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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND THE ENVIRONMENT

Institute of Sound and Vibration Research

Doctor of Philosophy

PIEZO-ACTUATED STRUCTURAL WAVES FOR DELAMINATING SURFACE

ACCRETIONS

by Micha l K. Kalkowski

In recent years substantial attention has been given to the problem of unwanted ac-

cretions on structures of which the foremost example is aircraft icing. A potentially

promising alternative to the traditional thermal methods for tackling ice build-ups is a

mechanical approach in which the accreted layer is removed with the aid of structural

waves induced by piezoelectric actuators. This thesis originates from research questions

regarding this concept with a twofold motivation: assessment of the feasibility of the

method and development of a wave-based modelling strategy applicable to a waveguide

that contains layers made of a material with electromechanical coupling.

The thesis starts with a broad theoretical study on free plane wave propagation in struc-

tures with accretions. The dispersion curves of a weakly coupled bilayer are analysed

highlighting the aspects important from the viewpoint of the application. Conditions

promoting high interface shear stress are identified and supported with a discussion on

energy distribution patterns and their importance if a lossy accretion is considered. This

part is concluded with a parametric study where accretions of different Young’s mod-

uli and different thicknesses are analysed with respect to the achievable interface shear

stress yielding some implications for practical application. In the next part the mechan-

ical forcing is introduced in the analysis. Two different approaches, namely analytical

and semi-analytical, are compared and the latter is validated with an experiment. In the

light of injected power partitioning between the propagating waves, a similar paramet-

ric study is conducted aimed at broadening the insight gained from free wave analysis.

Then, as a practical excitation strategy piezoelectric actuators are introduced. The com-

mon approaches for modelling piezoelectric excitation are reviewed and their strengths

and limitations discussed.
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The background application requires high induced strain, therefore the actuators are

expected to work near their resonances which violates the applicability conditions of the

well-established models. In order to circumvent these limitations and avoid expensive

conventional finite element model, a new methodology is developed in this thesis. The

approach consists of the development of a piezoelectric semi-analytical finite element that

enables wave-based modelling of piezoelectric materials and calculation of the response to

a distributed voltage excitation. The coupling of a finite length actuator to a mechanical

waveguide is done with the aid of the analytical wave approach. A validation experiment

on a beam with anechoic terminations is conducted showing very good agreement with

the numerical results. The presented approach is very general and can be used for many

‘smart structure’ applications.

The wave model is then used to investigate power and energy propagation in waveguides

including the electrical system driving the actuator. The efficiency of the piezoelectric

excitation is assessed with respect to the consumed electrical power and power loss in

the driving system transmission line. The parametric study shows the dependence of

power transmission coefficients on the dimensions of the actuator and the thickness of

the bonding layer.

In the last part the methodology is applied to predict the interface shear stress gen-

erated by the piezoelectric excitation. The stress recovery routine is explained and

validated with the conventional finite element method. The final parametric study is

conducted showing the interface shear stress achievable for a structure with different

accretions excited by a piezoelectric actuator and yielding the electrical power require-

ments. The concept of delaminating surface accretions with piezo-actuated structural

waves is demonstrated in an experiment on a waveguide with emulated anechoic termi-

nations. The corresponding numerical predictions for power requirements are found to

be in a good agreement with experimental observations. The thesis is concluded with

recommendations on the applicability of the wave-based concept and the design of the

system that enables exploiting the described physical phenomena.
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Nomenclature and constants

In order to facilitate comprehending the equations and simulations in the thesis, common

material properties and the most important symbols and notation conventions are listed

below. Units are given if appropriate. The entries are grouped in subject related areas

for convenience.

Material properties used throughout the thesis

Table 1: Noliac NCE40 PZT ceramics properties (material used in the experi-
ments)

Property value

ρ, kg m−3 7850
η 0.007
cExx = cEzz, GPa 126.35
cExy = cEyz, GPa 58.68
cEyy, GPa 99.88
cExz, GPa 62.93
cExz, GPa 31.71
cEyz = cExy, GPa 36.77
εεxx = εεzz, F m−1 5.5e-09
εεyy, F m−1 5.196e-09
eyxx = eyzz, N V−1 m−1 -3.239
ezyz = exyx, N V−1 m−1 13.075
eyyy, N V−1 m−1 16.335

xxv



List of Symbols

Table 2: Isotropic material properties. The properties for ice are chosen within
the typical range reported in the literature – see e.g. [1] (esp. Fig 2.8), [2], [3]
– except the loss factor which is assumed.

material E, GPa ν ρ, kg m−3 η

Aluminium 70 0.3 2700 0.002
Steel 163 0.3 8000 0.0001
Silvered epoxy 15 0.4 1000 0.0001
Glaze ice 8.2 0.351 900 0.01
Rime ice 1.5 0.282 600 0.01

Time, frequency and wavenumber quantities

λ∼ wavelength (spatial period), m

ω circular frequency, rad s−1

ϕ nodal potential, V

N(x, y) displacement shape function matrix

Nϕ potential shape function matrix

k propagating wavenumber, rad m−1

Wave field quantities

ε strain

σ stress, Pa

% surface charge, C m−1

D electric displacement vector, C m−1

E electric field vector, V m−1

u displacement, m

Analytical wave model - global matrix method and excitability

αL,S longitudinal and shear bulk wave attenuation, Np m−1

δ strain energy originating from the longitudinal waves
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– xxviii –



Abbreviations

DOF degree of freedom

EMI electro-mechanical impedance

GEP Generalised eigenvalue problem

GMM Global matrix method

PZT Lead zirconium titanate - most common piezoelectric ceramic; abbv.

often used to represent piezoelectric ceramic in general

QEP Quadratic eigenvalue problem

SAFE Semi-analytical finite element method

SFEM Spectral finite element method

WFE Wave and finite element method

– xxix –





Chapter 1

Introduction

1.1 Motivation

An unwanted material built-up on various types of structures is a common engineering

problem in machinery maintenance which seriously affects performance and safety of

operation. A type of a potential accretion is defined by the working conditions of a

particular object, e.g.:

• for aircraft the main problem is the ice accumulation during the flight which seri-

ously deteriorates the aerodynamic properties of the profile;

• a similar phenomenon causes the wind turbines to experience a drop in efficiency

and potentially severely hurt people or damage objects around due to a self-induced

ice shedding. Furthermore, uneven ice loading promotes various damage mecha-

nisms. In general, any machinery that works in the cold climate regions is often

subject to icing issues (e.g. suspension railway, chairlifts);

• machines that operate with different types of sedimentary rocks (e.g. industrial

handling systems) often suffer from the transported material accretion (e.g. gyp-

sum) on its components;

• depositions on the internal walls of pipelines especially in the food or pharmaceu-

tical industry degrade their flow parameters and possibly influence the quality of

a transported medium; since those surfaces cannot be reached and cleaned easily,

systematic chemical cleaning is necessary for proper operation;

• ships suffer from the undesirable accumulation of various types of organisms: al-

gae, plants, microorganisms. The degradation of the properties of the surface is

associated with an increase of fuel consumption and requires a systematic cleaning

and refurbishment of the hull, which is a very expensive operation.
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From the aforementioned issues the one that gets the greatest attention from engineers

and researchers is the aircraft icing. Ice accretion on the aircraft significantly changes

the aerodynamic properties of the airfoil and disturbs the operation of avionics and

induction system. Since the 1920s, when the problem was first noticed, the physics of

ice accretion as well as methods of tackling icing have received considerable attention

from scientists resulting in many anti-/de-icing methods based on various phenomena,

starting from pneumatic boots first implemented during the Second World War (B-

29, DC-3). Many of them (e.g. anti-icing fluids, electro-thermal systems, bleed air)

are currently in common use. However, the increase of use of composites in modern

aircrafts introduced new complications for incorporating standard (especially thermal)

methods. Therefore, their drawbacks and limitations are still a challenge to overcome

and an inspiration for looking for new ways of neutralising the danger caused by ice

accretion.

1.2 Review of the state of the art

1.2.1 Delaminating surface accretions with structural waves

Structural waves have been widely studied and successfully exploited in many areas

of industry (aircraft, railway, space, etc.) throughout recent decades (see e.g. [4–6]).

Notably advantageous applications have been developed in the non-destructive testing

(NDT) field, including bond inspection, structural health monitoring (SHM), elastic

constants determination, and many others. Although the most common approach is to

use waves to gather information about the structure (elastic properties, flaws, defects),

they have the potential to interact with the carrier actively by invoking delamination at

ultrasonic frequencies. A potentially promising alternative to the traditional methods

for tackling build-ups is a mechanical approach in which the accreted layer is removed

with the aid of structural waves induced by piezoelectric actuators. An unwanted build-

up is treated as a layer of a multi-layered waveguide. Propagating waves are associated

with a frequency dependent stress distribution. Since the bonds created by accretions

are usually weaker in shear then in tension, if a high enough shear stress is generated at

the interface by a propagating wave the accreted material is debonded.

Although aircraft icing is the most common background for the research on the topic, a

more general discussion on invoking delamination in stratified structures is of interest in

this thesis. The literature on guided waves in layered structures is formidably extensive,

however, there is a relatively small amount of references addressing particularly the

problem of inducing debonding, of which almost all are motivated by aircraft icing.
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Mechanics of ice accretion have been extensively studied since 1940s [7]. Two main types

of icing have been distinguished – glaze ice and rime ice. Glaze ice creates a smooth,

transparent and dense layer. It is formed by supercooled water droplets impinging the

surface at high freezing temperatures (relatively close to 0oC) in clouds with high liquid

water content. If not treated on time, glaze ice accretion forms characteristic ‘horns’ that

significantly change the aerodynamic profile. It adheres more strongly to the substrate

than the rime ice – opaque, porous and less dense accretion. It forms at low freezing

temperatures (typically less than 10oC) in clouds with small droplets and low liquid

water content. Given the variability of the environmental condition a mixture of the

two aforementioned ice types can be observed. Typical mechanical properties of the two

types of ice are gathered in Tab. 2.

Ice properties and particularly the shear strength of the bond it creates with various

substrates are very difficult to quantify and many results reported in the literature are

significantly different from each other. For instance, for aluminium substrates they vary

from 0.026 to 1.42 MPa [7–10], whereas for steel substrates from 0.77 to 1.96 MPa

[11, 12]. These refer only to a limited number of references but indicate large variability

in the ice bond strength related to various environmental condition and chosen test

procedure.

An idea of tackling the problem of ice accretion by means of ultrasonic waves was first

proposed by Adachi et al. [13], who noticed that the ultrasonic vibration reduces the

frost accumulation on a plate excited at a frequency of about 37 kHz (under frosting

conditions). The possibility of using guided waves for de-icing has since been spotted

and developed in Pennsylvania State University (PSU). Ramanathan has published a

few papers, e.g. [14] summarised in his PhD thesis [15] which brings up the concept of

applying shear horizontal waves as a way of provoking delamination in an iced aluminium

plate. Although delamination has been observed during the experiments, the thermal

processes seem to have played a crucial role in achieving this effect since the debonding

was not immediate. Moreover, the wave model adopted in [15] was rather simple and

not capable of representing wave propagation at considered frequencies accurately and

providing reliable predictions.

Seppings [16] employed ultrasonic transverse vibration for removing ice and frozen su-

crose build-up from pipes. With the aid of a finite element model and an experiment his

analysis was focused on the intrinsic material effects associated with build-up cracking

and determining the mechanisms responsible for the failure.

Palacios (PSU) implemented a multi-layered plate wave model for the preliminary design

of the de-icing system and paid a particular attention to providing impedance matching
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for excitation, which lead to very promising experimental results [2, 17–23]. Instanta-

neous delamination was observed for both freezer and impact ice, proving the feasibility

of the method. Palacios’ extensive experimental work provided some recommendations

for actuator configuration and various conditions associated with ice shedding that can

facilitate or impede the effect. The follow-up work by Overmeyer et al. [24]addresed im-

portant design issues such as the actuators’ optimal bonding conditions and techniques

to avoid actuator cracking. A successful experimental verification with a few actuators

attached to a helicopter blade was also performed.

Zhu (PSU) [25] extended the theoretical wave analysis for the two-layered plate. Com-

bining the results from finite element and wave models she drew a rather tentative

conclusion that the transient state stress is the same as the steady-state vibration re-

sponse. Furthermore, she introduced one of the possible ways of optimising structural

design which has been named the ’tailored waveguide’. The idea is to make use of the

local stress concentration points that occur near the discontinuities within the plate. An

appropriate distribution of those points determined by the design of the structure (or one

of its layers) enhances the capability of invoking delamination (ca. 40% less input power

required for effective operation [25]). Zhu also performed an actuator survey indicating

that the radial PZT-4 disc transducer used both in former and the discussed work does

not seem to be an optimal choice for de-icing applications and proposed shear actuators.

Finally, ultrasonic de-icing tests were performed on a composite coupon which confirmed

the feasibility of the method for such materials and indicated that their integrity is not

jeopardised.

A recent work by DiPlacido et al. [26] (PSU), supported by modelling and experiments,

shows that the transient effects associated with piezoelectric actuation provide much

higher stress than the steady-state response (contradictory to [25]). They also indi-

cate that it is not possible to excite the system continuously at resonance, since the

delamination and shedding is very rapid and alters the frequency response of the system

during actuation. Despite that, the transient effects are claimed to be associated with

higher interface stress than the one achieved in the steady state vibration and hence are

concluded to be the main mechanism responsible for ice shedding.

Ultrasonic vibration of a plate with frozen water droplets has been recently analysed by

Li and Chen [27]. They shown that the droplets can be successfully removed if 60 watts

are supplied to an ultrasonic transducer.

The results briefly recalled above are very interesting and promising, however there

are still some aspects to be developed and investigated. First of all, although aircraft

icing is a primary motivation, it is informative to generalise the discussion on invok-

ing delamination to include a wider range of configurations and backgrounds. Most of
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the references recalled above are supported with finite element modelling which, un-

less certain conditions are met, is not the most reliable tool for stress prediction (and

these conditions seem often not to have been met). Therefore, resulting stress predic-

tions might be biased. Moreover, the implemented FE models are usually representing

steady-state ultrasonic vibration strongly dependent on factors of secondary interest

such as dimensions of the plate and boundary conditions. Although the aforementioned

authors refer to wave models of various origin and complexity and point out waves as

fundamental effects responsible for high interface shear stress, they leave a gap between

the theory of waves and FE models used to validate the experimental campaigns. There-

fore, the nature of the interaction of structural waves with unwanted accretions is still

not clear and the influence of the boundary conditions cannot be separated from the

results achieved. It is believed that an entirely wave-based approach can attempt to

provide more understanding of the conditions promoting delamination associated with

propagating waves and insight into power requirements that make this action effective.

At the beginning of the work reported in this thesis, the author conducted preliminary

experiments on invoking delamination using ultrasonic actuation. The experimental

setup was very similar to the one used in [2], however building plaster was used to em-

ulate brittle, ice-like build-ups. The plaster patches were successfully debonded, which

demonstrated the potential of the approach. Some issues related to driving a complex

load with high power and with actuator cracks were also encountered and shortly dis-

cussed. The measurement, results and following observations supported parts of the

thesis (especially Chapter 6 and Chapter 7) and therefore are attached in Appendix A.

1.2.2 Modelling structural wave propagation

The physics of wave propagation has been widely studied and is nowadays very well

understood. Waves are often defined as phenomena that propagate energy or pres-

sure without the net transport of the medium [28]. Their complex character is usually

simplified and studied at single frequencies separately assuming a linear behaviour of

the medium. An unbounded isotropic solid allows only the fundamental wave types to

travel as a solution of the Navier’s displacement equation [29–31]. In the presence of the

boundaries fundamental waves are reflected and undergo wave conversion when incident

on boundaries following certain physical laws such as the Snell’s Law [28, 30]. A new

wave pattern emerges and the energy propagation seems to be ‘guided’ by the boundaries

in a certain direction(s) – this is the origin of the term guided waves originates from.

The pioneering works on guided waves include the famous paper by Rayleigh on the

propagation of waves along a surface of a semi-infinite solid [32] and the mathematical
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description of waves in an infinite plate immersed in a vacuum by Lamb [33] from whom

the widely used term Lamb or Rayleigh-Lamb waves comes from.

Vibration of structures is effectively a superposition of waves reflecting between its

boundaries. In the event that the reflected waves share the phase with the incident

waves, so-called standing waves (vibrational modes) are formed. Wave attenuation lim-

its the response and the amplitudes of subsequent standing waves. Vibration is a very

powerful way of looking at structures that enables analysing various practically useful

effects accompanying standing waves (such as natural frequencies, mode shapes, acoustic

radiation, etc.) without a need for tedious wave analysis. However, certain problems

(e.g. non-destructive evaluation, scattering of waves at joint of multi-component waveg-

uides) require a deeper insight in the fundamental physics of wave propagation in order

to understand intrinsic effects of the wave motion or draw practical conclusions from a

relatively simple model as opposed to large models of complex vibratory systems.

As it has been mentioned in the previous section, publications on invoking delamina-

tion with piezoelectric actuators discuss mainly high frequency vibration with some

theoretical reference to waves. It is expected that a deepened wave analysis can bring

better understanding of the feasibility of the concept and provide insight into physical

phenomena that promote generating high interface stress as an effect of a propagating

wave. Furthermore, the observations drawn will also be valid for a bounded vibrating

structure (since its response is a composition of standing waves).

A fundamental introduction to wave propagation concepts per se is not given in this

thesis as it can be found in numerous textbooks, e.g. [28–31, 34]. However, a brief

review of the most common modelling methods is presented below. The implemented

methodologies are described in more detail in due course for the sake of consistency and

reference.

The analysis of waveguides with an unwanted build-up with a particular interest in the

interface shear stress at high frequencies introduces certain requirements for the method

to be used. Firstly, the method needs to facilitate multi-layered waveguide modelling and

enable extracting a reasonably precise through-thickness stress distribution. Secondly,

it is expected to be valid in the high-frequency regime.

1.2.2.1 Analytical methods based on approximate theories

Simple structures like beams or rods can be analysed with the aid of the approximate

theories such as Euler-Bernoulli, Timoshenko, Love, Mindlin-Hermann or others [35, 36].

The resulting partial differential equations are written under the time and space har-

monic assumption yielding solutions that can be obtained analytically. The propagation
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phenomenon and free wave solutions are often further exploited to calculate wave re-

flection and transmission at boundaries and discontinuities [36–38], analyse dynamics of

finite waveguides (via the phase closure principle) or solve relatively simple forced wave

problems via a generalised wave approach [39]. An alternative way to use various analyt-

ical structural theories for vibration analysis is known as the frequency domain spectral

element method [40, 41]. The structure is subdivided into substructures that can be

represented by an analytical structural theory and then coupled together in a manner

similar to the finite element formulation (yet not involving any of the FE approxima-

tion). It has found numerous applications and implementations thanks to its relatively

straightforward implementation and versatility. The name given by the authors can

be confused since spectral methods have been known in the literature before [42] and

they represent a completely different methodological approach but no other name was

reported. The limitations of the analytical methods lie in the limited frequency range

within which the solution is valid and the fact that they can be directly applied only to

simple waveguides (i.e. single-layer beams). The analytical formulation for waveguides

with a finite number of Euler-Bernoulli or Timoshenko beam layers can also be found

in the literature [43–45] but these are expected not to fulfil the requirements outlined

above since the beam theories make assumptions regarding the stress distribution.

1.2.2.2 Analytical methods based on bulk waves in solids

Originating from the fact that guided waves are composed of fundamental bulk wave

types that undergo a particular reflection/mode conversion pattern at the boundaries,

the partial waves approach has been proposed. It has been very well described in [46]

but has been used prior to that publication in various works on wave propagation in

stratified media. Two main approaches for the assembly of system equations based on

partial waves are known in the literature – transfer matrix method (TMM) as proposed

by [47, 48] and global matrix method (GMM) described by Lowe in [49, 50] but used long

before. The two conditions outlined in the previous section are met for these methods as

they provide an accurate through-thickness wave field distribution an can be used at high

frequencies. However, GMM has some advantages over TMM related to the stability of

the solution at low wavelength limit and therefore GMM has been implemented for the

purpose of the thesis. Note that although these methods have an analytical origin, they

can only be solved numerically. This is not a trivial tasks since it requires relatively

complicated root tracing routines that are sensitive to initial guess and prone to fail for

complex structures if the frequency step is not very small. GMM can be used only for

plane wave calculations, i.e. two-dimensional plain strain formulation.

– 7 –



Introduction

1.2.2.3 Semi-analytical methods

Semi-analytical methods couple finite element approximation with some analytical tech-

nique that facilitates calculation of the wave characteristics of the structure. Two main

methods are recalled here: wave and finite element (WFE) method and semi-analytical

finite element (SAFE) method.

The key idea of the WFE [51, 52] is to consider an infinite waveguide as a periodic

structure composed of identical cells. The cell (short section of the waveguide) is mod-

elled using a conventional FE and periodicity conditions are imposed on the extracted

dynamic stiffness matrices of the cell. Applications of WFE and usage examples includ-

ing the response to general excitation and wave reflection/transmission can be found in

[39, 53–55]. Since the section is discretised in the propagation direction, some numerical

problems can arise and need to be accounted for properly as discussed in [56].

The SAFE method is known in the literature under different names, depending on the

area or application for which the method was established. The base concept common

to all of them is to use finite element approximation to the wave field over the cross

section allowing an additional degree of freedom (DOF) in the direction of propagation.

The equations of motion are derived using variational principles and solved using the

spatial Fourier transform (SFT) or, equivalently, assuming a space-harmonic variation

of the displacement in the propagation direction. The framework dates back at least

to the 1970s [57, 58] and was further developed and expanded in recent years by many

researchers. In vibroacoustics it is known as the waveguide finite element method [59–

63], in ultrasonics the name SAFE is used [64–68], and finally in railway vibration field it

is called the wavenumber finite element method [69, 70] following from [71, 72]. The wave

solutions in uniform waveguides of indefinite length formed a basis for the development

of computational methods for finite and build-up structures, such as the spectral finite

element method [73–75]. In this work the name semi-analytical finite element method

is preferred as its use is least ambiguous. In this thesis the understanding of the scope

of this method is extended to include wave scattering and reflection calculation and

the assembly of multicomponent waveguides, making it analogous to WFE but with a

different approach to obtaining dispersion curves and wave mode shapes.

1.2.2.4 Numerical methods

Wave propagation can be analysed using conventional finite element method if the mesh

is sufficiently fine. Details on the performance of different strategies can be found in

[76]. The main limitations of FE analysis are the large computational load as a result
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of fine mesh and the need for absorbing boundaries to enable wave calculation, which

can be a cumbersome task [76, 77]

The alternative approach is to use time-domain spectral element method, sometimes

called spectral finite element method (SFEM) as presented in [78]. SFEM originates from

spectral methods used for solving partial differential equations numerically assuming the

solution to be of the form of a Fourier series or polynomials of a high order (Chebyshev,

Lobatto) over non-uniformly spaced nodes. The spectral approach combined with the FE

paradigm of system assembly and element-wise formulation was first proposed for fluid

dynamics in [42] and over the following years has been successfully applied to structural

wave propagation problems. Details of the methodology and exemplary applications can

be found in [78].

1.2.3 Piezoelectric excitation in structural waveguides

Over the past decades many excitation strategies for structural waves have been devel-

oped originating from various phenomena [6]. One of the approaches is to use conven-

tional ultrasonic probes – wedge, comb or Herzian contact – which require a silicon/-

grease coupling or air-coupled electromagnetic acoustic transducers (EMATs). They

can be precisely tuned to match the desired excited wavelength but due to the couplant

they are not able to excite waves very efficiently. One of the alternatives is laser-based

ultrasonics which provides a non-contact method for activating structural waves espe-

cially at uneven or rough surfaces. However, the obvious drawbacks such as high cost

and bulkiness of the equipment limit its possible applications to research laboratory

environments.

The other group consists of active elements that can be permanently attached or embed-

ded in the structure where the piezoelectric effect is employed to convert the electrical

driving signal into mechanical deformation. Their main advantages over the aforemen-

tioned techniques are low cost, non-intrusive character (small size) and relatively simple

operational principle. The electromechanical coupling in the piezoelectric material en-

ables an active interaction with the structure providing the means of excitation and

sensing its dynamic response. There are many types and configurations of piezoelectric

materials available on the market (e.g. Macro Fibre Composites,polymer based inter-

digital transducers), but in this thesis only monolithic ceramic elements are discussed.

A piezoelectric monolithic actuator is essentially a single layer of piezoelectric ceramic

coated with silvered electrodes on two surfaces normal to the poling direction. The

most popular group of piezoelectric ceramics consists of solutions of Lead Zirconate and

Lead Titanate with some additives and is widely known as PZT materials [79]. From the
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elasticity point of view PZT ceramics are transversely isotropic and the electromechanical

coupling originates from the piezoelectric property. The direct piezoelectric effect is

responsible for generating an electric charge upon a mechanical stress applied (sensing).

The inverse piezoelectric effect enables exciting a structure, i.e. the piezoelement deforms

when voltage (or charge) is applied and induces strain in the medium to which it is

bonded. The interaction between the piezoelement and a structure is mutual, i.e. the

actuator deforms and induces strain in the substrate as a response to the driving voltage

but at the same time generates charge since its motion is constrained.

1.2.3.1 Modelling approaches

The interface to piezoelements is electrical – they are activated by means of electric

driving signal and their response to structural deformation is read as an electric output.

Therefore, since one piezoelement can act both as an actuator and as a sensor measuring

its electrical response enables obtaining useful information about structural dynamics of

the substrate. This configuration is widely used in NDT as a tool for structural health

monitoring and known as impedance (EMI) testing [80].

From an electrical static viewpoint a piezoelement behaves as a capacitor (two electrodes

separated by a dielectric) with resistance corresponding to dielectric loss and leakage.

The electromechanical coupling reflects vibrations of the actuator in the electrical re-

sponse, therefore the mechanical properties of the actuator can also be represented using

lumped electrical elements [81] in a so-called electrical equivalent circuit (Fig. 1.1). Far

below its first resonance, the mechanical equivalent components can be neglected and the
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Figure 1.1: PZT transducer equivalent electrical ciruit.
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Figure 1.2: Principle of impedance monitoring and loaded PZT transducer
equivalent circuit.

impedance of a PZT element is approximated as an electrical impedance of a capacitor

(ZPZT ≈ 1
ωC0

).

When attached to a structure, a piezoelectric element’s behaviour is changed since it is

constrained by a structural stiffness. In this case, applying voltage to the transducer

invokes both inverse and direct piezoelectric effects [82]. Firstly, the element deforms and

induces strain in the host structure (inverse effect), which is represented by an impedance

Zs loading the transducer in the equivalent circuit (Fig. 1.2). However, as its motion

is constrained it generates a ‘back-charge’ (direct effect), forming a voltage source Vs

whose voltage is a function of mechanical mass, stiffness and damping (see Fig. 1.2). This

sensing action of a piezoelement ‘inserts’ information about the host structure’s dynamics

that forms the basis of the powerfulness of the impedance monitoring technique.

1.2.3.2 Modelling piezoelectric excitation in waveguides

The ability to describe the interaction between the piezo patch and the host structure

accurately is an essential aspect of both the design and operational stages of piezo

equipped dynamic systems. Over the past decades this problem has been widely studied

bringing a considerable number of modelling approaches. A review of these can be

found in a recent paper by Huang et al. [83]. Among research published to date, two

general approaches to the described problem can be distinguished [84]. The first group

considers the dynamics of the structure and piezo actuation separately assuming that

they are fully decoupled - a set of equivalent forces is applied to the substrate model by

means of some coupling strategy. The second group of models accounts for the dynamic
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interaction between the actuator and the structure and is based on the solution to some

kind of boundary problem.

One of the earliest attempts to provide a mathematical description of the piezoelectric

excitation was the shear-lag Euler-Bernoulli beam model presented by Crawley and

de Luis [85]. The main contribution of this work was the formulation of the quasi-

static assumption stating that the actuator behaves quasi-statically provided that it

operates at frequencies far below its own resonances and is thin and light compared to

the host structure. This also implies that the dynamics of the actuator are neglected

and that for thin bonding layers the shear load transfer is confined at the ends of the

actuator (pin-force assumption). The bonding layer is accounted for in [85] via a shear lag

parameter describing the effectiveness of the shear load transfer. The shear lag parameter

depends on the thickness and stiffness of the bonding layer and was developed under the

assumption of uniform strain.

The pin-force and quasi-static assumptions have been widely used by researchers since

then. The model of Crawley and de Luis has been further developed in [86] by allowing

linear strain both in the structure and the actuator and considering the contribution of

the flexural stiffness of the actuator, and further in [87] where Timoshenko beam theory

was incorporated. An analogous methodology was also applied to plates and shells [88–

90]. These purely analytical approaches were limited in application to a single beam/-

plate system with little flexibility. Therefore, some researchers employed the frequency-

domain spectral element method (SEM) to model coupled flexural-longitudinal-shear

vibrations of homogeneous [45] or composite [44, 45, 91, 92] beams based on Timoshenko

and Mindlin-Hermann theories. Although using the same approximate analytical the-

ories SEM provides versatility in structure configuration and ability to couple together

elements of different types. Moreover, although the model allowed only a uni-axial de-

formation of the piezoelectric and employed the pin-force assumption, the mechanical

dynamic contribution of the piezo layer was incorporated and its effect was present in

piezoelectric equivalent forces.

Piezo elements have become a standard for high-frequency wave-based NDT [93]. The

high frequency regime is associated with more complex through-thickness field varia-

tion therefore the limitations of approximate theories enabling only linear distribution

of strain needed to be overcome. Thick elastic plates with thick piezo actuators in a

sandwich configuration have been studied by Yang [94]. Lin and Yuan [95] investigated

Lamb wave excitation with piezo elements both theoretically and experimentally. They

provided a model based on Mindlin plate theory and classical lamination theory for the

A0 Lamb mode, which was validated with an experiment. Moulin et al. [77] proposed
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a hybrid technique employing finite element analysis to obtain the excited wave am-

plitudes and normal modes expansion to account for the propagation. Giurgiutiu [96]

solved the problem of Lamb wave excitation with a single PZT wafer as a boundary

problem, presenting a methodology incorporating full Lamb wave equations solved for

external piezo-induced traction excitation. He assessed the performance of the Euler-

Bernoulli beam based shear lag parameter for Lamb wave-like displacement fields. The

problem of the bonding layer has been further developed in [97–99] leading to the exact

shear lag solution for any number of wave modes derived from normal mode expan-

sion. Raghavan and Cesnik [100] presented an interesting work in which the Lamb wave

displacement fields excited by rectangular and disk piezo actuators bonded to plates

were obtained. The model was derived by an integral transform solution to the full 3-D

elasticity equations with the external forcing approximated using a pin-force assumption.

From the aforementioned references it is clear that researchers treated the bonding con-

ditions as the essential factor for understanding and representing accurately the energy

transfer between the actuator and the substrate. However, most of the above models

do not take into account the dynamics of the piezo layer and the mutual interaction

between the patch and the structure. Some studies attempting to account for these

issues have been presented in [101–103]. In these papers the authors study wave propa-

gation induced by piezoelectric elements attached to an elastic half-spaces highlighting

the dependencies on the geometry, material configuration and phase distribution. An

integral equation based methodology for modelling piezo-structure interaction that ac-

counts for the dynamic contribution of the piezo actuator and can be applied both to

a plate and an elastic half-space has been published by Glushkov et al.[104]. With the

aid of the Fourier transform they solve the Navier displacement equation and a uniaxial

piezo-patch equation as a coupled boundary-value problem.

Apart from analytical solutions, many researchers investigated piezo-excited waves us-

ing conventional FE. Being versatile and easily applicable to complex structures, this

technique has important drawbacks in high frequency applications such as a very large

computational cost and a limited insight into wave propagation phenomenon. However,

in other numerical methods, some of these can be circumvented, e.g. by using the spec-

tral finite element method as proposed in [78, 105, 106] where the number of degrees

of freedom required is largely reduced. Recent advances in computational engineering

resulted in an interesting work by Paćko et al.[107] where a hybrid Local Interaction

Simulation Approach (LISA)-FE method has been implemented using parallel comput-

ing and graphical card processing offering significant time savings when compared to

FE.
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The wide range of models briefly discussed above serves many purposes well in NDE/SHM

(structural health monitoring) applications, but has certain limitations both from the

viewpoint of assumptions made and the model development. Since the actuators quite

often work at quasi-static frequencies (with reference to their dynamics) the interaction

with the structure is modelled as quasi-static. The bonding conditions that seem to

largely affect transferred traction are often accounted for by means of an additional pa-

rameter which also has limited validity. Since large strains are expected to be required

for invoking delamination, a suitable modelling method is thought to be able to include

the dynamics of the actuator (so far available only in FE) and at the same time take

advantage of a wave based formulation. Removing the pin-force and quasi-static assump-

tions is needed for analyses of structures with thick actuators, or structures operating

near resonance frequencies of the piezo elements in power ultrasonics applications. Fi-

nally, it is desirable to create a methodology that enables modelling of wave propagation

in multi-component waveguides without the need to employ full FE.

1.3 Aims of the thesis

The review of the state of the art given above led to the following research tasks which

are identified as the aims of this thesis:

1. To understand the conditions that promote high interface shear stress in a waveg-

uide with an undesired accretion.

2. To build a wave-based model that is able to predict the interface stress as response

to a piezoelectric actuation without the need of employing conventional FE.

3. Obtain realistic, quantitative power requirements for structural waves-based in-

voking delamination system for different types of accretion and support them with

the experiment.

1.4 Contributions of the thesis

The results of the investigation presented in this thesis form the following contributions:

1. Structures with an undesired accretion have been described in general sense as elas-

tic bilayers. Wave motion features including stress distribution, energy propaga-

tion, attenuation, excitability and power partitioning have been discussed leading

to optimal mode selection criteria.
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2. The influence of mechanical properties of the accreted layer on the wave induced

stress have been investigated in the light of the above.

3. A new methodology for modelling piezoelectric excitation in waveguides originat-

ing from the coupling between the semi-analytical finite element method and an-

alytical wave approach has been proposed. The semi-analytical formulation for a

piezoelectric element has been developed and the solution to a distributed voltage

excitation problem has been presented.

4. The new coupled-field wave model has been successfully validated on a beam-like

waveguide with emulated anechoic terminations.

5. Power transfer between the actuator and the structural waves has been modelled

including the bonding layer effect. The influence of the actuator’s dimensions and

the bonding layer’s thickness on the power transfer efficiency has been discussed

6. Piezo-actuated structural waves’ capability of invoking delamination has been as-

sessed using the developed methodology. Electrical power requirements for removal

of unwanted build-ups have been specified for various build-up properties.

7. Piezo-actuated structural waves’ effectiveness for removing surface accretions has

been demonstrated experimentally. The model plaster patches have been success-

fully debonded from the beam-like waveguide with anechoic terminations. Cor-

responding numerical analysis was conducted and a good agreement with the

recorded power requirements was observed.

1.5 Outline of the thesis

The thesis is organised into eight chapters. The order of the chapters follows the com-

plexity of the modelling tools and a direct correspondence to a practical case. The

numerical tools developed or employed during the investigation were implemented in

Python with NumPy, SciPy, IPython and matplotlib packages (among others). Some

computations benefited from the time savings offered by the IRIDIS High Performance

Computing Facility at the University of Southampton. Finite element models were build

and run in ABAQUS.

The current introductory chapter opens the thesis, providing the motivation and the

state of the art for the topic of interest. The qualitative study on the aspects of wave

propagation relevant to removing surface accretions is presented in Chapter 2. In this

chapter an analytical model for an infinite multilayered plate is adopted from the liter-

ature. Waveguides with unwanted build-ups are treated as elastic bilayers. Associated
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dispersion curves and the nature of wave mode shapes is discussed. As many of the

real world accretions are expected to be lossy, the issue of wave attenuation is addressed

using an approximate model based on the modal energy distribution. Based on the anal-

ysis, optimal wave mode selection criteria are specified. The influence of the properties

of the accretion on the generated interface shear stress with the fundamental waves is

analysed is the concluding parametric study.

In Chapter 3 the modelling approach is extended to include the forced response calcu-

lation. It is investigated how the injected mechanical power is partitioned between the

propagating modes. Using this formulation, a simple pin-force model is implemented

to approximate the piezoelectric excitation. The effect of the excitation on the gener-

ated interface shear stress is illustrated in the parametric study for different types of

accretions. Limitations of the approach are discussed.

In Chapter 4 the semi-analytical finite element (SAFE) method is introduced. It is

expected that this methodology will enable overcoming the constraints of the fully an-

alytical models and bring the simulations closer to a practically implementable cases.

The mechanical SAFE model is validated in an experiment on a beam-like waveguide

with anechoic terminations. The wave selection criteria from Chapter 2 are verified.

In order to implement the piezoelectric actuation in the wave domain but without the

need for assumptions on the dynamic character of the interaction, a new piezoelec-

tric SAFE element is derived in Chapter 5. The mathematical background is presented

together with the methodology for calculating the response to a distributed voltage exci-

tation. The piezoelectric SAFE element is coupled with the elastic SAFE elements using

wave scattering/reflection relationships to represent a waveguide with a finite piezoelec-

tric actuator attached. The model is validated in an experiment for both the mechanical

response and the electromechanical impedance of the actuator-structure system.

The newly presented methodology is employed to analyse the power conversion in piezo-

electrically excited waveguides in Chapter 6. The issues related to driving a complex

load and the impedance mismatch are discussed. The influence of the dimensions of the

actuator and the properties of the bonding layer on the effectiveness of power transfer

is investigated in a parametric study.

Finally, in Chapter 7 the proposed approach is applied to interface shear stress prediction

in waveguides covered with accretions. The stress recovery routine is validated with

commercial FE simulations. Transfer functions for interface stress as a response to

driving voltage are presented together with the decomposition of the total stress into

particular waves’ contributions. The power transfer aspects addressed in Chapter 6

are employed to obtain realistic power requirements for surface accretion removal for
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both ice and accretions with properties falling into wide range of stiffensses considered.

The benefit of residual reflections which are expected to occur in real world cases is

briefly discussed. Finally, the concept of removing accretions with structural waves is

demonstrated in an experiment. The piezo-actuated wave successfully removed plaster

patches representing the build-up. Corresponding numerical simulations and the analysis

of the observations are also presented showing that the model predictions represent well

the observed electrical power requirements.

A set of final conclusions and recommendations for future work are presented in Chap-

ter 8.

– 17 –





Chapter 2

Qualitative study on invoking

delamination with structural

waves

In the first chapter invoking delamination with structural waves is looked at from a

theoretical perspective. The fundamental insight into effects associated with wave mo-

tion can be gained using free wave analysis. Although it is sometimes difficult to be

related to real cases directly, it provides useful qualitative information. The analysis is

performed with the aid of a plane strain multilayered plate model based on the global

matrix method (GMM). The accretion that covers waveguides is usually of much lower

stiffness. A two-layered plate with layers of very different properties is commonly re-

ferred to as an elastic bilayer. Particular characteristics of elastic bilayers, typical for

weakly coupled systems, are analysed first. The influence of the coupling between the

layers on wave propagation is discussed aiming at understanding the physical phenom-

ena that promote high interface shear stress. Since real accretions are often lossy, the

importance of energy propagation patterns is highlighted with reference to an approxi-

mate method for calculating guided wave attenuation in plates with viscoelastic coating.

Based on the insight gained, a few observations on the interface shear stress associated

with propagating waves are given. The chapter is concluded with a parametric study

that addresses the aforementioned issues for build-ups of different stiffnesses and thick-

nesses yielding approximate mechanical power requirements and practical implications

for the method.
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layer 1

layer 2
...

layer n

z

y

∞ ∞

d1
d2

dn

Figure 2.1: Multi-layered plate - geometry and labelling system.

2.1 Modelling free wave propagation in structures with an

undesired accretion

The global matrix method (GMM) together with partial wave technique provide an

analytical description of wave propagation in a generally multi-layered one-dimensional

waveguide. It provides an exact distribution through the thickness of the waveguide,

however is limited to plain-strain problems with simple geometries (infinite plates, cylin-

ders). The implementation used for this thesis is based on [50, 108]. A short summary

of this approach is presented below for reference purposes. More details on partial waves

and the global matrix method can be found in [30, 46, 109] and [49, 50, 108], respectively.

The geometry of a multilayered plate together with the labelling system is shown in

Fig. 2.1. Only plane waves are considered i.e. waves whose wavefront is an infinite plane

perpendicular to the direction of propagation z. The external boundary conditions can

be arbitrary, however it is assumed here that the plate is immersed in a vacuum which

implies that the external surfaces are traction-free:

σyz(0) = σxy(0) = σyy(0) = σyz

(∑
dn

)
= σxy

(∑
dn

)
= σyy

(∑
dn

)
= 0 (2.1)

At the interfaces between the layers the displacements and tractions are continuous. The

traction is understood as a force between the two layers that acts across the interface

divided by the area of the interface.

2.1.1 Partial waves in a layer

The motion of each layer is expressed in terms of partial waves (see Fig.2.2), which are

understood as waves that travel along a waveguide reflecting back and forth between

the boundaries (to which they are often oblique) [46]. There are six partial waves

propagating in each layer and for isotropic materials they are pure fundamental bulk

wave types (longitudinal, shear vertical and shear horizontal). Because of the coupling

at the interfaces and boundaries, at angular frequency ω, the partial waves share the
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θc

Snell’s law at ω:
kL− sin θi = kL+ sin θr = kSV+ sin θc

so:
kz(L−) = kz(L+) = kz(SV+) = k

and ky(L−) = −ky(L+)

Figure 2.2: Partial waves in a layer.

same wavenumber component in the direction of propagation, according to Snell’s law

[30]. The transverse (y-direction) wavenumber component ky is different for each wave

type. The displacement field within an isotropic layer satisfies the Navier’s equations of

motion:

(λ+ µ)uk,ik + µui,jj = ρüi (i, j, k = x, y, z) (2.2)

where λ, µ are the Lame constants, the summation is performed over repeated sub-

scripts, the dot stands for time-derivative and subscripts after the comma represent

space derivatives, e.g.:

(λ+ µ)
∂

∂x

(
∂u

∂x
+
∂u

∂y
+
∂u

∂z

)
+ µux

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
= ρüx (2.3)

In case of an anisotropic layer pure wave types do not exist except the cases when the

propagation direction matches crystal symmetry axes. The dynamics of each layer are

then governed by a more general Christoffel equation [30, 46]. In this thesis anisotropic

materials are not considered, thus the Christoffel equation is not discussed in detail.

Eq. (2.2) can only be solved using a trial solution. Here, since the layers are assumed

to be isotropic a convenient Helmholtz method of potentials can be used [50] following

which the longitudinal partial waves are described using a scalar function L and shear

partial waves using vector potentials SV , SH for shear vertical and shear horizontal

partial waves, respectively [50]:

L =AL exp [(k · z− ωt)]
|SV | =ASV exp [(k · z− ωt)]
|SH | =ASH exp [(k · z− ωt)]

(2.4)

where vector z = [x y z]>.

– 21 –



Free wave propagation in structures with accretion

The physical displacement resulting from the longitudinal and shear partial waves can

be calculated from the potentials as:

uL =∇L =
{

0 ky(L) kz

}
AL exp [(k · z− ωt)]

uSV =∇× SV =
{

0 −kz ky(SV )

}
ASV exp [(k · z− ωt)]

uSH =∇× SH =
{
−ky(SH) 0 0

}
ASH exp [(k · z− ωt)]

(2.5)

where the arbitrary (and unknown) amplitudes are rescaled to account for multiplication

by the imaginary unit  resulting from the differentiation. For the sake of consistency

it is noted that the physical displacements are given by the real parts of the above

equations.

Substituting displacements from Eq. (2.5) into Eq. (2.2) leads to bulk wave velocities:

cL =

√
λ+ 2µ

ρ
cS =

√
µ

ρ
(2.6)

As it has already been said all the partial waves share the same wavenumber component

in the propagation direction, hence for simplicity k stands for the wavenumber compo-

nent along the propagation direction or plate wavenumber, i.e. k = kz. The transverse

wavenumber ky for each type of partial waves can be calculated as:

ky(L±) = ±
√
ω2
/
c2
L − k2

ky(S±) = ky(SV±) = ky(SH±) = ±
√
ω2
/
c2
S − k2

(2.7)

Note that this is for positive-going waves. The positive transverse wavenumber implies

that the partial wave is travelling ‘downwards’ (referring to Fig. 2.2), whereas negative ky

denotes a partial wave propagating ‘upwards’. Depending on the ratio between the bulk

wavenumber and the plate wavenumber partial waves are either propagating (ω2
/
c2
L,S ≥

k2) or evanescent (ω2
/
c2
L,S < k2).

