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UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 

FACULTY OF SOCIAL AND HUMAN SCIENCES 

Geography and Environment 

Thesis for the degree of Doctor of Philosophy 

SPATIOTEMPORAL POPULATION MODELLING TO ASSESS EXPOSURE TO 

FLOOD RISK 

Alan Daniel Smith 

There is a growing need for high resolution spatiotemporal population 

estimates which allow accurate assessment of population exposure to 

natural hazards. Populations vary over range of time scales and cyclical 

patterns. This has important implications for how researchers and policy 

makers undertake hazard risk assessments. Traditionally, static population 

counts aggregated to arbitrary areal units have been used. This thesis shows 

that these are inadequate for the purposes of hazard risk assessments 

concerning dynamic populations. This thesis enhances and applies 

spatiotemporal modelling techniques developed through the Population 

24/7 project and integrates the outputs with hydrological models using a 

loose-coupling approach. This is demonstrated through two case studies to 

illustrate the impacts for flood risk assessment. These case studies 

exemplify population fluctuations according to diurnal, weekly and seasonal 

cycles. The considerably enhanced spatiotemporal population model 

constructed demonstrates a much wider flexible framework. This thesis 

establishes that there is a strong requirement to consider time-specific 

populations for the purposes of flood hazard risk analyses. Population 

movements have been shown to account for major variations in exposure 

estimates through the analysis of a range of flood scenarios and population 

case studies. Significant enhancements can be sought for risk analyses by 

using spatiotemporal population estimates.     
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1.1 Population exposure to natural hazards 

Natural hazards continue to impose one of the ultimate constraints on 

human activities (Mitchell 1999b). Humans remain subject to the physical 

processes of the planet we inhabit. Understanding the human occupancy of 

hazardous zones, how societies respond to environmental hazards and how 

to mitigate the risks posed have long been questions for researchers of 

hazards (Cutter 1996). Natural hazards can occur at any time and over a 

range of timescales with differing opportunities for predictions or warning. 

These can be at the timescales of drought or global warming through to 

earthquakes, volcanoes or flash flooding. Humans can become susceptible 

to hazards for a variety of reasons such as societal attitudes (Slovic et al. 

1977), economic constraints (Dobran 2003), public policy (Torrieri et al. 

2002), collective memory (Slovic 2000) and population growth (Mitchell 

1999b). 

In the past unforeseen catastrophic natural disasters have destroyed whole 

towns (e.g. Pompeii in AD 79, Giacomelli et al. 2003) or caused the collapse 

of entire civilisations (e.g. Minoan civilisation, c. 1,500 BC, Antonopoulos 

1992). In our modern and increasingly globalised world natural hazards still 

pose great threats with increasingly global impacts. For example, the 

temporary impacts of the 2011 Japanese tsunami and resultant nuclear alert 

on global financial markets (IHS 2011), and the 2010 Icelandic eruption of 

Eyjafjallajökull that caused an unprecedented shutdown in international air 

travel (Budd et al. 2011). The modern impacts of hazards may differ 

somewhat from those experienced by our early European Minoan 

predecessors, but they still provide a reminder that we do not live in a world 

entirely of our own making and control.  

Prominent events since 2011 have refocused attention on natural hazards 

and human vulnerability both in terms of fatalities and economic impacts. By 

a considerable margin, 2011 was the mostly costly year to date with natural 

hazard losses totalling £240 billion and 27,000 fatalities (Munich Re 2012). 

Flooding continued to dominate global headlines in 2013 with Super 

Typhoon Haiyan in the Philippines and severe flooding in central Europe. 

Flooding in Germany, Austria and the Czech Republic saw some areas 
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experience more than 400 mm of rainfall over only several days (Munich Re 

2014).  

This thesis aims to assess population exposure to flooding, as one exemplar 

hazard, through detailed local scale analysis of population movements and 

flood risks in the United Kingdom (UK). Flooding too can occur at a range of 

scales from rapid onset flash floods to longer-term coastal flood plain 

inundation. In the UK in February 2014 an exceptional succession of winter 

storms caused serious coastal damage and widespread persistent flooding 

(Met Office 2014). It is estimated that 5.2 million properties are at risk from 

flooding in the UK (DEFRA 2011). Humans are found in flood risk zones for a 

variety of complex reasons: normally resident as ‘inhabitants’, temporary 

occupants at places of work, study or leisure, or simply in transit through 

the region.  

In order to better understand the risks posed to humans by hazard events, 

such as flooding, an improved knowledge of the spatial and temporal 

distribution of population is required (Bhaduri et al. 2007; Fielding 2007; 

Harper and Mayhew 2012; Aubrecht et al. 2012a). Calculating the 

population exposed is not straightforward as both the hazard and 

population vary over time (McPherson and Brown 2004). Inadequacies in 

mapping population have been noted for many decades (e.g. Schmitt 1956). 

Commonly used official population datasets such as censuses or population 

registers usually provide only residential ‘night-time’ population counts. 

Better representations of population distributions that are time-specific are 

required for improved risk assessment and the development of effective 

emergency plans.  

This thesis implements and further develops a spatiotemporal population 

modelling approach, known as “Population 24/7” (Martin et al. 

(forthcoming); http://www.esrc.ac.uk/my-esrc/grants/RES-062-23-

1811/read) using SurfaceBuilder247 (v. 1.0) software. Most importantly, it 

integrates the results with environmental models for the first time. The 

Population 24/7 approach uses a flexible data framework to model the 

distribution of population in time and space producing a variable gridded 

output. A detailed model data library containing residential census 

populations, workplaces, hospitals, educational establishments, leisure 

http://www.esrc.ac.uk/my-esrc/grants/RES-062-23-1811/read
http://www.esrc.ac.uk/my-esrc/grants/RES-062-23-1811/read
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locations and retail centres represented as population centroids 

(georeferenced locations with an associated population count) is created, 

each with relevant time profile information.  Population is then redistributed 

around these centroids producing bespoke population distributions for each 

target time.  

This thesis demonstrates significant enhancements to the Population 24/7 

data library and improvements to the spatial and temporal resolution in 

population outputs. It integrates spatiotemporal population data with 

environmental models using a loose-coupling approach (Martin 2009). These 

previously standalone models are enhanced and their outputs integrated 

into a compatible format for analysis using GIS.  

Three separate population data libraries have been constructed for 

implementation within the Population 24/7 framework based on three 

different UK case studies. These case studies are intended to demonstrate 

how enhanced spatiotemporal population estimates can be used to improve 

flood risk assessments. The applications include a worked example centred 

on Southampton to illustrate the methodological framework (Chapter 3) and 

two substantive case studies. The first of these is centred on Ulley, South 

Yorkshire (Chapter 4) and evaluates the risk posed to the potentially 

exposed population following a simulated collapse of the Ulley reservoir 

embankment, based on a near-catastrophic dam failure that occurred in June 

2007. This case study examines the implications of diurnal population 

cycles for flood risk assessment. The second case study is focused on St 

Austell, Cornwall (Chapter 5), part of an English coastal county and a 

popular tourist destination. This case study assesses the impact of daily and 

seasonal population fluctuations on exposure to a range of fluvial flood 

risks.                 

Both of the case studies, Ulley (target year 2007) and St Austell (target year 

2010), have reference dates that fall between the 2001 and 2011 censuses 

in the UK. These dates are either based on the actual event reconstructed 

(e.g. Ulley dam failure in June 2007) or defined by the availability of required 

datasets. Both applications employ the 2001 census geography, but with the 

population data updated or adjusted for the respective target dates. The 

latest 2011 census data not only post-dates the target dates for these case 
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studies but also had not been fully published at the time this research was 

undertaken.  

1.2 Aims and objectives 

The aims of this research are to generate innovative spatiotemporal 

population estimates by implementing and further enhancing the existing 

Population 24/7 modelling framework. It is intended that this will 

demonstrate for the first time the applicability of such models within flood 

risk assessment. Three overall aims are identified: 

Aim 1 Review the existing literature regarding the assessment of 

population risk to natural hazards and methods for determining 

exposure. 

Aim 2 Examine how population exposure fluctuates spatiotemporally to 

flood hazard events using census, administrative and survey 

datasets to construct a spatiotemporal population model applied to 

illustrative cases studies. 

Aim 3 Assess the extent to which spatiotemporal population modelling 

techniques can be used to provide greater insights for integrated 

disaster risk management. Discuss to what extent confidence can 

be placed in their results and outline the challenges for validation.      

1.2.1 Specific objectives 

The following objectives have been formulated to achieve the aims outlined: 

I. Review the relevant literature on the risk posed by natural hazard 

events and over what timescales they occur. Determine to what 

extent population and hazard data have previously been integrated 

for successful disaster risk management (Aim 1). 

II. Construct a population data library for implementation with 

SurfaceBuilder247 to examine spatiotemporal cycles within 

population movements for enhanced spatiotemporal population 

estimates, in terms of spatial and temporal resolution, with currently 

available datasets (Aim 2).  
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III. Examine how population fluctuates in daily and seasonal cycles and 

demonstrate how this can be incorporated though implementation of 

the Population 24/7 modelling framework (Aim 2).  

IV. Demonstrate and attempt to quantify the difference in spatiotemporal 

and static population estimates though two case studies to assess 

hazard exposure integrated with environmental model outputs (Aim 

2). 

V. Critically evaluate the applicability of this approach for application 

within natural hazard risk management (Aim 3).  

1.3  Thesis structure 

This chapter introduces the thesis theme, aims and objectives and structure. 

It outlines the main techniques that will be used. 

Chapter two presents a selected review of the relevant literature within the 

field of disaster risk management, interpolation of population data and the 

considerations for spatiotemporality in both natural hazard and dynamic 

population applications. It contextualises the theme of this thesis within the 

inter-related fields of hazard risk management, spatial analysis of 

population data and interpolation techniques. The aim of the chapter is to 

underpin the arguments for the original contribution of the doctoral 

research undertaken. It identifies a gap in current knowledge which this 

thesis fills. The chapter is divided into five main sections. Firstly an overview 

is provided of human exposure, risk and vulnerability to natural hazard 

events. Secondly, a more detailed review of specific flood risks within the UK 

and current international policy agendas is presented. Thirdly, methods and 

techniques are reviewed for the spatial interpolation of aggregate 

population data.  Fourthly, examples of, and methods for, the interpolation 

of population data with time are considered. Finally, the Population 24/7 

tool, that will be implemented, and concept is introduced.          

Chapter three describes the methods and data utilised in this thesis. A 

version of the chapter has been published as Smith et al. (2014a) and is 

included in this thesis as Appendix A. Firstly, the structure and concepts of 

the spatiotemporal population tool, Population 24/7, are described. This 

introduces the components and parameters required to construct a 
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population data library for the model.  A worked example is then presented 

to demonstrate the creation and implementation of a population data library 

based on Southampton, UK. Example outputs are provided and the 

implications for population exposure in time and space to coastal and fluvial 

flooding within the city are explored.   

Chapter four presents the first of two case studies detailing application of 

the Population 24/7 tool and integration with hydraulic flood modelling. A 

condensed version of this chapter has been published as Smith et al. 

(2014b). The additional hydrological modelling described in this chapter was 

undertaken by the author facilitated through a knowledge transfer 

internship at HR Wallingford Ltd. The case study concerns the failure of a 

dam at Ulley, South Yorkshire, UK that actually occurred during 2007 and 

the risk to people that it posed.   

Chapter five presents the second case study centred on St Austell, Cornwall, 

UK. The purpose of this case study is to examine how tourism-driven 

seasonal fluctuations in population affect flood risk assessment. This 

application employs seasonal tourism estimates provided by Newing (2014) 

to enhance a population data library used to produce spatiotemporal 

population estimates that represent daily, weekly and seasonal cycles. These 

outputs were combined with the UK’s national flood risk map and fluvial 

flood risk scenarios. Bespoke fluvial flood risks were provided by Quinn 

(2014) created using LISFLOOD-FP, a flood inundation model. The outputs 

were integrated and analysed, with the effects of population fluctuations on 

exposure to flood risks examined.    

Chapter six discusses the findings of the thesis, and the methodological 

approach more generally. The discussion considers the integration of 

spatiotemporal population estimates with environmental models, the 

enhancements achieved within the Population 24/7 framework, the 

challenges for model validation and finally the contribution to the field of 

hazard risk management.  

Chapter seven summarises the main findings of the thesis, referring back to 

the original aims and objectives set out in Section 1.2. It summarises the 

limitations, but also outlines the significant enhancements achieved to 
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advance our understanding of population exposure to risk. In the final 

section proposals for further research and extensions are identified.  

Finally, a glossary is provided which defines key technical terms used in this 

thesis. 
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2.1 Overview 

This literature review is organized into seven sections. Following this 

overview the first concerns natural hazards, their processes and impacts on 

people. This is followed by the flood risk context in the UK. The third 

section concerns population data and spatial interpolation. Section 2.5 

reviews examples of population interpolation techniques that consider time, 

while Section 2.6 examines spatiotemporal examples. Finally, all of these 

components are integrated regarding their application to assess exposure 

and vulnerability to natural hazards.  

2.2 Natural hazards 

In this section, the concepts of hazard, vulnerability, susceptibility, 

resilience and risk will be explored with particular reference to the way in 

which hazards impact on human populations. UK flooding case study-

specific context will then be provided, followed by an analysis of the 

representation of population data. Cutter (1996) proposed three 

fundamental questions that have been the focus of hazard researchers 

considering these issues. These concern: (i) understanding the human 

occupancy of hazard zones, (ii) how to mitigate the risk and (iii) impact from 

hazards and societal response. Questions (i) and (ii) raise important 

considerations that will be examined further in this review, and represent 

the primary aim of this thesis. Aubrecht et al. (2012b) also address the 

occupation of hazardous zones and risk mitigation. They state that the 

quality of available data regarding disaster risk management, particularly 

exposure and impact assessments, in terms of spatial and thematic 

accuracy, is one of the most important factors. There are numerous 

instances where spatiotemporal population estimates could be applied to a 

natural hazard scenario to estimate human occupancy. Bhaduri (2008) 

suggests these fall into two broad groups: estimating risk from disasters 

and for the purpose of public health and socioeconomic analysis. The first, 

focused on population and wellbeing, is considered in this thesis. 

