocket motors. The left opening
permits a variety of graphite nozzles to be tested; while the right opening allows a plug
and oxidizer injector to be fitted as well as an opening to insert the graphite nozzle.
There are two critical dimensions, the inner diameter (ds) and casing thickness (¢;).
An upper tolerance was specified on the inner diameter to prevent the presence of a
gap between the graphite nozzle and the inner wall, which would allow the ingress of
combustion gasses. A lower tolerance was specified to ensure the graphite nozzle could

be inserted into the casing. Tolerances were specified on the wall thickness to ensure

!The Optimal Mean Setting framework presented hitherto dealt with independent features.

196
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Nozzle Quter Diameter (d1)

Thickness 1 (t1)

(a) Casing cut-through

dl 50 (mm)
©
d2 60 (mm)

0

(b) Casing dimensional drawing

FIGURE F.1: Case study - rocket motor test casing

Stats. Values Costs Values

L Lg, =39, Ly, =0.8 SP [100]

U Ugy =43, U, =1.0 PC [10]

o o4, = 0.05, 04, = 0.08 RC [0,—, —,10]
Moomina | Pdy = 55 pds = 4.1, gy = 0.9 SC [157 ) 15]
Hopt ds 4.0304 EP,, 80.8982
PDs. Ty -0.8480

TABLE F.1: Specification limits, process variation and costs for the rocket casing case
study

the wall was thick enough to withstand the pressure created through combustion but
excessive thickness increased mass. The nominal means, upper and lower specification

limits and standard deviation of the manufacturing operations are given in Table F.1.

The Optimal Mean Setting equation for this two feature case is similar to Equation 3.44
from Chapter 3. However, there are differences since it was not possible to rework the

inner diameter or wall thickness independently of each other. The fo g and f3 g terms
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are zero and the py4 term becomes,
P14 = F([Lh UZ]alJ‘v 2) + F([Uh LQ]? 22 E) - F([Lla L2]7 H, 2)

This accounts for the proportion of single feature rework components where both fea-
tures were reworked, since the inner diameter and wall thickness were not independent.
Expected profit for the manufacture of the inner diameter and wall thickness was given
by,

E(PR) = SPfic—PC~-SCips

- S5C, (pIS> pra — RCymyy.
1—pr4
The casing was assumed to be a near net shape forging, where machining was only
required to complete the inner diameter (ds). The outer diameter (d;) was assumed to
have a normal distribution where the mean and standard deviation are given in Table
F.1. Equation F.1 was optimised with Matlab using fminsearchcon.m developed by
Errico [2006], recognising scrap occurred if features were produced greater than the
upper specification limits and rework occurred where features were produced lower than
the lower specification limit. The distribution of the wall thickness (f:,), is given by
the difference between the outer diameter distribution (fz,) and the inner distribution
(fas)- Since both the outer and inner diameter distributions are normal, the initial wall
thickness distribution is also a normal distribution where the mean is psy, = pg,—d; =
Itd, — Md, and the variance is 0t21 = 0217 ds = Ufll + 033. The probability of scrap, rework
and conformance was given by the joint normal distribution fg, ¢, as was first discussed
in Section 3.1.2 in Chapter 3. The dependence between d3 and t; was modelled using
correlation of the form,
E[(Ds — pp,)(T1 — pry)]

PD3, Ty = )
ODs0Ty

where D3 and T} are random variables of the inner diameter and thickness. The random
variables, D3, were generated by using the Matlab normrnd.m function Mathworks
[2012] while T7; = Dy — D3, where normrnd.m was also used to generate the D vector.

The value for correlation was given in Table F.1.