The total displacement or stress field is a linear combination of components associ-

ated with particular partial waves. Therefore, from the relationships derived above and

Hooke’s law defined as:

σij = λδij∆ + 2µεij i, j = x, y, z (2.8)

where:

εij =
1

2

(
∂ui
∂j

+
∂uj
∂i

)
i, j = x, y, z (2.9)
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one can write a matrix relationship describing displacements and tractions within the

layer. The remaining stress components can be calculated using the same procedure.





ux

uy

uz

σyy

σyz

σyx





(i)

=




0 0 0 0 D25 D26

D31 D32 D33 D34 0 0

D11 D12 D13 D14 0 0

D41 D42 D43 D44 0 0

D51 D52 D53 D54 0 0

0 0 0 0 D65 D66




(i)





A(L+)

A(L−)

A(SV+)

A(SV−)

A(SH+)

A(SH−)





(i)

(2.10)

where:

D11 = km(L+) D12 = km(L−) D13 = ky(S)m(S+)

D14 = −ky(S)m(S−) D25 = ky(S)m(S+) D26 = ky(S)m(S−)

D31 = ky(L)m(L+) D32 = −ky(L)m(L−) D33 = −km(S+)

D34 = −km(S−) D41 = ρBm(L+) D42 = ρBm(L−)

D43 = −2µkky(S)m(S+) D44 = 2µkky(S)m(S−) D51 = 2µkky(L)m(L+)

D52 = −2µkky(L)m(L−) D53 = ρBm(S+) D54 = ρBm(S−)

D65 = −µk2
y(S)m(S+) D66 = µk2

y(S)m(S−)

m(±L) = exp [±ky(L)y] m(±S) = exp [±ky(S)y] B = (ω2 − 2k2
y(S)k

2)

(2.11)

Since matrix D contains exponential terms of the exp[±ky] form, it may be prone to

ill-conditioning for very thin or very thick layers in particular.

2.1.2 Assembly of a multi-layered plate using the global matrix method

The global matrix assembly is briefly shown for the simplest two-layered case. We

consider only isotropic layers here, hence partial waves are the fundamental bulk wave

z

y2+

y1+,−

y2−

y4+,−

L+ SV+ SH
+ L−

SV−
SH−

y3+
y3−L+ SV+ SH

+ L−
SV−

SH−

L+ SV+ SH
+ L−

SV−
SH−

L+ SV+ SH
+ L−

SV−
SH−

top half-space
(layer 1)

bottom half-space
(layer 4)

layer 2

layer 3
interface

interface

interface

displacement
and traction
continuity

Figure 2.3: Multilayered plate assembly using the global matrix method.
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types and Lamb and SH waves are decoupled. A detailed schematic view of the plate

together with partial waves, boundary and continuity conditions and labelling system

is depicted in Fig.2.3. All layers (including half-spaces) are numbered starting from the

top. The main modification with respect to the partial wave scheme outlined above

is that the y origin for each partial wave in every finite layer is set independently at

its entry to the layer. This simplifies the field matrices assembly [50] and provides

numerical stability. Alternatively, the layer matrices can be appropriately scaled to

ensure numerical stability as done in [73]. For the half-spaces the y origin is defined to

be at the outer surfaces of the plate in order to avoid placing it at ±∞ [50]. Following

from this amendment, the iith layer field matrices can be written separately at its top

and bottom as a product of the D̃ matrix and the appropriate rotation matrix:

Dt,(i) = D̃(i) ◦Rt,(i)

Db,(i) = D̃(i) ◦Rb,(i)

(2.12)

where ◦ stands for element-wise multiplication, and:

D̃(i) =




0 0 0 0 ky(S) ky(S)

ky(L) −ky(L) −k −k 0 0

k k ky(S) −ky(S) 0 0

ρB ρB −2µkky(S) 2µkky(S) 0 0

2µkky(L) −2µkky(L) ρB ρB 0 0

0 0 0 0 −µk2
y(S) µk2

y(S)




(i)

Rt,(i) =




1 1 1 1 1 g(S)

1 g(L) 1 g(S) 1 1

1 g(L) 1 g(S) 1 1

1 g(L) 1 g(S) 1 1

1 g(L) g(S) 1 1

1 1 1 1 1 g(S)




(i)

, Rb,(i) =




1 1 1 1 g(S) 1

g(L) 1 g(S) 1 1 1

g(L) 1 g(S) 1 1 1

g(L) 1 g(S) 1 1 1

g(L) 1 g(S) 1 1 1

1 1 1 1 g(S) 1




(i)

g(L) = exp [ky(L)di], g(S) = exp [ky(S)di]

(2.13)

The continuity condition between the layers can be written in terms of the above matrices

as:
[
Db,(2) −Dt,(3)

]{a2

a3

}
= 0 (2.14)

where a2, a3 are the vectors of partial wave amplitudes in layers 2 and 3, respectively.

Following this pattern the global matrix representing the continuity conditions between
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the layers of the multilayer can be assembled:




D(1)b −D(2)t

D(2)b −D(3)t

D(3)b
. . .

. . . −D(n−1)t

D(n−1)b −D(n)t








a1

a2

a3

...

an





= 0 (2.15)

The partial waves incident on the multilayer from the half-spaces represent external

excitation. However, this formulation is not very useful for practical application (it

is not straightforward to link the exciting partial wave amplitudes to e.g. mechanical

forces) and therefore in this thesis they are set to zero what restricts the functionality

of the model to free wave analysis only. The half-space field matrices D(1)b, D(n)t

are appropriately trimmed accounting for the deletion of the waves incoming from the

half-spaces. After all above manipulations the multilayered system equation takes the

following form:

Ga = 0 (2.16)

where G is the final assembled global matrix and a is the vector of partial waves ampli-

tudes.

2.1.3 Free wave solution

Free waves can be found by solving the non-trivial solution condition, i.e. |G| = 0, which

can be done only numerically. The solution algorithm used in the implementation in this

thesis is based on those presented in [50, 108]. Since G depends both on wavenumber

and angular frequency, the solver fixes one of the variables and looks for roots of the

resultant characteristic functions. In this work the wavenumber is fixed as this facilitates

tracing the solution curves with changing direction of energy transport. The details of

the routine can be found in the literature.

Having found the dispersion curves one can extract from the global system equation

the through-thickness distribution of the wave fields often called the wave mode shape

or the wave structure for a given frequency-wavenumber pair. In order to do this, the

amplitude of one of the partial waves is arbitrarily set to 1 (in this work it is the positive

longitudinal wave in the first finite layer) and the corresponding column of the global

system matrix G is shifted to the right hand side. The resulting overdetermined set

of simultaneous equations is solved using singular value decomposition (SVD) of the
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trimmed matrix G̃, defined as:

SVD
(
G̃
)

= USV∗ (2.17)

from which the unknown wave amplitudes vector is obtained:

ã = V>S−1U>∗(−G1,L+) (2.18)

where ã is the eigenvector corresponding to the trimmed global matrix G̃ and G1,L+ is

the column of the global matrix corresponding to the positive longitudinal partial wave

in the first finite layer.

The final eigenvector a is reconstructed from ã by appropriately inserting the fixed

amplitude. Wave field (displacements, strains, stresses) at the chosen frequency and

wavenumber is obtained via multiplication of the field matrix from Eq. (2.10) by a.

[
u

σ

]
= D(i)a (2.19)

where the appropriate columns of D(i) need to be modified to account for the phase

shift resulting from translation of the origin of the upward travelling waves in the global

matrix method.

It is also advantageous to compute the energy and power mode shapes which provide an

interesting insight into the physics of wave propagation. Energy and power are cyclic

quantities so their time-averages are of most interest. They are calculated as follows:

• strain energy density - represents stored (potential) energy per unit volume and is

given by a product of stress and strain components:

eu =
1

4
(σxxεxx + σyyεyy + σzzεzz + σyzεyz + σxzεxz + σxyεxy) (2.20)

• kinetic energy density - represents energy possessed due to wave motion per unit

volume and is given by a quarter of the sum of mass-velocity squared products.

Velocity is obtained from displacement after multiplication by ω:

ek =
ρ

4

[(
∂ux
∂t

)2

+

(
∂uy
∂t

)2

+

(
∂uz
∂t

)2
]

(2.21)

• power flow density - given by the complex acoustic Poynting vector P [109] repre-

sents the rate at which the waves propagates energy along a particular direction.

The acoustic Poynting vector is defined as the product of the complex conjugate
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of particle velocity and the stress tensor:

P = Re

{−v∗σ
2

}
= Re




−1

2

[
∂ux
∂t

∗ ∂uy
∂t

∗ ∂uz
∂t

∗]



σxx σxy σxz

σyx σyy σyz

σzx σzy σzz








(2.22)

The displacements and stresses obtained from Eq. (2.19) are modal hence their ac-

tual amplitudes are arbitrarily scaled and not physically meaningful. The power-based

normalisation approach which is adopted in this thesis enables a consistent way of pre-

senting and comparing different mode shapes. Normalised wave structure plots indicate

amplitudes of displacements, stresses and energy densities as they would be if a mode

at a chosen frequency had a unit power flow - see e.g. [108] for details. Note that the

structure extends to infinity along the x direction and that the wave field is constant

along x. The adopted normalisation assumes unit power flow in a strip of width 1 m

along x. The scaling factor anorm is calculated from the square root of the power flow

density along z (z-component of the Poynting vector) integrated across the thickness of

the structure:

anorm =
1√∫ 0.5

−.0.5
∫

thk Pz dy dx
=

1√
〈P 〉

(2.23)

After multiplying the displacements, strains and stresses by anorm the normalised energy

densities are computed, and of course 〈P 〉 = 1.

Throughout this thesis the wave mode shapes presented are normalised with respect to

the unit power flow unless otherwise explicitly stated. Therefore, the dimension of all

modal field quantities hereafter is of the form: m√
Wm−1

, Pa√
Wm−1

and for clarity the power

related part
√

Wm−1 is omitted hereafter.

2.2 Wave propagation in infinite plates

2.2.1 Dispersion curves and wave mode shapes

In this short section Lamb wave dispersion curves, associated wave mode shapes and

energy and power structures are presented for the case of an infinite elastic plate. The

particular features of the plate dispersion curves are widely known and well discussed

in many textbooks [30, 35, 93, 109] so only some general comments regarding the wave

solutions are presented.

The relationship between the frequency and the wavenumber of free wave modes is

usually presented on a dispersion curves plot. Elastic waves are usually dispersive,
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Figure 2.4: Phase and group velocity dispersion curves for a 2 mm aluminium
plate.

i. e. spatial frequency (wavenumber) is not linearly related to temporal frequency,

except particular configurations. Dispersion curves illustrate this relationship, hence

they provide the most informative basic information on wave characteristics. Dispersion

curves can be plotted using any wave-related quantity: wavenumber, phase velocity, or

group velocity. The term ‘dispersion curves’ is used interchangeably with wave spectrum

in this thesis. In most applications only propagating waves are of interest therefore

dispersion curve plots present only the real part of the wavenumber of positive-going

waves (or corresponding phase or group velocity).

Phase and group velocity dispersion curves for a 2 mm aluminium plate with both sur-

faces traction-free (called free-free hereafter) are shown in Fig. 2.4. For Lamb waves

there are two fundamental waves, i.e. waves propagating from zero frequency onwards.

The one starting at zero phase velocity is predominantly flexural in the low frequency

limit and commonly referred to as A0 (antisymmetric distribution of the in-plane dis-

placement) and the other one starting at phase velocity close to the bulk longitudinal

wavespeed of the material is predominantly compressional in the low frequency limit and

commonly known as S0 (symmetric distribution of the in-plane displacement). Wave

mode shapes for the two fundamental waves at frequencies marked in Fig. 2.4 are pre-

sented in Fig. 2.5 for reference.

At higher frequencies new waves cut-off (i.e. start to propagate). Cut-off frequencies

are related to either shear– or longitudinal–dominated resonances of the cross-section.

At the cut-off frequency the whole waveguide vibrates uniformly as the wavenumber k

is zero (hence the wavelength λ∼ is infinite). Higher-order waves in plates are usually

labelled using the letter specifying whether the associated mode shape is symmetric or

antisymmetric with respect to the neutral plane and with order number, e.g. S1, A1, S2,

etc.
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Figure 2.5: Wave mode shape, energy structure and power flow distribution for
the first (commonly A0) and second (commonly S0) wave modes of the 2 mm
aluminium free-free plate at around 490 kHz; (a) displacement: uy ( ), uz
( ); (b) stress: σyy ( ), σyz ( );(c) energy density: eu ( ), ek ( ),
etot ( ); ; (d) power flow density Pz.

Although the plotting and naming conventions presented above are practical and simple,

they might invoke some misunderstandings related to the physics of the phenomenon.

The GMM model’s output has the form of frequency-wavenumber pairs which satisfy the

characteristic equation. When plotted on a frequency-wavenumber plane, these points

seem to form a set of continuous curves. Therefore, the points along one ‘solution curve’

are often connected and treated as one wave, commonly referred to as ‘mode’. It is

noted that associating points to one solution curve without a more detailed information

about the energy velocity and complex modes and dense enough frequency resolution

may yield non-physical results and bias the interpretation.

The term ‘mode’ can be slightly misleading since when used in vibration analysis it

refers to vibration of the structure that has a particular shape, i.e. the deflected shape

is what identifies the mode. Along any wave dispersion curve, however, the associated

mode shape changes with frequency, e.g. the ‘longitudinal’ motion associated with the

S0 wave becomes ‘flexural’ at some frequency.

Given the intricacy of the topology of the dispersion curves and the fact that the wave

structure changes with frequency for each curve, the naming conventions for the waves

originating from the deflection shape at a particular frequency can be misleading even

for a single layer. Therefore, in this thesis the numerical convention is preferred (wave

1, wave 2, wave 3, . . . ), with the exception of the fundamental waves A0, S0, SH0 which
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are used interchangeably with the numerical ones to keep the link with the common

terminology.

It is also worth mentioning that as the usual way of presenting dispersion curves is

confined to positive and propagating (according to some arbitrary criterion) waves, the

curves can be ‘connected’ and interpreted incorrectly [110]. In fact, even for a lossless

waveguide the full wavenumber spectrum contains an infinite number of imaginary and

complex wavenumbers. If one plots wavenumber dispersion curves in the complex do-

main, the actual shape of the dispersion curves reveals itself more clearly giving more

insight into such phenomena as zero group velocity, energy velocity direction and others.

The dispersion curves in the complex wavenumber domain can be computed using any

of the methods presented in this thesis. For reference purposes, they can be found in

e.g. [35].

2.3 Elastic bilayers

Structures covered with an undesired accretion represent a particular configuration com-

monly referred to as an elastic bilayer. In the literature this term is usually used for

analysis of metallic components with a low-stiffness (e.g. polymer) coating [111], how-

ever in this work it can be extended to a class of waveguides that can be subdivided

into two components having significantly different stiffnesses. This approach reflects a

typical unwanted build-up scenario, where the host structure is much stiffer than the

build-up. For instance, an aluminium host structure’s Young’s modulus (70.3 GPa) is

almost ten times higher than that of a glaze ice build-up (8.2 GPa). The analysis of

the physical aspects of wave propagation in such structures brings an interesting insight

into the understanding of potential effect that waves may have on the integrity of the

structure.

A schematic view of the elastic bilayer and the terminology used hereafter is depicted

in Fig.2.6. The metallic substrate is denoted as the ‘host layer’ (HL), whereas the

unwanted build-up as the ‘accreted layer’ (AL). The two components of the waveguide

have significantly different material properties, i.e. HL is usually of much higher stiffness

than AL. The acoustic character of the components is represented by the characteristic

acoustic impedance, therefore a quantitative measure of this difference can be obtained

accreted layer (AL) → low stiffnes, low bulk cS

host layer (HL) → high stiffnes, high bulk cL

z

y

Figure 2.6: Schematic view of a bilayer together with labelling system shown.
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Figure 2.7: Lamb waves dispersion curves for a clamped-free plate. E = 1.5
GPa, ρ = 600 kg m−3, ν = 0.282, h = 0.5 mm.

from the ratio of the characteristic acoustic impedances, which is hereafter denoted as

the decoupling coefficient DC. Similarly to the elastic bilayer case [111] the characteristic

impedance of HL is much larger that the characteristic impedance of AL:

DC =
(ρcL)HL

(ρcL)AL
>> 1 (2.24)

For instance, in case of rime ice accretion on aluminium (material properties listed in

Section 2), the impedance ratio is 14.5. This observation has important implications

on how the partial waves are transmitted between the layers. The impedance ratio

can be thought of as a measure of how strongly the two layers, or components, are

coupled. Large values indicate weak coupling. In this case, from the viewpoint of

the AL the HL almost rigidly constrains its free surface. Hence, the partial waves

encountering the interface from AL are almost totally reflected. On the other hand,

HL having a much higher impedance is not affected by AL and behaves like a free-free

plate. Having said that, if one assumes an infinite impedance ratio, the bilayer modes

are fully decoupled into two asymptotic families - one associated with the free-free host

and the other with the clamped-free build-up [111]. This can also be shown using the

global matrix formulation of the bilayer by setting the stiffness and density of the HL

to be infinite as done in [112].

The clamped-free plate dispersion curves can be obtained using the partial wave method-

ology with the matrices appropriately amended to account for the boundary conditions.

Since only a single plate is considered the plate field matrix can be deducted from

Eq. (2.13). The free-surface is traction-free, therefore the traction related rows provide

the boundary condition for the top surface (top sub-matrix), whereas at the clamped

surface the displacements are zero, therefore the bottom sub-matrix is formed by the
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Figure 2.8: Evolution of the Lamb waves dispersion curves with the increase of
the decoupling coefficient DC; from the left: DC = 5, DC = 10, DC = 30.

displacement corresponding rows. Surrounding half-spaces are not modelled. The dis-

persion curve tracing and wave structure extraction procedures are not changed. The

typical appearance of the clamped-free plate dispersion curves is presented in Fig. 2.7.

As expected, there are no fundamental modes present.

The evolution of the bilayer dispersion curves with the increase of the impedance ratio is

illustrated in Fig. 2.8, where a 2 mm thick aluminium plate is covered by accretion of the

same thickness and Poisson ratio with other properties computed from the impedance

ratio (e. g. cL2 = cL1DC−0.5). Hence the increase of DC refers here to the diminishing

stiffness of AL. When DC grows, the number of waves in the frequency range increases

and, more importantly, mode curves become less smooth and exhibit frequent rapid

jumps. In the next section the bilayer dispersion curves is analysed in more detail

with particular attention to how the aforementioned asymptotic solutions emerge in the

bilayer wave spectrum.

2.4 Topology of the dispersion curves and wave curve veer-

ing

The dynamic behaviour of an elastic bilayer is inherently associated with the aforemen-

tioned asymptotic solutions (free-free HL and clamped-free AL). Note that the decou-

pling coefficient DC was defined in a way that high value of DC refers to a very low

coupling between the layers. Therefore, most of the elastic bilayers can be thought of

as weakly coupled continuous systems, which has many properties in common with a

weakly coupled two degree-of-freedom vibratory system [111]. In order to gain more

insight into the physics of waves in bilayers an illustrative example is analysed.

The dispersion curves for a 1 mm aluminium plate with 0.5 mm rime ice accretion

are shown in Fig. 2.9 (Lamb waves) and Fig. 2.10 (SH waves). The bilayer solution is
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Figure 2.9: Bilayer Lamb waves dispersion curves with asymptotic solutions
and wave mode shape evolution along one of the modal curves. Wave mode
shape graphs are labelled with respect to the points along the dispersion curve;
transverse displacement uy ( ) , in-plane displacement uz ( ).

marked with bold black lines and the asymptotic solutions - with thin grey lines. For

both classes of solutions the dispersion curves behave in a similar way.

The contribution of the asymptotic solutions is apparent. Before accretion appears

the host structure’s dynamics are described by the free-free HL asymptotes (solid grey

lines). When the accretion covers HL, a bilayer is formed and its dispersion curves (solid

black lines) deviate from the original HL trajectories. From the viewpoint of the ‘clean

structure’ the accreted material imposes the dispersion curves of the clamped-free AL

(dashed grey lines) on the wave spectrum of the free-free HL. This causes a significant

aberration of the original shape of the curves. At some regions the bilayer curves align

with the HL asymptote, whereas at the others with the AL asymptote. In fact, the

bilayer wave curves seem to be guided by the paths given by the asymptotic solutions,

which create a sort of a grid. When approaching the intersection of the two asymptotic

solutions, the bilayer curve exhibits a sudden change of path (see Fig. 2.9 at e.g. 0.5

MHz). This phenomenon is called dispersion curve veering here but is also known as

mode jumping, mode veering or mode repulsion [112, 113]. It originates from the weak

coupling between the layers. The components of a weakly coupled system behave as if
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Figure 2.10: Bilayer SH waves dispersion curves with asymptotic solutions and
wave mode shape evolution along one of the modal curves. Wave mode shape
graphs are labelled with respect to the points along the dispersion curve; per-
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they were uncoupled, unless the uncoupled solutions are close to crossing each other.

Since at a given frequency-wavenumber point only one wave is present (i.e. two waves

with different mode shapes cannot exist at the same point of a wave spectrum), the

coupled system dispersion curves veer, aligning with the approached asymptote. On a

dispersion curve plot it looks like a jump.

Following from that, each wave curve can be subdivided into regions in which the system

behaves almost as uncoupled and is dominated by either of the two components and the

regions where the coupling effect is very strong, i.e. the dispersion curves do not clearly

follow any of the asymptotes and the associated mode shape is a combination of the two

uncoupled mode shapes. The latter is associated with veering of the curves.

In fact, a similar phenomenon occurs in simple one-layer plates. The partial waves (fun-

damental wave types: L, SV) are initially uncoupled but the boundaries of the plate,

where reflection and mode conversion occur, introduce the coupling. Using boundary

conditions that do not involve partial wave conversion (such as mixed boundary condi-

tions) leads to the wave solution consisting of completely decoupled either longitudinal

or shear waves (see [35] for details). Therefore, for a traction-free plate one can observe
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that plate dispersion curves originate from vibration of the cross section associated with

only one partial wave and then veer when a node of the grid of asymptotes ([35]) is

encountered. The repulsion of the dispersion curves for plates has been analysed with

the aid of perturbation theory by Überall et al. [114], who also drew an analogy to

atomic physics.

The bilayer is the simplest multilayer configuration, hence the coupling effects are clearly

noticeable. The dispersion curve is veering from one asymptotic path towards the other

when it approaches subsequent ’repulsive points’ (the intersections between two different

asymptotic solutions). In the low frequency limit, the bilayer dispersion curves tend to

those of a single HL, as there are no fundamental modes in a clamped-free plate (see

Fig. 2.9). The displacement field is then predominantly in the host structure, and the

field distribution is defined by the mode shape of a free-free HL. Most of the higher-

order modes tend to the modes of the clamped-free AL in the low wavenumber limit

(near their cut-off frequencies), since the mode count increases when stiffness gets lower

and the stiffness of AL is relatively low. Each wave starts propagating close to one of

the asymptotes. While moving up with frequency along the asymptotic path, it meets

subsequent repulsive points and in their close neighbourhood more or less smoothly veers

towards a new path given by the asymptote approached.

The stronger the coupling (in this case the more the properties of the layers are similar),

the less evident dispersion curve veering is. For high stiffness accretions such as e.g. glaze

ice wave motion of the bilayer has a strongly coupled character along large sections of

the dispersion curves (see Fig. 2.8).

In order to illustrate how the mode shapes evolve with the dispersion curve veering,

four points along the 3rd bilayer dispersion curve were picked and their associated field

distributions were plotted in Fig. 2.9. Near the cut-off frequency the motion is dominated

by a clamped-free mode of the accreted layer (point 1). While approaching the first

repulsive point it veers towards the free-free HL 2nd asymptote. When aligned with this

line the bilayer adopts a characteristic, symmetric uz displacement pattern - typical of

the fundamental compressional wave (called S0) (point 2). The curve veers again around

900 kHz and aligns with the AL 2nd decoupled solution. The wave mode shape shows a

clear prevalence of the build-up mode (point 3). At point 4 the tracked curve is following

the fundamental flexural HL wave (called A0) showing the well-known antisymmetric uz

displacement pattern.

An analogous analysis can be performed for SH waves in the bilayer. The dispersion

curves and the wave mode shape evolution along the second bilayer curve are presented

in Fig. 2.10. Note that the HL has only one fundamental SH wave.
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Figure 2.12: Power flow density distribution at points along a bilayer dispersion
curve as chosen in Fig. 2.9.

2.5 Energy propagation

The field distributions related to the points along the HL asymptotes in Fig. 2.9 and

Fig. 2.10 show some significant displacement in the build-up which can be misleading.

However, this apparent ambiguity is related to the fact that the traction is continuous

across the interface of a multilayered plate (Section 2.1). Recalling that the AL is of

a relatively low stiffness one can conclude that along the HL asymptotes, the displace-

ment in the AL can be significant. The complete picture of the topology of the bilayer

dispersion curves can be seen when wave energy is taken into account.

The energy propagation in weakly coupled systems is closely related to the asymptotic

solutions. The distribution of strain energy and power flow density in the direction of

propagation for Lamb wave modes as chosen in Fig. 2.9 are presented in Fig. 2.11 and

Fig. 2.12, respectively. For modes close to the AL asymptotes, most of the wave energy

is trapped in the accreted layer and the strain energy density has its maximum at the

interface. This effect is not so apparent if power flow density is considered (Fig. 2.12).

It is interesting that a large section of the power flow density distribution in AL at point

3 in Fig. 2.12 is negative. It originates from the fact that the AL asymptote which is

followed by the bilayer wave curve at this point has a negative energy velocity. Therefore
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Figure 2.13: Fraction of the strain energy ENR enclosed in the accreted layer
imposed on the Lamb waves dispersion curves for a 1 mm aluminium plate with
0.5 mm rime ice accretion.
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Figure 2.14: Fraction of the total peak strain energy ENR enclosed in the
accreted layer imposed on the SH waves dispersion curves for a 1 mm aluminium
plate with 0.5 mm rime ice accretion.

at this point part of the total wave power is propagated in the positive direction along

the HL and the other part in the negative direction along the AL.

From a viewpoint of invoking delamination with waves when the energy is confined

mainly in the AL the cracks can be expected to be mainly cohesive, and because of the

loss of integrity of the layer, the energy might not propagate over a long distance. On

the other hand when close to the HL asymptotes the bilayer modes seem to be more

likely to induce adhesive breaks and the build-up shedding should not affect the energy

flow.

An interesting way of analysing the energy propagation in bilayers is to look at how
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much of the overall wave energy is contained in one of the layers. In order to do this the

strain energy ratio ENR is defined here as a fraction of the total strain energy which is

enclosed in the accreted layer. The strain energy contained in a layer is given by the

integral of eu across its thickness. The ENR is calculated as:

ENR =

∫
AL eε dy∫

AL+HL eε dy
(2.25)

where ‘AL’ and ‘AL+HL’ denote integration across the build-up and across the total

thickness, respectively. In order to illustrate which layer is the predominant energy

carrier for different modes, the value for ENR has been imposed on the dispersion curves

of the sample bilayer in Fig. 2.13 for Lamb waves and in Fig. 2.14 for SH waves.

In the ENR graphs the energy trapping is most evident. It can be easily spotted that the

sections corresponding to AL asymptotes are characterised by ENR close to 1, whereas

along the host free-free wave curves ENR is much lower than 0.5. Hence AL-dominated

modes are not able to propagate energy over a long distance and possibly induce internal

cracks in the build-up. While looking at the group velocity plots on the right hand side

of Fig. 2.13 and Fig. 2.14 it is also clear that ENR is very large when the group velocity

is low. The velocity of energy transport (which for lossless waveguides is the same a s

the group velocity) seems to be closely related to the strain energy distribution. Except

the cut-off frequencies (for which cg is always 0), the energy propagates slowly when it

is confined in the accreted layer.

The energy distribution has another important implication on wave propagation which

is introduced and explained in the next paragraphs.

2.6 Wave attenuation in structures covered with lossy ac-

cretions

Most of the accreting materials that are within the potential scope of applicability

of the wave-based cleaning concept are lossy. An exact quantification of damping in

unwanted build-ups is very complicated because of the nature of the accretion process

and is outside of the scope of this thesis. However, since wave attenuation seems to

be an important aspect of wave propagation in structures with accretions a qualitative

discussion is presented below which aims to on draw some practical conclusions.

Ice material properties (including viscosity) are highly dependent on particular condi-

tions (including atmospheric) and vary significantly among researchers. It has been
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observed that ice as formed in an icing wind tunnel is highly damped. Thus, the attenu-

ation of guided waves needs to be carefully considered in order to ensure that the excited

wave mode expected to invoke delamination will propagate over a sufficient distance and

be effective.

The GMM wave model introduced in Section 2.1 and implemented for this thesis is

capable of predicting the dispersion curves for lossless waveguides only. Incorporating

damping in the routine is feasible but undesirable since it involves the need for com-

plicated three-dimensional tracing of the roots of the determinant of the global matrix.

However, even with a lossless waveguide model the attenuation analysis is possible.

Following the work of Simonetti [112] a simple approximate approach has been em-

ployed here enabling the calculation of guided wave attenuation based on so-called en-

ergy factors of an equivalent elastic bilayer (with no damping). This means that wave

attenuation can be found using the implemented GMM model from the strain energy

distributions for an undamped structure. The methodology is briefly recalled below.

For viscoelastic materials the Lamé constants λv, µv are complex and can be derived

from the relaxation curves. The imaginary parts of λv, µv are related to the loss modulus

of the material.

The guided wave attenuation ζ (equivalent to the imaginary part of the propagating

wavenumber k) is related to the dissipated power in a unit volume averaged over one

cycle Pd as:

ζ =
dPd/dz

2 〈P 〉 (2.26)

where 〈P 〉 is the integral of the component of the Poynting vector in the direction of

propagation across the thickness, which denotes total power flow along the waveguide

(it is recalled that all the wave mode field and energy quantities are normalised with

respect to the unit power flow in this thesis, hence 〈P 〉 = 1).

The average dissipated power per unit volume at a point pd can be derived from the

peak strain energy per unit volume es for a viscoelastic medium [112]. For Lamb waves,

one writes:

es =
1

2
(Re{λv}+ 2Re{µv})ε0ε∗0 + 2Re{µv}(εyzε∗yz − εzzε∗yy) = δ + γ

pd =
1

2
ω(Im{λv}+ 2Im{µv})ε0ε∗0 + 2ωIm{µv}(εyzε∗yz − εzzε∗yy) =

ω

(
Im{λv + 2µv}
Re{λv + 2µv}

δ +
Im{µv}
Re{µv}

γ

)
(2.27)
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For SH waves the above quantities are calculated from:

es = 2Re{µv}(εxzε∗xz + εxyε
∗
xy) = γSH

pd = 2ωIm{µv}(εxzε∗xz + εxyε
∗
xy)

(2.28)

In the above equations subscript v indicates that the quantity is related to the viscoelastic

layer, and δ, γ and γSH denote contributions to the strain energy originating from

longitudinal, shear vertical and shear horizontal partial waves, respectively.

Following the plane wave assumption the field quantities are constant along the x direc-

tion, hence the total dissipated power in a volume can be written as:

Pd =

∫

L

∫

dv

pd dy dz (2.29)

hence
dPd
dz

=

∫

dv

pd dy (2.30)

Combining Eq. (2.26), Eq. (2.27), Eq. (2.28) and Eq. (2.30) one gets the following

expressions for the guided wave attenuation:

ζLamb =
ω

2 〈P 〉


 Im{λv + 2µv}

Re{λv + 2µv}

∫

dv

δ dy +
Im{µv}
Re{µv}

∫

dv

γ dy




ζSH =
ω

2 〈P 〉
Im{µv}
Re{µv}

∫

dv

γSH dy

(2.31)

Eq. (2.31) shows how guided wave attenuation can be expressed as a linear combina-

tion of the longitudinal and shear strain energies contained in the viscoelastic layer.

Simonetti showed that in the case of low attenuation one can employ a Maclaurin ex-

pansion up to the first order term to enable calculation of the wave attenuation for

the lossy bilayer from the strain energy in the equivalent elastic bilayer (e.g. such that

Im{λv} = Im{µv} = 0) [112]:

ζLamb '
αLf

∫
dv
δ dy + αSf

∫
dv
γ dy

〈P 〉

∣∣∣∣
Im{λv+2µv}=Im{µv}=0

ζSH '
αSf

∫
dv
γSH dy

〈P 〉

∣∣∣∣
Im{µv}=0

(2.32)

where αL,S are the bulk wave attenuations in nepers per meter corresponding to the

longitudinal and shear waves and the normalisation of the modal energy with respect to

unit power flow is assumed. In [112]
∫
dv
δ dy,

∫
dv
γ dy and

∫
dv
γSH dy are referred to as

the energy factors Q∆, QΓ and QE , respectively.

– 40 –



2.6 Wave attenuation in structures covered with lossy accretions

0 1 2 3
0

5

10

15

20

f , MHz

c p
,

k
m

s−
1

10−3 10−2 10−1 100 101 102 103 104

ζ, dB m−1

0 1 2 3

0

2

4

6

f , MHz

c g
,

k
m

s−
1

Figure 2.15: Guided wave attenuation imposed on the Lamb waves dispersion
curves (phase velocity: on the left; group velocity: on the right) for a 1 mm
aluminium plate with 0.5 mm rime ice accretion with bulk attenuation in rime
ice assumed to be αL = αS = 0.01 Np m−1.

Eq. (2.32) provides a straightforward way to obtain the wave attenuation directly from

the elastic model assuming that the damping is low. It also shows how the wave attenu-

ation is influenced by the longitudinal and shear effects. The analysis of the dispersion

of the energy factors gives a clear indication of the wave attenuation in the viscoelastic

bilayer given the bulk attenuations αL,S .

As an indicative example a case of a 0.5 mm rime ice accretion on a 1 mm aluminium

plate is considered with both longitudinal and shear bulk attenuations of ice set to

0.01 Np m−1. This is an arbitrarily chosen value, corresponding to the low attenuation

regime but is expected to provide an informative outcome on how waves are attenuated

in a lightly damped bilayer. The results for Lamb and SH waves are presented in

Fig. 2.15 and Fig. 2.16, respectively. Waves in a lossy bilayer are considerably more

attenuated when close to AL asymptotes, while the ‘green’ (low attenuation) sections

align with the free-free HL curves. The energy is dissipated within the accreted layer

and the loss is considerably greater whenever the bilayer waves are dominated by the

AL influence. This observation is enforced with the fact that expressions Eq. (2.31),

Eq. (2.32) indicate a direct link between the attenuation of guided waves and the energy

distribution described via the ENR parameter.

Thus, energy distribution becomes an important criterion while looking at the possi-

bility of wave-invoked delamination. From this viewpoint the optimal wave candidate

propagates most of the energy along the host structure, facilitating a longer range effect

and preventing cohesive breaks.
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Figure 2.16: Guided wave attenuation imposed on the SH waves dispersion
curves (phase velocity: on the left; group velocity: on the right) for a 1 mm
aluminium plate with 0.5 mm rime ice accretion with bulk attenuation in rime
ice assumed to be αL = αS = 0.01 Np m−1.

2.7 Interface shear stress

Finally, the main criterion for discussing the possibility of wave-induced delamination is

the stress generated at the interface and the question of whether it is capable of breaking

the bond. Firstly, it is important to state clearly which stress components are of interest.

For most practical cases (including ice accretion) the bond created by the build-up is

weaker in shear than in tension, hence the aim is to overcome the shear adhesion strength

of the added layer. Two stress fields may be induced by plane wave propagation, i.e.

shear stress σxz (exclusively for SH waves) and transverse shear stresses σyz, σxy which

are generated by Lamb and SH waves, respectively [2].

z

y x
host structure

build-up σyz, σxy σxz

transverse shear
stress - debonding

shear stress -
cohesive cracks

Figure 2.17: Interface shear stress components in a plate with an accreted layer.

As it can be seen in Fig. 2.17, σxz causes shearing of the vertical cross-sections of

the plate and thus, is expected to contribute to cohesive breaks and cracks within the
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Figure 2.18: Interface shear stress magnitude imposed on the Lamb waves dis-
persion curves (phase velocity: on the left; group velocity: on the right) for a 1
mm aluminium plate with 0.5 mm rime ice.
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Figure 2.19: Interface shear stress magnitude imposed on the SH waves disper-
sion curves (phase velocity: on the left; group velocity: on the right) for a 1
mm aluminium plate with 0.5 mm rime ice accretion.

accreted layer . The transverse shear stresses σyz, σxy at the interface may be good

candidates for detaching the layer, as shearing occurs in the horizontal plane in these

cases. Therefore, the interest is focused on these components.

The through-thickness distribution of stress associated with a propagating wave can

be obtained from the displacement wave mode shape after appropriate transformation

as explained in Section 2.1. The stress obtained with the global matrix method is

continuous and represent accurate values. Modal stress as presented here is normalised

with respect to the unit power flow, i. e. as if each mode propagated 1 W in the strip

of unit width in the x direction (see Eq. (2.23)).

– 43 –



Free wave propagation in structures with accretion

0 0.5 1 1.5 2
0

5

10

15

20

f , MHz

c p
,

k
m

s−
1

10−1.5 10−1 10−0.5 100 100.5 101 101.5 102 102.5 103

|σyz|, kPa

0 0.5 1 1.5 2
0

5

10

15

20

f , MHz

c p
,

k
m

s−
1

Figure 2.20: Interface shear stress magnitude imposed on the Lamb (on the
left) and SH (on the right) waves dispersion curves (phase velocity) for a 2 mm
aluminium plate with 2 mm glaze ice accretion.

In order to analyse the stress generation capability of different modes, the modal interface

shear stress values were imposed on the dispersion curves for a sample structure in

Fig. 2.18 and Fig. 2.19. It is apparent that large interface stress occurs in regions

where mode curves follow the AL asymptote. The decoupled wave structure of the

clamped-free accreted layer is characterised by very large strain near the rigid surface.

When coupling is taken into account, the predominant contribution of the AL decoupled

mode shape is responsible for generating high stress at the interface. HL dominated

sections of the bilayer spectrum are usually associated with much lower stress, since

they originate from the decoupled free-free plate waves which obey the traction-free

boundary condition. Therefore, in Fig. 2.18 the vertical sections of the mode curves

(which usually refer to the AL-dominated cut-off frequencies) are usually dark which

means high stress at the interface, while sections that approach the HL asymptote

are light-coloured. The highest modal interface shear stress occurs at so-called zero

group velocity points [115] corresponding to the through-thickness localised resonances.

They are characterised by very large local deformation of the cross-section that are not

accompanied by energy transport (energy velocity is zero) so are expected to occur only

at the excitation location. Zero group velocity points occur only for Lamb waves.

There is no significant difference in stress magnitude generated by Lamb and SH waves.

The maxima of group velocity correspond to the smallest interface shear stress and,

conversely, the minima of the group velocity dispersion curves are associated with very

large interface stress in Fig. 2.18 and Fig. 2.19. One can notice that along the HL

asymptotes there are regions where the interface shear stress drops significantly and

those should be avoided.
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In Fig. 2.20 the interface shear stress is plotted for a 2 mm aluminium plate with 2 mm

glaze ice accretion, i.e. for a structure with stronger coupling between the layers. Veering

of the dispersion curves is now less rapid and hence large sections of the dispersion curves

represent waves whose mode shapes show a coupled character with larger interface shear

stress.

2.8 Invoking delamination using guided waves

2.8.1 Optimal wave mode selection criteria

The discussion presented in the previous section indicates that for a particular mode

there are two main factors that influence its debonding potential: (i) high modal interface

shear stress; (ii) desirable energy distribution across the thickness that enables the wave

to propagate over long distances and makes it insensitive to partial removal of the

accreted layer. However, these two criteria are contradictory and so a trade-off exists

between them. Waves that have a desirable energy distribution generate relatively low

interface shear stresses and vice versa.

Based on the above analysis it is concluded that from a modal point of view there is

no substantial difference between the plausibility of invoking delamination by waves in

different frequency regimes. Distinguishable peaks of interface shear stress are linked

with zero group velocity points and/or cut-off frequencies but in the light of the criteria

outlined in the previous paragraph they might not be effectively excited. Apart from

those, the interface shear stress along the HL asymptotes seems to be of a similar order

of magnitude at low, medium or high frequencies. Therefore, the following analysis is

confined to frequencies up to 200 kHz as it is expected to give representative results

qualitatively valid at higher frequencies.

2.8.2 Influence of the properties of the accreted layer on the generated

interface stress

In the subsequent paragraphs the influence of the thickness and stiffness of the accreted

layer on generated interface shear stress is analysed. The influence of thickness represents

the effect of ‘growing’ accretion, whereas the comparison with respect to the stiffness

brings a qualitative insight to the limits of the applicability of the method. Note that

all comparisons below are based on the power-normalisation of the wave mode shapes.

Regardless of the thickness or stiffness of the accretion the values plotted below represent

stress as if 1 W m−1 of mechanical power is carried by the mode considered. This
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enables a qualitative comparison between different waves and structural configurations.

However, when scaling the results it should be borne in mind that the unit of stress

including the normalisation is Pa/
√

W
m so the given stress value must be multiplied by

the square root of mechanical power injected to the waveguide.

2.8.2.1 Influence of thickness

The evolution of the dispersion curves with the increase of the accreted layer thickness

for a sample structure is presented in Fig. 2.21. One can recall that a common way

to represent the dispersion curves of elastic homogeneous plates is to plot them as a

function of the frequency-thickness product [30]. For a bilayer with growing AL the

frequency-thickness product representation is valid for the build-up only, therefore the

effect of the imprint of the AL decoupled dispersion curves is shifted to the left with the

thickness of the AL increasing. AL-dominated modes cut off at lower frequencies and

the HL wave curves are altered sooner in frequency.

More indicative conclusions can be drawn from examining the transverse shear stress

field for different build-up thicknesses. In Fig. 2.22 and Fig. 2.23 the through-thickness

transverse shear stress distributions for different thicknesses of build-up are plotted for

Lamb (first two) and SH waves, respectively, at 100 kHz. Among the three fundamental

waves the 1st Lamb mode (flexural) generates the highest stress, however the stress at

the interface is not the maximum of the whole distribution. The interface shear stress for

the 1st Lamb wave grows with the thickness of the build-up up to some critical thickness

(here: 4 mm when it starts decreasing again. The interface stress value is lower than

the maximum stress achieved in the neutral plane of the host layer.
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Figure 2.21: Lamb (left) and SH (right) dispersion curves changing with ac-
cretion thickness growth for a 2 mm aluminium plate with growing glaze ice
accretion: 1 mm ( ), 2 mm ( ), 3 mm ( ), 4 mm ( ).
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Figure 2.22: Through-thickness distribution of the transverse shear stress at
100 kHz resulting from the propagation of the first two Lamb wave modes for a
2 mm aluminium plate with growing glaze ice accretion: 0.5 mm ( ), 1 mm
( ), 1.5 mm ( ), 2 mm ( ), 2.5 mm ( ), 3 mm ( ), 3.5 mm ( ),
4 mm ( ), 4.5 mm ( ), 5 mm ( ).
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Figure 2.23: Through-thickness distribution of the transverse shear stress at
100 kHz resulting from the propagation of the first SH wave mode for a 2 mm
aluminium plate with growing glaze ice accretion: 0.5 mm ( ), 1 mm ( ),
1.5 mm ( ), 2 mm ( ), 2.5 mm ( ), 3 mm ( ), 3.5 mm ( ), 4 mm
( ), 4.5 mm ( ), 5 mm ( ).

The shape of the distribution associated with the 2nd Lamb wave (compressional)and

the SH wave are very similar. Corresponding stress components at the interface are

increasing with the accretion growth (nonlinearly). The values for the SH wave are

around ≈ 25% higher than the values for S0 wave. For both modes the maximum of the

through-thickness stress distribution is at the interface.

Based on the above results, one can conclude that wave-invoked delamination is facili-

tated if the accretion is moderately thick (up to twice the HL thickness), however the

flexural wave effectiveness drops over some critical thickness.
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Figure 2.24: Through-thickness distribution of the transverse shear stress at 20
and 100 kHz resulting from the propagation of the first two Lamb wave modes
for a 2 mm aluminium plate a 2 mm accretion (ρAL = 600 kg m−3, νAL = 0.351)
and stiffness: 40 GPa ( ), 20 GPa ( ), 10 GPa ( ), 8 GPa ( ), 6 GPa
( ), 4 GPa ( ), 3 GPa ( ), 2 GPa ( ), 1 GPa ( ), 0.1 GPa ( ).

2.8.2.2 Influence of stiffness

The fundamental question related to the effectiveness of propagating waves in inducing

delamination is how the stiffness of the build-up affects the generated stress. Analogously

to the above paragraphs the through-thickness transverse shear stress distributions for

accretions of different Young’s moduli are compared here. The comparison is done at

two different frequencies: 20 kHz, where the effect of higher-order AL-originating modes

is not expected to play any role and 100 kHz where the higher-order AL-originating

modes influence can be observed for low stiffnesses.