Large numbers of people are at risk from natural disasters such as 

earthquakes, volcanic eruptions, floods, droughts and wildfires. Typically 

they are mostly predictable (except earthquakes and some volcanic 
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eruptions) and topographically constrained. Although hazards are often 

unpreventable, their impact can be minimised through effective disaster 

planning and emergency preparedness (Bhaduri 2008). The population 

exposed (E) is recognised as a key component when defining risk to natural 

hazards (H) in addition to their vulnerability (V). This can be empirically 

represented as some function of risk (Eq. 2.1). Without the population 

component no risk would exist.  

𝑅𝑖𝑠𝑘 = 𝑓(𝐸𝐻𝑉)              (2.1) 

Understanding a population’s characteristics such as vulnerability and 

exposure also presents challenges for practitioners through data 

deficiencies or systems to handle such information. The formula indicates 

that aspects of population and management account for all contributing 

factors required for the development of a natural phenomenon into a 

hazard. This shows that better representations of population are required to 

make improvements in assessing the impacts of natural hazards and 

disaster risk management. The variability of vulnerable populations exposed 

to natural hazards needs to be recognised to make improvements in 

emergency planning and develop effective procedures (Cutter and Finch 

2008). The calculation of the exposed population is not straightforward as 

populations are not static and shift dramatically over time (McPherson and 

Brown 2004).   

Humans are vulnerable to hazards which can be categorised as either 

anthropogenic or natural, or considered a factor of the two.  These hazards 

are both numerous and complex. While a multitude of anthropogenic 

hazards pose risks to life such as smoking or terrorism, only the destructive 

power of extreme natural phenomena is considered here. Natural events are 

capable of causing widespread disaster and considerable loss of life. Natural 

hazards are widely regarded as one of the ultimate constraints on human 

activity and provide reminders that we do not live in a world of entirely our 

own making.  

Humans are becoming more susceptible to natural hazards, largely as a 

consequence of population growth and globalization. In the future it is likely 

that multiple disasters with fatalities exceeding 10,000 will be experienced 

on an annual basis (Huppert and Sparks 2006).  The general trend (Figure 
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2.1) appears to suggest that the frequency of natural hazards is increasing. 

However, it is widely argued that this phenomenon probably occurs as a 

result of increased exposure, improved and more robust detection and 

recording methods as well as an absence of sufficient data to verify this 

trend (e.g. Alexander 1993; Tobin and Montz 1997; Hilhorst and Bankoff 

2008). The number of reported disasters rose by 93% between 1992-2001. 

Vulnerability is a more precise measurement of exposure to risk (Hilhorst 

and Bankoff 2008) rather than just disaster frequencies.  Floods, droughts, 

earthquakes and tropical cyclones accounted for 94% of all natural hazard 

fatalities recorded between 1980-2006 (Peduzzi et al. 2009). 

 

Figure 2.1 Total number of natural disasters by year between 1900-2013. Data source: EM-

DAT (2014) 

Grasping the variety of natural hazard definitions and concepts (Table 2.1) is 

important when considering how populations are affected by them. Many 

definitions contain the same components concerning the physical 

occurrence of a damaging naturally occurring event, the likelihood of 

occurrence, and the potential negative impact on humans or the 

environment.    

Natural hazards can be broken down into the following subgroups, which 

may have an impact on the particular definition derived: 

 Meteorological: drought, extreme temperature, lightning, cyclonic 

depressions, tornado, climate change, geomagnetic storm, wildfires.  
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 Hydrometeorological: flood, hail, extreme rainfall, blizzard, heavy 

snow, ice, coastal storm surge.    

 Geophysical: seismic activity, volcanic eruption, coastal erosion, 

landslide, avalanche, lahar, subsidence, tsunami.   

Furthermore, aspects of the following events might be considered natural or 

as a consequence of human interaction combined with other natural triggers 

(Hewitt 1997): 

 Biological: disease pandemics, release of pathogens, escape of 

radioactive material.  

 Environmental: pollution, chemical fires, poisoning, gaseous 

discharges. 

 Technical: infrastructure failure. 

A vast literature may be found on each of these subgroups, which in turn 

may be further subdivided. For example, flooding may be broken down into 

coastal, pluvial or fluvial with a range of diverse impacts and contributing 

factors. Some natural hazards such as an avalanche or landslide can be 

argued to have human triggers or exacerbating factors.  Such complicated 

relationships between humans and the natural environment can often make 

it difficult to differentiate single or independent causes of an event.   

Compound hazards occur as the result of another event. Fires, tsunamis and 

landslides are all potential compound hazards which may occur following an 

earthquake.    

Historically, natural hazards have destroyed entire ecosystems and have 

been recognised as causal factors in the collapse of civilizations, such as the 

Minoan empire during the fifteenth century BC.  In economic terms, 2011 

was the mostly costly year to date regarding natural hazards losses which 

totalled $380 billion with 27,000 fatalities. The most notable events 

included the Japanese tsunami and Christchurch, NZ, earthquake. Other 

high profile events included the occurrence of severe flooding in Thailand, 

Australia and the USA as well as continued drought in east Africa (Munich Re 

2012). The aim of this thesis is to examine how such populations are, and 

become, exposed to hazards. 
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2.2.1 Natural hazards and disasters 

There is no agreed definition of ‘disaster’, which can lead to misconceptions 

in the media and variations in recording data on destructive events (Perry 

2007). Consequently, the integrity of databases containing related counts 

should be carefully analysed within their context. These records are often 

used to determine the severity of a disaster in terms of economic damage or 

number of fatalities. The media and everyday language often term as 

‘disasters’ events with considerably different magnitudes and causes. For 

example, the ‘1989 Hillsborough Disaster’ in the UK resulted in 96 football 

supporters being fatally crushed, compared to the same application for the 

1931 flooding disaster in China which killed 3.7 million people (Smith and 

Petley 2009). A natural hazard may become a natural disaster once there 

has been a negative impact on a population, as defined in Table 2.1. In the 

absence of any population, where no risk to humans exists, the same 

natural phenomenon does not develop into a hazard (Alexander 1993). The 

term disaster is often utilised by the media, but without proper definition or 

calibration of use it may not be that useful in public communication.  Many 

databases will have different definitions and methods governing calculation 

of fatalities associated with a disaster or natural hazard.  The clear definition 

of a disaster in a dataset is essential when interpreting fatalities that have 

occurred directly and those that have occurred as result of a subsequent 

consequence (e.g. EM-DAT 2009b). In addition, disaster fatality datasets may 

become further complicated when an area affected by a hazard crosses 

more than one administrative area or national boundary. The United Nations 

Office for Disaster Risk Reduction’s (UNISDR) ‘Terminology on Disaster Risk 

Reduction’ provides a concise one sentence definition to provide clarity for 

the public, authorities and practitioners intended for dissemination to 

promote better understanding. Definitions taken from the UNISDR and the 

literature have been summarised in Table 2.1.
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Table 2.1 A selection of definitions and concepts regarding natural hazards  

Terminology Definition  Source 

Natural Hazard The probability of occurrence within a specified period of time and within a given 

area of a potentially damaging natural phenomenon. 

UNDRO (1982) 

 Threats to humans and what they value. Harriss et al. (1978) 

 A naturally occurring or man-made geologic condition or phenomenon that 

presents a risk or is a potential danger to life or property.  

American Geological 

Institute (1984) 

Vulnerability  Being prone to, or susceptible to damage or injury. Wisner et al. (2004 p. 11) 

 Characteristics of a person or group and their situation that influences their 

capacity to anticipate, cope with, resist and recover from the impact of a natural 

hazard. 

Wisner et al. (2004 p. 11) 

 The degree of loss to each element should a hazard of a given severity occur. Blaikie et al. (1994) 

 The characteristics and circumstances of a community, system or asset that make 

it susceptible to the damaging effects of a hazard. 

UNISDR (2009:30) 

 Vulnerability = risk amplification measures – risk mitigation measures ± risk 

perception factors  

Alexander (1991) 

 The degree of loss (%) resulting from a potentially damaging phenomenon. EM-DAT (2009a) 

 The degree of loss to a given element or set of elements at risk resulting from the 

occurrence of a natural phenomenon of a given magnitude (expressed 0 to 1, no 

loss to total loss). 

UNDRO (1982) 

 The degree to which different social classes are differentially at risk. Susman et al. (1984) 

 A possible state that is combined with high risk and an inability to cope. Cardona (2004) 

Exposure People, property, systems, or other elements present in hazard zones that are 

thereby subject to potential losses. 

UNISDR (2009 p. 15) 
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Table 2.1 continued 

Terminology Definition  Source 

Risk Risk = Hazard × Exposed population × Vulnerability UNDRO (1979) 

The combination of the probability of an event and its negative consequences. UNISDR (2009) 

 Rt = ERs = EHV, where Rt is the total risk, E is the elements at risk, Rs is specific 

risk, H represents the natural hazard and V is vulnerability. 

Alexander (1993) 

Environmental 

Hazard 

Extreme geophysical events, biological processes and technical accidents that 

release concentrations of energy or materials into the environment on a 

sufficiently large scale to pose major threats to human life and economic assets.  

Smith and Petley (2009) 

Natural Disaster A disaster must fulfil at least one of the following criteria: 

≥ 10 fatalities or ≥ 100 people affected 

Declaration of a state of emergency 

Call for international assistance 

EM-DAT (2009b) 
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2.2.2 Vulnerability versus exposure 

Some key definitions taken from the literature have been summarised in 

Table 2.1. This includes an attempt to differentiate between vulnerability, 

exposure, susceptibility and resilience. This is important when considering 

risk to population. Vulnerability is described as a combination of factors 

with varying definitions (Table 2.1). It can be described as a possible state 

that is combined with high risk and an inability to cope (Cardona 2004). 

Quantitatively, vulnerability can be considered a function of risk and hazard, 

or a numeric figure describing the potential degree of loss. A common 

factor in vulnerability definitions is a population component describing 

susceptibility, exposure or other characteristics that make them vulnerable 

when considered with a particular hazard and given level of risk.  

Unlike vulnerability, exposure of an element or population might just simply 

be considered as their physical location within a hazardous zone making 

them subject to potential losses (UNISDR 2009). It could be argued that 

exposure only relates to a quantifiable property or physical presence of 

objects such as population counts, roads and buildings within a hazardous 

area. An object is exposed as a result of its physical location whereas 

vulnerability incorporates a greater range of contributing factors that affect 

the ability to cope. Buildings on an active fault line may be exposed to 

earthquake hazard, but those buildings built without proper planning 

regulation to withstand an earthquake will be more vulnerable.  

 

Figure 2.2 A simple vulnerability/exposure matrix after Smith and Petley (2009) 
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Human sensitivity can be considered a combination of exposure and 

vulnerability (Figure 2.2). It is clear that the sensitivity of a population to a 

hazard depends on the degree of physical exposure, such as living on an 

explosive active volcano. Population vulnerability can also reflect upon 

preparedness regarding implementation, if any, of an emergency evacuation 

plan.  Populations in less developed countries might experience the same 

level of exposure for a particular hazard, but have a greater sensitivity 

through increased vulnerability as a result of inadequate planning or lack of 

financial resources to adapt.  Figure 2.2 highlights the need to understand 

physical exposure and vulnerability of populations when considering risk 

and security.  

2.2.3 Susceptibility 

Dow and Downing (1995 p. 4) define vulnerability as ‘the differential 

susceptibility of circumstances contributing to vulnerability’. Consistency in 

the definition and use of ‘vulnerability’ is required to advance our 

understanding of the vulnerability of populations and places to natural 

hazards (Cutter 1996). It is argued susceptibility can be considered a subset 

of vulnerability  (Dow and Downing 1995), however the two terms are often 

used interchangeably with little distinction.  In the interests of clarity and 

usability, an attempt has here been made to differentiate these concepts. 

Although their use is common there is currently little defining literature.  

The concept of susceptibility is common in landslide hazard mapping, 

particularly within the engineering and earth science communities (e.g. Dai 

et al. 2001; Fernández et al. 2003; Remondo et al. 2003; van Westen et al. 

2003; Fell et al. 2007). These purely concern a probability of an event 

occurring, where sufficient data are available. Susceptibility may be 

considered as a spatial probability based on climatic or geological 

conditions where there is insufficient temporal data (Remondo et al. 2003). 

Unlike vulnerability, which may be defined as a characteristic that causes a 

potentially harmful situation (Table 2.1), susceptibility suggests a 

preconditioned detrimental characteristic.  

The usage of susceptibility in this context emphasises a probability of 

occurrence due to a physical pre-conditioning to experience harm rather 
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than the more anthropogenic orientated vulnerability concepts defined in 

Table 2.1 which consider human characteristics or potential losses. It could 

be argued that a population living on a volcano is both vulnerable and 

susceptible, as the consequences of the geologic process of an eruption are 

independent of human characteristics with a uniform effect on the exposed 

population. Conversely, it may be argued that such a population is 

vulnerable due to socioeconomic constraints having a greater influence on 

its geographic location of residence. In order to assess vulnerability the 

susceptibility of elements at risk needs to be identified and understood 

(Birkmann 2006). 

2.2.4 Resilience 

Resilience is a useful concept for hazard risk reduction which has been 

significantly developed (Walker et al. 2004) since its introduction by Holling 

(1973, 1986). The introduction of resilience theory, particularly that 

concerning ecological systems, has had a notable impact within the natural 

and social sciences. Figure 2.3 displays the trajectories of two population’s 

densities through time, suggesting the competition for resources arriving at 

equilibrium over time. The spiral represents a planar view of the density 

trajectory with time.         