Figure F.2(a) shows the probability density distribution for the initial operation. The
upper and lower specification limits are represented by the red and green lines, respec-
tively. There was non-conformance caused from the inner diameter (the variance was
such that scrap and or rework were always created), thus rework was required which
led to a truncated inner diameter distribution (fgz,). Since the inner diameter was trun-

cated the distribution of wall thickness was no longer given by a normal distribution
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(a) Inner diameter and thickness distributions from (b) The fianl inner diameter and thickness distribu-
the inital processing tions after rework

FIGURE F.2: Inner diameter and wall thickness probability plots for the distributions
before and after rework

but from the convolution difference between the outer and inner diameters, such that

ft, = fa, + (—fas). The distribution of wall thickness is written,

futt) = [ " fan(ds) fur(t — (—ds)) ds, (F.2)

where the outer diameter, fg,(d1) is a normal distribution,
1 di —
fa,(d1) = ——=exp <—(12'%1)> ) (F.3)

Let,
— USL — .
oo s = USLay gy ttay ~ STy
O'd3 Odg
allowing fg,(d3) from Equation F.2 to be written as the truncated normal distribution

due to rework,

(ds — pa;) ”d3)> . (F.4)

fa5(d3) = exp (‘ 552
\/ 2705, [®(N) — @ (k)] Tds
To simplify the expression for the thickness distribution f¢ , let

1
N Yronon (V) - ®(m)]
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Then substituting Equation F.3 and F.4 into Equation F.2 yields,

USLdl —t1 d _ ] 2
f(t1) =T / exp _(ds = pag)” étd3)
LSL,,—t: 204,

b (b —d3 — pay)*
203
1

] d.  (F.5)

This has no closed form solution but can be solved in terms of the error function which

has the general form,

erf(x) = \3% /033 exp(—t?) t.

Maple was used to determine the integral in terms of the error function giving,

\% 2m 0d,10ds exp | — (,U’dl — Hds + t1)2 X
\/05211 +U§3 2(0a,? + 04,?)

(Y2 ((USLg, — pay) 03, + 03, (USLay — t1 — p1a,)) (F.6)
2 (04,045 /04,2 + 0a5?)

. (\/§ ((LSLay — pay) o3, + og, (LSLgy — t1 — um)))]

f(t1) =

2 (Udl Ods \/ 0d12 + Ud32)

The pg, parameter was optimised to maximise the expected profit given by Equation
F.1; the optimal mean (fi,,: 45) and expected profit (EP,,,) are given in Table F.1. The
resulting fgy, distribution is illustrated by Figure F.3(a). The initial distribution (be-
fore rework), truncated distribution (after rework and without scrap), and the optimal
mean are shown by the grey, blue and black lines respectively. The upper and lower
specification limits are also shown. The green line represents the rework limit, where
outside this limit rework is possible, the red line indicates the scrap limit. The thickness
distribution, resulting from the convolution between the outer and inner diameter distri-
butions is shown in Figure F.3(b). The shape of the initial distribution (grey line) is not
normal, there is some positive skew. The distribution became truncated due to rework
on the d3 parameter, as illustrated by the blue line in Figure F.3(b). Both the pg4, and
1y, parameters shifted toward the respective rework limits as due to the reduced cost
of rework compared to scrap. The final distribution of the geometry was determined by
establishing the joint distribution between the correlated truncated normal, fg,, and the

truncated skewed f;, distribution (Figure F.2(b)).

This example demonstrated the use of optimal mean setting where one of the design
parameters (wall thickness) was a result of another design feature (inner diameter).
Although the optimisation of expected profit did not follow the standard set-up de-
scribed in Chapter 3, it was simple to fit the case study to the existing framework. The

final manufactured geometry was obtained and shown in Figure F.2(b). Due to the
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(a) Casing diameter distributions before and after (b) Casing thickness distributions before and after
rework rework

FIGURE F.3: Distributions of the inner diameter and thickness features before and

after rework

non-normal wall thickness distribution, the joint distribution of the final manufactured

geometry was only calculable due to the freedom offered by copula functions.



