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ON THE PLATONICITY OF POLYGONAL COMPLEXES

by Yu-Yen Chien

In this thesis we study the symmetries of polygonal cell complexes, which are basically
2-dimensional CW-complexes with polygonal faces. In particular we are interested in
platonic complexes, of which the automorphism group acts transitively on incident triples
of vertex, edge, and face. The main ingredient of the thesis is to study complexes through
links, which are graphs describing the local structure of complexes.

We start with discussing how local structure can affect the whole complex. In par-
ticular we show that for any symmetric graph, there exists a platonic complex with such
link. With computer aid, we find all rigid flexible graphs up to 30 vertices. Such graphs
are eligible as links for a classification theorem of platonic polygonal complexes. We also
generalize the classification theorem by relaxing the condition on links.

A significant portion of this thesis focuses on products of complexes. We discover
the categorical product of polygonal cell complexes, and develop a unique factorization
property under some conditions, as well as a concise description of the automorphism
groups of products. We also construct another associative product of complexes. These
two products interact nicely with two different graph products of link graphs, and can be
used to construct platonic complexes with certain links.

In addition to platonic complexes, we construct some complexes with certain type
of pathological symmetries. We also study computational problems without involving
symmetry, such as the complexity of polygonal complex isomorphism problem, and the

decision problem of constructing a complex with prescribed links.
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Chapter 1

Introduction

People have always been interested in things with many symmetries. In the three di-
mensional Euclidean world, the highly symmetric platonic solids are arguably the best
examples. These five platonic solids were known by ancient Greeks more than two millen-
niums ago. Mystically, Timaeus of Locri, an early Pythagorean, associated five platonic
solids with four natural elements and the whole universe. Mathematically, platonic solids
were treated by Theaetetus of Athens, and in Books XIIT to XV of Euclid’s Elements [§].
In this thesis, we investigate the platonicity of a generalized version of polyhedra, namely

polygonal cell complexes.

Definition 1.1. A polygonal cell complex is a 2-dimensional CW-complex satisfying

the following extra conditions:

(1) Each 1-cell is an interval of length 1, and each 2-cell is a disc of positive integral
circumference.

(2) For a 2-cell of circumference n, the attaching map sends exactly n points evenly

distributed on the boundary to the 0-skeleton.

(3) For each boundary segment between the points described in (2), the attaching map

sends the segment isometrically onto an open 1-cell.

Intuitively speaking, we can think of each 2-cell as a regular polygon, and the attaching
map glues vertices to vertices, and edges to edges. Those 2-cells act like faces of a
polyhedron, and we will use the word face to denote a 2-cell alternatively. When a
complex is locally finite, by taking the infimum of the lengths of paths joining two points,
this induces a complete length metric of the whole complex. A detailed treatment of this

metric can be found in Chapter 1.7 of [5].



Figure 1.1: a flag of a dunce hat

Note that the attaching map of a face gives a closed walk on the 1-skeleton, with the
possibility to visit a vertex more than once. For example, we can have a polygonal cell
complex with one vertex, one edge, and one hexagon, where the edge is actually a loop,
and the hexagon wraps around the loop six times. Therefore a polygonal cell complex can
be quite different from usual polyhedra. To simulate usual polyhedra better, we should

place more conditions to rule out pathological cases.

Definition 1.2. A polygonal complex is a polygonal cell complex satisfying the fol-

lowing extra conditions:

(1) The attaching map of each cell is injective.

(2) The intersection of any two closed cell is either empty or exactly one closed cell.

Proposition 1.3. A polygonal cell complex X is polygonal if and only if it satisfies the

following three conditions:

(1) The 1-skeleton of X is a graph without loops and parallel edges.
(2) The attaching map of each face gives a simple closed cycle on the 1-skeleton.

(3) The intersection of any two faces is either empty, a vertex, or an edge.

Proof. Note that the condition (1) in Definition [I.2]is equivalent to the looplessness in the
1-skeleton plus the condition (2) above. The condition (2) in Definition is equivalent
to the absence of parallel edges in the 1-skeleton plus the condition (3) above. O

In this thesis, unless otherwise specified, when we use the word complex, it means
polygonal cell complex, which may or may not be polygonal. Now we try to define

platonicity of complexes. First we define what a flag is for polygonal complexes.



Figure 1.2: transitive on flags, but not platonic

Definition 1.4. For a polygonal complex, a flag is a triple (f,e,v) of face, edge, and
vertex where f contains e and e contains v. We denote an (f,e,v) flag by fev. A partial

flag is a face, an edge, a vertex, or an incident pair of the form fe, fv, or ev.

For the case of polygonal cell complexes, the definition of a flag needs to be modified.
Take the dunce hat in Figure as an example. It has only one vertex, one edge, and
one face, but we would like it to have six flags just as a usual triangle. In a polygon,
each flag corresponds to a triangle in its barycentric subdivision. We can use this as an
alternative definition of a flag, and this definition works for polygonal cell complexes as
well. Similarly, a partial flag can be defined as the corresponding 0-cell or 1-cell in the
barycentric subdivision. As Figure shows, the shaded area is a flag of the dunce hat,
and a dunce hat has six flags. This figure to some extent explains why mathematicians
choose the word “flag”.

For polyhedra, being platonic simply means that the automorphism group acts tran-
sitively on flags. However, such a definition does not work perfectly for all polygonal cell
complexes. For example, the complex in Figure has only the two shaded triangles as
its faces. Although the automorphism group acts transitively on fewv flags, this complex
is not as symmetric as platonic solids. The main drawback is the absence of the transi-
tivity on edges. To exclude such situations and to obtain maximal symmetry, we take the

following definition.

Definition 1.5. A polygonal cell complex is said to be platonic if its automorphism

group acts transitively on flags and on each type of partial flag.

At first glance, it seems very tedious to verify the platonicity of a complex, but in
practice we hardly have to worry about this. For a non-degenerate complex, i.e. with at
least one face, the platonicity implies that each vertex is incident to an edge, and each edge

is incident to a face. If we restrict our discussion to complexes with these two incidence



Figure 1.3: a simply-connected platonic complex with disconnected links

conditions, then any partial flag is contained in a flag, and therefore the transitivity on
flags implies platonicity. In other words, being platonic and being flag-transitive are
equivalent for such complexes.

The main ingredient of this thesis is to study complexes through their local structure.

For this purpose, we need a convenient method to describe the neighbourhood of a vertex.

Definition 1.6. For a polygonal cell complex X, the link of X at a vertex v is a graph
L(X,v) with vertices indexed by ends of edges attached to v, and edges indexed by corners
of faces attached to v. Two vertices v; and vy in L(X,v) are joined by an edge e if and

only if the corresponding ends of v; and vy are joined by the corresponding corner of e.

Basically a link describes the incidence relation of edges and faces at a vertex. Note
that L(X,v) can also be identified as the set {z € X | d(z,v) = ¢}, where d is the
distance function in X and ¢ is some positive number less than 1/2. (In case X is not
locally finite, here we can define d(z,v) as d.(x,v) for any x in a cell ¢ incident to v.)
Take Figure (1.1 as an example. Although there is only one edge in the complex, this
edge has two ends attached to v, and therefore contributes two vertices to the link at v.
Notice that the top corner of the face joins these two ends, and corresponds to an edge
joining two vertices in the link at v. The left corner of the face joins the same end of the
edge, and hence corresponds to a loop in the link, while the right corner of the face also
corresponds to a loop at the other vertex. Therefore the link at v is a graph with two
vertices e; and ey, one edge joining e; and ey, and two loops at e; and e, respectively.
For the case of polygonal complexes, it is more straightforward to determine links, and
links of polygonal complexes have no loops and parallel edges. For example, the link of

the complex in Figure [1.2]is the disjoint union of an edge and a vertex.



In the previous example we encounter a complex with disconnected links. For the
discussion of platonic complexes, we would like to exclude complexes with disconnected
links. The reason is as follows. Suppose X is a simply-connected platonic complex with
disconnected links, as illustrated in Figure [I.3] We can remove all vertices of X, choose a
component of the resulting space, and then take the closure of the component to obtain a
complex Xj. It is easy to see that X is a platonic complex with connected links, and we
can reconstruct X by using X as building blocks. What if X is not simply-connected?
Note that the platonicity of a complex can be lifted up to its universal covering. Therefore
X can be obtained from the quotient of a simply-connected platonic complex.

To summarize, when we talk about platonic complexes, unless otherwise mentioned, we
will assume that each complex is connected, simply-connected, and has connected links.
Note that the connectedness of a complex implies that every vertex is incident to an edge,
and the connectedness of links implies that every edge is incident to a face. Therefore
to verify the platonicity of such complexes, it suffices to verify transitivity on flags. For
platonic complexes, we can also assume that there are no loops in the 1-skeleton. With
connectedness and transitivity on edges, the existence of a loop implies that the complex
has only one vertex, which can be treated separately.

Here we list some terminology and notation which we use through out the thesis. We
say a graph is simple if there are no loops in the graph, and no parallel edges between
any two vertices. The girth of a graph is the length of a shortest nontrivial cycle in the
graph. The valency of a vertex in a graph is the number of ends of edges incident to
the vertex, and the edge valency of an edge in a complex is the number of sides of faces
attaching to the edge. For a graph I', we use V/(I') and E(I") to denote the vertex set and
the edge set of I respectively, and for a complex X, we use V(X), E(X), and F(X) to
denote the vertex set, the edge set, and the face set of X respectively. By X! we denote
the 1-skeleton of the complex X.

There have been several studies of polygonal cell complexes. Ballman and Brin in-
vestigate vertex-transitive complexes under certain curvature conditions, and construct a
continuum of non-isomorphic d-gonal complexes with complete link graphs of n vertices
for any d > 6 and n > 3 in [2]. Swi@tkowski gives an almost complete description of
platonic polygonal complexes with edge valency 3 in [27]. Januszkiewicz, Leary, Valle,
and Vogeler classify platonic polygonal complexes with complete graphs as links in [20].

Valle also classifies the case of octahedral link graphs in his PhD thesis [29].



This thesis is composed as follows. In Chapter [2] we investigate various questions
related to links. In Chapter [3| we look at rigid flexible link graphs, which have ideal
symmetries for the purpose of classifying platonic complexes. In Chapter [4) we try to
generalize the classification theorem for CAT(0) platonic polygonal complexes developed
in [20]. In Chapter , we discuss the tensor product of complexes, which is in fact the
categorical product of polygonal cell complexes, and in Chapter [6] we develop another type
of product, which interacts nicely with the Cartesian product of link graphs. In Chapters
[7 and [ we discuss the factorization and the symmetry of complexes with respect to
the tensor product. In Chapter [0 we study almost platonic complexes, for which the
automorphism group acts transitively on each type of partial flag, but not on flags. In
Chapter [10}, we deal with some computational problems without involving symmetry. We
also use GAP to help us find examples and examine properties. All GAP programs are

listed in the appendix.



Chapter 2

Link of a Complex

In this chapter we study how the local properties of links can affect the whole complex,
and investigate various questions related to links.

If we glue regular d-gons under a regularity condition, namely having two faces meeting
at each edge, and m faces meeting at each vertex, then what we can obtain are exactly
the five platonic solids. Therefore for polyhedra, platonicity is somehow a byproduct of
regularity. Note that the regularity condition above can be rephrased as the link at each
vertex being a cycle of length m. When we impose this regularity condition, we have

similar results for polygonal cell complexes.

Proposition 2.1. Let X be a finite simply-connected polygonal cell complex. Suppose
that each face of X has the same length d, and the link at each vertex is a cycle of
length m. Then X is one of the following: tetrahedron, cube, octahedron, dodecahedron,

icosahedron, dihedron, hosohedron, which are all platonic.

Proof. Suppose that X has v vertices, e edges, and f faces. The link condition implies
that X is actually a surface. Since X is simply-connected, X has Euler characteristic
v—e+ f = 2. By standard counting, we have v-m =e¢e-2 = f-d. We can express v and

f in terms of e and rewrite the Euler characteristic equation as

1111
m d 2 e
The pair (m,d) has only the following solutions: (3,3), (3,4), (3,5), (4,3), (5,3), (2,e),
(e,2). The first five pairs give exactly the five platonic solids, which can be verified by
brute force. For (2,¢e), the complex has e vertices, e edges, and two e-gons as faces. The

only possible construction is the so-called dihedron as shown on the left of Figure 2.1]



Figure 2.1: (2,4) dihedron and (4,2) hosohedron

For (e,2), the complex has 2 vertices, e edges, and e 2-gons as faces. The only possible
construction is the so-called hosohedron as shown on the right of Figure 2.1l Note that
dihedron and hosohedron exist for any positive integer e, even for the extreme case e = 1,

and dihedron and hosohedron are both platonic. Therefore we finish the proof. O]

Now we investigate the finiteness of polygonal cell complexes. Suppose X is a simply-
connected polygonal complex such that each face has length at least d, and the girth of

the link at each vertex is at least m. If we take one round about a vertex v, then the angle

d—2
d

. Ifm- <2 .1 > 27, commonly known as the link condition,

sum is at least m - v

which can be written as

1
<_7
-2

SN

1
— +
m

then X is a CAT(0) space and therefore contractible [5]. The contractibility suggests
that X is an infinite complex. In fact for a (m,d) pair satisfying this inequality, one can
construct a polygonal complex step after step without having any obstruction, and will

always obtain an infinite complex [2]. In what follows, we try to find another criterion

forcing infinite complexes. First we need the following lemma.

Lemma 2.2. Suppose X is a finite simply-connected polygonal cell complex. Then the

Euler characteristic of X is at least 1.

Proof. Suppose X has v vertices, e edges, and f faces. First we find an arbitrary spanning
tree T for the 1 skeleton of X, and then contract 7" to get a new complex X', which is also
simply-connected. Note that T has v — 1 edges, and therefore X’ has 1 vertex, e — v + 1
edges, and f faces. The fundamental group m(X’), a trivial group, can be presented
as a group with e — v + 1 generators and f relators. Consider the abelianization of

m1(X’), which is again trivial. Then the presentation can be expressed as f homogeneous



Figure 2.2: a graph of girth 3 and valency 3

equations of e — v 4+ 1 unknowns over Z. To have only trivial solution, the number of
equations needs to be at least the number of unknowns. So we have f > e —v + 1, and

therefore v —e + f > 1. O

Proposition 2.3. Let X be a simply-connected polygonal cell complex made of d-gons.
Suppose that the link at each vertex has n vertices, and each vertex of the link has valency

r. Then X is infinite if we have the following inequality:

1ot
n 2d 2

Proof. We prove this by contradiction. Assume that X is a finite complex satisfying the
above inequality, and X has v vertices, e edges, and f faces. By standard counting we
have v = % and f = “F. Since X is finite and simply-connected, by Lemma we
have % — e+ = > 1. Divide both side by 2e and then rewrite the inequality to get

1, 1,1 1 L
—+ 3552 5+ 5 > 35, acontradiction. O

Proposition and the CAT(0) inequality are implicitly related, as n has a lower
bound in terms of girth and valency [4], and the main tool used is the Euler characteristic,
which can be viewed as certain curvature condition. Nevertheless, Proposition does
help to determine some infinite polygonal complexes which are not CAT(0). For example,
suppose X is a polygonal complex made of pentagons, and each vertex has the graph in
Figure 2.2 as its link. By Proposition [2.3] we know X must be infinite, although X is not
CAT(0). The thing is, can we actually build a polygonal complex with such a link? Before
answering this question, we first introduce Cayley 2-complexes and Coxeter groups.

Suppose G = (S | R) is a finitely presented group, where S is the set of generators,
and R is the set of relators. Let S be the closure of S under inverse, and R be the closure
of R under inverse and cyclic permutation. The Cayley 2-complex Cay(G, S, R) of this

presentation is a polygonal complex with vertex set G. Two vertices g, go € G are joined



Figure 2.3: K3 and Cayq(K3)

by exactly one edge if and only if there exists s € S such that ¢go = ¢, * 5. A closed
walk g1, 9o, ..., gk, gkr1 = g1 is the boundary of exactly one face if and only if there exists
Sa1Sag - - - Say € R such that &£ > 3 and gi * Sa; = gi+1 for all 7. Note that we allow no
parallel edges and 2-gons in the definition. For example, the complex in Figure[1.3]is the
Cayley 2-complex of the group (a,b | a® = v* = 1). Figure gives another example,
which is the Cayley 2-complex of (a,b,c| a® =b* = c* = (ab)? = (bc)* = (ca)? = 1).

Note that G acts on Cay(G, S, R) by left multiplication. Another important property
is that Cay(G, S, R) is always simply-connected. When we have a 1-cycle in Cay(G, S, R),
this represents the trivial element in GG, which can be normally generated by relators. This
gives us a method to contract the 1-cycle through faces determined by relators.

Let T" be a finite simple graph with vertex set {vy, vs, ..., v,}. We can define a Coxeter

group with respect to I' for m > 2 as

Cox(T) = (v1,v9, ..., v, | 03,03, ... 02, (v;v;)™ for adjacent vertices v; and v; ).

) Yn?

Note that we do not treat I' as the usual Coxeter diagram. A Coxeter group of n generators
always has a faithful representation in GL(n,R), where each generator is represented as
an involution. A detailed proof can be found in Appendix D of [9]. In particular, the
group Cox,,(I") is nontrivial, and therefore we can construct the corresponding Cayley

2-complex, denoted by Cay,,(I), as illustrated in Figure 2.3]
Proposition 2.4. For any finite simple graph I", Cay,,(I") is a polygonal complex.

Proof. Let T be a finite simple graph with vertex set {vy, v, ..., v,}. We verify the three
conditions in Proposition [1.3] to show the polygonality of Cay,,(I"). The condition (1) is
directly from the definition. The conditions (2) and (3) are related to the word problem for

Coxeter groups. According to Tits’ solution [28], for a Coxeter group G = (v, va, ..., v, |

10



vi, v, ..., 02, (vvy)™i), a word in {vy, v, ..., v,} is trivial in G if and only if it can be

’rVn)

reduced to the empty word through a sequence of the following two operations:

(i) Delete a subword of the form (v;, v;).

(ii) Replace an alternating subword of the form (v;,v;,...) of length m;; by the alter-

nating word (vj,v;,...) of the same length m,;.

The condition (2) is essentially saying that for any adjacent v; and v; in I', (v;v;)™ has
no proper nonempty subword which is trivial in Cox,,(I"). As for the condition (3), it
suffices to show that there are no two faces meeting at two non-adjacent vertices. This
is essentially saying that for any adjacent pairs of vertices (v;,v;) and (vy,vy) in I', an
alternating word in v; and v; of length [, where 2 <[ < 2m — 2, followed by an alternating
word in vy and v of length I', where 2 < 1" < 2m — 2, is always nontrivial in Cox,,(I").
It is straightforward to verify these two statements by Tits’ solution, and hence we know

that Cay,,(I") is a polygonal complex. O

Proposition 2.5. For any finite simple graph I', there is a simply-connected vertex-
transitive polygonal complex such that the link at each vertex is isomorphic to I', and

each face is a polygon with an even number of sides.

Proof. Suppose that T' has vertex set {vq,vs,...,v,}. Consider the Cayley 2-complex
Cay,,(I'). By definition, the trivial element e has {vy, v, ...,v,} as its neighbours. Note
that v;, e, v; form a corner of a face in Cay,,(I') if and only if (v;v;)™ = 1, if and only if v;
and v; are adjacent in I". Therefore the link of Cay,,(I") at e is isomorphic to I". Moreover,
the action of Cox,,(I') on Cay,,(I") implies that the link at each vertex is isomorphic. Note
that Cay,,(I") is simply-connected, vertex-transitive, and polygonal by Proposition

Also notice that each face has 2m sides. O]

Similarly to complexes, we can define a flag of a graph as an edge in its barycentric
subdivision. For a simple graph, a flag can also be viewed of as an incident pair of edge
and vertex. A graph is said to be symmetric if its automorphism group acts transitively
on vertices, edges, and flags. For a platonic complex, it is easy to see that its link is
symmetric. Therefore to obtain a platonic complex, we at least need to assume that the

link of the complex is symmetric.

Proposition 2.6. For any finite simple symmetric graph I, there is a simply-connected

platonic polygonal complex such that the link at each vertex is isomorphic to I'.
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Figure 2.4: a closed decomposition of K

Proof. Suppose that T' has vertex set {v,vs,...,v,}. Consider the Cayley 2-complex
Cay,,(I"). We know that Cay,,(I") is vertex-transitive, simply-connected, and polygonal,
so it suffices to show that it is transitive on flags containing the trivial element e. We use
(e,v;,v;) to denote the flag of vertex e, the edge between e and v;, and the face with the
corner v;, e, v;. For any two flags (e, v;, v;) and (e, vg, v;), (v, v;) and (vg, v;) represent two
directed edges in I". Since I' is symmetric, there exists a graph automorphism mapping
(vi,vj) to (vg,v;), and such automorphism determines an automorphism on Cay,, ('),

mapping (e, v, v;) to (e, vk, v;). Therefore Cay,,(I") is flag-transitive. O

Remark. Note that in the construction of Cay,,(I"), we can choose different m’s for dif-
ferent relators (v;v;)™’s, and we still obtain a vertex-transitive complex. However, such
construction only gives complexes with polygons of even length. For any given (platonic)
graph I'; can we always find a vertex-transitive (platonic) complex such that each link is

isomorphic to I', and each face is an odd polygon? We do not know the answer yet.

We introduce another construction, which has less freedom on the length of polygons,
but with the possibility to have some odd polygons. For a graph I', a closed decom-
position D of I' is a family of subgraphs of I' such that each subgraph is a closed walk,
and the edge set of I' is the disjoint union of the edge set of subgraphs in D. Figure
is an example of closed decomposition D = {abede, acebd} of the complete graph K,
where {abcedacebd} is another closed decomposition. Note that we express a closed walk
as a word of vertices, and in the expression we do not repeat the starting vertex when
we finish a closed walk. By arguably the first theorem in graph theory due to Euler [3],
a graph admits a closed decomposition if and only if it admits a closed decomposition of
cardinality 1, if and only if the valency of each vertex is even. Graphs satisfying these

equivalent conditions are commonly known as Eulerian graphs.

12



Suppose a graph T" has vertex set {vy, va, ..., v,}, and D = {wy, ws, ..., wy,} is a closed

decomposition of I'; where each w; is a word of {v1,va,...,v,}. Define the group

G, D) = (v1,va,...,0, | V2,03, . .., 02wy, wa, ..., W)

v n?

and denote the Cayley 2-complex of this presentation by Cay(I', D). Note that the group
G(I', D) might be trivial. Under certain small cancellation conditions, the small cancel-
lation theory over free products [22] helps to ensure nontriviality. In the extreme case

m = 1, which we can manage to find, it is obvious that G(I', D) is nontrivial.

Proposition 2.7. Suppose I' is a finite simple graph with closed decomposition D. If
G(I', D) is nontrivial, then the link of Cay(I', D) is isomorphic to I

Proof. Suppose I has vertex set {vy, v, ..., v,}, and D = {wy, we, . .., wy,}. By definition,
the trivial element e has {vy, v, ...,v,} as its neighbours in Cay(T", D). Note that v;, e,
v; form a corner of a face in Cay (L', D) if and only if v;v; or v,v; is a piece of some wy, if
and only if v; and v; are adjacent in I'. Hence the link of Cay(I", D) at e is isomorphic to

I'. By the property of Cayley 2-complexes, the link at each vertex is isomorphic to I'. [

Remark. The construction Cay(I', D) gives us a vertex-transitive complex. However, when
we assume that I" is symmetric, unlike Cay,,(I"), the automorphism of I does not always
incude an automorphism of Cay(T", D). Unless the decomposition is highly symmetric,

Cay(T", D) is not platonic in general.

Definition 2.8. A simple graph is rigid if an automorphism fixing a vertex and all its
neighbours must be trivial. Similarly, a polygonal complex is rigid if an automorphism

fixing a vertex and all its neighbours must be trivial.

Proposition 2.9. Suppose that X is a connected polygonal complex. If the link at each
vertex of X is rigid, then X is rigid.

Proof. Let ¢ be an automorphism of X fixing a vertex v and all its neighbours. We want
to show that ¢ fixes each vertex of X by induction on the distance of the vertex to v. By
the assumption, each vertex of distance 1 to v is fixed. Suppose that ¢ fixes each vertex
within distance n to v, and w is a vertex of distance n+ 1 to v. Take a geodesic from v to
w, and look at the last two vertices x and y before arriving at w, as illustrated in Figure
[2.5] Note that all neighbours of y are within distance n of v, and therefore are fixed by ¢.

Suppose f is a face containing the edge {x,y}. Note that f must have a corner

(x,y, z;), where z; is a neighbour of y. Since X is a polygonal complex, the action of ¢ on

13



Figure 2.5: a ball of radius n centred at v

f is determined by its action on the corner (x,y, z;). Therefore ¢ fixes f, and all other
faces incident to {x,y}. In the link of z, the above statement is essentially saying that
the induced action of ¢ fixes every edge incident to the vertex {x,y}. By the rigidity of
links, ¢ acts trivially on the link of X. In particular, ¢ fixed the vertex w in the complex
X. By induction and the connectedness of X, we know that ¢ fixes each vertex of X.

Since X is a polygonal complex, ¢ must be trivial, and hence X is rigid. O

Remark. In the proof, if we only assume that ¢ fixes v, a neighbour v" of v, and all other
neighbours of v forming a corner with v and v’, then we can still derive the triviality of ¢

by the same argument. Therefore, X has slightly stronger rigidity than our definition.

Corollary 2.10. Suppose that X is a locally finite connected polygonal complex where
the link at each vertex is rigid. Then for any vertex v, edge e, and face f, the stabilizer

Gy, Ge, Gy are finite subgroups of the automorphism group G of X.

Proof. For an arbitrary vertex v, we can assume that v has n neighbours since X is locally
finite. By Proposition 2.9, we know that X is rigid, and an element of G, is completely
determined by its action on the neighbours of v. Therefore the order of GG, is less than or
equal to n!. Then G, and Gy, are finite as they are subgroups of G,. Note that G and
G are finite index supergroups over G, and G, respectively. Hence G, G., G are all

finite subgroups of G. O
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Chapter 3

Rigid Flexible Links

In [20], a classification theorem of CAT(0) platonic polygonal complexes is developed for
any link graph I' with the following two properties:

(1) T is rigid.
(2) T is vertex-transitive, and the stabilizer of a vertex v can permute neighbours of v

arbitrarily (namely acts as the symmetric group on neighbours of v).