 

Figure 2.3 Density change in two populations over time (Holling 1973 p.5) 

Resilience is often defined as the ‘ability to spring back’. In physical terms 

this can relate to the stress and strain exerted by a load placed on a 

material. Since Holling’s (1973) conceptualization the term has been used in 
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an increasingly metaphorical sense relating to a system’s or city’s ability to 

cope with and recover from external shocks (Klein et al. 2003a). Resilience 

can be attributed to promoting sustainability as a mechanism to reduce 

vulnerability. However, it is perceived that while resilience may be a 

desirable property, it exists as a poorly defined conceptual framework. Klein 

et al. (2003a) recognise a requirement for better quantification of resilience. 

The quantitative assessment of populations is important and allows the 

definition of magnitudes of variation.  

Dovers and Handmer (1992) identify three types of societal resilience to 

environmental risk: 

 Type 1 Resistance and maintenance: resistance to change and 

uncertainty where the status quo are maintained. Threats are 

identified and mitigated but this may lead to inaction to avoid 

uncertainty. As a result the society may not be fully prepared to deal 

with unexpected events. 

 Type 2 Change at the margins: change that does not challenge the 

basis of society and serves the interests of the affluent few. Not 

generally concerned with the general population or environment.  

 Type 3 Adaptability: flexibility and the ability to change basic 

assumptions and institutional structures while effortlessly embracing 

new ideas.       

There needs to be a clear definition of resilience and the factors by which it 

is determined if it is to be usefully applied to populations in a hazard 

context. Although often considered a desirable characteristic, the ability of a 

population to ‘spring back’ to the same perpetual state of vulnerability 

following a natural hazard may not in fact be beneficial.  Resilience to 

natural disasters is the capacity of the population to cope with the 

emergency and learn from the experience by implementing new physical 

and social structures to become better adapted (Ride and Bretherton 2011). 

Klein et al. (2003a) propose that usage of the term ‘resilience’ should be 

reserved to describe specific system properties concerning the amount of 

disturbance it can absorb while maintaining function and the degree of 

capability of self-organisation.     
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2.2.5 Introducing risk 

There is a level of risk which exists for every activity. A large proportion of 

this risk is termed acceptable risk. This is the level of potential losses that a 

society considers acceptable given the existing economic, social, cultural, 

political, environmental and technological conditions (UNISDR 2009). Our 

knowledge of natural hazard distribution and historical frequency has 

advanced, however less is known about risk and its impacts on the 

population affected (Cutter 2010).  Understanding and mapping risk is 

another fundamental component in assessing the degree of potential harm 

to humans. Risk (Table 2.1) can be defined as the product of an exposed 

population, vulnerability and hazard.  

2.2.6 Voluntary and involuntary risk exposure 

In terms of individual risk, two main categories can be considered: 

involuntary and voluntary risks. Involuntary risks occur without our 

knowledge or consent such as a lightning strike, earthquake or meteorite 

impact. Voluntary risks result from activities, or their potential 

consequences, that individuals choose to undertaken when they consider 

that the risk involved is acceptable. There are numerous voluntary risks 

undertaken by individuals daily such as travelling on the road network or 

smoking tobacco. Living within a flood plain or on an active volcano might 

be considered voluntary although such decisions may be governed by 

complex cultural, social or economic constraints outside of an individual’s 

control. 

It has been suggested that the observed increase in the frequency of natural 

disaster events is partly a result of increased exposure. By the end of the 

first decade of the twenty-first century more people lived in urban rather 

than rural areas for the first time in human history, resulting in increased 

population densities (Dye 2008). In Europe this accounts for 70% of the 

population, while globally the trend in population growth will mainly be 

urban for the foreseeable future.   

Urbanisation extremes are exemplified by megacities which can be defined 

as urban agglomerations exceeding 10 million inhabitants (UN 2008), 

characterised by high population density and rapid development (Sekovski 
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et al. 2012). Most megacities, 17 out of 21, are located in coastal regions 

(Nicholls 1995; Sekovski et al. 2012; von Glasow et al. 2012). Mitchell’s 

(1999b) edited volume poignantly assigns the title ‘Crucibles of Hazard’ to 

megacities. Large populations in coastal megacities are vulnerable to natural 

hydrological  and meteorological hazards as well as tsunamis (Klein et al. 

2003b). Inland cities of high population density are not immune from 

hazard. The 1989 earthquake in Mexico City, which itself is situated within a 

volcanic basin, is estimated to have killed 5,000-10,000 people (Mitchell 

1999a). It has been suggested that the human preoccupation with achieving 

economic growth, even in the face of adversity, has spatially concentrated 

social and economic activities in hazardous areas (Puente 1999). As these 

cities usually contain the highest concentrations of population and economic 

activity they can be predisposed to suffer catastrophic natural disasters.   

Current populations, or the origins of modern settlements, may have 

become established because of the benefits brought by successive natural 

processes. These might include the fertile ground or crossing points on a 

flood plain, ash rich volcanic soils, mineral deposits or access to the coast 

for trade and transportation.  

Lewis (1989) speculated on a fictional earthquake striking the centre of 

Tokyo and suggested the impact could devastate trading on Wall Street and 

lead to global economic recession. Only six years later Japan was struck by 

the 1995 Kobe earthquake, one of the most powerful ever to affect an urban 

area.  The M 7.2 earthquake centred on Kobe, the world’s sixth busiest 

container port, resulted in c. 600 direct fatalities and made 300,000 people 

homeless (Horwich 2000). Although economic growth recovered relatively 

quickly following the Kobe event, the earthquake and mega-tsunami of 2011 

has again raised questions about population vulnerability (Hein 2013). The 

high density construction typical throughout Japan and megacities, such as 

Tokyo, raises renewed questions on population risk to natural hazards.   

Historically, social memory of disaster and crisis would have been 

communicated by the elders of many indigenous societies. In industrial 

societies it is unclear who, if anybody, facilitates the passage of collective 

memory. Increasingly this information may now reside in new media or 

archives (Berkes 2007).  In psychology the accessibility principle suggests 
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that the subjective time of an event depends on how much is known about it 

since it occurred. The more that is known, the more recent it will seem 

(Brown et al. 1985). Events such as extreme volcanic eruptions may only 

occur on a millennial scale. Therefore it is difficult for humans to retain 

memories of eruptions from specific volcanoes (Grattan and Torrence 2007).  

2.2.7 Calculating risk 

There are varying qualitative and quantitative definitions of risk, some of 

which have been summarised in Table 2.1. Quantitative risk assessments are 

often not understood by the general public and need to be communicated 

more accessibly. Uncertainties need to be made clear (Smith and Petley 

2009) whilst maintaining trust. In this thesis, calculating differing levels of 

risk for the hazard scenarios in conjunction with fluctuations in population 

allows assessments of exposure.     

The key elements considered in general risk assessments regarding natural 

hazards are summarised in Figure 2.4. The evaluation of the direct impact of 

a hazard as well as any indirect impacts as a result of damage is required 

alongside an understanding of the population or elements at risk and their 

vulnerability. In a flood risk assessment this might involve understanding 

the population at risk within the hazard footprint and an indication of their 

vulnerability. During an earthquake, increased risk might feedback through 

severe building damage as a result of construction standards, which in turn 

might increase vulnerability of the population at risk. 

Hazard impact Elements at risk
Evaluation of 
vulnerability

Induced hazard 
impact

Scenario
Evaluation of effects of damage 

to elements at risk

 

Figure 2.4 Risk assessment for a given scenario after Douglas (2007) 

The Disaster Risk Index (DRI) provides a quantitative approach to assessing 

global exposure and vulnerability to natural hazards, with the ability for 

comparisons between countries. Global statistical analysis suggests that 11% 

of the population in less developed countries are exposed to natural 

hazards and account for 53% of the casualties, whereas 15% of the 
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population in more developed countries are exposed but account for only 

1.8% of the fatalities (Peduzzi et al. 2009). The formula for calculation is 

based on the United Nations definition (Table 2.1) that risk contains three 

components: elements at risk, vulnerability and the hazard occurrence 

probability (Peduzzi 2006). This includes accessing data on the number of 

human fatalities per year and the population living in an area exposed 

(Peduzzi et al. 2009) to the potentially damaging effects of a natural hazard. 

The physical exposure is determined by: 

𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 =  ∑ 𝐹 𝑃𝑜𝑝𝑖
𝑛
𝑖                                      (2.2) 

Where F is the annual frequency of events of a given magnitude, Pop
i
 is the 

total population of the spatial unit for each event, i is the exposed 

population per event and n is the number of events considered.  Human 

vulnerability was considered using a parametric model based on socio-

economic variables and the physical exposure (PhExp) (Peduzzi et al. 2009): 

𝐾 = 𝐶(𝑃ℎ𝐸𝑥𝑝)𝛼𝑉1
𝛼1𝑉2

𝛼2 … 𝑉𝑝

𝛼𝑝
                                               (2.3) 

Where K is the number of fatalities for a certain type of hazard, C is the 

multiplicative constant,  V1..p are the number of socioeconomic variables and 

α  is an exponent of V. This was utilised to define the generalization of the 

multiplicative to derive the number of fatalities/year by taking the product 

of physical exposure and vulnerability.     

2.2.8 Risk management and emergency preparedness 

Emergency responders need to be able to estimate who is present at a given 

time at the start of a hazardous event (McPherson 2006). Perry and Lindell 

(2003) suggest three critical components of emergency preparedness: 

planning, training and written communications. The first, planning, will be 

considered here. Accurate, high-resolution, temporally varying population 

estimates are required within the planning process (Bhaduri et al. 2007). A 

pre-emptive approach within the planning phase can be to consider the 

‘business as usual’ scenario. This may reflect the actual composition or 

distribution of potentially affected populations depending on the time of day 

a hazard may occur. This approach can be suited to both rapid onset events, 

where there is little time to react, and events with longer lead in times. 
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Accurate population estimates are still beneficial when considering 

preparedness for hazard events with slower onset speeds. It may not be 

possible to account for irrational human behaviour during emergency 

situations. Therefore, a realistic firm estimate of the population immediately 

prior to any event is a valuable advantage for targeting plans and resources.       

The ‘as low as reasonably practicable’ (ALARP) principle (Figure 2.5) 

acknowledges different levels of risk and how tolerable they are considered 

to be. At the top end of the spectrum, unacceptable risk posed to 

individuals or society requires mitigation largely irrespective of the financial 

cost. In demonstrating that a risk is ALARP any cost to further reduce the 

risk would need to be grossly disproportionate to the benefits that could be 

achieved (Smith and Petley 2009). The ALARP principle was developed 

formally in UK policy (Melchers 2001) and popularised through legislation 

particularly the Health and Safety at Work etc. Act 1974.  

 

 

Figure 2.5 The ALARP principle after Crozier (2005) 

The uncertainty associated with natural phenomena has been discussed by 

scientists (Handmer et al. 2001). The precautionary principle emerged out of 

ecology and sustainability discourses where it is argued that it is worth 

taking preventative actions even if the risk of a disaster is low but the 

consequences may be high (Smith and Petley 2009). This principle has many 

similarities within the science of natural hazards and disaster risk reduction.     
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2.2.9 Risk perception and communication 

The international community’s response to natural disasters has generally 

been reactive, with events in the developed world taking excessive 

precedence in western media (Peduzzi 2006). Severe flooding on the Indian 

subcontinent killed 2,000 people in August 2004 and attracted 9,000 words 

in British newspapers. On the same day Hurricane Charley struck Florida 

with 16 fatalities which was represented by 19,000 words (Adams 2004). 

The previous section highlighted the importance of human and societal 

memory, while this section only attempts to briefly acknowledge a wider 

issue of risk communication and perception and the implications for risk 

management. Studies have suggested inadequate levels of awareness and 

understanding within communities of predictable natural hazards such as 

flooding (King 2000). It has also been noted that the perception of risk 

declines as any perceived benefit increases (Slovic 2000). This is likely to 

have a detrimental impact on natural hazard preparedness as populations 

become complacent or reliant on defences. This is illustrated by the 

November 2012 flooding in Worcestershire, UK, when newly installed flood 

defences failed. It was reported that some residents were unprepared or had 

even been celebrating the launch of the new defence scheme when their 

properties were flooded (Morris 2012b), although they had previously been 

victims of flooding.  

Communicating risk in a manner understandable to, or likely to have an 

impact on, the general public is another important consideration for natural 

hazard risk management and preparedness. Hazard maps can be one 

method of communication and are considered essential in communicating 

volcanic risk, although a study focused on Montserrat suggested that people 

still struggled to interpret traditional maps. It concluded that enhanced 

three-dimensional maps with perspective photographs aid topographic 

recognition and orientation (Haynes et al. 2007). A UK flood risk poster 

(Figure 2.6) is an example of a public information campaign for risk 

communication.      
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Figure 2.6 An Environment Agency flood risk awareness campaign poster in the UK (EA 2014) 

Even with prior warning and risk education, some people still fail to take 

preventive measures or evacuate if required. A Californian study into flood 

induced evacuation by Heath et al. (2001)  found that 19.4% of households 

failed to evacuate when ordered for a particular event. It found statistically 

significant trends that people without children or with pets were more likely 

to remain in their properties. Reasons for this behaviour might have been 

due to the children’s fear or anticipation that they are more likely to be 

harmed than an adult. It also suggested that pet owners were willing to risk 

their own lives to remain and look after pets (Heath et al. 2001).  

Evacuation research has suggested that people are more likely to take 

precautionary action if they perceive a real threat (Burnside et al. 2007). This 

is indicative of effective risk perception and communication. Research by 

Burnside et al. (2007) on the behaviour of New Orleans residents under 

evacuation orders during hurricane Katrina offers several reasons for people 

failing to adhere to evacuation warnings. False alarms are given as the 

primary cause for residents failing to evacuate as well as not having the 

financial means to do so, while a subset will just refuse. Others may decide 

to remain to protect their properties and belongings from loss by the 

natural hazard or public disorder.  

Cole and Fellows (2008) outline four lessons learned from risk 

communication failure in New Orleans during hurricane Katrina: 
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1. Effective communication is no good if followed by inadequate crisis 

messages. 