The interface shear stress generated by the first two Lamb waves at 20 kHz and 100

kHz is presented in Fig. 2.24. The distribution associated with the SH wave is shown in

Fig. 2.25 – at 20 kHz on the left and at 100 kHz on the right.
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Figure 2.25: Through-thickness distribution of the transverse shear stress at 20
kHz (left) and 100 kHz (right) resulting from the propagation of the first SH
wave mode for a 2 mm aluminium plate a 2 mm accretion (ρAL = 600 kg m−3,
νAL = 0.351) and stiffness: 40 GPa ( ), 20 GPa ( ), 10 GPa ( ), 8 GPa
( ), 6 GPa ( ), 4 GPa ( ), 3 GPa ( ), 2 GPa ( ), 1 GPa ( ), 0.1
GPa ( ).

The flexural wave (1st Lamb mode) is discussed first. If the characteristic impedances

of both layers are comparable the bilayer behaves very similarly to a single plate with

a symmetric σyz distribution that has a peak in the mid-plane (see 40 GPa curve in

Fig. 2.24). Along with the stiffness decreasing, the distribution tends to represent de-

coupled wave propagation, i.e. σyz is symmetrical only with respect to the mid-plane of

the HL and goes to zero at the boundaries of HL. For instance at 20 kHz the interface

shear stress for a 0.1 GPa build-up is almost zero (Fig. 2.24). This implies that if one

follows exactly the HL asymptotes for a flexural wave, accretions of a very low stiffness

behave as almost uncoupled and cannot be removed.

At 100 kHz the values of interface shear stress are slightly higher (by ca. 20 %), pre-

serving the same distribution with the exception of the lowest E curve (0.1 GPa). In

this configuration the first AL-originating asymptote starts to affect the bilayer motion.

The interface shear stress benefits from the coupling and has a non zero value.

Both in-plane waves (S0 and SH0) have almost identical distributions, however as ob-

served in the previous subsection the SH wave generated approximately 25% higher

transverse shear stress at the interface. Contrary to the flexural wave, the in-plane bi-

layer modes when following the HL asymptote do not behave as decoupled and the stress

distribution is not similar to the one of a clean single-layer plate. For the configurations

considered in this section the interface transverse shear stress crosses zero for E between

10 and 20 GPa. When E is smaller than 10 GPa the interface shear stress grows with

the stiffness of the build-up decreasing. One should however notice that S0 and SH0
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provide interface transverse shear stress of more than one order of magnitude lower than

the flexural mode at 20 kHz.

The interface shear stress grows significantly (around an order of magnitude) for S0 and

SH0 waves when the frequency is increased from 20 kHz to 100 kHz as can be seen in

Fig. 2.24 and Fig. 2.25. This is related to the fact that with growing frequency more

AL-dominated modes cut-off. Whenever the bilayer curve is close to the AL asymptote,

the interface shear stress increases rapidly.

The effectiveness of the in-plane wave modes is enhanced if they are excited in the

region where the asymptotic solutions are strongly coupled. They seem to be suitable

for removing low stiffness accretions (E < 2 GPa), especially if the above conditions are

met. The flexural wave appears to be more effective for high-stiffness build-ups.

2.8.2.3 Parametric study

In order to examine potential of the guided waves for invoking delamination in the light

of the mode selection criteria outlined above, a parametric study was performed. The

numerical routine developed was used to compute wave characteristics for a range of

different build-ups. The host structure properties were kept constant (2 mm aluminium

layer), whereas the stiffness of the build-up was varied from EAL = 0.1 GPa to EAL = 10

GPa, with fixed ρAL = 900 kg/m3, νAL = 0.351 and hAL = 2 mm.

It has already been emphasised that the first two criteria are in conflict, hence a choice

is connected with a trade-off between them. Therefore, the following procedure was
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Figure 2.26: Illustration of how the frequency points are picked according to
strain energy ratio criterion.
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chosen in order to take into account all factors. Firstly the dispersion curves and power-

normalised mode shapes are computed. Then they are interpolated over a common

frequency vector (the GMM routine implemented provides results with fixed wavenumber

increments). Finally, in order to account for energy propagation issues, only the waves

on the ω–k plane for which no more than 60% of the total strain energy propagates

along the build-up (ENR < 0.6) were chosen for the stress comparison. Although it is

an arbitrarily chosen fraction, it enables one to exclude modes which do not seem to be

useful as a consequence of their contribution to cohesive cracking and possibly high wave

attenuation (if lossy build-up is considered). A sample result of this ‘picking’ procedure

is shown in Fig.2.26. The mode labelling convention is such that a point on the bilayer

mode curve is labelled as belonging to ‘1st Lamb’ if it is aligned with the free-free HL

1st Lamb wave. The whole frequency range considered (0–200 kHz) was divided into

four sub-ranges: 0–50, 50–100, 100–150 and 150–200 kHz. Higher frequencies are not

discussed here. In each frequency range the maximum interface shear stress for each

wave is shown on Fig. 2.27.

As it can be seen from Fig. 2.27 the stress generation capability of the 1st Lamb wave

is the best for a higher stiffness build-up (here EAL = 8 and 10 GPa). For the three

highest values of EAL shown here the 1st Lamb wave maximum stress values for a given

frequency grow with the accretion stiffness, however for a given accretion they are very

similar for all frequency ranges (≈ 12 kPa for E = 4 GPa; ≈ 18 kPa for E = 6 GPa;

≈ 21.5 kPa for E = 8 GPa and ≈ 25 kPa for E = 10 GPa. In fact, stiff build-ups provide

a strong coupling between the layers, hence the stress distribution associated with the

bilayer flexural wave tends to the one related to the flexural wave in an homogeneous

layer which has a peak in the mid-plane. The closer the build-up stiffness to the host

stiffness is, the higher the peak. Over the frequency range considered the height of the

peaks does not change significantly.

For low stiffness build-ups the stress generation capability of the 1st Lamb wave is lower.

The first reason is that the HL does not see the constraint on one of its surfaces if

the coupling is weak. Thus, the bilayer dynamics follow that of the free host, i.e. the

shear stress at the boundaries of the HL goes to zero. This effect is disturbed by the

AL-dominated modes which promote high stress (e.g. for EAL = 2 GPa in the fourth

frequency range). At high frequencies the effect of the ENR criterion is more dominant

– many waves are not taken into account in the analysis which results in very low stress

values for low stiffnesses.

The in-plane waves (2nd Lamb and 1st SH) show much better performance for low values

of EAL, where they are largely affected by the AL asymptotes. Similarly to the flexural

wave case, one can look at the stress results in the light of the topology of the bilayer
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Figure 2.27: Maximum transverse interface shear stress that can be obtained
in the stated frequency ranges. The stress is normalised with respect to unit
power flow.

wave spectrum. In a single elastic layer the in-plane waves generate very low transverse

shear stress until they are in the vicinity of another mode. Therefore a strongly coupled

bilayer (high stiffness) follows this pattern providing very small interface stress which

grow slowly with frequency. It is interesting to notice that the coupling between the wave

in the layers is stronger for in-plane waves than for the flexural wave. For example, it

can be seen in Fig. 2.26 that starting from zero frequency the 2nd Lamb wave mode does

not follow the HL asymptote as precisely as the 1st Lamb wave mode does. Therefore

even for a high stiffness build-up the bilayer stress distribution does not tend to the

one related to the free-free plate but the presence of the coupling is clearly visible. For

these reasons, the in-plane waves in a weakly coupled bilayer can accommodate very
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2.8 Invoking delamination using guided waves

large interface shear stress only when close to the AL asymptote. The crucial role here

is played by the critical energy ratio (here ENR = 0.6) that restricts the AL-dominated

modes in the comparison. In most configurations, the SH wave provides ca. 25% higher

stress than the in-plane Lamb wave.

2.8.3 Implications for practical application

The results obtained using a plane strain wave model employed in this chapter cannot

be directly compared to any benchmark figures, however they still provide a basis upon

which some conclusions and recommendations for application of the method can be

drawn. Firstly, it should be stated that to the author’s best knowledge only the ice

adhesion studies can be found in the literature. No results are available for any other

accretions. Furthermore, the results for the strength of the ice to aluminium bond

found in the literature are substantially different from each other and vary from 0.1 to

1.6 MPa depending on the type of ice, growing conditions and test procedure. Therefore,

the scope for the reference to practical cases is rather limited.

Fig. 2.27 indicates that high stiffness accretions such as glaze ice can be the most easily

removed with the flexural wave (1st Lamb wave). Assuming ice bond strength to be

σb = 1.5 MPa the excitation should be able to inject between 5.15 and 4.58 kW m−1

of mechanical power into the waveguide in order to instantaneously remove ice over the

whole frequency range considered (this refers to the range 103–91 W applied over a 20

mm wide line). The in-plane waves (2nd Lamb and 1st SH) would require 11.97 kW m−1

and 6.48 kW m−1, respectively if excited in the highest frequency range considered (this

refers to 239 W and 130 W, respectively applied to a 20 mm width).

For very low stiffness build-ups (EAL = 0.1 GPa) the achievable interface stress is 0.327

MPa for the flexural wave, 0.283 MPa for the compressional wave and 0.363 MPa for

the 1st SH wave, if 50 W is applied over a 20 mm wide line, which seems to be still

promising for dealing with accretions that create weaker bonds. In order to formulate

a more precise indication for a particular application (apart from icing), the adhesion

strength values for other accretion-like bonds would have to be known.

The crucially important problem is whether a specified amount of power can be injected

to a structure using available actuators. Although this needs to be studied in future, it

should be emphasised that if a finite structure is considered subsequent reflections from

the boundaries at the resonance would increase the stress level, and thus less power

would be needed to induce debonding. Furthermore, the performance of the method

can be improved by applying appropriate structural modifications of which some have

been studied in detail in [25].
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2.9 Conclusions

The feasibility of the wave-based method for invoking delamination was analysed from a

theoretical perspective in this chapter with the aid of the GMM wave model. Fundamen-

tal wave characteristics of structures covered with unwanted accretions were specified

and linked to the behaviour of weakly coupled systems. The topology of the bilayer dis-

persion curves was explained with the aid of the uncoupled asymptotic solutions. The

importance of the energy distribution was highlighted and related to the attenuation of

guided waves for lossy build-ups. The insight into the physical phenomena associated

with wave propagation in bilayers enabled identifying conditions under which the inter-

face stress associated with a propagating wave is high and likely to invoke delamination.

Based on the above, the influence of the thickness and the stiffness of the accreted layer

was addressed in the parametric study. Achievable interface stress for a wide range of

build-up Young’s moduli gave on overview of the potential scope of application of the

approach. The parametric study was concluded with a set of implications for application

outlining theoretical power requirements for ultrasonic de-icing.

The free wave analysis which the current chapter originates from is informative and helps

to understand the mechanisms behind wave-induced stress, but is difficult to be directly

linked to a real world case. The modelling approach and physical analysis is extended

in the next chapter by incorporating the possibility of calculating forced response and

introducing a simple technique to represent a typical piezoelectric actuator.
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Chapter 3

Wave excitation in structures

with an undesired accretion -

analytical approach

Free wave propagation analysis presented in Chapter 2 brings useful and interesting in-

sight into the physics of structural waves in waveguides with accretions, but the resulting

indications regarding the feasibility of invoking delamination or power requirements can

only be treated as qualitative. Aiming at enhancing them with a reference to practical

cases, mechanical excitation is introduced in this chapter. The approach is based on the

analytical excitability functions originating from the elastodynamic complex reciprocity

principle [109], which enables the partitioning of the injected power among propagating

modes to be determined. The following sections facilitate understanding of how differ-

ent modes contribute to the overall stress distribution in the light of the efficiency with

which they are excited.

In the second part of the chapter an approximate piezoelectric excitation model (pin-

force) is briefly outlined and employed for the analysis of a structure with accretion

yielding approximate electrical power requirements. The limitations of the approximate

approach and conformity with the assumptions in place are critically assessed. Both

parts describing different excitation sources, namely mechanical forcing and piezoelectric

actuation under pin-force assumption, are supported with a parametric study analogous

to that in Section 2.8.2 in which the maximum achievable interface shear stress for

accretions of various stiffnesses is computed with reference to input power.
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Excitation of structures with an undesired accretion

3.1 Excitation of structural waves by mechanical forces

and tractions

3.1.1 Analytical excitability for infinite plate-like structures

The far-field motion of a plate excited by a harmonic force is a sum of the contributions

of all available modes at a given frequency. It is a weighted sum since some modes

are strongly and others weakly excited under particular conditions. Wilcox [116] has

proposed the term ‘excitability’ to describe the weighting coefficients of the superposi-

tion. From a physical viewpoint, excitability is defined as the surface displacement of a

mode induced by a unit force per unit length (in the case of plane strain) or unit point

force (3D case)[116]. The partial waves technique and global matrix method for model

assembly are developed under the plane strain assumption [50], therefore it is assumed

that the force is uniformly distributed along an infinite line parallel to the wavefront.

The forced response model implemented here is based on [116–118]. This approach is

commonly known as the normal mode expansion (NME) method and is derived from the

acoustic complex reciprocity relation known from [109]. It should be stated here that

it is only valid for propagating modes in lossless waveguides. Generalised excitability

which is also applicable to damped waveguides can be straightforwardly derived from

the real reciprocity relation as recently shown in [119].
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Figure 3.1: 2D excitability concept: a) Lamb waves, out-of-plane forcing; b)
Lamb waves, in-plane forcing; c) SH waves, in-plane forcing.

Fig. 3.1 schematically presents the 2D excitability concept for Lamb and SH waves

(as they are decoupled under the plane strain assumption) together with the labelling

and coordinate system. The force may act in one of the three directions: (i) y: out-of-

plane, exciting Lamb waves only; (ii) z: in-plane, parallel to the direction of propagation,

exciting Lamb waves only; (iii) x: in-plane, perpendicular to the direction of propagation,

exciting SH waves exclusively.
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3.1 Excitation of structural waves by mechanical forces and tractions

The derivation of guided wave excitability starts from recalling the acoustic complex

reciprocity principle, which relates two wave fields, namely v(m), σ(m) and v(n), σ(n)

driven by sources Fn and F(n), respectively, to each other. The subscripts m, n distin-

guishing the solutions correspond to two propagating waves. The reciprocity relation

is derived by adding the two aforementioned wave solutions to each other (see [109] for

details), which yields:

∇ ·
(
−v(n)∗ · σ(m) − v(m) · σ(n)∗

)
= v(n)∗ · F(m) + v(m)∗ · F(n)∗ (3.1)

where ∇ · { } is the divergence operator.

It is recalled that the wave field does not change along the x direction as a consequence

of the plane wave assumption and that:

v(m)(y, z) = vm(y) exp [−k(m)z] (3.2)

If the source terms on the RHS are set to zero, after appropriate transformations and

integration across the waveguide one gets:


(
k(m) − k(n)∗

)∫

Ω

(
−v(n)∗ · σ(m) − v(m) · σ(n)∗

)
· ẑ dy =

(
−v(n)∗ · σ(m) − v(m) · σ(n)∗

) ∣∣∣∣
y=d

y=0

(3.3)

where ẑ is the unit vector in the z direction and Ω is the cross-section domain.

The boundaries of the waveguide are traction-free, therefore the RHS of Eq. (3.3) is

zero, which yields the wave mode orthogonality relation:


(
k(m) − k(n)∗

)∫

Ω

(
−v(n)∗ · σ(m) − v(m) · σ(n)∗

)
· ẑ dy = 0 (3.4)

where the integral on the LHS is commonly written as:

P (mn) =
1

4

∫

Ω

(
−v(n)∗ · σ(m) − v(m) · σ(n)∗

)
· ẑ dy (3.5)

so that the wave mode orthogonality relation becomes:


(
k(m) − k(n)∗

)
4P (mn) = 0 (3.6)
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Eq. (3.5) is very similar in appearance to the definition of power flow (Poynting vector)

from Eq. (2.22). In fact if m = n, Eq. (3.5) becomes:

P (mm) =
1

2

∫

Ω

−v(m)∗ · σ(m) · ẑ dy (3.7)

and the real part of P (mm) gives the average power flow associated with the wave mode

m.

Since only propagating modes are considered here, km, kn are real and Eq. (3.6) states

that if km 6= kn, then no power flows, i.e. P (mn) = 0. Auld [109] presents an in depth

discussion on the meaning of wave orthogonality relation in different regimes, i. e. when

wavenumbers are imaginary or complex. A similar procedure can be applied to Eq. (3.1)

yielding the excitability of the guided wave by a surface load. The reciprocity relation is

written for two wave fields – the excited wave field v, σ and the modal wave field v(n),

σ(n). The excited wave field is assumed to be a weighted sum of modal contributions,

with weights corresponding to particular waves amplitudes:

v =
∑

m

a(m)(z)v(m)(y)

u =
∑

m

a(m)(z)u(m)(y)

σ =
∑

m

a(m)(z)σ(m)(y)

etc.

(3.8)

The traction force source is assumed to act on the upper boundary of the waveguide

y = d and the body forces are neglected, so that Eq. (3.1) becomes:

∂

∂z

(
−v(n)∗ · σ − v · σ(n)∗

)
· ẑ =

∂

∂y

(
v(n)∗ · σ + v · σ(n)∗

)
· ŷ (3.9)

where ŷ is the unit vector in the y direction. After integration across the waveguide,

and recalling Eq. (3.4), Eq. (3.5) one gets:

∂

∂z

∑

m

4a(m)P (mn) exp [k(n)∗z] =
(
v(n)∗ · σ + v · σ(n)∗

)
exp [k(n)∗z] · ŷ

∣∣∣∣
y=h

(3.10)

Note that for a traction-free plate σ(n) · ŷ = 0. The LHS is non-zero only if m = n, so:

4P (nn)

(
∂

∂z
+ k(n)

)
a(n)(z) =

(
v(n)∗ · σ

)
· ŷ
∣∣∣∣
y=h

(3.11)
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Figure 3.2: A
(n)
z and A

(n)
y excitability imposed on the Lamb wave dispersion

curves for a 2 mm aluminium plate covered with a 2 mm glaze ice accretion.
Graphs are divided in regions which at frequencies higher than the first cut-off
frequency correspond to the low or high group velocity.

Solving the above equation for a(n)(z) brings to the expression for modal excitability:

a
(n)
i (z) =

v
(n)∗
i (h) exp [−k(n)z]

4P (nn)

L/2∫

−L/2

exp [knγ]σi(γ) dγ (3.12)

where σi is the external traction applied over length L of the upper surface of the plate,

and the subscript i refers to the direction.

If the surface excitation is a line traction resulting from line force Fi understood as a

force per unit width acting in the direction i the equation reduces to:

a
(n)
i (z) =

v
(n)∗
i (h) exp [−k(n)z]

4P (nn)
Fi (3.13)

Eq. (3.13) provides an expression for the excited wave amplitude of mode n if a surface

force F is applied in the direction i. Note, that the modal field quantities are normalised

with respect to the unit power flow (P (nn) = 1) what simplifies the above equations.

The wave mode excitability as discussed e.g. in [117] can be thought of as the wave

mode receptance, i. e. the transfer function between the induced surface displacement

associated with a chosen wave mode and the applied force. With the aid of Eq. (3.8)

and Eq. (3.13), one writes (omitting the time harmonic terms):

A
(n)
i =

a
(n)
i u

(n)
i

Fi
=
v

(n)∗
i (h)

4
u

(n)
i (h) =

−ωu(n)∗
i (h)

4
u

(n)
i (h) (3.14)
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where A
(n)
i is the induced displacement in direction i associated with mode n and re-

sulting from a force acting in direction i.

It is also possible to calculate cross-excitability (or transfer wave mode receptance) when

the direction of the induced displacement of interest is different from the direction of

the applied force:

A
(n)
i,j =

a
(n)
i u

(n)
j

Fi
=
v

(n)∗
i (h)

4
u

(n)
j (h) =

−ωu(n)∗
i (h)

4
u

(n)
j (h) (3.15)

Excitability of guided waves by line forces acting along the z and y directions computed

for a sample case are shown in Fig. 3.2. The response of the structure is rather com-

plex, but some general observations can be made. In order to do so, the f–cp plane is

divided into three regions – fundamental waves region which is the low frequency part

where only the fundamental modes propagate, ‘slow region’ encapsulating the disper-

sion curves above the first cut-on frequency and up to the first host layer HL asymptote

(see Section 2.3 for details), i.e. the vertical sections of the dispersion curves, and the

‘fast region’ that includes the waves that fit below the first HL asymptote (in Fig. 3.2,

– 60 –



3.1 Excitation of structural waves by mechanical forces and tractions

5 km s−1).The regions’ descriptors ‘slow’ and ‘fast’ correspond to the associated group

velocity.

At low frequencies the in-plane forcing excites both the flexural and the compressional

Lamb waves very well, whereas for the out-of-plane force the flexural wave is strongly

predominant. Waves in the ‘slow’ region (including the build-up dominated waves) are

better excited with the in-plane loading since most of the high frequency structural waves

originate from so called thickness-shear modes when they cut off. Thickness-shear modes

are associated with a predominant in-plane surface particle displacement as opposed

to the thickness-stretch modes for which the out-of-plane component is prevalent. In

the ‘fast’ region the out-of-plane forcing performs better which is related to the fact

that at high frequency (short wavelength) the waves tend to follow the flexural-shear

behaviour in order to finally evolve into a surface wave. The blue spots in the ‘fast

region’ correspond to the waves that propagate along the surface of the build-up which

is why they cannot be excited by a force that acts on the host surface.

3.1.2 Power partitioning

In principle, it might be beneficial if the input force excites all possible modes at a given

frequency since they would all contribute to overcoming the shear adhesion strength

of the build-up. It is safe to assume that their superposition will increase the interface

stress for they do not share the same phase in space and in time and they propagate with

different group velocities. However, modes are not excited with the same efficiency. The

guided waves’ excitability as introduced in the preceding section provides information

on how well a wave is excited but only from a viewpoint of a particle displacement at

a surface of the plate. A more indicative measure, namely power flow, can be employed

as it captures the behaviour of the whole structure. Excitability enables to determine

how the power produced by the excitation is partitioned between the waves.

Any loading injects power to the structure. Field and energy distributions across the

thickness are normalised with respect to the total power flow trough the unit-width cross-

section of the plate in the direction of propagation, according to the Poynting Theorem.

The time-averaged complex Poynting vector describing the power flow associated with

a free wave is defined in Eq. (2.22). Recalling that the excited wave field is written as

an expansion of normal modes (see Eq. (3.8)), Eq. (2.22) is rewritten to represent the

power flow associated with a forced wave as:

P
(n)
forced = Re





1

2

∫

Ω

−
(
a(n)v(n)

)∗
·
(
a(n)σ(n)

)
· ẑ dy



 (3.16)
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Figure 3.4: Power partitioning between the propagating Lamb wave modes in a
2 mm aluminium plate covered with a 2 mm glaze ice accretion given a 1 W m−1

line source exciting the structure in different directions. The dispersion curves
are presented in the bottom figure for mode labelling reference.

Denoting free power flow as
〈
P (n)

〉
for clarity, one writes:

P
(n)
forced = a(n)∗a(n)

〈
P (n)

〉
(3.17)

If one assumes that 1 W m−1 is supplied by a line force acting in direction i, the power

injected to each mode can be calculated from the excited wave amplitudes as given in

Eq. (3.13). Since the mode shapes are power-normalised, the power flow associated with

a mode as a response to a given excitation becomes:

P
(n)
forced = a(n)∗a(n) (3.18)

In order to evaluate power partitioning, one needs first to compute the forced power flow

associated with each propagating wave as a response to force excitation. The results are

then rescaled with respect to the sum of all forced power flows. The approach presented
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3.1 Excitation of structural waves by mechanical forces and tractions

above does not deal with power transfer between the actuator and the structure, but

gives a useful insight as to how well a mode is driven for a particular direction of

excitation. A power partitioning pattern for a sample structure is shown in Fig.3.4.

Although relative phase relationships between respective displacement and stress com-

ponents are fixed, the phase of the mode shape is arbitrary. Therefore, in order to enable

power delivery to the structure in the model (so that
v
(n)
i, modal(h)

4 F i is real), one needs to

ensure that the power-normalised surface modal displacement component in direction i

is purely imaginary by appropriate scaling. This comment does not refer to some phys-

ical phenomenon, but only to the attention that needs to be given while implementing

the excitability model that supports interpretable outcome.

3.1.3 Parametric study

The partitioning of the injected power between propagating modes is now included in the

parametric study on interface shear stress achievable for accretions with certain Young’s

moduli – analogous to that presented in Section 2.8.2. The host structure properties

were kept constant (2 mm aluminium layer), whereas the stiffness of the build-up was

varied from EAL = 0.1 GPa to EAL = 10 GPa, with fixed ρAL = 900 kg/m3, νAL = 0.351

and hAL = 2 mm. The procedure remains the same (as in Section 2.8.2) with the excep-

tion that the generated stress is shown as contributions of propagating waves for a given

direction of excitation assuming that the line source supplies 1 W m−1 of mechanical

power. Hence, all stress values quoted hereafter are given per
√

1Wm−1. The results are

presented in Fig. 3.5. The maximum stress was chosen with respect to the sum of all

stress components accounting for the phase difference. However, to facilitate presenta-

tion particular waves’ contributions to stress are plotted as magnitudes (neglecting the

phase difference). Hence it is expected that the total stress values presented below are

overestimated, especially for mid-stiffness build-ups.

Two effects lie behind the shape of the bars in Fig. 3.5: one is power partitioning, i.e. how

strongly particular waves are excited with respect to the power flow, whereas the other

is how ‘good’ are particular waves in generating interface shear stress. For example, it

has already been shown in Fig. 3.2 that the out-of-plane forcing (along y) excites almost

only the first Lamb wave (flexural), whereas the in-plane loading (along z) excites both

the first and the second (compressional) Lamb waves with the compressional wave being

dominant at low frequencies. However, as the compressional Lamb wave provides much

lower interface shear stress, the stress resulting from an in-plane forcing for EAL = 0.1

GPa appears as predominantly associated with the 1st Lamb mode in Fig. 3.5.
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Figure 3.5: Maximum transverse interface shear stress that can be obtained in
the stated frequency ranges due to a line force of input power 1 W m−1 acting
along the x, y or z direction (as denoted over the bars). Structural configuration
and parameters are outlined in Section 2.8.2.

A line force oriented along y-axis excites mainly the flexural Lamb wave which was

shown to accommodate high interface shear stress in Section 2.8.2. The stress generation

capability grows with the accretion stiffness EAL (except two cases) and is predominant

among other loading variants for high EAL (8, 10 GPa). Contribution of the second

Lamb waves for this excitation is insignificant.

An in-plane loading along z and x axes excites both Lamb waves and the SH wave,

respectively. The contributions to the total interface shear stress associated with the

compressional Lamb wave and the fundamental SH wave grow with frequency, whereas

the one due to the flexural wave propagation grows with EAL. As shown in Section 2.8.2
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3.2 Excitation of structural waves by piezoelectric actuators

the compressional Lamb wave is associated with a relatively low interface shear stress

unless close to the build-up dominated asymptote. This explains why at higher fre-

quencies, i.e. when more higher-order modes propagate, the stress generated by the 2nd

Lamb wave grows with frequency.

The interface stress associated with the in-plane waves drops with the increase in EAL

in the first frequency range from ca. 7.5 kPa for EAL = 0.1 GPa to ca. 2.8 kPa for

EAL = 10 GPa (these are related to the SH wave, see Fig.3.5). Furthermore, the stress

generated by both the SH and the second Lamb waves experiences a peak that shifts

toward higher EAL with the increase of frequency (at EAL = 2 for 50 < f ≤ 100 kHz,

at EAL = 3 for 100 < f ≤ 150 kHz, at EAL = 4 for 150 < f ≤ 200 kHz).

Surprisingly, for low values of EAL the generated interface stress drops with frequency.

Subsequent bilayer waves start to propagate and draw most of the power supplied, thus

less power can contribute to invoking delamination.

The aforementioned analysis indicates that an in-plane omnidirectional actuation could

give promising results, as the effects of both Lamb and SH waves would be superimposed.

Following Fig. 3.5, for glaze ice accretion it would be possible to achieve the interface

shear stress of ca. 1.5 MPa if 1.2 kW m−1 is applied in the fourth frequency range (this

corresponds to 24 W over a 20 mm wide line). The flexural Lamb wave excited by an out-

of-plane or in-plane force is found to accommodate the highest stress for high-stiffness

accretions.

The in-plane waves are better suited to be applied to mid-stiffness accretions where the

influence of the build-up dominated modes is significant. It is observed, however, that

the SH wave seems to provide better results than the compressional Lamb wave.

In some cases the line force excites waves that do not generate high interface stress but

draw significant power from the source. Furthermore, if a lossy accretion is considered

this power is dissipated. The optimal design of the excitation would prohibit the power

flow into these waves and enhance the excitation of waves that provide high interface

stress, so that the maximum power available from the source can be utilised for invoking

delamination.

3.2 Excitation of structural waves by piezoelectric actua-

tors

Line forces provide a means of conducting a qualitative analysis accounting for modal

excitability but lacks in a direct reference to a several aspects of practical excitation are
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lacking in the model. As a step towards this aim, a piezoelectric actuator is introduced

in this section. Piezoelectric actuators have become a standard for NDT/SHM solutions

and they are particularly widely used for exciting structural waves. Various approaches

for modelling wave excitation with piezoelements were discussed in Section 1.2.3.2. In

the following paragraphs the analytical excitability (NME) approach to piezo-actuation

is presented under the assumption that the dynamics of the piezo and the structure are

fully uncoupled.

3.2.1 Piezoelectric constitutive equations

The piezoelectric actuator modelled is not modelled per se in this chapter, as under the

aforementioned assumption it is represented by a set/distribution of equivalent mechan-

ical forces. However, for the sake of consistency the basic relationships are outlined here.

The piezoelectric effect briefly introduced in Section 1.2.3 is mathematically described

by the constitutive equations of the piezoelectric material. Four forms of the constitutive

equations referring to various configurations of the coefficients are used in the literature

[120], of which two are recalled below:

• e form (stress form): {
σ

D

}
=

[
CE −e>

e εε

]{
ε

E

}
(3.19)

• d form (strain form): {
ε

D

}
=

[
SE d

d εσ

]{
σ

E

}
(3.20)

In the above E represents the electric field, D represents the dielectric displacement, CE

and SE are the stiffness and compliance matrices measured at zero electric field, e and d

are the piezoelectric stress and piezoelectric strain coefficient matrices, respectively and

finally εε and εσ are the permittivity matrices measured at zero strain and zero stress

conditions, respectively.

The material structure of typical piezoceramics can be classified as transversely isotropic,

therefore 5 stiffness constants suffice to describe their elastic behaviour. PZT actuators

are usually poled along the axis corresponding to the material axis of symmetry. Given

the coordinate system adopted in this thesis (z is aligned with the waveguide), the stiff-

ness matrix for the piezoelectric with respect to the material symmetry can be written
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Table 3.1: Subscripts for piezoelectric material constants in physical and mate-
rial coordinates.

physical xx yy zz yz xz xy
material 11 33 22 5 or 31 6 or 12 4 or 32

as:

C =




Cxx Cxy Cxz 0 0 0

Cxy Cyy Cxz 0 0 0

Cxz Cxz Czz 0 0 0

0 0 0 Cxyxy 0 0

0 0 0 0 Cxx−Cxz
2 0

0 0 0 0 0 Cxyxy




(3.21)

where y is the poling axis.

The piezoelectric coefficient matrix is not fully populated and usually takes on of the

following forms (with respect to the above):

e =




0 eyxx 0

0 eyyy 0

0 eyxx 0

0 0 ezyz

0 0 0

exxy 0 0




or d =




0 dyxx 0

0 dyyy 0

0 dyxx 0

0 0 dzyz

0 0 0

dxxy 0 0




(3.22)

Finally the permittivity matrix,

εε =




εxx

εyy

εxx


 (3.23)

The above equations are written with respect to the physical coordinate system adopted

in this thesis. The corresponding subscripts in local material coordinates (which are

usually used by the manufacturers) are listed in Tab. 3.1.

One needs to pay particular attention to the labelling convention when using any com-

mercial software as it varies significantly. A common oversight regarding reducing the

3D piezoelectric equation under plane strain or plane stress assumption has been re-

cently reported in [121] pointing out that in many cases only one of the equations is

used for reduction.
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3.2.2 Analytical excitability for modelling piezo-actuation

The piezo-actuated wave amplitudes can be calculated using the excitability approach

only if the interaction between the actuator and the structure and the actuator dynamics

are neglected. The effect of the actuation is represented by a traction distribution and

is frequency invariant. Both the mechanical waveguide and the actuator are modelled in

plane strain. The following derivations are based on [93, 122]. It should also be stated

that the actuator is assumed to operate linearly.

3.2.2.1 Mechanical wave response under pin-force assumption

A typical PZT monolithic actuator is poled along the thickness and the dimensions of

the actuator are such that the thickness is much smaller than the other dimensions (this

is often called a d31 or 3–1 configuration). The two faces perpendicular to the thickness

are covered with electrodes and one of these electrodes is bonded to the surface of the

waveguide. The actuator, when driven with voltage deforms inducing traction in the

substrate. For d31 actuators the piezo-induced traction acts along the z axis and only

Lamb waves can be excited.

The pin-force model enables adopting a simplified representation of the effect of piezo-

electric actuation. The pin-force assumptions are the following: (i) the actuator’s dy-

namics is neglected; (ii) the coupling with the structure is assumed to have no effect

on the strain induced in the actuator; (iii) the bonding layer is of negligible thickness.

Practically the above assumptions indicate that the Young’s modulus–thickness product

of the actuator is considerably smaller than the one of the structure so that they may

be treated as decoupled. The predicted response is valid only at low frequencies when

the dynamics of the actuator does not play a significant role.

The excited wave amplitude as a response to a z-oriented surface traction t applied over

length L along the waveguide can be calculated from excitability functions. Let us recall

Eq. (3.12):

a(n)
z (z) =

v
(n)∗
z (h) exp [−k(n)z]

4

L/2∫

−L/2

exp [knγ]t(γ) dγ (3.24)

The desired traction distribution that represents piezoelectric actuator can be readily

substituted. If the bonding layer is assumed to be very thin or neglected, piezo-induced

traction is confined to the edges of the actuator (the pin-force assumption). In this case

the spatial traction distribution is written as:

σ = t0 [δ(z − L/2) + δ(z + L/2)] (3.25)
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where t0 is the amplitude of the traction under the pin-force assumption (in this case it

is a force per unit width).

The integral from the right hand side of Eq. (3.24) becomes

L/2∫

−L/2

exp [knγ]t(γ) dγ =

L/2∫

−L/2

exp [knγ]t0 [δ(γ − L/2) + δ(γ + L/2)] dγ = 2t0 sin knL/2

(3.26)

The amplitude of the traction t0 can be found if the character of the actuator-structure

interaction is assumed to be quasi-static and the actuator is modelled as uni-axial (rod-

like) with linear through-thickness strain distribution. The free displacement at its end

can be found from the constitutive equations,

uPZT, free = εzzL = dyzEyL =
dyzv

hPZT
L (3.27)

where hPZT is the thickness of the actuator, dyz is the piezoelectric strain coefficient, Ey

is the electric field across the thickness of the actuator and v is the driving voltage.

If bonded to a waveguide the actuator sees the substrate as a constraining stiffness. The

force transmitted to the substrate is related to the mechanical stiffness of the actuator

and the difference between the free displacement and the induced displacement (note

the difference with [122]).

t0 = kPZT [uPZT, free − u(L/2, h)] (3.28)

where kPZT is the static stiffness of the uniaxial PZT actuator (in plane strain) given as

(from the constitutive equations):

kPZT =
hPZT

SEzzL
(3.29)

with SEzz being the element of the compliance matrix.

It is common to express Eq. (3.28) in terms of the ratio between the dynamic stiffness

of the structure and the static stiffness of the actuator. The former is straightforwardly

obtained from Eq. (3.14) which describes the wave receptance

kstructure =
1

∑N
n=1A

(n)
z

(3.30)

so that the stiffness ratio becomes

r(ω) =
kstructure

kPZT
(3.31)
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Finally, the piezoelectric equivalent force is given as

t0 =
r(ω)

1 + r(ω)
kPZTuPZT, free (3.32)

Now the amplitude of the equivalent traction from Eq. (3.32) is substituted into Eq. (3.26)

and Eq. (3.24) The excited wave amplitude at the edge of the actuator in the positive

wave direction becomes

a
(n)
+ (L/2) =

2v
(n)∗
z (h) exp [−k(n)L/2]r(ω) sin (knL/2)

4 [1 + r(ω)]
kPZTuPZT, free (3.33)

Eq. (3.33) indicates a well-known criterion for choosing the size of the actuator which is

related to the sin knL/2 term. In order to maximise the energy propagating along the

waveguide one must choose the working dimension of the actuator (here it is the length

L) to be any of the odd multiples of the half-wavelength of interest. By the same token,

the excitation is found to be ineffective if the length of the actuator is a multiple of the

excited wavelength.

The response at a desired location along the waveguide is calculated by multiplying the

power-normalised mode shape by the excited wave amplitudes vector from Eq. (3.33).

The phase change related to the distance from the edge of the actuator is accounted for

by multiplying by the space-harmonic term:

v(n) = v
(n)
modala

(n)
+ exp [−k(n)z] (3.34)

As an example, numerical results for velocity at the mid-plane of a 3 mm aluminium plate

induced by a piezoelectric actuator and read at 0.1 m from the actuator are presented in

Fig. 3.6 and Fig. 3.7. The properties of the actuator (L = 0.05 m, hPZT = 0.5 mm) refer

to the NCE40 material constants after appropriate dimensional reduction (1D uniaxial

plane strain). For these values the ratio of the Young’s modulus–thickness products

between the structure and the actuator is 4.5. The total velocity shown in Fig. 3.6 is

split into single wave contributions in Fig. 3.7. Note that only the magnitude is shown as

the phase differences between the waves does not seem to be particularly interesting in

the example. At low frequencies, as expected, the flexural Lamb wave is predominant

in the out-of-plane(|vy|) response, whereas the compressional Lamb wave is prevalent

in the in-plane response(|vz|). Higher-order waves are not particularly strongly excited

by the piezoelectric actuator and contribute mainly to the in-plane velocity. The peak

of |vz| at ca. 950 kHz is associated with the zero group velocity effect. The dips and

peaks along the velocity FRFs are related to the sin (knL/2) term from Eq. (3.33). The

response experiences a dip if knL/2 is a multiple of π, i.e. when the length of the actuator

– 70 –



3.2 Excitation of structural waves by piezoelectric actuators

0

10

20

30

c p
,

k
m

s−
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10−7

10−6

10−5

10−4

10−3

10−2

f , MHz

|v
|,

m
s−

1
/

N
m

−
1

|vy| |vz|

Figure 3.6: Total velocity at the mid-plane of a 3 mm aluminium plate in-
duced by a piezoelectric actuator and read at 0.1 m from the actuator (pin-force
model). Plate dispersion curves are drawn in light grey for reference (right axis).
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Figure 3.7: Velocity at the mid-plane of a 3 mm aluminium plate associated
with each of the propagating waves induced by a piezoelectric actuator and
read at 0.1 m from the actuator (pin-force model). Plate dispersion curves are
drawn in light grey for reference (right axis).

is a multiple of the excited wavelength. The response is at maximum when knL/2 is an

odd multiple of half-wavelength of interest. In Fig. 3.6 at the frequency of the first dip

in |vy| the wavelength of the flexural Lamb wave equals the length of the actuator L.

Similarly, at the frequency of the first dip in |vz| the wavelength of the compressional

Lamb wave equals L.
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Figure 3.8: The ratio between the dynamics stiffness of the structure and the
static stiffness of the actuator r (pin-force model). Plate dispersion curves are
drawn in light grey for reference (right axis).

In Fig. 3.8, the ratio between the stiffnesses of the actuator and the structure (r) is

shown. Since the actuator is considerably thinner than the structure, this ratio for vast

majority of frequencies is significantly greater than one.

3.2.2.2 Electrical power supply under pin-force assumption

Electrical power requirement is a quantity of the greatest interest from the viewpoint of

invoking delamination with piezo-actuated structural waves. Assuming constant driving

voltage, the active power that is consumed during oscillations of the actuator attached

to structural waveguide is calculated as

PR =
1

2
Re{v(ω) · i(ω)∗} (3.35)

where v is the constant driving voltage and i(ω) is the frequency dependent current

drawn by the actuator. Under the pin-force assumption the current drawn by the actu-

ator is obtained from [122] (details of the derivation in [93]):

i(ω) = ωC0v

[
1− k2

31

r(ω)

1 + r(ω)

]
(3.36)

where k31 is the electromechanical coupling coefficient of the piezoelectric material to

be obtained from the manufacturer.
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Figure 3.9: Interface shear stress in a 2 mm aluminium plate with a 2 mm glaze
ice accretion at 0.1 m from the actuator (pin-force model) with respect to the
driving voltage: superimposed (top) and single wave contributions (bottom).
Plate dispersion curves are drawn in light grey for reference (right axis).

3.2.3 Interface shear stress in piezo-actuated waveguides with accre-

tion

The approach outlined above is now employed for the analysis of stress generation capa-

bility of piezo-actuated waves with respect to the electrical power consumed. Bearing in

mind that power is not linearly related to the wave field, the shear stress is normalised

with respect to the square root of electrical active power. To start with, a 2 mm alu-

minium plate with a 2 mm thick glaze ice accretion is considered. The plate is excited

with an actuator made of Noliac NCE40 material (L = 0.05 m, hPZT = 0.0005 m).

The transverse shear stress at the interface resulting from the piezoelectric actuation is

presented in Fig. 3.9 (with respect to the driving voltage) and Fig. 3.10 (with respect

to the square root of electrical power consumed).

The maximum interface shear stress is observed either near the cut-off frequencies or

close to the zero group velocity modes. It is expected that these waves might attenuate

rapidly if the accretion is lossy. However, at the same time they seem to be the most

appropriate candidates for invoking delamination. If the desired transverse shear stress

is chosen to be 1.5 MPa which refers to the reported ice bond shear strength [2], one

will need to supply around 130 W m−1 at frequencies corresponding to the peaks in
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Figure 3.10: Interface shear stress in a 2 mm aluminium plate with a 2 mm
glaze ice accretion at 0.1 m from the actuator (pin-force model) with respect
to the square root of consumed electrical power: superimposed (top) and single
wave contributions (bottom). Plate dispersion curves are drawn in light grey
for reference (right axis).

Fig. 3.10 which refers to 2.5 W of electrical power applied to a 20 mm wide strip actuator.

However, if the frequency range is restricted to 200 kHz, so that no higher-order waves

are present, then the required electrical power grows to 5.3 kW m−1 (106 W per 20 mm

wide strip) for the most optimistic case at 193 kHz.

The numbers presented above include the effect of the electrical to mechanical energy

conversion in the piezoelectric actuator, which is accounted for in Eq. (3.36) [93] but do

not account for the energy distribution and possible attenuation of waves. Therefore, the

same conditions as used in Section 2.8.2 are introduced (only waves that propagate less

than 60% of the energy along the build-up are considered) and an analogous parametric

study is conducted. The properties of the structure and the actuator are kept constant,

whereas the accretion’s Young’s modulus is varied. The actuator is allowed to deform

exclusively uniaxially, therefore only Lamb waves are excited. In fact, shear horizontal

waves are not expected to be excited with 3–1 PZT actuators.

The results of the study are presented in Fig. 3.11. The generated stress is a superpo-

sition of the flexural and the compressional Lamb wave contributions. Note that the
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labelling ‘1st’ or ‘2nd Lamb wave’ in Fig. 3.11 refers to the bilayer wave modes that are

close to the corresponding 1st or ‘2nd Lamb waves in a free-free host.

It is quite evident that the flexural Lamb wave (1st) is more effective for high stiffness

accretions, whereas the compressional Lamb wave (2nd) for the low stiffness ones. As

mentioned in Section 2.8.2 it is related to the fact that higher-order, build-up dominated

waves cut off at low frequencies if the stiffness is low. These waves couple with the

compressional Lamb waves first. They are associated with high interface shear stress,

although are likely to attenuate quickly if a lossy accretion is considered. Nevertheless,

the energy criterion allows them to be included in the comparative analysis.
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Figure 3.11: Maximum transverse interface shear stress achievable using the
PZT actuator (NCE40, L = 0.05 m, hPZT = 0.0005 m) in the stated frequency
ranges with respect to the square root of consumed electrical power.