Appendix G

Aerothermal Analysis and
Response Surface Methodology of
a Film Cooling Hole

G.1 Numerical Model

The temperature on the lower duct surface, down stream of the hole (Ts), was computed
by solving the 2-D time-averaged steady-state Navier-Stokes equations where continuity

was given by,

0
al'i

(7;) = 0 (G.1)

and momentum was,

0 oP 0 ou; 8ﬂj 2 . 0y 0 —7 7
— (puw;) = —— + — Y — (—pu ). 2
al‘j (pu UJ) 8.1‘1 + 8.7}j |:M (8.1‘3 + 8:62 35]8@)} + Oxj ( puzuj> (G )

In Equations G.1 and G.2, p is mean density, @ is the mean component of velocity, P
is mean pressure and p is the molecular viscosity. The d;; term in the Kronecker delta,
which is 0 when ¢ # j and 1 if ¢ = j. The —m are the Reynolds stresses accounting
for the turbulent fluctuation in the fluid momentum. The Reynolds stress terms must
be modelled to satisfy the so called ‘closure problem’ (Pope [2009]). The Boussineq
hypothesis is employed to related the Reynolds stresses with the mean velocity gradient

of the flow, such that the Reynolds stresses become,

— o0u; aﬂj 2 ou;
T PUUy = e <8xj + 8%) 3 <Pk3 + ”895@-) 0ij- (G.3)
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The k term is the turbulent kinetic energy and u; is the turbulent viscosity given by,
e = pCuk? /e, (G.4)

for which C), is a constant and ¢ is the dissipation rate. The Realizable k- model (Shih
et al. [1995] based on the original k-¢ model proposed by Launder and Spalding [1972]),
was chosen to model the turbulence. While the standard k- model is robust and offers
reasonable accuracy over a wide range of turbulent flows, the realizable formulation
more accurately predicts the spreading rate for planar and round jets (Fluent [2012])

and therefore beneficial for the modelling of a coolant jet.

G.2 Turbulence Model

The turbulent kinetic energy (k) and dissipation rate (¢) can obtained from the transport
equations. For steady-state incompressible flow the transport equation given in Fluent
[2012] reduce to,

0 _ 0 ue\ Oe
ki) = — L) i —Y, .
8mi(p u) a$j |:<,LL—|- Uk:) 8;133] +Gk F (G 5)
0 _ 0 e\ Oe
i) = — | e — ifg .
a$i(p6u) 8IL‘J' |:<M+O'E) 81‘J:| +G (G 6)

The o4 and o, terms are the turbulent Prandtl number for the turbulent kinetic energy

(k) and dissipation rate (£), respectively. The Gy term represents the generation of

L 7 Ou;
turbulent kinetic energy (Gy = —puiuja—zz_

approximated using the Boussinesq hypothesis such that,

) due to the average velocity gradient. In is

Gy = .ut‘SQa

where S is the average rate-of-strain tensor given by,

1 81_Lj ou;
S =4/25;;S:;, where S;; = 3 <8x] + 8xj> .

The Y}, term accounts for the dissipation of turbulent kinetic energy defined by Yi = pe.
The ‘k’ part of the transport equation (Equation G.5) for the standard k-¢ model and
the realisable k-¢ model are the same. However, the production and diffusion terms in
the ‘e’ part of the transport equation (Equation G.6) differ between the standard and
realisable forms of the k- model. For the realisable model,

¢ k

G, = pC1Se, where (7 = max [0.43, C‘FEJ and ¢ = SE. (G.7)
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The diffusion term is given by,

62

k+ \/ve

where (5 is a constant. Turbulent viscosity is computed using Equation G.4 however,

Y. = pCs (G.8)

C}, is not constant for the realisable k-¢ model but found from,

1

Ag + As KU

C, = (G.9)

€

The velocity component U* is given by,

— _ 1 /0, U
U™ = /53 Sij + ity where Q=5 (gz - ZZ]> ' (¢-10)
J K2

The Ag term is a constant and the remaining term A; is given by

1 Sij
A, = V6 cos <3cos ! (\/ém>> (G.11)

The constants for the model, as given by Fluent [2012], are Ay = 4.04, C2 = 1.9, 03, = 1.0
and o, = 1.2.

