
 Procedia Engineering   101  ( 2015 )  235 – 242 

Available online at www.sciencedirect.com

1877-7058 © 2015 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Czech Society for Mechanics
doi: 10.1016/j.proeng.2015.02.033 

ScienceDirect

3rd International Conference on Material and Component Performance  
under Variable Amplitude Loading, VAL2015 

Fatigue life from sine-on-random excitations 
Frédéric Kihma*, Andrew Halfpennya, Neil S. Fergusonb 

aHBM-nCode Products Division, Technology Center, Brunel Way, Catcliffe, Rotherham, S60 5WG, UK 
bInstitute of Sound and Vibration Research, University of Southampton, Southampton SO17 1BJ, UK 

Abstract 

This presentation concentrates on calculating the high cycle fatigue life from sine-on-random excitations. A spectral 
domain approach offers advantages over the time domain approach when computation times are prohibitive. 
The proposed approach is to derive the statistical rainflow cycle histogram from a sine-on-random spectrum of stress 
data and then to use the appropriate material fatigue curve to obtain the estimated life. 
A case study illustrates the application of the method on a component attached to a helicopter. Comparisons with 
traditional time-domain approaches are presented and show excellent agreement.  
© 2015 The Authors. Published by Elsevier Ltd. 
Peer-review under responsibility of the Czech Society for Mechanics. 
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1. Introduction 

Sine-on-random excitations are typically generated by rotating machinery. Sine-on-random excitations are 
specified in international standards such as in MIL STD 810G [1] or in RTCA DO 160G [2]. 

So far, the only way of estimating fatigue life from a sine-on-random excitation is to perform a transient analysis 
using time domain realizations of the required PSD and harmonic tones as the excitation. Such an analysis can be 
accelerated by using modal superposition but is still very demanding in terms of CPU time. It also raises the question 
of how long the excitation signal should be to ensure convergence on fatigue life. The time domain approach is 
therefore impractical and this is the main reason why a spectral approach is relevant. 
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Fig. 1 shows example of rainflow cycle histograms obtained from various time domain realizations of a sine-on-
random spectrum. The first time series was 20 seconds long (red) and the later was 250 seconds long (blue). The 
obtained rainflow histograms are scaled to 2000 seconds for comparison purposes. A statistical distribution (dashed 
black) was obtained using the approach presented in this paper and superimposed with the time domain simulations.  

 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Rainflow cycle histograms for various time domain realizations vs. spectral approach. 

Several observations can be made from Fig. 1  
 The longer the time domain simulation, the more chances there are to find cycles with high ranges. 
 Longer time domain simulations seem to produce rainflow histogram that converge towards the statistical 

cycle distribution. 
 The tail of the statistical cycle distribution on the high-range end is well defined, allowing a more robust and 

accurate fatigue life prediction from long term sine-on-random excitation. 

2. Methodology 

Evaluating the fatigue damage due to a sine-on-random excitation requires a list of stress cycles together with a 
fatigue curve for the material considered. The various steps involved to obtain the stress cycles are described below. 
The noise is assumed to be confined to a narrow band of frequencies, meaning that one mode is predominant. The 
sine tone frequencies are supposed to be within the same frequency range as the noise. Finally, the sine tones 
frequencies are supposed to be incommensurable. In this case, the sine waves frequencies must be irrational relative 
to each other. This means they can be considered independent and the relative phase has no importance. 

Generally, a sine-on-random signal can be represented as: 
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with r(t) some random noise and bi, fi and φi the amplitude, frequency and phase of the N sine tones. 
Considering that a periodic signal can be decomposed into its Fourier coefficients, Equation (1) can be interpreted 

as a representation of deterministic periodic signal on random.  
The relative importance of the deterministic part in terms of power is indicated by the sine-to-random power ratio 
, given in Equation (2). 
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with  the RMS value of the noise and  the RMS value of the combined sine waves.  



237 Frédéric Kihm et al.  /  Procedia Engineering   101  ( 2015 )  235 – 242 

2.1. From sine-on-random acceleration spectrum to sine-on-random stress spectrum 

The excitation is generally in the form of a PSD of acceleration with one or several superimposed sine tones, as in 
MIL STD 810G [1] or in RTCA DO 160G [2]. Assuming a linear structural response, one can derive the PSD of stress 
from the structure’s frequency response function H as per Equation (3). Similarly, the stress response to sinusoidal 
excitation is determined from Equation (4). 

*. .stress excitationPSD f H f PSD f H f   (3) 

.stress excitationSine f H f Sine f    (4) 

2.2. Transformation of the sine-on-random stress spectrum to the distribution of rainflow cycles  

The aim is now to find a statistically derived, rainflow-like distribution of cycles corresponding to the stress PSD 
and sine tones. S.O. RICE [3] derived the probability density function of peaks in the case where noise and harmonic 
tones are within the same frequency range. The probability density function of peaks is given in Equation (5). 
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where s is a random variable, representing the peak value, 
 

Closed form solutions exist for the integral in Equation (5) when none or one harmonic tone is considered, 
numerical integration is required in the case of two or more tones are present. 