In this chapter, we investigate and give some examples of graphs with the above two

properties. To be concise, we make the following definition.
Definition 3.1. A graph is flexible if it satisfies the second condition above.

To start with, complete graphs K, are the most trivial examples, and cycles obviously
have these two properties as well. Note that K, can be characterized as a simple graph
of n vertices where each vertex is of valency n — 1, and a cycle can be characterized as a
connected simple graph where each vertex is of valency 2.

For n > 3, consider a bipartite graph B, ,, such that each partite set has n vertices,
and each vertex is of valency n — 1. For each vertex v in B, ,, we can find a unique
nonadjacent vertex w in the other partite set, whereas for w the unique nonadjacent
vertex in the other partite set is v. This gives us a way to pair vertices in B,, ,, and then
determine edges completely. In other words, B, ,, is unique up to isomorphism. Figure
is a particular drawing of Bs 5, where partite sets and vertex pairs can be easily recognized.
Note that any isomorphism of B, ,, preserves such pairing, and the rigidity of B, ,, follows
straightforwardly. It is not hard to see that the automorphism group of B, ,, is Cy X S,
which acts transitively on vertices of B,,,. Moreover, the stabilizer of a vertex v can

permute the n — 1 neighbours of v arbitrarily. Hence B,, ,, is flexible.
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Figure 3.1: a drawing of Bs 5

Another example is the hypercube graph @),,, namely the 1-skeleton of the n-dimensional
hypercube. We can also define @,, as a simple graph with vertex set {(d1,...,9,),d; €
{0,1}}, and two vertices are adjacent if and only if they take different values at exactly
one coordinate. There are two standard types of automorphisms of (),,. The first type
comes from permuting the n coordinates, and hence can arbitrarily permute the n neigh-
bours of the origin (0,...,0). The second type is generated by swapping the value at a
given coordinate, and hence can map the origin to any other vertex. Note that these two
types of automorphisms generate C5 .5, and therefore @, is flexible. For the rigidity,
note that the vertices of distance ¢ to the origin are exactly the vertices with ¢ nonzero
coordinates, and they have distinct sets of neighbours of distance ¢ — 1 to the origin.
When an automorphism fixes the neighbours of the origin, it fixes vertices of distance
2, and therefore vertices of distance 3, and so on. This shows that @, is rigid. By the
orbit-stabilizer theorem, @),, has 2™ - n! automorphisms, as many as the order of C5? S,,.
Therefore the automorphism group of @, is exactly C5 S,,.

Examples of rigid flexible graphs other than these are not immediately obvious. Sup-
pose that I' is a graph with n vertices satisfying the above two conditions, and G is the
automorphism group of I'. Note that G is a transitive permutation group on n vertices,
and the vertex stabilizer G, is isomorphic to the symmetric group S,,, where m is the
number of neighbours of v. Conversely, to construct such a graph, we start with a tran-
sitive group G on {1,...,n} such that the stabilizer G,, is isomorphic to S,,, and there
is a suborbit N of length m under the action of G,. The induced action of S,, on N
gives a quotient of S,,, which is either S,,, Cs, or trivial, except when n = 4 it could be
S3, the quotient by Klein 4-subgroup. To act transitively on a suborbit of length m, the
order of the quotient is a multiple of m, and the only possible quotient is .S,,. In other
words, G, acts as a symmetric group on N, which should be viewed as neighbours of n.

By choosing these edges and their image under the action of GG, we construct a graph

16



Figure 3.2: a complete bipartite graph K33

I' with vertex set {1,...,n} and edge set { g(zn) | © € N, g € G}. The construction
guarantees that G is a subgroup of Aut(I"), and therefore I" is flexible. Note that I" is rigid
if and only if G is exactly Aut(I"). It is possible that the construction creates extra auto-
morphisms other than G, and we need to rule out such cases. For example, consider the
group G = ((1,2,3),(1,2)(4,5),(1,4)(2,5)(3,6) ), a group of order 36. The stabilizer Gg
is generated by (1,2, 3) and (1,2)(4,5), and acts transitively on {1,2,3} as S3. The above
construction gives the complete bipartite graph K33 in Figure . The automorphism
group of K33 is Cy x S3 x S3, a group of order 72, and K33 is not rigid.

We write a GAP program to take care of the above task for n < 30. Program [1|in the
appendix defines a function Link(n), which tests all transitive groups on {1,...,n}. Let
G be the (n,i)-transitive group, namely the i-th transitive group on {1,...,n} in GAP
library. We need to verify G, is isomorphic to .S, for some suborbit of length m, and
the resulting I' has an automorphism group of order |G|. In the program, we exclude
the cases m = 2 and m = n — 1, as they give exactly cycles and complete graphs. Since
computing the automorphism group of a graph is no harder than verifying permutation
group isomorphism [I], initially we only require G,, to have order m!, then pick up cases
when Aut(I") is of order |G|, and verify the isomorphism between G,, and S, in the last
stage. We test all transitive groups up to n = 30, the limit of GAP library to date. We
have a coincidence that in the last stage G,, is always isomorphic to S,,. Can we conclude
such an isomorphism simply from G,, having order m! for some suborbit of length m? The
(12, 43)-transitive group gives a counter example. The stabilizer G5 is of order 6, and
G12 has a suborbit {3,6,9}. However G5 is actually isomorphic to Cg, acting unfaithfully
on {3,6,9}. In Table , we list all rigid flexible graphs up to 30 vertices, with cycles,
complete graphs, and B,, ,, omitted for concision. For rows with two suborbits for N, two

different suborbits yield isomorphic graphs.
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Transitive group

Suborbit N

Group structure

Graph description

(14, 16) {3,5,7,13} PSL(3,2) : Cy isomorphic to Figure [3.3
(7,9,12}
16,190 GL(2,3) : C. Figure H
6190 | (2:3): G, gure 3.4
(16, 748) (79,12, 14} 0y S h b hQ
, l ercube gra
(8,10,11,13} 2 0g yp grap 4
(16, 1328) {3,4, 6, ].0, 1]_} ((02 X 02 x Cy X 02) : A5) : Cg antipodal quotient of Q5
{7,9,11}
(20, 36) Cy x As 1-skeleton of dodecahedron
{8,10,12}
(24, 281) {12,13,17} Sy % Sy Figure 3.5
(5,10, 14, 26}
(28, 80) Cyx(PSL(3,2) : Cy) double cover of (14, 16)
{6,9,13,25}
(30, 178) {2,7,20,25} S5 x Sy

Table 3.1: rigid flexible graphs, all bipartite except (16, 1328) and (20, 36)

Figure 3.3: a graph isomorphic to the (14, 16)-graph and the Heawood Graph
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Figure 3.4: the (16, 190)-graph
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Figure 3.5: the (24, 281)-graph
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The graph given by the (14, 16)-transitive group can be obtained from the incidence
relation in the Fano plane. It is a bipartite graph of 14 vertices, representing 7 points and
7 lines of the Fano plane, and we join two vertices if they are non-incident pair of point
and line in the Fano plane. Alternatively, if we join two vertices if they are incident pair
of point and line, this gives the so-called Heawood graph [16]. In the Heawood graph, we
can join vertices at distance 3 by edges and then remove all the original edges. This also
gives the (14, 16)-graph, as illustrated in Figure 3.3l Program [2|in the appendix verifies
that the (14, 16)-graph is isomorphic to the graph on the left of Figure and the
permutation (2,4, 8)(3,11,7)(5,9)(6,10,14) of the (14, 16)-graph gives an isomorphism,
mapping neighbours {3,5,7,13} of 14 to neighbours {11,9, 3,13} of 6 in Figure

Judging from the group structures, it is reasonable to speculate that the (28,80)-
graph is related to the (14, 16)-graph. In our program, the (28, 80)-graph has vertex set
{1,2,...,28}, and for any odd vertex n, the stabilizer of n also stabilizes n + 1. To
merge these stabilized pairs, we define a map sending each vertex n to the vertex [Z],

2
and each edge (n,m) to the edge ([2],[%2]). The resulting simple graph is isomorphic

2 b 172
to the (14, 16)-graph, which is verified in Program [2l The program also verifies that the
map defined above is actually a double cover, namely a surjective locally homeomorphic
map such that each vertex (edge) has two vertices (edges) as its preimage.

The graph given by the (16, 1328)-transitive group is of particular interest. It can
be obtained by identifying antipodal vertices in (J5. In a hypercube graph, two vertices
are antipodal if they take different values at each coordinate. Note that two vertices are
adjacent in @), if and only if their antipodal vertices are adjacent. Therefore we can well
define the antipodal quotient @} of ),,. Notice that an automorphism of (), preserves
antipodal relations, and hence induces an automorphism of ). By the flexibility of @),
the induced action of Aut(Q,,) on @} shows that @} is flexible.

To discuss rigidity, we introduce another way to describe Q7. For each pair of antipodal
vertices in (),, we choose the vertex with value 0 in the n-th coordinate to be their
representative. These representatives form a copy of @,_; inside @),,. For a vertex v =
(01,...,0n-1,0), it has n — 1 neighbours in @,_1, and the last neighbour (d,...,0,-1,1)
can be identified in QF with (1 —dy,...,1 —d,_1,0), the antipodal vertex of v in Q,_;.
That is to say, if we join each pair of antipodal vertices in @Q,,_1, the resulting graph Q,_1
is isomorphic to Q7. For example, Q} = Q3 is isomorphic to Ky 4, which is not rigid. For

higher dimensional cases, we have the following result.
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Figure 3.6: structures of Qg and Q7

Proposition 3.2. For n > 4, Q,, is rigid and flexible.

Proof. Tt suffices to show that @, is rigid. Let V; = {(61,...,6,) € Q, | Z?:l d; =i}
Note that for every vertex in V;, we can find its ¢ neighbours in V;_; and n — ¢ neighbours
in V; ;1 through swapping the value at one coordinate, and find the last neighbour in V,,_;,
the antipodal one. Figure illustrates the structure of @Q,,, where solid edges mean
value-swapping and dotted edges represent antipodal pairs. For 1 < ¢ < [%] — 1, each
vertex in V;y; has i + 1 distinct neighbours in V;, and each vertex in V,,_; has a unique
neighbour in V. In particular, if V;_; and V; are fixed pointwise, then so are V;,; and V,,_;.
Consequently, when we fix the origin (0,...,0) and its neighbours, namely all vertices in
Vo, Vi, and V,,, by induction we can fix all other V}’s pointwise, with the only exception
being Vi1 when n = 2k + 1. For this case, as n > 4 implies k > 2, each vertex in Vj
has £ distinct neighbours in Vj42. Since all vertices outside V., are fixed by induction,

this guarantees V. is fixed pointwise. O

The above discussion suggests that finding double covers or antipodal quotients is a
possible way to obtain new rigid flexible graphs. Note that B, ,, is also a double cover of
K,. For any rigid flexible graph, can we always obtain another rigid flexible graph in this
manner? Unfortunately, the answer is negative. For example, a double cover of B is a
graph with 20 vertices and of valency 4, and according to our data such a rigid flexible
graph does not exist. The other way around, the antipodal quotient of a rigid flexible
graph inherits the flexibility, but not necessarily the rigidity. We mentioned above that
the quotient of ()4 is non-rigid K4 4. Another example is the quotient of the 1-skeleton of a
dodecahedron, as shown in Figure 3.7 When we fix the neighbours z,y, z of the vertex o,
swapping (x1, x2), (Y1, y2), and (21, z2) at the same time still gives a graph automorphism.
In fact, the quotient is isomorphic to the Peterson graph. Despite these counter examples,
we do have a general construction for the double cover of non-bipartite graphs. For this

purpose, we need the following definition.
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Figure 3.7: antipodal quotient of the dodecahedron graph

Definition 3.3. Suppose that I" and I are two simple graphs. The direct product of
I’ and I, denoted by I' x I, is a simple graph with vertex set the Cartesian product of
vertex sets of I' and I, and two vertices (v, v) and (u,u’) are adjacent in " x T" if and

only if v is adjacent to u in I and ¢’ is adjacent to «/ in I".

With the above definition, it is easy to see that Ky x K, = B, ,, as illustrated in
Figure for the case of n = 3. Note that in the figure there is no edge between vertices
with the same vertical or horizontal coordinate. Also note that the direct product of two
edges is again two edges, laid out as a cross in the figure, which is part of the reason why
graph theorists choose the symbol “x” [I5]. Therefore the direct product of two connected
graphs is not necessarily connected. The following theorem about the connectedness of

direct product is known as Weichsel’s Theorem [15].

Theorem 3.4. Suppose that I' and [ are two connected simple graphs with at least two
vertices. If I" and IV are both bipartite, then I" x I has exactly two components. If at

least one of I" and I" is not bipartite, then I" x I is connected.

Proof. The first part of the theorem is straightforward. For the second part, note that
a simple graph is not bipartite if and only if there is an odd cycle in the graph. By
exploiting such a cycle properly, the second part of the theorem follows. For a detailed

proof, please refer to Theorem 5.9 in [15]. ]

Take ()7 as an example. Note that ()} is bipartite if and only if n is even. For an even
n, it is easy to see that Ky x ()7, is the disjoint union of two copies of (J;,. For an odd n,
it is also not hard to see that Ky x Q) recovers (J,,. The following proposition explains

Ky x QF =@, in a more general setting.

Proposition 3.5. A bipartite double cover of a simple connected non-bipartite graph I"

must be of the form Ky x T
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Figure 3.8: Ky x K3 = B33

Proof. Suppose that I" is a bipartite double cover of I'. Since I' is connected and non-
bipartite, for any vertex v of I', there is a path of odd length starting and ending at v.
Suppose that vy and v; are the two vertices in I'” covering v. We can lift this path to a
path of odd length in IV starting at vy, ending at either vy or v;. But this path can not
end at vy, otherwise there is an odd cycle in bipartite I'”. The path of odd length from
vp to v; shows that vy and v; must be in different partite sets of IV. This allows us to
denote vertices of I by (4, v), where the first coordinate 6 € {0, 1} indicates the partite
set it belongs to in IV, and the second coordinate indicates the vertex v in I' it covers.
Now consider the covering map from I'” to I'. If there is no edge between v and u in I,
then in I" there is no edge between either (0,v) and (1,u), or (1,v) and (0,u). Suppose
there is an edge between v and u. It must be covered by two edges in I, between either
(0,v) and (1,u), or (1,v) and (0,u). Note that these two edges can not be double edges
between two vertices, otherwise the covering map is not locally homeomorphic. Therefore,
there is exactly one edge between (0,v) and (1,u), and exactly one between (1,v) and

(0,u). The pattern of edges of I'" shows that I is isomorphic to Ky x T'. O

The examples of Ky x K,, = B,,,, and Ky x )} = (), suggest that the direct product
of Ky with a rigid flexible graph I' could be rigid flexible. In fact this is essentially to
show Aut(Ky x I') & Cy x Aut(I"), which does not hold for arbitrary graphs. When T is
connected and bipartite, Ky x I' is two copies of I' and hence has automorphism group
Aut(I") 1 Cy. Even for non-bipartite cases, if I" has two vertices u and v with the same set
of neighbours, then (0, u) and (0, v) have the same set of neighbours in Ky x I'; and simply
swapping (0,u) and (0,v) gives an automorphism of Ky x I' which is not in Cy x Aut(T).
If we rule out these two types of obvious counterexamples, can we guarantee that Ky x I'

is a rigid flexible graph? Unfortunately the answer is still negative.
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Figure 3.9: an exotic automorphism of Ky x dodecahedron graph

Let I' be the 1-skeleton of a dodecahedron, which is rigid flexible and non-bipartite.
In the last part of Program [ we verify that | Aut(K, x T')| = 480, while |C5 x Aut(T)| =
2| Aut(I")| = 240. Hence we know that Ky x I" is not rigid, and it must have some exotic
automorphisms, one of which is illustrated in Figure [3.9] In this particular drawing of T,
the central red dot represents the antipodal vertex of the central vertex, and all the solid
lines represent edges of I'. For Ky x I, this figure should be viewed as there are two layers
of vertices overlapping together, and each solid line represents two edges joining vertices
at different layers. Let p be the permutation of vertices of Ky x I' such that p swaps
any two vertices in the first layer joined by a blue dashed line, any two vertices in the
second layer joined by a red dotted line, and fixes all other vertices. The central red dot
denotes that two central vertices are joined by a red dotted line. Note that if we pick two
vertices joined by a solid line, by following lines with different colours, we always obtain
two vertices joined by a solid line. This is essentially saying p preserves edges in Ky x I'.
It is routine to verify that p preserves non-edges as well, and hence p is an automorphism
of Ky x I'. The different actions of p at different layers show that p ¢ Cy x Aut(I'), and
judging from the cardinality we know that p and Cy x Aut(I') generate Aut(K, x I).
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Chapter 4

Classification Theorem

In this chapter we generalize the classification theorem of CAT(0) platonic polygonal
complexes in [20]. Before we describe the main theorem, let us first introduce the main
machinery, the theory of triangles of groups. Throughout the chapter, X is a platonic
polygonal complex, G is the automorphism group of X, and fev is a flag in X. Note that
the stabilizers Gey, Gfe, Gfv, Gew, Gy, Ge, G, form a commutative diagram as shown
in Figure [4.1], where each arrow is an injective group homomorphism. Stallings calls a
diagram like this a triangle of groups in [26].

With GG and these stabilizers, we can recover the complex X as follows. First we con-
struct a complex with left cosets G/G; [ [ G/G. 1 G/G, as vertices, G/Gte [[G/G o [ | G/Gew
as edges, and G/G ., as triangles, where a vertex, an edge, and a triangle are incident if
one contains another as a set. The complex we build is actually the barycentric subdivi-

sion of X. By gluing triangles at vertices of type G/G, we obtain the original complex

Figure 4.1: a triangle of groups
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X. This suggests that we could study a platonic polygonal complex through its triangle
of stabilizers. Then the first question would be, if we start with a triangle of groups, how
could we obtain the group G?

When X is simply-connected, the theory of covering spaces (see [17]) shows that G
is the colimit (see [23] for the definition) of its triangle of stabilizers, as there is an one-
to-one correspondence between quotients of G and spaces covered by X. Unfortunately,
the colimit of an arbitrary triangle of groups does not always behave nicely. Here is a
well-known example: G., is the trivial group. Gy., G, and G, are infinite cyclic groups

generated by a, b, and ¢ respectively. And the other three groups are defined as:

Gy ={(a,b|aba™t =b*)

={ca cac™! = a?
(¢al

Ge
G, = (b,c|bcb™t = c?)

These groups form a triangle of groups, while the colimit group G is the group generated
by a, b, and ¢ under three relators in Gy , G, and G,,. Although not immediately obvious,
this sibling of the Higman group is actually a trivial group.

For the moment, forget about the geometric meaning of these stabilizers, and let G
be the colimit of the triangle of groups in Figure [£.1] A triangle of groups is called
developable if the natural maps Gy —+ G, G, — G, and G, — G are injective. As the
above example suggests, a triangle of groups is not always developable. Stallings gives a
sufficient condition for a triangle of groups to be developable in [26]. First he defines the
angle between two subgroups in a group. Let A, B, and C' < AN B be subgroups of G,
and consider the natural homomorphism ¢ from the amalgamated free product A x¢ B to
(G. We can define the length of ¢ € A x¢ B as the smallest m such that g = cics...cp,
where each ¢; € AU B. Suppose that g = aijbjasb, ... is a shortest nontrivial element in
Ker(¢), where a; € A and b; € B. If the last letter in the product is a,, then a,ga,? is
again in Ker(¢) and has shorter length. Therefore the length of g must be an even number
2n. We define the angle between A and B with respect to C, denoted by (A, B; (), to
be 7/n. In case Ker(¢) is trivial, we define (A, B; C) to be 0.

Take the dihedral group D,, = (a,b | a*> = b* = (ab)” = 1) as an example. We can
think of D,, as symmetries of regular n-gon, a as a reflection fixing a vertex v, and b as
a reflection fixing an edge containing v. Then the angle between two reflection axes is
m/n. Let A and B be the subgroups generated by a and b respectively. Consider the

homomorphism from A * B to D,,. The shortest nontrivial element in the kernel is (ab)”,
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A={1l,a} bA = {b,ba} abA = {ab, aba}
a ba
1 aba = bab
b ab

B ={1,b} aB = {a,ab} baB = {ba,bab}

Figure 4.2: T'(A, B; {1}) of D3

of which the length is 2n. Therefore, the angle (A, B;{1}) is 7/n, the same as the angle
between reflection axes of a and b. This to some extent justifies the term “angle”.

In general, it is quite hard to calculate the angle. In some occasions, the following
combinatorial method makes calculation easier. Suppose A, B, and C' < AN B are
subgroups of GG. We define a bipartite graph I'(A, B; C'), where the vertex set consists
of left cosets G/A and G/B, and the edge set consists of left cosets G/C. An edge gC
in I'(A, B; C) joins gA and ¢gB. For example, I'(A, B;{1}) of the dihedral group Dj is
illustrated in Figure . Note that the girth of T'(A4, B;C) is exactly the length of a
shortest nontrivial element in the kernel of A xc B — G. Since I'(A, B; C) is a bipartite
graph, this also explains why the shortest length is always even.

Now we look at the triangle of groups in Figure [i.I] In G, we can calculate at the
angle (Gje, Gfy; Gfey). For convenience, we call it the angle at G;. Similarly, we can
calculate the angles at G, and G,,. A triangle of group is called non-spherical if the sum

of these three angles is less than or equal to 7. Stallings gives the following theorem.
Theorem 4.1. [26] Any non-spherical triangle of groups is developable.

Let us examine the angle sum of the sibling of the Higman group on the previous
page. For the angle at Gy, look at the homomorphism Gy *g,,., Gy, — Gy. Note that
G ye *G ., G v 1s the free group generated by a and b, and the element aba=*b? of length 4
is one of the shortest nontrivial elements in the kernel. Therefore the angle at Gy is 7/2.
Similarly the angles at G, and G, are both 7/2, and the sum of angles is greater than 7.
Hence this triangle of groups is not non-spherical, or spherical we should say.

While the proof of this theorem is not in the scope of this thesis, the example of a
triangle group (I, m,n) might help to give some insight. A triangle group (I, m,n) can
be presented as (a,b,c | a*> = b* = ¢* = (ab)! = (be)" = (ca)™ = 1). Let Gy, be the
trivial group. Gy, Gy, and G, are Cy generated by a, b, and c respectively. G is the
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Figure 4.3: local bijection

dihedral group generated by a and b, GG, is the dihedral group generated by ¢ and a, and
G, is the dihedral group generated by b and c¢. These groups form a triangle of groups
with sum of angles 7/l 4+ m/m + m/n, and the colimit of this triangle of groups is exactly
the triangle group (I, m,n). While the sum of angles is m or less than m, the triangle
group (I,m,n) gives a tessellation of Euclidean plane or hyperbolic plane respectively.
This suggests that a non-spherical triangle of groups indeed carries certain structure of
non-positive curvature, and this keeps the colimit group from collapsing.

Now we go back to the discussion of complexes. Our plan is to classify platonic
polygonal complexes through classifying possible triangles of stabilizers, with respect to
a symmetric rigid link L. By Proposition the rigidity of L implies the rigidity of
complexes. Therefore g € G, is determined by its action on the edges incident to v,
which correspond to the vertices in L. Then G, induces a flag-transitive action on L,
where a flag in a graph is a pair of incident vertex and edge. While L discloses plenty of
information about G,, what about other stabilizers? This leads to the next topic.

Suppose that v and w are two vertices joined by an edge e in a platonic polygonal
complex X with link L, a symmetric rigid graph of valency m with n vertices. The edge
valency of X is the same as the valency of L, so let fi,..., f,, be the m faces incident to e.
Each face f; has consecutive vertices v;, v, w, w; joined by e;, e, €} as illustrated in Figure
.3 This partially defines a function ¢, ,, from edges incident to v to edges incident to
w, where ¢, ,,(€;) = €, and ¢, ,,(e) = e. We can identify the edge e as a vertex in the link
of either v or w. Then ¢,, can be thought of as a function from the neighbourhood of
e in L(X,v) to the neighbourhood of e in L(X,w). We hope that ¢,,, can be extended
to a graph isomorphism from L(X,v) to L(X,w). If ¢,,, is extendable, then ¢, ,, gives
a bijection between edges incident to v and edges incident to w, and a bijection between
neighbours of v and neighbours of w. We can alternatively define ¢,, as a bijection

between neighbours of v and w. In particular, we have ¢, ., (v;) = w; and ¢, ,(w) = v.
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Definition 4.2. A complex X is good if it satisfies the following:

(1) X is a simply-connected platonic polygonal complex.
(2) The link of X is a symmetric rigid graph.

(3) For two adjacent vertices v and w, the function ¢, ,, is extendable.

Note that condition (3) does not depend on the choice of adjacent vertices, so the
goodness of a complex is well-defined. Moreover, if ¢,, is extendable, the rigidity in
condition (2) implies that ¢,, is uniquely extendable. For a platonic polygonal com-
plex, the function ¢, , is not always extendable. We do not have many clues for these
non-extendable cases yet. If we assume the link is flexible, then every permutation of
neighbours of a vertex in the link extends to a graph automorphism, which implies ¢, ,,

is extendable. When ¢, ,, is extendable, it interacts nicely with complex automorphisms.

Proposition 4.3. Suppose X is a good complex, and v and w are two adjacent vertices

in X. Then for any automorphism g of X, we have

go ¢U,w - ¢g(v),g(w) ©g.
In other words, any automorphism of X preserves the bijection.

Proof. Suppose f; is a face with consecutive vertices v;, v, w, w;. By definition ¢, ,,(v;) =
w;. If we apply g to this face, then we have a face with consecutive vertices g(v;),
g(v), g(w), g(w;), and therefore ¢g)gw)(9(vi)) = g(w;) = g(dvw(vi)). Also we have
Pgv).gw)(g(w)) = g(v) = g(dvw(w)). Note g o ¢y and ¢ge) gw) © g both define a graph
isomorphism from L(X,v) to L(X, g(w)), and these two isomorphisms coincide at vertex

vw and all its neighbours like vv;. By the rigidity of L, we have go ¢, = ¢g(v),g(w)©g9.- U

Now we study how these bijections affect the local structure around a face. Suppose
f is a d-gonal face in X with vertices vg, vy, ...,v4_1 listed in order, and N; is the set of
neighbours of v;. Let v be vy = vg4, e be the edge vyvy, and ¢; = ¢y, 0,,, for 0 <@ < d—1.