2. Messages should be prepared before the crisis. 

3. For a message to be effective it needs to appear reliable to the 

audience. 

4. Risk communication messages must be adapted for the demographic 

characteristics of the audience such as ethnicity, class and gender.    

2.2.10 Hazard spatiotemporal characteristics  

A hazard’s footprint is its manifestation in space and time (BRISK 2010). The 

footprint of an earthquake might be defined by the extent of damage 

inflicted or by using interferometric synthetic aperture radar (InSAR) 

photogrammetry to delineate the extent of ground surface displacement. 

Presently, estimates of the population exposed to a natural hazard are 

based on its footprint. Proxies of a hazard’s physical footprint such as a 

watershed or flood plain concerning floodwater inundation are often used 

(Guha-Sapir et al. 2011). 

Hazardous zones are occupied for a variety of reasons. As identified, 

historic development around coastal ports, trading and industry continues 

to shape urban living today where gentrification and redevelopment have 

created economic wealth and jobs in areas potentially at risk. There is an 

evident correlation between poverty and increased vulnerability exemplified 

by a family which has insufficient income to make property improvements or 

move to a safer place (Delica-Willison and Willison 2008). Poverty has been 

identified as one of the largest contributors to vulnerability. 

Mount Vesuvius, Italy, is well known to be home to a large population 

vulnerable to potential destructive eruptions. It is estimated that over 1 

million people live on and around it (Carlino et al. 2008) making it the 

world’s most populated volcano (Kilburn and McGuire 2001).  Population 

densities around Vesuvius are amongst the highest in Europe (Alexander 

1993), while housing quality is some of the poorest (Chester et al. 2002). 

These factors combine to exemplify one of the highest vulnerabilities to 

natural hazards. It was reported that the Italian authorities would pay 

£18,000 to property owners living on Vesuvius to leave with the aim of 
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emptying 100,000 properties over 15 years. However, this is considerably 

below the market value and many people could simply not afford to relocate 

(Arie 2003). 

As well as space, hazards have temporal characteristics. Change in intensity 

and space over time is an important consideration when examining the 

human occupancy of hazardous areas. One categorization for hazards types 

is intensive and pervasive (Kates 1976). Intensive events are often small in 

areal extent, intense in impact and short in duration. This is often 

associated with sudden onsets and poor predictability. Examples may 

include earthquakes, landslides and volcanoes. Conversely, pervasive 

hazards such as drought, fog and temperature extremes are often 

widespread, with long durations and gradual onsets. Therefore, they can 

also be detected and warned against more easily. Some events such as 

floods can be defined by both extremes from intensive flash to pervasive 

coastal flooding. This demonstrates the importance of understanding both 

space and time in hazards to deduce their impacts.            

Guidance provided under the European Union Flood Directive (see Section 

2.3.5) states that flood hazard maps should contain flood extents with a 

low, medium (≥ 100 years), and high probability as well as hydrological data 

such as expected depth and velocity. The specification for flood risk maps, 

detailing the potential adverse side effects of the hazard should include 

(Chpt 3(6) 5a&b) an indication of the number of inhabitants potentially 

affected and economic activity of the area (European Council 2007).  

A hazard’s ‘frequency’ can be defined as the number of events of a given 

magnitude within one unit of time. It follows that a hazard’s return period is 

the reciprocal of its frequency (Alexander 1993). A return period is a unit of 

time, in which an event of a given magnitude is statistically likely to occur. A 

return period of a five metre river flood or a magnitude nine earthquake 

within a specific location, in space, may be quoted in years based on the 

analysis of disaster records. An improbable combination of factors caused 

severe flash flooding in the narrow valley catchment village of Boscastle, 

north Cornwall, UK. The likelihood of these factors occurring together and 

generating an event on a similar magnitude has been estimated as a 1 in 

2000 year event (Bettess 2005; and Murray et al. 2012). It may not be 
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possible to predict the onset of some particular types of hazards, such as 

when and where a sinkhole will develop or lightning bolt will strike.  

Statistics show  extreme events, of a high magnitude, occur less frequently 

than lower magnitude events (Alexander 1993). Perhaps large magnitude 

events might occur in uninhabitable places such as at sea or in regions 

which they are rendered hostile to human settlement and as a result do not 

pose a ‘hazard’. Natural hazards can vary greatly in their onset times, 

durations and spatial extent. An earthquake has a quick onset, whereas the 

impact felt by a drought is gradual but over a long duration (Peduzzi et al. 

2009). Disasters can be classified into two distinct phases: the impact and 

long term effects. The initial impact may be short lived depending on the 

type of hazard and its onset time. In this phase survivors can do little except 

wait for the worst to pass. Often disaster survivors are critical of delays in 

response in providing food, medical treatment and shelter (Alexander 

1993). Understanding population vulnerability including more realistic 

temporal density estimates will help ensure that human crises may be 

managed better in the future with fewer fatalities.  

Two powerful earthquakes occurred in New Zealand causing fatalities and 

widespread destruction along a previously unknown fault (Elliott et al. 

2011). The first M 7.1 earthquake centred on Darfield, Canterbury occurred 

at 04:35 on 4 September 2010 with no direct fatalities. A powerful M 6.2 

aftershock centred on Christchurch occurred at 12:51 on 22
 

February 2011 

and caused 181 fatalities (Kaiser et al. 2012). Although the aftershock was 

almost ten times less powerful it had devastating consequences and 

occurred during the middle of the day. The devastation of the secondary 

earthquake has been attributed to its proximity to the centre of New 

Zealand’s second largest city (Kaiser et al. 2012), however it also occurred 

during the middle of the day. It has long been recognised that the number 

of earthquake fatalities is affected by the time of day in which it occurs 

(Coburn et al. 1992).  

Throughout the preceding review the importance of time and space in 

hazard has been recognised and requires greater analysis in terms of its 

relationship to population. The processes of disaster development and 
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concepts of risk and vulnerability have important impacts when considering 

the population exposed.
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2.3 Flooding in the United Kingdom  

This section examines the background and conceptual context of flood risk 

in the UK. The background provided exemplifies the case for advances 

required in natural hazard risk assessment, which is demonstrated in the 

empirical chapters of this thesis (Chapters 3-5).   

In 2010, the UK government’s National Security Strategy defined 

international terrorism, cyber-attacks, international military crises and major 

natural hazard incidents as the highest priority risks affecting the country 

for 2010-15 (HM Government 2010). In terms of natural hazards, the 

highest risks, in a broad sense including social disruption and economic 

harm, are specified as coastal flooding and severe effusive volcanic 

eruptions (Cabinet Office 2012). The Icelandic 2010 eruption of 

Eyjafjallajökull caused widespread air travel disruption and is estimated to 

have cost the aviation industry $250 million a day (Gudmundsson et al. 

2010). When considering flooding and overseas volcanic eruptions within 

the conceptual definition of risk (Table 2.1) different concepts may be 

developed. The footprint of airborne volcanic ash may ‘affect’ the whole 

population, or perhaps only those using an airport; whereas the overall 

vulnerability to an individual may be lower, the economic vulnerability of the 

country may be greater. Coastal flooding and effusive volcanic eruptions are 

considered to have the greatest national impact in the UK relative to the 

occurrence of any other natural hazard, with a probability of occurrence 

between 0.005 (1:200 years) and 0.0005 (1:2000 years) within the next five 

years (Cabinet Office 2012).  

2.3.1 Types and causes of flooding 

There are seven main categories of flooding that have caused notable events 

in the United Kingdom: 

1. Fluvial flooding:  this occurs when rivers overtop or burst their banks 

as channel capacity is exceeded by intense rainfall or snowmelt. The 

magnitude and response time may be exacerbated when prolonged 

rainfall has saturated the ground causing water tables to rise.  
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2. Coastal flooding: occurs when cyclonic conditions combine with a 

high tide, which can be exacerbated by atmospheric low pressure to 

form a tidal surge or higher than usual spring tides. There is an 

inverse relationship between storm surge height and barometric 

pressure approximately equal to a 1 cm rise per millibar reduction in 

atmospheric pressure (Welander 1961). This effect is likely to be 

enhanced by strong winds in an anticyclonic system, resulting in an 

increase in wave heights. Coastal topography can also amplify this 

affect where converging estuaries or inlets can act as a funnel to 

channel storm surges.    

3. Pluvial flooding: also referred to as surface water, occurs when 

rainfall that is usually removed by a drainage system exceeds the 

capacity of that system. This results in overland flow and 

accumulation in local topographic depressions. This occurs when 

intense rainfall falls on impermeable surfaces common in urban 

areas, saturated or frozen ground. This usually occurs when rainfall 

rates exceed 20 mm hr
-1

 for up to three hours (Houston et al. 2011). 

It is estimated that 2 million people in urban areas are at risk of 

pluvial flooding, and this is likely to increase as a result of 

urbanisation and climate change. Pluvial flood risk accounts for 

approximately one-third of the UK total flood risk (Houston et al. 

2011). The majority of pluvial flood events occur during the summer 

where average precipitation totals are lower, but more intense rainfall 

events combined with urban ground sealing increases run-off (Smith 

and Lawson 2012). Intense rainfall in urban areas can result in rapid 

onset flood events in areas with high spatiotemporal variations in 

population. This research provides a methodology which aims to 

quantify this phenomenon.  

4. Flash flooding: an extreme flood event generated by intense rainfall 

over rapidly responding catchments (Brauer et al. 2011). In the UK 

flash floods are considered to peak in under 3 hours in 5-10 km
2

 

catchments typically characterised by steep basins and thin soils, 

often associated with impervious underlying geology resulting in 

rapid run-off (Collier 2007). 

5. Infrastructure failure: this can lead to flooding which may be 

considered to have both anthropogenic and natural causes. The 
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failure of infrastructure due to natural or human causes has the 

potential to rapidly release large volumes of water that can result in 

devastating flash flooding. A damaged water main, coastal levee 

failure or dam burst (reservoir flood) can all initiate flooding on a 

variety of spatial extents and magnitudes.       

6. Ground water flooding: occurs when the water table rises, or natural 

springs reactivate, due to prolonged rainfall. This is common on 

permeable bedrocks or underlying substrates such as chalk, sand and 

gravel. The onset may occur days or weeks after sustained rainfall 

with the potential duration to last several weeks. Properties may be 

flooded through the floor or basements, while water may also emerge 

from hillsides in the form of springs (Environment Agency 2011).  

7. Sewer flooding: this occurs when flood water combined with raw 

sewage exceeds the capacity of that system and enters properties or 

emerges from breaches in the street when volumes overwhelm the 

infrastructure. Parts of the UK sewer system are over 150 years old 

(e.g. Manchester and London) (Tait et al. 2008) and under increasing 

pressure from climate change and the construction of new housing. 

Combined sewer overflows discharge excess waste water from 

intense rainfall into rivers to help prevent flooding in properties and 

hazards to human health (DEFRA 2012). 

While other types of flooding are of significance globally, only the 

commonest types with predominantly natural causes affecting the UK have 

been considered above for the purpose of this review and applications 

within this thesis. 

2.3.2 Climate change and flooding 

Flooding is the most common natural hazard in Europe, and has been linked 

to consequences of climate change despite greater frequencies in the past 

(Beven 1993; Wilby et al. 2008). In the UK flooding is recognised as one of 

the most damaging and costly natural hazards (Brown and Damery 2002).  

It is estimated that the annual cost of flood damage in the UK is £1.1 billion 

with 5.2 million properties currently at risk. This is reflected in the high cost 

of flood risk management, with departmental spending currently at £664 
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million (DEFRA 2011).  Average flood damage costs could rise to £27 billion 

by 2080. Maintaining existing levels of flood defence, including 

maintenance of current assets and new construction, will require spending 

to increase by £1 billion per year by 2035 (UK Parliament 2012). 

The UK climate projections (2009) (UKCP09) model the future climate at 30 

year intervals and 25 km resolution. In general all parts of the UK are 

projected to warm by 2080, with the greatest temperature increases in 

southern England. On the whole there will be little change in average annual 

precipitation although there will be increased seasonality. Parts of southern 

England can expect a decrease in summer precipitation by 40%, while 

western areas of the UK may expect a winter increase of up to 70% (Murphy 

et al. 2009).  

This brief summary of the potential implications of future climate change 

demonstrates the impact this may have on future hazard events and 

government spending. An increase in winter rainfall is likely to further 

increase fluvial flood events. Warming summer temperatures may progress 

the development of convective storm cells, while global sea-level rise will 

increase coastal flood risk.  

2.3.3 Recent flood history  

A summary of significant contemporary and recent flood events is presented 

in Table 2.2. These events have been selected for their recent historical 

importance and to provide a context to British flood severity and policy 

decisions.  

The 1953 North Sea storm surge, or ‘The Big Flood’, was the worst natural 

disaster to affect the UK during the twentieth century. As a direct result of 

exposure or drowning there were 307 fatalities in an already vulnerable 

post-war population (Baxter 2005). However, the 1947 flood event (Table 

2.2) was the most extensive in the twentieth century (Marsh 2008). The 

widespread damage and disruption caused by the 1947 flood event is 

considered a benchmark in flood strategy for England and Wales (Horner 

and Walsh 2000; Marsh 2004).     
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Contemporary flood events, particularly those during the first decade (2000 

and 2007 events) of the twenty-first century have had a profound impetus 

on British and European flood risk management, policy and legislation 

(Andryszewski et al. 2005).
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Table 2.2 A contemporary history of notable flood events in the UK 

Area affected Date Description Source(s) 

Southern England 

and Wales 

March 1947 Large scale river flooding caused by rapid snowmelt and persistent heavy rain from a 

frontal system that swept across southern Britain. This followed a severely cold 

winter, average February 1947 temperature was -3.8 °C, with snow depths of up to 

1.2 m in lowland England. Damage caused by flooding and heavy snowfall caused 

coal shortages and electricity blackouts, killed 2 million sheep and left 1 million 

people without a potable water supply.     