Using the above model, a rough estimate of the electrical power requirements can be

stated (that includes both Lamb waves contributions). A glaze ice accretion (assuming

breaking stress σb = 1.5 MPa requires around 112 W to be applied to a 20 mm wide strip

(as given above). A lower stiffness accretion close to the range of values corresponding

to rime ice (E = 2 GPa) benefits from the prevalence of the build-up dominated modes

requiring ca. 70 W per a 20 mm wide strip assuming the same strength of the bond as

for glaze ice. A very low stiffness accretion (E = 0.1 GPa), assuming the bond strength

of 0.1 MPa, is found to be removed at ca. 4 W per a 20 mm wide strip. Finally, a

mid-stiffness build-up (E = 4 GPa) creating a bond with shear strength of 0.5 MPa is

expected to be shed when between 9 and 22 W are applied to a 20 mm wide strip (with
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or without the flexural wave contribution, respectively). These numbers seem to be

quite promising and feasible to achieve, but one needs to bear in mind the assumptions

made when building the model and assess them for conformity with the actual practical

case. Note, however, that to facilitate presentation the stress contributions coming from

particular waves were added without accounting for phase difference between them. This

may have caused the total stress to be slightly overestimated.

3.2.4 Limitations of the approach

The modelling strategy presented in the previous sections provides a relatively simple

tool for the analysis of piezo-actuation in structural waveguides. However, both the wave

modelling approach used up to this point in the thesis and the pin-force assumption

employed for including the piezoelectric actuation are not well-suited for the study on

invoking delamination. Although they support a general understanding and insight into

various aspects of the physics of the phenomenon, they are not able to represent the

considered cases accurately enough. In the following paragraphs the limitations of the

Global Matrix Method and pin-force model, respectively, are discussed.

The accretion is usually of significantly different properties to the host structure. The

GMM model is based on solving the system equation by searching for roots of a nonlinear

equation which is often a tedious task. Particularly it is very prone to fail for a waveguide

composed of very different materials unless the frequency step is very small (resulting in

long computation time). Furthermore, implementing damping or the ability to predict

evanescent waves requires a significant work done on the implementation. Therefore,

the method was found to be very well suited for the analysis of particular features of

wave propagation but not versatile enough to be used for a comprehensive study aimed

at drawing a direct reference to a practical scenario.

In the experiments on invoking delamination reported in the literature [2, 24], as well

as in the preliminary experiment described in the Appendix, the actuator’s thickness is

comparable or higher than that of the structure. However, the pin-force model employed

above is based on the quasi-static assumption that requires the thickness of the actuator

to be negligible compared to the structure. The pin-force model is valid only if the strain

distribution in the actuator can be approximated as uniform and its interaction with the

host structure treated as quasi-static (far from the resonances). Since it is expected that

the actuators used for removal of an unwanted accretion will be relatively thick in order

to be able to induce desired high strain, they will significantly change the behaviour of

the host violating the pin-force assumption. Furthermore, the influence of the bonding
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layer which is known to have a notable effect on the response is difficult to account for

using the pin-force approach.

3.3 Conclusions

Wave excitation in structures covered with accretion were considered in this chapter.

Firstly, the excitability functions originating from the guided waves complex reciprocity

were recalled. They enabled calculation of the waves amplitudes as a response to applied

mechanical force. The excitability functions provided also means of evaluating how the

injected power is partitioned between the propagating waves.

With respect to the above a parametric study was performed showing the maximum

achievable interface shear stress in particular frequency ranges for different types of

accretions with respect to the injected mechanical power. It was shown that the out-

of-plane excitation accommodates the highest interface shear stress for high stiffness

accretions (such as e.g. glaze ice). Mid- and low stiffness build-ups were demonstrated

to experience higher stress with an in-plane excitation.

The excitability functions were employed for implementing the simplest PZT excitation

model, namely pin-force. The mathematical origin of the approach and the mathematical

formulae for electrical power drawn by the actuator were outlined. The piezo-actuation

was applied structures with accretions yielding approximate electrical power require-

ments for removing sample build-ups. The limitations of the analysis tools developed

so far were discussed in the last section. The range of applicability of the pin-force as-

sumption and numerical difficulties associated with implemented models are highlighted

as important issues hinder a direct application to real practical cases.

Therefore, an alternative, more versatile methodology is sought. The appealing mod-

elling approach would be able to represent the dynamic character of the piezo-structure

interaction accurately remaining valid at high frequencies. It would also be advanta-

geous if the methodology could be directly related to a practical experimental case since

this is possible only indirectly using a plane wave model. An attempt to meet these

requirements is presented in the subsequent chapters.
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Chapter 4

Semi-analytical finite elements

for modelling structural wave

propagation

The approach based on the partial waves technique and the global matrix method is

physically insightful, but practically limited for the following reasons: (i) the root trac-

ing routines are quite sensitive to the choice of the initial guesses and root searching

radii which varies significantly from structure to structure; (ii) the methodology en-

ables calculating waves only in infinite structures under the plane strain assumption.

One of the alternatives that has been chosen in this thesis is the semi-analytical finite

element (SAFE) method. The base concept of the method is to use a finite element

approximation to the wave field over the cross section allowing an additional degree of

freedom (DOF) in the direction of propagation and solving the wave propagation prob-

lem assuming its space-harmonic form. The resulting wave equations are formulated as

an eigenvalue problem which can be solved using any of the standard methods. SAFE

method can be employed for both free and forced steady-state wave calculations on a

lossless or damped waveguide. Thanks to its versatility, the method was found to be

helpful in assessing the results developed so far and developing new modelling strategies

presented in the subsequent chapters.

This chapter provides the introduction to the SAFE method. Firstly, the notation and

labelling conventions are introduced. Then, the derivation of the SAFE element and

solution procedure is outlined. The convergence of the free wave solution is verified

against global matrix method benchmark. In the second part the forced response wave

problem is analysed using SAFE formulation and wave approach. Two ways of calcu-

lating the excited waves amplitudes are presented and compared with the analytical
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excitability-based solution. Finally, the model is validated with an experiment on a

beam-like waveguide with emulated anechoic terminations.

4.1 SAFE formulation

The SAFE framework has been probably proposed in the 1970s [57, 58]. The method

is suitable for solving one dimensional wave propagation problems for structures of an

arbitrary cross-section - zero- (beam, string, rod theories), one- (infinite plate under

plane strain/stress condition), or two-dimensional, which is its great advantage over

the analytical partial waves approach. It utilises an FE-like procedure to discretise the

plane cross-section and assumes a space-harmonic variation of the displacement along

the out-of-plane (waveguide) direction to find a steady-state solution of the equations of

motion. The SAFE element has finite dimensions in the cross-section plane and is of an

indefinite extent along the propagation direction. The equations of motion are derived

from the virtual work principle, as done for FE. The dispersion curves are found as a

solution to a resulting eigenvalue problem, therefore the method of determining them

does not require tedious and complicated root tracing algorithms. Further details of the

method can be found in the literature, e.g. [64–66, 71, 123].

The mathematical framework for the SAFE method for mechanical waveguides is briefly

presented below. It is assumed that the cross-section of the structure lies in the x-y

plane and that the wave propagates along the z direction. The following derivation

is written for a two-dimensional element, however other cases can easily be recovered

by removing appropriate degrees of freedom and altering the element shape functions.

Lamb/SH wave problems are usually solved using mono-dimensional elements as shown

in [66, 123], for example. A schematic diagram showing the coordinate system, labelling

convention and nodal degrees of freedom is presented in Fig. 4.1.

exp [−k−z] exp [−k+z]

1

2

3

4

5

6

7

8

u
(4)
y

u
(4)
z

u
(4)
x

y
zx

8-noded biquadratic
plane quadrilateral

Figure 4.1: Waveguide modelled with SAFE - the coordinates system, labelling
convention and degrees of freedom.
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4.1 SAFE formulation

4.1.1 Cross-section discretisation

The displacement, strain and stress fields over a SAFE element are defined as [64]

u =
[
ux uy uz

]>

ε =
[
εxx εyy εzz γyz γxz γxy

]>

σ =
[
σxx σyy σzz σyz σxz σxy

]>
(4.1)

where the time-harmonic term exp[ωt] is omitted for brevity.

The cross-section of the SAFE element is discretised in an FE-like manner using elements

and shape functions chosen according to the type of the analysis. In this work an 8-node

quadrilateral biquadratic element was used for which the shape functions may be found

in any standard textbook on the finite element method, e.g. [124]. The field variables

from Eq. (4.1) are expressed using element shape functions (in the cross-section plane)

and nodal degrees of freedom (DOFs) as it follows from the FE approximation.

Given that the nodal displacements vector for an element is written as

q(z) =
[
q

(1)
x q

(1)
y q

(1)
z . . . q

(8)
x q

(8)
y q

(8)
z

]>
(4.2)

The displacement at any point within the SAFE element is

u(x, y, z) = N(x, y)q(z) (4.3)

where N(x, y) is the displacement shape function matrix.

Note that in Eq. (4.3) the nodal amplitude vector depends on the position along the

propagation direction z. Following from Eq. (4.3) one writes the strain in terms of the

shape functions and the nodal DOFs

ε(x, y, z) =

[
Lx

∂

∂x
+ Ly

∂

∂y
+ Lz

∂

∂z

]
u(x, y, z) =

[
Lx

∂

∂x
+ Ly

∂

∂y
+ Lz

∂

∂z

]
N(x, y)q(z)

=

[
LxN,x + LyN,y + Lz

∂

∂z
N

]
q(z) = B1q + B2

∂

∂z
q(z)

(4.4)
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where N,x = ∂
∂xN and Lx, Ly, Lz, are

Lx =




1 0 0

0 0 0

0 0 0

0 0 0

0 0 1

0 1 0




Ly =




0 0 0

0 1 0

0 0 0

0 0 1

0 0 0

1 0 0




Lz =




0 0 0

0 0 0

0 0 1

0 1 0

1 0 0

0 0 0




(4.5)

4.1.2 Constitutive equations

For elastic waveguides the stress-strain constitutive relationship is given by the Hooke’s

Law. For the sake of completeness let us write it in matrix form

σ = Cε (4.6)

Substituting Eq. (4.4) into Eq. (4.6) one gets the constitutive equations expressed in

terms of nodal degrees of freedom and element shape functions

σ = C

(
B1q + B2

∂

∂z
q

)
(4.7)

4.1.3 Virtual work principle

The governing equations for wave propagation are obtained with the aid of the virtual

work principle for deformable bodies. The analysed section of the waveguide occupies

volume V which is formed by a cross-section Ω extruded through length L and is bounded

by surface Γ. The boundary conditions on Γ are the following:

• Essential mechanical boundary condition on Γu (Dirchelet boundary condition):

u = u

• Natural mechanical boundary condition on Γσ (Neumann boundary condition):

σijnj = ti

where u is the prescribed displacement and ti is the applied surface traction.

The respective bounding surfaces related to each pair of the boundary conditions are

exclusive and their unions form the whole surface, i.e. Γu ∪ Γσ = Γ, Γu ∩ Γσ = 0.
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4.1 SAFE formulation

Given the constitutive equations, the mechanical equilibrium condition, and the essential

boundary conditions given above the virtual work principle states that for every time t

work done by
external surface

tractions︷ ︸︸ ︷∫

Γσ

δu>t dΓσ +

work done by
nodal forces︷ ︸︸ ︷
δq>f i =

work done by
inertia body forces︷ ︸︸ ︷∫

V

δu>(ρü) dV +

work done by
the stress field︷ ︸︸ ︷∫

V

δε>σ dV (4.8)

where t is the external tractions vector, f i is the vector of nodal forces applied at the

ends of the considered section of the waveguide of length L and ρ is the density of the

material.

The constitutive equations from Eq. (4.7) are substituted into each of the components

in Eq. (4.8). The detailed algebraic manipulations for all of the components are omitted

below for the sake of clarity. The work done by the inertia body forces is given by

∫

V

δu>(ρü) dV =

∫

Ω

∫

L

δq>N>ρN
∂2

∂t2
q dz dΩ (4.9)

The work done on the stress field by the strain field is given by

∫

V

δε>σ dV =

∫

Ω

[
δq>

(
B>2 CB1q + B>2 CB2

∂

∂z
q

)]
dΩ

+

∫

Ω

∫

L

[
δq>B>1 CB1q + δq>

(
B>1 CB2 −B>2 CB1

) ∂

∂z
q

− δq>B>2 CB2
∂2

∂z2
q

]
dzdΩ

(4.10)

The distributed tractions term is

∫

Γσ

δu>t dΓσ =

∫

Γσ

δq>N>Nti dΓσ (4.11)

where t is lumped at the nodes following the finite element approximation

t = Nti (4.12)

with ti being the nodal external tractions.
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To clarify the formulation, the following notation is adopted which results from the

integration of the matrices over the cross-sectional element domain:

K0 =

∫

Ω

B>1 CB1 dΩ K1 =

∫

Ω

B>1 CB2 −B>2 CB1 dΩ

K2 =

∫

Ω

B>2 CB2 dΩ M =

∫

Ω

N>ρN dΩ

p =

∫

Γσ

N>Nti dΓσ Kf =

∫

Ω

B>2 CB1 dΩ

(4.13)

Let us now rewrite both variational equations using the notation from Eq. (4.13) and

rearranging the terms:

0 =

∫

L

{
δq>

(
M

∂2

∂t2
q + K0q + K1

∂

∂z
q−K2

∂2

∂z2
q− p

)}
dz

+ δq>
[
Kfq + K2

∂

∂z
q− f i

] (4.14)

The above variational equation contains two main terms – the first is related to the wave

field behaviour over a length L and the second corresponds to every location along L,

i.e. every cross-section. Moreover, it needs to hold for every time t and any admissible

virtual displacement δq which leads to the governing equation for wave propagation.

4.1.4 Governing equation for wave propagation

From Eq. (4.14) one can conclude the governing equation for wave propagation

M
∂2

∂t2
q + K0q + K1

∂

∂z
q−K2

∂2

∂z2
q = p (4.15)

and the natural boundary condition stating that at the ends of the considered section

of the waveguide

q = 0 or f i = Kfq + K2
∂

∂z
q (4.16)

which provides the expression for the resultant nodal forces.

It is assumed that displacement in the waveguide direction is space-harmonic

q(z) = q̄ exp [−kz] (4.17)
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Therefore, Eq. (4.15) is rewritten as

(
− ω2M + K0 − kK1 − (−k)2K2

)
q̄ = p̄ (4.18)

Eq. (4.18) is the governing equation for wave propagation in a mechanical waveguide in

the wavenumber-frequency domain. Assuming a space-harmonic character of solutions,

the resultant forces over the cross-section are given by (analogous to [119])

f̄ i = Kf q̄− kK2q̄ (4.19)

4.2 Free wave propagation using SAFE

If the external traction term p is zero, Eq. (4.18) describes free wave propagation

(
− ω2M + K0 − kK1 − (−k)2K2

)
q̄ = 0 (4.20)

Solution of the quadratic eigenvalue problem (QEP) in Eq. (4.20) can be performed using

any numerical approach available [125]. The most common is linearisation by doubling

the size of the matrix [66]. A new eigenvector is introduced as φ̂ =
[
φ λφ

]>
and

the SAFE governing equation from Eq. (4.20) is rewritten as a generalised eigenvalue

problem (GEP),

([
0 K0 − ω2M

K0 − ω2M K1

]
− λ

[
K0 − ω2M 0

0 K2

]){
φ

λφ

}
= 0 (4.21)

or more concisely as

[A(ω)− λB(ω)] φ̂ = 0 (4.22)

where A, B are of dimensions 2n× 2n, n is the number of the displacement degrees of

freedom in the section and

λ = −k (4.23)

In Eq. (4.21) matrices M, K0 and K2 are symmetric but K1 is skew-symmetric, hence

the linearised eigenproblem is not symmetric. However, as suggested by [65] if one

imposes the phase relationships between displacement components (uz in quadrature

with ux and uy) which are in general true, a symmetric structure can be obtained.

The GEP from Eq. (4.22) can be readily solved using any of the common scientific

computing packages. For a given frequency ω one finds the set of 2n eigenvalues Λ, and
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the 2n× 2n matrices of the corresponding right and left eigenvectors denoted by Φ̂ and

Ψ̂, respectively where the right eigenvectors φ̂i are columns of Φ̂ and left eigenvectors

ψ̂i are rows of Ψ̂. The left eigenvectors will be very useful later when their orthogonality

with the right eigenvector is exploited.

The wavenumbers can be extracted from the eigenvalues using Eq. (4.23). The modal

solutions are associated with positive and negative going waves based on the wavenum-

ber, i.e. there are n positive- and n negative-going waves. The wave is considered to be

positive-going if [51]:

| exp [−kiz]| < 1 or | exp [−kiz]| = 1 and pi > 0 (4.24)

where z is a distance (geometrical) smaller than the smallest wavelength of interest and

pi is the modal power flow along the propagation direction adopted from the mechanical

complex Poynting theorem [109]. The SAFE formulation provides an elegant expression

for the Poynting vector component along the propagation direction [126]:

pi = ω
Im
{
φ∗>i [Kf − kiK2]φi

}

2
(4.25)

Based on the direction of propagation the corresponding columns and rows of the eigen-

vectors matrices Φ̂ and Ψ̂ are rearranged so that:

Φ̂ =
[
Φ̂

+
Φ̂
−]

and Ψ̂ =

[
Ψ̂

+

Ψ̂
−

]
(4.26)

The left and right eigenvectors are normalised according to their orthogonality with

respect to the B matrix (assuming that B is not rank deficient), so that:

ψ̂iB(ω)φ̂j =

{
1 if i = j

0 otherwise
(4.27)

and

ψ̂iA(ω)φ̂i = λi (4.28)

4.2.1 Wave basis and wave modal properties

The approach presented aims to describe the dynamics of the structure in terms of the

travelling waves which in general is known as the wave approach [36, 37] (see Chapter 1).

The SAFE formulation provides the means of obtaining the wave modal characteristics
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4.2 Free wave propagation using SAFE

of the waveguide (wavenumbers and wave mode shapes) which form a so-called wave

basis [39, 54]. Since the number of waves found using the SAFE method is the same

as the number of DOFs of the cross-section, it is usually much higher than required

as many DOFs are needed to properly represent complicated wave structures at high

frequencies. Therefore, often only a finite number of modal solutions is kept and used in

further calculations based on some criterion adopted following the nature of the problem

considered. The modal matrices are then no longer square, hence the pseudo-inverse

needs to be used [39].

The nodal displacements and nodal resultant forces at any location in the waveguide

can be expressed in terms of the wave basis as:

{
q(z)

f(z)

}
=

{
Φ

Θ

}
a(z) =

[
Φ+ Φ−

Θ+ Θ−

]{
a+(z)

a−(z)

}
(4.29)

where Φ+,− contains positive- and negative-going displacement wave mode shapes ob-

tained by taking the upper half of the extended eigenvectors matrix Φ̂, Θ+,− contains

the force wave mode shapes obtained from Eq. (4.19):

θi =
[
Kf K2

]
φ̂i (4.30)

and a+(z), a−(z) are the corresponding wave amplitudes.

Wave amplitude change along the waveguide is described by the space-harmonic term

called the propagation matrix τ (z):

a+(z) = a0
+diag (exp [−kiz]) = a0

+τ (z) (4.31)

where a0
+ is the wave amplitude at a chosen origin.

For NDT and vibroacoustic applications it is often desired to analyse particular features

of guided waves such as the group velocity, the energy carried by a wave mode, the

power flow or the energy velocity (which provides the velocity of the wave packet for

lossy waveguides). The variational origin of the SAFE equations readily provides a few

useful expressions for modal properties of the ith wave mode at a circular frequency ω.

They are listed below together with corresponding sources from the literature where the

detailed explanation is presented.

Group velocity can be obtained from [59, 66]:

c(i)
g =

ψi

(
−K̃1 + 2kiK̃2

)
φi

2ωψiMφi
(4.32)
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The total strain energy associated with an element follows from Eq. (4.10):

e(i)
u =

φ∗>i
(
K̃0 − kiK̃1 + k2

i K̃2

)
φi

4
(4.33)

The total kinetic energy associated with an element follows from Eq. (4.9):

e
(i)
k = ω2φ

∗>
i Mφi

4
(4.34)

Power flow along the propagation direction can be calculated from[126]:

p(i) = −ω
Im
{
φ∗>i

[
K̃f − kiK̃2

]
φi

}

2
(4.35)

And finally, the energy velocity [66, 109] is calculated using the above equations:

v(i)
e =

p(i)

e
(i)
u + e

(i)
k

(4.36)

where it needs to be kept in mind that energy and power are cyclic quantities, hence

the above equations involve integrals over one period.

4.2.2 Convergence of the SAFE method

Fig. 4.2 shows how the SAFE method solution converges with the increasing number

of elements. It can be deduced from Fig. 4.2 that in order to determine how many

elements are needed to get accurate results in a desired frequency range one can check

the convergence of the cut-off frequencies of the higher-order wave modes. This can

be conveniently performed if one recalls the SAFE governing equation from Eq. (4.20)
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Figure 4.2: Convergence of the SAFE method. Dispersion curves for a 2mm
aluminium free-free plate using an increasing number of SAFE elements across
the thickness.
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Figure 4.3: Dispersion curves as computed using the global matrix method and
SAFE; 2 mm aluminium free-free plate (SAFE: 5 elements) on the left, 2mm
aluminium covered with 2mm glaze ice free-free plate (SAFE: 10 elements) on
the right.

keeping in mind that at the cut-off frequencies the wavenumber is zero (the wavelength is

infinite, i.e. the whole structure is vibrating in phase). Therefore the cut-off frequencies

are the eigenvalues of the following GEP:

(
K0 − ω2M

)
q̄ = 0 (4.37)

In Fig. 4.3 the results of the SAFE and the global matrix method are compared. The

GMM solution is exact since no approximation of the wave field is employed here,

whereas the SAFE solution is converging to GMM as the number of elements increases.

It is shown that an excellent agreement can be obtained, however, the more complex

the structure is, the more elements are needed.

4.3 Excitation of structural waves using SAFE

In this section a methodology for steady-state forced response wave calculation using a

semi-analytical finite element model is presented for the case of an infinite waveguide.

For simplicity the external force vector (either line or point force, depending on the

dimension of the model) is assumed to act only on the plane of the cross-section so that

its spatial distribution along the propagation axis z is described by a delta function δ(z):

f ext(z) = f0δ(z) (4.38)

Two different ways of calculating the excited wave amplitudes are presented in the

subsequent paragraphs.

– 89 –



Excitation of structures with an undesired accretion

4.3.1 Direct solution of the SAFE governing equations

The wave amplitudes can be found by solving the SAFE equation in the wavenumber -

frequency domain directly (see [65]), given the fact that a point excitation as defined in

Eq. (4.38) is a constant in wavenumber domain.

The solution is performed using the Spatial Fourier Transform (SFT) defined as:

F {q} = q̄ =

∞∫

−∞

q exp [kz] dz and q =
1

2π

∞∫

−∞

q̄ exp [−kz] dk (4.39)

which yields that the SFT of the space derivative of a quantity is given by:

F
{
∂

∂z
q

}
= −kF {q} = −kq̄ (4.40)

Let us recall the governing equation for wave propagation in an elastic waveguide in

Eq. (4.20), in which the right-hand-side is now given by the SFT of f ext(z):

(
− ω2M + K0 − kK1 − (−k)2K2

)
q̄ = f0 (4.41)

The solution is performed on the linearised form of Eq. (4.41) which brings the benefit

of applicability of the GEP properties:

[A(ω)− (−k)B(ω)] q̄ =

[
0

f0

]
= f̂0 (4.42)

where A and B are defined by Eq. (4.21) and Eq. (4.22).

The displacement vector q̄ can be written as an expansion in terms of eigenvectors.

After pre-multiplying by ψ̂i and exploiting the orthogonality of the eigenvectors with

respect to B (Eq. (4.27), Eq. (4.28)) one writes the solution as follows:

q̄ =

2n∑

i=1

f̂0

k(k − ki)
ψ̂iφ̂i (4.43)

The form of Eq. (4.43) is similar in appearance to the wave basis expressions in Eq. (4.29),

i.e. the solution to the forced wave problem is already written as a weighted superposition

of the travelling waves. Their associated mode shapes φ̂i, ψ̂i and wavenumbers ki are

calculated from Eq. (4.22). The modal weighting factor represents the amplitude of the

wave. The amplitude of wave mode i in the space domain can be found via the inverse
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Figure 4.4: Contours for integration.

SFT defined in Eq. (4.39):

ai(z) =
1

2π

+∞∫

−∞

āi exp[−kz] dk =
1

2π

+∞∫

−∞

f̂0

k − ki
ψ̂i exp[−kz] dk (4.44)

The above complex integral has simple poles at ki and a removable singularity at k = 0

(since the limit for k approaching 0 is 1). Therefore it is evaluated using Cauchy’s

residue theorem which states that the complex integral along a chosen contour is the

sum of the residues at the poles within the contour [127]. The choice of the contour of

integration depends on the solutions of interest. They can be split into two groups. For

positive-going waves (right to the force) the integral is evaluated along the semicircle

enclosing the lower half of the Re{k}-Im{k} plane, whereas the for the negative-going

waves the contour is a semicircle enclosing the upper half of the complex wavenumber

plane. In the case of an undamped waveguide the contours need to be properly amended

to classify the purely real wavenumbers appropriately using the criterion from Eq. (4.24)

or group velocity [128] (see Fig. 4.4 after [54]). Given the notation from Fig. 4.4, the

residue theorem can be written as follows [127]:

+∞∫

−∞

F (k) exp[−kz] dk =




−2π

∑
Res(ki) where ki are poles within C+ if z > 0

2π
∑

Res(ki) where ki are poles within C− if z < 0

(4.45)

where the residues are calculated as [129]:

Res

(
a(k)

b(k)
, k0

)
=

a(k0)

b′(k)|k=k0

(4.46)

Thus, after evaluating the integral one gets the excited wave amplitudes in the space

domain:
a+
i (z) = −f̂0ψ̂

+
i exp[−k+

i z]

a−i (z) = f̂0ψ̂
−
i exp[−k−i z]

(4.47)
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4.3.2 Wave approach solution

Alternatively, the excited wave amplitudes can be obtained from displacement continu-

ity and force equilibrium conditions for a section of the waveguide of an infinitesimal

length to which the external force is applied. A schematic diagram for the excited wave

amplitudes calculation via the wave approach is presented in Fig. 4.5. The cross-hatched

section is treated as a rigid body at z = 0, hence the displacement resultant from wave

propagation in positive and negative directions must be equal and forces must be in

equilibrium. Recalling the wave basis expressions that write the displacement and force

associated with the propagating wave in terms of wave mode shapes and wave amplitudes

one can write:

f0

a− a+

f0

a− a+

f− f− f+ f+

f+, f− - nodal resultant forces

Figure 4.5: Excited waves calculation via wave approach.

[
Φ+ −Φ−

Θ+ −Θ−

]{
a+

a−

}
=

{
0

f0

}
(4.48)

Eq. (4.48) can then be rearranged using inverse, pseudo-inverse or any other technique

exploiting the properties of the mode shapes (e.g. orthogonality [39]) to obtain the

excited waves amplitudes:

{
a+

a−

}
=

[
Φ+ −Φ−

Θ+ −Θ−

]−1{
0

f0

}
(4.49)

Note that both the wave approach and direct solutions described in the preceding sec-

tions refer to steady-state excitation of an infinite waveguide. In other words, they

constitute the particular solution of the non-homogeneous partial differential equation

Eq. (4.15). If a waveguide of finite length is considered, the complementary function

must be calculated. This can be done by solving the boundary conditions at the ends

of the waveguide directly [130] or, alternatively using the methodology from e.g. [39]

preferred in this thesis and referred to as ‘wave approach’.
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Figure 4.6: Comparison of transfer wave mobilities observed 0.1 m from the
force location obtained using different methods (see legend) with the dispersion
curves for the waveguide - in-plane line force exciting a 2 mm aluminium plate
covered with a 2 mm rime ice accretion.

4.3.3 Comparison with the analytical excitability approach

Provided that a sufficiently fine mesh is used in the SAFE discretisation, the results

obtained using the semi-analytical approach agree perfectly with the excitability-based

calculations. An illustrative comparison is presented in Fig. 4.6, where transfer mobilities

are compared.

The FRFs agree very well. The effect of the waves that cut-off is clearly visible as a

sudden jump in the response and noticeable change in the ‘peaks and dips’ pattern at

the following frequencies.

A combination of the two approaches with a particular focus on calculation of the ex-

citability of a lossy waveguide has been recently done by Treyssède [119]. The excitabil-

ity approach presented here is valid only for lossless waveguides, as is cannot handle

the non-propagating waves. Therefore, an alternative approach based on the real reci-

procity relation [109] is proposed in [119]. It is expected that excitation of the damped

waveguides can be analysed with the SAFE calculation outlined above as it makes no

restrictions on the wave type considered.

However, the main disadvantage of the SAFE method can be an insufficiently accurate

representation of the wave field distribution over the cross-section. Originating from
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variational principles the SAFE formulation provides a very good approximation to to-

tal wave energy and power but not necessarily for stress distribution (except Gauss

integration points) which is of main interest in this thesis. Therefore, an alternative ap-

proach can be employed – SAFE is used for calculating the dispersion curves and excited

wave amplitudes, but the wave mode shapes are extracted from the GMM method given

the frequency and the wavenumber of a point of interest. By doing so, the sensitivity to

the initial guess and step size characteristic for the GMM is circumvented with no loss

in the accuracy of the wave field representation.

4.4 Experimental validation on a beam with anechoic ter-

minations

4.4.1 Experimental setup

The SAFE model for calculating the response of the waveguide to a mechanical excitation

is validated with a simple experiment. The setup is schematically presented in Fig. 4.7.

An impact micro-hammer was used to excite a steel beam with a rectangular cross-

section. The response of the waveguide was captured using a laser vibrometer at 0.1025

m from the excitation point. The signal analyser module of the Polytec PSV300 was

used to capture the signals.

≈ 6 m

0.164 m

impact hammer

PCB 086E80

steel beam

0.0233 m× 0.0034 m
wedges ensuring a gradual

change of impedance

(minimise the reflections)

sandbox sandboxScanning head

OMV056

Polytec PSV300

Controller + PC

ICP Signal

Conditioner

velocity u̇fo
rc

e
f 0

Figure 4.7: Experimental setup for measuring the wave mobility of a beam
excited with an impact hammer.

In order to minimise reflections the ends of a 6 m long beam were placed in sandboxes

imitating anechoic boundary conditions. The beam was additionally suspended at a

few points to keep it in one position as the sand did not provide enough support. The

sandboxes are constructed in a way that provides a gradual increase of the sand ‘coating’

which is expected to minimise the reflections resulting from the sudden change in the
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4.4 Experimental validation on a beam with anechoic terminations

impedance of the waveguide. A significant length of the beam (ca. 0.5 m) was placed in

the sandboxes ensuring that as many wavelengths of interest as possible were covered.

All these are known to maximise the absorption of the flexural waves by the terminations

and enable experimental work on an infinite-like structure.

The material properties for steel are shown in Tab. 2, whereas the dimensions are given

in Fig. 4.7. Direct identification of the constants was not performed, falling outside the

scope of this thesis. Furthermore, the beam was a standard rolled mild steel profile

for which the dimensions vary considerably along the length. Therefore, noting that the

model resembles the fundamental physical characteristics of the waveguide correctly, the

beam properties were adjusted to provide a good match with the experimental data.

4.4.2 Results and discussion

The comparison between the experimental results and the results obtained from the

implemented SAFE model are shown in Fig. 4.8. The corresponding higher order wave

mode shapes that cut-off in the considered frequency range are presented in Fig. 4.9. In

general, the numerical results represent the experimentally observed response correctly

and the first higher-order transverse bending wave is predicted accurately. Nevertheless,

some features and ambiguities need to be addressed. The impact hammer has a lim-

ited capability of reproducing a perfect impulse. Apart from the common difficulty in

avoiding multiple taps, one needs to keep in mind that the real hammer impact acts as

a low-pass filter - see the input spectrum in Fig. 4.8. Therefore, the ‘usable’ frequency

range includes regions where the input spectrum is reasonably high. For example be-

tween 44–49 kHz the input spectrum experiences a dip and a discrepancy between the

model and the experiment is more apparent.

The two peaks marked as the cut-off frequencies of higher-order modes in Fig. 4.8 cor-

respond probably to the cut-off of the two higher-order waves. The cut-off frequencies

predicted by the SAFE model together with the mode shapes are shown in Fig. 4.9.

They should not be observed if both the excitation and the laser beam were perfectly

normal to the plane of the beam and located precisely at the middle of its width. These

conditions were difficult to meet in the given experimental setup, hence the peaks in the

response.
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Figure 4.9: Wave mode shapes in beam as used in the experiment computed
using SAFE wave model.
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Figure 4.8: Wave mobility of a beam excited with an impulse hammer.

The performance of the sandboxes is acceptable for the purpose of distinguishing the

propagating wave contribution from the standing waves, but it is clear that perfect

anechoity was not achieved. The ripples on the FRF up to ca. 50 kHz are the imprints

of very highly damped standing waves. Around the first cut-off frequency (29.165 kHz),

when the magnitude of the response is very high, the waves are exceptionally poorly

absorbed at the terminations. At higher frequencies the ripples are also related to the

fact that the input level provided by the hammer is very low, hence the response is of a

very low magnitude and prone to be affected by noise.
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4.5 Assessment of the mode selection criteria for invoking delamination . . .

4.5 Assessment of the mode selection criteria for invoking

delamination using SAFE

In Chapter 1 the criteria for selecting waves likely to invoke delamination were specified.

Since the implementation of the GMM model did not allow the inclusion of material

damping, an arbitrarily chosen energy condition was used to account for wave attenua-

tion based on the energy propagation analysis. The SAFE model with complex stiffness

(hysteretic damping) now enables these criteria to be assessed.
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Figure 4.10: Bottom graph–total wave power injected by an in-plane unit line
force as seen 0.2 m from the excitation for different rime ice loss factors; top
graph–corresponding dispersion curves for an undamped case with colours de-
noting - blue: ENR < 0.6 and red: ENR ≥ 0.6.

In order to do this, the total wave power injected by a line in-plane force (Fz = 1 N m−1)

was computed for a 2 mm aluminium plate covered with a 2 mm rime ice accretion with

different loss factors using SAFE. As a reference the distribution of values of the energy

ratio ENR as defined in Section 2.3 was calculated for an undamped accretion. The aim

was to determine whether the waves with ENR > 0.6 carry any significant power, i. e.

if not taking them into account as done in Chapter 2 is justifiable. In order to provide

a direct relevance to the corresponding GMM results, mono-dimensional plane strain

quadratic elements were used in SAFE. The results are presented in Fig. 4.10.

The peaks in power-frequency curves correspond to the cut-off frequencies of higher-

order waves. Apart from the one cutting off at around 800 kHz they are all build-up

dominated, thus likely to be heavily attenuated if damping is considered. This can be
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observed in Fig. 4.10 - the peaks diminish if the loss factor increases and even transform

into valleys for large η. The wave cutting off at around 800 kHz is host dominated, so is

quite well excited even if the host is covered by a lossy accretion. It is associated with

the highest peak in the undamped case and retains the status of the maximum of the

power-frequency curve even for a damped waveguide.

These simple results prove the approach adopted in Chapter 1 correct and valid as an

indicator. Therefore, high interface stress associated with waves that cut-off can only

be efficiently exploited for host dominated waves. The regions with ENR > 0.6 do not

carry power in a damped waveguide and therefore are not to be considered for removing

structural accretions.

4.6 Conclusions

The semi-analytical finite elements enable modelling of structural wave propagation in

waveguides of an arbitrary cross-section. It also allows modelling of damped waveguides

with no change to the solution algorithms. The methodology was introduced and im-

plemented. Various aspects including the free wave modal properties and convergence

criteria were discussed. The excitation of structural waves was considered using two

different techniques, namely direct solution of the SAFE equation and the analytical

wave approach. Both of them were compared and proven to be equivalent.

An experimental validation of the implemented SAFE model was performed on a beam-

like waveguide with emulated anechoic terminations. The results agreed very well with

the numerical simulation. The wave nature of the model was exploited to show various

wave modes present in the response.

Finally, the criteria for wave mode selection employed in Chapter 1 and Chapter 2 are

assessed with the aid of the SAFE model. The chosen energy distribution criterion is

shown to be appropriate.

Some drawbacks of the analytical modelling from the previous chapters were successfully

addressed above. The next step is to incorporate a piezoelectric actuator in the SAFE-

based model in a way that enables dropping the quasi-static assumption.
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Chapter 5

Semi-analytical finite elements

for modelling piezoelectric

excitation

The common modelling strategies for piezoelectric excitation in waveguides as described

in Chapter 1 are not applicable to a large class of problems containing removal of un-

wanted accretions using structural waves among others. The assumptions in place (e.g.

in pin-force model) put into question the validity of these approaches when the actua-

tor’s thickness is comparable to the one of the waveguide and when it is driven at high

frequencies, possibly close to its resonances. One could then choose costly finite element

models that are potentially not bound by the aforementioned limitations, however they

require implementing cumbersome techniques in order to provide absorbing boundaries

for wave calculations.

An alternative methodology exploiting the versatility of the SAFE formulation and the

generality of the wave approach is proposed in this chapter. It starts from the devel-

opment of a new piezoelectric SAFE element for modelling electroded piezo elements

and formulating the framework for calculating the steady-state response to a distributed

voltage excitation, which to the best knowledge of the author have not been done to date.

The SAFE model is coupled with the analytical wave approach, which accommodated

calculations in the wave domain and supports modelling scattering at the discontinu-

ities. Thanks to the piezoelectric SAFE element the dynamics of the actuator can be

accounted for and bonding conditions can freely be represented either by additional layer

of elastic/viscoelastic SAFE elements or spring SAFE elements as discussed in [68].

The workflow describing the methodology for a simple example of an infinite waveguide

with a finite piezoelectric actuator is shown in Fig. 5.1. The diagram outlines the main
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PZT layer

elastic substrate

Split the waveguide
into wave elements

element 1 element 2 element 3

(elastic) (elastic with PZT) (elastic)

Find the wave bases
and excited waves (SAFE)

k1, Φ1, Ψ1 k2, Φ2, Ψ2 k3, Φ3, Ψ3

p− p+

Couple the elements
using wave approach

scattering
matrix TL

scattering
matrix TR

a−1 a+2 a+3a−2

Evaluate the response
FRFs, impedance, power

Figure 5.1: The workflow for calculating the response to the piezoelectric exci-
tation using the piezoelectric SAFE method and wave approach.

stages of the calculation. After the structure is split into homogeneous wave elements, the

wave basis (i.e. dispersion curves and wave mode shapes) and excited wave amplitudes

are obtained for each of them. At the later stage all wave elements are coupled together

using the analytical wave approach and the desired response is computed in the wave

domain.

In the following sections the mathematical derivation of the piezoelectric SAFE element

and excited wave calculation methods are presented. The limitations and numerical

issues related to the implementation are briefly discussed. Finally, the model is success-

fully validated with an experiment.

5.1 Semi-analytical finite element formulation for an elas-

tic waveguide with piezoelectric coupling

The mathematical framework for the SAFE method for the piezoelectric waveguide is

developed below. Some parts of the equations and the flow of argument is similar to

the ones presented for mechanical SAFE in Chapter 4. Any repetitions are left for the

convenience of the reader.

The model presented below involves the following assumptions and limitations:

• the allowable deformation of the cross-section is dictated by the finite element

approximation (convergence needs to be ensured),
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5.1 Piezoelectric SAFE element

• the piezoelectric is assumed to be polarised along y direction,

• the electric field vector is assumed to quasi -static,

• the electric field in the direction of propagation is assumed to be zero (the effect

of one of the shear piezoelectric coefficients is neglected).

5.1.1 Derivation of the piezoelectric SAFE element

It is assumed that the cross-section of the structure lies in the x-y plane and that the

wave propagates along the z direction (see labelling conventions in Fig. 5.2). The cross-

section in general can be zero-, one- or two-dimensional. Only the two dimensional case

is presented in the thesis, however the other cases can easily be recovered by removing

appropriate degrees of freedom and altering the element shape functions.

5.1.1.1 Cross-section discretisation

The displacement and strain fields over a wave element are defined analogously to as

Eq. (4.1) [64]

u =
[
ux uy uz

]>

ε =
[
εxx εyy εzz γyz γxz γxy

]>

σ =
[
σxx σyy σzz σyz σxz σxy

]>

where the time-harmonic term exp[ωt] is omitted for brevity.

Similarly to Chapter 4, the cross-section is discretised in an FE-like manner using 8-node

quadrilateral biquadratic element, however the choice of the element is dictated by the

considered case. Linear elements can also be used, however an accurate approximation of

the wave field at high frequencies can be achieved at lower cost with quadratic elements.

exp [−k−z] exp [−k+z]

1
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4
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Figure 5.2: Piezoelectric SAFE element - the coordinates and degrees of free-
dom.
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The field variables from Eq. (4.1) are expressed using the element shape functions (in

the cross-section plane) and the nodal degrees of freedom (DOFs) as implied by the FE

approximation. Given the nodal displacements vector q, the displacement at any point

within the SAFE element is

u(x, y, z) = N(x, y)q(z) (5.1)

where N(x, y) is the displacement shape function matrix.

Following from Eq. (4.3) one writes the strain in terms of the shape functions and the

nodal DOFs

ε(x, y, z) =

[
Lx

∂

∂x
+ Ly

∂

∂y
+ Lz

∂

∂z

]
u(x, y) =

[
LxN,x + LyN,y + Lz

∂

∂z
N

]
q(z) = B1q + B2

∂

∂z
q(z)

(5.2)

where N,x = ∂
∂xN and Lx, Ly, Lz, are given in Eq. (4.5).

In a piezoelectric element each node has an additional degree of freedom representing the

electrical potential ϕ. Therefore, the electrical potential in the waveguide ϑ is expressed

as

ϑ = Nϕϕ (5.3)

5.1.1.2 Constitutive equations

The constitutive equations governing the behaviour of the piezoelectric material are

written in matricial ‘e’ form [131]:

σ = CEε− e>E

D = eε+ εεE
(5.4)

where CE, e, E, D, εε are the stiffness matrix measured under zero-electric field (short-

circuit) condition, piezoelectric stress coefficient matrix, electric field vector, electric

displacement vector and permittivity matrix measured at zero-strain (clamped) condi-

tion, respectively.

The electromagnetic behaviour of a piezoelectric material is described via Maxwell’s

equations. However, since no time-varying magnetic field is assumed, curl E is zero.

This is commonly referred to as the quasi -static (or quasi -electrostatic) approximation,
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5.1 Piezoelectric SAFE element

even though E is time-varying [109, 132]. Thanks to that, the electric field can be

expressed as a scalar gradient of the potential

E(x, y, z) = −∇ϑ (5.5)

Given the discretisation of the cross-section one writes [133–135]

E(x, y, z) =−∇ϑ = −
[
∂
∂x

∂
∂y

∂
∂z

]>
Nϕϕ (5.6)

where the electrical potential shape functions Nϕ are chosen to be the same as the

displacement shape functions N.

In this work piezoelectric elements are developed to be used for modelling actuators made

of bulk piezoelectric ceramic (PZT) with two electroded surfaces. A driving voltage is

applied across the thickness of the PZT element (y direction) and the electric field is

assumed not to change along the propagation direction z. The SAFE matrices related to

the electric field will then be z-invariant, which facilitates condensation of the potentials.

By doing so, the contribution of the piezoelectric coefficient associated with the voltage

gradient along z is neglected, which is not expected to invoke a significant error for

wave excitation calculation (the voltage is applied along the direction y). Eq. (5.6) is

rewritten as

E(x, y, z) =−
[
Nϕ,x Nϕ,y 0

]>
ϕ = −Bϕϕ (5.7)

Substituting Eqs. (4.4), (5.7) into Eq. (5.4) one gets the constitutive equations expressed

in terms of nodal degrees of freedom and element shape functions

σ = CE

(
B1q + B2

∂

∂z
q

)
+ e>Bϕϕ

D = e

(
B1q + B2

∂

∂z
q

)
− εεBϕϕ

(5.8)

If one sets the piezoelectric coefficients in e and dielectric constants in εε to zero, stan-

dard elastic Hooke’s Law equations are recovered.

5.1.1.3 Virtual work principle for piezoelectric semi-analytical finite ele-

ment

The governing equations for wave propagation are obtained with the aid of the virtual

work principle for deformable bodies and the analogous principle of virtual electric poten-

tials [132, 134, 135]. The analysed section of a piezoelectric waveguide occupies volume

– 103 –



SAFE modelling of piezoelectric excitation

V which is formed by a cross-section Ω extruded through length L and is bounded by

surface Γ. The boundary conditions (BC) on Γ are the following:

• Essential mechanical BC on Γu (Dirchelet BC): u = u

• Essential electrical BC on Γϕ (Dirchelet BC): ϕ = ϕ

• Natural mechanical BC on Γσ (Neumann BC): σijnj = ti

• Natural electrical BC on Γ% (Neumann BC): niDi = %i

where u and ϕ are the prescribed displacement and potential, respectively, and ti, %i are

the applied surface traction and the applied surface charge, respectively. The respective

bounding surfaces related to each pair of the boundary conditions are exclusive and

their unions form the whole surface, i.e. Γu ∪ Γσ = Γ, Γu ∩ Γσ = 0 and analogously

Γϕ ∪ Γ% = Γ, Γϕ ∩ Γ% = 0.