The realisable k-¢ model is generally valid for fully turbulent flows which is not nec-
essarily the case at the wall, where the Reynolds number is low in the vicinity of the
boundary layer. For this reason an Enhanced Wall Function (Fluent [2012]) treatment
was used to model the near wall flow downstream of the hole (a similar approach was
used for the 2D analysis conducted by Li and Wang [2007] and Wang and Zhao [2011]).
The whole domain was segregated into a viscosity-affected region and a fully turbulent
region by specifying the turbulent Reynolds number,

k
Re, = 22VE.
"

where y was the normal distance from the wall. For Re, > 200 the realisable k-¢ model
was used. Towards the wall, where Re, < 200 in the viscosity-affected region the one-
equation Wolfstein model was used (Wolfshtein [1969]). The transition between the
turbulent viscosities in the fully turbulent and viscosity-affected regions were smoothed

by using the blending function proposed by Jongen [1998],

,U/t,enhanced == )\élu't + (1 - A<€),U/t,one'

Viscosity from the realisable k-¢ model is p; while p ... represents the viscosity form

the one-equation model.
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FIGURE G.1: Overview of the 2D mesh

G.3 Mesh Generation and Results Validation

The domain illustrated in Figure 4.22 was meshed using the Ansys meshing tool where
the domain sizing broadly follows that of Li and Wang [2007]. The mesh was updated
parametrically with changes to the domain geometry (« and d parameters), which re-
quired the addition and removal of cells to maintain the mesh density and cell aspect
ratios. The density of the mesh was bias towards the lower section of the main duct to
capture the coolant and hot gas mixing, and satisfy the condition of the enhanced wall
treatment method, which required a y™ ~ 1 (Section G.2). The value y was calculated
from y* = uyy/v, where y was the distance to the nearest wall, u; was friction velocity
and v was the local kinematic viscosity. Since the last two terms are properties of the
fluid and global domain, the only way to ensure y*+ ~ 1 was to run the case, measure y+
and resize until y* ~ 1 was achieved. The mesh density also increased in the vicinity of
the hole to capture the mixing of the coolant and hot gas. Sargison et al. [2001] found
the geometry at the hole entry could impact the flow in the hole and affect the cooling
effectiveness. Therefore, the grid density close to the hole in the plenum was increased

to ensure the flow was accurately modelled at the hole entrance.

Three mesh densities were tested to ensure mesh convergence, the details regarding the
edge sizing and biases are tabulated in Table G.1. The hole was defined in accordance
with the standardised public hole described by Schroeder and Thole [2014], where the

laidback angle was set to zero. The diameter, d = 4, and the inclination angle, o = 30,
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FIGURE G.2: Overview of the 2D cooling hole computational domain (not to scale)

in accordance with Schroeder and Thole [2014]. The boundary conditions noted in Ta~
ble G.2 were also taken from Schroeder and Thole [2014]. Based on these condition the
blowing ratio, M = 0.98, and the density ratio was 1.51, which are representative of
engine conditions (Schroeder and Thole [2014]). Following the 2D analysis by Wang and
Zhao [2011], the air was modelled as an incompressible ideal gas, where specific heat ca-
pacity was modelled as a piecewise polynomial function with two temperature sub ranges
of 100 - 1000 K and 1000 - 2000 K respectively. The thermal conductivity was 0.0242
(w/mK) and viscosity was modelled using a piecewise polynomial with values dependent
on the temperature in the plenum and the duct (see table G.2). The Reynolds number
based on the hydraulic diameter of the main duct, was Reg,., = 83500 and the Reynolds
number, based on the inlet hole velocity and hole diameter was Ren,. = 3580. The
commercial CDF package, Ansys Fluent 14.5 was used to solve the Reynolds Averaged
Navier-Stokes (RANS) equations (Detailed in Section G.1). The computational time
was between seven and 15 minutes (dependent on the number of cells which changed
depending on the a and d parameters), running on seven cores of a 3.4 GHz Intel Core
i7 processor with 16 GB of installed RAM.