We will stick to this notation in the following few paragraphs.

Definition 4.4. The holonomy at v along e and f is defined as ® = ¢4 10 g 90---0

¢1 0 ¢p. P is an automorphism of L(X,v), as well as a permutation of Nj.

Note when d is even, ® fixes v; and vy_1, and when d is odd, ® swaps v, and vg_;.
The holonomy element is not necessarily the identity, nor an arbitrary permutation. The
constraint of holonomy will help us to classify possible triangles of stabilizers. For the

rest of the chapter, ® denotes the holonomy at v along e and f.
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Proposition 4.5. Suppose that X is a good d-gonal complex with a flag fev, and ® is
the holonomy at v along e and f. Let g € Gyey, 7 € Gy — Geps S0 € Ge — Gep, and

s = S0 0 ¢g. Then we have the following relations:

Proof. For (1), note that g € Gy, also fixes all other vertices and edges in f. We have
90 Puivisy = Pgvi)ug(viss) © 9 = Puiwiyy © g, and therefore g o ¢; = ¢; o g for all <. Hence
goP =goda10¢4-20---0910P) = ¢4-10Pa20---0P10¢p0g = Pog. We can rewrite
the equation as g o ® o g=! = ®. In other words, ® centralizes G je,.

For (2), note that r € G, — Gye, acts as a reflection in f, fixing vy, and swapping v;
with v4_;. We have r o ¢,,

¢, or for alli. Hence ro® = rogy 10¢g 9000100y = ¢ oy o---0¢; op "t or =

Wit = Or(w)r(wisn) ©T = Doy va_s, © 7, and therefore 7 o ¢; =
®~! or. We can rewrite the equation as ro ®or=! = o1,

For (3), note that so € G f.—G ey acts as areflection in f, fixing e, and swapping v; with
V4—iy1, in particular vy and vy. We have 500 ¢y, v,01 = Dso(vi),s0(vir1) © 50 = Pug_iy10a_: © S0,
and therefore sqo ¢; = qb(;ll- o sg for all . Note that s = sq¢g induces a permutation of Nj.
Consider s® = sy0¢0¢g_10¢g 20+ -0p10dy = ¢ 0y o---0¢; yop, ' 0sgopy = P Los.
Rewrite the equation and then we have so® o s7! = &1

For (4), note that rsy acts as a rotation in f, which rotates v;1; to v;. We have
750 0 Qo wi1 = Proo(v:)rso(viss) © TS0 = Pu,_; w; © TS0, and therefore rspo¢; = ¢;_1 orsy. Now
consider the map (rsg)* o ¢p_1 0 dp_o0 -+ 0 ¢y. The ¢;’s part of this map sends Ny to
Ny, while (rs¢)* rotates Nj back to Ny. Therefore this map is a permutation of Ny, and
actually can be rewritten as (rs)¥. We prove this by induction. The base case rsgo¢y = rs

comes from the definition of s. Assume that (rsg)’ o ¢; 1 0 ¢; 900 ¢y = (rs)’. Then

(180) Tt ogiop; 1000y = (150)((180) 0 ;) 0d;_10- -0y = (150)((rse) " Lod;_10(rsy))o

¢i—lo' . 'O¢0 e <T80)<¢OO(TSO)i)O¢i_IO' . 'O¢0 = (TSOO¢0)O(TSO)iOQSi_lOgb,L’_QO' . 'O¢0 =
(rs) o (rs)" = (rs)"*!. By induction, we know the claim is true. In particular, if we take
k = d, then we have (rsg)? o ® = (r59)% 0 ¢g_10 Ppg_20--+0¢10py = (rs). O

We are ready to construct a triangle of stabilizers of a d-gonal good complex with

respect to a given symmetric rigid link L of n vertices. To start with, we should choose
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Figure 4.4: link versus complex

G, to be a flag-transitive subgroup of Aut(L), as G acts transitively on fev flags. Next we
specify a pair of adjacent vertex e and €’ in L, where f is the edge joining them. G.,, G,
and Gy., are then defined respectively as the stabilizer in G, of e, the unordered pair
{e,e'}, and the ordered pair (e,¢’), as illustrated in Figure 4.4 Introducing €’ seems
rather redundant than just using f, but it is actually how we code the elements of GG, in
programming, which is a permutation of n vertices of L.

Now we look at G.. Suppose v and w are the two vertices incident to e in the complex.
The rigidity of the complex shows that g € G, is completely determined by its action on
v and its neighbours. Moreover, the bijection map ¢, ,, between neighbours of v and w
makes it clear that G, is a subgroup of Cy x S,_1, where (0,p) € Cy X S,_1 sends an
incident edge e, of v to ¢), o p(e,). Note that G. N ({0} x S,_1) should be identified as
Gey. Therefore, we choose G, to be an index 2 supergroup over {0} x G, in Cy X S,,_1
such that G, N ({0} x S,—1) = {0} X G¢,. Then Gy, is defined as {(J, p) € G. | p fixes €'}.
The above notation is slightly complicated. To simplify it, consider the projection map
7:Cyx Sy 1 — S,_1, and let G, = w(G.). If (1,0) € G,, then G, is essentially Cy x G,
and G, = Go,. If (1,0) ¢ G,, then 7 gives an isomorphism between G, and G.. Therefore,
given any index 1 or 2 supergroup of G, in S,_;, namely G, we have a corresponding
G.. When the index is 1, Ge = (3 X Gy, and Gye = Cy X G e, When the index is 2,
G, = G., and Gre = {g € G, | g fixes ¢'}. Note that for every s € Gre — Gfen, So is of
the form (1,p) € Cy x S,_1, and s = sy 0 ¢g = (1,p) o (1,id) = (0, p) = 7(s0).

For example, let L be the complete graph K, with vertex set {e, €', e1,e2}, and G, = Ay
acts flag-transitively on Ky. Then G, = (Gy)e = ((€/,e1,€2)), G = (Go)feery =
((e,€)(e1,€2)), and Gyey = (Gy)(ee) is trivial. Let us consider the index 2 supergroup
G, over G, in S4_1, the symmetric group on {¢’, ey, es}. Then G, = G, must be S, and
Gfe = (53)e = ((e1,€e2)). Note that (e1,e2) € Ge — Gy, and its actual action is sending
e1 10 ¢yuw(ea), €2 to ¢y (er), and € to ¢, ,,(€’), which indicates that f is stabilized.
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We have defined every group in the triangle of stabilizers except Gy. From the diagram,
we know Gy should be a quotient of the amalgamated free product Gy, *g,,, Gr.. Note
that (G, *q;., Gre)/Grev = Oy x Oy, as Gye, is an index 2 normal subgroup in both
Gy, and Gy.. Moreover, G¢/Gjye, is the dihedral group of order 2d, since Gy induces
the symmetry group of the d-gonal face f with kernel G.,. This suggests that for every
r € Gyy — Grey and sy € Gpo — G ey, the element (rsy)? should be identified with some
element in Gy,. This is where the holonomy & kicks in.

We should define Gy in a way that a holonomy element exists and satisfies all the
relations in Proposition . Choose an arbitrary r € G, — Gep and sg € Gpe — G pey.
Previously s is defined as sg o ¢, which is exactly 7(sg). Hence we define s = m(so).

Suppose that there exists ® € Aut(L) satisfying the following:

As suggested by Proposition , we would like to identify (rs¢)? with (rs)?®~!. We also
mentioned that (rsy)? should be identified with an element in G .,. With condition (4),

now it makes sense to define

Gy = (Gpo#c,,, Gre) [ {{(rso)” = (rs)?@71)).

Note that  swaps e and €/, s fixes e and €/, and G, fixes e and e’. Condition (4) implies
that ® fixes e and €’ for even d, and swaps e and ¢’ for odd d, a property we expect a
holonomy to have. In fact if G, = Aut(L), this property is equivalent to condition (4).
For G, < Aut(L), this property does not guarantee condition (4).

Proposition 4.6. Suppose that r, sg, s, ®, Gy are defined as above. Then for r' €
Gy — Gpen, S) € Gge — Gep, and s = m(sp), we have

(1) G¢/G ey is the dihedral group of order 2d.
(2) r'Pr'~! = o1

(3) Pt =1

(4) (r'sp)? = (r's)4d~ 1 in Gy.

In particular, the definition of G is independent of the choices of r and s,.
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Proof. (1) is clear from the definition of Gy. For (2), (3), (4), note that r~'7" and s;'s|,
are both in Gy.,. Therefore 3¢, h € Gy, such that 1’ = rg and s, = sph. Also note that

s =m(sy) = 7(sph) = w(so)h = sh. Thus we have
' ®r' Tl = rgdglr T = rdr! = @71,

SO = shdh ls ! = sbs™! = d L,

To show (4), note that it suffices to show the following:
(r'sy) "4 (rse)? = ®(r's") " (rs) D

By (2) and (3) of ®’s property and (2) and (3) of this proposition, we can move ® to
the right of (r's’)~%(rs)? and still get ® after swapping between ®~' and ® 2d times.

Therefore the above equation is equivalent to

(rgsoh) ™4 (rso)® = (rgsh)~%(rs)<.

lzs. We can expend (rgsoh) 4(rsy)?

Note that for any z € Gy, we have so_lxso = s
and use the above relation to replace sy to s, starting from the middle of the product.

Eventually we can rewrite (rgsoh)~%(rso)? as (rgsh)=¢(rs)%. O

Suppose that X is a good complex, and G is the automorphism group of X. If G
has a proper subgroup G’ which also acts flag-transitively on X, then the stabilizers of
G’ also form a triangle of groups, and the complex built by using this triangle of groups
also recovers the original complex. Conversely, if we have two triangles of groups with
triples (G, G., ®) and (H,, H,., ®) where G,, < H, and G, < H,, then these two triples
determine the same polygonal complex. We define a partial ordering on these triples by
G@,,G,,®) < (H,,H,,9)if G, < H,, G. < H,, and ® = &'. For classification purpose,
we only care about maximal (G,,G., ®). Also note that an automorphism of L acts on
triples (G, G., ®) by conjugation. Any two conjugate triples also determine the same

complex. Now we are ready to state the classification theorem.

Theorem 4.7. Let L be a symmetric rigid graph of n vertices with girth [. If lli + % < %,
then there is a bijection between good d-gonal complexes with link L and conjugacy classes
of maximal triples (G, G, ®), where G, is a flag-transitive subgroup of Aut(L), G, is an
index 1 or 2 supergroup over G, in S, _1, and ® € Aut(L) satisfies the following:
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(1) gPg~ ' =P, Vg € Gyep

(2) r®r~t =d~ ! for some r € Gy, — Gep

(3) s®s~! = &1 where s is the image of some sy € G e — Gy under the projection
map 7 : Cy X S,_1 — Sp_1

(4) (rs)®~" € Grev

Proof. We know that each good d-gonal complex with link L corresponds to a conjugacy
class of maximal triples (G, G., ®). Conversely, by Proposition , each maximal triple
(G,, G, ®) determines a triangle of groups, independent of the choices of r and sy. Let
us look at the angles of the resulting triangle of groups. Since Gf/Gy., is the dihedral
group of order 2d, the graph I'(G,, Gc; Gey) is a cycle of length 2d. Therefore the angle
at Gy is 5. Now we look at I'(Gyy, Gev; Gfev) in Gy Since G, acts flag-transitively on L,
I'(Gfy, Gev; Ggep) s the same as the barycentric subdivision of L. The girth of this graph
doubles the girth of L. Therefore the angle at G, is 7, where [ is the girth of L. As for
I'(Gfe, Gey; Gep), 1t 1s not hard to see that it is a complete bipartite graph K ,,, where
m is the valency of L. The girth of Ky,, is 4, and therefore the angle at G. is 7. By
Theorem [4.1}, if the sum of angles % + 7 + § < m, or equivalently é + % < %, then these
stabilizers inject into the colimit group G, and their cosets form a simplicial complex.
The above discussion also shows that this complex has the right links, so we can glue the
faces at G/G to get a good d-gonal complex with link L. Note that conjugate maximal

triples result in isomorphic complexes, and this completes the proof. O

In addition to platonic polygonal complexes, we are also interested in complexes with
the following properties: the automorphism group has two orbits on each of fev, fe, fuv,
f, and acts transitively on every other type of partial flag. We call such a complex a half
platonic complex. Take an octahedron as an example. We can insert three bisecting
squares to the octahedron, as illustrated in Figure [4.50 The resulting complex is still
highly symmetric, and indeed a half platonic complex.

In [29], Valle investigates platonic complexes with octahedral graphs as links. An
octahedral graph is a graph where every vertex is connected to every other vertex except
one, as illustrated in Figure [4.5] In such a complex, we can find a cycle such that no
consecutive three vertices form a corner of a face. These cycles are called holes, and the
automorphism group acts transitively on these holes. If we attach a face to each hole,
then we can also obtain a half platonic complex, as in the octahedron example. Therefore

Valle’s work provides lots of examples of half platonic complexes.
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Figure 4.5: an octahedron and an octahedral graph

Gy

Gf’v Gev va
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iz Gyre Gre — Gy

Figure 4.6: double triangles of groups

We would like to classify half platonic complexes by imitating the method in this
chapter. Now the stabilizers of partial flags form a diagram like Figure Under
certain curvature conditions we can guarantee the developability of the diagram. And
since we have two different types of faces, there should be two holonomies involved in the

construction. This project is still ongoing.
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Chapter 5

Tensor Product

While the theory of triangles of groups provides a computational tool to find platonic
complexes, it does not give much clue about how to explicitly construct examples, due
to the difficulty of understanding the colimit group, especially for non-CAT(0) situations.
In [20], standard examples of platonic complexes with K, links and d-gonal faces are
constructed as follows. By assuming the holonomy ® to be trivial, G, = S, G, =
Sp—1 X 5o, and Gy = 5,9 X Dy, the colimit of this triangle of groups is a Coxeter group

of n generators with the following Coxeter diagram,

where G,,, G., and Gy can be obtained by removing the first, second, and third generator
from the left respectively. This sort of construction does not seem to work in general
for other rigid flexible links such as B, , and @),. Note that B, , can be obtained from
the direct product of K, with K,,, and @), can be obtained from the Cartesian product
(defined on p. of n copies of K5. In the following two chapters, we develop two types
of complex products, which interact nicely with the above two products of link graphs.
This allows us to construct platonic complexes with B, ,, and @),, links.

Suppose that e is certain type of graph product such that V(I'e I'') = V/(I") x V(IV),
and we want to define a complex product * which interacts with e nicely. More specifically,
we would like * to have the following property: for any complexes X and X', and for any

vertices v € X and v € X', we have

L(X,v)e L(X' V) = L(X * X', (v,0)).
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Figure 5.1: tensor product of non-simple graphs

Here we have already assumed that V(X x X’) = V(X) x V(X’). The above property
provides sufficient information about how the complex product * shall be defined. If we
assume the 1-skeletons of X and X’ are simple graphs, by considering the vertex sets of

two link graphs in the equation, we have
{neighbours of v in X} x {neighbours of v" in X'} = {neighbours of (v,v") in X x X'},

which can be interpreted as two vertices (v,v") and (u,u’) are adjacent in X * X' if and
only if v is adjacent to u in X and v’ is adjacent to v’ in X’. This is exactly the condition
in Definition [3.3] which means the 1-skeleton of X % X’ should be the direct product of
1-skeletons of X and X’. Since the 1-skeletons of complexes are not necessarily simple,

we shall generalize the direct product to suit arbitrary graphs.

Definition 5.1. Suppose that I' and I are two arbitrary graphs with edge sets E(I') =
{ea | @« € A} and E(I") = {es | § € B}. The tensor product of I' and I", denoted by
['®T", is a graph with vertex set V(I' @ I'') = V(I') x V(I'), and edge set

ET®I")={eslaecApeB,sec{01}},

where e‘;B is an edge joining (v, v5) and (vq,v]_g), given e, joins vy and vy in I', and eg

joins v{ and v{ in I".

Note that for simple graphs, the tensor product defined above is exactly the direct
product of graphs. Like direct product, each pair of edges from two factors generates two
edges in the tensor product, even when loops are involved, as illustrated in Figures |5.1
and . In some literatures such as [I5], direct product is defined over graphs without
parallel edges but admitting loops. In such definition, a loop serves as the identity of
direct product. In particular a loop times an edge is an edge, and a loop times a loop is

again a loop, while in our definition a loop times an edge is two parallel edges, and a loop
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Figure 5.2: tensor product of two loops

times a loop creates two loops around the same vertex. Since we will need such direct
product in Chapter [7, we take a different name and symbol for our generalized product.

There are some reasons to define tensor product in this manner. First, note the number
of vertices in L(X,v) is exactly the valency of v in X, where a loop at v contributes 2 to

the number. Assuming L(X,v) e L(X' v") = L(X % X', (v,v")), this implies
dx(v) - dx: (V') = dx.x((v,0')),

which is true for the tensor product, but not for the direct product admitting loops.
Secondly, when we glue a face along a loop, the orientation of gluing matters, and the
tensor product can keep track of such orientations. In Definition , when e, or e3 is a
loop, we shall think of it as an edge joining two different ends of the loop, say + and —,
and label two ends of e‘sm 5 by + and — accordingly. We can then lift any given orientation
of a loop in a factor to edges generated by this loop in the product, as illustrated in
Figures [5.1f and This also allows us to define projections unambiguously. Note that

we do not assume graphs to be directed. We just distinguish two ends of each loop.

Definition 5.2. Assume the notation of Definition[5.1] The projection from I'®I"” to T,
denoted by 7, is a continuous function such that 7 maps (v,v") € V(I'®T”) tov € V(T),
and € ; € E(T ®I") to eq € E(T') isometrically between endpoints. The projection mp
from I' ® I to I" is likewise defined.

The projections defined above are graph homomorphisms in the following sense.

Definition 5.3. Let I and [ be two arbitrary graphs. A continuous function ¢ from I'
to I is a homomorphism if ¢ maps each vertex of I' to a vertex of I, and each open

edge of I' isometrically onto an open edge of I".

Remark. In the above definition, the continuity of ¢ is essentially saying that a homo-
morphism maps incident vertices and edges to incident vertices and edges. Meanwhile,

the isometric condition helps to choose a representative from all homotopic maps.
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Figure 5.3: universal property of graph tensor product

Note that the composition of two graph homomorphisms is again a graph homomor-
phism. Together with the trivial automorphisms, the class of graphs forms a category.
The following proposition shows that the tensor product defined above is actually the

categorical product of this category.

Proposition 5.4. Let I' and I be two arbitrary graphs. Suppose that 'y is a graph
with two homomorphisms ¢ : I'y — I" and ¢’ : Ty — I’. Then there exists a unique
homomorphism v : 'y — I' ® I such that ¢ = nr 09 and ¢’ = 7 0 9. In other words,

there exists a unique ¥ such that the diagram in Figure |5.3 commutes.

Proof. Assume that there exists a continuous function ¢ : I'y — I'®I"” such that ¢ = 7pot)
and ¢’ = 7 0¢p. Then Vv € V(I'y), we have ¢(v) = mp o ¢(v) and ¢'(v) = mp op(v). By
Definition [5.2] we know that ¢ (v) = (p(v), ¢'(v)).

Suppose that e is an open edge joining v and w in 'y, and we denote p(e) and ¢'(e) by e,
), (0))
and (¢(u),¢'(u)). Notice that e, = ¢(e) = mr o ¢(e) and ez = ¢'(e) = 7 o ¢(e). By
Definition , we know ¢ (e) is either € 5 or e, 5, determined by endpoints (¢(v), ¢'(v))

and eg respectively. By the continuity of ¢, ¢)(e) is an open path connecting (¢(v),

and (p(u), ¢’ (u)). In case e, or es is a loop, by keeping track of ends of the loop, ¥(e) is
also uniquely determined. Moreover, the local isometry over open edges of ¢ and 7r forces
1 to map e isometrically to 9 (e). Note that we have explicitly constructed a continuous
1 satisfying our initial assumption. We have also shown that 1 is uniquely determined,

and actually a homomorphism, which finishes the proof. O

For any two graphs I" and I, we denote the set of all homomorphisms from I' to I

by Hom(I',T"). We have the following corollary about the number of homomorphisms.

Corollary 5.5. For any graphs I, I'y, I's, we have

| Hom(I',T'; ® I'y) | = |Hom(I', I'y)) | - | Hom(I", I'y) |.
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Proof. An immediate consequence of Proposition [5.4] O]

Note that for any graph I', there is a homomorphism from I' to a loop. Since we
distinguish the orientations when we map an edge to a loop, there are actually 2" such
homomorphisms, where n is the number of edges of I". In particular, a loop is not the

terminal object in the category of arbitrary graphs.

Corollary 5.6. Let I" and I be two graphs, P be a path in I' of length n from v to
u, and P’ be a path in I" of length n from v’ to v/. Then in I' ® I, there exists a
unique path, denoted by (P, P')g, from (v,v’) to (u,w’) such that 7r((P, P')g) = P and
(P, P)g) = P'.

Proof. Let I be a graph which is a path of length n. We can give I a specific orientation
from one end to the other. Then there is a natural homomorphism ¢ from I to P, as
well as one ¢ from I to P’. By Proposition [5.4] there exists a unique homomorphism
¢ I — T'®I" such that ¢ = mro® and ¢’ = 7 01). Hence we have P = ¢(I) = mpot(I)
and P' = ¢/(I) = 7m0 9p(I). Note that (1) satisfies the conditions of (P, P')g, and the

uniqueness of (P, P')g follows the uniqueness of 1. O

Remark. For simple graphs, this result is straightforward from the definition of tensor
product. This corollary clarifies the case when P or P’ contains a loop, where the orien-

tation going through the loop will determine the edge to choose in (P, P')g.

To define our first complex product more concisely, we would like to extend the no-
tation ( , )g above. Let I'y and I'y be two graphs, C; be a cycle of length n in I'y,
and Cy be a cycle of length m in I';. Both ', and (5 are assigned initial vertices and
orientations. Specifically, Cy is (v, €9, V1, €1, -, €m_1,Vm = Vo), Where v; € V(I'y) and

e; € E(I'y). Then for i € {0,1,...,m — 1} we define

[n, m] [n, m]

(Cy, Gl = (=0, C3)e,

a cycle of length [n,m] in 'y ® 'y, where [n, m] is the least common multiple of n and m,
kC; is the cycle repeating C; k times, and C’;O is the same cycle as Cy, but starting at v;,

while C’;l is the reversed cycle of (5 starting at v;.

Definition 5.7. Let X and Y be two polygonal cell complexes with face sets F(X) =
{fa ] a€ A} and F(Y) = {fs | « € B}. We denote the boundary length of f, and fs

by n, and ng respectively, and let (n,,ng) denote the greatest common divisor of n, and
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ng. The tensor product of X and Y, denoted by X ® Y, is a polygonal cell complex
with 1-skeleton X! ® Y1, the tensor product of the 1-skeletons of X and Y, and face set

FIX@Y)={f'slacApBeB,ic{01,...,(na,ns) —1},0 € {0,1}},

where fgjﬂ is a face attached along (C,, Cg)g, while C, is the cycle along which f, is
attached in X, and Cj is the cycle along which fz is attached in Y.

Remark. We will use the jargon that ffj 5 is generated by f, and fg, especially when faces
are not clearly indexed. In the above definition, note that (C,, C’B)g and (Cl,, C’B)g(na’nﬁ )
are identical cycles with different starting vertices. To let a pair of corners of f, and f3
contribute to exactly one face corner in X ® Y, we only choose i € {0,1, ..., (n,,ng) —1}.
Here we discard repeated corner pairs, not faces in X ® Y attached along the same
cycle. For example, let X and Y be 15-gons wrapped around a cycle of length 3 and 5
respectively. Note that the tensor product of a triangle and a pentagon is not the same
as X ® Y. The former has only 2-(3,5) = 2 faces, while X ® Y has 2- (15, 15) = 30 faces

in two groups, each of which has 15 faces with cyclically identical attaching maps.

In the example of a triangle tensor a pentagon, the only two faces meet at every vertex
in the product. In general, when n, # ng, two faces foisﬁ and fgﬁ meet at more than
one vertex. Therefore the tensor product of two polygonal complexes is not necessarily
polygonal. How about the case when n, = ng? For n, even, note that fgfjﬁ and fiﬁ have
two vertices (0,0) and (%, %) in common, and the tensor product is not polygonal. For

odd cases, we have the following result.

Proposition 5.8. Suppose that X and Y are polygonal complexes with all faces of the
same odd length n. Then the tensor product X ® Y is a polygonal complex.

Proof. Since X and Y are polygonal complexes, we know that X! and Y' are simple
graphs, and hence the 1-skeleton of X ® Y, namely X! ® Y'!, is a simple graph as well.
Consider the boundary of an arbitrary face foijﬁ in X ® Y, namely (C,, Cﬂ)g. Note that
C, and Cjy are both simple closed cycles of the same length n, as they are boundaries of
faces of polygonal complexes. Therefore (Cy, C’g)g is a simple closed cycle of length n. In
brief, every face of X ® Y is attached along a simple closed cycle.

Now all we have to show is that the intersection of two faces in X ® Y is either empty,
a vertex, or an edge in X ® Y. Suppose that there exist two faces f}j 5 and fif:ﬁ, in X®Y

such that the intersection of fﬁﬁ and f;‘f 5 1s neither empty, a vertex, nor an edge. For
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the case of n = 3, it is not hard to see that fg'iﬁ and fif:ﬁ, share the same boundary, and
in fact are the same face by the polygonality of X and Y. For the case of odd n > 3, note
that ffj 5 and fifjﬁ, share two vertices which are not consecutive on the boundary of faces.
By the polygonality of X and Y, this implies that f, = fu and fz = fg. Consider the
boundaries of £ and f2',, namely (Cy,Cp)2 and (Ca, Cp)l . When § = &' and i # J,
(Cy, Cg)g and (C,, C’g)‘g/ have no vertex in common. When § # ¢', notice that a common

!

vertex of (Cl, Cg)% and (C,, Cﬁ)g corresponds to an integer m such that
j+m=i—m modn & 2m=1t¢—j modn,

which has a unique solution when n is odd. In other words, when § # ¢', (C,, Cg)g and

! 5

.5 . -5
(Ca, Cs)% intersect at exactly one vertex. Since Jap and I 5 share two vertices, we can

conclude that § = ¢’ and 7 = j. This finishes the proof. O

The complex tensor product does not preserve simple connectedness either.