Given the constitutive equations, the mechanical equilibrium condition, and the essential

boundary conditions given above the virtual work principle states that for every time t

work done by
external surface

tractions︷ ︸︸ ︷∫

Γσ

δu>t dΓσ +

work done by
nodal forces︷ ︸︸ ︷
δq>f i =

work done by
inertia body forces︷ ︸︸ ︷∫

V

δu>(ρü) dV +

work done by
the stress field︷ ︸︸ ︷∫

V

δε>σ dV (5.9)

where t is the external tractions vector, f i is the vector of nodal forces applied at the

ends of the considered section of the waveguide of length L and ρ is the density of the

material.

Similarly, under the essential boundary conditions, the virtual electric potentials prin-

ciple states that for every time t

−

work done by
external surface

charges︷ ︸︸ ︷∫

Γ%

δϕ>% dΓ% =

work done by
the electric

displacement field︷ ︸︸ ︷∫

V

δE>D dV (5.10)

where % is the external surface charge vector.

The constitutive equations from Eq. (5.8) are substituted into each of the components

in Eqs. (5.9) and (5.10) along with the finite element approximations given in Eqs. (4.3),

(4.4), (5.7). The detailed algebraic manipulations for all of the components are omitted

below for the sake of clarity but only the final equations for each component are given.
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The work done on the stress field by the strain field is given by

∫

V

δε>σ dV =

∫

Ω

[
δq>

(
B>2 CB1q + B>2 CB2

∂

∂z
q + B>2 e>Bϕϕ

)]
dΩ

+

∫

Ω

∫

L

[
δq>B>1 CB1q + δq>

(
B>1 CB2 −B>2 CB1

) ∂

∂z
q

− δq>B>2 CB2
∂2

∂z2
q + δq>B>1 e>Bϕϕ− δq>B>2 e>Bϕ

∂

∂z
ϕ

]
dzdΩ

(5.11)

The work done on the electric displacement field by the electric field is given by

∫

V

δE>D dV =

∫

V

[
δϕ>B>ϕε

sBϕϕ− δϕ>B>ϕ

(
eB1q + B>ϕeB2

∂

∂z
q

)]
dV (5.12)

The work done by the intertia forces and the distributed tractions term are the same as

in Eq. (4.9) and Eq. (4.11), respectively.

In order to clarify the formulation the following notation is adopted which results from

the integration of the matrices over the cross-sectional element domain:

M =

∫

Ω

N>ρN dΩ Kf =

∫

Ω

B>2 CB1 dΩ

K0 =

∫

Ω

B>1 CB1 dΩ Kuϕ
0 = Kϕu>

0 =

∫

Ω

B>1 e>Bϕ dΩ

K1 =

∫

Ω

K>f −Kf dΩ Kuϕ
1 = Kϕu>

1 =

∫

Ω

B>2 e>Bϕ dΩ

K2 =

∫

Ω

B>2 CB2 dΩ Kϕϕ =

∫

Ω

B>ϕε
sBϕ dΩ

p =

∫

Γσ

N>Nti dΓσ Υ =

∫

Γ%

%dΓ%

(5.13)

Let us now rewrite both variational equations Eq. (5.9) and Eq. (5.10) using the notation

from Eq. (4.13). Rearranging the terms one obtains

0 =

∫

L

{
δq>

(
M

∂2

∂t2
q + K0q + K1

∂

∂z
q−K2

∂2

∂z2
q
)

+

δq>
(
Kuϕ

0 ϕ−Kuϕ
1

∂

∂z
ϕ
)
− δq>p

}
dz+

δq>
[
Kfq + K2

∂

∂z
q + Kuϕ

1 ϕ− f i

]

(5.14)
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and

0 =

∫

L

{
δϕ>Kϕϕϕ− δϕ>

(
Kϕu

0 q + Kϕu
1

∂

∂z
q

)
+ δϕ>Υ

}
dz (5.15)

Eq. (4.14) contains two main terms – the first is related to the wave field behaviour

over the length L and the second corresponds to cross-sections at the ends of L. Both

equations contain terms reflecting the electromechanical coupling. They need to hold

for every time t and any admissible virtual displacement δq and virtual potential δϕ,

which leads to the governing equation for wave propagation in a waveguide with .

5.1.1.4 Governing equations for wave propagation and resultant nodal forces

From Eqs. (5.14), (5.15) one can conclude the set of the governing equations for wave

propagation

M
∂2

∂t2
q + K0q + K1

∂

∂z
q−K2

∂2

∂z2
q + Kuϕ

0 ϕ−Kuϕ
1

∂

∂z
ϕ = p

Kϕu
0 q + Kϕu

1

∂

∂z
q−Kϕϕϕ = Υ

(5.16)

and the natural boundary condition stating that at the ends of the considered section

of the waveguide

q = 0 or f i = Kfq + K2
∂

∂z
q + Kuϕ

1 ϕ (5.17)

which directly provides the expression for the resultant nodal forces.

Solution to Eq. (5.16) is performed using the Spatial Fourier Transform (SFT) defined

in Eq. (4.39)

F {q} = q̄ =

∞∫

−∞

q exp [kz] dz and q =
1

2π

∞∫

−∞

q̄ exp [−kz] dk

which yields that the SFT of the space derivative of a quantity is given by Eq. (4.40)

F
{
∂

∂z
q

}
= −kF {q} = −kq̄

Applying Eqs. (4.39) and (4.40) to Eq. (5.16) and performing the time derivation under

the harmonic motion assumption, one writes

([
−ω2M 0

0 0

]
+

[
K0 − kK1 − (−k)2K2 Kuϕ

0 + kKuϕ
1

Kϕu
0 − kKϕu

1 −Kϕϕ

]){
q̄

ϕ̄

}
=

{
p̄

Ῡ

}
(5.18)
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Eq. (5.18) is the governing equation for wave propagation in a piezoelectric waveguide

in the wavenumber-frequency domain. After same transformations the resultant forces

over the cross-section are given by

f̄ i = Kf q̄− kK2q̄ + Kuϕ
1 ϕ̄ (5.19)

5.1.1.5 Static condensation of the internal potentials

The focus of the procedure is the application to piezoelectric actuators where the outer

surfaces perpendicular to the propagation direction are electroded. One of the electrodes

is grounded and the other one is driven with voltage v. It is therefore advantageous to

express the above equation in terms of driving voltage which can be done by condensing

out the potentials at the internal nodes via static condensation [133, 134, 136]. For sake

of brevity we write the SAFE matrices in the following manner:

Kuu(k) = K0 − kK1 − (−k)2K2

Kuϕ(k) = Kuϕ
0 + kKuϕ

1

Kϕu(k) = Kϕu
0 − kKϕu

1

(5.20)

In the following the index i denotes the internal nodes, index v denotes the nodes on the

powered electrode and finally the index 0 denotes the nodes on the grounded electrode.

Eq. (4.20) is then rewritten as




Kuu(k)− ω2M Kuϕ
v (k) Kuϕ

0 (k) Kuϕ
i (k)

Kϕu
v (k) −Kϕϕ

vv −Kϕϕ
v0 −Kϕϕ

vi

Kϕu
0 (k) −Kϕϕ

0v −Kϕϕ
00 −Kϕϕ

0i

Kϕu
i (k) −Kϕϕ

iV −Kϕϕ
i0 −Kϕϕ

ii








q̄

ϕ̄v

ϕ̄0

ϕ̄i





=





p̄

Ῡv

0

0





(5.21)

We assume that there are no external forces and remove rows and columns associated

with the grounded electrode ϕ̄0 since ϕ̄0 = 0. Potentials at the internal nodes can be

extracted from the third equation

ϕ̄i = (Kϕϕ
ii )
−1 (

Kϕu
i (k)q̄−Kϕϕ

iV ϕ̄v
)

(5.22)
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And finally the governing equation can be rewritten using the condensed potentials




Kuu(k) Kuϕ
v (k)

− ω2M + Kuϕ
i (k) (Kϕϕ

ii )
−1

Kϕu
i (k) −Kuϕ

i (k) (Kϕϕ
ii )
−1

Kϕϕ
iV

Kϕu
v (k) −Kϕϕ

vv

−Kϕϕ
vi (Kϕϕ

ii )
−1

Kϕu
i (k) + Kϕϕ

vi (Kϕϕ
ii )
−1

Kϕϕ
iV



·

{
q̄

ϕ̄v

}
=

{
0

Ῡv

}

(5.23)

The matrices above are expanded according to the shorthand notation introduced in

Eq. (5.20) and the resulting equations rearranged and grouped with respect to the order

of the wavenumber. All components of the driving voltage subvector ϕv are equal since

voltage is constant over the driving electrode. Hence, the contributions of all nodes on

the powered electrode can be summed up providing an elegant equation with only one

electrical driving voltage v. Similarly, the reaction charge is summed across the ‘line’

electrode yielding total reaction charge q that is straightforwardly related to the current

drawn by the actuator

i = ωq (5.24)

After some algebraic manipulations the condensed matrices can be written in the form

K̃0 = K0 + Kuϕ
0i (Kϕϕ

ii )
−1

Kϕu
0i

K̃1 = K1 +
[
Kuϕ

0i (Kϕϕ
ii )
−1

Kϕu
1i −Kuϕ

1i (Kϕϕ
ii )
−1

Kϕu
0i

]

K̃2 = K2 + Kuϕ
1i (Kϕϕ

ii )
−1

Kϕu
1i

K̃
uϕ
0 = K̃

ϕu>

0 =

[
Kuϕ

0v −Kuϕ
0i

(
K̃
ϕϕ
ii

)−1
Kϕϕ
iv

]
Iv

K̃
uϕ
1 = K̃

ϕu>

1 =
[
Kuϕ

1v −Kuϕ
1i (Kϕϕ

ii )
−1

Kϕϕ
iV

]
Iv

K̃
ϕϕ

= Iv
>
[
Kϕϕ
vv −Kϕϕ

V i (Kϕϕ
ii )
−1

Kϕϕ
iV

]
Iv

K̃f = Kf + Kuϕ
1i (Kϕϕ

ii )
−1

Kϕu
0i

(5.25)

where Iv =
[
1 1 . . . 1

]>
is the vector of the length equal to the number of nodes on

the powered piezoelectric electrode [134].

The governing equations can be finally written in terms of the condensed matrices

[
K̃0 − kK̃1 − (−k)2K̃2 − ω2M K̃

uϕ
0 + kK̃

uϕ
1

K̃
ϕu
0 − kK̃

ϕu
1 −K̃

ϕϕ

]{
q̄

v

}
=

{
p̄

q

}
(5.26)
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where q is the total reaction charge over the powered electrode and v is the driving

voltage. The tilde {̃} symbol indicates that the matrix is amended to account for the

condensed potentials.

Analogously, the internal forces vector is rewritten as

f̄ i = K̃f q̄− kK̃2q̄ + K̃
uϕ
1 v (5.27)

5.1.2 Free elastic waves in a waveguide with piezoelectric coupling

Let us now look at the free wave propagation in an elastic waveguide with piezoelectric

coupling. As a consequence of the quasi -electrostatic assumption, only elastic waves are

permitted. The role of the piezoelectric coupling is to provide means of exciting the

waveguide, sensing the travelling waves, harvesting the mechanical energy or stiffening

the waveguide with the spatially-static nature of voltage kept in mind.

Before the response to the distributed voltage is introduced we look at the calculation

and basic characteristics of the free waves which form a basis for the forced response

solution. The SAFE equations for an elastic waveguide can be recovered from Eqs. (5.26),

(5.27) by setting all the piezoelectric material constants to zero. The solution procedure

for free waves remains the same.

5.1.2.1 Electrical conditions

Free waves in a waveguide with piezoelectric coupling can be considered either in the

short-circuit or in the open-circuit condition. The former implies that the voltage in the

powered electrode is set to zero (v = 0) resulting in the quadratic eigenvalue problem

(QEP) [
K̃0 + λK̃1 − λ2K̃2 − ω2M

]
φ = 0 (5.28)

where φ is the eigenvector.

Conversely, for the open-circuit electrodes the ‘driving’ charge Q is set to zero. The

modal potential at the powered electrode is then extracted from the second row of
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Eq.(5.26): v =
(
K̃
ϕϕ
)−1 (

K̃
ϕu
0 + kK̃

ϕu
1

)
φ, and substituted back in the first row equa-

tion. After some manipulation one obtains

{[
K̃0 + K̃

uϕ
0

(
K̃
ϕϕ
)−1

K̃
ϕu
0 − ω2M

]
+

λ

[
K̃1 + K̃

uϕ
0

(
K̃
ϕϕ
)−1

K̃
ϕu
1 − K̃

uϕ
1

(
K̃
ϕϕ
)−1

K̃
ϕu
0

]
−

λ2

[
K̃2 + K̃

uϕ
1

(
K̃
ϕϕ
)−1

K̃
ϕu
1

]}
φ = 0

(5.29)

The form of the eigenvalue problem is similar to Eq. (5.28) with the stiffness matrices

enhanced. Therefore, Eq. (5.29) indicates that in the open-circuit condition the struc-

ture is stiffened compared to the short-circuit case. This is a well-known effect of the

piezoelectric coupling on the elastic behaviour of the material.

In this thesis the voltage is the ‘driving’ variable. The charge is a response variable associ-

ated with how the actuator-structure system responds to the applied voltage. Therefore,

the short-circuit condition equations are considered hereafter. However, the procedure

outlined below can be applied to both aforementioned cases.

5.1.2.2 Free wave solution

Similarly to Chapter 4, the solution to the QEP in Eq. (5.28) is performed using lin-

earisation by doubling the size of the system. A new eigenvector is introduced as

φ̂ =
[
φ λφ

]>
and the SAFE governing equation from Eq. (5.28) is rewritten as a

generalised eigenvalue problem (GEP)

([
0 K̃0 − ω2M

K̃0 − ω2M K̃1

]
− λ

[
K̃0 − ω2M 0

0 K̃2

]){
φ

λφ

}
= 0 (5.30)

or more concisely as

[A(ω)− λB(ω)] φ̂ = 0 (5.31)

where A, B are of dimensions 2n× 2n, n is the number of the displacement degrees of

freedom in the cross-section and

λ = −k

Since there is no difference in the description of the free wave solution, the matrices

and eigenvectors structure and the modal solution properties, the reader is referred

to Section 4.2 where these matters were discussed for SAFE elements for mechanical

waveguides.
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p− p+

powered

grounded
PZT →

elastic →

z′

v(z′)

L/2−L/2

v0

Figure 5.3: Piezoelectric waveguide driven electrically over a finite length. Ex-
cited waves amplitudes and voltage spatial distribution.

5.1.3 Excitation of structural waves in an elastic waveguide covered

with a piezoelectric layer powered over a finite length

In this section the piezoelectric wave element developed above is used to study struc-

tural waves excitation as a response to a spatially distributed voltage. We consider a

steady-state response in an infinite elastic layer covered over its whole length by an

electroded piezoelectric layer (Fig. 5.3). A finite section of the electrode is driven with

time-harmonic voltage v0. Note that the ‘driving’ section is electrically isolated from

adjacent parts of the waveguide. The hatched region represents the section of the piezo-

electric layer under electrical excitation. The adjacent sections of the waveguide are in

the short-circuit condition. Vectors p− and p+ represent the waves generated by the

distributed patch-like piezoelectric excitation as they enter the non-powered region. A

local coordinate system (z′) is introduced with the origin in the middle of the length of

the piezoelectric actuator. The spatial distribution of voltage v(z′) is a rectangular box

function as shown in Fig. 5.3, such that

v(z′) =




v0 if z′ ≤ |L/2|
0 otherwise

(5.32)

5.1.3.1 Direct solution of the SAFE equation

The wave amplitudes can be found by solving the SAFE equation in the wavenumber -

frequency domain directly, given the spatial distribution of voltage (the approach similar

to [54] where the response to a distributed pressure is considered). Let us recall the top

row of the governing equation for wave propagation in the piezoelectric waveguide in
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Eq. (5.26), assuming no external tractions for the sake of clarity of the formulation

(
K̃0 − kK̃1 − (−k)2K̃2 − ω2M

)
q̄ =

(
−K̃

uϕ
0 − kK̃

uϕ
1

)
v̄ (5.33)

where v̄ is the SFT of the voltage spatial distribution given by

v̄ =

∞∫

−∞

v(z′) exp [kz′] dz′ = 2v0
sin (kL/2)

k
(5.34)

The solution is performed on the linearised form of Eq.(5.33) which enables the use of

GEP properties

[A(ω)− (−k)B(ω)] q̄ =

[
0

−K̃
uϕ
0 − kK̃

uϕ
1

]
v̄ (5.35)

The displacement vector q̄ can be written as an expansion in terms of eigenvectors.

After pre-multiplying by ψ̂i and exploiting the orthogonality of the eigenvectors with

respect to B (Eq. (4.27)) one writes the solution as

q̄ =
2n∑

i=1

2v0 sin (kL/2)

k(k − ki)
ψ̂i

[
0

−K̃
uϕ
0 − kK̃

uϕ
1

]
φ̂i =

2n∑

i=1

φ̂ip̄i (5.36)

where the v̄ was substituted with the expression from Eq. (5.34).

The form of Eq. (5.36) is similar in appearance to the wave basis expressions in Eq. (4.29),

i.e. the solution to the voltage excited wave problem is already written as a weighted

superposition of the travelling waves. The modal weighting factor representing the

amplitude of wave i in the space domain is found via the inverse SFT defined in Eq. (4.39)

pi(z
′) =

1

2π

+∞∫

−∞

p̄i exp[−kz′] dk =

1

2π

+∞∫

−∞

2v0 sin (kL/2)

k(k − ki)
ψ̂i

[
0

−K̃
uϕ
0 − kK̃

uϕ
1

]
exp[−kz′] dk

(5.37)

The above complex integral has simple poles at ki and a removable singularity at k = 0

(since the limit for k approaching 0 is 1) and therefore it is evaluated using Cauchy’s

residue theorem [127] outlined in Section 4.3.1. The contours of integrations are shown

again in Fig. 5.4 [54] for reference. The Cauchy’s residue theorem can be written as
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Im(k)

Re(k)

k−i

k+i

C− Im(k)

Re(k)

k−i

k+i

C+

Figure 5.4: Contours for integration.

follows [127]

+∞∫

−∞

F (k) exp[−kz′] dk =




−2π

∑
Res(ki) where ki are poles within C+ if z′ > 0

2π
∑

Res(ki) where ki are poles within C− if z′ < 0

(5.38)

where the residues are calculated as [129]

Res

(
a(k)

b(k)
, k0

)
=

a(k0)

b′(k)|k=k0

(5.39)

After evaluating the integral one obtains the excited wave amplitudes in the space do-

main

p+
i (z′) = −2v0 sin (k+

i L/2)

k+
i

ψ̂+
i

[
0

−K̃
uϕ
0 − k+

i K̃
uϕ
1

]
exp[−k+

i z
′]

p−i (z′) =
2v0 sin (k−i L/2)

k−i
ψ̂−

i

[
0

−K̃
uϕ
0 − k−i K̃

uϕ
1

]
exp[−k−i z′]

(5.40)

Note that the excited wave amplitudes p+
i (z′), p−i (z′) are expressed with reference to

the local coordinate system as depicted in Fig. 5.3. In order to obtain the excited waves

amplitudes as they appear at the ends of the electrically driven region, they need to

be multiplied by appropriate space harmonic term representing propagation over L/2,

yielding

p+
i = −v0

(
1− exp [−k+

i L]
)

k+
i

ψ̂+
i

[
0

−K̃
uϕ
0 − k+

i K̃
uϕ
1

]

p−i =
v0

(
exp [k−i L]− 1

)

k−i
ψ̂−

i

[
0

−K̃
uϕ
0 − k−i K̃

uϕ
1

] (5.41)

Eq. (5.41) provides expressions for wave amplitudes excited by a voltage uniformly dis-

tributed over L in an infinite piezo-covered waveguide as they appear at the ends of the
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driving section. Identical expressions can be found from convolving the response to a

point voltage excitation with the spatial voltage distribution.

5.1.3.2 Solution via convolution of point excitations

Alternatively, the wave amplitudes generated by the electrical excitation over a finite

length can be expressed as a superposition of voltage point excitations defined as

v(z′) = v0δ(z
′) =




v0 if z′ = 0

0 otherwise
(5.42)

The response to a single point voltage excitation is calculated from the SAFE equation

in a manner similar to the one presented above. Since the SFT of a delta function as

defined in Eq. (5.42) is v0, the excited wave amplitudes are

d+
i = −v0ψ̂

+
i

[
0

−K̃
uϕ
0 − k+

i K̃
uϕ
1

]

d−i = v0ψ̂
−
i

[
0

−K̃
uϕ
0 − k−i K̃

uϕ
1

] (5.43)

The resultant generated wave amplitudes as they appear at the ends of the excited

region are obtained by convolving the point excitation wave amplitudes with the spatial

distribution of voltage Eq. (5.32)

p+
j =

L∫

0

d+
j exp[−k+

j z
′] dz′ =

d+
j

−k+
j

(exp[−k+
j L]− 1)

p−j =

L∫

0

d−j exp[k−j z
′] dz′ =

d−j
k−j

(exp[k−j L]− 1)

(5.44)

Expressions for wave amplitudes after substituting Eq. (5.43) are identical with the ones

given in Eq. (5.41).

5.2 Wave approach

The semi-analytical finite element approach per se is only applicable to infinite waveg-

uides with a uniform cross-section. In order to accommodate modelling structural wave

excitation with finite piezoelectric actuators, but also more complex structures in gen-

eral, the analytical wave approach is employed. The SAFE model serves as a kernel
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module that provides the wave bases (see Section 4.2.1) and excited wave amplitudes

for each wave element, i.e. each homogeneous section of the complex waveguide under

consideration. The further solution is conducted in the wave domain using analytical

relationships representing scattering and reflection.

5.2.1 Wave basis

The wave basis for a piezoelectric waveguide is the same as for the elastic waveguide

since only elastic waves are permitted in the former. Let us recall it for convenience

{
q(z)

f(z)

}
=

{
Φ

Θ

}
a(z) =

[
φ+ φ−

θ+ θ−

]{
a+(z)

a−(z)

}

where φ+,− are positive- and negative-going displacement wave mode shapes obtained by

taking the upper half of the extended eigenvector φ̂i; θ
+,− are the force wave mode shapes

obtained from Eq. (5.27): θ =
[
K̃f K̃2

]
φ̂, and a+(z), a−(z) are the corresponding

wave amplitudes.

As in Chapter 4 the wave amplitude change along the waveguide is described by the

space-harmonic term called the propagation matrix τ (z)

a+(z) = a0
+diag (exp [−kiz]) = a0

+τ (z)

where a0
+ is the wave amplitude at a chosen origin.

5.2.2 Wave scattering and reflection

The wave approach involves coupling together wave elements that have different dimen-

sions and properties. The wave elements are required to be meshed in such a way that

all the nodes from the overlapping regions of two adjacent waveguides are coincident.

Wave scattering at discontinuities and reflection at the boundaries is represented here

in the same way as proposed in [38, 39].

When incident on the junction, the wave scatters into reflected and transmitted com-

ponents. The frequency dependent scattering matrix can be found by solving simul-

taneously the conditions of displacement continuity and force equilibrium between the

adjacent sections [38]. With reference to Fig. 5.5b, let us write them in the matrix form

using the wave basis defined in Eq. (4.29)

[
−C1φ

−
1 C2φ

+
2

−E1θ
−
1 E2θ

+
2

]{
g−

f+

}
=

[
C1φ

+
1 −C2φ

−
2

E1θ
+
1 −E2θ

−
2

]{
g+

f−

}
(5.45)
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φ, θ
boundary conditions

given by: A, B

g+

g−

(a) wave reflection at the boundary

φ1, θ1 φ2, θ2

section 1 section 2

g+

g−
f+

f−

(b) wave scattering at a junction between two
waveguides

Figure 5.5: Schematic wave diagrams for calculation of wave scattering at dis-
continuities.

where C1, C2 are continuity matrices that provide information about the coincident

nodes in both sections and leaving the uncoupled nodes free, whereas E1, E2 are equi-

librium matrices that are balancing the nodal resultant forces at the coincident nodes

and setting the resultant nodal forces at the uncoupled nodes to zero.

By inverting the matrix on the right hand side of Eq. (5.45) one can express the waves

leaving the junction in terms of the waves incident upon the junction by means of the

scattering matrix T

{
g−

f+

}
=

[
−C1φ

−
1 C2φ

+
2

−E1θ
−
1 E2θ

+
2

]−1 [
C1φ

+
1 −C2φ

−
2

E1θ
+
1 −E2θ

−
2

]{
g+

f−

}
=

[
R11 T21

T12 R22

]{
g+

f−

}
= T

{
g+

f−

} (5.46)

where the structure of the scattering matrix is clearly shown in the last step.

Similarly, wave reflection at the boundary can be determined using the wave basis.

Depending on the type of the boundary condition either the displacement or force degree

of freedom is set to zero. With reference to Fig. 5.5a this can be represented in a matrix

form as [39]

Af + Bq = 0 (5.47)

which in terms of the wave basis defined in Eq. (4.29) is written as

A
[
θ+g+ + θ−g−

]
+ B

[
φ+g+ + φ−g−

]
= 0 (5.48)

The reflection matrix relates the wave leaving the boundary to the wave incident upon

the boundary, such that g− = Rg+ (for the ‘right’ boundary). After rearranging

Eq. (5.48) one obtains an expression for a reflection matrix at the ‘right’ boundary,
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i.e. with positive-going wave incident, given the characteristics of the boundary A, B

R = −
[
Aθ− + Bφ−

]−1 [
Aθ+ + Bφ+

]
(5.49)

5.3 Structural waves excitation using a piezoelectric actu-

ator

The approach is demonstrated on a simple model of an infinite waveguide with a rectan-

gular cross-section equipped with a finite piezo actuator (see Fig. 5.1). The structure is

first subdivided into 3 wave elements, i.e. two (identical) elastic elements and one elastic

element covered with a piezoelectric layer. Each wave element is analysed using a SAFE

model in order to find the wave bases and the amplitudes of waves generated by the

voltage excitation. Afterwards, the coupling between the wave elements is implemented

using scattering matrices. Finally, the desired response is computed in the wave domain.

The scattering matrices for the two junctions are calculated according to Eq. (5.46) at

each frequency.

Calculation of the response of a waveguide of either finite or indefinite length is essentially

solving a non-homogeneous partial differential equation. Its solution has two parts: par-

ticular integral and complementary function. Particular integral represents the response

of the waveguide to forcing as if the waveguide was infinite, whereas complementary

function represents free waves travelling between the boundaries (and therefore required

to fulfil the boundary conditions) [137]. Two approaches to the solution method can be

adopted.

In the first approach (as done for example in [130] both particular integral and comple-

mentary function are calculated separately – particular integral via e.g. spatial Fourier

transform and complementary function by ensuring that the free wave solution fulfils

the boundary conditions.

The other approach, referred to as wave approach and adopted in this thesis, follows

the perspective of a wave travelling through the structure. Similarly to the previous

case, the response to the excitation (excited wave) is calculated first as if the waveguide

was infinite. Then the response right to the forcing location is written as a sum of the

excited wave and the travelling wave coming from the left boundary. Travelling waves

are propagated through the structure and appropriate reflection and scattering matrices

are applied. Although possibly not evident at first, this technique leads to the same

– 117 –



SAFE modelling of piezoelectric excitation

solution as that previously described. Travelling waves represent the complementary

function and they are obtained with the aid of simple matrix algebra.

Although the approach is demonstrated on a very simple example below, it can be

extended to enable modelling a multi-component waveguide. The only condition that

needs to be ensured is the conformity of the meshes of the overlapping parts of the

subsequent adjacent cross-sections. A generalised piece-wise formulation is given in

Appendix B.

There are two possible desired outputs of such a calculation, namely either the excited

wave field propagating in the elastic substrate or the electrical impedance of the actuator.

Both cases are considered below.

5.3.1 The response outside the piezo-covered region

The interest is in finding the wave amplitudes induced in the substrate waveguide at a

position zr to the right of the actuator, denoted hereafter by b+. The travelling waves

at different stages and the excited waves at the ends of the actuator are depicted in

Fig. 5.6.

The wave amplitudes resulting from the distributed voltage excitation p−, p+ as found

in Section 5.1.3 are immediately incident upon the discontinuities at the ends of the

piezoelectric actuator, and therefore scattered according to the appropriate scattering

matrix for the junction.

Since the right boundary condition is ideally absorbing (located at ∞) there is no

negative-going wave in element 3. Thus, the response of the structure at zr is writ-

ten in wave domain as

q(zr) = φ+b+(zr) = φ+τ (zr)a
+
3 (5.50)

a−1 a+2 a+3a−2

p− p+

PZT

1 2 3

v0

TL TRL

b+

zr

excited waves
amplitudes

travelling waves
amplitudes

scattering matrices

Figure 5.6: Infinite waveguide excited with a piezoelectric actuator - schematic
diagrams for calculating the travelling waves outside the PZT-covered section;
the excited waves p+, p− are defined at the edges of the actuator just before
they are incident on the discontinuity.
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In order to obtain the response at a desired location zr one needs to find the travelling

wave amplitude a3
+ first

a+
3 = T12

R p+ + T12
R τ (L)a+

2 (5.51)

where

a+
2 = R22

L p− + R22
L τ (L)a−2 (5.52)

and

a−2 = R11
R p+ + R11

R τ (L)a+
2 (5.53)

Therefore,

a+
2 = R22

L p− + R22
L τ (L)

[
R11

R p+ + R11
R τ (L)a+

2

]
(5.54)

and

a+
2 =

[
I−R22

L τ (L)R11
R τ (L)

]−1 [
R22

L p− + R22
L τ (L)R11

R p+
]

(5.55)

Finally,

a+
3 = T12

R p+ + T12
R τ (L)

[
I−R22

L τ (L)R11
R τ (L)

]−1·
[
R22

L p− + R22
L τ (L)R11

R p+
] (5.56)

which after substituting into Eq. (5.50) leads to the desired response.

5.3.2 The response within the piezo-covered region: electrical impedance

extraction

Many engineering applications take advantage of the electromechanical coupling in piezo-

electric elements to sense the dynamic behaviour of the structure by means of the fre-

quency dependent electrical impedance of the PZT element z(ω) = v(ω)
i(ω) . Although only

the electrical quantities are measured directly (voltage, current), it is often referred to as

an electrical impedance since the backward current generated by the vibrating substrate

imposes its dynamic characteristics on the electric output of the piezoelectric.

The driving voltage v is kept fixed, whereas the current drawn is obtained from the

second row of Eq. (5.26) which provides an expression for the total reaction charge on

the electrode
[
K̃
ϕu
0 − kK̃

ϕu
1 −K̃

ϕϕ
]{q̄

v

}
= −q (5.57)

It is evident from Eq. (5.57) that the total reaction charge consists of two parts: the

component resulting from the electrical properties of the piezoelectric (K̃
ϕϕ

) which has a

capacitive nature, and the component resulting from the mechanical deformation of the

element generating charge via piezoelectric electromechanical coupling (K̃
ϕu
0 − kK̃

ϕu
1 ).
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a−1 a+2L a−2L a+3a−2Ra+2R

p−
2L p+

2Rp+
2L p−

2R

PZT PZT

1

2a 2b

3

TL TR
LL LR

excited waves
amplitudes

travelling waves
amplitudes

scattering matrices

Figure 5.7: Infinite waveguide excited with a piezoelectric actuator - schematic
diagrams for calculating the travelling waves inside the PZT-covered section;
the excited waves p+

2L, p−2L, p+
2R, p−2R are defined at the edges of the actuator

just before they are incident on the discontinuity.

Since the reaction charge needs to be summed over the length of the actuator, a method-

ology for evaluating the response inside the actuator is required. At each location zi

along the length of the PZT-covered wave element we split it into two parts: the one to

the left from zi and that to the right from zi. The excited waves are calculated separately

for each part using the framework presented in the previous paragraphs and substituting

the correct lengths depending on zi. A schematic diagram for the calculation is shown

in Fig. 5.7.

The excited waves p+
2L, p−2L, p+

2R, p−2R as depicted in Fig. 5.7 are the wave amplitudes

excited in an infinite waveguide covered by the piezoelectric layer powered over a finite

length (Section 5.1.3) and in case of a finite piezoelectric layer the are immediately

incident upon a discontinuity.

One starts the calculation from writing the expressions for travelling waves at different

stages as

a+
2R = p+

2L + τ (LL)a+
2L a−2R = R11

R p+
2R + R11

R τ (LR)a+
2R

a−2L = p−2R + τ (LR)a−2R a+
2L = R22

L p−2L + R22
L τ (LL)a−2L

(5.58)

After some algebraic manipulations of the above equations one gets the expressions for

the positive- and negative-going waves at a location zi within the piezoelectric actuator

a−2L =
[
I− τ (LR)R11

R τ (L)R22
L τ (LL)

]−1

{
p−2R + τ (LR)

[
R11
R p+

2R + R11
R τ (LR)

(
p+

2L + τ (LL)R22
L p−L

)]}

a+
2R = p+

2L + τ (LL)R22
L p−2L + τ (LL)R22

L τ (LL)a−2L

(5.59)

Therefore the total charge is

Q = K̃
ϕϕ
vL−

L∫

0

[
K̃
ϕu
0 q(z)− kK̃ϕu

1 q(z)
]

dz (5.60)

where

q(zi) = Φ+a+
2R + Φ−a−2L (5.61)

– 120 –



5.4 Numerical issues and implementation

The integral in Eq. (5.60) can be evaluated numerically.

5.4 Numerical issues and implementation

The motivation for the wave-based methodology is twofold. Firstly, it enables conduct-

ing calculations in the wave domain with no need for cumbersome absorbing boundary

development or applying hybrid techniques. Secondly, it is aimed at reducing the re-

quired computational time for high frequency dynamic analysis of structures equipped

with piezoelectric active elements. It is important to state that the approach outlined

in this chapter offers a potential for efficient simulations but this is subject to the im-

plementation. With regard to this comment, we would like to raise the importance of

the SAFE system solution.

SAFE equations take the form of QEP (quadratic eigenvalue problem) which is com-

monly solved by linearisation [125] and recasting to first order GEP (generalised eigen-

value problem). The solution can benefit from the computational savings offered by

sparse matrix algebra if the matrices are appropriately formulated (see e.g discussions

in [59, 75]). Nevertheless, special attention needs to be given to current research on

QEP solution procedures especially those of a particular structure. The solution time

can also be optimised by using shape functions more suitable for high frequency problems

(Lobatto or Chebyshev polynomials) is proposed in the time-domain spectral element

method [78].

Although the choice of the numerical techniques is outside of the scope of this thesis, it

should be noted that the methodological potential of the modelling strategy presented

largely depends on the wise implementation.

5.5 Experimental validation

The framework proposed in this chapter was validated with an experiment on a piezo-

equipped beam with emulated anechoic terminations. A schematic diagram of the ex-

perimental set-up is shown in Fig. 5.8. The piezoelectric actuator (0.076 m × 0.0232 m

× 0.0022 m made of Noliac NCE40 material - see Table 5.1) was driven by a signal from

the generator module of a Polytec PSV300 controller amplified with a PCB 790 Series

power amplifier.

Prior to bonding to the beam the impedance of the free-free actuator was measured.

Corresponding numerical results were obtained from the wave model consisting of one
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Table 5.1: Material constants used for experimental validation.

Property Steel Epoxy NCE40

E, GPa 163 15 n/a
ν 0.3 0.4 n/a
ρ, kg m−3 8000 1000 7850
η 0.0001 0.0001 0.007
cExx = cEzz, GPa n/a n/a 126.35
cExy = cEyz, GPa n/a n/a 58.68
cEyy, GPa n/a n/a 99.88
cExz, GPa n/a n/a 62.93
cExz, GPa n/a n/a 31.71
cEyz = cExy, GPa n/a n/a 36.77
εεxx = εεzz, F m−1 n/a n/a 5.5e-09
εεyy, F m−1 n/a n/a 5.196e-09
eyxx = eyzz, N V−1 m−1 n/a n/a -3.239
ezyz = exyx, N V−1 m−1 n/a n/a 13.075
eyyy, N V−1 m−1 n/a n/a 16.335

≈ 6 m

0.076 m 0.164 m

PZT

steel beam
0.0254 m× 0.0034 m wedges ensuring a gradual

change of impedance
(minimise the reflections)

sandbox sandboxScanning head
OMV056

Polytec PSV300
Controller + PC

PCB 790 Series
Power Amplifier

velocity u̇vo
lt

ag
e
v 0

v0/20

Figure 5.8: Experimental setup.

0.076 m long wave element with free-free boundaries. The impedance was extracted

from the wave model according to the technique outlined in Section 5.3.2.

The manufacturer of the piezoelectric actuators states clearly that the properties listed

in the datasheet [138] are for reference purposes only and the actual value depends on

various conditions such as shape, finishing, electrode type etc. The quoted standard

tolerances are ±10% for electrical properties and ±5% for mechanical properties. More-

over, the manufacturer does not provide a full set of material constants. The missing

values were chosen by analogy to similar materials of other manufacturers and based on

the relationships between various components of the matrices. Finally, the properties of

NCE40 were further updated based on the free-free actuator impedance measurement

to provide the closest match (within stated tolerances).

The updated SAFE-wave model prediction is compared with the measured data in
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Figure 5.9: The electrical impedance of the free-free actuator prior to bonding.

Fig. 5.9. The electrical impedance contains imprints of all strain components, there-

fore can serve as a validity indicator for a 3D wave field. The response obtained from

the wave model is slightly overdamped at high frequencies which is attributed to the

effect of the constant loss factor used in the SAFE routine to represent damping as

proposed by [66].

The actuator was attached to the beam using a thin (ca. 0.1 mm) layer of silvered epoxy

(CircuitWorks CW2400 - properties of the epoxy were not measured and standard values

were adopted instead). Since the beam was a standard rolled mild steel profile its cross-

section was not ideally rectangular (see Fig 5.10) and the actuator needed to be cut to

a slightly smaller dimension than the maximum width of the beam. The SAFE-wave

model represents the cross-section with a rectangle, therefore in order to account for that

the width in the model was amended and taken to be 0.024 m. All relevant material

properties are listed in Table 5.1.

During the test the response to the electrical excitation was measured at 0.164 m from

the actuator and at a few locations along the width of the beam using a Polytec PSV300

laser vibrometer. The grid of scanner points was chosen to be close to the positions of

the nodes in the wave model. The ends of the beam were placed in boxes filled with

sand in such a way that the thickness of the sand cover was gradually increased to

ensure a smooth change in the mechanical impedance of the boundary and minimise

any reflections.

– 123 –



SAFE modelling of piezoelectric excitation

0.0254 m

0.0232 m

0.00342 m

0.0022 m
0.0001 m

0.0127 m
0.008 m‖ ‖0.002 m

#1 #2 #3 #4

Figure 5.10: Cross-section of the beam with and without the PZT layer - di-
mensions and scan points locations.
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Figure 5.11: Magnitude and phase of the mobility with respect to the driving
voltage measured at scan point #4 (see Fig. 5.10).

The relevant wave model consisted of 3 wave elements (as described in Section 5.3): two

single-layer (steel) sections and one three-layer (piezo-bonding-steel) section. Appro-

priate continuity conditions at the junctions of the wave elements were specified. Each

cross-section was modelled with six 8-node biquadratic quadrilateral elements across the

width and one element across the thickness of each layer.

Recorded mobilities are compared with the wave model predictions in Figs. 5.11–5.14.

If the terminations were perfectly anechoic, the measured response would only show the

waves passing through the position of the laser dot. In reality, the absorption is not

perfect which imposes the fluctuations on the response. Nevertheless, the mobilities

presented in Figs. 5.11–5.14 show predominantly the effect of the propagating waves.

The response at the center of the width of the beam (point # 4) shown in Fig. 5.11 is

discussed first. At low frequencies the mobility follows the behaviour expected from the

approximate theories with simple bending being dominant. The first sudden jump in

magnitude at around 27 kHz corresponds to the cut-off frequency of the first transverse

bending mode in the steel beam. At around 35 kHz the mobility reaches its maximum
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Figure 5.12: Magnitude and phase of the mobility with respect to the driving
voltage measured at scan point #1 (see Fig. 5.10).

at scan point # 2

10−6

10−5

10−4

10−3

|Y
|,

m
s−

1
/V

experiment model

20 25 30 35 40 45 50 55 60 65 70 75 80
−200

−100

0

100

200

frequency, kHz

Y
,

d
eg

Figure 5.13: Magnitude and phase of the mobility with respect to the driving
voltage measured at scan point #2 (see Fig. 5.10).

which is related to the cut-off frequency of the first transverse bending wave in the PZT-

covered section. This corresponds to the through-width resonance of the steel-epoxy-

PZT composite cross-section. The response experiences a dip whenever the length of

the actuator matches with a multiple of the predominantly excited wavelength.

In order to show the potential of the proposed approach the experimental and numerical
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at scan point # 3
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Figure 5.14: Magnitude and phase of the mobility with respect to the driving
voltage measured at scan point #3 (see Fig. 5.10).

mobilities are supplemented with the results obtained from a model adopted from the

literature. Park and co-workers [45] proposed a Timoshenko-Mindlin-Hermann formu-

lation for coupled flexural-longitudinal-shear vibration of beam-like structures excited

with PZT actuators. Predictions obtained with [45] agree well with the experiment up

to ca. 5 kHz but deviate at higher frequencies. It is noted that the model from [45] is

developed under the plane stress assumption which is typical for conventional beam the-

ories, whereas the wave model proposed in this chapter captures the full 3D response of

the structure. Accounting for that difference we note that the proposed model enables

gaining more physical insight into wave motion than the conventional approaches for

modelling piezoelectric excitation. The conventional approaches are not able to capture

higher-order waves (e.g. the one cutting of at ca. 35 kHz) which in structural waveguides

often govern the response at ultrasonic frequencies.

Figs. 5.12–5.14 show the response measured at different locations across the width of

the beam (as indicated). The parts of the mobilities where simple bending is dominant

(< 20 kHz) are not presented for these points, but it does not differ from Fig. 5.11 (when

only fundamental waves are present the motion of the cross-section motion has the form

of the rigid body modes).

The comparison shows a very good agreement between the wave model and the experi-

ment verified for different locations. A slight drift in the phase at high frequencies can

be partially attributed to the phase wrapping routines and difficulty in capturing the
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phase change at cut-off frequencies correctly. The fact that the phase slopes of both

lines are almost identical is a better indication of the correspondence of the two results.

It was observed that the wave absorption in the sandboxes has a nonlinear character

and largely depends on the amplitude of the waves. Near the cut-off frequency of the

transverse bending mode in the steel section the resonances (of the 6 m beam) are clearly

visible in the response. This is attributed to the fact that near the cut-off frequency the

amplitude of the wave is very large and therefore poorly absorbed by the sandboxes.

Experiments performed with different excitation levels confirmed that the absorption

in the emulated anechoic terminations drops with the increase of the amplitudes of the

waves.

5.6 Wave analysis of the experimental case

In this section the experimental case is analysed from a wave perspective using the SAFE

model.
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(b) PZT-steel beam (black solid) and PZT-epoxy-steel beam (grey dashed)

Figure 5.15: Dispersion curves for the sections used in the validation experiment.
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Figure 5.16: Wave displacement mode shapes for the steel beam used in the
experiment associated with the points highlighted in Fig. 5.15. The geometry
scale is not preserved in order to facilitate the visualisation.

The wave-based nature of the proposed model enables gaining insight into the wave

characteristics of the structure and the wave composition of the FRF. The dispersion

curves for the cross-sections used in the experiment are presented in Fig. 5.15. At

each frequency the wavenumbers are arranged according to the WAC matrix (Wave

Assurance Criterion [39, 139]; an alternative more accurate formulation can be found in

[140]) ensuring the continuity of the wave mode shape along the dispersion curve. In

the case of a steel beam the wave modes are very weakly coupled therefore unless a very

small frequency increment is taken, the WAC criterion makes the dispersion curves cross

each other which is not physical. However, for a multilayered cross-section the WAC

criterion does not bring a clear separation of the curves based on the wave mode shape

any more. Since the coupling between the wave modes is stronger in a multi-layered

structure, the veering phenomenon of the dispersion curves can be observed.