The thermal effectiveness (1) obtained from the three meshes was plotted in Figure G.3.
Experimental results from Schroeder and Thole [2014] and Rhee et al. [2002] (blue crosses
and magenta points) are also shown, where cooling effectiveness was measured along the
centreline, downstream of the holes. Numerical results from Wang and Zhao [2011]
are also shown. Clearly there is a mismatch between the numerical solutions and the
results obtained by Schroeder and Thole [2014], which had the same boundary conditions

and hole geometry. The results from Rhee et al. [2002] also indicate a lower n than
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Low Density Medium Density High Density
Edge | Spacing Bias Spacing Bias Spacing Bias
1.0 x 1073 1.04 |0.667 x 1073 | 1.37 | 0.667 x 10~2 | 1.037
1.185x 1073 | 1.03 [ 0.79 x 103 | 1.03 | 0.60 x 10~3 | 1.02
1.185x 1073 [ 1.03 | 0.79x 10~3 [ 1.01 | 0.60 x 10=3 | 1.008
0.27x 1073 [ 1.03b | 0.18 x103 |1.03b | 0.1 x 1073 1.03 b
0.285 x 1072 | 1.03 | 0.285x 1073 | 1.03 | 0.285 x 1073 | 1.03
0.285 x 1072 [ 1.03 | 0.285 x 1072 [ 1.03 | 0.285 x 1073 | 1.03
0.27 x 1072 [ 1.01 0.18 x 102 | 1.01 0.12x 1072 | 1.03

QEE 0 Q ® >

TABLE G.1: Mesh sizing for each edge given in Figure 4.22 where the number of

elements for each mesh were: LD= 38,962, MD= 73,427 and HD= 97,622. The letter

‘b’ indicates bilateral bias, i.e. the mesh density increased in both positive and negative
z-directions.

Duct Plenum
Inlet Velocity 10.0 (m/s) 1.13 (m/s)
Turbulent intensity 0.5 % 0.5 %
Turbulent length scale 0.0090 (m) 0.0020 (m)
Temperature 295 (K) 195 (K)
Viscosity 1.846 x 107" (kg/ms) | 1.307 x 10~° (kg/ms)
Hydraulic diameter 0.1288 (m) 0.0286 (m)

TABLE G.2: Boundary conditions

predicted by the numerical analysis'. Wang and Zhao [2011] attributed this mismatch
to a conjugate heat transfer effect, where the surface temperature was higher than the
coolant, due to heat transfer from the hot gas to the surface, further downstream or
upstream in the test section. Wang postulated conduction through the surface increased
the surface temperature near the hole, above what would be expected if only mixing had
occurred between the coolant and hot gas. Immediately adjacent to the hole the surface
temperature would be expected to be the same as the coolant, as no mixing would
have taken place. However, this explanation is not valid for the difference between the
numerical results and the data from Schroeder and Thole [2014], as a foam surface was
used with a thermal conductivity of just 0.029 W/mK, making any conductive transfer
negligible. Schroeder and Thole [2014] also calculated an uncertainty of +0.024 for the
7 measurement, but this is insufficient to explain the higher n obtained by the numerical
solutions. The most likely explanation is due to lateral mixing in the 3D coolant (z-
direction) jet, lowering the centreline effectiveness. Clearly these 3D effects are not

applicable to the 2D numerical studies. The 3D effects on the centreline effectiveness are

!The results from Rhee et al. [2002] and Wang and Zhao [2011] were obtained using slightly different
boundary conditions and hole geometry to Schroeder and Thole [2014] and the numerical results run for
this thesis. The inclination angle was 35 degrees (5 degrees greater), higher turbulence intensity of 5%
was used, the density ratio was 1.3 as opposed to 1.5 and the blowing ratio was 1.3 as opposed to ~ 1.
Nevertheless as 77 is a normalised value, provided the flow physics is captured correctly the differences
are minimal as indicated by Figure G.3
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FiGURE G.3: Cooling effectiveness versus downstream distance from the hole