Proposition 5.9. Let X and Y be an n-gon and m-gon respectively, where n and m are

two positive integers. Then X ® Y is simply-connected if and only if n =m = 1.

Proof. When n =m = 1, the 1-skeleton of X ®Y is a vertex with two loops, as illustrated
in Figure and X ® Y has two faces attached along these two loops respectively. In
this case, X ® Y is actually contractible, and of course simply-connected.

Now suppose that n and m are not both equal to 1. Without loss of generality, we
can assume n > 2. Note that X has n vertices, n edges, and 1 face, whereas Y has m
vertices, m edges, and 1 face. By Definition [5.7, the complex X ® Y has nm vertices,

2nm edges, and 2(n, m) faces. Therefore X ® Y has Euler characteristic
XX ®Y)=nm-—2nm+2(n,m) =—nm+2(n,m) < —2m+2m = 0.
By Proposition 2.2, we know X ® Y is not simply-connected. O

Remark. Let X and Y be two arbitrary complexes, and C' be a cycle along the 1-skeleton
of X ® Y. This proposition shows that the contractibility of 7x(C) and my(C) does not
guarantee the contractibility of C'. Conversely, when C' is contractible in X ® Y, can we
conclude that mx(C) and 7y (C) are contractible? The answer is positive. We can find
a series {C;} of homotopic cycles of C' such that Cy = C, C, is a vertex, and each C;
morphs through a single face ff 5 to obtain Cj1;. Note that 7x(C}) can morph through a
single face f, to obtain 7x(Cj11), even when the length of f, properly divides the length

of ffjﬁ. Therefore mx(C') = mx(Cp) is homotopic to mx(C,,), which is a vertex.
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Figure 5.4: a complex homomorphism from a hexagon to a triangle

In the above remark, we actually abuse the notation 7y, as we have not yet defined
projection maps for complex tensor products. To define such projection maps, first we
introduce some terminology. Let X and Y be an n-gon and m-gon with centre Ox and
Oy respectively. A function p : X — Y is radial if p sends Ox to Oy, 0X to Y, and
for every point P € 90X, every real number ¢ € [0, 1], we have

p(t-Ox+ (1 —t)P)=t-Oy + (1 —t)p(P).

Definition 5.10. Assume the notation of Definition[5.7 The projection from X ® Y to
X, denoted by 7y, is a continuous function such that mx restricted to X' ® Y'! is exactly
mx1, the projection of the graph tensor product, and mx maps fffﬁ € F(X ®Y) radially
to fo € F(X). The projection my from X ® Y to Y is likewise defined.

The projection maps defined above are complex homomorphisms in the following sense.

Definition 5.11. Let X and Y be two polygonal cell complexes. A continuous function
¢ from X to Y is a homomorphism if ¢ restricted to X! is a graph homomorphism to
Y, and ¢ maps each face of X radially to a face of Y and each open face corner (ignoring

the boundary) of X homeomorphically to an open face corner of Y.

Remark. In the above definition, the continuity of ¢ is essentially saying that a complex
homomorphism maps incident cells to incident cells. Similar to the isometric condition
in graph homomorphism, the radial condition is imposed to rule out homotopic complex
homomorphisms. Most important of all, the homeomorphic corner condition forces a face
of X to wrap around a face f of Y along the direction of the attaching map of f, possibly
more that once. In particular, a face of length n can only be mapped to a face of length
dividing n. Figure illustrates such phenomenon, where corners are mapped to a corner
with the same label. The projection mx of complex tensor product mapping fgf 5 10 fo is

also a typical example.
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Note that the composition of two complex homomorphisms is again a complex homo-
morphism. Together with the trivial automorphisms, the class of polygonal cell complexes
forms a category. The following proposition shows that the complex tensor product de-

fined above is actually the categorical product of this category.

Proposition 5.12. Let X and Y be two polygonal cell complexes. Suppose that 7 is a
complex with two homomorphisms ¢x : Z — X and ¢y : Z — Y. Then there exists a
unique homomorphism ¢ : 7 — X ® Y such that px = mx o9 and ¢y = 7y 0. In other

words, there exists a unique 1 such that the diagram in Figure [5.5( commutes.

Proof. Assume that there exists a continuous function ¢ : Z — X ® Y such that px =
mx o and py = my o ¢p. Note that px, ¢y, mx, and 7y restricted to the 1-skeletons of
their domains are all graph homomorphisms. By Proposition [5.4] the restriction of ¢ to
Z' is a uniquely determined graph homomorphism to X' @ Y!.

Suppose that f is a face in Z, px(f) wraps around a face f, in X, and py(f) wraps
around a face fz in X. Then px(f) = mxo(f) wraps around f,, and ¢y (f) = 7y otp(f)
wraps around fz. By Definition [5.10} ¢ (f) must wrap around fgfﬁ for some ¢ and §. Let

¢ be a corner of f. Then we must have ¢x(c) = mx o 9¥(c) and ¢y (c) = 7y o ¢¥(c). By
the remark after Definition [5.7] this pair of corners (¢x(c), py(c)), orientation included,
appears in exactly one fgjﬂ. Therefore ¢ and ¢ are uniquely determined, and v (f) wraps
around this fgfﬁ Moreover, the radiality of px and mwx forces ¢ to map f radially
to fozfﬁ Note that we have explicitly constructed a continuous ¢ satisfying our initial
assumption. We have also shown that 1 is uniquely determined, and actually a complex

homomorphism, which finishes the proof. O

Remark. For any two complexes X and Y, we denote the set of all complex homomor-

phisms from X to Y by Hom(X,Y'). Similarly to Corollary , we have
|Hom(Z, X ® Y)| = |Hom(Z, X) |- |Hom(Z,Y) |.
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Figure 5.6: a homomorphism to a 1-gon
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Figure 5.7: functoriality of L

As we mentioned earlier, for any graph I', there is a homomorphism from I' to a
loop. It is reasonable to ask the following question: for any complex X, is there always
a homomorphism from X to a 1-gon? The answer is negative. Take Figure [5.6| as an
example. Once the image of the leftmost edge is determined, it determines the image
of all other edges. If we identify the leftmost and the rightmost edges with a twist, i.e.
making it a Mobius strip, then there is no way to have a homomorphism. Note that this
question is not related to orientability. If the complex is a strip with 3 squares, then the

Mobius case has a homomorphism, while the orientable case does not.

Proposition 5.13. Let X and Y be two polygonal cell complexes, and ¢ : X — Y be
a complex homomorphism mapping a vertex v € V(X) to v € V(Y). Then ¢ induces a
graph homomorphism L(y) from L(X,v) to L(Y,u). Moreover, let Z be another complex

and p : Y — Z be a complex homomorphism mapping u to w € V(Z). Then we have
L(pog) = L(p) o L(p), as illustrated in Figure [5.7]

Proof. By Definition L(X,v) has vertices corresponding to edge ends around v in
X, and edges corresponding to face corners at v in X. Since ¢ restricted to X! is a
graph homomorphism, ¢ maps an edge end around v in X to an edge end around u in
Y. In addition, by the homeomorphic condition in Definition [5.11] ¢ maps a face corner

at v joining two edge ends around v homeomorphically to a face corner at u joining two

45



(eam eﬁz)
(v, u)

(eazv eﬁl)

(eal Y 6181)
60{1 eag 661 6,82

(ean 652)

Figure 5.8: well linked tensor product

edge ends around u. Therefore ¢ induces a graph homomorphism L(p) from L(X,v) to
L(Y,u). Once these induced graph homomorphisms between link graphs are defined, the
equality L(p o ¢) = L(p) o L(p) follows immediately. O

Remark. To each polygonal cell complex, we can assign a distinguished vertex to be
the basepoint. Together with basepoint-preserving homomorphisms, the class of pointed
polygonal cell complexes also forms a category. The above proposition is essentially saying

that L is a functor from this category to the category of graphs.

Now we move back to the main purpose of this chapter: to develop a complex product
interacting nicely with some product of link graphs. From the above discussion, we
know that the complex tensor product arises naturally in the category of polygonal cell

complexes. Does this natural categorical product fulfill the main job? Yes, it does.

Theorem 5.14. Suppose that X and Y are two polygonal cell complexes, and v and u

are two vertices in X and Y respectively. Then we have
L(X,v) ® L(Y,u) 2 L(X 8 Y, (v, u).

Proof. We can identify edge ends incident to a vertex as paths of length 1 leaving the
vertex, since a loop contributes to two edge ends as well as two such paths, which we call
1-paths for short. By Corollary , there is a bijection between 1-paths leaving (v, u) in
X ®Y and pairs of 1-path leaving v in X and 1-path leaving w in Y. Therefore we can
index 1-paths leaving (v,u) in X ® Y by such 1-path pairs in X and Y.

Suppose that f, € F(X) has a corner ¢, at (€a,,7,€q,), and fz € F(Y') has a corner
cs at (es,,u,es,), as illustrated in Figure These e,’s should be understood as 1-
paths. By the remark after Definition [5.7, the pairing of these two corners appears

exactly once in f&oﬁ and filﬁ respectively, forming corners ((eq,,€p,), (v, w), (€ay, €s,)) and
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Figure 5.9: automorphic image of Figure

((eays€85),s (V,1), (€ay, €p,)) in X @Y. Note that by taking projection maps, we know that
any face corner at (v,u) comes from some pairing of corners at v and u.

Now we translate the above statements in terms of corresponding link graphs. First
of all, we have V(L(X,v)) x V(L(Y,u)) = V(L(X ®Y,(v,u))). Secondly, the corner
cq 1s an edge joining vertices e,, and e,, in L(X,v), and cg is an edge joining vertices
eg, and eg, in L(Y,u). Notice that the edge pair (c,,cs) contributes to one edge joining
(€ay,ep,) and (eq,,€s,), and one edge joining (eq,,e,) and (€q,,€s,) in L(X ® Y, (v, u)).
Meanwhile, taking all possible pairings of edges exhausts all edges in L(X ®Y, (v,u)). By
Definition [5.1] this is exactly saying that L(X,v) ® L(Y,u) = L(X ® Y, (v,u)). O

Remark. In the terminology of category theory, this theorem is essentially saying that
the functor L from the category of pointed complexes to the category of graphs preserves

categorical products, which is not always true for an arbitrary functor.

As indicated in Propositions and [b.9] the complex tensor product does not nec-
essarily preserve polygonality and simple connectedness. Fortunately, complex tensor

product does preserve the most important property for our purpose.

Theorem 5.15. Let X and Y be any platonic polygonal cell complexes. Then the

complex tensor product X ® Y is also a platonic complex.

Proof. In case X or Y has no faces, then X ® Y is simply a graph, and the platonicity
follows easily from the definition of graph tensor product. Hereafter we assume that both
X and Y have at least one face. Since X and Y are platonic, X and Y have the property
that each vertex is incident to an edge, and each edge is incident to a face. By Definition
[.7] it is easy to see that X ® Y has the same property as well. Hence to show X ®@ Y is
platonic, it suffices to show that X ® Y is flag-transitive.

Let ((€ays€s, ), (v,u), (€ny,€s,)) be a face corner in X ® Y, which projects to a cor-

ner (€a,,%,¢€q,) in X and a corner (eg,,u,eg,) in Y, as illustrated in Figure 5.8} Let
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((en,s€5,), (V' u), (eg,,, €5,)) be another face corner in X ® Y, which projects to a corner
(€n,, V' €,,) in X and a corner (ej ,u',ep,) in Y, as illustrated in Figure . Since

a1 [ te %]
X and Y are platonic, there exist p € Aut(X) mapping (ea,,v,eq,) to (e,,,7',€l,)
and o € Aut(Y) mapping (es,, u,eg,) to (ef,,u',ej,). Comparing Figures and
note that (p, o) gives an automorphism of X ® Y mapping ((ea,,€s,), (v, 1), (€as;€8,))
to ((en,,€s,), (v, u), (e,,,€5,)). The above discussion shows that Aut(X ® Y') acts tran-
sitively on face corners with orientations, and therefore transitively on half-corners. In

other words, Aut(X ®Y") acts transitively on flags, and X ® Y is a platonic complex. [

Remark. In Figure |5.8] flipping both corners in X and Y will flip both corners in X @ Y,

whereas flipping only one corner in either X or Y will swap two corners in X ® Y.

Now we can easily construct platonic complexes with B, ,, links.

Corollary 5.16. Let X be a platonic polygonal cell complex with K, links, and Y be a
polygon of arbitrary length. Then X ® Y is a platonic complex with B, ,, links.

Proof. Note that the polygon Y is a platonic complex with K links. By Theorem [5.15]
the tensor product X ® Y is a platonic complex. By Theorem [5.14] each vertex in X ® Y’
has link graph K, ® Ky = B,,,,. This completes the proof. O

In the proof of Theorem [5.15] the key fact we used is the following relation:
Aut(X) x Aut(Y) < Aut(X ®Y).

Is it possible that these two groups are actually isomorphic? We will answer this question

in Chapter [7], where the symmetry of tensor products is studied in greater detail.
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Chapter 6

Zigzag Product

In the previous chapter, we constructed platonic complexes with B, , links using the
complex tensor product, based on the fact that B, ,, = K,, ® Ks. In this chapter, we will
develop a different product of complexes to construct platonic complexes with @, links,
which is related to another product of graphs.

Let T" and I be two arbitrary simple graphs. The Cartesian product of I' and I",
denoted by 'Y, is a simple graph with vertex set V(I') x V(I"). Two vertices (v,v’)

and (u,u’) are adjacent in IV if and only if one of the following is true:

(1) v =u and v’ is adjacent to «’ in I".

(2) v = and v is adjacent to u in I

The definition can be easily understood through Figure [6.1}, showing that the Cartesian
product of two paths of length n and m results in an n x m Cartesian grid, which explains

the name of the product. Note that the Cartesian product of two edges is a 1 x 1 grid,

|
|

O O O

which explains the symbol “[1” of the product.

Figure 6.1: Cartesian product of two paths
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Figure 6.2: Cartesian product of non-simple graphs

By induction, it is straightforward to show that the Cartesian product of graphs is
associative, the product of I';, 'y, ..., I';, denoted by O ,I';, has vertex set x7_,V(I;),
and two vertices (vy,...,v,) and (uy,...,u,) are adjacent in (07 ,I"; if and only if 35 €
{1,...,n} such that v; and wu; are adjacent in I';, and v; = u; for any other ¢ # j. In
particular, when each I'; = K5, the resulting graph [ | K5 is exactly the hypercube graph

(@,.. This motivates us to develop a complex product ¢ such that

L(X,v)OL(Y,u) 2 L(X oY, (v,u)).
We would like to have this property for arbitrary complexes and links. Therefore we
extend the definition of Cartesian product to non-simple graphs first.

Definition 6.1. Let I'y and Ty be two arbitrary graphs with V(I';) = {v,, | o; € V}}
and E(I';) = {ea; | @; € E;}. Then the Cartesian product of I'; and I's, denoted by
[0y, is a graph with vertex set V(I''OI'y) = V(I';) x V(I'g), and edge set

E(F1DF2) - {eCTl,Otzv Cay a3 | Qa; € ‘/ﬁa_J S Ej}v

where ea7 o, 1S an edge joining (v1,va,) and (ug, va, ), given that esr joins v and uy in I'y,

while e,, &5 is an edge joining (va,, v2) and (v,,, u2), given that egz joins vy and ug in Is.

Remark. The above lengthy definition is illustrated in Figure [6.2] The key point is that,
for any vertex v,, € D'y, there is a corresponding copy of I'y in I''UI'y, similarly for
U, € I'y and I'y. When restricted to simple graphs, the product defined above coincides
with the ordinary Cartesian product. Note that Yv,, € V(I';) and Vv, € V(I'2), we have

A((Vays Vo)) = d(Vay) + d(Vay),

a valency relation which should be preserved under reasonable generalizations.
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Like the ordinary Cartesian product, the generalized product is also associative.

Proposition 6.2. For j € {1,2,3}, let I'; be a graph with V(I';) = {va, | € V;} and
E(I';) = {ea; | @; € E;}. Suppose I is a graph with V(I') = {(va,, Va,, Vay) | @; € V;} and

E<F) = {6071,012,0437 €ay 03,035 Cay,az,03 | Qj € Vj7a_J S Ej}7

where eaqa,.a, 1 an edge joining (v1, Vay, Vay) and (U1, Vay, Vasy), given that egr joins vy

and vy in I'y, while ey, a5.05 a0d €4, o,.a7 are similarly defined. Then we have
= (hOr)Or; =2 HO0.0T1;).

Proof. We will only show I' = (I'y0T'9)d '3 here, and the same argument also applies to
['=TO(T,OT3). By Definition , there are two types of edges in (IO T'9)0Ts:

(1) An edge corresponds to an edge, €ag ., OF €4, a5, it [Ty and a vertex v,, in I's.

€at.an: Given that @ joins vy and wy in I'y, then egr o, joins (v, v,,) and (uq, v,,) in
o ) in (Pllj FQ)D Fg.
o535 Given that @5 joins vy and us in I'y, then ey, 57 joins (v4,,v1) and (va,,u;) in

['yOT5. Hence this edge joins ((va,, V1), Vas) and ((Va,, 1), Vas) in (IO T9)OTs.

['1OT,. Hence this edge joins ((v1, Va, ), Vas) and (41, Vay ), Vas

(2) An edge corresponds to a vertex (Va,,va,) in 1Oy and an edge e,, in I's. Given

that e, joins vz and ug in I's, then this edge joins ((val, Vay ), 713) and ((val, Vay ), u3).

Now we identify the vertex ((va,, Vas); Vay) in (10 T5)0 s with the vertex (va,, Vay, Vas)
in I'. Then the above edges of different types correspond to €ag.as.a5, €a1,a3,05, A0 €4y 0,33

respectively, and this gives an isomorphism between (I'y(1T'y)00T'3 and T'. O

We are about to define a complex product which interacts nicely with the graph
Cartesian product. Note that for the graph Cartesian product, we have V(I'{OT3) =
V(['1) x V(I'z). According to the discussion in Chapter [f the 1-skeleton of a desired
complex product here must be the graph tensor product of 1-skeletons of factors. The
remaining job is to attach faces, and we use the notation ( , )g in Proposition again.
Let I'; and I's be two graphs, C' be a cycle of length n in 'y, and e be an edge joining v,

and v; in I's. Then we define

(Cv e)z® - (MO7 @Oé)@a

n

where C! is a cycle of length 2 going back and forth along e, while i € {0, 1} indicates v

or v to be the starting vertex. And (¢/,C")% is similarly defined.
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Figure 6.3: zigzag product of Ky with a hexagon

Definition 6.3. For j € {1,2}, let X be a polygonal cell complex with edge set E(X;) =
{eq; | aj € E;} and face set F(X;) = {fa; | @; € F;}. The zigzag product of X; and
X5, denoted by X; ¢ X5, is a polygonal cell complex with 1-skeleton X| ® X3, the tensor
product of 1-skeletons of X; and X5, and face set

FX1<>X2 ‘OKJEEJ',(X_jEFj},

{ ag,02) al o2

where f22 s a face attached along (Car, ea2)é§, while Cg; is the cycle of length ng: along

aq,02

which fg; is attached in X, and iy € {0, (2,ng7) —1}. The face f* _ is similarly defined.

10[

We shall explain in words and figures to complement this complicated notation.

al ag
An edge e,, in X; and a face fz7 in X, generate either one or two faces all a3 8 in X;0X
depending on the parity of ng;, the boundary length of fs;. The face f“ — is attached
along a cycle in X; ¢ X5 where the X5 coordinate goes around the boundary of f&7, while
the X; coordinate goes back and forth along e. When ng; is even, it takes ngz steps to
return to the starting vertex, and two different starting vertices in X; create two different
faces, as illustrated in Figure [6.3] When ng; is odd, it takes 2ng; steps to return, and
two different starting vertices in X; actually give the same cycle in X; ¢ X5, so we merely
choose one face f0 5 to attach, as illustrated in Flgure .

We would like to clarlfy the case when e is a loop, illustrated in Figure[6.4 as well. Then
going back and forth along e means going around the loop with alternating orientations.
While a loop doubles edges in the product, it also induces orientations on these edges, and
we attach a face generated by this loop along edges in alternating orientations. A good

way to visualize this in Figure[6.4]is to vertically pinch together vertices of the 10-gon in

K, times a pentagon, and this gives the 10-gon in a loop times a pentagon.

02



Figure 6.4: zigzag product of K5 plus a loop with a pentagon

| X

O

Figure 6.5: product of two degenerate 2-gons, tensor or zigzag?
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Figure 6.6: well linked zigzag product

The reader might have noticed the similarity between the zigzag product of an edge
with a face and the tensor product of a degenerate 2-gon, a 2-gon attached on an edge,
with a face. Note that in the tensor product of two polygons X and Y, we match corners
of X and Y to generate faces in X ® Y, and in general flipping a corner of X gives a
different face in X ® Y. In case X is a degenerate 2-gon, then flipping a corner of X
results in an identical face. We keep such identical faces in the tensor product, but not in
the zigzag product. In particular, the tensor product of a degenerate 2-gon with an n-gon
has 2 - (2,n) faces, while the zigzag product of an edge with an n-gon has (2,n) faces.

The product of two degenerate 2-gons is an example of its own interest. In this
example both tensor product and zigzag product generate two edges, each of which has
two degenerate 2-gons attached, as illustrated in Figure [6.5, where thick strips indicate
the presence of degenerate 2-gons. In the zigzag product case, the coloured strip in a
factor is responsible for two strips of the same colour in the product. Note that the link
of the product is a vertex with two loops attached, which is the graph tensor product of

two loops, as well as the Cartesian product of two loops, namely the links of two factors.

Theorem 6.4. Suppose that X; and X5 are two polygonal cell complexes, and v and u

are two vertices in X; and Xy respectively. Then we have
L(Xl, U)DL(XQ, U) = L(Xl 3% XQ, (’U, U,))

Proof. As in the proof of Theorem we can identify edge ends incident to a vertex
as 1-paths leaving the vertex, and by Corollary we can index 1-paths leaving (v, u) in
X; ¢ X5 by pairs of 1-paths leaving v in X; and 1-path leaving u in Xo.

Assume the notation of Definition [6.3] and look at a face corner at (v,u) in X; ¢ X,
generated by an edge e,, € X; and a face fz; € Xo, as illustrated in Figure [6.6, where
those e.’s should be understood as 1-paths. By Definition [6.3] a corner of fz; at u

" at (v,u), no matter whether the length of

contributes to exactly one corner of [

Jaz 1s even or odd. Note that a corner of fg; joins l-paths e,, and ey, if and only if
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Figure 6.7: pseudo tensor product of graphs

i1

the corresponding corner of f;! =

joins 1-paths (€q,, €a,) and (eq,, €qy). We have similar
result for a face corner at (v, u) generated by a face fzr € X; and an edge e,, € X5. By

Definition [6.1] this tells that L(X1,v)OL(Xs,u) & L(X; ¢ Xo, (v, u)). O

Remark. Here is another viewpoint to understand the result. As we mentioned earlier, the
zigzag product has faces generated by degenerate 2-gons and faces, with duplicated faces
removed. In link graphs, it is like having a pseudo loop at each vertex, and performing a
pseudo tensor product where a loop does not duplicate edges. This creates those dashed

edges as illustrated in Figure [6.7], and is essentially the Cartesian product.

Now we investigate the polygonality of the zigzag product. Consider the complex X
of two odd polygons glued together at one vertex. Note that K, ¢ X has two faces, which
meet at two non-adjacent vertices. A way to visualize this is to juxtapose two copies
of Figure [6.4] and it is clear that when two pentagons meet at a vertex, the resulting
two 10-gons above meet at two non-adjacent vertices. Hence the zigzag product does not

preserve polygonality, and in fact it rarely produces polygonal complexes.

Proposition 6.5. Suppose that X and Y are connected polygonal complexes, X has at
least two vertices, and Y has at least one face. Then the zigzag product X oY is polygonal

if and only if X is K5, and Y has no faces of odd lengths meeting together.

Proof. We prove the only if part first. Assume that X has a vertex of valency higher
than 1. Then we can find a path P of length 2 in X. Take an arbitrary face F' in Y,
and consider P ¢ F'; which looks like stacking two polygonal columns in either Figure
or [6.4], depending on the parity of the length of F'. We can find two faces generated by
two different edges of P meeting each other every two zigzags, and hence X ¢ Y is not
polygonal, a contradiction. Therefore X has no vertex of valency higher than 1. By the
connectedness and polygonality of X, X can only be K, without any face attached. And

as explained in the paragraph above, Y has no faces of odd lengths meeting together.
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Figure 6.8: zigzag product of two 1-gons

Now we prove the if part. Since X! and Y'! are simple graphs, the 1-skeleton of X oY,
namely X' ® Y1, is a simple graph. Note that faces in X oY = Ky ¢Y are attached along
simple closed cycles, as illustrated in Figures [6.3] and 6.4 Hence all we have to show is
that the intersection of two faces in Ky ¢ Y is either empty, a vertex, or an edge. If two
faces in Ky ¢ Y are generated by the same face F' of Y, then F' is of even length, and
these two faces do not intersect, as illustrated in Figure If two faces in Ky ¢ Y are
generated by different faces of Y, since Y has no faces of odd lengths meeting together,
by drawing polygonal columns as in Figure [6.3| or Figure [6.4] and juxtaposing them, it is

easy to visualize that these two faces satisfy the condition. O]
The zigzag product does not preserve simple connectedness either.

Proposition 6.6. Let X and Y be an n-gon and m-gon respectively, 1 < n < m. Then

X oY is simply-connected if and only if n =1 and m is even, or n = 2 and m is odd.

Proof. Note that X has n vertices, n edges, and 1 face, whereas Y has m vertices, m
edges, and 1 face. By Definition [6.3] the complex X Y has nm vertices, 2nm edges, and
m(n,2) + n(m,2) faces. When n >4, X oY has Euler characteristic

X(X®Y)=nm-—2nm+mn,2)+n(m,2) < —nm+2n+2m < 2n—2m <0.
When n = 3, X ¢Y has Euler characteristic
X(X®Y)=nm-—2nm+m(n,2)+n(m,2) =—-2m+3(m,2) < —-2m+6 <0.

By Proposition 2.2 we know X ¢ Y is not simply-connected when n > 3.