Points A-G as marked in Fig. 5.15 are used to present the displacement wave mode shape

associated with particular waves in a steel beam (Fig. 5.16). There are four fundamental

waves in the steel beam under consideration: two bending waves - one around the x-axis

(A) and the other around the y-axis (C), one compressional wave (D) and one torsional

wave (B). Two higher-order across-width transverse bending modes cut off at 27.113
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Table 5.2: Cut-off frequencies for higher-order wave modes in considered waveg-
uides calculated from the wave model (in kHz).

waveguide mode 5 mode 6 mode 7 mode 8

steel-epoxy-PZT 34.946 52.479 79.069 88.334
steel-PZT 34.700 52.536 79.945 88.589
steel 27.113 58.324 68.229 98.432
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Figure 5.17: Wave decomposition of the magnitude of the mobility measured at
scan point #4 (Fig. 5.10).

kHz (E) and 68.229 kHz (G). Finally, a higher-order bending wave (around the y-axis)

starts propagating at 58.324 kHz (F).

When PZT layer is present (Fig. 5.15b) the transverse across-width bending waves cut-

off frequencies are shifted up since the bending stiffness of the cross-section is increased

(see Table 5.2). The presence of the bonding layer does not change the dispersion curves

considerably.

The wave model enables decomposition of the mobility into contributions from partic-

ular waves. The piezoelectric actuator is able to activate only three of the seven waves

in the frequency range of interest (Fig. 5.15). The velocities associated with each single

propagating wave (as magnitudes) are shown in Fig. 5.17 with the legend and labelling

convention adopted from Fig. 5.15. The FRF corresponds to the surface out-of-plane

velocity at scan point #4. One can observe that at low frequencies the fundamental flex-

ural wave (around x-axis) is prevalent in the response. When the across-width bending

wave cuts off at 27.11 kHz it locally dominates the total FRF and from that frequency

onwards it is mainly the two aforementioned waves that contribute to similar extents to

the overall response. The influence of the compressional wave is very small as expected

from the direction of the velocity measurement (out-of-plane).
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5.7 Conclusions

The methodology for modelling piezoelectric excitation in structural waveguides was

developed and validated in the previous chapter. The coupling of SAFE and the wave

approach enables dropping the commonly used quasi-static and pin-force assumptions

and include the actuator as a active electromechanical component in the wave model.

Thanks to that the actuator is allowed to be thick (convergence of SAFE must be

ensured though) and to operate at frequencies close to its resonance. The mathematical

framework for calculation of the steady-state response to distributed voltage excitation

is outlined.

The electromechanical wave model is validated with an experiment. The piezo-actuated

structural waves in a beam-like waveguide with emulated anechoic terminations are

captured using a laser vibrometer at different locations and compared with the numerical

calculation. The comparison shows a very good agreement.
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Chapter 6

Power and energy propagation

in structures excited with

piezoelectric actuators

The efficiency of structural wave excitation with piezoelectric actuators can be insight-

fully analysed by looking at the relationship between the mechanical wave power and

the electrical power supplied to the actuator. Driving voltage as an input parameter of

an electromechanical model of a structure equipped with piezoelectric active elements

is indicative but assumes that the electrical driving source has an infinite power deliv-

ery capability. In the real world this is seldom the case and the power transduction

efficiency is limited by the specification of the electrical driving source. Power trans-

fer is particularly important for removal of unwanted accretions using structural waves

when one needs to ensure that sufficient mechanical power is injected to the waveguide.

Therefore, the electrical power seems to be a more practically insightful input variable

for the electromechanical model than the driving voltage.

In this chapter the issues related to power conversion are addressed using the SAFE

and wave approach methodology developed in the previous chapter. It is assumed that

the actuator operates in the linear region, which may be questionable for high power

excitation. The basic relationships and observations are discussed with reference to the

validation case of an infinite beam with a finite PZT actuator. The practicalities of

driving a complex load and associated perspective on the electrical power requirements

of the actuator are outlined and used to refine the understanding of the power transfer

between the piezoelectric and the mechanical waveguide. Finally, a parametric study

is performed to show the influence of the actuator’s dimensions and bonding layer’s

thickness on the efficiency of wave excitation from a power perspective.
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Figure 6.1: Strain energy per propagating wave induced by a piezoelectric ac-
tuator in a steel beam with emulated anechoic terminations (structural config-
uration as in Section 5.5).
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Figure 6.2: Kinetic energy per propagating wave induced by a piezoelectric
actuator in a steel beam with emulated anechoic terminations (structural con-
figuration as in Section 5.5).

6.1 Energy and power propagation in a structural waveg-

uide

The wave composition of the FRF presented in Fig. 5.17 shows how particular waves

contribute to the velocity measured at a particular point, however it does not bring

insight into the efficiency with which they are excited or, in other words, how the supplied

energy is partitioned between the waves. In this section power and energy are analysed

for the beam-like structure used in the validation case in Chapter 5.

In Fig. 6.1 and Fig. 6.2 the wave contributions to the strain and kinetic energies (time-

averaged) at the edge of the actuator are plotted, respectively. The wave energy is fully

exchanged between its strain and kinetic forms over one cycle hence, as one would expect,

the curves in Fig. 6.1 and Fig. 6.2 are identical. It is noted that these are not frequency

response functions as the relationship between the energy or power and voltage is not

linear. Therefore, the graphs are annotated with a reference driving voltage.
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Strain energy eu is related to the deformation associated with a wave and is defined as a

sum of stress-strain products for corresponding components, whereas the kinetic energy

ek reflects the motion of the mass. The SAFE formulation provides simple expressions

for strain and kinetic energies associated with a wave mode which can be found in

Eq. (4.33) and Eq. (4.34).

Let us now look how the energy is distributed among the modes. At the low frequencies

the flexural wave (mode 1) carries the most of the energy. The compressional wave

(mode 4) contribution at low frequencies is very small, however it reaches a level similar

to the flexural wave over the frequency range considered. The pattern of peaks and dips

for these waves is associated with a certain relationship between the wavelength and

the length of the actuator. Whenever the length of the actuator is close to the multiple

of the excited wavelength, the response outside the PZT-covered region is minimised.

Conversely, the response is maximum when the length of the actuator is close to an odd

multiple of the excited half-wavelength.

The dips associated with the compressional wave are spaced more widely in frequency as

its wavelength is considerably longer than the one of the flexural wave in the frequency

range considered. A small jump in the total energy is observed when the first-order mode

(mode 5) cuts-on in the steel beam at 27.12 kHz. The maximum of the energy curve

occurs around 35 kHz, i.e close to the cut-off frequency of the first-order across-width

bending wave in the PZT-covered section (see Fig. 5.15). Wave power considered in this

thesis originates from the Poynting vector that describes the rate of energy transfer per

unit area (energy flux). The expression resulting from the SAFE formulation gives the

value for the Poynting vector component along z integrated over the cross-section of the

waveguide, i. e. the total energy flux.

The power carried by each of the waves and their superposition as seen at the edge of

the actuator are presented in Fig. 6.3. The shape of the curves is very similar to the

ones in Fig. 6.1 and Fig. 6.2 and the difference originates from the definitions of the

quantities. The strain energy takes into account all stress and deformation components

and refers to the whole cross section. The wave power is a component of a Poynting

vector which represents power flow in the direction of propagation (z), so only the

components interfering with the z direction are included.

At low frequencies the fundamental flexural wave (mode 1) absorbs most of the injected

power. The power consumed by the fundamental compressional wave (mode 4) grows

with frequency and follows its dips and peaks pattern as discussed above. Fig. 6.3 shows

that a single PZT actuator excites both flexural and compressional waves to a similar

extent, although this is not always obvious due to the difference in the patterns of peaks

and valleys. For example, at particular frequencies (for instance 8.5 kHz) the total
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Figure 6.3: Wave power induced by a piezoelectric actuator and carried by waves
propagating in a steel beam with simulated anechoic terminations (structural
configuration as in Section 5.5).

power is almost entirely related to propagation of the compressional wave. The wave

power reaches its peak around 35 kHz and is dominated by the higher-order across-width

bending wave (mode 5).

The transduction efficiency in a waveguide with electromechanical coupling can be per-

ceptively analysed in the light of the electrical power supplied to the actuator. In fact,

the electrical power is the most practical measure for the requirements of a piezo-driven

smart structure.

6.2 Electrical power supplied to a piezoelectric actuator

exciting a structural waveguide

In the following paragraphs the electrical viewpoint perspective on the operation of the

piezoelectric actuator is explored. Firstly, the electrical characteristics of the actuator

are analysed in order to be relate them to the driving electrical system afterwards. Then,

the impedance mismatch and power reflection are briefly discussed bringing general

guidelines to understanding the power requirements of a piezoelectric actuator.

6.2.1 Characteristics of a complex load

The most typical quantity characterising an electric load is its impedance Z understood

as a ratio between the applied voltage and current drawn. If the load is purely resis-

tive, the current is in phase with the voltage and the impedance is real and frequency-

independent. The capacitive or inductive components alter the phase relationship be-

tween the voltage and the current. The impedance becomes complex and frequency

dependent.
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Figure 6.4: Electrical impedance of the actuator used in the validation exper-
iment (see Section 5.5) computed using presented wave model. Comparison
between the results for the free actuator and the actuator bonded to the beam

In the DC regime or at low frequencies the piezoelectric actuator acts as a capacitor,

i.e. a dielectric between two conducting plates (silvered electrodes) in series with a re-

sistance representing dielectric loss and current leakage (see Fig. 1.1). Low frequencies

here means frequencies far below the mechanical resonances of the actuator. The piezo-

electric effect in the material results in coupling the electric driving field with the strain

field associated with the induced vibration [93]. With increasing frequency a vibrating

structure encounters subsequent mechanical resonances of which some are evident for

a piezoelectric actuator. As the voltage is applied to the electrode (which in this the-

sis is assumed to cover the whole face of the actuator), it is able to excite only those

vibration modes which are associated with a symmetric strain distribution [93]. As a

consequence of the piezoelectric effect, a large strain field at a resonance makes the

actuator draw large current from the source. When these conditions are met an elec-

tromechanical resonance occurs which is visible on the impedance plot as a dip. While

passing through subsequent resonances the phase relationship between the voltage and

the current changes resulting in complex and frequency dependent impedance.

In Fig. 6.4 the electrical impedance of a free actuator as used in the validation ex-

periment is presented and compared to its impedance when bonded to the waveguide.

At low frequencies, before the electromechanical resonances of the actuator occur, it

acts as a capacitor with almost purely imaginary (negative) impedance ZC = (ωC0)−1.

The behaviour of the actuator is more complex around its resonance - the magnified

impedance curves for the free actuator are shown in Fig. 6.5. At the resonance the load
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Figure 6.5: Electrical impedance of a free actuator as used in the validation
experiment (see Section 5.5) computed using presented wave model zoomed
around the first resonance; note the double y-axis.
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Figure 6.6: Frequencies at which the events associated with actuator’s resonance
occur - on the left: the modulus of the impedance and velocity of the center of
mass of the cross-section; on the right: imaginary part of the impedance.

becomes purely resistive, and |Z| experiences a dip which is usually associated with the

maximum of the mechanical deformation. At resonance the actuator draws very large

current from the source. The imaginary part of the impedance crosses the zero axis

again at a slightly higher frequency (22.06 kHz) which is an anti-resonance.

In fact, the effects that are usually attributed to the resonance of the actuator happen

at three different frequencies [81] as depicted in Fig. 6.6. The lowest in frequency is

the minimum of the magnitude of the impedance |Z| (fmin). The mechanical resonance

frequency (fmech), i.e. the frequency at which the velocity at the edge of the actuator

is maximised is slightly higher. Finally the highest is the electrical resonance frequency

(fel) which corresponds to Im{Z} crossing zero. At this point the current and voltage

are in phase so that the current drawn is at maximum. As these are very close to each

other they are often represented by a single frequency.

When attached to a structure the actuator’s response changes and encapsulates the

imprints of the dynamics of the host. In Fig. 6.7 the impedance is presented for the
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Figure 6.7: Electrical impedance of the piezoelectric actuator bonded to the
beam with simulated anechoic terminations as in the validation experiment (see
Section 5.5).

Table 6.1: Resonance-related frequencies for the actuator bonded to the beam
as in the experimental validation case (see: Fig. 6.7).

min(|Z|) max(Im{Z}) max(|v(79)|)
f , kHz 34.85 35.49 35.28
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Figure 6.8: Active, reactive and apparent power in a piezoelectric actuator
bonded to the beam with simulated anechoic terminations as in the validation
experiment (see Section 5.5).

actuator bonded to the beam with emulated anechoic boundaries as used in the valida-

tion experiment. The resonance dip in Fig. 6.7 is related to the cut-off of the first-order

across-width bending wave in the PZT-covered section of the waveguide (see Section 5.6).

Note that no other resonances (e. g. no resonance related to the length or the thickness

of the actuator) are observed in the frequency range considered. The three frequencies

described in the previous paragraph for the experimental case are listed in Tab. 6.1.

The power quantities related to a load of complex impedance are discussed below. As the
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load is complex, the electrical power required by the load is also complex. Both voltage

and current are first written using the complex exponential notation as V exp [ωt] and

I exp [ωt], respectively, with V and I being complex amplitudes defined as

V = |V |eφv

I = |I|eφi
(6.1)

The physical voltage and current in time domain can then be written as

v(t) = |V | cos (ωt+ φv) =
V eωt + V ∗e−ωt

2
= Re{V eωt}

i(t) = |I| cos (ωt+ φi) =
Ieωt + I∗e−ωt

2
= Re{Ieωt}

(6.2)

Instantaneous power is calculated as

p(t) = v(t)i(t) (6.3)

Adopting the complex-exponential notation and setting the phase angle of one of the

quantities to zero (in this case voltage - φv) one can expand Eq. (6.3) to [109]

p(t) = Re

{
V I∗

2

}
(1 + cos 2ωt) + Im

{
V I∗

2

}
sin 2ωt (6.4)

From Eq. (6.4) it is clear that the instantaneous power contains a pulsating power flow

with the time-average

PR = Re

{
V I∗

2

}
(6.5)

and a periodic power flow with peak value

PI = Im

{
V I∗

2

}
(6.6)

Therefore, instantaneous power waveform is completely specified by the average resistive

power and the peak reactive power [109]. Hence, complex power is defined using the

above as

P = PR + PI (6.7)

As explained in [109] PR supplies resistive losses and is consumed by the actuator during

operation, whereas PI is absorbed and released by the energy storing elements (mass,

stiffness, inductance, capacitance) interchangeably over a cycle. The magnitude of the

complex power is often referred to as the apparent power Papp or power rating, which
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can be alternatively written as

Papp = |P | = |V ||I| (6.8)

In Fig. 6.8 the discussed power quantities are plotted for the bonded actuator. The

reactive power dominates except near the resonance, when the actuators consumes sig-

nificant active power. The implications of these facts on the practicalities of high power

excitation and the efficiency of power transduction between the actuator and the waveg-

uide are discussed in the next section.

6.2.2 Complex load driving and power transfer

Efficient driving of a complex load requires a thoughtful choice of the amplifier. Piezo-

electric actuators are usually powered by RF (radio frequency) amplifiers as they work

over a broad frequency range, provide high enough power and are able to handle capac-

itive loads and impedance mismatch. In this work a 1020L amplifier from Electronics

& Innovation was used. It can provide up to 200 W with low harmonic distortion at

frequencies from 10 kHz to 5 MHz. The amplifier gain as stated by the manufacturer

is 53 dB. The input and output terminals impedance is 50 Ω and the allowed input

voltage range is 0 to 1 V RMS.

The input waveform is fed into amplifier using a TTI TGA1240 Series Arbitrary Wave-

form Generator. It has a useful feature of specifying the 50 Ω load that ensures that

the voltage as seen on the display is the actual voltage sent to the amplifier. Since a

PZT actuator is a complex electrical load the power transfer issues have to be accounted

for. The efficiency of the electrical power transfer between an ultrasonic source and a

receiver (here: the PZT actuator) depends on the impedances of the elements. Since

the at frequencies of interest the electromagnetic wavelength is very large, the system

can be well represented by a simple lumped parameter circuit (Fig. 6.9), where vS is the

voltage of the Thévenin’s equivalent voltage source, ZS is the impedance of the source

and ZL is the impedance of the load. Voltage across the load can be calculated as

vL = vS
ZL

ZL + ZS
(6.9)

and current flowing through the circuit as

I = vS
1

ZL + ZS
(6.10)
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Figure 6.9: Lumped parameter circuit representing the power source–actuator
system.

Power absorbed by the load (active) is obtained from

PR =
1

2
Re{vLI∗} =

1

2
Re

{(
vS

ZL
ZL + ZS

)(
vS

1

ZL + ZS

)∗}
=

1

2
|vS |2

Re{ZL}
|ZL + ZS |2

(6.11)

Eq. (6.11) indicates that power transfer is maximum is the impedance of the load is a

conjugate of the impedance of the source. If this is the case, power absorbed by the load

becomes

Pmax
R =

|vS |2
8Re{ZS}

(6.12)

In order to make the power from Eq. (6.11) available for the load, the amplifier needs to

be capable of delivering 1
2vSI

∗ =
1

2

|vS |2
ZL + ZS

. As for complex loads, the power rating of

the amplifier seems to be a practical measure. Thus, a required power capability of the

amplifier is defined here as required power rating of the amplifier with output impedance

ZS that ensures delivery of certain active power PR to the load of impedance ZL

Pcapab =

∣∣∣∣
ZL + ZS
Re{ZL}

∣∣∣∣PR (6.13)

Likewise, the power rating of the actuator itself can be defined as

Papp = |PR + PI | (6.14)

Piezoelectric actuators are often driven using RF amplifiers which have a standard-

ised output impedance of 50 Ω. Since these devices are usually designed to work with

microwave units and very long connections, they adopt a transmission line theory view-

point to power transfer (see e.g. [141]). Voltage is represented as a superposition of

waves that travel through the cables. Like in mechanical waveguides, any discontinuity

in the waveguide is related to localised impedance change. Voltage wave and associated

power is partly reflected and partly transmitted through the discontinuity.

The forward and reflected powers are often measured by RF amplifiers (e.g. 1020L
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Figure 6.10: Forward and reflected power measurement in a typical RF amplifier
(such as E&I 1020L) and the meaning of figures measured by directional power
meters.

amplifier from Electronics and Innovation Ltd.). However, it is important to understand

clearly the indications given by the equipment. In fact, the directional power meters

as used in HF couplers measure the amplitude of two voltage waves: the wave incident

upon the discontinuity vFWD and the wave reflected back to the source vRFD. Based

on measured figures they calculate forward and reflected powers assuming that those

voltage waves are incident upon a standardised impedance, usually 50 Ω (see Fig. 6.10)

PFWD =
|VFWD|2

50Ω
(6.15)

PRFD =
|VRFD|2

50Ω
(6.16)

Therefore, readings from such devices should not be taken literally as indication of power

in the system. They have to be properly scaled according to the actual impedances in

place. It should also be noticed that the forward power denotes the power incident on

the discontinuity and not the power absorbed by the load. However, it is straightforward

to show that the difference between PFWD and PRFD gives the active power consumed

by the load, no matter what the load impedance is [142].

The power quantities discussed above are shown for the experimental validation case in

Fig. 6.11. The actuator is driven with 1 V and during operation consumes real power

represented by the black solid line. However, in order for this to happen the 50 Ω source

must be capable of producing power indicated by the grey dashed line. Finally the

apparent power (Papp) that tells about the load rating, i.e. the powers that will be both

consumed and exchanged with the network is shown by the black dash-dotted line.

The major challenge in driving piezoelectric actuators is the ability of handling large

reactive, capacitive loads, which can only be achieved by specialised high power ampli-

fiers.
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Figure 6.11: Comparison between the discussed power quantities for a piezoelec-
tric actuator bonded to the beam with anechoic terminations as in the validation
experiment (see Section 5.5).

6.3 Power transduction

6.3.1 Electrical to mechanical wave power conversion

When a piezoelectric actuator is attached to a structure and supplied with some power

it induces mechanical waves in a structure. From a power transfer viewpoint the me-

chanical waveguide is absorbing mechanical power that the electrical driving power was

converted to via electromechanical piezoelectric coupling (radiation damping). There-

fore the power associated with propagating waves is a part of the active electrical power

consumed by the actuator (PR). Other effects associated with drawing power from PR

are various loss phenomena such as mechanical material damping resulting in elevated

temperature or dielectric loss. In general, the active electrical power is converted into

mechanical power of which one part is propagating and and the other dissipated within

the actuator.

The optimal electrical-to-mechanical power transduction occurs when P is purely resis-

tive, i.e. the reactive part PI is small or close to zero. Therefore, if the output impedance

of the source can be arbitrarily chosen one would aim to minimise the reactive power.

If this is the case the driving voltage is in phase with the current drawn, hence the

instantaneous power reaches its maximum [81].

Whether the consumed active power is converted into propagating wave power is closely

related to the dimensions of the actuator. If the length of the actuator contains a multiple

of excited wavelengths, the response is greatly diminished as the waves cancel each other

within the actuator-covered region. In this case, the active power is predominantly

dissipated within the actuator. Furthermore, if the actuator is driven at frequencies at
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Figure 6.12: Electrical power conversion to propagating wave power (both pos-
itive and negative) for the experimental validation case (see Section 5.5) - com-
parison with reference to the considered power quantities.

Table 6.2: Electrical to wave power conversion maxima with respect to different
power quantities (see: Fig. 6.12).

PR |P | Pcapab

fmax, kHz 36.61 36.13 36.13
Pwave/Pelectrical 0.935 0.782 0.733

the zero group velocity waves exist in waveguide, the power injected to the waveguide

does not propagate giving rise to localised resonance around the actuating region.

Let us first look at the example of the structure used in the validation experiment

(Section 5.5). The ratio between the total mechanical wave power (superposition of all

modes) and the electrical power is presented in Fig. 6.12. The curve corresponding to

the ratio between the wave power and consumed (real) electrical power is magnified in

the top sub-figure for convenience. Firstly, it is clear that not all active electrical power

is converted to propagating waves. This is attributed to the mechanical damping (see

Tab. 5.1) and to the specific relationship between the wavelength of the propagating

waves and the size of the actuator as explained above. The dip around 60 kHz corre-

sponds to the region where all propagating waves match this criterion, hence the drop

in the wave power and consequently in power transduction is very evident.

The top sub-figure in Fig. 6.12 shows that most of the electrical power consumed by a

PZT-equipped structure is converted into mechanical wave power in the frequency range

under consideration. The optimal power transfer occurs at 36.61 kHz where almost 94%
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of the electrical active power is converted into wave power. This frequency is associated

with the higher-order wave cutting-off in the PZT-covered section and consequently, a

dip in the electrical impedance curve.

If one takes into account the complex character of the PZT actuator as an electric

load, the apparent power (sometimes called the power rating) becomes a figure more

appropriately defining the actual power requirement. The analysis can be further refined

by considering the impedance matching between the components of the electrical driving

system. Including these effects strongly changes the perspective and it is expected that

the insight it provides is closer to practical scenarios.

The two curves representing the ratio between mechanical wave power and both the

apparent power and the required source power capability (assuming 50 Ω output source

impedance) are compared with the former in the bottom sub-figure of Fig. 6.12. The

power transduction efficiency with respect to these quantities is substantially lower and

gets close to the real power curve only near the resonance frequency. The maximum

power transduction coefficients for each curve are presented in Tab. 6.2. Note that

only up to 73% of the available electrical power can be accommodated in mechanical

wave power for the chosen source output impedance. Away from the resonance the

power transduction efficiency is very low (< 10−2), and so these frequencies are not

generally used since in power ultrasonics the actuators usually work at their resonances.

Nevertheless, it is significant that in this illustrative case the ultrasonic source needs

to be capable of delivering electrical power that is almost 140% of the desired injected

mechanical wave power. It is also clear, that the required power capability of the source

is very close to the power rating (apparent power) of the actuator.

In order to facilitate understanding of the results presented hereafter, a few general

comments on the typical characteristics of structural waveguides with PZT in plane

strain are made below. The efficiency of power transduction is closely related to the

impedance of the actuator. The impedance of a typical PZT actuator polarised in the

through-thickness direction can be viewed as the reactive impedance due to capacitance

(electrical) with imprints of subsequent resonances related to standing structural waves

(mechanical). The resonance is related to standing wave across a particular finite di-

mension of the waveguide. Accounting for the fact that standing waves along the length

are largely affected by radiation damping, the imprints of the structural resonances on

the electrical impedance curve are related to the cross-section resonances, i.e. cut-off

frequencies of the higher-order wave modes.

At a cut-off frequency the cross-section of the waveguide resonates and the spatial varia-

tion of this disturbance is uniform since the wavenumber is zero (or close to zero). Only

those cross-section resonances that couple well with the applied electric field are picked
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Figure 6.13: Electrical impedance of an actuator (L = 0.02 m, h = 0.002 m,
w = 0.02 m) bonded to the 3 mm aluminium plate in plane strain (SAFE); the
dispersion curves of the PZT-aluminium cross-section are shown in light gray
on the top figure.

by the actuator. The dominant resonance of an actuator bonded to a plate in all cases

refers to the ‘thickness resonance’ of the actuator. This is associated with the cut-off

frequency of the bulging-contracting wave which propagates predominantly along the

actuator layer. The modulus of the impedance |Z| at the thickness resonance is very

low, i.e. from zero up to few volts depending on the damping in the PZT material.

As an illustration to the above, the impedance for one of the cases considered below

is presented in Fig. 6.13. The dips refer to the cut-off or zero-group-velocity frequen-

cies associated with the PZT-aluminium cross-section. Since the waveguide is damped

the actual cross-section resonance happens at a frequency slightly higher than the one

determined by k = 0, as wave attenuation is very high around that point. There are

four clearly visible dips in the electrical impedance curve: at 280 kHz(cut-off), at 466

kHz (zero group velocity), �486 kHz (cut-off) and at 955 kHz (cut-off). The dominant

resonance occurs at 955 kHz with |Z| = 10 Ω and corresponds to the thickness resonance

of the actuator. The other resonances at 466 and 486 kHz bring the drop of |Z| to 22

and 40 Ω, respectively. Keeping in mind the source impedance ZL = 50 Ω and the rela-

tionship between the power transfer and the impedance mismatch, one can notice that

not all cross-section resonances will promote power transduction. Instead, the optimal

frequencies will sometimes occur between the resonances.

The above explanation is to bring the reader’s attention to the number of factors that

are associated with the power transduction efficiency and point out that it is strongly
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dependent on the impedance of the ultrasonic driving source.

6.3.2 Frequency response function with reference to power quantities

As a last example the point mobility at the middle of the width of the beam with

respect to the power quantities is presented in Fig. 6.14. Power and velocity are not

linearly related, therefore the quasi -FRF is calculated with respect to the square root of

electrical power. Although similarly to the previous section the least optimistic case is

the curve with respect to the apparent power and power capability of the source, these

are expected to be the most practical power requirement measure. The global surface

velocity with respect to active power, apparent power and the power capability of the

source occur at 34.05 kHz, 35.97 kHz and 36.13 kHz, respectively.

0 10 20 30 40 50 60 70 80

10−4

10−3

10−2

10−1

100

f , kHz

|v (
7
9
)
|,

m
s−

1
/
√

W

active apparent source capability

Figure 6.14: FRFs with reference to the square root of active power, apparent
power and power capability of a 50 Ω source for the experimental validation
case (Section 5.5).

6.4 The influence of the actuator and bonding layer pa-

rameters on the efficiency of power conversion

The above sections discuss the power conversion in waveguides excited with piezoelectric

actuators. The power capability of the electrical driving source that accounts for the

impedance mismatch and the complex character of the load was found to be the most

practical yet the least optimistic measure of the power requirements of a smart structure.

The current section is concerned with evaluating how the dimensions of the actuator

and the bonding layer influence the power transduction efficiency in th light of the

methodology developed in Chapter 5. A similar question motivated the work on power

and energy transduction by Lin et al. [122, 143], however they modelled the actuator

under the pin-force assumption and presented rather limited results.
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Figure 6.15: Parametric study setup.

The current study is performed on an infinite 3 mm aluminium plate in plane strain

(which confines the analysis to Lamb waves) equipped with a PZT actuator made

of NCE40 material. All structural components are modelled using mono-dimensional

quadratic plane strain SAFE elements. The dimensions (length - Section 6.4.1 and thick-

ness - Section 6.4.2) of the actuator are varied accordingly in each run. In Section 6.4.3

the thickness and the loss factor associated with the bonding layer are examined.

For each case the following quantities are illustrated: (i) wave power with respect the

driving voltage; (ii) wave power with respect to the active electrical power; (iii) wave

power with respect to the apparent power; (iv) wave power with respect to the power

capability of the amplifier. Note that for calculation of these quantities some arbitrary

width of the plate has to be chosen since the plane strain model extends to infinity in

the x-direction. In the following the output of the computation is scaled to represent

a 20 mm wide strip (see Fig. 6.15a). For the calculation of Pcapab it is assumed that

the driving source output impedance is 50 Ω. Thus, the reader should be aware that

the Pcapab results represent a particular case that could be significantly different if the

source impedance were changed.

6.4.1 Actuator’s length

In this set of numerical experiments the length of the actuator was varied between 0.004

m and 0.1 m and its influence on power transduction efficiency was analysed. The results

corresponding to the total wave power are shown in Fig. 6.16, whereas the contributions

to wave power associated with the fundamental flexural and compressional waves are

presented in Fig. 6.17, Fig. 6.18, respectively. On each graph the colour represents the
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Figure 6.16: Total power transduction efficiency of a PZT actuator bonded
to a 3 mm thick aluminium plate as a function of the length of the actuator;
the transduction efficiency is computed with reference to the driving voltage,
the active consumed power, the power rating of the actuator and the required
driving source capability.

wave power computed with reference to a quantity denoted on the colour bar. Both the

appearance and the analysis of the figures might seem quite formidable, however a few

fundamental observations and conclusions can be stated.

The wave power is ‘measured’ in the plate, at the edge of the PZT-covered section.

There are four waves propagating in the plate in the considered frequency range as

shown in Fig. 6.15b – two fundamental and two higher-order. The relationship between

the excited wavelengths and the length of the actuator leaves a clear imprint up to the

first cut-off frequency in Fig. 6.16. This is sometimes referred to as wave tuning curves

[93]. Whenever the length of the actuator matches a multiple of an excited wavelength

the response is very small.

At low frequencies the active electrical power is almost entirely converted into mechan-

ical wave power. However, given the chosen output impedance of the driving source

(50 Ω) in most cases a very large amplifier is needed in order to induce such power. In-

terestingly, a larger actuator does not imply higher induced wave power (spotted also in
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Figure 6.17: Power transduction efficiency of a PZT actuator bonded to a 3
mm thick aluminium plate as a function of the length of the actuator for the
fundamental flexural (A0) wave; the transduction efficiency is computed with
reference to the driving voltage, the active consumed power, the power rating
of the actuator and the required driving source capability.

[122]). Conversely, smaller actuators can operate over larger bandwidths effectively and

the red spots denoting good power transduction cover wider frequency ranges. Large

actuators are affected by the wave tuning pattern more strongly, so achieving a good

power transduction requires more precise frequency tuning.

The cut-off frequencies in the PZT-covered section can be visible in Fig. 6.16 – the first

at around 265 kHz, then around 486 kHz and finally at around 800 and 955 kHz. The

zero-group velocity mode related to high localised deformation (and hence large power

consumption) is expected to be responsible for the local drop in the Pwaves/PR ratio at

around 466 kHz. Closely after that, at around 486 kHz, the higher order bending cuts

off and is accompanied by the rise in the power conversion efficiency with respect to

|P | and Pcapab. The cut-off frequency around 955 kHz is related to a wave that gives

a very large through-thickness deformation in the PZT-covered section and is linked to

the thickness resonance of the PZT actuator. The imaginary part of the impedance is

minimised and the real part of the impedance is maximised, but a significant amount of
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the active power PR is dissipated within the vibrating actuator. Note that the efficiency

of power conversion at those frequencies drops with the increase of the length of the

actuator. The power loss in a long vibrating actuator is more prominent.

On the other hand, primarily resistive electrical impedance near the cut-off frequencies

facilitates power transfer between the electrical components. Short actuators, which

are not that strongly affected by the power loss due to localised resonance can then be

driven very efficiently.

The cut-off frequencies in the aluminium plate are very close to those in the PZT-

aluminium bilayer. A vertical distinguishable strip between ca. 920 and 980 kHz of

increased power conversion efficiency in Fig. 6.16 is related to a higher-order wave in the

aluminium plate. The group velocity of that wave is of the opposite sign to the phase

velocity (compare with Fig. 6.15b remembering that only positive phase velocities are

pictured there). The electrical power is absorbed by that wave efficiently, but does not

propagate over a long distance as the imaginary part of the dominant wavenumber is at

best −5.

Over the whole frequency range considered it is worth noticing that if the source with

a standard output impedance is used (50 Ω) smaller actuators (L < 0.06 m) are able to

convert the electrical power into the wave power more effectively.

In Fig. 6.17 and Fig. 6.18 it is shown how the electrical power is converted into the two

fundamental waves. Up to the cut-off of the first higher-order wave in the PZT-covered

section (around 265 kHz) the wave tuning curves for both waves can easily be noticed.

The peaks and dips patterns and the increase of their density with the length of the

actuator are apparent. As in this frequency range the compressional wavelength is longer

than the flexural wavelength, the peaks are more widely spaced for the compressional

wave.

After the first cut-off frequency the higher-order waves are the dominant energy carriers

in the PZT-covered section. From 265 kHz up to 466 kHz the higher-order wave in

the PZT-covered section converts predominantly into the flexural wave in the plate. At

higher frequencies the higher order waves in the plate propagate most of the energy. The

graphs associated with the higher-order waves are not presented for the sake of brevity.

– 150 –



6.4 The influence of the actuator and bonding layer parameters

0.02

0.04

0.06

0.08

0.10

0.02

0.04

0.06

0.08

0.10

0.02

0.04

0.06

0.08

0.10

a
ct
u
a
to
r’
s
le
n
g
th
,
m

0.0 0.2 0.4 0.6 0.8 1.0

f , MHz

0.02

0.04

0.06

0.08

0.10

10−11
10−10
10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2

Pwaves

re v = 1 V

10−4

10−3

10−2

10−1

100

Pwaves

PR

10−4

10−3

10−2

10−1

100

Pwaves

|P |

10−4

10−3

10−2

10−1

100

Pwaves

Pcapab

Figure 6.18: Power transduction efficiency of a PZT actuator bonded to a 3
mm thick aluminium plate as a function of the length of the actuator for the
fundamental longitudinal (S0) wave; the transduction efficiency is computed
with reference to the driving voltage, the active consumed power, the power
rating of the actuator and the required driving source capability.

6.4.2 Actuator’s thickness

In this section the actuator’s thickness is varied between 0.0001 and 0.004 m, keeping the

length of the actuator fixed at L = 0.025 m. The results corresponding to the total wave

power are shown in Fig. 6.19, whereas the contributions to wave power associated with

the fundamental flexural and compressional waves are presented in Fig. 6.20, Fig. 6.21,

respectively.

The change in the thickness of the actuator affects the wave spectrum and the dispersion

curves, therefore it is difficult to clearly distinguish between the factors affecting power

transduction. From the electrical viewpoint, varying the thickness contributes to two

effects: the change of the static capacitance of the actuator (inversely proportional to

the thickness) and a smaller electric field gradient (more voltage is needed for a thick

actuator to generate the same electric field).
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At low frequencies the efficiency of the power conversion increases with the thickness

of the actuator. The thicker the actuator, the smaller is the capacitance and therefore

the reactive power required by the PZT. On the other hand thick actuators have higher

resistance (as opposed to thin actuators which behave as almost pure capacitors). This

makes the impedances of the typical source and of the load match more closely promoting

an efficient power transfer. Note that very thin actuators (< 0.5 mm) are very difficult to

drive with standard off-the-shelf amplifiers due to large static capacitance and very small

resistance. Although thick actuators perform better, they involve very high voltages in

order to invoke high enough electric field which often acts as a limitation.

Increasing thickness of the actuator affects the dispersion curves of the PZT-covered sec-

tion, and hence the wave tuning curves (the effect of the relationship between the excited

wavelengths and the length of the actuator). This is clear up to the first cut-off frequency

(around 260 kHz). The wavelength of the fundamental flexural wave increases with the

thickness of the actuator, hence the regions corresponding to good power conversion

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

a
ct
u
a
to
r’
s
th
ic
k
n
es
s,

m
m

0.0 0.2 0.4 0.6 0.8 1.0

f , MHz

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

10−6
10−5
10−4
10−3
10−2
10−1
100

Pwaves

re v = 1 V

10−4

10−3

10−2

10−1

100

Pwaves

PR

10−4

10−3

10−2

10−1

100

Pwaves

|P |

10−4

10−3

10−2

10−1

100

Pwaves

Pcapab

Figure 6.19: Total power transduction efficiency of a PZT actuator bonded to
a 3 mm thick aluminium plate as a function of the thickness of the actuator;
the transduction efficiency is computed with reference to the driving voltage,
the active consumed power, the power rating of the actuator and the required
driving source capability.
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Figure 6.20: Power transduction efficiency of a PZT actuator bonded to a 3
mm thick aluminium plate as a function of the thickness of the actuator for the
fundamental flexural (A0) wave; the transduction efficiency is computed with
reference to the driving voltage, the active consumed power, the power rating
of the actuator and the required driving source capability.

become wider and shift slightly toward higher frequencies (see Fig. 6.20). Conversely,

the wavelength associated with the fundamental compressional wave becomes shorter for

thicker actuators which results in narrowing the optimal power conversion area towards

the top of Fig. 6.21.

There is a uniform stop-band between 150 and 200 kHz which corresponds to the region

where both excited wavelengths are such that their whole multiples are equal to the

length of the actuator. This stop-band does not change significantly with the thickness

of the actuator, as its effect on the location of the stop-bands for particular waves is not

strong enough.

The dominant bright tongues originating from the top of the graphs in refer to the cut-

off frequencies of the waves in the PZT-covered section. Close to the cut-off frequencies

actuators tend to behave as resistive loads (which helps with the efficient power transfer

between electrical components) and invoke high amplitude wave field (large deformation
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Figure 6.21: Power transduction efficiency of a PZT actuator bonded to a 3
mm thick aluminium plate as a function of the thickness of the actuator for the
fundamental longitudinal (S0) wave; the transduction efficiency is computed
with reference to the driving voltage, the active consumed power, the power
rating of the actuator and the required driving source capability.

is associated with cut-off frequencies). When the thickness increases, higher-order waves

start to propagate earlier in frequency, hence the negative slope of the tongues.

The other multiple narrow orange/red regions corresponding to good power transduction

in Fig. 6.19, Fig. 6.21, Fig. 6.21 are expected to originate from across-length resonances

of the actuator. As they can be largely affected by radiation damping their effect is

smaller than those related to the cut-off frequencies.

The power conversion efficiency generally drops towards higher frequencies (except near

some of the cut-off frequencies) and thicker actuators (see the second graph of Fig. 6.19).

If the ability to drive the actuators with commercial amplifiers is taken as a criterion

this effect becomes even more evident. Moreover, the blue area near the bottom axis of

the fourth figure in Fig. 6.19 indicates that very thin surface bonded actuators are not

very practical power converters.
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6.4.3 Bonding layer’s thickness and loss factor

In the last part of the parametric study the influence of the bonding layer is discussed.

Two variables are varied, namely the thickness and the loss factor of the bonding layer.

The other properties of the bond material are taken from Tab. 2. The NCE40 PZT

actuator is 0.025 m long and 2 mm thick. The results for bonding layer thickness are

shown in Fig. 6.22 and for the loss factor in Fig. 6.23. Since the effects of both properties

are not very significant, only the superimposed power graphs are given.
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Figure 6.22: Total power transduction efficiency of a PZT actuator bonded to a
3 mm thick aluminium plate as a function of the thickness of the bonding layer;
the transduction efficiency is computed with reference to the driving voltage,
the active consumed power, the power rating of the actuator and the required
driving source capability.

The thickness of the bonding layer does not affect the power transfer considerably up to

200 kHz. Above that frequency the ‘orange/red tongues’ indicating an efficient power

transfer are shifted towards low frequencies with the increase of the bond thickness.

This can be attributed to the fact that at high frequencies the thickness of the bonding

layer affects the wavelength more strongly. Consequently, the frequencies at which the

relationship between the excited wavelength and the length of the actuator correspond

– 155 –



Wave power and energy propagation

to efficient power conversion are changed. One can also notice that the tongues are wider

for thin bonds and narrower for thick bonds. This implies that thick bonds require more

precise frequency tuning in order to achieve good power transduction efficiency.

Fig. 6.23 indicates that the loss factor of the epoxy used for bonding the actuator does

not affect the power transfer notably (given that the bonding layer is 0.1 mm thick). It

is expected that in the considered frequency range the bond-dominated waves do not

exist, therefore only small part of the strain energy is confined in the bond and prone

to dissipation.
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Figure 6.23: Total power transduction efficiency of a PZT actuator bonded to a
3 mm thick aluminium plate as a function of the loss factor of the bonding layer;
the transduction efficiency is computed with reference to the driving voltage,
the active consumed power, the power rating of the actuator and the required
driving source capability.

6.5 Conclusions

In this chapter the power conversion in waveguides excited with piezoelectric actuators

has been analysed. The SAFE/wave model developed in Chapter 5 served as a tool
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for calculating both mechanical and electrical powers. Particular attention was given

to the issues related to the power transfer between the ultrasonic driving source and

the actuator. The frequency dependent voltage reflection coefficient was employed to

evaluate the electrical power requirements that include impedance mismatch.

From a physical viewpoint the active (real) power is the most indicative reference quan-

tity that describes how the power consumed by the actuator is used to perform a given

task. However, a practical engineering perspective requires including the effects as-

sociated with complex load driving which, changes the perspective considerably. The

resulting power requirement regarding the capability of the amplifier was found to be

the most informative figure for power ultrasonic systems.

The electrical to mechanical wave power transduction was analysed for the configuration

used in the validation experiment in Chapter 5. The chapter was concluded with a

parametric study showing the dependence of the power conversion efficiency on the

dimensions of the actuator and the thickness and loss factor associated with the bonding

layer.
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Chapter 7

Application of the proposed

methodology to interface

shear stress prediction

The modelling tools developed in the previous chapters enable an insightful and practical

analysis of the interface shear stress in piezo-actuated structural waveguides with respect

to the electric power requirements. The qualitative study originating from analytical

theories was concluded in Chapter 2 with a set of observations and implications for real

world applications. They were subsequently addressed throughout the course of the

thesis with more adequate and specialised modelling tools. The essential stage was the

development of a wave-based methodology for calculating waves excited by piezoelectric

actuators which was not laden with the limitations of the commonly used theories (e.g.

the pin-force assumption). Its electromechanical character has been explored in more

detail in Chapter 6 where various aspects of electrical-to-mechanical power conversion

were discussed.

In this chapter the aforementioned tools are applied to the problem of interface shear

stress prediction in structural waveguides with unwanted accretions equipped with piezo-

electric actuators. In order to keep both generality and the reference to a practical case,

two structural configurations for the host are considered: an aluminium plate in plane

strain (1D cross-section) and a steel rectangular beam as used in the validation ex-

periment (Section 5.5 - 2D cross-section). Waveguides fully covered with accretion are

considered first. In Section 7.1.1 and Section 7.1.2 it is shown how the interface stress

is recovered from the SAFE formulation and how the results of the proposed model

compare with conventional FE simulations. The particular wave contributions to the

overall stress are discussed in Section 7.1.3 and the interface stress distribution for a 2D
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waveguide is presented in Section 7.1.5. The power quantities introduced in Chapter 6

are used as reference quantities for stress analysis in Section 7.1.4. In Section 7.2 the

influence of the parameters of the accreted layer is assessed with the new modelling

tools. The discussion on other related issues such as the comparison between a fully

and partially covered waveguide and the effect of reflections is presented in the follow-

ing sections. Whenever ice is used as the accretion, the corresponding electrical power

requirements are stated.

This chapter is concluded with an experiment on invoking delamination using structural

waves in a beam-like waveguide with patches of a model material accretion (building

plaster - see Appendix A).

7.1 Interface stress in a waveguide fully covered with ac-

cretion under piezoelectric actuation

7.1.1 Stress recovery routine

The cross-section in SAFE is modelled in a similar way to the conventional FE, hence it

is bound by the same limitations when stress calculation is desired. FE formulation is

based on displacement, i.e. during the element assembly only the displacement degrees

of freedom associated with adjacent elements are equated. Moreover the shape functions

are required to be continuous up to the (p− 1) derivative across the element boundaries

where p is the order of approximating polynomial [124]. The strain and stress calculation

requires higher-order derivatives of the shape functions which are not necessarily (in

practice very seldom) continuous. As a consequence one observes sudden jumps of

stress between elements, especially at material boundaries. In order to minimise this

effect a sufficiently dense mesh must be used near the region where stress values are to

be obtained.