Marsh (2004, 

2008), RMS 

(2007b) 

Lynmouth,  

Devon 

August 1952 An unprecedented flash flood on 15 August in the steep narrow coastal catchment 

on the north coast of Devon. Heavy rainfall caused by atmospheric ascent of a slow 

moving low pressure frontal system promoted by orographic ascent over Exmoor. 

Rainfall exceeded 200 mm, falling on saturated ground. This resulted in 34 fatalities, 

damage to 93 properties and vehicles swept out to sea.   

McGinnigle (2002) 

Eastern Scotland 

and England 

January 1953 A storm surge caused by the combination of a high spring tide and cyclonic system. 

Atmospheric low pressure and strong winds increased tidal heights destroying flood 

defences in eastern Britain and northern Europe. This effect was amplified by the 

funnel-like effect of the southern convergence of the North Sea coastlines. There was 

major infrastructure failure to telephone lines, gas, water and electricity supplies. 

Central London narrowly survived inundation, but water levels reached the top of the 

Victoria and Chelsea embankments, spurring the eventual construction of the 

Thames Barrier. Number of fatalities: 307.    

Baxter (2005) 

Midlands and 

Wales 

April 1998 The widespread Easter floods of 1998 were attributed to two frontal systems and a 

slow moving depression moving south across the UK. While the rainfall levels were 

not unprecedented the 48 hour maximums were more representative of summer 

convective storms. Rainfall fell on saturated ground causing losses of £500 million 

and five fatalities.  

Horner and Walsh 

(2000) 
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Table 2.2 continued 

Area affected Date Description Source(s) 

England and 

Wales 

Winter 2000/01 Prolonged heavy rainfall during the winter caused the most extensive fluvial flooding 

since the 1947 event. Rainfall was exceptional by UK standards caused by the 

continual passage of frontal systems sustained by several months by south-westerly 

winds. Some areas experienced constant rainfall for two weeks. Damage totalled £1 

billion and 10,000 properties were inundated.  

Marsh and Dale 

(2002) 

Boscastle, 

Cornwall 

August 2004 A severe flash flood within the narrow coastal catchment on the north Cornwall 

coast. Unusual due to a rare combination of factors and highly localised and intense 

rainfall rather than total levels. Similar to the Lynmouth 1952 event however, 

remarkably there were no fatalities. This has been attributed to the proximity of an 

air-sea rescue naval base and dedication of the military and coastguard who 

navigated rescue helicopters into a convective storm cell, supported by the rapid 

response of emergency services on the ground.   

Rowe (2004); Burt 

(2005); Lewis 

(2009); Murray et 

al. (2012) 

UK wide June 2007 Widespread flooding affecting Northern Ireland, Scotland, England and south Wales. 

The scale of the flood exceeded its predecessors and was unprecedented in recent 

history, exceeding the 1947 benchmark in some areas. Rainfall totals exceeded 300% 

of the average in some locations. The event resulted in the iconic image of 

Tewksbury Abbey surrounded by floodwater, which was partially inundated for the 

first time in 247 years. 

RMS (2007a); 

Marsh (2008) 

UK wide November 2009 A UK wide flood event, including the Isle of Man, with parts of northern England 

worst affected. UK wide average rainfall in November 2009 was exceeded by 184%. 

Cumbria attracted widespread news coverage as six river bridges collapsed, one 

resulting in the death of a police officer. The army intervened to build a temporary 

bridge across the River Derwent.  

Met Office (2009); 

MOD (2009) 

Southern England 

and Wales 

November 2012 Numerous severe flood warnings were issued by the Environment Agency with wide 

spread flooding across southern England and north Wales (1,800 properties flooded) 
Environment 

Agency (2012a) 
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Table 2.2 continued 

Area affected Date Description 
Sources(s) 

England and 

Wales 

Winter 2014 During January 2014 a rapid succession of severe winter storms caused 

widespread flooding in Somerset and on the River Thames. Repeated powerful 

storm surges destroyed sections of seawall in southern England and Wales and 

which caused the collapse of two coastal railways. Coastal flooding also caused 

significant damage to the Victorian promenade at Aberystwyth and necessitated 

the evacuation of 600 university students from seafront residences.   

Gevertz (2014); Met 

Office (2014) 
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2.3.4 The Pitt Review 

An independent government review was commissioned following major 

flooding in the UK between June-July 2007. The review, undertaken by Sir 

Michael Pitt, made 92 recommendations for improvements. The key 

recommendations (RE) in relation to flood hazard and population are 

summarised here (Pitt 2008). Three recommendations have been highlighted 

to provide exemplars of how spatiotemporal population modelling 

techniques could be directly applied to flood risk management: 

RE16: Local authorities should collate and map the main flood risk 

management and drainage assets.  

RE70: A programme should be established to encourage individuals to 

be better prepared and become self-reliant during emergencies. This 

will allow the authorities to focus on the people most in need. 

RE74: The impact of flooding on the health and wellbeing of people 

should be monitored and mitigations put in place to manage these 

effects.   

Recommendations 70 and 74 illustrate the need for a greater understanding 

of exposed populations. This will aid the development of effective 

emergency plans or help reduce probability of fatalities or serious injury. 

Recommendation 16 largely concerns mapping the physical infrastructure, 

but this provides the opportunity to highlight deficiencies in data 

concerning population variability in emergency planning.     

The UK government and relevant authorities have responded to 

recommendations contained within the Pitt Review and provided an 

additional £34.5 million of funding to address these proposals (DEFRA 

2008). This has included increasing public risk awareness, publication of 

online flood hazard maps, development of warning systems and the creation 

of the Flood Forecasting Centre. The methodology proposed in this thesis 

will involve producing local scale flood hazard maps that meet these 

legislative criteria and current policy priorities. While these are always going 

to be subject to change the requirement for more accurate flood maps that 

consider population at a greater spatiotemporal resolution is noted.  
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2.3.5 Management and mapping 

Flood risk, mapping and management are governed by a hierarchical top-

down structure in the United Kingdom comprising of a number of 

government departments and non-governmental bodies. This is enforced 

through legislative acts and European Union (EU) directives. The Civil 

Contingencies Act 2004 progressed into statute for the purpose of defining 

a single legislative framework to deal with serious emergencies. This 

resulted from a governmental review on emergency planning arrangements 

in times of crisis which included the occurrence of severe flooding in 

2000/01 (Table 2.2) (Cabinet Office 2011). While this act covers a multitude 

of eventualities including major natural hazard incidents, civil unrest, 

terrorist activity and biological hazards, it focuses on protection at the local 

level concerning emergency services, utility providers, local authorities and 

operators of transport infrastructure. Analysing population exposure to 

hazards at a local scale is a key original contribution from this research, 

which would be applicable for agencies concerning emergency management.    

The EU Floods Directive (2007/60/EC) has had implications for the way flood 

risk is managed in the UK. Parts of the directive (e.g. Section 6) relate more 

readily to continental Europe concerning cross-border flooding and water 

courses. However, interagency and international collaboration still remain 

key components in flood risk management. It is necessary for member 

states to provide flood hazard maps, and risk maps regarding different 

flooding scenarios (Section 12). In order to comply, member states must 

complete flood hazard and risk maps by 22 December 2013, and publish 

flood risk management plans by 22 December 2015 (European Council 

2007). In addition the Flood Risk Regulations 2009 implement the 

requirements of the directive in Britain. Under these regulations the 

Environment Agency is responsible for the production of the hazard and risk 

maps within the time frame specified. Lead Local Flood Authorities (LLFAs) 

have been identified to map local flood risk. This is being undertaken using 

the National Flood Risk Assessment tool, with the consideration to update 

the national flood map in line with these regulations (Environment Agency 

2012b).   
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The Flood and Water Management Act 2010 was the UK government’s 

response from urgent recommendations for legislation arising in the Pitt 

Review (RE 28), and provides a more comprehensive management of 

population flood risk and protection of infrastructure including drinking 

water supplies and properties. It also ratifies the EU Floods Directive in 

British law.  

A severe flood warning is the highest alert issued by the Environment 

Agency in England and Wales, and its counterpart the Scottish Environment 

Protection Agency (SEPA). This is issued when severe flooding is considered 

imminent with a significant threat to life. It is preceded by a ‘flood alert’ and 

‘flood warning’. Assessing the risk to life requires a prior understanding of 

the distribution of exposed populations.  The new methodologies proposed 

in this thesis provide a mechanism to achieve this.    

  



Literature review 

 

47 

2.4 Spatial interpolation of population data 

This section provides a review of the methodologies used to estimate 

population densities which are required to make improved judgments on 

population exposure to natural hazards. Deriving population data that are 

contained within flexible geographical referencing systems is a key 

consideration for assessing the potential risk. Converting data into a 

common format allows subsequent analysis. Interpolating population data 

onto a regular grid is an output format common in the methodologies 

discussed. A flexible geographical referencing system, such as a grid, 

mitigates issues arising from irregular and incompatible areal units often 

associated with aggregated demographic datasets. The interpolation 

techniques contained within this section provide mechanisms to 

disaggregate population which can be used for the purpose of assessing 

exposure to natural hazards.  

A structure is proposed in Figure 2.7 to divide the two main groups of 

interpolation methodologies into area and point based, according to the 

type of input data used, similar to Lam’s (1983) spatial interpolation review. 

However, the present review subsequently sub-divides these categories for 

the consideration of the use of ancillary data.  

2.4.1 Representing population data 

Population can be considered as a volume spread over a surface occupying a 

fixed spatial area, such as the distribution of a census count within an 

output area. This population or ‘volume’ is fixed.  Cartographic techniques 

for mapping volumetric data traditionally fall into three main categories: 

choropleth, dasymetric and isarithm (Langford and Unwin 1994). 

Traditionally the choropleth map has been the conventional tool for 

displaying population density. This process involves the shading of arbitrary 

zones, often census areal units or administrative zones. This implies that 

the areal unit concerned has a uniform population density, with abrupt 

changes at the boundaries, unlikely to be found in reality. Large areal units 

tend to show lower population densities due to their comparatively larger 

area to population ratio. Generalisation of the data increases with the size of 

the areal unit in a choropleth map. Population density for a typical city may 



Spatiotemporal population modelling to assess exposure to flood risk 

 

 
48 

increase towards the centre according to a choropleth map, as expected, but 

this could also be amplified through decreasing ward sizes (Langford and 

Unwin 1994). Choropleth maps are a discontinuous method and therefore 

poorly represent the underlying spatially continuous population (Langford 

and Unwin 1994). This effect is difficult to quantify as the units are often 

irregularly shaped.   
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Figure 2.7 A classification of point and area based population interpolation techniques 
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2.4.2 Limitations of zonal data 

Zones, such as wards (the lowest areal units for local political representation 

in England and Wales), are a central problem associated with handling 

spatial data. Zones where data are available are referred to as source zones. 

A compilation of various datasets may provide an array of different source 

zones. For example, population data published in neighbourhood 

administrative boundaries are not directly comparable to data published 

within local health or education authority boundaries. The units in which 

data are required are termed target zones (Mugglin and Carlin 1998). 

Interpolating data on to a grid, as an example target zone, from an array of 

different source zones provides a mechanism to represent data using a 

common structure (Figure 2.8).   

 

Figure 2.8 Incompatible source and target zones adapted from Gotway and Young (2002) 

Zonal representation can become a challenging problem for policy makers 

and geographers, although for many it may be favoured as a convenient way 

to map and collate data. The scale threshold is one limiting factor of the 

zonal approach. The threshold, the scale variance, quantifies the change in 

scale where the phenomenon observed stops being invariable. Below the 

scale threshold data representation can be lost. Secondly, the modifiable 

areal unit problem (MAUP) (Openshaw 1984) is the phenomenon whereby 

the choice of zonal boundaries for aggregated data can have more of an 

impact on the output analysis than the real phenomenon observed. The 

areal units to which census data are aggregated do not remain constant 

between successive censuses (Openshaw 1984). “The areal units used in 

many geographical studies are arbitrary, modifiable, and subject to the 
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whims and fancies of whoever is doing, or did the aggregating” (Openshaw 

1984 p. 3). A large number of spatial objects can be defined, but few are 

sets of non-modifiable units (such as people or households in a census). 

Census output geographies for example have little intrinsic geographical 

meaning, but it is very likely that future analyses will depend on their 

definitions (Openshaw 1984).  For this reason many methodologies have 

been utilised (Figure 2.7) to interpolate such data. Areal interpolation of 

population data has been driven by the demand for small-area population 

estimates which are often finer than the resolution of data available (Mennis 

and Hultgren 2006).  

In the UK, detailed socioeconomic and census data are not released at a 

resolution required in point pattern analysis, but aggregated into irregular 

spatial units. The protection of UK census data is strictly governed by 

legislation including the Public Records Act 1958, Census Act 1920 and the 

Census (confidentiality) Act 1991 which concern confidentiality and 

disclosure of personal data. Data can also be aggregated for management 

and analysis reasons as well as privacy. However, an unintended 

consequence of fully disaggregated data from large datasets, where 

available, is that it may make visualisation and analysis unmanageable 

(Thurstain-Goodwin 2003). 

Areal units are often not constant with respect to time, and consequently 

zonal data in their raw form can become incompatible. The shire is no 

longer the principal unit for British population data. The decision to 

disseminate 2001 UK census data in new output areas (OAs), not the 

enumeration districts (EDs) by which it was collected, resulted in little 

commonality between the 1991 and 2001 censuses (Langford 2007). Direct 

comparisons are not possible in areas affected by spatial unit boundary 

changes. 

Spatial interpolation refers to estimation of the value of a variable z (e.g. 

population) at a location (x, y) given that the variable is known at a number 

of other data points, which may be randomly scattered (Goodchild and Lam 

1980). The ability of basic functions in most GIS applications makes it 

possible to represent populations as a raster surface which can be highly 
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advantageous. These methods provide a useful tool set for dealing with 

aggregated outputs.  