The rainflow cycle counting algorithm identifies stress cycles which ranges are calculated from the values of their 
peaks and valleys. The range of a rainflow cycle is defined as {peak – valley} of the cycle. The rainflow algorithm 
pairs peaks and valleys according to their value and position in the history of stress [4], for instance, the peak and 
valley of a cycle are not necessarily consecutive.  

According to the assumptions made at the beginning of this section, the composite process made of narrowband 
noise and sine tones is narrowband too. This means that all peaks are positive and all valleys are negative. If the sine 
tones frequencies are not multiple of each other, each peak is associated with a valley of similar magnitude and the 
cycle’s range distribution can be determined from the peak distribution given in Equation (5). Therefore, the cycle’s 
range distribution is identical to the rainflow cycle distribution and is deduced from the peak distribution, as per 
Equation (6). 
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When the noise corresponds to a multimodal stress response, i.e. more than one mode dominates, the noise is 
considered to be broadband. The bandwidth is characterized by the irregularity factor, a real scalar value calculated 
from the spectral moments [3,5]. In the broadband case, due to the complex nature of the rainflow counting algorithm 
[4], the rainflow distribution for the cycles cannot be obtained from the peak distribution alone. However, considering 
that the largest cycle is always made of the highest peak and the lowest valley once residuals are closed [4], the use 
of equation (6) to calculate the range distribution is equivalent to considering that peaks and valleys are paired in the 
most severe way i.e. the highest peak goes with the lowest valley, the second highest peak goes with the second lowest 
valley, etc. This narrowband approach is therefore expected to be conservative in the broadband case, as observed by 
Rychlik [6] in the case of random processes. 
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Other considerations like sine tones frequencies lying outside the noise frequency range or being multiples to each 
other and influence of relative phases are currently under investigation. 

Considering random noise only, the total number of expected peaks per unit time Np can be derived by stating that 
a peak (i.e. a local maximum) is obtained from the number of zero crossings with a negative slope of the derivative of 
the process . Np is therefore calculated [3] by dividing  with , referred to as the second and fourth spectral 
moments of the PSD  or the variances of the first and second derivatives of the random process respectively. 

In the sine-on-random case, the total number of expected peaks per unit time Np_sor can be derived by extending 
the equation to obtain Np. The suggested extension consists in adding the spectral moments of the sine wave to the 
spectral moments of the noise. The averaged number of peaks per unit time calculated from the stress PSD and the 
sine waves characteristics is given in Equation (7). 
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where  and  are the frequency and amplitude of the ith harmonic out of the N harmonics added to the noise. The 
distribution of fatigue cycles, comparable to a rainflow cycle histogram, can be calculated using equation (8): 

_. .R R R p sorN S f S N T    (8) 

where T is the exposure duration.  

2.3. Fatigue damage 

The damage at a given stress range SR is obtained as the ratio of the cycles counted at this stress range level, to the 
number of cycles required to fail the component at this stress range level, which is given by the material curve like 
the one illustrated in Fig. 2. The total damage is obtained by summing the damage from each individual level of stress 
range using Miner’s rule [7]. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Typical SN fatigue curve. 

 
 
 
The SN curve may be made of several segments. Each segment is represented as a straight line in log space as 

described by the Basquin power-law relationship given in Equation (9).  
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where  is the stress range in MPa,  is the number of rainflow cycles to failure, C is the Basquin coefficient and b 
is the Basquin exponent. Fatigue damage is determined by Equation (10). 
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3. Industrial application 

The present case study illustrates the use of the technique described in this paper to quantify vibration-induced 
fatigue damage on a component attached to the fuselage of a helicopter. Helicopters are particularly challenging with 
regards to vibration.  

Standard vibration qualification tests are typically performed according to one of the commonly used military 
design standards such as MIL-STD-810F [2], and RTCA DO-160E [3]. The endurance test commonly uses a sine-on-
random vibration profile which is representative of the actual aircraft loading profile. The main source of these 
sinusoidal tones is attributable to harmonics of the main rotor.  

The component is flight safety-critical and the general vibration specification was considered inadequate in this 
case. A test tailoring exercise was therefore authorised to determine a more appropriate sine-on-random qualification 
test [8] using the ‘GlyphWorks Accelerated Testing’ package from HBM-nCode [9].  

3.1. The excitation 

The vibration endurance test profile was compressed into 20 hours of high cycle fatigue in each axis. It is illustrated 
in Fig. 3. It is made of a random profile between 10 and 500 Hz with ~= 2 gRMS and sine tones at rotors blade passing 
frequencies and their harmonics (1nR,2nR,3nR) with amplitudes ranging between 0.1g to 2.0g. In most cases the 
vertical and lateral accelerations dominate the loading environment and the fore/aft axis is relatively benign. Only the 
vertical axis is discussed here. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Sine on random excitation spectrum used. 