Consider the case when n = m = 1, namely the zigzag product of two 1-gons, as
illustrated in Figure [6.8, The face of X and the edge of Y generate a face in X oY,
attached along the single arrow, back and forth the double arrow, namely loop a followed
by loop b. Similarly, the edge of X and the face of Y generate a face in X ¢ Y attached
along loop a followed by the reverse of loop b. Therefore X ¢ Y has fundamental group

(a,b|ab=ab ' =1) 2 Zy, and X ¢Y is not simply-connected.
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Figure 6.9: zigzag product of a 2-gon plus a 1-gon with a cycle

Suppose that n = 1 and m > 2. Note that the 1-gon of X and an edge of Y generate a
2-gon in X oY, attached along the orientation of the 1-gon in the X coordinate, back and
forth the edge in the Y coordinate. Hence X and Y'! generate a necklace of m 2-gons, as
illustrated in Figure . When m is odd, the face generated by X! and Y has length 2m,
and wraps around the necklace of 2-gons twice. Note that X ¢Y is homotopic equivalent
to a loop with a face wrapping around twice, which has fundamental group Z,, and hence
X oY is not simply-connected. When m is even, X! and Y generate two faces, each of
which wraps around the necklace once. Note that these two face have no common edges,
and X oY is actually a sphere, which is of course simply-connected.

Now we work on the case of n = 2. Note that the 2-gon of X and an edge of Y
generate two disjoint 2-gons in X ¢Y. When m is odd, X and Y generate a necklace of
2m 2-gons, as illustrated in Figure with some 2-gons omitted. The face generated by
Y and the blue (red) edge in X has length 2m, and wraps around the necklace once along
blue (red) edges. Hence X ¢ Y is actually a sphere, and hence simply-connected. When
m is even, X and Y'! generate two necklaces of m 2-gons, and X! and Y generate 4 faces
attached to these two necklaces. It is not hard to see that X ¢Y is the disjoint union of
two spheres, and hence not simply-connected. In fact, since the 1-skeletons of X and Y

are both bipartite, Theorem implies that X ¢ Y is not connected. O
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Figure 6.10: universal property of ®I';

In the proof of Proposition [6.6, we occasionally discover that for an odd number m,
the zigzag product of a 2-gon with an m-gon is isomorphic to the zigzag product of a
1-gon with a 2m-gon, a surprising result at first glance. Note that a 2-gon is the product

of a 1-gon with K5, and a 2m-gon is the product of Ky with an m-gon. Therefore we have
(1-gon ¢ K3) © m-gon = 1-gon ¢ (K3 ¢ m-gon),

which is less surprising if we know zigzag product is actually associative. For zigzag
product to be associative, at least the graph tensor product of 1-skeletons needs to be
associative, an immediate categorical result from the universal property in Proposition

[b.4] Through the universal property, we can also generalize Corollary [5.6] easily.

Proposition 6.7. For i € {1,...,n}, let T'; be a graph, and P; be a path in T'; of length
m from v; to u;. Then in ®7 ,I';, there exists a unique path, denoted by (P, ..., P,)g,

from (vi,...,v,) to (w1, ..., u,) such that 7o, ((Py, ..., P,)g) = Pj foreach j € {1,...,n}.

Proof. By standard category theory, ®{_,I'; is the graph with projection maps 7, :
» Iy = I'; such that for any graph I' and homomorphisms ¢; : I' = T}, there exists a
unique homomorphism ¢ : I' — ®;_;I'; such that ¢; = 7p, o ¢ for all j. In other word,
there exists unique ¥ such that the diagram in Figure [6.10] commutes for all j.
Let I be a graph which is a path of length m. Then there is a natural homomorphism
@; from I to P; for all j € {1,...,n}. By the universal property above, there exists a
unique homomorphism ¢ : I — ®{_,T'; such that ¢; = 7p; o9 for all j. Hence we have
Pj = ¢;(I) = 7w, o9p(I) for all j. Note that ¢(I) satisfies the condition for (P, ..., P)e,

and the uniqueness of (P, ..., P,)g follows from the uniqueness of . m

Remark. The above proposition implies ((Py, ..., Po-1)g, Pu)e = (P1, ..., Po_1, Py)g, and
in fact we can bracket Py, ..., P, arbitrarily to get (Py,..., P,)g.
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Proposition 6.8. For j € {1,2,3}, let X, be a polygonal cell complex with edge set
E(X;) = {eqa, | @; € E;} and face set F'(X;) = {fa; | @; € F;}. Let X be a polygonal
cell complex with 1-skeleton X7 ® X5 ® X3, and face set

{f12,23 11713 fil’iz — | Q; € Ejva_j = Fj}’

1,022,037 al,&2,a3’ a1,02,03

12,13
where [0 o,

is a face of length [2, ng;| attached along the length ng;r boundary of fsr in
the X coordinate, zigzagging along e,, and e,, in the X5 and the X3 coordinates, with

ia,i3 € {0,1} indicating the starting vertices of e,, and e,,, and we identify fgﬁ@ oy With

1—i2,1—13
f s

. 21,13 1,12 111
aromes . When ngr is odd. f and f, are similarly defined. Then we have

1,002,003 aq,02,03
X = (Xl <>X2)<>X3 = X1<>(X2<>X3).

Proof. We only show X = (X; ¢ X5) ¢ X3 here, and the same argument also applies to
X = X; ¢ (X3¢ X3). By Definition , there are two types of faces in (X; ¢ X5) ¢ Xj:

(1) Faces generated by a face, f2 in X; ¢ Xy and an edge e,, in Xj.

al o)

f2 - Let nar be the length of fz. Then fe

Q,02” 1,02

is of length [2, ng;], attached along
the boundary of fs in the X; coordinate, zigzagging along e,, in the X,

coordinate, with i € {0, (2,n57) — 1}. Since f2  is of even length, f2 . and
€qy generate 2 faces (f2 ) in (X; o X3) o X3, where i3 € {0,1}.

f . Let ngs be the length of faz. Then f%

1,002 ag,02

is of length [2,ng5], attached along
the boundary of fs; in the X, coordinate, zigzagging along e,, in the X;

coordinate, with 4 € {0, (2, naz) — 1}. Since fi! . is of even length, fi! o~ and
€qs generate 2 faces (foz1 a5) in (X 0 Xy) o X3, where i3 € {0,1}.

(2) Faces generated by an edge e’ in X; o Xy and a face fz; of length ng; in Xs.

1,02

The edge ea is generated by e,, in X; and e,, in X5, with § € {0,1} indicating

y QX2

whether e,, is flipped or not. Then eoé1 o, and faz in X3 generate 1 or 2 faces

al,an”

f("a1 an) g Where i € {0, (2, ngz) — 1} indicates the starting vertex of €2

Now we identify the 1-skeletons of X and (X; ¢ X3) ¢ X3. By Proposition (6.7 m faces

12,13 i3 11,43
fozta and (f2 s feis Cand (fiL o) as well, are attached along identical cycles

in X and (X; o X5) o X3. Meanwhile, faces f22 __ and f! s 57 are attached along

al,02,003 (a1,002)9,

identical cycles in X and (X; ¢ X3) ¢ X3, where ¢ = ¢; and § = |i; — i3|. Note that when
nar is odd, identifying fzfl;i oy With fo- 22’1&3” has the same effect as choosing iy from

{0,(2,na7) — 1} = {0,0}. For odd ng; or ng; we have similar situations. Hence there is

a bijection between faces of X and (X; ¢ X3) ¢ X3, and we have X = (X; 0 Xp) 0 X3. O
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Figure 6.11: how a face corner is generated

Remark. The above description of X can easily be generalized to the zigzag product of n

complexes X; ¢ ...¢ X,,, where the first type of face of X is denoted f;il’j’é;if”’an. The key
fact is that every face of X is generated by one face fg; of X; with one edge e,, of X;
from every ¢ # j. Moreover, every face corner of X is generated by one face corner of X;

with one 1-path e,, of X; from every i # j, as illustrated in Figure [6.11}

Theorem 6.9. Suppose that X is a platonic polygonal cell complex. Then the zigzag

product of n copies of X is also a platonic complex.

Proof. In case X has no faces, then o X is the graph ®7_, X!, of which the platonicity
follows easily from the definition of graph tensor product. Hereafter we assume that X
has at least one face. Since X is platonic, X has the property that each vertex is incident
to an edge, and each edge is incident to a face. By the remark above, this implies that
o ;X has this property as well. Hence it suffices to show o' ; X is flag-transitive.

Note that automorphisms of each X in the product and permutations of the n copies

of X generate a subgroup of the automorphism group of ¢ ; X. In other words, we have
Aut(X) S, < Aut(o], X).

For any two face corners A and B of ¢} X, consider the generating 1-paths and face
corners from each factor. We can find p € Aut(X) S, sending each generating 1-path of
A to a generating 1-path of B, and the generating face corner of A to the generating face
corner of B. Then such p is actually an automorphism of o ; X sending A to B. This
shows that Aut(o_;X) acts transitively on face corners with orientations, and therefore
transitively on half-corners. In other words, Aut(o!,X) acts transitively on fev flags,

and the zigzag product ¢! ;X is a platonic complex. O

Remark. Let Gy, and G, be the fev and ev stabilizers of X respectively. Then in fact
there are (n — 1)! - |Gey|" ™ + |G fen| such p € Aut(X) 1S, sending A to B.
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Now we can construct platonic complexes with (),, links through zigzag product.
Corollary 6.10. Let X be a polygon. Then ¢! ;X is a platonic complex with @), links.

Proof. Note that the polygon X is a platonic complex with Ky links. By Theorem [6.9]

the zigzag product o}, X is a platonic complex. By Theorem [6.4] each vertex in o} ; X
has link graph 07, Ky = ),,. This completes the proof. O

To end this chapter, we use zigzag product to give more platonic complexes.

Proposition 6.11. Let [ be a symmetric graph, and X be a platonic polygonal complex.

Then the zigzag product I' ¢ X is also a platonic complex.

Proof. The proof is basically identical to the proof of Theorem O
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Chapter 7

Tensor Symmetry

At the end of Chapter 5| we raised a question about the automorphism group of the

complex tensor product: for any two complexes X and Y, is the following relation true?
Aut(X @ Y) =2 Aut(X) x Aut(Y)

When X an Y are isomorphic, we can swap X and Y to obtain an extra automorphism,
since the complex tensor product is commutative up to isomorphism. In addition to

swapping, the following proposition gives more automorphisms in a less obvious way.

Proposition 7.1. Let X, Y, and Z be polygonal cell complexes. Then we have
(XY)Z=2Xe(Y®Z).

In other words, complex tensor product is associative up to isomorphism.

Proof. A categorical result of the universal property in Proposition [5.12] O]

The associativity of the complex tensor product complicates Aut(X®Y’). For example,
if Y can be factorized into X ® Z, then X ® Y = X ® (X ® Z) has an automorphism
swapping the two copies of X. Hence the symmetry of the product of complexes is also
related to the factoring of complexes. In response to associativity, we modify the original
question as follows: for complexes X; which are irreducible with respect to complex tensor
product, is the automorphism group Aut(®X;) generated by automorphisms of X;’s,
together with permutations of isomorphic factors? By a Cartesian automorphism, we
mean an element in the subgroup of Aut(®.X;) generated in the above manner.

There have been lots of studies about the symmetry of different products of graphs.
One of the major goals of this chapter is to apply the theory of the graph direct product

to the complex tensor product. Hence we first introduce related theorems about the graph
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Figure 7.1: direct product of graphs in &g

direct product. The book [I5] by Hammack, Imrich, and Klavzar offers a comprehensive
survey of products of graphs, and we shall follow their approach and terminology here.
We have defined the direct product of graphs in Chapter|[3, Here we give the definition
again, with an emphasis on the possible presence of loops. We say that a graph I" is a
simple graph with loops admitted if for any u,v € V(I'), there is at most one edge
joining v and v, including the case u = v. In particular, there is at most one loop at a
vertex. For convenience, we use G to denote the class of simple graphs, and &g to denote

the class of simple graphs with loops admitted.

Definition 7.2. Let I' and I” be two graphs in &,. The direct product of I" and I,
denoted by I' x I, is a graph in &, with vertex set V(I' x I'') = V(') x V(I"). There
is an edge joining two vertices (v,v) and (u,u’) in I' x I if and only if there is an edge

joining v and u in I', and there is an edge joining v" and «’ in I".

Note in the above definition, v and v" could be the same vertex, as well as u and u’.
Figure illustrates the direct product of two graphs in G,. Under this definition, notice
that a loop L serves as the identity element of direct product of graphs. In other words,

for any simple graph I' with loops admitted, we always have
LxI'=I'x L=T.

A graph I is prime if [ has more than one vertex, and I' 2 I'; x I'; implies that either
I'; or 'y is a loop. Note that the idea of being prime depends on the class of graphs we
are talking about. For example, let I" be a path of length 3, which has 4 vertices. Then
I' is prime in &, as the only possible factoring is the product of two edges, which is the
disjoint union of two edges. And the statement that I' = I'y x I'y implies either I'; or I’y
is a loop is still logically true. However, I' can be factorized in &, as the graph on the

left of Figure [7.1] times one edge in the bottom, and hence I' is not prime in &.
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Figure 7.2: vertices with the same set of neighbours

Consider the question of factoring a graph into the product of prime graphs. For
a finite graph, such a prime factorization always exists, since the number of vertices
of factors decreases as the factoring goes. However, such a prime factorization is not
necessarily unique, and it depends on the graph itself and the class of graphs where we
do the factoring. For example, a path of length 3 together with associativity can be used
to create graphs with non-unique prime factorizations in &. There are also graphs with
non-unique prime factorizations in &y, an example of which can be found in [I5]. The

following theorem of unique prime factorization is due to McKenzie [24].

Theorem 7.3. Suppose that I' € G is a finite connected non-bipartite graph with more

than one vertex. Then I' has a unique factorization into primes in &.

The next question is about the automorphism group of direct product, which hopefully
has only these Cartesian automorphisms with respect to the product. Note that a pair
of vertices with the same set of neighbours creates pairs of vertices with the same set
of neighbours in the direct product, and results in lots of non-Cartesian automorphisms.
This phenomenon is illustrated in Figure , where a vertex with a loop should have
itself as a neighbour. We say that a graph is R-thin if there are no vertices with the same
set of neighbours. In addition to R-thinness, the disconnectedness due to Theorem
also creates non-Cartesian automorphisms. Even when the direct product is connected,
the example of Ky X dodecahedron graph in Figure 3.9 still has an exotic automorphism.

The following theorem is due to Dorfler [10].

Theorem 7.4. Suppose that [' € G is a finite connected non-bipartite R-thin graph
with a prime factorization I' = I'y x I'y x --- x I'; in &;. Then Aut(I") is generated by

automorphisms of prime factors and permutations of isomorphic factors.
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We would like to use Theorems and [7.4) to develop similar results for the complex
tensor product. The first problem we immediately encounter is that, for the complex
tensor product, we obtain the 1-skeleton of the product through the graph tensor prod-
uct, which is not exactly the same as the direct product of graphs. Fortunately, such a

difference does not really take place in the context of this thesis.

Proposition 7.5. Let I' € G, be a finite connected non-bipartite R-thin graph with more
than one vertex, and I' =T'y x I'y; x - -+ x I, be the unique prime factorization in &q. If

I' is edge-transitive, then I' and each prime factor I'; are in &.

Proof. Since I' has more than one vertex, the connectedness of I'" implies that I' has a
non-loop edge. By the edge-transitivity of I', we know I' has no loop, and hence is in &.
If each factor I'; has a loop, then the product I' will have a loop, which is not true. If
each factor I'; is loop-free, then we have finished the proof. Hence we can assume there is
at least one factor with a loop, and at least one factor without a loop.

Let I',, be the direct product of all factors with a loop, and I's be the direct product of
all factors without a loop. Then we have I' = I', x I's. Note that permuting isomorphic
factors of I' does not involve permuting factors of I', with factors of I'3. By Theorem
7.4, we have Aut(I') = Aut(I'y) x Aut(I's). Since a prime factor has more than one
vertex, I', and I'g both have more than one vertex. Since I' is connected, I'y, and I'g are
both connected. Hence I',, has a loop at some vertex v and a non-loop edge joining two
vertices v, and v;,, while I's has a non loop edge joining two vertices vs and vi. Then in
[' =T, xT'g, there is an edge joining (v,vs) and (v,v}s), and another edge joining (va, vs)
and (v, v3). Notice that Aut(I') = Aut(T'y) X Aut(I's) can not send the first edge to the

second one, contradicting the assumption that I' is edge-transitive. O]

Remark. To visually interpret the last few lines of the proof, it says that a Cartesian

automorphism can not permute horizontal edges with slant edges in Figure

Now we move on to the factorization of polygonal cell complexes. First consider the
following example. Let X and Y be a triangle and a pentagon respectively, X’ be a cycle
of length 3 with two triangles attached, and Y’ be a cycle of length 5 with two pentagons
attached. Since the numbers of vertices of these complexes are prime, the only possible
way to factorize them is to have a factor of one vertex with at least a loop and a face,
which creates double edges in the product. Hence we know these complexes can not be

factorized further, and we have non-unique factorizations X @ Y/ =2 X' ® Y.
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Figure 7.3: a simple complex with two 1-gons

Here we give another example of non-unique factorization. Let X be a triangle, and
Y’ be a (7 -5)-gon wrapped around a cycle of length 5. By Definition [5.7] since 3 and
7.5 are coprime, X ® Y’ has two faces of length 3 -5 -7, wrapped around two cycles of
length 3 -5 for 7 rounds. Consider a (7 - 3)-gon X’ wrapped around a cycle of length 3,
and a pentagon Y. It is easy to see that X @ Y’ =2 X’ ® Y, and these complexes can not
be factorized further. To avoid these non-uniquely factorized situations, we restrict our

discussion to the factorization of simple complexes.

Definition 7.6. A polygonal cell complex X is a simple complex if X has at least one
face, X has no pairs of faces attached along the same cycle, and the attaching map of
each face does not wrap around a cycle more than once. A polygonal cell complex X is

a prime complex if there do not exist complexes X; and X5 such that X = X; ® Xo.

Remark. Figure above is a simple complex with two 1-gons. If we add another 2-gon
attached along two different loops, the resulting complex is still a simple complex, as the

boundary cycles of theses faces are not exactly the same.

To factorize a complex X, our general setting is as follows. We assume that we know
a factorization of the l-skeleton X! = I'; ® I'y, and try to find a complex factorization
X = X;® X, such that X{ =T’y and X] = T'y. A natural thought is to project the faces of
X down to I'; and I'y to be faces. Consider the complex tensor product of a triangle and
a pentagon, which is a complex with two 15-gons. Note that when we project these two
15-gons back to the 1-skeletons of factors, what we obtain are 15-gons wrapped around

cycles of length 3 and 5 respectively, not the original faces.

Definition 7.7. Let X be a polygonal cell complex, f be a face of X attached along
a cycle Oy, and I'; and I'y be two graphs such that X! =T, ®I's. The reductive
projection of f to I';, denoted by nr,(f), is a face attached along the reduced cycle of
7, (Cy) in I';, namely the shortest cycle C' such that repeating C' gives mr, (C).

Remark. In exactly the same way, we can define 7, (f) for the case X! = @7 T";. Note

that when X' =T, ® 'y ® I's, we have 7, (f) = 71, (71,015 (f)) = 71, (71,01, (f)).-
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Proposition 7.8. Let X be a simple complex, and I'y and I's be two graphs such that
X! =T, ®Ty. If there exist two complexes X; and X, with 1-skeletons I'; and T’y
respectively such that X = X; ® X5, then X; and X, are simple complexes whose faces

are precisely the reductive projections of faces of X.

Proof. Suppose that such complexes X; and Xs exist. Let f be a face of X attached
along a cycle Cf of length n, and let C; of length n; be the reduced cycle of 7, (Cy) in
X, for j € {1,2}. Note that f is generated by a face f; of X; attached along m;C4, and
by a face fy of X5 attached along moC5, where m;C; is the cycle made by repeating C;
for m; times. By Definition , f1 and fy generate faces attached along (m;CY, mQC’Q)g,
where i € {0,1,...,(miny,many) — 1} and 6 € {0,1}. By the Euclidean algorithm, we
can find an integer k£ > 0 such that K =0 mod n; and k = (ny,ny) mod ny. Note that
in k steps along (m,C1, mgCg)g, we can walk from the starting vertex of (m;CY, m202)%:5
to the starting vertex of (m;Ch, WQCQ)(%L 1’n2)5, so these two cycles are identical. Since X

is simple, there are no pairs of faces attached along the same cycle in X. Therefore we

have (ny,n2) > (miny, meng) > (n1,n2). Now consider the length of the face f, which is

mimny - Mang mimsg - M1N2

n = [ming, mons] = = myms - [ny, na).

(mlnla m2n2) B (nh nz)

This shows that f is attached along some cycle (C’l,C'g)g of length [nq,ny] for mimy
rounds, and the simplicity of X implies that m; = my = 1. In other words, X; must have
the reductive projection 7, (f) of f as its face. Note that different faces of X might have
the same reductive projection in X;, and we have to discard duplicated ones. Otherwise
duplicated faces in X; will generate duplicated faces in X, violating the simplicity of X.
Conversely, any faces f; of X; and f, of X5 are the reductive projections of the faces in
X they generate. Hence X; and X, are the simple complexes with exactly those faces

from the reductive projections of faces of X. O]

Proposition 7.9. Let X, X, and X5 be polygonal cell complexes such that X = X;®X5.

Then X is a simple complex if and only if X; and X, are simple complexes.

Proof. Proposition[7.8|takes care of the only if part, and here we prove the if part. Suppose
that X has an n-gon f attached along a cycle for m rounds. Since X; and X, are simple, f
must be generated by the reductive projections of f to X| and X3, which are of length [;
and [y respectively. Note that [; and I both divide =*. Then the two reductive projections

generate faces of length n = [l1,l] < . Hence we can conclude that m = 1. If there
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is another face f’ in X attached along the same cycle with f, then [’ is also generated
by the reductive projections of f. If we can show a face in X; and a face in X, do not
generate duplicated faces in X, then this implies X is a simple complex.

Suppose that a face f; of X; has vertices v, v1,...,vp—1,v0 in order, and a face f5
of Xy has vertices ug, U1, ..., Uq—1, Up in order. By the remark after Definition [5.7], every
pair of corners of f; and fy appears exactly once in the faces generated by f; and f5. If
two faces generated by f; and f; are attached along the same cycle in X, there must be
two pairs of corners of f; and f, forming the same corner in X. In particular, we can
find (v;,uy) = (vj,u;) such that i # j or i' # j'. When i # j, we have v; = v; and
Vitr = Vj4k for any integer £ mod p. This implies that f; wraps around a cycle more
than once, violating the simplicity of X;. Similarly ¢/ # j' contradicts the simplicity of
X5. The contradiction results from the assumption that two faces generated by f; and fs
are attached along the same cycle in X. Hence we know that f; and f, does not generate

duplicated faces, and the simplicity of X follows. n

Proposition 7.10. Let X be a simple complex, and I'y and I's be two graphs such that

X! =T, ®y. Then the following two statements are equivalent:

(1) There exist two complexes X; and X, such that X} =T; and X = X; ® Xo.

(2) For any faces f; and fy of X, X contains all faces generated by nr, (f1) and 7, ( f2).

Proof. Assume (1). By Proposition , X1 and X5 are the simple complexes with exactly
those reductive projections of X as faces. For any faces f; and fy of X, 7 (f1) is a face
of X1, and 7, (f2) is a face of X5. Since X = X; ® X5, X contains all faces generated by
71, (f1) and 7r, (f2). Hence (1) implies (2).

Assume (2). First we show that a face f of X can be generated by 7, (f) and 7, (f).
Let Cy, Cy, and C; be the boundary cycles of f, mp, (f), and mp,(f) respectively. By
Definition , we can assume that 7, (Cy) = n;C; for j € {1,2}, namely repeating C

for n; times gives 7, (Cy). Note that f is attached along some cycle (n,C1, HQCQ)é;, which

can be rewritten as (n1, n2) (55 2 (C0)2 . Since the simple complex X has no face

n1,n2) L (n1,n2)

attached around a cycle more than once, we know that (ny,ns) = 1, and therefore
length Cy = ny - (length Cy) = ny - (length Cy) = [length C, length Cs.

This shows that 71, (f) and 7r,(f) can generate the face f. Now let X; and X, be

the simple complexes with exactly those faces from the reductive projections of X. By
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Figure 7.4: a face generated by 3 faces in complex tensor product

Proposition[7.9, X; ® X5 is a simple complex, and in particular X; ® X5 has no duplicated
faces. By the assumption of (2), X contains all the faces of X; ® X;. Conversely, any
face f of X is a face of X; ® Xs, since f can be generated by 7r,(f) and 7r,(f). Then
we have X = X; ® X3, and hence (2) implies (1). O

Although we already know the associativity of complex tensor product through the
universal property, it will be helpful to understand how faces are formed in the product
of more than two complexes. First let us review the product of two complexes. Let f,
be a face of length n, attached along a cycle C, in X, and fs be a face of length ng
attached along a cycle Cz in Y. By Definition , fo and fp generate faces fg'iﬁ of length
[na, ng| attached along (C,, Cﬁ)g, i€{0,1,...,(na,ng) — 1}, 6 € {0,1}. To explain the
boundary cycle of fC’j 5 in plain language, basically we pick a pair of corners of f, and fg
to start, and go around C,, and Cj3 in two coordinates respectively until we return to the
starting pair of corners. Note that the index 7 is chosen in such a way that each pair of

corners appears exactly once among all faces generated by f, and f3.

A good way to visualize this is a slot machine of two reels of length [n,, ngl, cyclically
labeled by the vertices of f, and fs respectively. Faces generated by f, and fz have a one-
to-one correspondence with different combinations of two reels, with flipping allowed for
the second reel. From this aspect, it is easy to see that for face f; of length n; in complex
Xj, J €{L,2,...,m}, fi, fa,. .., fm generate faces in ®L, X of length [ny,ny, ..., 0y
such that each m-tuple of corners appears exactly once among all generated faces. Faces
generated by f1, fa, ..., fm have a one-to-one correspondence with different combinations
of m reels of length [ny,no, ..., nyl, cyclically labeled by the vertices of f; respectively,
with flipping allowed from the second reel on. Figure[7.4]illustrates how a face is generated

by the complex tensor product of 3 faces from such an aspect.
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Theorem 7.11. Let X be a simple polygonal cell complex. If the 1-skeleton of X is a
finite simple connected non-bipartite R-thin edge-transitive graph with more than one

vertex, then X has a unique factorization into prime complexes.