σyz

nodal locations
inter-element boundary

Stress recovery routine:

a) stress at integration points
b) extrapolation based on the element shape functions
c) extrapolated nodal stress at an inter-element boundary
d) extrapolated nodal stress elsewhere
e) averaged nodal stress

Figure 7.1: Schematic presentation of the stress recovery routine from SAFE
model.
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ice aluminium
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Figure 7.2: Through-thickness stress distribution at two frequencies for an infi-
nite aluminium (1 mm) – glaze ice (1 mm) plate in plane strain. Comparison
between distributions from SAFE plotted at integration points and extrapolated
to nodes (with averaging) with analytical GMM result.

The derivation of the SAFE elements requires computing the virtual work done by the

strain field on the stress field which is integrated over the cross-sectional domain (see

Section 4.1.3). The Gauss integration scheme adopted in the implementation of SAFE

enables evaluating the integrations by computing the integrands only at a few particular

locations called integration points. Therefore, the stress in displacement-based FE is

the most accurate at the integration points [124]. If linear elements are used, the stress

at the integration point is often referred to as element stress. In the case of quadratic

elements there are three integration points for 1D elements and 9 integration points

for 2D elements. The stress can be extrapolated to the nodes using the displacement

shape functions chosen, however special care must be taken while analysing extrapolated

results. Since the stress is expected to be discontinuous at an inter-element boundary,

at a node where a few elements meet, a few different values for stress are obtained.

An appropriate averaging technique is needed to account for the discontinuity. In this

thesis, the simplest method is used, namely a mean of all the contributions is returned

as a representative value for a node shared by more than one element.

A schematic presentation of the implemented stress recovery routine can be found in

Fig. 7.1. Note that nodal stresses are in general complex numbers, so they are averaged

as such. As for FE, increasing mesh density improves the accuracy of the calculated

nodal stress. It is worth mentioning that for a 1D cross-section (plate in plane strain)

an alternative technique that combines the robustness of SAFE method for determining

dispersion curves and accuracy of GMM for calculating through-thickness wave field

distributions can be used [123]. The SAFE method is employed to find the dispersion

characteristics which then are used in a global matrix assembly according to GMM. The

wave field is recovered from the global matrix in the same way as explained in Chapter 1.
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Thanks to this technique the strongest advantages of both methods are used at the same

time. The main benefit of this approach is that the stress distribution, and therefore

the interface shear stress value, is exact. An illustrative result can be found in Fig. 7.2.

Unfortunately the GMM ‘extension’ can only be applied to one-dimensional cross-

sections, for which a GMM formulation exists. If the cross-section is two-dimensional

or if the GMM is not used for a one-dimensional cross-section, one must be particularly

careful while specifying the mesh density in stress calculations. Note that convergence

of the SAFE method for dispersion calculation does not ensure that the stress values

are accurate.

7.1.2 Validation with FE

The wave model and the stress recovery routine have been validated with conventional

FE simulations. Modelling of anechoic boundaries is quite cumbersome in FE, therefore

the comparison has been performed on a finite waveguide (which the wave model can

easily handle) – modelled either in plane strain (2D structure, but 1D mesh in SAFE)

or as fully three-dimensional (3D structure, but 2D mesh in SAFE).

One of the main simplifications involved in the wave model developed in Chapter 5 is

related to the assumption that the electric field in the direction of propagation z is

neglected, therefore piezoelectric shear coefficient ezyz plays no role in the constitutive

equations in (3.19). The effect of this simplification is demonstrated below as in the

FE simulation two variants are considered – with full piezoelectric coefficients matrix

and with reduced piezoelectric coefficients matrix (without shear components). It is

important to mention that the dimensional reduction of the piezoelectric constitutive

equations (from 3D to e.g. 2D plane strain) is not always properly implemented [121]

therefore it is advisory to use the d-form of the piezoelectric constants in 2D plane strain

FE models.
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Figure 7.3: Geometry for the SAFE-FE validation cases.

– 162 –



7.1 Interface stress in a waveguide fully covered with accretion

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

100

101

102

103

104

105

f , kHz

σ
y
z

(i
n
te

rf
ac

e)
,

P
a

V
−
1

FE full e FE reduced e

wave model (SAFE) wave model (SAFE + GMM)

Figure 7.4: Validation with FE of the stress calculation for a 2D structure with
1D mesh in SAFE. See Fig. 7.3a for structural configuration details.
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Figure 7.5: Validation with FE of the stress calculation for a 3D structure with
2D mesh in SAFE. See Fig. 7.3b for structural configuration details.

For the 2D variant a finite aluminium (1 mm) – glaze ice (1 mm) plate in plane strain

with fixed-free end boundary conditions was used. It was equipped with a Noliac NCE40

1 mm thick and 2 cm long actuator. Both in SAFE and in FE five quadratic elements

were used per each layer (mono-dimensional plane strain in SAFE and two-dimensional

plane strain in FE). The geometry for the considered case is schematically presented in

Fig. 7.3a. Fig. 7.4 shows the results for SAFE, SAFE with GMM for stress calculation

and conventional FE (Abaqus). The transfer functions obtained using SAFE and FE

with reduced e matrix are in excellent agreement, however with increasing frequency the

effect of neglecting shear piezoelectric coefficients becomes more significant. Neverthe-

less, the magnitude of the discrepancy confirms that this assumption does not involve

significant loss of accuracy.

The comparison for the 3D variant is done on a similar structure, but extended by

20 mm in the x direction and with free-free boundaries. The corresponding geometry

is schematically presented in Fig. 7.3b. The cross-section was discretised with 12 × 1
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quadratic elements per material layer both in SAFE and FE (8-node quadratic plane

elements in SAFE and 20-node quadratic 3D bricks in FE). In Fig. 7.5 the comparison

between SAFE and conventional FE (Abaqus) is presented. Like for the 1D case, a small

discrepancy between the FE with full e matrix and SAFE is observed, but its magnitude

is negligible. Otherwise, the agreement is very good, which confirms the validity of the

implemented wave model and the associated stress recovery routine.

7.1.3 Contributions of wave types to the overall interface stress

Let us now look at how different waves contribute to the piezo-induced interface shear

stress in structures with unwanted accretions when no reflections are present. It is re-

called that throughout the thesis the actuator is assumed to be poled along the thickness

(y) direction which corresponds to the material 3-3 axis.

The wave-based nature of the model enables separating the stress generated by particular

waves. Note that only propagating waves are considered in this comparison which means

that the waves that are classified as evanescent are not taken into account. The loss

factor for ice adopted in this thesis is high ηice = 0.01, so the wave attenuation at high

frequencies is expected to be non-negligible. Therefore, specifying at what distance from

the actuator the interface stress is analysed is essential for understanding the capabilities

of the waves for invoking debonding. The criterion for identifying propagating waves is

in general case specific (see Section 4.2, [51]) and below it is assumed that propagating

waves are associated with the imaginary part of the wavenumber such that |Im{k}| <
100. This is rather generous, since for instance, over a distance of 0.1 m wave amplitude

is reduced by a factor of | exp [−(−100)0.1]| = 4.5× 10−5.

7.1.3.1 Infinite plate in plane strain (1D cross-section)

If the waveguide and the actuator are modelled under the plane strain assumption, only

Lamb wave propagation is allowed (i.e. with the motion confined within the y–z plane).

The wave composition of the stress FRF is shown in Fig. 7.6. Note that the contributions

of particular waves are plotted as a magnitude, whereas the total response is the sum of

the contributions which accounts for the phase differences. The phase velocity dispersion

curves for the iced plate are plotted in Fig. 7.7 for reference purposes. The highlighted

sections of the dispersion curves in Fig. 7.7 correspond to a more strict propagation

condition, namely |Im{k}| < 10. This illustrates how the attenuation in the accreted

layer grows with frequency and confirms that the build-up dominated modes decay very

quickly.
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Figure 7.6: Wave contributions to the overall interface shear stress for an infinite
aluminium (2 mm) – glaze ice (2 mm) plate in plane strain equipped with a
Noliac NCE40 2 mm thick and 5 cm long actuator.
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Figure 7.7: Phase velocity dispersion curves for an infinite aluminium (2 mm) –
glaze ice (2 mm) plate in plane strain; the highlighted sections of the curves indi-
cate that the condition |Im{k}| < 10 is fullfilled; wave mode labelling conforms
with Fig. 7.6.

Up to ca. 200 kHz the interface shear stress is predominantly generated by the flexural

wave (1st wave, often called A0). The contribution of the 2nd wave becomes stronger at

higher frequencies. The maximum is related to the cut-off frequency of wave 5 at around

660 kHz. Higher-order waves give a significant rise to the interface stress over a narrow

bandwidth close to the cut-off frequency. Glaze ice stiffness is relatively high, so that

mode veering is very smooth in the considered case. However, it can be observed that

veering towards the AL (accreted layer) asymptote (see Chapter 2) is associated with

high stress, although at the same time associated with large wave attenuation. Note that

at a longer distance from the actuator the contributions of waves that are not covered

by the highlighted sections in Fig. 7.7 become negligible due to wave decay.

In the frequency range that is expected to be the most practical for wave-induced de-

lamination (wave attenuation grows with frequency - see Chapter 2), i.e. up to around
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200-300 kHz the 1st wave (flexural – A0) provides the highest interface shear stress. The

stress given by the compressional wave (2nd) is significantly lower, particularly below

150 kHz (see Fig. 7.6). This agrees quite well with the theoretical predictions from

analytical wave models in Chapter 2.

7.1.3.2 Infinite beam-like waveguide as used in the experiment (2D cross-

section)

A beam-like waveguide is apparently very similar to the previously considered case,

however the associated wave spectrum is much more complex. Mode tracking becomes

a cumbersome task since the wave mode shapes are rather complex and difficult to

classify as they change along a dispersion curve significantly. A full analysis on which

wave (described by the displacement wave mode shape) gives rise to the interface shear

stress can only be done at a single frequency.

Nevertheless, for the sake of consistency a representative set of interface shear stress

results is presented in Fig. 7.8 and associated dispersion curves shown in Fig. 7.9. At

high frequencies the number of waves hinders the analysis of the wave composition of

the stress FRF, therefore only a limited frequency range is discussed. Note that what

is referred to as a single wave below, does not imply a continuous, single-coloured curve

in Fig. 7.8 and Fig. 7.9. The arrows on Fig. 7.9 help associating particular colour with

the deformation pattern for the two fundamental and the first higher-order wave.

At low frequencies the interface shear stress is generated predominantly by the funda-

mental flexural wave (1st in Fig. 7.8). The first higher-order wave cuts off at around

30 kHz and from that point prevails in the response. The global stress peak around
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Figure 7.8: Wave contributions to the overall interface shear stress for an infinite
steel beam as used in the experiment covered with a 3 mm thick glaze ice layer.
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Figure 7.9: Phase velocity dispersion curves for a steel beam as used in the
experiment covered with a 3 mm thick glaze ice layer; the highlighted sections
of the curves indicate that the condition |Im{k}| < 10 is fulfilled; wave mode
labelling conforms with Fig. 7.8.

37 kHz) is related to the cut-off frequency of the higher-order wave (across-width bend-

ing) in the PZT-covered section. The contribution of the wave associated with a lon-

gitudinal deformation becomes significant around 80 kHz. It is worth mentioning that

at that frequency the associated deformation pattern is a coupling between flexural and

compressional motion.

Up to 80 kHz only the fundamental flexural wave and the first higher-order wave invoke

non-negligible interface shear stress. Note that the maxima of the response are usually

related to the cut-off frequencies in the PZT-covered section.

7.1.4 Transfer functions between interface stress and electrical input

variables

A critical quantity describing the applicability of the wave-based ultrasonic cleaning

systems is the electrical power requirement. The power transfer analysis of the piezo-

equipped structural waveguides from Chapter 6 raised the importance of the impedance

mismatch between the driving source and the actuator and proposed a few reference

power quantities for the assessment of the efficiency of the excitation. Although the ac-

tive power which is consumed by the actuator provides the most physical understanding

of the power transduction process, the power capability of a driving source with a fixed

impedance is a more practical measure indicating how big and powerful the amplifier

needs to be. The interface shear stress generated by the piezoelectric actuation is now

presented with the reference to those power quantities. Note that the stress is not lin-

early related to power, therefore the dimension of the quasi -transfer functions shown
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below is stress per square root of electrical power. The piezoelectric actuator is assumed

to be linear in all cases considered in the thesis.

7.1.4.1 Infinite plate in plane strain (1D cross-section)

Firstly, the Lamb wave (plane strain) case is considered. The results referring to a 20 mm

wide strip of an infinite aluminium (2 mm) – glaze ice (2 mm) plate equipped with a

Noliac NCE40 2 mm thick and 5 cm long actuator are shown in Fig. 7.10. Assuming the

bond strength of the aluminuium–glaze ice bond σb to be 1.5 MPa, the corresponding

power requirements are presented and plotted in Fig. 7.11. The figures indicated by

Fig. 7.11 appear to be practically non-realisable. From the active power perspective the

best point is at 268 kHz, requiring 94 W of power to be consumed by the actuator for

inducing debonding. If only a 50 Ω driving source is available, one would require its

power capability to be higher than a few kilowatts which may put the practicability of

the approach in question.

However, two additional aspects need to be taken into account. Firstly, the shear

strength bond used in this thesis is obtained statically and is expected to be higher

than the dynamic bond strength. Secondly, the power capability is calculated for a 50 Ω

source only (the typical off-the shelf characteristics). A dedicated system could have

different output impedance adjusted to match the structural configuration, which can

possibly lower the Pcapab indications.
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Figure 7.10: Interface shear stress seen 0.1 m from the actuator per applied
voltage and per the square root of power quantities considered for an infinite
aluminium (2 mm) – glaze ice (2 mm) plate in plane strain equipped with a
Noliac NCE40 2 mm thick and 5 cm long actuator; powers are scaled to a
20 mm wide strip.
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Figure 7.11: Voltage and power required to debond a 2 mm thick glaze ice layer
from an infinite 2 mm aluminium plate in plane strain equipped with a Noliac
NCE40 2 mm thick and 5 cm long actuator; σb = 1.5 MPa; powers are scaled
to a 20 mm wide strip.

7.1.4.2 Infinite beam-like waveguide as used in the experiment (2D cross-

section)

Attention is now drawn to a structural waveguide with a rectangular cross-section

equipped with a 0.076 m and 2.2 mm thick Noliac NCE40 actuator (as used in the

experiment). The beam is covered over its whole length with a 3 mm thick glaze ice

layer. The results showing the interface shear stress as a function of the applied voltage

and the square root of electrical power are given in Fig. 7.12. On the right y-axes the

voltage/power requirements for achieving delamination at the steel–glaze ice interface

are depicted (assuming the bond strength σb to be 1.5 MPa). Additionally, the val-

ues near the through-width resonance of the PZT-covered section, which ensures the

power transduction to be optimal (see Chapter 6), are specified. A waveguide with a 2D

cross-section benefits from higher order waves that are associated with through-width

resonances of the cross-section. These are not available under the plane strain assump-

tions, although they give a rise to the interface shear stress. The first higher-order wave

cuts off at around 37 kHz and is associated with a resonance of the actuator, provid-

ing the optimal power conversion between the electrical driving systems and structural

waveguide (see Chapter 6). Moreover, at that frequency the transverse shear stress at

the interface with respect to |P | and Pcapab reaches its maximum. It is interesting that

the peak around 37 kHz does not appear in the graph where a reference to active power

PR is taken. This is attributed to the fact that since the PZT covered section is at

resonance, a relatively large amount of power is lost in the actuator due to the mate-

rial damping. As a consequence a smaller portion of the consumed electrical power is
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Figure 7.12: Interface shear stress per applied voltage and per the square root
of power quantities considered before for the beam as used in the experiment
covered with 3 mm layer of glaze ice. On the right hand side y axis, the volt-
age/power requirement is presented, assuming the ice bond braking stress to be
σb = 1.5 MPa.

converted into structural wave power.

The respective power requirements shown in Fig. 7.12 are high and not directly ac-

ceptable from a practical perspective. However, it is worth keeping in mind that the ice

bond strength (static) reported in the literature is not consistent among the authors and

varies from 0.1 to 1.6 MPa. Moreover, the dynamic deformation is expected to break

the bond easier, but unfortunately no results on the dynamic strength of the bond are

known to the author. If then the actual strength of the bond is two times smaller than

the assumed σb = 1.5 MPa, the power requirements drops by a factor of four.

One also needs to bear in mind that the examples presented in this section refer to the

worst case scenarios, i.e. when no end reflections are present and the debonding is to

be induced only by a propagating wave. The effect of slightly reflective boundaries is

discussed later in the chapter.
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7.1.4.3 How representative is a 1D cross-section waveguide for a practical

2D cross-section waveguide?

Throughout the thesis the two different structural configurations appear – the beam-

like waveguide (2D rectangular cross-section) and the plate in plane strain which is

commonly used in ultrasonics (1D line cross-section). It is interesting to investigate how

representative is a waveguide with a 1D cross section (infinite width) for a waveguide

with a 2D cross-section which is more practical, in general. In order to illustrate it,

the interface stress response for the former is compared to the response of the latter,

given the same material properties and dimensions. The electrical power for the infinite

width case is calculated based on a 24 mm width strip which is the same as the width

of the 2D cross-section. The comparison is presented in Fig. 7.13. The responses of

the two models are similar up to ca. 30 kHz, when the higher-order wave cuts off in

the beam-like waveguide. This wave originates from the through-width bending mode

of the cross-section and therefore cannot be captured by a plane strain model. At low
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Figure 7.13: The interface shear stress calculated using a model with a 2D cross-
section and with a 1D cross-section (plane strain) with width for the power
calculation corresponding to the width of the 2D beam; both configurations
refer to the beam as used in the experiment covered with a 3 mm accretion.

– 171 –



Application of the proposed methodology to interface stress prediction

frequencies, when only the flexural and compressional fundamental waves are present

and the shapes of the graphs are very similar, the 1D model gives slightly higher stress

than the 2D counterpart. It can be attributed to the fact that the deformation along the

width (x) contributes to higher current drawn by the actuator (especially its reactive

components). Note that this difference is the least apparent in the active power (PR)

graph, which shows how the delivered active power is consumed on generating stress.

In this case the influence of the reactive components is not captured and therefore the

responses are very similar.

Concluding, a plane strain model is not able to capture some physical effects that can be

very beneficial for the efficiency of the power transfer in a 2D waveguide. However, at

low frequencies (i.e. when only the fundamental waves are present) it provides indicative

and trustworthy results (although slightly overestimated).

7.1.5 Interface stress through-width distribution as a function of fre-

quency for a beam-like waveguide

The interface shear stress in a beam-like waveguide considered in this chapter usually

refers to the interface point at the middle of the width of the cross-section. However,

the interface stress distribution in the beam is, of course, not uniform. In some cases

the chosen reference point for stress comparison is not leading to the most optimistic

conclusions. Therefore, for the sake of completeness the through-width stress distribu-

tion for the illustrative beam-like waveguide is discussed in this section. For a specific

implementation one could account for the benefits of considering the full through-width

distribution.

In a waveguide with a two dimensional cross-section there are two stress components

that are likely to promote delamination – σyz (as for the 1D case) and σyx. The shear

stress σxz is supposed to contribute to shearing of the vertical planes and hence induce

internal cracks (see Fig. 2.17). The through-width distribution of the interface stress

components including the effect of combining the two transverse shear stresses is shown

in Fig. 7.14. Both σyx and σxz are anti-symmetric with respect to the middle of the cross-

section. A significant rise in all the stress components is observed with the first higher-

order through-width bending wave cuts off at around 35 kHz. At higher frequencies

the transverse stresses (σyx, σxy) exhibit other sharp peaks at those subsequent cut-off

frequencies, whose associated waves are excited by the actuator. The shear stress σxz

achieves the highest values among the three, however according to [21] is not expected

to contribute to delamination. Note that the transverse shear stress σyz is maximum at

the edges of the beam at the cut-off frequencies.
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Figure 7.14: Cross-width interface shear stress distributions (components on the
colourbars) against frequency for the beam as used in the experiment covered
with 3 mm layer of glaze ice.

7.2 Influence of the parameters of the accreted layer on

the generated interface stress

Given the numerical tools developed throughout the previous chapters, the influence

of the properties (thickness and stiffness) of the accreted layer on stress generation is

analysed in a more informed way. Both the effect of wave attenuation and the excitability

of particular waves by the PZT actuator can now be addressed directly and not inferred

as done in Chapter 2 and Chapter 3. The parametric study is performed on an infinite

aluminium plate (2 mm thick) in plane strain equipped with a 5 cm long and 2 mm

thick Noliac NCE40 actuator. The stress is extracted at 0.2 m from the actuator and

the electrical power is calculated for a 20 mm wide strip (see Fig. 6.15a). Note that the

structural configuration permits Lamb wave propagation only.

7.2.1 Thickness of the accretion

In the first part it is analysed how a growing glaze ice accretion affects the stress genera-

tion capability of guided waves. The thickness of the glaze ice layer is varied from 0.1 to

4 mm. The results for interface shear stress computed with reference to voltage, active
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Figure 7.15: Interface shear stress as a function of a growing glaze ice layer
on a 2 mm aluminium plate in plane strain with respect to different electric
quantities. The structure is excited with a 5 cm long and 2 mm thick Noliac
NCE40 actuator.

consumed power, apparent power and the capability of the driving source are shown on

the colour maps in Fig. 7.15.

From a physical viewpoint the most useful is the graph scaled with reference to the

active power, as it shows how the electrical power consumed by the actuator is used for

generating stress. From a practical implementation viewpoint, the graph scaled with

reference to the required source capability is the most informative, indicating how easy

it is to generate stress with piezo-actuated waves given a standard ultrasonic source.

There are two main related factors that influence the effectiveness of the piezo-actuation

for generating interface shear stress. The first is the characteristics of a particular

wave field that does or does not invoke high stress at the interface. The second is the

frequency dependent characteristics of the actuator and its relation to the electrical

driving components which affects the efficiency of the excitation.
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In the low frequency regime (up to the first cut-off frequency around 120 kHz for 4 mm

thick icing) the thickness of the accretion does not alter the frequency distribution of

the generated stress significantly (note the vertical stripes up to ca. 120 kHz). When ice

grows the excited wavelengths change, therefore the precise locations of dips and peaks

in this region vary with the build-up thickness.

The magnitude of the induced stress increases with the growth of the build-up layer.

For example, at the peak region (red stripe) between 75 and 80 kHz one can achieve

up to ca. 24 kPa/
√

W for the 0.1 mm thick ice layer, and up to ca. 99 kPa/
√

W for

the 4 mm thick ice layer (with reference to active consumed power – see the second

graph in Fig. 7.15). It is noted that according to Fig. 7.6, in this frequency range, the

interface shear stress is predominantly generated by the flexural wave (A0). Hence, the

interface shear stress grows with the thickness of the accretion. This confirms that it

is more difficult to remove thin ice accretions at low frequencies (before the first cut-off

frequency).

The situation becomes more complex when higher-order waves are included. When

excited near their cut-off frequencies, higher-order waves generate high interface shear

stress, which can clearly be seen in the ‘per v’ graph of Fig. 7.15 (e.g. the red tongue

originating from ca. 600 kHz at 0.1 mm thickness). This effect moves towards low

frequencies when the accretion grows since the cut-off frequencies of the higher order

waves shift towards lower frequencies with the growth of the accretion.

On the other hand, high deformation incurs high current requirements and hence high

power consumption from the driving source. The interface stress is high as is the power

consumed by the actuator. This is why on the ‘per PR’ graph there is no substantial

difference between the stress generated at low frequencies and that achieved near the

cut-off frequencies if the reference quantity is the square root of active power.

The ice build-up has a relatively high loss factor (0.01), and therefore the energy loss in-

creases with frequency and the thickness of the accretion. The ‘per PR’ graph in Fig. 7.15

becomes lighter towards its top-right corner which corresponds to high frequency and

large thickness. The electrical power consumed by the actuator is lost due to various

dissipation mechanisms including growing wave attenuation. Although the ice loss fac-

tor was chosen arbitrarily to represent a medium damping that has been observed for

ice experimentally, the results indicate that high ultrasonic frequencies are not suitable

for removal of thick accretions.

A bigger picture can be drawn if one accounts for specific properties of the ultrasonic

driving source. The electrical driving system’s ability to deliver the desired active power

to the actuator depends on the ratio between the impedances of both components and
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Figure 7.16: Electrical impedance and power quantities discussed in the chapter
(reference driving voltage v = 1 V) as a function of frequency and thickness of
a glaze ice layer growing on a 2 mm aluminium plate in plane strain. The
structure is excited with a 5 cm long and 2 mm thick Noliac NCE40 actuator.

the reactance of the actuator. Matched impedances ensure that most of the available

power can be utilised and hence that the capability of the source (very close to the power

rating of the actuator) is nearly the same as the active power needed by the actuator. In

this thesis an arbitrary value of 50 Ω is chosen for the driving source output impedance.

This value corresponds to the standard with which most of the off-the-shelf ultrasonic

amplifiers conform. The amplitude of the actuator is frequency dependent, therefore

only at some frequencies its value can be close to the fixed output impedance of the

source.

If the waveguide is infinite, the impedance of the actuator is usually high and predomi-

nantly capacitive unless close to the cut-off frequencies. Near the cut-off frequencies the

actuator-covered section is in a planar resonance (i.e. the resonance of the cross-section

with k=0), therefore both the impedance magnitude and its reactive part drop down.

In order to exploit the characteristics of the cut-off frequencies, i.e. high associated
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Table 7.1: The maximum interface shear stress achieved above the first cut-off
frequency for a few thicknesses of glaze ice accretions.

ice thickness maximum σyz frequency

1.1 mm 71.7 kPa /
√

VA 467 kHz

2 mm 42.6 kPa /
√

VA 615 kHz

4 mm 24.2 kPa /
√

VA 503 kHz

interface shear stress and very low impedance, one would design the amplifier to have a

specific output impedance that matches the structural response.

Even though the standard source output impedance is used in Fig. 7.15, the piezo-

equipped structure is the easier to drive and more likely to invoke high stress near the

cut-off frequencies. These effects are captured on the ‘per Pcapab’ graph in Fig. 7.15.

Interestingly, it shows that at high frequencies it is easier to remove relatively thin ac-

cretions. Some illustrative results corresponding to different ice thicknesses are gathered

in Tab. 7.1.

Separating the two aforementioned effects (the wave field promoting high stress and low

impedance of the actuator) is rather impossible since the electromechanical coupling

makes them strongly dependent on each other. In order to facilitate the analysis, the

impedance and corresponding electrical powers are plotted in Fig. 7.16. A very clear im-

print associated with three higher-order waves can be observed in Fig. 7.16. The distinct

tongues depict how the cut-off frequencies change with the thickness of the accretion.

Note, however, that there are other higher-order waves propagating in the considered

frequency range but they do not couple well with the electrical characteristics of the

actuator at the cut-off frequency resonances. For a plane strain model, as the one used

in the current study, only the cross-section resonances with predominant deformation

in the thickness direction can be ‘picked’ by the actuator, because they couple with the

electric field applied across the thickness.

7.2.2 Stiffness of the accretion

In the second part the influence of the stiffness of the accreted layer is assessed, assuming

that the thickness is kept fixed at 2 mm and that the Young’s modulus is varied between

0.1 and 10 GPa. The results of the study with reference to driving voltage, consumed

power and the required 50 Ω amplifier capability are presented in Fig. 7.17. The whole

stiffness range is divided into two linearly scaled sub-ranges: from 0.1 to 1 GPa and

from 1 to 10 GPa.
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Figure 7.17: Interface shear stress as a function of frequency and build-up stiff-
ness with respect to different electric quantities. The structure (2 mm thick
aluminium plate in plane strain covered with 2 mm accretion) is excited with a
5 cm long and 2 mm thick Noliac NCE40 actuator.

In Chapter 2 an intrinsically physical analysis of the influence of the stiffness of the

build-up was performed. It was shown that the lower the stiffness of the build-up is,

the more strongly the host-accretion bilayer is decoupled. As a consequence of the

decoupling, waves in such a waveguide are either originating from the free-free host (as

if the accretion was absent) or from the clamped-free build-up. The former are more

easily excited, but do not generate high interface shear stress, because the free-free

asymptotes are associated with stress-free surfaces in the host. On the other hand, the

build-up dominated waves are difficult to excite and highly attenuated which makes the

ultrasonic action effective only at limited locations.

Some of these effects can be observed in Fig. 7.17. The generated stress drops signif-

icantly with decreasing stiffness of the accretion. One of the main reasons is that the
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Figure 7.18: Electrical impedance and power quantities discussed in the chapter
(reference driving voltage v = 1 V) as a function of frequency and build-up
stiffness. The structure (2 mm thick aluminium plate in plane strain covered
with 2 mm accretion) is excited with a 5 cm long and 2 mm thick Noliac NCE40
actuator.

build-up dominated higher-order waves that are associated with high wave attenuation

cut off at low frequencies and absorb a large amount of the injected power. On the

‘per PR’ graph in Fig. 7.17 the red region corresponding to efficient stress generation

becomes narrower and lighter while moving down the accretion stiffness axis. Moreover,

for the whole range of accretion stiffnesses, the stress generation efficiency diminishes

while moving towards high ultrasonic frequencies.

Secondly, since the waves that are well excited are mainly host-dominated, the interface

stress tends to zero with decreasing stiffness (decoupling of the layers). One can also

observe the increasing number of stop-bands, i.e. frequencies at which the stress drops for

low stiffness accretions due to high attenuation or layer decoupling at high frequencies.
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From the viewpoint of the driving system, the interface shear stress for high stiffness

build-ups can be generated efficiently at wider bandwidths. On the contrary, low stiffness

build-ups require precise frequency tuning (narrow red regions on the ‘per Pcapab’ graph

in Fig. 7.17). Although it was said that the efficiency of the interface stress generation

drops with increasing frequency, there is a group of ‘red areas’ around 600 kHz on

the ‘per Pcapab’ graph in Fig. 7.17 which covers most of the range of accretions. This

corresponds to a cut-off frequency which enhances the impedance matching between the

driving source and the actuator considerably. Therefore, even though the interface stress

with respect to consumed power at those frequencies is not high, delivering such power

can be relatively efficient for a standard ultrasonic source.

The associated electrical quantities are presented in Fig. 7.18 for reference.

7.3 Interface stress in a waveguide partially covered by

accretion under piezoelectric actuation

Given the big picture on different aspects of using structural waves for invoking delam-

ination outlined in the previous sections, the attention is now confined to the beam-like

waveguide with a rectangular cross-section. It is of interest to examine the difference in

the generated interface shear stress if the beam is only partially covered with accretion

as opposed to the fully covered case considered up to this point. The geometry and

structural configurations used for the computation are depicted in Fig. 7.19.
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interface stress
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(a) fully covered
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0.00342

0.003

interface stress
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(b) partially covered

Figure 7.19: Structural configuration for simulations of interface shear stress in
a beam-like waveguide fully and partially covered with glaze ice accretion.

– 180 –



7.3 Waveguide partially covered by accretion under piezoelectric actuation

2 kPa/V

1.8 kPa/V

10−2

100

|σ
y
z
|,

k
P

a
/V

fully (per v) partially (per v)

72.5 kPa/
√
W

99.3 kPa/
√

W

100

102

|σ
y
z
|,

k
P

a
/√

W

fully (per PR) partially (per PR)

56.5 kPa/
√
VA

50.1 kPa/
√
VA10−1

101

|σ
y
z
|,

k
P

a
/
√

V
A

fully (per |P |) partially (per |P |)

54.3 kPa/
√
VA

48.3 kPa/
√
VA

0 20 40 60 80 100 120 140 160 180 200

10−1

100

101

102

f , kHz

|σ
y
z
|,

k
P

a
/
√

V
A

fully (per Pcapab) partially (per Pcapab)

Figure 7.20: Interface shear stress in a waveguide (as used in the experiment)
either fully or partially covered with 3 mm glaze ice accretion.

The comparison between the interface shear stress generated for the fully and partially

covered cases is presented in Fig. 7.20. Maximum stresses occurring near the across-

width resonance of the PZT-covered section are marked explicitly. The discrepancy

between the two curves becomes significant from around 60 kHz. Up to that point the

difference in acoustic impedances between the steel and steel-ice sections is small and

most of the wave energy is successfully transmitted into the section with accretion. From

60 kHz upwards the wave conversion at the discontinuity becomes more complex and

at some frequencies gives the advantage to the partially covered case. Note that for

the partially covered case the section with the actuator is less stiff as it does not have

the ice layer. As a consequence, the across-width resonance happens at a slightly lower

frequency that for the waveguide fully covered with accretion.

The corresponding power requirements for de-icing assuming the ice bond breaking stress

to be 1.5 MPa are shown in Fig. 7.21.
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Figure 7.21: Voltage and power requirement for de-icing a waveguide (as used in
the experiment) either fully or partially covered with 3 mm glaze ice accretion.

Throughout the thesis, the required driving source power capability (Pcapab) is promoted

as the most practical and indicative quantity describing electrical power requirements

for removal of accretions with structural waves. However, one needs to keep in mind that

Pcapab is subject to the choice of the amplifier output impedance. In all the simulations

presented up to this point the standard value of 50 Ω was adopted. On the other hand,

it is noted that at most frequencies the required capability of the source is very close to

the power rating of the actuator Papp.
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7.4 Influence of the reflections at boundaries on generated

interface shear stress

The results presented throughout this thesis are confined to infinite waveguides in which

no reflections give rise to the interface shear stress. This rather conservative configu-

ration was chosen, since the real-world structures exposed to accretions (e.g. aircraft

panels) were observed to be highly damped due to mounting conditions (e.g. riveting)

and wave leakage to the fuselage structure. However, in practice some reflections are

almost always present and as seen in the experiments presented in Chapter 5 it is even

very difficult to emulate perfectly absorbing conditions on purpose. Therefore, in this

section the outlook for practical applications that accounts for reflections is discussed.

It is shown how the achievable interface shear stress grows with decreasing absorption

at the boundaries.

In order to do this, artificial simplified reflection matrices are used in the simulations

for the beam-like waveguide partially covered with a 3 mm thick glaze ice accretion as

considered in Section 7.3. The artificial reflection matrices are assumed to be diagonal

and take the form

Rart = (1− absorption)I (7.1)

where I is the identity matrix.

The form of the reflection matrices indicates that no mode conversion is allowed and

that waves are reflected with no phase change, but only with the amplitude diminished

according to the arbitrarily chosen absorption coefficient. The interface shear stress

with respect to the active power and source capability for different levels of absorption

compared with the infinite case are presented in Fig. 7.22. The beam is very long (6 m)

so the resonances are very closely spaced. As expected, the line corresponding to the

infinite beam is a mean (with in a moving frequency window) of each of the finite beam

responses. The presence of reflections significantly facilitates achieving large interface

stress. Illustrative results referring to the maximum achievable stress and corresponding

power required to induce debonding (assuming ice breaking stress to be 1.5 MPa) around

the 36 kHz peak are listed in Tab. 7.2. Note that the quantities presented in Tab. 7.2

were computed for a fixed frequency step, which may have caused the stress to be

underestimated yielding overestimated power requirements. Nevertheless, they provide

an informative indication on how the reflections (even if very small in amplitude) affect

the electrical power requirements for de-icing.
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Table 7.2: The maximum interface shear stress achieved between 30 kHz and
40 kHz for the beam partially covered with glaze ice as considered in Section 7.3
for different levels of wave absorption at the boundaries.

absorption at the ends infinite (100%) 95% 90% 75% 50% 25%c 0%

σyz/
√
PR in kPa /

√
W 99.3 102.8 107.8 124.4 157.3 251.6 500.7

σyz/
√
Pcapab in kPa /

√
VA 48.3 52.1 56 69.9 102.3 148.7 269.4

PR,de-ice in W 228 213 194 145 91 36 9
Pcapab in VA 966 830 717 761 215 102 31
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Figure 7.22: PZT induced interface shear stress in a waveguide with artificial
boundary conditions; the values for the absorption coefficient are denoted in the
legend.

7.5 Experiment on invoking delamination

In this final section of the chapter, the concept of accretion removal using piezo-actuated

structural waves is demonstrated experimentally. Following the preliminary experiment

reported in Appendix A, the accretion was modelled with a patch of building plaster.

The plaster patches were built on the PZT-equipped beam-like waveguide with emulated

infinite boundary conditions at some distance from the actuator.

The experimental arrangement is affected by many uncertainties and variabilities, of

which the most important are the uniformity of accretion thickness, the rigidity of the

bond between the beam and the patch and the properties of plaster when it is set.

This is very close to real circumstances in which the ice layer thickness or properties

do not form regular patches and are very far from being homogeneous and uniform,

however it impedes quantitative comparison with predictions. The experiment serves as

a demonstration of the technique, which needs to be specifically adjusted and tested for

each particular problem case.
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Figure 7.23: Structural configuration for simulations of interface shear stress in
a beam-like waveguide covered with a plaster patch.

7.5.1 Interface shear stress in a plaster-covered beam

The experiment is first performed numerically. The interface shear stress induced by

the PZT-actuator is simulated using the proposed computational approach. Plaster is

treated as an isotropic material. The properties of the plaster are in general unknown

and not measured here, but according to the report attached in Appendix A they are

assumed as follows: the Young’s modulus is 3 GPa, the density is 1000 kg m−3, the

Poisson’s ratio is 0.351 and the loss factor is 0.01. The strength of the bond created by

plaster is assumed to be 0.24 MPa. The geometry and structural configuration for the

considered case is shown in Fig. 7.23. For reference purposes the interface shear stress

for a waveguide fully covered with plaster is also computed (with plaster layer on the

opposite surface to the PZT).

The piezo-induced interface shear stress in a waveguide covered with a plaster accretion

with respect to different power-related quantities is shown in Fig. 7.24. Up to around

60 kHz both partially and fully covered cases a similar level of interface shear stress

is achieved. It is expected that at low ultrasonic frequencies the frequency dependent

characteristic impedance of the accretion is considerably smaller that that of the host

beam, therefore the waves pass through the accreted region almost unchanged. At higher

frequencies, wave scattering at the boundaries of the patch plays a more significant role

and makes the overall response more complex. Given the equipment available in the

Dynamics Laboratory at ISVR the interest is confined to frequencies below 80 kHz.

This also aids physical insight into the phenomenon as only a few waves are present.

The maximum achievable stress if referred to the driving source power capability in the

lower part of the frequency range in Fig. 7.24 is associated with the first higher-order

wave (across-width bending) that cuts off in the PZT covered section around 35 kHz.

The corresponding values for all chosen power reference quantities around that peak are

listed in Fig. 7.24. The frequency of the optimal electrical power transfer between the

amplifier and the actuator is dictated by the electrical impedance of the actuator. The

magnitude of the impedance magnified around its minimum is shown in Fig. 7.25.
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Figure 7.24: Predicted interface shear stress in a waveguide (as used in the
experiment) either fully or partially covered with 3 mm plaster accretion.
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Figure 7.25: Predicted electrical impedance of the actuator bonded to the
waveguide (as used in the experiment) either fully or partially covered with
3 mm glaze ice accretion.

The power requirements for the removal of the plaster with reference to the properties of

the plaster inferred in Appendix A are presented in Fig. 7.26. As a representative value
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Figure 7.26: Voltage and power requirement for removing the plaster from the
waveguide (as used in the experiment) either fully or partially covered with 3 mm
plaster accretion. The values are calculated for the plaster bond strength as
measured in the experiment (Appendix A) – mean: 0.24 MPa (min: 0.142 MPa,
max: 0.366 MPa.

for generated interface shear stress σyz at the middle of the width is chosen. One could

argue that, according to Fig. 7.14, including other stress components and analysing the

stress along the whole width of the beam could significantly diminish the power require-

ments. It is true that at other locations, especially near the edges, the stress is expected

to be as much as three times higher. On the other hand, the chosen strategy, yet more

conservative, helps to ensure that the whole accretion is debonded. If one based the pre-

dictions only on the localised maxima, the structural waves could induce only localised

delamination without shedding the accretion. The power requirements calculated for

the mid-width point imply that the desired stress is achieved (and exceeded) at other

locations across the width as well, which promotes build-up shedding.

The power requirements required to break the bond created by plaster (and assumed to
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be σb = 0.24 MPa) in Fig. 7.26 indicate that the ultrasonic action can be successful if

the actuator consumes 24 W of active power. It can be delivered to the actuator if the

50 Ω ultrasonic driving source is capable of producing 37 V A (and handle the impedance

mismatch).

7.5.2 Experimental setup

The experimental setup for the delamination experiment is shown in Fig. 7.27. The

actuator is powered by an RF amplifier from Electronics & Innovation Ltd. (1020L)

which is driven by the signal from a TTi TGA1240 arbitrary waveform generator. The

generator output impedance can be set to 50 Ω in order to match the 1020L amplifier

input impedance. The amplifier is equipped with an LCD display on which the forward

and reflected power readings are shown (the meaning of these quantities is explained in

Section 6.2.2).

The output of the amplifier is shifted with a DC offset to ensure that the tensile stress

within the actuator is minimised. Since PZT ceramics are much stronger in compression

than in tension it is desirable to drive them predominantly in compression especially

at high excitation levels to avoid tensile cracks (see [24] and Appendix A). Although a

rectangular actuator is used here and the DC offset introduce tensile prestress in the

width direction, it is not dangerous as the aspect ratio of the actuator is quite high

(more than 3), but reduces the tensile stress in the length direction. A simple ‘bias T’

circuit is used to add the DC offset to the high amplitude signal and prevent feeding it

back to the amplifier.

≈ 6

0.6

0.076 0.0760.3

PZT accretion

steel beam
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sandbox sandbox

camera

Polytec PSV300
Controller + PC
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velocity u̇

Figure 7.27: Experimental setup for the delamination test. Dimensions of the
beam refer to the equivalent values discussed in Section 5.5.
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The following experimental procedure was adopted. Firstly, at a low level of excitation

the optimum frequency was sought for around the 35 kHz resonance (see Fig. 7.25). The

optimal frequency was identified based on the active power delivered to the actuator as

indicated by the amplifier’s display. After the frequency had been tuned, the driving

power was increased up to the point when plaster patch shedding was observed. The

reader should pay attention to the following remarks. Firstly, note that the numeri-

cal results from the previous section were computed based on the assumed properties

(Young’s modulus and density) of plaster, which have not been rigorously identified as

this is out of the scope of the thesis. Therefore the maximum stress frequency read from

Fig. 7.24 serves as an indication only. Secondly, the wave absorption at the boundaries

was not ideal in the experimental rig, therefore the delamination experiment is expected

to benefit from the effect of reflections even f they are very small in magnitude.

For reference purposes, the surface velocity at a point equidistant from the actuator and

the accreted patch was measured using a laser vibrometer for one of the experimental

runs.

7.5.3 Experimental results

The delamination was attempted in different runs of which some conformed to the

structural configuration showed in Fig. 7.23 and the others did not (e.g. more patches

were placed on the beam). The results indicating the active (consumed) power at the

instant of delamination are listed in Tab. 7.3, and illustrative video snapshots showing

the patches shedding are presented in Fig. 7.28. Piezo-actuated structural waves were

proven to be able to invoke delamination and remove model accretion.

After the patches had shed it was observed that some of them were only partially at-

tached to the host beam, which made the debonding very difficult. Imperfect bond

between the layers significantly diminishes the generated interface stress which results

in higher power requirements.

Table 7.3: Consumed power at the successful delamination attempts. The read-
ings for PFWD and PRFD assume the amplifier to have 50 Ω output impedance.

Run no. PFWD (amp LCD) PRFD PR structural configuration

1 83 W 63 W 20 W @ 35.61 kHz as in Fig. 7.23
2 52 W 32 W 20 W @ 35.32 kHz as in Fig. 7.23
3 93 W 56 W 37 W different from Fig. 7.23
4 130 W 81 W 49 W different from Fig. 7.23
5 18 W 8 W 10 W different from Fig. 7.23
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Figure 7.28: Video snapshots showing the plaster patches falling of the beam
as a result of the ultrasonic actuation.

For the two runs for which the structural configuration was the same as in the simulations

in Fig. 7.26 the active power consumption at the delamination was measured to be 20 W.

The corresponding numerical simulation indicates a higher value of 24 W. Given the

variability of the shear adhesion strength of plaster, these results seem to be in a good

agreement. However, it is noted that the properties of plaster assumed in the simulation

were not rigorously measured and that the numerical results assume a perfect bond

between the patch and the host structure.

In order to further verify the link between the model and the experimental arrangement,

the surface velocity of the beam was monitored during the delamination in run 1. (see

Tab. 7.3.) The time history corresponding to the instant when the patch shed is shown

in Fig. 7.29. The relevant numerical results computed using the developed wave model

are presented in Fig. 7.30.