3.2. Stress sine on random spectrum at critical locations 
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Both a frequency response analysis and a transient analysis were performed. The frequency response analysis allows 
finding the spectral response in stress, whereas the transient analysis gives the time series response in stress. 

Results from two critical locations were retained for the present case study. Both results show very different sine-
to-random power ratios and irregularity factors, as reported in Table 1. 

     Table 1. Characteristics of two responses. 

Location ID sine-to-random 
power ratio  

irregularity factor 

Location 1 1.2 0.98 

Location 2 8.2 0.87 

The normal stress was calculated on multiple planes. This allows the computed damage due to the loads in X, Y 
and Z directions to be summed up in the same plane. The critical plane is the plane with the most predicted fatigue 
damage. The responses shown in Fig. 4 and 5 are given for the same (critical) plane. 

Time domain realizations of 100 seconds, sampled at 1024 points per second were obtained from the excitation 
spectra in the various directions (see Fig. 3). The transient modal superposition analysis allows obtaining time histories 
of stress responses at the various nodes. An example stress response is illustrated in Fig. 4.  
 

 

Fig. 4. Example stress response at Location 1 

Applying equations (3) and (4) to the transfer function obtained from the frequency response analysis, the sine-on-
random response in stress is obtained for Location 1 and 2 and illustrated in Fig. 5 (a) and Fig. 5 (b) respectively.  

 

Fig. 5. Sine on random stress response spectrum at (a) Location 1, (b) Location 2 

3.3. Derived statistical rainflow distributions and damage– comparison with time domain 
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The technique presented in this paper allows to evaluate the rainflow stress cycles distribution at every node of the 
FE model of a component subject to sine-on-random loading. The rainflow cycles distribution can also be obtained 
from deterministic counting of the cycles in the time domain stress responses. 

Fig. 6 (a) and Fig. 6 (b) compare the rainflow cycles distributions obtained from deterministic counting of the 
cycles on the time domain stress responses (red) vs statistical approach (blue) for both critical locations 1 and 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Comparison between time domain (red) and statistical (blue) cycle distributions for (a) location 1 and (b) location 2 

From Table 1 and Fig. 5 (a) and  5 (b), location 1 can be associated to a unimodal narrowband response with sine 
tones which frequencies lie within the frequency band of the noise (except the lowest frequency one but it has the 
lowest amplitude). The sine tones have frequencies that are multiple to each other. The response at location 1 is 
therefore not respecting all the required assumptions to use the technique described in this paper. The response at 
location 2 is even worse in that respect as its irregularity factor is smaller, meaning it cannot be considered as 
narrowband. However, in both cases the statistical approach is giving a good approximation of the deterministic 
histogram and it leads to a far better definition of the tail at the high ranges end, which is particularly important for 
fatigue analysis. 

Fatigue damage can be assessed from the rainflow cycle distributions obtained and an SN material curve. Table 2 
show the resulting damage calculated from an SN curve having a Basquin exponent of b=12. 

     Table 2. Fatigue Damage. 

Location ID Fatigue damage from 
time domain 

Fatigue damage from 
spectral domain 

Location 1 16 E-3 23 E-3 

Location 2 26 E-3 36 E-3 

Again, the results from the spectral domain and time domain approaches are very similar, and so although some of 
the assumptions required to obtain the statistical rainflow histogram are not strictly respected. The fatigue damage 
obtained from the spectral approach is roughly 40% higher, mostly due to the best definition of the tail of the rainflow 
cycle distributions. The results from the spectral approach are more reliable as they implicitly take into account the 
probability of high cycles appearing at long exposure durations.  
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4. Conclusions 

A spectral domain approach to fatigue analysis offers advantages over the time domain approach when limited 
stress time history data are available or computation times are prohibitive. A very robust method of deriving fatigue 
estimates for sine-on-random vibration is presented.  

A case study illustrates the use of the method to assess the fatigue damage on a component attached to the fuselage 
of a helicopter. Comparisons with traditional time-domain approaches show excellent agreement. The results from the 
spectral approach are more reliable as they implicitly take into account the probability of high cycles appearing at 
long exposure durations. 

Other applications of spectral fatigue analysis include finding out what the margins of a successful test are or 
checking that a profile for random vibration test is not over accelerated. In this last case, the excessive loads introduce 
levels of stress above yield, which alters the load paths and change the failure mode. 

So far the existing approach for high-cycle fatigue damage assessment under random vibrations was limited to 
Gaussian random loads. The new method extends it to multiple sine tones added to Gaussian random loads. This new 
method is particularly useful to take into account the vibration environment generated by rotating machinery.  
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