Proof. By Theorem , since X! € & C Gy is a finite connected non-bipartite graph with
more than one vertex, X' has a unique factorization X' =I"; x I'y x --- x I',, into primes
in &y with respect to direct product of graphs. By Proposition [7.5] the edge-transitivity
of X! implies that each prime factor I'; is in fact a simple graph. On the other hand, if
we factorize X! with respect to graph tensor product, each factor would also be a simple
graph with more than one vertex, because a loop creates double edges in the product,
and a single vertex breaks the connectivity of the product. Note that direct product
and graph tensor product coincide in &. Hence we know X! has a unique factorization
X'=T1®ly®- --®T, into primes in & with respect to graph tensor product.

Now we consider the factorization of the complex X. Note that we can always obtain a
prime factorization of X, since the number of vertices of factors decreases as the factoring
goes. Suppose X has two factorizations A and B, and X, is a prime factor of X in A
with 1-skeleton I’y ® I's. By Proposition [7.10] there exist two faces f; and fy such that
Xy lacks certain face generated by 7r, (f1) and 7, (f2). In other words, there is certain
pair of corners of 7, (f1) and 7r,(f2) missing in the faces of Xy, and hence such pair
will be absent in the n-tuples representing face corners of X. By Proposition [7.8 we can
find faces f; and f, of X such that mr,er,(fi) = fi and 7r,er,(f2) = f2, and we have
7, (f1) = 7, (f1) and 7, (f2) = 7, (f2). If T1 and Ty belong to different prime factors
X, and X, in B, we can reductively project f; to X; to obtain a face f/ of X;, i € {1,2}.
Then we have 7, (f]) = 7r, (f1) = 7r, (f1) and 7, (f3) = 7r,(f2) = 7r,(f2). Notice that
f1 and f} generate all possible pairs of corners of 7r, (f1) and 7r,(f2) in X; ® X5 and
hence in X, a contradiction. So I'y and I'y belong to the same prime factor in B.

The above argument can be applied to the case when the 1-skeleton of X is the graph
tensor product of more than two prime graphs, simply by splitting prime graph factors
into two groups. It follows that every prime 1-skeleton factor of X, belongs to the same
prime complex X|, in B. Conversely, every prime 1-skeleton factor of X{| belongs to Xo,
and hence X, and X are actually the same. In case Xj has a prime 1-skeleton I';, then I';
belongs to some X, in B with a prime 1-skeleton, otherwise the prime 1-skeleton factors
of X{, belong to at least two complexes in A. In conclusion, we know two factorizations

A and B are identical, and X has a unique factorization into prime complexes. O
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Theorem 7.12. Suppose that X is a simple polygonal cell complex, and its 1-skeleton is
a finite simple connected non-bipartite edge-transitive R-thin graph with more than one
vertex. Let X = X; ® Xy ® -+ ® X, be a prime factorization of X. Then Aut(X) is

generated by automorphisms of prime factors and permutations of isomorphic factors.

Proof. Since X has no faces attached along the same cycle, an automorphism of X is
completely determined by its action on the 1-skeleton X!, and we can identify Aut(X) as
a subgroup of Aut(X*'). To understand Aut(X"'), by the argument in the proof of Theorem
[7.11] we know X' has a unique factorization X' = Ty x [y x -+ - x T, =1 @, ®---@1,,
into primes in G. By Theorem the extra R-thin condition on X! implies that Aut(X?)
is generated by automorphisms of I';’s and permutations of isomorphic I';’s.

Let ¢ be an arbitrary automorphism of X, which can be represented as some p €

x7, Aut(T;) followed by a permutation of I';’s. This implies that for any face f of X

SO(W(@'LGIFi(f)) = To(®ierTy) (90<f)) = T@icro(Ty) ((p(f)),

where [ is an arbitrary non-empty subset of {1,2,...,m}. Suppose that X; has 1-skeleton
X| = ®ierl for some I C {1,2,...,m}. We claim that Vi € I, p(T;) belongs to the same
prime factor X of X. If not, then we can find I; Ul = I such that Vi € I1,Vj € I, p(T)
and ¢(I';) belong to different prime factors of X. Let I'y, = QeI and I'g = ®;ep,1,
and hence we have X{ = T, ® I's. Since X; is prime, by Proposition , we can find
faces f1 and f of X; such that X lacks certain face generated by mr,(f1) and 7, (f2).
By Proposition , we can find faces f; and f, of X such that T a®T (fi) = f1 and
Troer,(f2) = fa. Then the complex X lacks certain corner combination of r, (f) and
T, (E) in the m-tuples representing face corners of X. By taking the automorphism ¢, the
complex X lacks certain corner combination of mg,_ Il@(pi)(w(ﬁ)) and 7g, Iz(p(pj)(w(ﬁ)),
which is impossible because ¢(I';) and ¢(I';) belong to different prime factors of X, and
taking complex tensor product of these factors generates all the corner combinations.
Hence for every 1-skeleton factor I'; of X;, o(I';) belongs to the same prime factor
Xy of X. By considering p~!, we know that X}, has exactly these p(T;)’s as 1-skeleton
factors. Moreover, ¢ (mg, 1, (f)) = e, o) (@(f)) implies that ¢ induces an isomor-
phism from X; to Xj;. This shows that every ¢ € Aut(X) can be represented as some
o € x}_; Aut(X;) followed by a permutation of X;’s, and the theorem holds. O

Remark. Let X be the disjoint union of prime factors of X. Then the above theorem

implies that Aut(X) 2 Aut(X), which is a convenient way to describe Aut(X).
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The following corollary is a partial converse of Theorem [5.15|

Corollary 7.13. Suppose that X is a simple polygonal cell complex, and its 1-skeleton is
a finite simple connected non-bipartite edge-transitive R-thin graph with more than one

vertex. If X is platonic, then any factor of X is platonic.

Proof. Note that it suffices to show that any prime factor of X is platonic. Then by
Theorem and Theorem [5.15, any factor of X is a complex tensor product of platonic
prime factors of X, and hence is platonic. Since X is a simple complex, X has at least
one face. The platonicity of X implies that each vertex of X is incident to an edge, and
each edge of X is incident to a face. By considering the projection map, we know that
any prime factor of X has this incidence property as well, and the platonicity of a prime
factor of X is equivalent to being flag-transitive.

By Theorem [7.11], X has a unique prime factorization X = X; ® Xy ® -+ ® X,,.
Suppose that one of the prime factors is not platonic, without loss of generality say Xi,
and X; is isomorphic to X; if and only of 1 < i < m for some integer m < n. Since X is
not platonic, there exist two oriented face corners (el,v1,e?) and (el v}, e?) in X, such
that Aut(X;) can not map one corner to the other. For each j such that m +1 < j <n,

we pick an arbitrary corner (ejl-, vj, e?) of X;. Consider the following two corners of X:

((ei,...,ei,e}nﬂ,...,6711),(vl,...,vl,vm+1,...,vn),(e%,...,e?,eiﬂ,...,ei)) and
((e%,, o ,e}/,e,lnH, el (U U Uity V), (e%,, . ,e%/,ean, e,

By Theorem Aut(X) is generated by automorphisms of prime factors and permu-
tation of isomorphic factors. In particular, it is impossible for Aut(X) to map one of
the above corners to the other, contradicting to the platonicity of X. Therefore we can

conclude that any prime factor of X is platonic. O
The corollary below answers the question we posed in the beginning of the chapter.

Corollary 7.14. For i € {1,2,...,n}, let X; be a simple prime complex with a finite
simple connected non-bipartite symmetric R-thin 1-skeleton having more than one ver-
tex. Then the complex tensor product X = ®?_,X; has automorphism group Aut(X)
generated by Aut(X;)’s and permutations of isomorphic X;’s.

Proof. By Proposition [7.9] we know X is a simple complex. By the definition of graph
tensor product, we know X! is a finite simple graph. Note that a simple graph is non-

bipartite if and only if there is a cycle of odd length. Then the graph tensor product of two
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non-bipartite graphs contains a cycle of odd length and hence is non-bipartite. Induction
shows that X! is non-bipartite, and by Theorem we know that X! is connected.
By the special case of Theorem m (platonic complexes without faces), we know X!
is symmetric and hence edge-transitive. Note that for two graphs I'y and I's, the set of
neighbours of a vertex (u,v) € V(I'; ® I'y) is the direct product of the set of neighbours
of u in I'y with the set of neighbours of v in I's. This implies the graph tensor product
of R-thin graphs is a R-thin graph. To summarize, we know X is a simple complex with
a prime factorization X = ®I ,X;, and its 1-skeleton X' is a finite simple connected
non-bipartite edge-transitive R-thin graph with more than one vertex. By Theorem [7.12]
we know that Aut(X) is as described in the corollary. O

Remark. The tensor products of edge-transitive graphs are not necessarily edge-transitive.

Therefore we require each X! to be symmetric to ensure the edge-transitivity of X*.

Note that when a complex has a face of odd length, then the 1-skeleton of the complex
is non-bipartite, and Corollary has a chance to work. In the next chapter, we will
investigate the automorphism group of the tensor product of complexes with only faces

of even lengths from a different aspect.
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Chapter 8
Tensor Symmetry 11

In this chapter we investigate the tensor product of complexes with only faces of even
lengths, and our goal is to develop results similar to Corollary which basically says an
automorphism of certain complex tensor products must be of Cartesian type. Note that
when there is more than one bipartite factor, Theorem implies that the complex tensor
product is disconnected, and the product is likely to have non-Cartesian automorphisms
from the direct product of automorphism groups of components. Hence in such a context,
the proper question to pose should be as follows: for complexes X; with only faces of even
lengths, is the automorphism group of a component of ®X; generated by automorphisms
of X;’s together with permutations of isomorphic factors?

For graph tensor products, the example of Ky x dodecahedron graph in Figure
shows that the connectedness of the product does not guarantee the absence of non-
Cartesian automorphisms. For complex tensor products, we hope that the extra face
structure helps to eliminate non-Cartesian automorphisms. For example, let us look at the
complex tensor product of two squares, which has two isomorphic components. We denote
vertices of a square by 0, 1,2, —1 cyclically, and illustrate one component of the product
in Figure 8.1l Note that the 1-skeleton of the component is actually a complete bipartite
graph with 2 - 4! - 4! automorphisms, and not all of them give a complex automorphism
due to the extra face structure.

Figure [8.1] also reveals an important fact of the tensor product of complexes with only
faces of even lengths: a face is antipodally attached to another face generated by the
same pair of faces, and through such antipodally attached relation we can find all other
faces generated by the same pair of faces in that component. Such face blocks (defined

in Definition [8.4)) help to determine the Cartesian structure of a complex tensor product,
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Figure 8.1: a component of the tensor product of two squares

and if we can show a generic face block has only Cartesian automorphisms, then we have a
chance to force a complex automorphism stabilizing a face block to be of Cartesian type.
To simplify the problem, we restrict our discussion to the tensor product of complexes
with faces of the same even length, and the first step is to establish the Cartesian result

for the tensor product of 2n-gons. The following lemma is a useful tool for this purpose.

Lemma 8.1. Suppose on a real line, someone wants to take d steps to walk from an

integer d — 2k to 0, where |2] > k > 0 is an integer, and each step is either plus 1 or

2
d—1
k-1

The ratio (dgl)/(ij) is greater than or equal to 1, with equality if and only if d — 2k = 0.

minus 1. Then there are (dgl) ways to arrive from 1, and ( ) ways to arrive from —1.

Moreover, when d is fixed and k is increasing, the ratio is decreasing.

Proof. Suppose this person takes x steps of minus 1 and y steps of plus 1 to arrive at 0.
Then we have x +y = d and —z +y = —d + 2k, and therefore x = d — k and y = k.
By ordering two types of steps arbitrarily, we can obtain all different ways to arrive at 0.
To arrive from 1, the last step must be minus 1, and there are (dgl) such combinations.

d—1

To arrive from —1, the last step must be plus 1, and there are ( ) such combinations.

k—1
When d is odd, we have % > k and hence (dzl) > (Zj) When d is even, we have
%l > k which implies % > k — 1 and hence (dgl) > (Zj), with equality if and only if
k+ (k—1)=d— 1, namely d — 2k = 0. To show that the ratio (dgl)/(Zj) decreases as

k increases, we simply have to verify the following inequality:
(%G > () /(50
& () > ()60
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(d—1)...(d—k) (d—1)...(d—k) _ (d—1)...(d—k—1) (d—1)...(d—k+1)

= 7l 7l > (E+1)! (E—1)!
& Gk > dhl
& 1> -1
= k+1>k,
which is obviously true. O]

Proposition 8.2. For i € {1,2,...,m}, let C; be a graph which is a cycle of length 2n,
where n is an integer at least 3. Then the automorphism group of a component of ®!",C;

can be generated by elements of Aut(C;)’s together with permutations of C;’s.

Proof. We denote vertices of C; by 0,1,...,n—1,n,—(n—1),—(n—2),..., —1 cyclically,
and let " be the component of ®",C; containing the vertex v = (0,0,...,0). Note that
x™ Aut(C;) acts transitively on vertices of ®7,C;. Therefore to prove this proposition,
it suffices to show that the v-stabilizer G, of Aut(I') can be generated by elements of
Aut(C;)’s together with permutations of C;’s. Notice that there are 2™ - m! Cartesian
automorphisms of I' fixing v, generated by the reflection fixing 0 in each C; and all
permutations of m factors. If we can show |G,| < 2™ - m!, then the proposition follows.
First we show that I' is a rigid graph. Namely we want to show that if p € G, fixes
all neighbours of v, then ¢ must be trivial. Note that two vertices (by,bo,...,b,) and

(c1,¢9, ..., cn) are adjacent if and only if b; — ¢; = £1 mod 2n for all 4, and therefore

V() SV ={(a,aq,...,am) € V(®,C;) |ar =ay=---=a, mod2}.

For each u = (ay,as,...,a,) € V*, there is a path of length d = max{|a4|, |az|, ..., |amn|}
from u to v, because we can reach 0 in d steps in the coordinates with absolute value d,
and we can also reach 0 in d steps in the other coordinates by walking back and forth as
each coordinate has the same parity. Hence V(I') = V*, and d(u,v) = d follows easily.
Note that the number of geodesics from u to v is the product of the number of ways
in each coordinate to walk to 0 in d steps. Look at the i-th coordinate of v. For now we
assume that a; > 0, and let k; be the integer such that a; = d — 2k;. If n > a; > 0, we
have L%J > k; > 0, and walking to 0 in d steps is equivalent to the setting of Lemma
By the lemma, the ratio of numbers of u — v geodesics arriving from 1 and from —1 in
the i-th coordinate is (dfl)/(d_l) > 1. Since the automorphism ¢ fixes (£1,+1,...,£1)

ki )/ \ki—1
and preserves geodesics, this ratio does not change under ¢. Again by the Lemma, k;

76



must remain the same to keep this ratio, and hence the i-th coordinate of ¢(u) must be
a;. If a; = 0, then u has a neighbour w with the i-th coordinate 1. Note that ¢(u) is
adjacent to p(w) with the i-th coordinate 1, and the i-th coordinate of p(u) is either 0 or
2. In the latter case, since n > 2 > 0, by taking ¢! the above argument implies a; = 2,
a contradiction. Hence the i-th coordinate of ¢(u) is 0. Similarly if a; = n, then the i-th
coordinate of p(u) is n. For negative a;, by applying the mirror version of Lemma , we
know that the i-th coordinate of p(u) is a;. Note that the above result is true for every
coordinate. Hence p(u) = u for every u € V(I'), and ¢ is trivial.

Now look at the local structure around v. Note that two neighbours of v taking differ-
ent values in k coordinates have 2% common neighbours. In particular, two neighbours
of v differ in exactly one coordinate if and only of they have 2™~! common neighbours.
Hence among the neighbours of v, the relation of differing in exactly one coordinate is
preserved under G,. If we draw an auxiliary edge between any two such neighbours of v,
then the 2™ neighbours of v plus these auxiliary edges form a hypercube @), preserved
under G,. Since I is rigid, an automorphism of G, is completely determined by its action
on the neighbours of v, which also induces an automorphism of the auxiliary @,,. As a

result, we have |G, | < Aut(Q,,) = 2! - m!, which finishes the proof. ]

Remark. Let H be the subgroup of x,Z,, generated by S = {(£1,+1,...,%1)}. Note
that the component I' in the above proof is actually isomorphic to the Cayley graph of
H with respect to the generating set S.

Corollary 8.3. Suppose that X; is a 2n-gon for ¢ € {1,2,...,m}, where n is an integer
at least 3. Then the automorphism group of a component of ®@!",X; can be generated by

elements of Aut(X;)’s together with permutations of X;’s.

Proof. Note that a 2n-gon has the same automorphism group as its 1-skeleton, and ®" | X;
has the same Cartesian automorphisms as ®",X}. Hence a vertex stabilizer G, of a
component X of ®,X; has 2™ - m! Cartesian automorphisms, and |G,| is at most the

cardinality of the stabilizer of v in X!, which is 2™ - m! by Proposition . O

Remark. We do need the condition n > 3 in Proposition [8.2|and Corollary Forn = 2,
Figure illustrates a component of the tensor product of two squares. Its 1-skeleton is
the complete bipartite graph K4 with lots of non-Cartesian automorphisms. With the
face structure, there are much fewer complex automorphisms, but swapping (0,2) and

(2,0) still gives a non-Cartesian complex automorphism.
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Figure 8.2: a non-elementary complex

Now we formally define the face blocks mentioned in the beginning of the chapter.
An intuitive definition of a face block in a complex tensor product ®*,X; would be any
connected component in ®!", f;, where each f; is a face of X;. Note that if each f; is
an even gon attached injectively, then @™, f; has 2™~! components, and hence 2™~ face
blocks. If these f;’s are attached non-injectively, then the above face blocks could have
extra incidence relations, and we might end up having fewer components. We would like

to define a face block regardless of attaching maps, so we take the following definition.

Definition 8.4. For i € {1,2,...,m}, let X; be a polygonal cell complex with only faces
of even length 2n > 2. Let f; be a face of X; with corners labeled by 0,1,...,2n — 1
cyclically. A face block generated by fi, fa,..., fin is a subcollection of faces generated
by fi, fa, ..., fm such that two faces f, and f;, are in the same face block if and only if a

corner of f, with label (a1, as,...,a,) and a corner f, with label (b, b, ..., b,,) have
a—b=ay—by=---=a,, — b, mod 2.

Remark. 1t is easy to see that a face block is well-defined no matter how faces are cyclically
labeled and no matter which corners are chosen to verify the above criterion. In general
it is not obvious whether or not two faces are in the same face block of a complex tensor
product without knowing the tensor product structure. In the tensor product of the

following class of complexes, recognizing a face block is much easier.

Definition 8.5. A connected polygonal cell complex X is an elementary complex if X

satisfies the following three conditions:

(1) Every face of X is of the same even length > 2.
(2) No antipodal corners of a face are attached to the same vertex.

(3) For any two vertices, there is at most one pair of antipodal face corners attached.
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Remark. Condition (3) basically says no two faces can be attached antipodally, and in a
face different pairs of antipodal corners are not attached to the same pair of vertices. For

example, the complex in Figure [8.2]is not an elementary complex.

Proposition 8.6. For i € {1,2,...,m}, let X; be an elementary complex with faces
of even length 2n > 2. Then in the complex tensor product ®[,X;, for any antipodal
vertices u and v of a face in ®™ X;, there are exactly 2" ! faces having u and v as
antipodal vertices, and these faces are in the same face block. Moreover, for any two
faces f and f’ in the same face block, we can find a series of faces fy, f1,..., fr such that

fo= [, fu = f, fi and f;4; share antipodal vertices for i € {0,1,... .k — 1}, and k < n.

Proof. In ®",X;, suppose that u = (uy, ug, ..., Uy) and v = (vy,vs, ..., v, ) are antipodal
vertices of a face f generated by fi, fo,..., fm, where u; and v; are vertices of X; and f;
is a face of X; for ¢ € {1,2,...,m}. Note that for each i € {1,2,...,m}, projecting f
to X; gives f;, and f; has u; and v; as antipodal vertices. Since X; is elementary, u; and
v; are not the same vertex, and f; is the only face of X; having u; and v; as antipodal
vertices, with a unique pair of antipodal corners attached to u; and v;. Hence any face in
®", X, having v and v as antipodal vertices must be generated by fi, fo,..., fm in such
a way that the corresponding corners ¢; of the f;’s at u; are combined together. With the
corner ¢, of f; fixed, flipping f; at ¢; for i € {1,2,...,m} gives all 2™~! faces having u
and v as antipodal vertices, and these faces are in the same face block.

Now suppose that f and f’ are two faces in the same face block B generated by
faces with corners labeled by 0,1,...,2n — 1 cyclically. Then we can label corners in B
according to such a corner labeling, and by following steps of (+1,+1,...,+1), we can
start from a vertex v of f to reach any other vertex in B in n steps. In particular, there
is a unique vertex in B such that we need n steps to reach it from v. Since f’ has more
than one vertex, we can start from v to reach a vertex u of f' in n — 1 steps. By adding
one step in f and one step in f’ if necessary, we can find a path from f to f’ of length
at most n + 1 such that the first and the last steps are in f and f’ respectively. Note
that each (£1,+1,...,£1) step determines a unique face in B, and hence the above path
determines a series of faces fo, f1,..., fx such that fo = f, fr = f/, and &k < n. If f;
and f;41 are determined by the same (+1,+1,...,+1) step, then f; and f;,; are actually
the same face, and we can remove one of them from the sequence. If f; and f;;; are

determined by different (+1,+£1,...,+1) steps, then f; and f;;1 are two different faces
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with a common vertex with label (ay,as,...,a,). Note that
(a1,a9,...,am) +n(£l,£1,...,+1) = (a; + n,as +n,...,a, +n) mod 2n,

which is also a common vertex of f; and f;,1, and therefore f; and f;.; share antipodal

vertices. The above argument is illustrated in Figure 8.1} O

Proposition allows us to easily recognize a face block in a complex tensor product.
If we impose the following conditions on each factor, then we can read the Cartesian

structure of a complex tensor product through the incidence relation of face blocks.

Definition 8.7. A connected polygonal cell complex X is an ordinary complex if every

face f of X is of the same even length 2n > 4, and satisfies the following extra conditions:

(1) If we label corners of f cyclically from 1 to 2n, then any two corners with different
parities are not attached to the same vertex.
(2) For any face f’ incident to f, either f has only one corner meeting f’, or f has only

two consecutive corners meeting f’.

Remark. If the 1-skeleton of X is bipartite, then X satisfies (1) automatically. Also
note that a polygonal complex satisfies both (1) and (2). The reader might have noticed
that (2) implies the condition (3) of an elementary complex. Since there are alternative
conditions serving our purpose as effectively as (2), we avoid defining ordinary complexes

as a subclass of elementary complexes.

Proposition 8.8. For i € {1,2,...,m}, suppose that X; is an ordinary complex with
faces of even length 2n > 4. Let B be a face block generated by f1, fo,..., fm and B’ be
a face block generated by f1, f5,..., fl,, where f; and f/ are faces of X;. If B and B’ are

incident, then the following two statements are equivalent:

(1) 3j such that f; is incident to f; in X, and Vi # j we have f; = f;.

(2) Every face of B is incident to a face of B'.

Proof. Assume (1). Without loss of generality, we can assume that j = 1. Since B and
B’ are incident, there is a face corner ¢ of B meeting a face corner ¢ of B’. Suppose that
¢ is the combination of corners ¢; of the f;’s, and ¢’ is the combination of corners ¢, of
the f/’s. Note that ¢; of f; meets ¢} of f] in X;. Also note that for i # 1, ¢; and ¢, are

in the same face f, and they are either the same corner or different corners attached to
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Figure 8.3: how to avoid incidence

the same vertex. In particular, by condition (1) of Definition , ¢; and ¢; have the same
parity under cyclic Zs, labeling for ¢ £ 1. Let f be an arbitrary face of B generated by
combining ¢; of f; with corners ¢ of the f;’s for i # 1. By Definition [8.4], ¢; has the same
parity as ¢;, and therefore has the same parity as ¢;. Then again by Definition , the
face f’ generated by combining ¢ of f] with ¢;’s of the f;’s is a face of B’. It is obvious
that f is incident to f’. To summarize, given an arbitrary face f of B, we can find a face
f" of B" incident to f. Hence (1) implies (2).

Assume (2). If f; and f! are disjoint, then B and B’ are disjoint, which contradicts
(2). Hence for each i € {1,2,...,m}, f; and f/ are either incident or actually the same.
Suppose that there is more than one j, say for j € {1,2}, such that f; and f; are incident.
By condition (2) of Definition f1 and f5 have either one corner or two consecutive
corners meeting f| and f5 respectively. Pick two consecutive corners of f; containing all
corners meeting f; and colour them blue. Similarly pick two consecutive corners of f,
containing all corners meeting f; and colour them red. Consider the faces generated by
fi, fay ..., fm with the following corner combination: coloured corners of f; and fy are
placed at the opposite positions, as illustrated in Figure [8.3] Note that these faces are
disjoint with faces generated by f{, f5,..., f/.. If B does not contain any of these faces,
we can flip two red corners of fy to generate faces of B, and the resulting faces are still
disjoint with faces generated by fi, f5,..., f/.. In other words, we can find a face of B
incident to no face in B’, a contradiction. So there is at most one j such that f; and f;
are incident. Moreover, condition (1) of Definition implies that different face blocks
generated by fi, fa,..., fm are disjoint. Since B and B’ are incident, we know that there

is exactly one j such that f; and f} are incident. Hence (2) implies (1). O

Remark. Note that condition (2) of Definition is only used for the argument illus-
trated in Figure It is not hard to have alternative conditions serving this purpose,
especially when the length of faces is higher. We also want to point out that through
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Figure 8.4: Cartesian structure of face blocks

finer examination of incidence relation between face blocks, it is possible to obtain more

information such as how f; meets f; in X;, perhaps under weaker conditions.