During successful delamination attempt 20 W of active powered was consumed. Using

the data from Fig. 7.30 one can calculate that if the actuator is driven with 20 W of active

power the surface velocity is 191.0 mm/s. The observed surface velocity is 432.7 mm/s,

which is more than twice the prediction from simulation. This may be attributable to

the residual reflections from the sandboxes which give rise to the response. Therefore,

the interface shear stress generated by the 20 W ultrasonic actuation is expected to be

twice as high as predicted by the model. At 20 W of active power the model predicts the

shear stress of 0.16 MPa at the interface. If one follows the observation that response

is doubled compared to the numerical prediction, the interface shear stress generated in
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Figure 7.29: Surface velocity at the middle of the width of the steel beam
recorded during the successful delamination attempt; real power consumption:
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Figure 7.30: Surface velocity at the middle of the width of the steel beam -
numerical results with respect to the active power and the power capability of
the source.

the experiment was 0.32 MPa which is very close to the upper-bound values measured

for plaster bond strength from Fig. A.7.

Given the aforementioned uncertainties in the experimental arrangement of which anal-

ysis falls outside of the scope of this thesis, it is acknowledged that piezo-actuated

ultrasonic waves were demonstrated to be capable of removing surface accretion. The

power requirements observed in the experimental demonstration were of an acceptable

level and similar to those predicted by the numerical model (accounting for the differ-

ences explained above). This confirms that the modelling technique developed in this

thesis can be useful for a class of problems requiring computation of high-power (yet

still linear) piezoelectric actuation. Moreover, it shows the potential of high-frequency

structural waves for delaminating unwanted build-ups.
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7.6 Conclusions

In this chapter the modelling methodologies developed throughout the thesis were ap-

plied to the problem of invoking delamination using structural waves. The computational

part focused on calculating the interface shear stress generated by piezoelectric actua-

tion and referring it to the electrical power requirements. The stress recovery routine

was validated with commercial finite element models for both a plane strain model and

full 3D case. The transfer functions and quasi -transfer functions between the interface

shear stress and voltage and power were presented and contributions from particular

wave modes separated.

With the aid of the coupled-field wave model that enables modelling of the actuator

including its full dynamics, a parametric study on the effect of the thickness and the

stiffness of the accretion was performed. It was shown that low ultrasonic frequencies

are better suited to thick ice accretions, whereas the thin accretions are more likely to

be removed when the effects associated with the thickness resonance of the actuator are

utilised. It was also confirmed that for low stiffness accretions it is difficult to achieve

high interface shear stress at high frequencies unless around the thickness resonance of

the actuator.

Referring to the practical cases in which often some reflections are present, the outlook

for their effect is discussed. The reflections, even if very small, provide considerable

boost to the interface shear stress and in consequence lower the power requirements.

Since the stress is proportional to the square root of the electrical power even a small

enhancement in the generated stress results in significant power requirements reduction.

The chapter is concluded with the experimental demonstration of the concept. Model

accretions from plaster were attached to the beam with emulated anechoic terminations.

Piezo-actuated structural waves were proven capable of removing the accretions for a few

experimental runs. For some of the cases the numerical counterpart was simulated. The

computed power requirements corresponded reasonably well with the power consumption

associated with delamination observed during the experiment.
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Chapter 8

Conclusions

8.1 Review of the thesis

Unwanted accretions on structures are a common machinery maintenance problem,

which can pose a serious safety threat if not treated effectively and punctually. The

foremost example of the dangerous build-up problem is aircraft icing, however this phe-

nomenon affects many other types of structures such as pipelines, wind turbine blades

or material handling systems. Traditionally unwanted build-ups here removed using e.g.

chemicals, heat or mechanical cleaning. In recent decades researchers’ attention has

been directed towards more versatile and low-power systems that could either clean af-

fected structures or prevent the accretion process. Among many interesting concepts the

idea of employing the wave-based ultrasonic devices emerged in the aerospace context.

Structural waves excited with surface bonded piezoelectric actuators were expected to

invoke delamination and shed the unwanted material (in this case - ice). The power re-

quirements of such systems were expected to be significantly lower than the traditional

electro-thermal solutions.

Although substantial contributions to the field had been made by a few notable authors,

there was still a gap between generic wave models’ predictions and experimental work

aided with finite element simulations on arbitrary finite structures. Several theoretical

studies on the interface shear stress associated with wave propagation in structures with

accretion can be found in the literature. However, they lack a direct link with the exper-

imental validation. Since no wave-based model for representing high power piezoelectric

excitation in waveguides was available at the time, the authors shifted the course of their

analyses onto the ultrasonic vibration of finite plates that can be modelled using con-

ventional FE. Successful attempts to invoke delamination with ultrasonic vibration were

reported in the literature, yet the physical insight into the phenomenon was hindered
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as the wave perspective was not available any more. A particular emphasis on wave

viewpoint is additionally supported by the fact that in many relevant cases the wave

leakage into the supporting structure is expected to introduce high radiation damping,

largely diminishing the resonance peaks.

This thesis aimed at bridging this gap by keeping the wave-based nature of the approach

from the preliminary theoretical analysis to the experimental demonstration. The cho-

sen course helped to understand the conditions that promote high interface shear stress

and to obtain realistic electrical power requirements for a piezoelectric actuator that

enable excitation structural waves capable of delaminating the accretion. The thesis

was constructed around two main research threads. The first was the assessment of the

feasibility of the concept of removing accretions with piezo-actuated structural waves.

The other was the development of the wave based modelling tools with growing com-

plexity – from a free plane wave model for multilayered plates to a coupled field wave

model for waveguides of an arbitrary cross-section excited with piezoelectric actuators.

The study started with the investigation into the physics of free wave propagation in

multilayered plates aimed at understanding the conditions and phenomena that promote

high interface shear stress (Chapter 2). A standard modelling methodology based on the

partial wave technique and the global matrix method for system assembly was employed.

Structures covered with accretions were treated as elastic bilayers, i.e. weakly coupled

systems. The topology of the dispersion curves and asymptotic wave solutions were

analysed and their significance for interface stress generation was discussed. Since many

of the real world accretions are expected to be lossy, energy distribution and wave

attenuation were looked at in order to specify the conditions under which waves may be

ineffective in invoking delamination.

The thesis attempted to cover a broader perspective of unwanted build-ups. The in-

fluence of both the thickness and the stiffness (Young’s modulus) of the accretion was

assessed in a parametric study. The optimal wave modes for different build-ups were

specified. The results were supported with the physical justification of the stress distri-

bution in particular configurations based on the previous theoretical investigation.

The implications for practical application grounded in the free wave analysis provided

only a qualitative insight. In order to broaden the perspective, the surface force excita-

tion was introduced in the wave model in Chapter 3. The excitability based approach

enabled analysing how the injected power is partitioned between the modes and how

does it contribute to the interface shear stress generation. Based on the pin-force as-

sumption, the approximate methodology for piezoelectric actuation was implemented

and power requirements for sample structures are computed.
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The adopted formulation had certain limitations from the viewpoint of the background

application. The pin-force assumption limits the frequency range and the dimensions of

the actuator as it assumes the interaction with the structure to be static. These restric-

tions cannot be met in power ultrasonics, where the intention is to induce high strain in

the substrate and possibly operate near the resonance of the actuator. In order to cir-

cumvent these constraints, but also to enable modelling arbitrarily shaped waveguides,

an alternative wave-based methodology (the semi-analytical finite element method) was

implemented. The details of the formulation and the experimental validation for a force

excitation were presented in Chapter 4. SAFE method is robust and can be applied to a

wider range of waveguides since the cross-section can be arbitrary and material damping

specified conveniently.

The aforementioned limitations of the common approximate models for piezoelectric ex-

citation were overcome with the new methodology presented in Chapter 5. The approach

was based on extending the SAFE formulation to include the piezoelectric coupling and

invoking the inverse spatial Fourier transform to solve the distributed voltage excita-

tion problem. This methodology enabled keeping the entire calculation in the wave

domain but at the same time helped to overcome most of the limitations of the common

approximate strategies which is particularly useful for applications where high power

excitation is used (however nonlinear effects are not accounted for). The derivation of

the piezoelectric semi-analytical element and the algorithm for calculating the wave re-

sponse to a piezoelectric excitation are described in detail and experimentally validated

on a beam-like waveguide with emulated anechoic terminations in Chapter 5.

Power transfer and conversion in waveguides excited with piezoelectric actuators is dis-

cussed in Chapter 6. The mechanical viewpoint was supplemented with the electrical

perspective where the aspects of complex load driving and voltage wave reflection were

included. The complete picture helped to understand the power requirements of a piezo-

electric actuator and analyse how the electrical power is converted into mechanical wave

power. The chapter was concluded with a parametric study which assessed the influence

of the dimensions of the actuator on the power transduction.

Finally, in Chapter 7 the developed methodologies were applied to the problem of inter-

face shear stress prediction in piezo-actuated waveguides with unwanted accretions. The

stress recovery routine was presented and validated with a conventional finite elements

package for a 2D and a 3D structure. The quasi-transfer functions that indicate the

interface shear stress with reference to electrical power quantities were discussed. This

enabled specifying the electrical power requirements for an illustrative waveguide cov-

ered with an ice layer. Furthermore, the final set of parametric analysis was performed

assessing the influence of the properties of the accretion on the stress generation and
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power transfer. The effect of the imperfect absorption at the boundaries was presented

providing an outlook towards real world applications where some reflections exist even

in a structure with highly absorptive boundaries. The final chapter was concluded with

an experimental demonstration in which the patches made of plaster were successfully

removed from a beam-like waveguide with emulated anechoic terminations with piezo-

actuated structural waves. The concept of employing structural waves for delaminating

surface accretions was proven to be feasible and effective.

8.2 Summary of findings

Interface shear stress generation in waveguides with unwanted accretions

The stiffness of accretions are often much lower than the stiffness of the structure.

Therefore, waveguides with unwanted accretions were treated as elastic bilayers, i.e.

weakly coupled systems. The typical characteristics of weakly coupled systems such as

asymptotic solutions and mode veering were related to the problem of interface shear

stress generation. It was shown that high stress is associated with build-up dominated

waves as a consequence of the continuity condition at the interface. On the other hand

these waves were associated with high wave attenuation if the accretion material is lossy.

Therefore, the modal interface shear stress itself is not the optimal criterion for selecting

wave modes for invoking delamination. Instead, one needs to consider both the interface

shear stress and the associated wave attenuation. The parametric study that imposed a

constraint on the analysed wave modes ensuring that no more than 60% of the energy

propagates along the build-up was performed. It showed that for high stiffness accretion

the flexural wave (A0) is the most effective, whereas for low stiffness accretion the in-

plane waves (S0 and SH0), which couple well with the build-up dominated modes at

lower frequencies, are expected to provide better results.

Modelling the piezoelectric excitation including full actuator’s dynamics

The newly developed methodology for modelling piezoelectric excitation in waveguides

enables overcoming of common assumptions regarding the dynamics of the mutual

actuator-structure interaction and the actuator itself and the bonding conditions. Thanks

to the SAFE formulation the calculation is performed entirely in the wave domain so

that the insight into wave composition of the response is retained. Moreover, the waveg-

uide can have an arbitrary cross-section which was not achievable with the approaches

known to date. With the aid of basic wave scattering relationships, an arbitrarily com-

plex one-dimensional waveguide can be modelled using the presented approach. The
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methodology was validated by an experiment on a beam-like waveguide with emulated

anechoic terminations.

Power conversion analysis in piezo-actuated structural waveguides

The proposed wave model enables calculating the response to a high power excitation

(assuming no nonlinear effects) with thick piezoelectric actuators. This facilitated the

power conversion analysis. It was shown how the power provided by the excitation is

partitioned among the propagating waves, and more generally how the electrical power

is converted into the mechanical wave power. The power transfer is directly related to

the complex and frequency dependent electrical impedance of the piezo-equipped struc-

ture and the electrical power transfer between the driving source and the amplifier. An

actuator bonded to an anechoic waveguide usually shows high electrical impedance over

a broad range of frequencies, the optimal transfer is observed at the cut-off frequencies

of the higher-order waves. From a practical viewpoint, the ability to deliver particu-

lar power to the actuator is a major issue as impedance mismatch and hence voltage

wave reflection occurs. Therefore, the required power capability of the driving source

is identified as the most practical reference quantity when analysing power conversion.

It is noted that the required power capability of the source is very close to the power

rating of the actuator represented by apparent power. Finally, it was shown how the

dimensions of the actuator affect the effectiveness of the power transduction (in the case

of Lamb waves in a plate).

Application of the coupled-field wave model to interface shear stress predic-

tion

The proposed coupled-field wave model was applied to the problem of interface shear

stress prediction. The stress recovery routine was successfully validated with commer-

cial finite elements package. The quasi -transfer functions relating stress to different

power quantities (active power, apparent power, required capability of the source) were

computed and presented. In particular, two structural configurations were used – a 1D

cross-section referring to plane Lamb waves and a 2D cross-section referring to structural

waves. In the light of the above the influence of the properties of the accreted layer was

discussed. The model was shown to be a versatile tool for predicting interface shear

stress and the electrical power consumption in the wave domain.
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Experimental demonstration of accretion removal using structural waves

The concept of removing unwanted accretions using piezo-actuated structural waves

was demonstrated experimentally. Patches made of a model material (plaster) were

placed on a beam-like waveguide with emulated anechoic terminations. The attached

piezoelectric actuator was excited near the first cut-off frequency, and the excited higher-

order wave was successful in delaminating the patch. The experimental arrangement

allowed recording the electrical power (active) consumption during the ultrasonic action.

The experiment was supported with simulations and the numerical predictions were

found to be in a good agreement (given the uncertainties in the configuration and the

fact that the properties of plaster were assumed arbitrarily).

8.3 Future work

This thesis has investigated various physical aspects of piezo-actuated structural waveg-

uides relevant to employing them for removal of unwanted accretions. The following

suggestions indicate the future work directions which can be grouped into two sets:

• Modelling and concept

– The numerical examples in this thesis were limited to flat structures. The

methodology could be extended, in order to facilitate modelling waveguides

with a curved cross-section (such as the leading edge profile or pipe wall).

– The influence of the quality of the bond between the host structure and the

accretion could be analysed. It is expected that weakly attached accretion

would be difficult to remove as the achievable interface stress would be largely

diminished.

– Different types of actuators could be included in the study. This is expected

not to require significant modelling work (at least for monolithic PZT), but

only appropriate formulation and orientation of the matrices related to the

piezoelectric material. It would also be advantageous to include other actu-

ators (such as Macro Fiber Composite) in the model and validate it experi-

mentally.

– The wave-based formulation has the potential to be extended to a larger

class of structures (e.g. two-dimensional wave propagation). This extension

would contribute to modelling plate like structures, e.g. aircraft panels with

accretions. It is also desired to extend the piezoelectric formulation so that

it could model excitation of waves with PZT disk actuators.
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– The wave model could be optimised both from the formulation and the imple-

mentation viewpoint. Firstly, higher-order approximating polynomials on a

non-uniform grid could be implemented (as in SFEM) which is expected to re-

duce the size of the matrices. Secondly, various properties of the system could

be exploited to simplify the code and enhance the speed of computation. This

task opens also a question on efficient algorithms for solving sparse quadratic

eigenvalue problems, which could contribute to the optimisation considerably.

– Various optimisation strategies such as a specific arrangement of the actuators

or structural modifications could be investigated in order to reduce the power

requirements.

– In this thesis only the single frequency steady-state excitation was considered.

The effect of transient excitation in time-domain using the developed model

and inverse Fourier transform could be further examined, as in the light of

the recent literature it might provide higher interface shear stress.

• Experiments

– The experiment in the last chapter of this thesis has a demonstrative charac-

ter. Due to the uncertainties and rough parameter estimation it cannot serve

as a strictly quantitative argument. Dealing with these issues was not in the

scope of this thesis, however it is crucial from the viewpoint of moving the

concept towards a practical application. Therefore, the next step would be to

conduct a more rigorous experimental campaign in which the properties and

the dimensions of the accretion would be identified and kept fixed during a

large number of experimental runs. The experiment would also include more

materials, particularly different types of accretions.

– The experiments could be also conducted on curved profiles such as the lead-

ing edge. The possibility of using Macro Fiber Composite actuators for in-

voking delamination could then be also assessed.

– Emulating infinite waveguides sets the investigation in the worst-case scenario

when the reflections do not enhance the generated interface shear stress. The

experiments on a real-world riveted structures with highly absorptive bound-

aries would help to refine the power requirements.
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Appendix A

Preliminary experiments for

ultrasonically invoked

delamination

A.1 Aim of the experiment

An informative assessment of the feasibility of a wave based method for invoking delam-

ination is difficult since the effect of the ultrasonic action is binary: the accreted layer

falls off or not. Therefore, in order to design and conduct a comprehensive experimen-

tal campaign a few questions and issues need to be answered, preferably empirically:

(i) how much electrical power is needed to obtain a desired effect; (ii) what are the

challenges of complex electrical load driving; (iii) what easy to handle material can be

used in lab conditions to represent an unwanted build-up; (iv) what are the optimal

parameters of the actuator. In order to address these issues a preliminary set of exper-

iments was performed on a square plate with a PZT disk actuator similar to the one

used in [21]. Although most of the theoretical work done up to date was focused on

the effects associated with propagating waves, a finite plate was chosen for preliminary

tests for a few reasons. Firstly, it facilitates achieving delamination since we benefit

from multiple reflections of waves at a resonance. Moreover, it helps to address most of

the aforementioned issues with a reference to similar experiments done in the past and

presented in the literature.
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(a) Young’s modulus of plaster [144].

Young’s Modulus, GPa from 2.5 to 8.3

Density, kg/m3 from 600 to 900

Poisson ratio 0.351

(b) Mechanical properties of ice.

Figure A.1: The comparison of the fundamental mechanical properties of plaster
and ice.

A.2 Procedure

A.2.1 Model material

In previously recalled references the experiments were performed on a plate with ice

of which removal is one of the most significant possible applications of the concept.

However, ice is not easy to work with in the laboratory conditions where it is required to

conduct numerous sets of experiments with easily changeable configurations. In order to

overcome the technical problems involved with ice, building plaster was used as a model

material. Plaster is commonly used for similar reasons to simulate e.g. kidney stones,

since it is easy to manufacture and reasonably controllable [145]. Its Young’s modulus is

in the range close to ice properties [144] (see Fig. A.1a) which are recalled for reference

in Table A.1b.

A.2.1.1 Plaster preparation

Two types of plaster mixes were used in the experiments: one with 73% of dry plaster

(mass content), and another with 62% of dry plaster (mass content). The procedure of

preparing the mixes was repeated with attention to ensuring the same conditions. The

aluminium plates prior to placing the plaster patches were carefully cleaned, roughened

with a fine sandpaper and degreased. Patches were formed in the same locations (Fig.

A.2a) for each plate and each iteration of the test and up to the same thickness within
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Figure A.2: Plaster patches location and dimensions (a) and shear adhesion
strength measurement (b).

the feasible accuracy (≈ 4 mm). They were left for 24h to set before performing the

experiments.

A.2.1.2 Static shear adhesion strength measurement

In order to evaluate the shear adhesion strength of plaster-aluminium bond, a simple lap

shear test has been carried out. The aluminium plate’s surface was prepared according to

the procedure mentioned above. While forming the plaster patches, they were equipped

with a metallic element enabling application of a load. The plate with plaster patches

was fixed to a rigid frame vertically, so that the load could be realised as adding mass to

a metal holder attached to a plaster patch (Fig. A.2b). After the patch had debonded

upon a sufficient load the area of contact was measured. Knowing the breaking load F

and the contact area A, the breaking shear stress τ was calculated as:

τ =
F

A
(A.1)

It has to be emphasised that although special attention was paid to ensure the same

mixing procedure and surface condition for all samples, this test should not be taken as

rigorous quantitative bond strength evaluation. The results are rather to be interpreted

as an indication or an informed estimate within given uncertainties.
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Figure A.3: Principle of impedance monitoring and loaded PZT transducer
equivalent circuit.

A.2.2 Electrical impedance measurement

Electrical impedance (EMI is the common abbreviation since sometimes it is called an

electromechanical impedance) measurement is widely used in structural health monitor-

ing to capture the dynamic response of a system and assess its state[80]. Impedance can

be easily captured using an impedance analyser. However this is a costly device and

for many applications, simpler methods can be used. To evaluate electrical impedance,

voltage and current waveforms have to be recorded. Then, they can be post-processed

(FFT) using any capable device. The voltage can be measured directly at the amplifier,

whereas the current is retrieved from a voltage drop across the known sensing resistor

R (see Fig. A.3). The coupled PZT-structure impedance is denoted here by Zcoupled.

From a viewpoint of a measuring circuit, the equivalent circuit from Fig. A.3 can be

thought of as the complex impedance Zcoupled in series with the sensing resistor R. The

current flowing through R is equal to:

I =
VR
R

(A.2)

Knowing the voltage sources and impedances we can write Ohm’s law for the whole

circuit as:

Vin + Vs = (Zcoupled +R)
VR
R

(A.3)

From (A.3) one can find the coupled impedance Zcoupled:

Zcoupled = R

(
Vin + Vs
VR

− 1

)
(A.4)
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Figure A.4: Impedance measurement setup.

It is important to notice that voltage Vs is caused by Vin since the transducer is sensing

vibrations excited by itself. Equation (A.4) shows that the information about structural

response is embedded in the measured electrical impedance of a PZT [80].

Prior to forming any plaster patches on the plate and before each invoking delamination

attempt the electrical impedance of the PZT actuator was recorded. The diagram of

the measuring system is shown in Fig. A.4. A Data Physics Quattro Analyser was used

to drive the actuator and to acquire and post-process the signals (Transfer Function

module). A standard signal analyser used in structural dynamics is a cost-effective

alternative for the costly impedance analyser. The voltage signal was captured directly

at the power amplifier that provides an ’OUT/20’ output. The current is measured

indirectly as a voltage drop across a sensing resistor. The value of the resistor should

be chosen carefully to compromise between a good signal-to-noise ratio (high resistance

preferred) and a distortion of the measured impedance (low resistance preferred). For

experiments described in this report the value for the sensing resistor was chosen to be

100 Ω.
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Figure A.5: Vibration modes of a PZT disk actuator.

A.2.3 Actuator

During the experiment the structure was excited using a PZT disk actuator. Disk

actuators work in a so-called d31 mode experiencing high in-plane radial deformation

and hence inducing large in-plane strain in a host plate. The impedance of the disk

as used in the experiments together with a few mode shapes computed with an FE

axisymmetric model in ABAQUS is shown in Fig. A.5. A series of radial, narrow

resonance dips which are of greatest interest for this application comes first, then the

edge mode, and the first thickness mode (wide dip). The fundamental radial mode

(labelled with 1 in Fig. A.5) occurs at around 30 kHz.

The geometrical parameters of the actuator affect its dynamic behaviour as follows [79]:

• diameter (D): the first radial resonance frequency depends on D. Knowing the

frequency constant (Np) of the material provided by the manufacturer, the ap-

proximate radial resonance frequency can be calculated as fr =
Np
D . Moreover, the

– 206 –



A.2 Procedure

higher the D-to-thickness ratio, the larger the in-plane strain can be generated by

the disk at a given electrical field.

• thickness (t) as mentioned above the D-t ratio influences the efficiency of exploiting

the d31 effect of the piezoelectric material. However, the deformation depends on

the electric field in the material. Therefore, for a fixed D, thicker actuator would

require higher voltage to generate the same strain.

When the actuator is bonded to a plate, its impedance incorporates also the dynamic

response of the structure. The modes originating from the actuator are dominant in the

magnitude of the impedance but they get shifted in frequency due to coupling to an

external dynamic stiffness. The modes originating from the structure are more clearly

visible in the real part of the impedance. In order to get the maximum possible response

the actuator will be excited at the strongest resonance.

A.2.4 Invoking delamination test

An experimental setup for the invoking delamination test is shown in Fig. A.6. The

driving signal from the generator (set to be loaded with 50 Ω) was amplified by an

RF amplifier from Electronics & Innovation (1020L). This amplifier is able to provide

constantly up to 200 W power at frequencies from 10 kHz to 5 MHz. In addition to

that the amplifier has a display on which the figures of forward and reflected powers are

E&I 1020L RF Amplifier

Oscilloscope

‘x 10’ probe

PZT actuator

attached to a structure

TTI TGA 1240 

signal generator

Figure A.6: Experimental setup for invoking delamination tests
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No. Outside diamater, mm Thickness, mm Material

1 69.85 1.75 PZT 403, Morgan Electro Ceramics

2 70 3 PZT 802, Morgan Electro Ceramics

3 70 3 PZT 802, Morgan Electro Ceramics

Table A.1: Actuators used in the experiment.

presented. These figures have been explained together with a common misconception

in section 6.2.2. The voltage across the actuator was monitored using an oscilloscope

during operation.

Initially, at low power input an excitation frequency was set as either read from the

impedance graphs or selected after sweeping manually in a chosen range. The presence

of the resonances was observed ’live’ while frequency sweeping as a voltage drop on

the oscilloscope or as lowering of the reflected power indication on the power amplifier

display. Then, the power was increased (by increasing voltage on a signal generator

within a specified range from 0 to 1 Vrms). For some cases the resonance was retuned at

high power input, since the response of the structure seemed to have changed. This was

repeated until the patch was debonded or no effect was observed at the highest power

input available.

The test was conducted on three 1 mm thick aluminium plates with three disk actuators

bonded using a conducting, silvered epoxy. The dimensions and material reference of

the actuators used is presented in Table A.1.

A.3 Results and discussion

A.3.1 Static shear adhesion strength

Shear adhesion strength test results are shown in Fig. A.7. Two different plaster mixes

were tested: samples 1-10 as in Fig. A.7 were made of 73% plaster mix, and samples 11-

13 were made of 62.5% mix. For all cases the adhesion strength of plaster to aluminium

is within the range between 0.142 and 0.366 MPa. No significant effect of changing

the mixing ratio was observed. Moreover, it seems that the overall variability of the

properties of patches due to mixing and forming process is higher than the supposed

effect of increasing water content. Although high variability corresponds well to the

real-type accretion scenarios, it is difficult to quantify using simple tests and makes the

procedure more complicated. Conducting experiments with a much larger number of

samples and more rigorous preparation and measuring conditions would possibly bring

– 208 –



A.3 Results and discussion

1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

sample no.

br
ea

ki
ng

 s
he

ar
 s

tr
es

s,
 M

Pa

 

 
73% plaster
61% plaster

Figure A.7: Shear adhesion strength of the plaster-aluminium bond: experi-
mental results.

more insightful observations. Nonetheless, the purpose of the presented experiment was

to indicate a rough estimate of plaster’s adhesion strength to aluminium and has been

achieved. As mentioned above these results should be treated as a guideline rather than

rigorous description of the material’s behaviour.

A.3.2 Electrical impedance

Fig. A.8 shows the comparison between electrical impedances of plates with patches

during different iterations of the experiment and for reference the impedance of the

clean plate. It is clear from Fig. A.8 that plaster patches add significant damping to the

structure as the resonance dips’ heights are considerably decreased. This corresponds

well to the reported ice behaviour the presence of which is usually associated with a drop

of propagating wave amplitude or increased damping for steady-state vibrations. The

location of the resonances along the frequency axis is significantly changed and many

new local modes appear. It is expected that some of them are the localised vibration

modes in the patches only. Therefore, it is somewhat awkward to identify the most

promising frequency to use during the attempt to invoke delamination.

The impedances of plates with patches made of two different mixes are compared in Fig.

A.9. It can be concluded that the difference in the water content as investigated here

does not affect the dynamic response notably.
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Figure A.8: Electrical impedance for different realisations of the experiment
compared to the clean plate.
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Figure A.9: Comparison of electrical impedances of plates with patches made
of different plaster mixes.

A.3.3 Invoking delamination

As stated above, in this part of the experiment, the actuator was initially excited at the

strongest resonance frequency as read from the impedance measurements presented in

the previous section. However, while performing the test it was noticed that driving the
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No. f , kHz Pindicated, W |VRMS|, V PR, W Z, Ω Pcapab, VA

FWD RFD FWD RFD

1 36.7 36 6 42.4 17.3 30 87.5-191.3j 81
2 36.7 91 14 67.5 26.5 77 87.5-191.3j 207
3 36.7 76 47 61.6 48.5 29 32.9-116.8j 126
4 36.7 79 53 62.8 51.5 26 65.8-131j 69
5 36.5 99 63 70.4 56.1 36 43-95.8j 112
6 36.5 113 25 75.2 35.4 88 43-95.8j 273

7 38.9 144 23 84.9 33.9 121 57.2-82.1j 286
8 38.9 114 48 75.5 49 66 57.2-82.1j 156
9 38 98 52 70 51 46 42.5-211j 249
10 38 123 33 78.4 40.6 90 42.5-211j 488

amp display
measured

prior
inferred

Table A.2: Summary of invoking delamination attempts.

Figure A.10: Plaster patches debonding as captured by the camera (video
frames).

actuator at the resonance chosen at first was usually not associated with an expected

significant voltage drop and reduction of the reflected power figure shown on the am-

plifier’s display. Therefore, the procedure was slightly amended. At low power level the

deepest voltage drop was sought based on the waveform displayed on the oscilloscope.

Finally, the actuator was driven with high power at this frequency until the patch was

shed off or the power level was decided to be dangerous for the actuator.

A summary of the successful attempts to remove plaster patches from the aluminium

host plate is presented in Table A.2 and some sample video snapshots demonstrating the

debonding of the patches are gathered in Fig. A.10. For each iteration of the experiment

the following figures are given in Table A.2: frequency, power indications as read from

amplifier’s display, corresponding voltage wave magnitudes as if the load is 50 Ω (see
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Figure A.11: Cracked plaster patches.

Section 6.2.2 for details), active power absorbed by the load, the impedance as measured

prior to the delamination test and inferred required power capability of the ultrasonic

source (managing the impedance mismatch effect). The power figures are explained in

detail in Section 6.2.2.

The horizontal line in Table A.2 separates the tests done on 73% plaster patches (1 to 6)

and on 62% plaster patches (7 to 10). No clear conclusion on the effect of water content

can be drawn from the data presented. However, it should be noted that the surface of

the plate after debonding the patches of the wetter mix was uneven, rough and covered

with plaster residuals.

For most cases internal cracks in plaster patches were noticed (see Fig. A.11) and a few

patches detached from the host plate already in pieces. Additionally, after debonding

surfaces of both the plate and patches were smooth and even except a few iterations -

mainly those corresponding to patches made of a mix with increased water content.

Referring to the plaster adhesion strength measurements presented above, on average

61 W of active electrical power needs to be supplied to the actuator in order to remove

patches adhered to the aluminium plate with a strength of 0.24 MPa (a mean of the

results presented in Fig. A.7. Results shown here prove the concept of invoking delam-

ination using ultrasonic excitation feasible and promising since the power requirement

for a reasonably high interface stress is of an achievable order. Nonetheless, it has to

be emphasized that the power figures from the last column in Table A.2 are estimates

assuming that the structure’s impedance at high power excitation is the same as the one

measured before the test. In the light of the observations made during the experiment

this assumption is probably wrong (which explains unexpectedly large values).

Similarly, it was observed that the impedance changed with increasing driving power.

The resonances were shifting or floating around the frequency identified initially at low

input power and further tuning at higher power input was needed. Two reasons for
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Figure A.12: Actuators’ degradation

Figure A.13: Impedance evolution - comparing the actuator’s impedance from
before and after high power experiments.

such behaviour can be thought of. The first is that as a consequence of ultrasonic

excitation some changes in the structural integrity occur. Although they are not visible

with the naked eye, they contribute to changing the electromechanical behaviour of the

coupled system and result in resonance shifts. Secondly, the non-linearity of piezoelectric

material in the presence of the high electric field comes into play. From these two the

latter requires further attention and needs to be quantified for this specific application

in order to understand its effect and find ways to include them in the system design

phase.

Comparing the figures from Table A.2 with Fig. A.8 leads to the conclusion that the

ultrasonic action was effective at frequencies corresponding to the resonances of the clean

plate. It implies that there is no need for tracking the resonance after the patches are

formed. It is probably caused by the fact that their stiffness relative to the host structure

– 213 –



Preliminary experiments for ultrasonically invoked delamination

is small, but possibly also by gradually growing effect of power excitation which weakens

the plaster-aluminium bond even at low power levels.

It has been noticed that for the thick actuators higher voltage needed to be applied in

order to achieve the debonding effect. Since the diameter-to-thickness ratio was reduced,

a higher electric field was required to induce similar deformation. Furthermore, as a

result of increased thickness a higher voltage is also needed in order to keep the electric

field at the same level as in the thin actuator case. Actuator’s thickness has to be

optimised with regard to these factors. It has also been reported in the literature that

thick actuators are likely to debond themselves during the ultrasonic action due to the

high inertia forces [21].

After a long excitation at high power level the actuator’s cracking was observed (see Fig.

A.12). In case of PZT disks this is the result of high radial tensile stresses within the

piezoelectric material [24]. As reported by the manufacturer, the high signal compressive

strength of both PZT 403 and PZT 802 materials is> 517 MPa, whereas the static tensile

strength is 75.8 MPa [79]. A sinusoidal excitation causes a symmetric deformation so

the tensile stress induced is of the same level as the compressive stress. However, the

damage occurred at first in the thicker PZT disks. This can be attributed to the high

influence of inertia forces in conjunction with an imperfect bonding not covering the

whole actuator’s surface (as observed after degradation). Therefore, in future special

attention has to be paid so that the actuators are bonded well with a uniform layer of

adhesive all over the electrode.

The impedance of the actuator after the delamination tests has changed compared to the

pristine state (Fig. A.13). One of the reasons could be the growing material cracks which

although invisible with the naked eye, can reveal themselves in the impedance curve. On

the other hand, it is well known that piezoelectrics after high power excitation experience

a distortion of its initial properties that is reversible with time. This phenomenon may

put an undesired uncertainty in the whole system’s behaviour and should be avoided.

Therefore it is necessary to find the true reason for the impedance change and take an

appropriate action to avoid temporary degradation of actuator’s properties.

Above all, the test presented here proves the concept of wave based delamination in-

voking for ultrasonic steady-state vibration where the system benefits from multiple

reflections of the induced waves from the edges of the plate. There is a need for a deeper

insight into the interaction of the patch with a propagating wave which provides more

physical understanding of the process of inducing debonding and reveal more clearly its

limitations.
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A.4 Conclusions

The concept of using the ultrasonic excitation to remove an unwanted accretion from a

plate structure was investigated and proven feasible in the presented work. The physical

basics of piezoelectric actuators dynamics were discussed together with comments on the

important aspects of electrical power transfer and complex load driving. Furthermore,

the principles of an electrical impedance measurement and its advantages were recalled.

In the light of these foundations we designed and conducted a set of experiments using

a model material simulating the real-type build-ups. An informed analysis of the key

results was enforced with supplementary measurements of the static adhesion strength

and the electrical impedance of the structure covered with undesired patches. The

experimental observations include the discussion of problematic issues associated with

high-power excitation.
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Appendix B

Piece-wise wave-based

formulation for a

multi-component waveguide

In order to benefit from the full potential of wave based approach to structural dynam-

ics with the emphasis on the piezoelectric semi-analytical finite elements presented in

Chapter 5, a piece-wise wave formulation was developed. The core of the approach is to

represent a one-dimensional waveguide as a series of wave elements that have constant

properties over their lengths and express its steady-state vibrational or wave response

in terms of waves travelling across the elements. The formulation allows for incompati-

bility of the adjacent elements, i.e. different dimensions and/or properties what results

in reflection and scattering of the waves at the junctions (the meshes of the overlapping

parts of the cross-sections need to be consistent, however). The excitation needs to be

lumped at the boundaries of directly affected elements. The piece-wise character of the

routine implies that the final solution is obtained by recursive reduction of the unknown

variables on an element-by-element basis.

B.1 Assembly process workflow

The workflow of the approach is presented in Fig. B.1. The following stages are distin-

guished:

1. Pre-processing. This includes the definition of the materials and geometries of the

cross-sections, separation into wave elements, assigning boundary and continuity

conditions between the elements and defining excitation.
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waveguide properties definition
wave elements definition

for each frequency:

wave basis calculation
(dispersion curves and wave mode shapes)

for each junction:

scattering matrices calculation

excited waves amplitudes calculation

assign attributes to wave elements

unknown wave amplitudes reduction
‘element-by-element’

travelling wave amplitudes calculation
‘element-by-element’

evaluation of the response
at a desired location

saving the results

visualisation, exporting, etc.

k, Φ, τk(Lk)
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a+
k , a−
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pre-processing

SAFE solver

piece-wise
wave solver

post-processing

Figure B.1: Piece-wise routine workflow.

2. SAFE solver. For each frequency the wave basis (dispersion curves and wave mode

shapes) for each type of wave element needs to be determined using SAFE method.

Note that many wave elements in one model may share the wave basis even if their

lengths vary. Following from the wave bases, reflection and scattering matrices and

excited wave amplitudes are determined.

3. Piece-wise structure definition. Each wave element is assigned the attributes re-

quired for piece-wise calculation.

4. Piece-wise solver. Reduction of the unknown wave amplitudes on an element-by-

element basis and then similarly travelling waves amplitudes calculation.
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Figure B.2: Wave element and its attributes.
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Figure B.3: Wave amplitudes and matrices required to fully describe the motion
in a wave element.

5. Post-processing. Evaluation of the response at a desired location and plotting/sav-

ing the result.

A single wave element (Fig. B.2) has following attributes:

• dispersion curves and wave mode shapes

• cross-section dimensions and length along the waveguide

• excited wave amplitudes at the left and right borders of the element

• travelling wave amplitudes at the left and the right borders of the element

• reflection matrices at the borders of the element

• scattering matrices at the borders of an element describing how the wave incident

upon the element are scattered after entering its domain

It is important to notice that in this formulation the origins of the positive- and negative-

going waves are always at the left and the right borders of its ‘parent’ wave elements,

respectively. This applies to both excited waves and travelling waves.
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B.2 Element-by-element recursive solution

The waves required to fully describe wave motion in a wave element are shown in Fig.

B.3. The labelling convention conforms with the one adopted in this thesis. Thereofre,

e+,− denotes excited waves, T, R, τ are the scattering, reflection and propagation ma-

trices and a+,− are the travelling waves (i.e. superimposed including the reflections etc.).

Positive travelling wave in an element can be expressed as a following superposition:

a+
k = e+

k + RL
kτ ka

−
k + TL

kτ (k−1)a
+
(k−1)

a−k = e−k + RR
k τ ka

+
k + TR

k τ (k+1)a
−
(k+1)

(B.1)

The second equation can be substituted into the first yielding:

a+
k = e+

k + RL
kτ k

[
e−k + RR

k τ ka
+
k + TR

k τ (k+1)a
−
(k+1)

]
+ TL

kτ (k−1)a
+
(k−1)

= e+
k + RL

kτ ke
−
k + RL

kτ kR
R
k τ ka

+
k + RL

kτ kT
R
k τ (k+1)a

−
(k+1) + TL

kτ (k−1)a
+
(k−1)

(B.2)

From where the piece-wise expression for the positive travelling wave is obtained:

a+
k =

[
I−RL

kτ kR
R
k τ k

]−1
[
e+
k + RL

kτ ke
−
k + TL

kτ (k−1)a
+
(k−1) + RL

kτ kT
R
k τ (k+1)a

−
(k+1)

]

(B.3)

Eq. (B.3) describes how the positive travelling wave in the element depends on the

excited wave amplitudes and travelling waves in adjacent elements. To simplify the

notation the following are adopted:

A+
k =

[
I−RL

kτ kR
R
k τ k

]−1

B+
k = A+

k RL
kτ k

C+
k = A+

k TL
kτ (k−1)

D+
k = A+

k RL
kτ kT

R
k τ (k+1)

(B.4)

An analogous procedure can be performed for negative travelling wave, in which case

the coefficient matrices change slightly:

B−k =
[
I−RR

k τ kR
L
kτ k

]−1

A−k = B−k RR
k τ k

C−k = B−k RR
k τ kT

L
kτ (k−1)

D−k = B−k TR
k τ (k+1)

(B.5)
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With the aid of Eqs. (B.4) and (B.5) a recursive expression for travelling waves in an

element is written as:

a+
k = A+

k e+
k + B+

k e−k + C+
k a+

(k−1) + D+
k a−(k+1)

a−k = A−k e+
k + B−k e−k + C−k a+

(k−1) + D−k a−(k+1)

(B.6)

The equations above relate the unknown travelling waves in an element to the travelling

waves in adjacent elements and therefore can readily be used in the piece-wise solver. The

piece-wise solution starts from the far-right (nth) element for which the right incoming

wave does not exist. Eq. (B.6) simplifies to:

a+
n = A+

n e+
n + B+

n e−n + C+
n a+

(n−1)

a−n = A−n e+
n + B−n e−n + C−n a+

(n−1)

(B.7)

Moreover it is possible to relate a−n to a+
n directly:

a−n = e−n + RR
nτna

+
n (B.8)

Substituting Eq. (B.7) to Eq. (B.8) yields:

a−n = RR
nτnA

+
n e+

n + (RR
nτnB

+
n + I)e−n + RR

nτnC
+
n a+

(n−1) = Z−n + H−n a+
(n−1) (B.9)

In the last step of Eq. (B.9) the two parts were distinguished: Z−
n that does not depend

on the amplitudes of the waves in the adjacent sections, and H−
n that represents how

a+
(n−1) contributes to the positive travelling wave in the wave element considered.

The general wave element equation eq. (B.6) can be now written for the (n − 1)th

element:

a+
(n−1) = A+

(n−1)e
+
(n−1) + B+

(n−1)e
−
(n−1) + C+

(n−1)a
+
(n−2) + D+

(n−1)a
−
n

a−(n−1) = A−(n−1)e
+
(n−1) + B−(n−1)e

−
(n−1) + C−(n−1)a

+
(n−2) + D−(n−1)a

−
n

(B.10)
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Substituting Eq. (B.9) into Eq. (B.10) one gets:

a+
(n−1) = A+

(n−1)e
+
(n−1) + B+

(n−1)e
−
(n−1) + C+

(n−1)a
+
(n−2) + D+

(n−1)

(
Z−n + H−n a+

(n−1)

)

a+
(n−1) = A+

(n−1)e
+
(n−1) + B+

(n−1)e
−
(n−1) + C+

(n−1)a
+
(n−2) + D+

(n−1)Z
−
n + D+

(n−1)H
−
n a+

(n−1)

a+
(n−1) =

[
I−D+

(n−1)H
−
n

]−1 [
A+

(n−1)e
+
(n−1) + B+

(n−1)e
−
(n−1) + C(n−1)+a+

(n−2) + D+
(n−1)Z

−
n

]

a+
(n−1) =

[
I−D+

(n−1)H
−
n

]−1 [
A+

(n−1)e
+
(n−1) + B+

(n−1)e
−
(n−1) + D(n−1)+Z−n

]
+

[
I−D+

(n−1)H
−
n

]−1
C+

(n−1)a
+
(n−2)

a+
(n−1) = Z+

(n−1) + H+
(n−1)a

+
(n−2)

(B.11)

which provides an expression for the amplitude of the wave travelling in the wave element

with respect to the positive travelling wave in the preceding section. Similarly, the

recursive expression for the negative going wave can be established:

a−(n−1) = A−(n−1)e
+
(n−1) + B−(n−1)e

−
(n−1) + C−(n−1)a

+
(n−2) + D−(n−1)a

−
n

= A−(n−1)e
+
(n−1) + B−(n−1)e

−
(n−1) + C−(n−1)a

+
(n−2) + D−(n−1)

(
Z−n + H−n a+

(n−1)

)

= A−(n−1)e
+
(n−1) + B−(n−1)e

−
(n−1) + C−(n−1)a

+
(n−2)+

D−(n−1)

[
Z−n + H−n

(
Z+

(n−1) + H+
(n−1)a

+
(n−2)

)]

= A−(n−1)e
+
(n−1) + B−(n−1)e

−
(n−1)+

D−(n−1)

(
Z−n + H−nZ+

(n−1)

)
+
(
C−(n−1) + D−(n−1)H

−
nH+

(n−1)

)
a+

(n−2)

= Z−(n−1) + H−(n−1)a
+
(n−2)

(B.12)

The above equations can be applied to all internal wave elements. For the 1th element,

there is no incoming wave from the left side, hence the formulation is simplified to:

a+
1 = A+

1 e+
1 + B+

1 e−1 + D+
1 a−2

a−1 = A−1 e+
1 + B−1 e−1 + D−1 a−2

(B.13)

Eq. (B.12) written for the 2nd element can be then substituted back into Eq. (B.13):

a+
1 = A+

1 e+
1 + B+

1 e−1 + D+
1

[
Z−2 + H−2 a+

1

]

= A+
1 e+

1 + B+
1 e−1 + D+

1 Z−2 + D+
1 H−2 a+

1

(B.14)

From where one can solve for the positive travelling wave in the 1st element:

a+
1 =

[
I−D+

1 H−2
]−1 [

A+
1 e+

1 + B+
1 e−1 + D+

1 Z−2
]

(B.15)

– 222 –



B.2 Element-by-element recursive solution

After this solution is obtained travelling wave amplitudes in all wave elements are calcu-

lated on an element-by-element basis by substituting the left incoming travelling waves

amplitudes into Eq. (B.12) and (B.11).
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