A common interpolation target zone for these methods is the grid (Figure 

2.8). The mapping of populations onto regular geographical grids, as an 

alternative to irregular spatial units, has a long history, and several 

advantages. One is stability through time, as data relating to different dates 

can be compared on a consistent grid (Martin et al. 2011). The use of a 

regular grid also allows integration with other georeferenced datasets from 

a range of applications covering physical and social characteristics (Martin 

and Bracken 1993; Martin et al. 2011). Population density can be more 

realistically represented in a uniform grid covering the entire region than 

conventional choropleth maps (Mennis 2003). The grid also allows for cells 

to be assigned a zero value where there is no population.               

2.4.3 Point-based interpolation 

Point-based interpolation methods can be categorised as either local or 

global depending on whether all values are considered at once, or 

individually within the pre-defined neighbourhood of each point (Wu et al. 

2005). A number of point based methods have been described, and example 

applications are provided in Figure 2.7. Point data may be considered 

without the need for digital boundary data, or when such data is 

unavailable. The use of point data in publicly available demographic 

datasets such as censuses can allow easy interpolation into gridded 

approximations. The desire to transform population data onto a regular grid 

or into varying spatial units often reflects a desire not to be constrained by 

the arbitrary or spatially irregular geographic units for which data are 

initially available.  

2.4.4 Kernel density estimation 

Kernel Density Estimation (KDE) (Figure 2.7) is one method for transforming 

population point data onto a regular geographical grid. The point based 

method proposed by Bracken and Martin (1989) is an example of a 

redistribution algorithm which utilises population centroids, where each 

centroid corresponds to an irregularly shaped areal unit. Their approach 
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redistributes the total population from the centroid locations with which it is 

initially associated into the cells of a regular grid.  The model uses a 

distance-decay function to give the most probable distribution surrounding 

each centroid. A search radius, or kernel size, is also specified. The 

distance-decay function is used to evaluate the probability of each cell 

within the kernel receiving some proportion of the centroid’s total 

population. As a result, no cell outside of the kernel will receive a 

population. 

The general form of the model can be described as (Bracken and Martin 

1989): 

∑ ∑ 𝑃𝑖 = 𝑃𝑗𝑊𝑖𝑗

𝑐

𝑗

𝑠

𝑖

(2.4) 

Where 𝑃𝑖, is the population in cell i of the output grid with dimension s, 𝑃𝑗 is

the empirical population of the jth centroid, c is the number of centroids in 

the area modelled. 𝑊𝑖𝑗 is the weighting of cell i relative to centroid j, which

can be defined as: 

𝑊𝑖𝑗 = 𝑓𝑗 [1 −
𝑑𝑖𝑗

∑ 𝑑̅𝑗𝑙

𝑛𝑗
𝑙=1

] , for 𝑗 ≠ 𝑙 (2.5) 

Where 𝑑𝑖𝑗 is the distance between cell i and centroid j. Therefore 𝑑̅𝑗𝑙 is the

mean distance between all centroids (l) within the search radius from 

centroid j. Finally,  𝑓𝑗 is a distance-decay function relating to the dispersion

of the population within the search radius, centred on centroid j (Bracken 

and Martin 1989). Using a model to redistribute a population from a 

centroid into a raster grid allows for some cells to remain empty, 

representing an unpopulated area. The model is based upon the 

assumptions that: i). the centroid is a summary value for the population 

zone to which it relates and defines a point with an above average 

population density. ii). the population of a given centroid is redistributed 

according to a distance-decay function with a finite extent, and iii). regions 

can exist within the study area where there is no population (Martin 1989). 

Centroids constrained by their respective boundaries can be termed as 
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points with boundaries in the conceptual framework; or vice versa areas 

with points (Figure 2.7).  

Bracken and Martin’s (1989) KDE model is one point-based method widely 

used in the UK with census data. In the UK census population weighted 

centroids (PWCs), produced by the Office for National Statistics (ONS), act as 

summary points for the population derived from their respective output 

geography. Ancillary data such as output geography boundaries, residential 

areas digitised from maps, or the use of remote sensing can be used to 

constrain the model output. (Martin 1989). To date, the 1971 census was 

the only time that population data was aggregated into 1 km grid squares 

for the whole of Great Britain. The use of a grid has the considerable 

advantage that the grid squares remain unchanged throughout time (CRC et 

al. 1980).  

Currently, aggregate census data with centroids for the UK are openly 

accessible online. Datasets contain the population count and British National 

Grid (BNG) reference for centroids within EDs from 1971-1991, and OAs 

2001 to present. In many countries including England and Wales census 

outputs are in the form of irregular zones, except for Northern Ireland 

where this is in addition to regular grids of cell sizes 100 m and 1 km. Using 

UK census data it has been possible to validate the surface population 

model outputs in raster format with a cell size as small as 50 m (Bracken 

and Martin 1989).  

A population model can enable socioeconomic analysis. This analysis 

between decadal censuses is not straightforward, partly because of 

incompatible census geographies and the format and nature of the data 

(Bracken 1995). In 1991 more stringent confidentiality limits, relative to the 

1981 census, meant that more EDs were restricted. Data in the 1991 small 

area statistics (SASs) were restricted therefore EDs were merged with 

neighbouring areas until a given threshold was met. 

There are other sources of population centroids available that can be 

utilised in a similar way.  A further example is unit postcodes (UPCs), which 

are well suited as an address based geography to map many different 

datasets at a high resolution. Designed for the efficient delivery of post by 

Royal Mail, UPCs contain around 14-17 properties on a delivery round. In the 
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case of the CASA Town Centres Project land use indicators were 

georeferenced according to their UPC and transformed using a KDE 

(Thurstain-Goodwin 2003). Additionally, business addresses with UPCs from 

the Annual Business Inquiry (ABI) were georeferenced, and the workforce 

population represented as a point (Lloyd et al. 2003).  

A further example of KDE was used in the Town Centres Project to produce a 

population surface on a regular grid. This spreads out the data from each 

point across the surrounding area. Town centres are difficult to delineate 

because of their indeterminate nature. If defined they could be treated as an 

object in conventional GIS software (Thurstain-Goodwin and Unwin 2000). In 

the Town Centres project, a kernel of a specified size is passed over the 

points to smooth the data by allocating a proportion to each grid cell. Cells 

receive fewer people with increasing distance away from the point. A kernel 

size of 200-300 m was proposed based upon surveys suggesting that this is 

as far as people are willing to walk in a town centre (Lloyd et al. 2003). The 

KDE was used to create continuous surface representations of four key 

factors proposed to characterise a town centre. Surfaces generated for 

economy, property, diversity of use and visitor attractions were combined to 

into an ‘intensity of town centredness’ surface. Analysis of peaks on the 

composite surface were then used to delineate town centres (Thurstain-

Goodwin and Unwin 2000).     

2.4.5 Point pattern analysis 

Surface population density estimation can be applied to point data to suit a 

range of applications. Point pattern analysis (Figure 2.7) provides one 

method to attempt to transform a series of point data into a continuous 

density surface. The spacing of points, such as the mean distance to the 

nearest neighbour is one method of analysis. Secondly, point data can be 

analysed as a frequency in a regularly defined subgroup such as quadrats. 

Imposing a fixed grid such as a quadrat is an alternative to imposing a 

moving kernel. However, the use of quadrats or a fixed grid often produces 

a less smooth estimation than kernel estimation. These methodologies can 

broadly be categorised as distance and area-based analyses respectively 

(Gatrell et al. 1996). An advantage to using point pattern analysis is that it is 

readily available in most GIS software. The process depends on point, or 
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disaggregated data, unlike a KDE that can redistribute data that have already 

been aggregated to points such as output area centroids or unit postcodes.       

In a UK application Gatrell (1994) suggested the use of postcodes 

representing a number of houses that could collectively be treated as point 

data with geographical coordinates. Georeferenced individual addresses for 

Great Britain are now commercially available (Ordance Survey 2012). The 

current situation allows data based upon an address to be georeferenced 

and therefore can be treated as a point.   

2.4.6 Kriging  

Kriging is a geostatistical method utilizing the auto-correlation of different 

attributes (Liu et al. 2008) (Figure 2.7). Liu et al. (2008) demonstrate area to 

point kriging interpolation of population data as a methodology to 

disaggregate census data. Additional data are not required, apart from what 

are needed for the regression model. The kriging method interpolates the 

residuals from regression. Accuracy improvements in population densities 

are accounted for by the location dependence and spatial correlation of the 

residual population density. Thus the process is two-step. Firstly, regression 

based estimates need to be derived with corresponding residuals. Secondly, 

the residuals are interpolated in space by the area-point kriging function (Liu 

et al. 2008).      

Kyriakidis (2004) defines a geostatistical framework for area to point 

interpolation as a special case of kriging. Census tracts and socioeconomic 

data often need to be downscaled for the purpose of detailed modelling and 

a methodology is provided under the framework using kriging. Unlike the 

KDE, point data derived from area-point interpolation need not lie on a 

regular grid or create a surface. Kriging is a local estimation methodology 

that provides the best linear unbiased estimator  for an unknown quantity, 

regarding minimum estimation variance (Journel and Huijbregts 1978). 

However the application of kriging can be more difficult relative to other 

weighting methods that produce similar results. Furthermore, simple kriging 

is a linear estimation. It is unlikely that population density against distance 

away from a point is a linear relationship. If structural information is 
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available regarding a second-order relationship then other non-linear 

techniques should be considered (Journel and Huijbregts 1978).     

2.4.7 Spline functions 

A spline, a polynomial function, can be applied as an alternative to a 

standard exponential density function, and is a further example of a point 

based methodology (Figure 2.7). Exponential functions by definition assume 

population density decreases with distance away from the town centre. 

Muniz et al. (2003) suggest that ‘density craters’ in city centres, greenbelts, 

satellite cities and dense peripheries cannot be replicated by a standard 

exponential function. A residential density function relates population 

density with distance from a city, therefore, allowing density to be predicted 

at a given distance from a city centre. This provides a method to describe 

the structure and spatial distribution of population (Muniz et al. 2003). The 

density gradient of an exponential function is constant, whereas it is 

variable in a spline giving the proportion of density variation per unit of 

length. The spline function requires a fixed distance relative to an origin 

such as the central business district. This method could be applied to 

medium sized cities and metropolitan areas using points of population data 

(Muniz et al. 2003). The method might not be appropriate for population 

centres or small zones outside of urban areas away from the assumed 

density/distance relationship. An example case could be a large urban 

conglomeration within distinct satellite settlements. However, a KDE could 

be applied to all population points in turn, which would preserve the 

underlying data structure and observed spatial distribution of population.    

2.4.8 Distance-weighting 

Inverse distance weighting (Figure 2.7) is a simple and common approach 

for population interpolation. Unlike the redistributions methods discussed 

(e.g. KDE) interpolation assumes that a point value falls between two other 

known values. Inverse distance weighting (IDW) assumes values for non-

sampled locations based upon the value of surrounding points at a specified 

distance (Mitas and Mitasova 1999). It can be a particularly useful tool for 

spatially representing population density, as well as many other physical and 

socioeconomic phenomena on a regular grid. This process is readily 
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available in most GIS packages. Rase (2001) extends this concept for 

interpolation onto an irregular triangular network (TIN) rather than the 

traditional orthogonal grid of equidistant lines. He suggests that error is 

minimised by interpolating irregular lines and points to a TIN rather than 

regular grid. In this process nodes are calculated to populate a TIN using an 

inverse distance weighting:    

𝑧𝑛𝑖 =
∑ 𝑧𝑗

𝑚
𝑗=1 ×𝑑𝑗

−𝑝

∑ 𝑑𝑗
−𝑝𝑚

𝑗=1

                                                                  (2.6) 

Where zni is the new value for point i, zj is the value of m nearest 

neighbours, dj is the distance to m nearest neighbours and p is the 

exponent of the distance.  

However IDW can be criticised for producing local peaks in the data surface 

that do not conform to the shape implied by the original data (Mitas and 

Mitasova 1999). In contrast, KDE also has a specified distance of 

interpolation around a point, determined by the kernel width. However, a 

KDE applies a specified function to each centroid in order to try and 

realistically redistribute a point’s population. IDW is appropriate for 

applications concerning point measurements, such as inferring values on a 

digital elevation model. However, population density is a reference interval 

function (Nordbeck and Rystedt 1970) which is only measurable with 

reference to an interval or area. Interpolating population data would 

artificially increase the density.   

2.4.9 Area-based interpolation  

The second group of methods for spatial interpolation of population data in 

Figure 2.7 correspond to area-based input data. The following sections 

outline alternative methods for estimating a population density grid using 

area-based data.   

2.4.10 Areal weighting 

Areal interpolation, the simplest technique, in its standard form is based on 

weighting by area and can be utilised where incompatible spatial units are 

concerned. The weights are calculated by the proportion of the target zone 

overlapping the source zone, therefore allowing data to be transferred from 
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one reporting zone to another. This methodology provides a solution where 

ancillary information on distribution is not available. However, the weighted 

distributions are probably unlikely to be found in reality (Flowerdew and 

Green 1989).  

Goodchild et al. (1993) propose a GIS based framework and example 

application for the areal interpolation of population data, citing applications 

relevant to census centroids in the USA, Canada and UK. County level 

population counts from census data for California are compared with major 

river basin boundaries following watersheds. An areal interpolation method 

is applied to transfer population, employment and socioeconomic data from 

county level onto the hydrological boundaries containing data on water 

consumption and availability.      

2.4.11 Pycnophylactic interpolation 

Tobler (1979) also proposes interpolating values from data given in arbitrary 

geographical units onto a regular grid, at a specified resolution. The grid 

resolution needs to be fine enough to have at least one or more points in 

each geographical unit of the input data, therefore preserving the smallest 

geography. A population density surface can be smoothed towards the 

edges of the aggregated boundary. An important attribute of Tobler’s 

(1979) area-based pycnophylactic interpolation methodology for generating 

a population surface estimation is volume preservation. Pycnophylactic is a 

derived Greek term for mass preservation. This example can be described as 

‘pointless’ interpolation, which can be used where data are available in 

aggregated units, not points. This is an alternative to using centroids, or 

where they may not be available. This is exemplified through the 

representation of population density by US states (Figure 2.9). Smooth 

contour maps satisfying volume preservation and non-negativity can be used 

to convert different output geographies for comparison (Tobler 1979). The 

volume preservation of population is crucial as this ensures that people 

cannot be created or destroyed. 
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Figure 2.9 Contours and isometric rendering of US state population densities (Tobler 1979) 

Tobler et al. (1997) report on a pycnophylactic based interpolation 

methodology to create a raster model of global population, without the need 

for constraining and changing political and national boundaries. The 

rationale for the project is based on the availability of satellite imagery for 

scientific studies concerning impacts on the spread of people in the absence 

of national borders. A pycnophylactic approach was used to transpose 

global population data onto five minute longitude/latitude quadrilaterals, 

approximately a 9.3 km resolution at the equator. 