With Propositions and [8.8] in a tensor product X = X; ® X5 ® - -+ ® X,,, where
each X; is an elementary ordinary complex with only faces of even length 2n > 4, we can
recognize face blocks and the Cartesian structure of X through the incidence relation on
faces, which is preserved under automorphisms of X. Now we define a graph I"x to encode
the Cartesian structure of X. Let I'x be a simple graph with vertex set x*, F'(X;), where
a vertex (fi, fa,..., fm) represents all faces of X generated by fi, fa, ..., fm, such that
two vertices are adjacent if and only if they take the same face in m — 1 coordinates, and
have incident faces in the remaining coordinate. Let I'x, be a simple graph with vertex
set F'(X;), such that two vertices are adjacent if and only if the corresponding faces are
incident in X;. Notice that I'y = I'x,00'x,0---0OT'y,. Figure illustrates the case
m = 2, where B" = (f}, fQJ ) represents all faces generated by fi and fg The following

theorem due to Imrich [I9] and Miller [25] restricts the automorphism group of I'x.

Theorem 8.9. Suppose that I' is a finite simple connected graph with a factorization
I'=110I%0-..07T,,, where each I'; is prime with respect to Cartesian product. Then
the automorphism group of I' is generated by automorphisms of prime factors and per-

mutations of isomorphic factors.
We can not guarantee I'y, is prime, but at least X; is indeed a prime complex.

Proposition 8.10. Let Y be an elementary complex. Then Y is a prime with respect to

complex tensor product, and Y is not a component of any complex tensor product.

Proof. Suppose that there exist complexes Y; and Y3 such that Y is a component of

Y] ® Y5. Note that a face of Y is of even length, and must be generated by either two
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Figure 8.5: tensor product of a hexagon with a 3-hexagon necklace

even faces or by one even and one odd face. In either case, by Definition [5.7, Y will have

faces antipodally attached together, violating that Y is elementary. O]

Note that in Figure 8.4} each B/ actually contains two face blocks generated by fi
and fg, and in general each vertex of 'y defined above contains 277! face blocks. Even
if we have some control over the automorphism group of I'x, having multiple face blocks
at one vertex of I'y could lead to non-Cartesian automorphisms of X. Let us look at
the tensor product of a hexagon with a 3-hexagon necklace as illustrated in Figure [8.5]
where v; is the vertex generated by u; and v, and coloured vertices in the product are
generated by coloured uq, us, and us. For brevity, half of the faces in the product are
omitted. Consider the automorphism p of the product induced by fixing f, f!, and f3
but flipping f? (swapping the top and the bottom edges) in two factors. Then p fixes the
four face blocks on the left and right, and permutes vertices in each of the two middle
blocks. In particular, we can permute vertices in a block while its two incident blocks are
fixed. Therefore we can permute vertices in one middle block and fix all other five blocks.
This gives a non-Cartesian automorphism.

There are two main reasons why we have the above non-Cartesian automorphism.
First, there is more than one face block generated by the same faces lying in the same
component of the product. Secondly, factors are not rigid enough, so the action on one

face block can not affect incident blocks, and can not be transmitted to blocks generated
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by the same faces. We suspect that if either of these two reasons is absent, then each
component of the product might have only Cartesian automorphisms. In particular, if
the 1-skeleton of each factor is bipartite, then face blocks generated by the same faces are
in different components. Also note that if a complex is a surface, it is rigid enough that
the action on one face completely determines the whole automorphism. So far we do not
have a definite result yet, and hence we pose the following two conjectures. We hope to

resolve these problems in the near future.

Conjecture 8.11. For i € {1,2,...,m}, suppose that X; is an elementary ordinary
complex with faces of the same even length 2n > 6, and X; has bipartite 1-skeleton. Then
for any component X of the complex tensor product ®,X;, Aut(X) can be generated

by automorphisms of X;’s together with permutations of isomorphic factors.

Conjecture 8.12. For i € {1,2,...,m}, suppose that X; is an elementary ordinary
complex with faces of the same even length 2n > 6, and X; has surface structure. Then
for any component X of the complex tensor product ®,X;, Aut(X) can be generated

by automorphisms of X;’s together with permutations of isomorphic factors.
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Chapter 9

Almost Platonic Complexes

First we introduce some terminology from graph theory. An s-arc in a graph is a sequence
(vo, €1,01, €2, . .., €5,05) Of vertices v; and edges e; such that e; connects v;_; and v; for
each i € {1,...,s}, and e; # e;41 for each j € {1,...,s —1}. For example, a l-arc is
essentially an edge with an orientation. We can also think of a 1-arc as an edge-vertex
flag in a graph. A graph is s-transitive if its automorphism group acts transitively on
s-arcs, but not on (s+ 1)-arcs. When there is no confusion, especially for graphs without
parallel edges, we denote an s-arc simply by its vertices (vg, vy, ..., vs).

A graph is said to be half-transitive if its automorphism group acts transitively on
vertices and edges, but not on l-arcs. Using the language of flags, the automorphism
group of a half-transitive graph acts transitively on each type of partial flag, but not on
flags. The smallest half-transitive graph is known as the Holt graph [18]. In this chapter

we discuss the analogous property for complexes.

Definition 9.1. A polygonal cell complex is almost platonic if its automorphism group

acts transitively on each type of partial flag, but not on fev flags.

Proposition 9.2. Suppose X is a polygonal cell complex. X is almost platonic if and

only if the following three conditions hold:

(1) Aut(X) acts transitively on ev and f flags.
(2) For each face in X, there exists v € Aut(X) rotating the face by 1.
(3) If B € Aut(X) swaps the endpoints of an edge, then § fixes no incident faces.

Proof. Suppose X satisfies (1), (2), and (3). By rotation of faces and the transitivity
on faces, we get the transitivity on fe and fv flags. (3) prevents Aut(X) from acting

transitively on fev flags. Therefore X is almost platonic.
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Figure 9.1: three types of partial transitivity

Conversely, suppose X is almost platonic. (1) is immediate from the definition. Note
that every fe flag lies in two fev flags. By the transitivity on fe flags and the non-
transitivity on fev flags, Aut(X) has exactly two orbits of fev flags, and two fev flags
containing the same fe flag must be in different orbits. Similarly, two fev flags containing
the same fv flag must be in different orbits. The two orbits of fev flags are as illustrated

on the left of Figure[0.1] The configuration of fev orbits assures (2) and (3). O

Remark. With the f-transitivity in (1), we can modify (2) as “for some face in X”. More
importantly, (3) implies that the action of an edge stabilizer on incident faces has 2 blocks

of imprimitivity. In particular the edge valency of X must be even.

Proposition 9.3. Suppose X is a polygonal cell complex, and Aut(X) acts transitively
on fe or fv flags, but not on fev flags. Then X is exclusively of one of the following

three types as illustrated in Figure [9.1}

(1) Aut(X) can rotate a face by 1.
(2) Aut(X) can rotate a face by 2, and reflect a face at a corner.

(3) Aut(X) can rotate a face by 2, and reflect a face at an edge.

Moreover, if X is ev-transitive and has odd face length, then X is almost platonic.

Proof. If Aut(X) acts transitively on fe and fov flags, the same argument as in the proof
of Proposition shows that Aut(X) can rotate a face by 1. Suppose X is fe-transitive
but not fo-transitive. Aut(X) has exactly two orbits of fev flags, and two fev flags
containing the same fe flag must be in different orbits. Non-transitivity on fv flags rules

out the existence of rotation by 1, and therefore two fewv flags containing the same fov flag
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must be in the same orbit. The two orbits of fev flags are as illustrated in the middle of
Figure[9.1] which shows X is of the type (2). If X is fo-transitive but not fe-transitive,
the same reasoning shows that X is of type (3), as the right of Figure .

Note that faces must have even length in (2) and (3). If X is ev-transitive and has
odd face length, then X is certainly of type (1), and therefore Aut(X) is transitive on fe

and fv flags. Since X is not fev-transitive, we know X is almost platonic. n

Now we try to find examples of almost platonic complexes. Suppose the complex X
is almost platonic, and for every 2-arc in X, there is at most one face corner attached.
Let X' be the 1-skeleton of X. Since X is ev-transitive, Aut(X) acts transitively on
l-arcs of X', If Aut(X) acts transitively on 2-arcs of X', then Aut(X) can swap two
edges at a corner of a face in X, and therefore acts transitively on fev flags of X, which
is impossible. Note that X! as a graph might have more automorphisms than Aut(X),
and therefore X! is not necessarily a 1-transitive graph. But for the purpose of finding
examples, we can start from assuming that X' is 1-transitive. For the case of valency 3,

we have the following useful proposition.

Proposition 9.4. Suppose I' is a connected 1-transitive graph of valency 3. Then for

any two l-arcs in ', there is a unique automorphism of I' sending one arc to the other.

Proof. The existence is from the definition of 1-transitivity. To show the uniqueness,
it suffices to show that an automorphism 7 of I' fixing a l-arc (u,v) must be trivial.
Note that v must fix the other two neighbours of v, similarly for u. Otherwise, the
automorphism group will act transitively on 2-arcs, which is impossible. By induction

and the connectedness of I', we know that ~ fixes every vertex in I'. O]

The first known example of 1-transitive graph is given by Frucht [I3]. It is con-
structed as a Cayley graph as follows. Let a; be the permutation (1,2)(3,4)(5,6) and
b=(1,2,3)(4,5,7)(6,8,9). Let ay = ba;b~* and a3z = bayb~'. Note that a; = basb~' since
b has order 3. Let G be the group generated by {ai,as,as}. It is a group of order 432.
The key property for this generating set is that the group automorphism acts transitively
on ap, ag, as, but there is no automorphism fixing a; while swapping a, and as.

Let I'y be the Cayley graph of G with respect to the generating set {a;, as, as}. Any
two vertices v and v’ are adjacent if and only if v/ = v % a; for some i, and we label this
edge with a;. Note that each a; has order 2, so we can think of this Cayley graph as
an undirected graph of valency 3. With the Cayley graph structure, this graph comes
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Figure 9.2: neighbourhood of e in X;

with 2 types of automorphisms. One is by left multiplying each vertex with an element
of G, which preserves the labels of edges. Another type of automorphisms is by taking
conjugation by some power of b, which fixes the identity e and rotates aq, as, as. In
[13], Frucht shows that this graph is 1-transitive. By Proposition , for any two l-arcs
in the graph, there is a unique automorphism sending one arc to the other. By looking
at the image of the (e,a;) arc, each graph automorphism can be uniquely expressed
as a conjugation by some power of b followed by a left multiplication. Therefore the
automorphism group Aut(I';) can be expressed as a semidirect product G x C3, which
has order 432 - 3.

Now we try to attach faces to I'y. Starting from a vertex g € G, follow the edge with
label ay,a0, as, a1, as, as, ai,.... After 24 steps, we will go back to g for the first time,
and this gives a simple closed 24-arc. We attach a face along each simple closed 24-arc of
this type to construct a complex X;. Note that each element in Aut(I';) preserves such
24-arcs, so the automorphism group of X is exactly Aut(I';). It is easy to see that each
2-arc determines a unique face, each vertex lies in 3 faces, and each edge lies in two faces.
Therefore X, is actually a surface.

Consider the edge {e,a;} and the two incident faces f and f’ as shown in Figure .
All 6 dotted arcs have length 7. Program [3|in the appendix verifies that f and f’ meet
at 3 edges with labels aq, as, and a3 respectively. So this is a polygonal cell complex, not
a polygonal one. The order ay, as, as, ay, as, as, ... gives an orientation to each face of Xj.

Note that the orientations of f and f’ are compatible. For every edge with label a; in X7,
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there is a left-multiplication sending this edge to the edge in the figure with label a; while
preserving the orientations of two incident faces. This shows that X; is an orientable
surface. Standard counting argument shows that X; has 432 vertices, 648 edges, 54 faces,

and therefore genus 82. Moreover, this surface has the property we want.
Proposition 9.5. The polygonal cell complex X; is almost platonic.

Proof. From the definition of X7, its automorphism group Aut(I';)=G x C3 acts transi-
tively on ev flags. Since left multiplication preserves edge labels, it is easy to see that
Aut(T'y) acts transitively on faces. Next, we check if Aut(I'y) can rotate the face f by 1
in Figure 0.2l This can be done by conjugation by b followed by left multiplication by
ai. A vertex v in f is of the form ajasasajasas.... Conjugation by b sends this vertex to
(20301020301 ..., and then left multiplication by a; gives ajasasajasasay..., the next vertex
of v under clockwise rotation.

Since I'y is a connected 1-transitive graph of valency 3, by Proposition [0.4] there is
a unique v € Aut(I'y) swaps e and a;. We see that 7 is exactly the left multiplication
by a;, which swaps e and a; but sends f to f’. We have shown that X; meets all three
conditions in Proposition [0.2] and therefore X is almost platonic. O

Remark. Since X has the structure of a surface, we can get another almost platonic

complex made of triangles simply by taking the dual complex of Xj.
Corollary 9.6. Platonicity is strictly stronger than transitivity on all partial flags.
Proof. This follows immediately from the existence of an almost platonic complex. m

Corollary 9.7. The edge valency of an almost platonic complex is even. Conversely, for

any even number n, there exists an almost platonic complex with edge valency n.

Proof. The first half is in the remark after Proposition Note that by duplicating each
face of X7 with the same multiplicity, the new complex we get is still almost platonic. By

controlling the multiplicity of face duplication, we can achieve any even edge valency. [

What if we attach different faces to I';? Starting from a vertex in I'y, follow the
edges with label a;, a;j, a;, a;, a;,.... This gives a simple closed 12-arc whenever ¢ # j. By
attaching a face along each such 12-arc, we construct another complex X/. Note that any
graph automorphism of I'; preserves such 12-arcs, so the automorphism group of X7 is

again Aut(I';). It is easy to see that Aut(I'1) acts transitively on f and ev flags.
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Consider the face with vertex e and labels a; and ap. By Proposition [9.4] there is a
unique v € Aut(I'y) sending the 1-arc (e,a1) to (a1, aias). Conjugation by b followed by
left multiplication by a; does the job. This is not a rotation of the face, and therefore X7
has no automorphism of rotation by 1 along a face. However left multiplication by ajas
rotates this face by 2, and left multiplication by a; swaps e and a; while preserving the
face. Hence X7 is of type (3) of Proposition . X1 has 2 orbits for fev flags, 2 orbits for
fe flags, and is transitive on any other partial flags. Note that X] is also a surface, and
the dual complex of X has 2 orbits for fev flags, 2 orbits for ev flags, and is transitive
on any other partial flags. This dual complex has triangular faces, and is of type (1).

Now we try to find a smaller 1-transitive graph of valency 3. From the aspect of its
automorphism group G, G should be a transitive group on n vertices, where the stabilizer
of a vertex v has a suborbit {x, y, z} of length 3 corresponding to its neighbours. Moreover,
if g € G fixes v and z, then g is trivial. The orbit of the edge {v,z} under the action
of G gives all edges of the graph, and therefore we can reconstruct the graph from the
group G. The problem is, if we start from a group with the property above, the graph
constructed might end up having more automorphisms than . The alternating group
Ay is an example. The corresponding graph under this construction is the 1-skeleton of a
tetrahedron, of which the automorphism group is Sy. If the automorphism group of the
derived graph has size exactly |G|, then this graph is 1-transitive and of valency 3.

Program [ in the appendix checks all transitive groups on up to 30 letters, and it
turns out that there is only one group with the desired property. It is a transitive group
on 26 letters. While one letter is fixed, this group has 4 suborbits of length 3 satisfying
the requirement. Program [5| verifies that the graphs derived from these 4 suborbits are
isomorphic. This 1-transitive graph is known as the F26 graph [7]. Figure is a
particular drawing of the graph, with vertex set Zsg. Two vertices in Zog are adjacent if
and only if they either differ by 1, or one vertex v is odd and the other is v + 7.

It is not clear which closed arcs should be faces in Figure [9.3] We can rearrange the
layout to get Figure [9.4] verified in Program [5] as well, and now the choice of faces is
obvious. This graph tessellates a torus by 13 hexagons, and we choose these 13 hexagons
to be faces. These faces are exactly of the form (m —1,m,m+1,m—6,m—7,m — 8) for
odd m’s, which looks like a bow tie of height 2 in Figure We call this graph I's, and
the resulting complex X5. Note that X5 is a polygonal complex, not just a polygonal cell

complex like Xj.
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Figure 9.3: a drawing of the F26 graph
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Figure 9.4: another drawing of the F26 graph
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Proposition 9.8. The polygonal complex X5 is almost platonic.

Proof. We look at Aut(X>), a subgroup of Aut(I';). In Figure[9.4] we can rotate around
the central face while preserving faces. In Figure[9.3, we can rotate around the big circle
by 2 while preserving faces. The combination of these two actions shows that Aut(X5) is
transitive on v, e, f, fe, and fv flags. Can Aut(X,) flip an edge? Since I'y is connected,
1-transitive, and of valency 3, by Proposition there is a unique element v € Aut(I'y)
flipping the edge {1,2}, which can be realized as a reflection about the central vertical
line in Figure Note that 7 preserves faces, but swaps two faces containing {1,2}.
Hence Aut(X3) acts transitively on ev flags, but has two orbits for fev flags. m

The above two examples suggest a general method of constructing an almost platonic
complex from an arbitrary connected 1-transitive graph I" of valency 3. Suppose (vg, v1, v2)
is an 2-arc in . By Proposition 0.4 there exists a unique automorphism v sending
(vo,v1) to (vy,v2). The orbit of (vg, v;) under the action of v gives a simple closed n-arc
(vo, V1, V2, ..., Un, V). Note that any 2-arc (v;, v;11, vi42) determines the same closed arc,

n=1 also determines the same closed

and any 2-arc (v;y9, Vi1, 0;), under the action of
arc with the opposite orientation. For each such simple closed arc of T (two closed arcs
with opposite orientations are identified), we attach a face to I' along the closed arc, and

denote the resulting complex by Xrt. Note that Xt is actually a surface.

Theorem 9.9. Suppose I' is a connected 1-transitive graph of valency 3. Then the

polygonal cell complex X described above is almost platonic.

Proof. Suppose (vg, v1, . ..,0n, V) is a face of X, and ¢ is an automorphism of I'. By the
1-transitivity of I and the definition of Xr, there exists v € Aut(I') such that v(v;) = v;4;
for each 7. Look at the image of (vg,vy,...,v,,v0) under g. Note that gyg~' € Aut(T)
rotates (g(vo), g(v1), ..., 9(vn),g(vo)). Therefore, (g(vo), g(v1),-..,9(vn), g(v)) is again a

face in Xr. This shows that every automorphism of I' preserves faces of X, and therefore
we have Aut(Xr) = Aut(I).

Now we examine the unique automorphism § € Aut(Xr) swapping vy and vy. Suppose
the neighbours of vy and v; other than v;’s are uy and u; respectively, as shown in Figure
. Assume that § reflects the face (vo, vy, ..., vn,v9). Then § swaps v, and vy, as well
as ug and u;. Note that § * v € Aut(Xr) maps (ug, vo,v1) to (ug, vo,v,). This allows
Aut(XT) to act transitively on 2-arcs, a contradiction. Therefore § can not be a reflection

of the face. Instead, & swaps the two faces incident to the edge {vg,v1}. Combined
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Figure 9.5: when there is a face reflection

Figure 9.6: 1-skeleton of a cuboctahedron

with ev-transitivity, we know that X is f-transitive. X satisfies the three conditions of

Proposition (9.2, Therefore Xt is indeed almost platonic. ]

There are two obstacles when we apply this construction to 1-transitive graphs of
valency higher than 3. First, the resulting complex might not be f-transitive. This can
be circumvented by choosing only one orbit of faces. Secondly, the resulting complex
might end up being platonic. For valency 3 cases, the complex can not be platonic mainly
because of the lack of corner reflections, a result of 1-transitivity. For higher valency
cases, l-transitivity can not guarantee the construction free of corner reflections. The
graph in Figure exhibits these two obstacles simultaneously. It can be viewed as the
1-skeleton of a cuboctahedron, and the 1-transitivity follows easily from this visualization.
Applying the above construction builds a cuboctahedron with 4 inner hexagonal faces.
By only choosing triangular, square, or hexagonal faces, we can obtain an f-transitive
complex, but each has corner reflections and therefore is platonic. Note that this graph
has a unique automorphism between any two 1-arcs, so such uniqueness is not the key
for the construction to work. The real key is the inability of a vertex stabilizer to swap a
particular pair of neighbours. Figure is actually the worst scenario, where the vertex
stabilizer can swap any pair of neighbours.

Suppose I' is a 1-transitive graph, and there exists a 2-arc (u,v,w) in T such that

the stabilizer of v can not swap u and w. Because of 1-transitivity, there exists a (not
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Figure 9.7: general construction for higher valency

necessarily unique) v € Aut(I') sending (u,v) to (v, w). Under the action of I', this 2-arc

extends to a simple closed n-arc. We attach a face to this n-arc, as well as any image

v
(u’v?w) ’

of this n-arc under the action of Aut(I'). We denote the resulting complex by X
When such a v is unique, we can simply write X, . .). In that case, the edge valency of
X(uww) 18 2, and the neighbourhood of a vertex is homeomorphic to the wedge sum of
several open disks, a phenomenon which does occur for almost platonic complexes. For
example, duplicating edges and faces but not verticecs of X7 in Proposition gives an
almost platonic complex with such topological features, although its 1-skeleton has more

than one automorphism between two 1-arcs.

Theorem 9.10. Suppose I' is a 1-transitive graph, and there exists a 2-arc (u,v,w) in T’

such that the stabilizer of v can not swap u and w. Let v € Aut(I") be an automorphism

v

(y0,10) is almost platonic.

sending (u,v) to (v, w). Then the complex X

Proof. Since there is at most one face attached to a simple closed arc, the automorphism
group of the complex can be viewed as a subgroup of Aut(I'). Moreover, every element in
Aut(T") preserves faces of this complex. Therefore the automorphism group of the complex
is exactly Aut(I'). From the construction of the complex, we know it is transitive on ev
and f flags, and Aut(I") can rotate a face of the complex by 1. These conditions imply
that this complex is transitive on each type of partial flag. Note that Aut(I") can not flip

the face corner (u,v,w), and therefore this complex can not be platonic. O

Figure is an example of the general construction. It is actually a 1-transitive graph

such that for any two 1-arcs, there is a unique automorphism sending one arc to the other.
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NN

Figure 9.8: almost platonic complex T} with 2-transitive 1-skeleton

Note that the graph automorphism group can rotate around a vertex by 7, and there is
a unique automorphism sending (2,1) to (2,7). Hence the stabilizer of the vertex 2 is
exactly Cy, which can not swap neighbours except {1,3} and {7,10}. It is easy to see that
X127, X(7.23), X(3,2,10), X(10,2,1) all give the same tessellation of a torus by 13 squares,
and the complex is almost platonic by Theorem . What if we choose the 2-arc (1,2, 3)
to construct the complex? The simple closed arc we get is of length 13, and the complex
X(1,2,3) has two 13-gons as its faces. With the ability to flip the face corner (1,2,3), X123

is platonic. We make this statement explicit in the following proposition.

Proposition 9.11. Suppose X is a platonic complex with a face corner (u,v,w). Then
its 1-skeleton X! is transitive on 1-arcs, and the stabilizer of v in X! can swap v and w.
Conversely, suppose [ is a graph transitive on 1-arcs, and the stabilizer of a vertex v can
swap its two neighbours u and w. Let v € Aut(I') be an automorphism sending (u,v) to

v

(v,w). Then the complex X/, is platonic.

Proof. By forgetting the action of Aut(X) on faces, the quotient of Aut(X) induces a
subgroup of Aut(X'), and the first half follows easily. For the second half, the same
argument as in Theorem shows that the automorphism group of X E’u’v’w) is exactly
Aut(T"), and X(vu’ww) is transitive on each type of partial flag. Note that there exists

7 € Aut(l') fixing v and swapping v and w. Then 7 as a complex automorphism flips the

gt
(u7’U7w)

face corner (u,v,w), and this makes X platonic. ]

Figure and Figure suggest that the quotient of a plane tessellated by squares

or hexagons is a good source of almost platonic complexes. Here we examine two smaller
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Figure 9.9: almost platonic complex T, and the Heawood Graph

examples. Let T} be the complex with 5 vertices and 5 square faces as illustrated on
the left of Figure 0.8 7} is a polygonal cell complex, not a polygonal one. Note that
Aut(77) can rotate around a vertex by 7, and also rotate around a square by 7. If we
rotate round 1 by 7 and then rotate around the square (1,2,4,3) by 7, we obtain a
complex automorphism swapping (1,3). By combining these two types of rotations and
edge flipping automorphisms, we know that T} is transitive on each type of partial flag.
Suppose v € Aut(7}) flips the (1,2,4) face corner. Then v should fix every vertex on the
extension of the diagonal through 2 and 3. In turn ~ fixes every vertex, a contradiction.
Hence there is no corner reflection in Aut(7}), and T} is almost platonic. The 1-skeleton
of Ty is actually the complete graph of 5 vertices as shown on the right of Figure[9.8] Note
that K is 2-transitive. This shows that the 1-skeleton of an almost platonic complex is
not necessarily 1-transitive.

Let T3 be the complex with 14 vertices and 7 hexagonal faces as illustrated on the left
of Figure 0.9 As well as T} above, T3 is homeomorphic to a torus, and 75 is a polygonal
complex. Note that Aut(73) can rotate around a vertex by 2?”, and also rotate around a
hexagon by Z. By the same argument as 77, we can show that 75 is almost platonic. The
1-skeleton of Ty can be rearranged as the right of Figure [9.9] and the faces are exactly of
the form (m — 1,m,m+ 1,m — 4,m — 5,m — 6) for odd m’s, which looks like a bow tie
of height 2 on the right of the figure. This graph is known as the Heawood graph, which
is a 4-transitive graph [16]. Suppose « is a graph automorphism sending (5,6, 1,14, 13)
to (13,14,1,6,5), so « flips the closed 6-arc (4,5,6,1,14,13,4). Direction examination
shows that « is the permutation (5,13)(6,14)(7,9)(10,12). So « sends the closed 6-arc
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Figure 9.10: orientability of an almost platonic surface

(1,2,3,8,7,6,1), which is a face in Ts, to another closed 6-arc (1,2,3,8,9,14,1), which
is no longer a face in T5. Therefore « is simply a graph automorphism, not a complex
automorphism.

So far we have several examples of almost platonic complexes which have surface
structure. All these examples are orientable surfaces of genus at least one. The following

theorem explains such phenomenon.

Theorem 9.12. Suppose X is an almost platonic complex with surface structure. Then

X is orientable. If X is finite, then X is not simply-connected.