likely to be greater for the cylindrical fan shaped hole exits of Schroeder and Thole [2014]
than for the wider rectangular holes from Rhee et al. [2002], which may explain why the
experimental 7 values predicted by Rhee et al. [2002] are greater than those predicted
by Schroeder and Thole [2014]. Despite the differences between the numerical solutions
and the experimental evidence, the numerical solutions (in this thesis) generally agree
well with the numerical solution from Wang and Zhao [2011]. Since the application of
Optimal Mean Setting for the cooling hole geometry only requires the relative differences
in cooling effectiveness, ensuring the numerical solutions match the lab solutions is not
essential, provided the global flow physics is modelled correctly (indeed the lab solutions
only approximate real engines conditions). Figures G.4(a) and G.4(b) provide greater
detail on the differences between the 1 values from the three meshes and the numerical
solution from Wang and Zhao [2011]. The low density mesh (LD) produced lower values
of 17 close to the hole and higher values further downstream. The difference between
the medium and high density meshes (MD and HD) was 0.0022 at three diameters
downstream, as opposed to 0.0061 and 0.0083 for the LD mesh compared to the MD
and HD meshes respectively. At 30 diameters downstream the difference between the
MD and HD meshes was 0.0003 while the difference between the LD mesh and the
MD and HD meshes was 0.0021 and 0.0018 respectively. The HD mesh was considered
to be converged due to the closeness of the n values at all points downstream of the
hole between the MD and HD meshes.  Figure G.5 shows the variation in y™ with
downstream distance from the hole. The LD mesh exhibited values of y~3. The size of
the elements in close proximity to the surface were reduced for the MD and HD meshes
giving a y™ < 1 everywhere on the surface, in accordance with the use of the enhanced
wall treatment discussed in Section G.2. Figure G.6 illustrates the velocity temperature
and turbulent kinetic energy in the domain. There is a clear segregation between the hot
gas and coolant which gradually becomes less contrasting as the coolant and hot gas mix.

The flow becomes turbulent at the hole entrance and develops in the hole itself. The
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F1GURE G.5: Cooling effectiveness versus downstream distance from the hole

turbulent kinetic energy is broadly representative of the turbulent intensity illustrated
by Gritsch et al. [1998]. Figures G.7(a) and G.7(b) illustrate the flow through the hole in
greater detail. The presence of the separation bubbles and jetting effects were similarly
shown by Saumweber and Schulz [2012]. The separation bubble at the downstream exit
of the hole is similar to that predicted by the standard k-e turbulence model detailed
by Li and Wang [2007].

Overall the flow characteristics are in good agreement with experimental data and other
numerical results available in the literature. The discrepancies between the predicted

n values and the experimental results (particularly Schroeder and Thole [2014]) are
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most likely due to 3D effects that were not modelled in the 2D scheme presented here.
Nevertheless they do correspond well to the 2D numerical results from Wang and Zhao
[2011].

G.4 Response Surface Methodology

A response surface was created to establish the variation in cooling efficiency (1) with
the cooling hole’s inclination angle («) and diameter (d). The cooling hole geometry
and mesh were built parametrically in Ansys Workbench 14.5 with « and d parameters.
The o and d sample points were selected following design of experiment principles using
a space filling Latin hypercube (following Forrester et al. [2008]). A total of 177 samples
points were chosen, where 6.46 < d < 8.8 and 27.75 < a < 37.5. The minimum hole
diameter was larger than the nominal hole diameter used for the mesh convergence
study. This was not planned, but it was observed that cooling efficiency improved with
the hole diameter despite a reduced blowing ratio (as the coolant inlet velocity remained
fixed). A greater hole diameter allowed a thicker film over the surface, which increased
the separation between the hot gas and the surface leading to a better cooling efficiency.
This was beneficial until the movement of coolant was sufficiently slow that the heat
transfer from the hot gas heated the coolant before new coolant passed through. For a
3D hole the coolant is heated and mixing occurs from the sides as well as from the top
surface, reducing the cooling effectiveness of the coolant faster. Thus, the benefit of a

thicker but slower coolant layer would be less prolonged for a 3D hole.

A response surface was created using a Kriging estimate following the methodology
presented in Section 2.4 of Forrester et al. [2008]. The text also provides a Description

of the Matlab code necessary to implement the procedure.
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