 

Figure 2.10 Population surface interpolation from areal data (choropleth, left) onto a regular 

grid (right) (Rase 2001) 
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Rase (2001) demonstrates a pycnophylactic approach to interpolate a 

smooth, volume preserving surface from areal, or polygon, data (Figure 

2.10). He also raises a critique of point based interpolation methods where 

centroids are considered without their polygon boundaries, and thus not 

preserving volume.   

2.4.12 Dasymetric mapping            

Dasymetric mapping is one method which has arisen from the inadequacies 

noted in earlier examples. Dasymetric mapping as an alternative (Figure 2.8) 

has been available for many years, but only more recently used with the rise 

of geographic information improvements in computing power (Langford and 

Unwin 1994). Wright (1936) popularised dasymetric mapping in the United 

States but is often wrongly accredited as its inventor, as an earlier reference 

can be made to the Russian cartographer Semenov Tian-Shansky in 1922 

(Mennis and Hultgren 2006). 

Dasymetric methodology involves disaggregating spatial data to finer units, 

often using ancillary datasets. As a result the process produces areas of 

homogeneity in the mapped data that more closely resemble the scenario 

being modelled (Maantay et al. 2007). Wright (1936) contrasted the 

dasymetric approach against conventional choropleth mapping by reference 

to Cape Cod, Massachusetts, USA. Conventional choropleth maps assigned a 

single population density to large expanses of the cape that were 

uninhabitable, and only occasionally frequented by backpackers, wardens or 

hunters. Defining uninhabited is not straightforward. On a high resolution 

map, gardens may well be considered uninhabited. However, if regions that 

people sometimes cross or visit should be considered inhabited, then this 

would apply to the remote sand dunes and moraines of Cape Cod that are 

occasionally frequented. The basic principle of dasymetric mapping involves 

distributing populations to the ‘inhabited’ areas. Unlike choropleth maps, 

vast areas of water or uninhabited countryside therefore will not receive a 

population density. In fact the permanent inhabitants of Cape Cod resided in 

a small compact village near the harbour. The choropleth approach assigned 

population densities of between 3 and 77 people per km
2 

to vast 

‘uninhabited’ areas of the Cape according to Wright’s analysis of 1930s 

data.  
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More recently, Wright’s technique has been applied to dasymetric population 

interpolation utilising remote sensing data. Langford (2007) postulates a 

straightforward methodology based upon pixel values: the colours used in 

Ordnance Survey (OS) maps. In general the OS use the same 8-bit colour 

palette for all raster pixel maps. This enables the process to be consistently 

repeated for neighbouring tiles, until the desired area is covered. For 

example the value of pixels visually containing the brown shade 

representing buildings could be extracted and used as a mask in a 

dasymetric interpolation. 

Similarly to pixel-level interpolation for population density estimation, an 

expectation maximisation algorithm can be applied to pixels to estimate 

population. The estimate can be derived by iteratively regressing pixel 

values based on spectral properties. This approach can be used to compute 

values where data are missing or restricted. The algorithm consists of two 

steps (Flowerdew and Green 1989):  

 Expectation – Values are computed based upon the conditional 

expectation of the given dataset.  

 Maximization – Fit the derived data to the model as the maximum 

likelihood that the values are from real observations.  

Harvey (2002) proposes expectation maximisation in the absence of ground 

reference data for pixel population values in a remote sensing application.  

Firstly, pixels are classified as residential and non-residential. Initial 

estimates of residential pixel populations are then iteratively refined. 

Although results indicate a high level of accuracy, new population 

estimation would require extensive calibrating and ground referencing. 

Without adaptation the iterative model cannot be uniformly applied over 

time and space, even on a national scale (Harvey 2002). The addition of 

ancillary layers such as building height have been used to estimate 

population at different levels. For example Aubrecht et al. (2009) use 

airborne laser scanning data to estimate building heights in part of Austria. 

This in turn is combined with population data to produce a highly detailed 

3D building model that correctly estimates residential population density 

within multi-storey buildings.    
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An alternative method of population density estimation utilises satellite 

imagery and the spectral properties of individual pixels. The LandScan 

Global Population project combined census data, land cover, night-time 

illumination and information on topography to produce a global population 

estimate at 30 arc-sec (c. 1 km at the equator) resolution (Dobson et al. 

2000).  

The amount of change in a dependent variable for a given change in an 

independent variable can be indicated by a regression equation (Johnston 

1978). Multivariate regression estimates a single regression model with 

more than one outcome variable. For example, Langford et al. (1991) 

compress Landsat TM land cover classifications into five categories for 

analysis.  Pixel counts for digitised UK census wards for each of the five 

classifications were completed using GIS.  

A dasymetric application to census data can use a ‘grid three class’ method 

to weight areas of census output depending on land use: urban, agricultural 

and forested in order to receive a proportion of the aggregated population 

(Mennis 2003). A potential disadvantage of the dasymetric approach using 

remotely sensed data is the misclassification of industrial areas as 

residential due to their similar appearance or spectral properties (Mennis 

2003). However, dasymetric mapping can be implemented in most raster-

based GIS packages without the need for programming and is adaptable to 

suit a number of user requirements (Mennis 2003).  

The growth of this methodology has been sustained as most publicly 

available demographic datasets such as censuses are aggregated to areal 

units. Data are commonly aggregated into areal units defined by statutory or 

administrative boundaries (Mennis 2003). However, problems arise in the 

display of such aggregated demographic data such as the display of highly 

detailed spatial attributes contained within a census.  

A kernel based smoothing function (Figure 2.7) can be combined with a 

dasymetric methodology to utilise additional data (Wu et al. 2005). A close 

approximation to a continuous population grid can be achieved using a 

moving kernel. The aggregate population is divided by the area of the kernel 

and applied to the central cell to estimate the new density. This process is 

repeated until every pixel has been covered (KDE, Section 2.4.4).  The effect 
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of changing the search radius or kernel size alters the final appearance. The 

larger the radius the smoother the output appears. Although the process is 

similar to the KDE the method is applied to area-based dasymetric data that 

has been pre-processed rather than the raw population centroids.   

Langford and Unwin (1994) apply the kernel function to a dasymetric 

population density estimation. The dasymetric estimation is derived by 

defining residential housing in UK census units using Landsat satellite 

imagery integrated within GIS. Land classification was used to designate all 

other land use types unoccupied except the pixels containing some form of 

residential housing. Global classification accuracy is estimated at 85-95%. 

However, whether a residential pixel remains unoccupied remains uncertain 

(Langford and Unwin 1994).          

If little attention is given to the effect of areal units when presenting data on 

population density large discrepancies in understanding can occur. The 

average population density of UK cities ranges from 1000 to 6000 people 

per km
2

. When uninhabited locations such as parks, gardens and industrial 

sites are taken into account the density increase is much larger. A 

dasymetric method produces more realistic population densities for parts of 

Glasgow of up to 50000 km
2

 (Langford and Unwin 1994). Populations can be 

assigned to the residential area of wards instead of being uniformly 

distributed across the entire area based on ancillary datasets such as a land 

use classification. This technique can also be used with a KDE. A close 

approximation to a continuous population surface can be derived by using 

the ‘floating window/grid’ procedure (Langford and Unwin 1994). The 

aggregated population is divided by the area of the kernel and the result 

assigned to the centre cell, the process is then repeated, shifted by one 

pixel each time. This technique could be carried out using the 

neighbourhood or spatial filtering functions in a raster based GIS.  

2.4.13 Alternative representation of population data 

This subsection introduces alternative and emerging techniques for novel 

and non-census based population data representation. It provides an 

overview on the application of data that concern building levels, location 

based social media and geolocated mobile telephone records.    



Spatiotemporal population modelling to assess exposure to flood risk 

 

 
66 

Wu et al. (2008) disaggregate US Census data onto individual buildings. This 

example of building level data representation demonstrates a great 

improvement from simple aggregate census data. Their approach requires 

the use of ancillary building footprint data, from which a volume is created 

within a GIS. This is coupled with occupancy data in a method to re-weight 

census population onto buildings within their respective areal units. Similar 

to the Aubrecht et al. (2009) approach (see Section 2.4.12) building height 

data is derived from LiDAR surveys. However, Aubrecht et al. (2009) 

specifically create a 3D building model with a European implementation. The 

creation of accurate building level population data is identified in both 

examples as having direct relevance for natural hazard planning. This is due 

to the spatial improvements achieved compared to traditional aggregate 

datasets.            

The advancement of population data representation is continuing with 

emerging novel methods. One example is the use of location-based data 

from the social media site Twitter. Since its inception in 2007 half a billion 

tweets (images or 140 character messages, often georeferenced) are sent 

per day, and 80% of these originate from mobile telephones (Twitter 2015). 

Mapping the density and distribution of georeferenced tweets has been 

demonstrated for London by Hudson-Smith (2014). One of the features is 

the ability to resolve major tourist sites and transportation hubs (e.g. 

Heathrow Airport and railway termini).  

Longley et al. (2015) also identify the significance of using Twitter social 

media data to move away from traditional ‘night-time’ geodemographic 

datasets. Location-based tweets have a high spatiotemporal resolution in 

near real time as each contain a set of coordinates and timestamp. They 

demonstrate the ability to resolve patterns of very short term population 

movements at a high spatiotemporal granularity. However, two limitations of 

their approach identified were the lack of uniform population coverage and 

the restricted nature of user demographic data.              

The WorldPop project (www.worldpop.org.uk), expanding original 

implementations for the East Africa region, created national scale 100 m 

resolution static population estimates. These were constructed on the basis 

of reweighting census data taken at the smallest output units onto 

http://www.worldpop.org.uk/
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settlements locations. Settlement locations were derived from a combination 

of Landsat satellite imagery and land cover data (Tatem et al. 2007). This 

provides an example of a valuable, large coverage, high resolution 

disaggregation technique, albeit with a static population.        

Finally, the use of anonymised mobile telephone handset records provide an 

opportunity to map temporally varying populations without census data. In 

some applications mobile telephone location data provide the opportunity to 

map actually observed population distributions without the need for further 

modelling or disaggregation. Every mobile handset has a unique identifier 

that is recorded within a database to specific cells. Cell registration data can 

be used to triangulate the location of individual handsets. Successful novel 

studies include applications in Portugal, France (Deville et al. 2014) and 

Estonia (Ahas et al. 2010). However, mobile telephone data is subject to the 

same limitations on user demographic information and coverage of the 

whole population as social media Twitter data. Mobile telephone data is not 

currently widely available, or restricted to sensitive commercial retail 

analytical applications (e.g. Smart Steps, dynamicinsights.telefonica.com).         

2.4.14 Relating population mapping and risk exposure 

Like hazards, population also varies considerably in space and time which 

has a large impact on sunsequent risk analyses. Natural hazard and 

exposure data are combined using a dasymetric approach to assess 

populations at risk by Chen et al. (2004). Hazard attributes such as intensity 

and footprint are usually available in a raster layer. However, exposure data 

such as population, business and dwellings are usually only available in 

aggregated census units.  

Similar to the critique of choropleth maps, the aggregated census output 

can be incorrectly assumed to be uniformly at risk. Figure 2.11 identifies the 

spatial extent of a given hazard within a postcode. Chen et al. (2004) argue 

that using the hazard intensity at the centroid could be misleading. If the 

centroid is determined by postcode boundaries in an irregular shape it may 

not reflect the actual intensity of the hazard experienced. For example, 

applying the hazard intensity at the centroid for the scenario in Figure 

2.11D suggests that it is outside the hazard footprint, although the 

http://dynamicinsights.telefonica.com/
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residential area is not.  An improvement in assessing the spatial distribution 

of risk is omitting the unoccupied areas within the postcode, or areal unit. 

Chen et al. (2004)  used a dasymetric approach to try and differentiate 

residential areas. Firstly, urban road networks in the form of lines within a 

GIS based map were buffered by 100 m assuming the surrounding area 

would be inhabited. Data in layers containing features such as parks and 

water bodies were also used to define the limits of residential areas.  

 

 

Improvements suggested by this method, likely to be welcomed by 

insurance industries, include more accurate loss estimation by better 

representation of populations at risk. The dasymetric approach suggested 

by Chen et al. (2004) aims to outline the area exposed to a particular 

hazard. Simply using aggregated data in areal units could overestimate 

exposure. In a case study for Sydney, Australia only 22% of the region 

covering 8879 km
2

 has been identified as residential using the approach 

suggested by Chen et al. (2004). The schematic representation in Figures 

2.11B and C shows how hazard exposure would be underestimated if census 

output units or postcode districts were relied upon. There is still some 

concern by selecting a somewhat arbitrary 100 m buffer for the road 

network where residential buildings are assumed to be. However, it does 

appear to be a far closer representation of reality than the aggregated 

postcode districts.        

Overall, it appears that the dasymetric approach to mapping offers 

advantages over conventional choropleth maps. In particular it provides 

more realistic demographic analysis as populations are not distributed to 

uninhabited regions. It also allows improvements in representing aggregate 

Figure 2.11 Illustration of hazard intensity to an exposed population aggregated into 

postcode units (left to right: A-D) (Chen et al. 2004)  
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census data. Conversely, uncertainties can arise from land cover 

classification, in particular what can be regarded as ‘uninhabited’. Similar to 

critiques of the arbitrary nature of some census output units, there is a 

degree of arbitrary decision making involved in some of the dasymetric 

methodologies discussed.          