Proof. Since X has surface structure, every edge has two incident faces. By (2) and (3) of
Proposition [9.2] the configuration of two fev orbits are as shown in Figure [9.10f We can
define the orientation of a face at an edge as from black to white, and this well defines
the orientation of each face. Such orientations of faces are compatible at every edge, and
therefore X is orientable. Now suppose that X is finite. If X is simply-connected, then
X satisfies all conditions of Proposition [2.1. By the proposition, X must be platonic,

violating our assumption. Therefore X can not be simply-connected. O]

Remark. It seems that simple connectedness will result in extra symmetries, at least for
complexes with surface structure. Hence we doubt the existence of finite simply-connected
almost platonic complexes. As for infinite cases, we seem to have more flexibility, but
so far we have not found an example. A natural thought is to consider Cox,,[' for a
half-transitive graph I'. The resulting complex is not platonic due to the restriction of its
link. However it is not almost platonic either, since a generator of order 2 can reflect a

face at an edge. It is of the type illustrated on the right of Figure[9.1
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The theory of the symmetry of complex tensor products can help us to obtain more

almost platonic complexes, and the resulting complexes are mostly not surfaces.

Theorem 9.13. Suppose that X is an almost platonic simple prime complex, and Y
is a platonic simple complex. Moreover, suppose that the 1-skeletons of X and Y are
finite simple connected non-bipartite R-thin graphs with more than one vertex. Then the

complex tensor product X ® Y is an almost platonic complex.

Proof. Note that X! and Y! are symmetric graphs. By the argument in Corollary ,
we know that X ® Y is a simple complex with finite simple connected non-bipartite edge-
transitive R-thin 1l-skeleton with more than one vertex. By Theorems [7.11] and [7.12]
X ®Y has a prime factorization X ® Y1 ® Yo ®...®Y,, where Y =Y Yo ®...®Y,,

and Aut(X ® Y) is generated by automorphisms of prime factors and permutations of
isomorphic factors. By Corollary [7.13] each Y; is platonic, and hence not isomorphic to
the almost platonic X. This implies that Aut(X ® Y) = Aut(X) x Aut(Y).

To show that X ® Y is almost platonic, we verify the conditions in Proposition [9.2]
The ev-transitivity of X ® Y follows easily from Definition 5.7, For f-transitivity, let f
and f’ are two arbitrary faces of X ® Y. Suppose that f is generated by combining a
corner ¢; of a face f; in X with a corner ¢y of a face fy in Y, whereas f’ is generated by
combining a corner ¢ of a face f| in X with a corner ¢, of a face f5 in Y. Since X is
almost platonic, there exists p € Aut(X) mapping ¢; to ¢j. Note that f’ are generated
by combining ¢} with ¢, in a particular orientation. Since Y is platonic, Aut(Y’) can map
¢o to ¢, in either orientation, and there exists o € Aut(X) mapping ¢y to ¢, such that
(p,0) € Aut(X) x Aut(Y) maps f to f'. Hence X ® Y is f-transitive. Also there exists
91 € Aut(X) rotating f; by 1, and there exists do € Aut(Y) rotating fo by 1. Depending
on how the corners ¢; and ¢, are combined to generate f, either (d1,d;) or (01,0, ") can
rotate f by 1.

We have shown (1) and (2) of Proposition Suppose that (3) does not hold in
X ® Y. In other words, there exists ¢ € Aut(X ® Y) such that ¢ flips an edge e and
stabilizes a face f incident to e. Suppose that e is generated by e; of X and ey of Y,
and f is generated by f; of X and f5 of Y. Note that Aut(X ® V) = Aut(X) x Aut(Y),
and ¢ must be of the form (¢1, p2) € Aut(X) x Aut(Y). Then ¢; € Aut(X) flips e; and
stabilizes f; incident to ey, violating the almost platonicity of X. Hence X ® Y satisfies
(3), and is an almost platonic complex by Proposition 9.2 ]

Remark. In the proof of f-transitivity above, we do need the platonicity of Y to flip a face
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corner of Y. If X and Y are both almost platonic and Aut(X ® Y') = Aut(X) x Aut(Y),

then X ® Y has two different face orbits, and is not almost platonic.

Theorem [9.13| gives a possible method to construct almost platonic complexes which
are not surfaces. And now the question is, can we find an almost platonic complex X
satisfying all the conditions in Theorem [9.13]? The almost platonic simple complex T} in
Figure has 1-skeleton K5, which meets all the conditions on the 1-skeleton. Is T} is
a prime complex? Note that the link of 7T} is a cycle of length 4, which is obviously a
prime graph. By Theorem [5.14] having a prime link implies that 7} is a prime complex.
Therefore T} satisfies all the conditions in Theorem [9.13]

What about Xt in Theorem [9.9, where IT' is a 1-transitive graph of valency 37 Note
that the link of Xt is a cycle of length 3, which is clearly a prime graph, and hence Xt is
a simple prime complex. Conder and Dobcsanyi list all symmetric trivalent graphs up to
768 vertices in [7], but unfortunately there are only two 1-transitive non-bipartite graphs
in the list, the F448A graph of girth 7 and the F504B graph of girth 9. Note that being
R-thin results in a cycle of length 4, so these two graphs are not R-thin. Hence with these
two graphs, we can construct Xr satisfying all the conditions in Theorem [9.13]

Consider the complex tensor product of the above Xt with a single polygon. By
Theorem [9.13| the resulting complex is almost platonic, and by Theorem the link of
the product is the graph tensor product of a cycle of length 3 with K5, which is a cycle
of length 6. This means the complex tensor product is still a surface. To obtain almost
platonic complexes which are not surfaces, we simply have to pick platonic complexes
other than a single polygon to perform the complex tensor product.

Here our choice of 1-transitive I' is greatly restricted by the non-bipartite condition.
We want to point out that if Conjecture[8.11]is true, then there would be a similar theorem
to Theorem for complexes with bipartite 1-skeletons, and Xr from a 1-transitive

bipartite I' could also be used to generate almost platonic complexes.
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Chapter 10

Computational Aspects

In this chapter we deal with computational problems about polygonal complexes. The
first problem is about determining if two polygonal complexes are isomorphic. The second
problem is about determining if we can build a complex with prescribed links. For these
computation problems to make sense, all graphs and complexes discussed in this chapter
are assumed to be finite.

The graph isomorphism problem is one of the few examples which are in the class
of NP, but not known to be in P or NP-complete [I4]. In fact, the complexity of the
graph isomorphism problem is so special that computer scientists describe its polynomially
equivalent problems as GI-complete problems. Note that the class of polygonal complexes
contains the class of simple graphs, and therefore the polygonal complex isomorphism
problem is at least as hard as the graph isomorphism problem. Now the question is, is it
indeed theoretically harder?

The initial idea is to study a polygonal complex through the 1-skeleton of its barycen-
tric subdivision, which carries extra information about faces. Nevertheless, we encounter
some trouble immediately. For example, the barycentric subdivisions of a cube and an
octahedron are isomorphic, not to mention the 1-skeletons of them. In fact if two polyg-
onal complexes are surfaces dual to each other, then their barycentric subdivisions will
be isomorphic. While such a phenomenon is of theoretical interest on its own, we will
circumvent this obstacle by taking finer subdivisions.

For a polygonal complex X, we define the n-subdivision graph T',(X) of X as
follows. First, we subdivide each edge of X by adding n intermediate vertices, which we
call edge vertices. Secondly, add a vertex, which we call face vertex, to the middle of each

face of X, and then add edges to join every face vertex to every vertex on the boundary
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Figure 10.1: 2-subdivision graph of a complex

of the face. Finally, we take the 1-skeleton of the resulting complex to be I',(X). Vertices
in T',(X) originating from vertices in I'(X) are called genuine vertices. When n = 1,
[,,(X) is the same as the 1-skeleton of the barycentric subdivision of X. Figure is
an example of 2-subdivision graph. Note that when we increase n for I',(X), only face
vertices increase their valencies. Therefore if we choose large enough n, face vertices are
those vertices of highest valencies.

For computational problems to make sense, we need to specify how to store polygonal
complexes in a computer. A practical way to store a graph is to keep a list of vertices,
and treat edges as pairs of vertices. To store a polygonal complex, in addition to the

1-skeleton, we treat faces as sequences of vertices according to the attaching maps.

Theorem 10.1. The polygonal complex isomorphism problem is polynomially equivalent

to the graph isomorphism problem.

Proof. 1t suffices to show that we can polynomially reduce the polygonal complex isomor-
phism problem to the graph isomorphism problem. Suppose X and Y are two polygonal
complexes. The goal is to show that X and Y are isomorphic if and only if T',,(X) and
[,(Y) are isomorphic for some n. The only if part is obvious from the definition. Note
that in I',,(X), the valency of a genuine vertex is the number of edges and faces incident
to its original vertex in X, and the valency of an edge vertex is 2 plus the number of faces
incident to the corresponding edge in X. We use m(X) to denote the maximum of these
numbers, which depends only on X, independent of n.

Take n to be the smallest integer such that 3(n+1) > max{m(X), m(Y)}, and assume
that I',(X) and I',(Y") are isomorphic. First we try to recover X from I',(X). Note that

in I',(X), a vertex is a face vertex if and only if its valency is at least 3(n + 1), therefore
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we can distinguish face vertices easily. Now we remove all face vertices and incident edges
from T',,(X) to obtain a new graph '} (X). If there is a vertex v of valency not 2 in I'} (X)),
then obviously v is a genuine vertex. Note that every vertex of distance n+ 1 to v is also
a genuine vertex, and we can recursively determine all genuine vertices. The information
about face vertices, edge vertices, and genuine vertices allows us to recover X completely,
and Y can be recovered in the same manner as well. It is easy to see that an isomorphism
from I',(X) to I',(Y) determines an isomorphism from X to Y.

What if every vertex in I'}(X) has valency 27 This implies that T'}(X) is actually a
cycle. In this case we can not distinguish genuine vertices from edge vertices. Nevertheless,
we can conclude that X is either a cycle or a polygon depending on if there is a face
vertex in I',(X). Since I',(X) and I',(Y) are isomorphic, we know that X are Y are
either isomorphic cycles or isomorphic polygons.

The above discussion shows that X and Y are isomorphic if and only if I',(X) and
[, (Y) are isomorphic for the smallest integer n such that 3(n+ 1) > max{m(X),m(Y)}.
Note that in I',(X) and T',,(Y) the number of new vertices and edges is bounded by a
polynomial function of the size of X and Y respectively. Hence the polygonal complex

isomorphism problem is polynomially equivalent to the graph isomorphism problem. [
P p poly y eq grap p p

Now we move to the problem of complexes with prescribed links. The one dimensional
version of this problem has a long history, and can be stated as follows. For a sequence
of non-negative integers (di, ds, ..., d,), can we construct a graph of which valencies are
exactly these numbers? If we allow parallel edges in the construction, it is easy to see
that the construction is possible if and only if the sum of these integers are even. When
we allow only simple graphs, this problem becomes much more technical, and the result is
known as Erd6s-Gallai Theorem [12]: For non-increasing (dy, da, . . ., d,,), we can construct
a simple graph with these valencies if and only if the sum of the sequence is even, and

k n
D di <k(k—1)+ Y min(d;, k) for all 1 <k <n.
=1

i=k+1

The complex version of this problem can be stated as follows. For a finite sequence
of graphs, can we construct a complex of which links are exactly these graphs? First we
try to find some necessary condition. Let L be the disjoint union of links of a complex
X. Note that an edge in X corresponds to two vertices with the same valency in L.
Therefore, for any integer k, the number of vertices in L with valency k must be even. It

turns out this condition is sufficient for the construction.

102



X
10— 0 €9
€1 €2 =
L, L,
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Figure 10.2: jump and walk

Proposition 10.2. Suppose that (Lj, Lo, ..., L,) is a sequence of graphs, and L is the
disjoint union of these graphs. Then there exists a complex with Ly, Lo, ..., L, as its links

if and only if for any integer k, the number of vertices in L with valency k is even.

Proof. The only if part is straightforward. For the if part, suppose that for any integer k,
the number of vertices in L with valency k is even. Therefore in L, vertices with the same
valency can be paired together without having any vertex left. We then assign a label to
each pair, and label two vertices of the pair with such label. Suppose that {e1, e, ..., e}
is the set of used labels. Note that each e; appears exactly twice in L.

Now we build a complex X by tracing these labels. Let {vy, vg,...,v,} be the vertex
set of X, corresponding to {Li, Ls,...,L,}. For each 1 < i < m, find L, and L, with
label e;, and connect v, and v, by an edge €' in X, as illustrated in Figure . Note
that if e; appears on some L, twice, then we draw a loop e’ around v,. This completes
the 1-skeleton of X, and now we start to attach 2-cells. First pick an arbitrary edge in L,
and suppose that this edge lies in L,. We have the following two cases.

Case 1. The two vertices incident to this edge have the same label, say e¢;. We attach
a 2-cell along the loop e’ around v,, and then mark this edge as used. Note that after
this step, vertices in L with the same label still have the same unused valency.

Case 2. The two incident vertices have different labels, say e; and e;. We mark
this edge as used, and start from the e; vertex by taking two operations alternatingly.
Operation one is to “jump” to another vertex with the same label, and record the label.
Operation two is to “walk” to a neighbour through an unused edge, and then mark this
edge as used. We stop the process when we fail the operation two. Note that when we

jump between non-e; vertices, which have the same valency, the new vertex always has 1
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more unused valency than the old vertex. When we jump from the initial e; vertex, in
this case the new e; vertex has 2 more unused valency. Only when we jump to the initial
e1 vertex, we might run out of unused valency. Therefore when the process stops, we
always record a sequence (e, ..., €;, ..., e) ending at e;, which represents jumping back
to L,. We then attach a face starting at v, along edges (e?,...,¢%,...,e'), and this will
bring us back to v,, as illustrated in Figure [10.2] Note that vertices in L with the same
label still have the same used valency.

In either case, vertices in L with the same label still have the same unused valency. If
there is still an unused edge in L, we can apply the above method again to attach another
face. After attaching finitely many faces, there will be no unused edge in L, and we finish
the construction of X. Note the bijection between the corners of faces and the used edges

in L. This shows that X has L4,..., L, as links. O

For this complex problem, we have a similar phenomenon as its graph counterpart.
By imposing some obvious necessary condition, we can actually build a complex with
prescribed links, although the proof is not as naive. Also like the graph version, imposing
only obvious condition will allow examples with non-injective attaching maps. To con-
struct a polygonal complex with prescribed links seems way too complicated to control.
While the above construction does not guarantee a polygonal complex, it helps a lot to
determine the 1-skeleton of the complex. We can determine the 1-skeleton simply by
pairing vertices with the same valency, and the complex follows naturally. If we only ask
to build a complex with a simple 1-skeleton, then we can actually forget about the graph
structure of links, and only focus on valencies of each link.

Let (Ly, Lo, ..., L,) be a sequence of graphs, dg be the number of vertices of valency
j in L;, and m be the maximum valency among all L;’s. According to the proof of
Proposition [10.2] to build a complex X of n vertices with link L; at vertex v; is equivalent
to build a sequence of graphs (I'1,Ty,...,T,) with vertex set {vy,vs,...,v,} such that
the valency of v; in I'; is d{ . If we require X to have a simple 1-skeleton, it is equivalent to
require each I'; is a simple graph, and I'1,I'y,...T",, have at most one edge between any
two vertices. This is related to the simultaneous realization problem of graphs: given
two non-negative integral sequences (di,ds,...,d,) and (d},d,,...,d]), does there exist
two simple graphs I and IV with vertex set {vy,vs, ..., v,} such that the valencies of v; in
[ and I are d; and d} respectively, and I' and [ have at most one edge between any two

vertices? Kundu [21] gives a necessary condition for the existence of such I' and I”, and
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Chen [0] gives a short proof of Kundu’s theorem which leads to a linear time constructive
algorithm under Kundu’s condition. But in general the simultaneous realization problem

is difficult, as Diirr, Guinez, and Matamala give the following result in [I1].
Theorem 10.3. The simultaneous realization problem is NP-hard.

Corollary 10.4. Given a sequence (L1, Lo, ..., L,) of graphs, to determine if there exists
a complex with Ly, Lo, ..., L, links and having a simple 1-skeleton is NP-hard.

Proof. Suppose that we are given two non-negative integral sequences (di,ds,...,d,)
and (d},d,,...,d)). For each i € {1,2,...,n}, we try to construct a graph I'; with
d; + d} vertices such that d; vertices are of valency 2, and d; vertices are of valency
4. Since the valency sum is even, such construction is always possible. Now consider the
sequence (I'1, 'y, ..., T',) of graphs. From the discussion above, we know that to construct
a complex with I';, 'y, ..., I, links and having a simple 1-skeleton is equivalent to the
simultaneous realization problem for the two sequences (dy,ds, . .., d,) and (dy, d,, . .., d.).
Note that these two sequences can be given arbitrarily, and hence to construct such a
complex has the same complexity as the simultaneous realization problem, which is NP-
hard by Theorem Now if we are given an arbitrary sequence (Li, Lo, ..., L,) of
graphs, the construction is at least as hard as the simultaneous realization problem, and

therefore is NP-hard as well. O

Remark. In fact we can construct connected I'; easily, and hence this problem remains

NP-hard when restricted to sequences of connected graphs.
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Appendix

GAP Programs

Program 1.

We define a function Link(n) which outputs graphs of n vertices satisfying conditions

(1) and (2) in Chapter 2. The value of n is restricted between 2 and 30.

LoadPackage ("Grape") ;
Link:= function(n)
local list, i, G, Gn, a, b, 1i, N, m, edge, x, gamma;
list:=[];
for i in [1..NrTransitiveGroups(n)] do
G:=TransitiveGroup(n,i);
Gn:=Stabilizer(G,n);
a:=Size(G);
b:=a/n; #size of Gn
1i:=0rbits(Gn, [1..n-1]1);
for N in 1i do
m:=Length(N) ;
if m>2 and n-1>m and b=Factorial(m) then
edge:=[];
for x in N do
Add (edge, [x,n]);
Add (edge, [n,x]);
od;
gamma : =EdgeOrbitsGraph (G, edge) ;
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if Size(AutGroupGraph(gamma))=a then
Add(list, [i,N,not (IsomorphismGroups (Gn,SymmetricGroup(m))=~fail),
StructureDescription(G) ,gamma] ) ;
fi;
fi;
od;
od;
return list;

end;

Program 2.

This program verifies the (14, 16)-graph in Table is isomorphic to the graph in Figure
3.3l This program also verifies that the (28, 80)-graph is a double cover of the (14, 16)-
graph. The function Link(n) defined in Program [1|is used.

LoadPackage ("Grape") ;
Link(14);
gammal:=last[1] [5]; #the (14,16)-graph

g2:=Group((1,3,5,7,9,11,13)(2,4,6,8,10,12,14));
edge2:=[[14,3],[14,5],[14,7],[14,11],(3,14],[5,14],[7,14],[11,14]];

gamma?2: =EdgeOrbitsGraph (g2, edge?2) ; #Figure
IsIsomorphicGraph(gammal, gamma?2) ; #true
GraphIsomorphism(gammal,gamma?2) ; #(2,4,8)(3,11,7)(5,9)(6,10,14)

Ceiling:=function(n)

if n=Int(n) then return Int(n);

else return Int(n+1); fi; end; #define [n|
Link(28);
gamma3:=last[1] [5]; #the (28,80)-graph
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edge3:=DirectedEdges (gamma3) ;
edge4:=[];
edgeb:=[];

for i in edged do
a:=[Ceiling(i[1]1/2),Ceiling(i[2]1/2)];
if not (a in edge4) then
Add(edged,a);
else

Add (edge5,a);

fi;
od;
Size(Set (edgeb))=Size(edgeb) ; #true, no duplicate in edgeb
Set (edged)=Set (edge5b) ; #true, a double cover
g4 :=Group((1,2)(3,4)(5,6)(7,8)(9,10) (11,12) (13,14));
gamma4 : =EdgeOrbitsGraph (g4, edge4) ; #quotient of gamma3
IsIsomorphicGraph(gammal,gamma4) ; #true
Link(20) ;
dodecahedron:=last[1] [5]; #dodecahedron graph

edgedodeca:=DirectedEdges (dodecahedron) ;
edgedouble:=[];

for i in edgedodeca do #part of edges in double cover
Add (edgedouble, [1[1],i[2]+20]);
od;

gh:=Group((1,21)(2,22) (3,23) (4,24) (5,25) (6,26) (7,27) (8,28) (9,29) (10,30) (11,31)
(12,32)(13,33) (14,34) (15,35) (16,36) (17,37) (18,38) (19,39) (20,40) ) ;

double:=EdgeOrbitsGraph(gh,edgedouble) ; #double cover

AutGroupGraph (double) ;

Size(last); #480
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Program 3.

This program investigates how two faces intersect each other in Figure [9.2]
Note that in GAP the multiplication of permutations is from left to right.

a_1:=(5,6)(3,4)(1,2);
b:=(6,8,9)(4,5,7)(1,2,3);
a_2:=(a_1)"b;
a_3:=(a_2)"b;

list1:=[(O];
for i in [1..23] do

if i mod 3 = 1 then Add(listl,(a_1)*list1[i]); fi;
if i mod 3 = 2 then Add(1listl,(a_2)*1ist1[i]); fi;
if 1 mod 3 = 0 then Add(1list1, (a_3)*1ist1[i]); fi;

od;

list2:=[(a_1)];
for i in [1..23] do

if i mod 3 = 1 then Add(1list2,(a_1)*1ist2[i]); fi;
if i mod 3 = 2 then Add(1list2,(a_2)*1ist2[i]); fi;
if i mod 3 = 0 then Add(list2,(a_3)*1ist2[i]); fi;

od;

#list1=[ O, (1,2)(3,4)(5,6), (1,6,5,2,4,3)(7,8), (2,8,7,4,9,3,6,5),
(1,8,7,4,6,2)(3,9), (1,5,8,4,6,2,9,3), (2,7,9,6)(3,5,8,4),
1,7,9,6,8,4,5,2), (1,2,3)(4,5,7)(6,8,9), (2,4,6,8,9,5,7,3),
(1,4,2)(3,6,7)(5,8,9), (1,8,3)(2,6,7,9,5,4), (2,9)(3,8)(4,5)(6,7),
(1,9,2)(3,5,7,6,4,8), (1,7,3)(2,5,9)(4,8,6), (2,3,7,5,9,8,6,4),
(1,3,2)(4,7,5)(6,9,8), (1,4,7,6,9,8,5,3), (2,6,9,7)(3,4,8,5),
1,6,3,8,5,9,7,2), (1,9,7,5,6,3)(2,8), (2,5,6,3,9,4,7,8),
(1,5,3,7,8,2)(4,9), (1,3)(2,7)(4,9) 1]

#1ist2=[ (1,2)(3,4)(5,6), O, (1,5)(2,3)(7,8), (1,2,8,7,3,5)(4,9),
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(1,8,7,3,9,4,5,6), (1,6)(2,9,4,5,8,3), (1,2,7,9,5,8,3,6),
(1,7,9,5)(3,4,6,8), (2,4,6,8,9,5,7,3), (1,2,3)(4,5,7)(6,8,9),
1,3,5,8,9,6,7,4), (1,8,4)(2,5,3)(6,7,9), (1,2,9)(3,8,4,6,7,5),
(1,9)(3,6)(4,8)(5,7), (1,7,4,8,5,9)(2,6,3), (1,2,4)(3,7,6)(5,9,8),
(1,4,7,6,9,8,5,3), (1,3,2)(4,7,5)(6,9,8), (1,2,5,4,8,6,9,7),
(1,5,9,7)(8,8,6,4), (1,9,7,6,4,3,2,8), (1,2,6,4,7,8)(3,9),
(1,6,5,4,9,3,7,8), (1,4,9,3,2,7)(5,6) ]
#Intersection(list1,list2)=[ O, (1,2)(3,4)(5,6), (1,2,3)(4,5,7)(6,8,9),
(2,4,6,8,9,5,7,3), (1,3,2)(4,7,5)(6,9,8), (1,4,7,6,9,8,5,3) ]

Program 4.
This program lists all 1-transitive graphs of valency 3 up to 30 vertices.

LoadPackage ("Grape") ;
list:=[1;
for n in [2..30] do
for i in [1..NrTransitiveGroups(n)] do
a:=TransitiveGroup(n,i);
b:=Stabilizer(a,n);
1i:=0rbits(b, [1..n-11);
for j in 1i do
if Length(j)=3 and Size(Stabilizer(b,j[1]))=1 then
edge:=[[n,j[1]1],[j[1],n]];
c:=EdgeOrbitsGraph(a,edge) ;
if Size(AutGroupGraph(c))=Size(a) then
Add(list, [n,1,j1);
fi;
fi;
od;
od;
od;
#list=[ [ 26, 6, [ 1, 17, 6 11, [ 26, 6, [ 4, 9, 1111,
[ 26,6, [8, 20, 23] 1, [ 26,6, [ 13, 21, 156 ] 1] 1]
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Program 5.

This program verifies 4 cases in Program {| give isomorphic graphs,

and Figure [9.3 and Figure [9.4] are two isomorphic drawing of them.

LoadPackage ("Grape") ;

a:=TransitiveGroup(26,6) ;

b0:=EdgeOrbitsGraph(a, [[1,26],[26,1]1]); #w.r.t [1,17,6]
bl:=EdgeOrbitsGraph(a, [[4,26],[26,4]1]); #w.r.t [4,9,11]
b2:=EdgeOrbitsGraph(a, [[8,26], [26,8]]); #w.r.t [8,20,23]
b3:=EdgeOrbitsGraph(a, [[13,26],[26,13]1]); #w.r.t [13,21,15]
IsIsomorphicGraph(b0,bl); #true
IsIsomorphicGraph(b0,b2) ; #true
IsIsomorphicGraph(b0,b3); #true

G1:=Group((1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,
16,17,18,19,20,21,22,23,24,25,26) "2) ;
edgel:=[[1,2],[2,1],[2,3],[3,2],[1,8],[2,21]1];
figl:=EdgeOrbitsGraph(Gl,edgel);
IsIsomorphicGraph(b0,figl); #true

G2:=Group((1,8,7,6,25,26)(2,9,14,5,24,19) (3,16,13,4,17,20)
(21,10,15,12,23,18) (22,11));
edge2:=[[1,26],[26,1],[1,2],[2,1],[2,3],[3,2],[2,21],[21,2],
[21,20], [20,21],[21,22], [22,21],[3,4], [4,3]];
fig2:=EdgeOrbitsGraph(G2,edge2);
Set (DirectedEdges(figl))=Set (DirectedEdges(fig2));  #true
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