For risk mitigation accurate and timely population maps are required for 

exposure assessments. Mobile phone data have been used to estimate 

population movements in space and time for strategic malaria elimination 

planning in Namibia by Tatem et al. (2014). This dynamic approach 

identified key settlements with higher than average travelling populations in 

specific at risk.  

Day and night-time human populations vary widely, and often most in 

metropolitan areas. Freire (2010) notes that accounting for the 

spatiotemporal distribution of population at the local scale for risk analyses 

is fundamental and often misrepresented by census data alone. For example 

human susceptibility to contemporary tsunami risk in Lisbon, Portugal is 

modelled by Freire et al. (2011). They use a model to create high-resolution 

(25 m) daytime population estimates. A dasymetic approach is also adopted 

to disaggregate census (including commuting statistics) and employment 

data with road network and land use classifications. They apply three 

scenarios representing a toxic plume, earthquake and shopping terrorist 

attack. It is observed that traditional census datasets under-represent 

exposed populations in some densely populated metropolitan areas. This 

occurs where there is a large increase in daytime population density. The 

simulation of daytime population density improves the assessment of 

exposure and can contribute to better emergency planning (Freire et al. 

2011).   

It has also been demonstrated that projected future population estimates 

can be applied to hazards with the potential to occur over much wider 

(national) scales. For example heat stress associated with climate variability, 

can affect vulnerable populations over large areas. Aubrecht et al. (2012a) 

create 1 km spatiotemporal population estimates using census and ancillary 

datasets. These cover a north-south European transect with population age. 

The effect of heat waves on an ageing population, projected to 2030, who 
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are more vulnerable to heat-related illness was considered. Aubrecht et al. 

(2012a) maintain that a central objective of vulnerability assessment is to 

provide indications where, when and how people may be affected by a 

specific impact.      

Despite censuses typically being accurate, geographically refined and 

current, they only represent night-time residential population counts. 

Therefore, censuses can be misleading when trying to locate and quantify 

population exposure to a daytime disaster (Garb et al. 2007). Population 

data utilised for the purposes of hazard risk assessment can be prepared in 

advanced and kept updated.      
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2.5 Interpolation of population data with time 

Human population distribution is a function of both space and time, but the 

view that better temporal population estimates are required has been 

around for some time (e.g. Wright 1936; Foley 1954; Schmitt 1956). 

However, until relatively recently interpolation methods, as discussed in the 

previous sections and illustrated in Figure 2.7, have largely focused only on 

the spatial component. Figure 2.12 expands on the integration of the 

temporal component in the interpolation of population data. The 

interpolation of such data is recognised in a wide range of applications 

including security, emergency planning, transportation and healthcare 

provision. It is recognised that current risk models do not sufficiently 

consider the temporal variation in population distribution, whereby the 

spatial distribution of populations at risk varies greatly by time of day, day 

of week, time of year. The time of occurrence of a rapid onset event will 

have a different outcome for those exposed depending on diurnal and 

seasonal population variations. The risk to population sub-groups is also 

dependant on demographic characteristics. Further analysis of this data is 

required to examine this relationship. For example, students in higher 

education are a highly spatially mobile section of the population, and at time 

clustered at locations, with strategic importance (King and Ruiz-Gelices 

2003). In 2011/12 the UK had 2.5 million students registered in higher 

education (HESA 2013) comprising around 4% of the total population.       

Risk models can be developed when the causes and consequences of a given 

event are known, and can be used for emergency preparedness planning, 

such as accounting for the number of inhabitants requiring evacuation 

(Ahola et al. 2007). This section outlines representation of populations in 

time-space and the role of time-geography.  The concept and examples of 

the spatiotemporal interpolation of population data are provided in Section 

2.6, however few practical examples exist.  
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Figure 2.12 Proposed structure to evaluate population interpolation methods 

2.5.1 Time 

In order to understand the temporal interpolation of population data and the 

reasons and methodologies behind them it is important to take time to 

understand the brief concept of temporality itself. The section only attempts 

to briefly highlight the history and perception of time and the resultant 

consequences for human reality. A large literature  already exists on the 

fundamentals and quantum physics of time which is not revisited in detail 

for this summary (Denbigh 1981; e.g. Davies 1995; and Hawkin 1995)  

Time and space create and constrain the very fabric of human interaction 

(Raper 2000). However, the integration of time into our representation of 

population becomes difficult as we can only ‘see’ change when motion or 

rapid movement occur (Raper et al. 2005). The concept of motion is not 

possible without considering time. Today’s culture views time as a line with 

no end points extending infinitely into the past and future (Langran 1992). 

The opinion that time can be considered an illusion is an alternative 

argument in philosophy. Objects including humans form a static pattern in a 

four dimensional space-time block. It is argued that time only feels as if it is 

passing because our memories retain the past, as opposed to remembering 

the future and the present. What is actually remembered at the present is 

what has just passed (Langran 1992).    

Time is always expressed relative to something. There are a number of 

anthropogenic ways in which time and duration can be expressed and 
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referenced. For example, in Madagascar ‘rice cooking’ and ‘the frying of a 

locust’ traditionally represented half an hour and a moment respectively 

(Sorokin and Merton 1937). The ancient Mayan civilisation calendar 

consisting of 13 b’ak’tun, periods of 144,000 days began in 3,114 BC, and 

along with the ancient Egyptians monitoring the rise and fall of the Nile, 

these are some of the earliest known examples of time reference systems.  

There are many temporal constructions used in the English language, also 

believed to be universal across all languages. Examples include ‘the 

weekend is coming’, ‘I am going to get up early tomorrow’ and ‘May is 

before June’. However research suggests that tribal Amondawa speakers of 

the remote Amazon living in the Uru-eu-wau-wau reservation now located in 

Brazil, lack a lexicon containing any temporal definition (Shina et al. 2011). 

The research suggests that it is possible for no numeric or calendar system 

to exist.      

Before official contact in 1986, the Amondawa population was believed to be 

around 160. The population rapidly decreased on contact to just 45 by 

1991. The rapid decrease was caused by the spread of colds and other 

viruses in which the indigenous tribe had no immunity (Shina et al. 2011). 

This rare example of self-sufficiency and isolation perhaps demonstrates an 

example of space without time. However, time continues to constrain 

activities whether we are conscious of the fact or not.  A more widespread 

time reference system is the current Gregorian calendar based on the 

motion of lunar and solar cycles, and encompassing the time units used 

today in Western societies.  

2.5.2 Time-geography  

The tradition of time-geography in human geography treats time and space 

as resources that enter directly into the realms of social life (Gregory 2000). 

The basic ideas were coined by the Swedish geographer Torsten 

Hägerstrand. Time-geography prominently came to attention during the 

1970s, but references can be traced back into the 1960s. This was an era of 

self-review and realignment of the discipline of human geography. The 

success of time geography has been associated with providing an alternative 

to the ‘spatial science’  which resultantly promoted the study of individuals 
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(Per Olof 1991). Until then first-hand geographic observation of individuals 

and groups moving in their environment was rare (Hägerstrand 1973). 

The notion of time geography partly evolved from the desire to understand 

more about society’s interactions with nature. Hägerstrand described society 

as ‘a peculiar mix of mental and physical structures, confusing and 

unpredictable, which we cannot survive without’ (Hägerstrand 1976 p. 329). 

It was argued that geography could contribute in an ever more positive way 

if given the opportunity to contribute to prediction and planning. 

Hägerstrand defined bounded areas as a set of populations comprised of 

individuals who are described by continuous trajectories through time. 

Humans and their society are just a pattern in the big tapestry of nature, 

that history is weaving (Hägerstrand 1976). The human mosaic or tapestry 

can be the outcome of collateral processes, which cannot unfold freely as 

they have to accommodate the pressures and opportunities that lead from 

their common coexistence in terrestrial space and time.  

Hägerstrand’s geographical framework recognises that an individual’s 

participation in an activity has both spatial and temporal dimensions. The 

space-time relationship emerges as a key definition for an object, individual, 

or population in order to attribute spatial context to a location, path or 

trajectory (Hägerstrand 1973). Examples can be drawn where nature and 

humans may struggle to coexist in the same space without mutual 

distortion, such as road networks across a fluvial plain liable to flood. If an 

area or space is ‘mapped’ over a period of time, the complete set of 

unbroken space-time paths, produced by all members of the population, are 

contained within a domain or pass through it.  Humans are always seeking 

to reach goals, which can be considered as destinations. Common goals can 

be grouped into bundles to form steps to the final outcome. A project can 

be defined as a total cluster of activities, individuals and items which must 

participate in the reaching of some defined goal (Hägerstrand 1973) (Figure 

2.13). 
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The basic framework can be conceptualised across four propositions 

(Gregory 2000): 

1. Space and time are resources upon which ‘populations’ have to act to 

reach projects. 

2. Realization of a project by an individual is constrained by: 

a. Capability constraints: the limitation of individuals due to their 

own physical ability, or the ability to command the required 

facilities e.g. time-space paths flowing through accessible 

stations such as shops and schools. 

b. Coupling constraints (time-space bundles): governing how long 

individuals have to join other individuals or materials in order 

to produce, transect or consume.  

c. Authority constraints: steering mechanisms that impose 

conditions of access or movement through the time-space 

domain 

3. The constraints are interactive and mark out the possible paths for 

individuals 

4. Within the evolved structure, competition between projects for free 

paths is a central problem for analysis.  

A very large number of trajectories exist across the environment, by which 

they are influenced (Hägerstrand 1975). ‘Bundles’ of trajectories give up 

Figure 2.13 Hägerstrand’s time-geography model (Cloke 1991) 
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individual degrees of freedom to allow others to be kept under control. A 

number of rules or institutions aim to manage conflict where capacity in the 

space makes the overlap of planned trajectories unavoidable. Traffic 

regulations and laws governing the ownership of land, tools and buildings 

exist in the world of barriers and prevent trajectories making certain turns, 

and let them move freely in one direction. Hägerstrand’s Lund research 

group simply mapped urban areas as supply points such as shops and work 

places (Thrift 1977),  which in turn were described according to opening 

hours and their location.  

It is argued by Pred (1977), a pioneer of Hägerstrand’s time-geography, that 

the concept has the potential to ‘spill’ into the other social and life sciences. 

This coincided with an identity crisis of human geography relying on models 

from other disciplines. The physical existence, life paths of individuals, 

goods, materials and other non-human populations can be traced in time. 

Time-geography can specify the necessary conditions for virtually all 

interactions between humans and the natural environment. The typical daily 

path of a Boston merchant trader is conceptualised by Pred (1984) (Figure 

2.14). The time-space context is given and individual paths and shared 

interactions are represented in the form of meetings at the coffee and club 

houses (Pred 1984). The path taken through time and space is represented 

in Figure 2.14.  
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Pred (1977) was concerned that the application of time-geography may only 

be considered for planning purposes. Several other applications within the 

discipline were highlighted. One such application concerned the study of 

regions and landscape evolution. The framework allows the classification of 

landscape components, that form part of an independent region, as a whole 

(Pred 1977). Innovation provides another application for time-geography. 

This use involves the building up of time-space trajectories of several people 

and inanimate objects, as well as information and energy, for example, 

agricultural or manufacturing processes. Time-geography may be applied to 

migration and urban growth. Insights into the mean migration-distance 

variation between different occupational groups can be considered by the 

spatiotemporal characteristics of activities and analysis of small bounded 

regions (Pred 1977). 

Structuration theory generally recognises that social activities take the form 

of concrete interaction in space and time as actions and events making up 

an individual’s temporal and spatial elements. This idea can be 

conceptualised diagrammatically as an unbroken path through space-time 

(Pred 1977) (Figure 2.14). There are a number of time-geographic realities 

that impact on the life content of human individuals (Pred 1978): a human is 

Figure 2.14 Representation of a Boston merchant trader’s movement in time and space 

for a given day (Pred 1984) 
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indivisible and cannot be in more than one location at the same physical 

point in time. Neither can a human, measured by tracing out trajectories, 

simultaneously partake in activities spatially separated at the same time. A 

person’s space-time path through both dimensions makes up an individual’s 

existence. Activities occur at a precise location in space, for a limited time 

period. An individual can sacrifice time for space to move to an activity 

occurring at a difference ‘place’. Many activities such as working at the 

office are fixed in space. The faster someone or something travels the lower 

the gradient of their space-time path (Figure 2.14). This occurs as less time 

is sacrificed for more space (Miller 2005). Understanding these concepts is 

important as they provide key constraints in handling population data over 

time in a GIS or distribution models. An individual is not divisible, cannot be 

created or destroyed and can only be in one place at a ‘time’. The notion 

that mobile populations are always moving between goals or destinations 

also must be upheld. The temporality is a larger concern when the time of 

day is considered, relative to the direction and movement of others within 

the same space-time block. For example, during ‘rush hour’ periods many 

people are competing at a time for the same path through space. This is 

evident in many urban areas as arterial road network or town centres. As a 

result Hägerstrand’s notion of constraints is apparent in dealing with the 

conflict. Furthermore, this delays or restricts some people’s movements. 

Thus, time-space paths, and their gradients are an important consideration 

for any time GIS or model.       

Every task an individual can undertake is time demanding and therefore 

uses up time as a resource. Movement between two points spatially 

separated can only occur with the sacrifice of time. Every facility that 

provides a space that can be occupied, such as a piece of land has a limited 

packing capacity. This occurs as no two physical objects can occupy the 

same space at the same time (Pred 1981). Therefore a path and individual 

consume the space in which they exist. As a result of this concept and the 

notion that a finite space-time resource is indivisible it forces alterations in 

individual movements (Pred 1981). Activity bundles form where the paths of 

two or more individuals combine and their convergence is the ‘station’ or 

‘domain’ (Figure 2.14). The concept of the space-time prism is similar to 

that of the path. Attending something such as an ‘event’ takes up time, a 
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finite resource during a day, in a bounded area containing a population. 

However, an object’s path is constrained by time. For example, if a person 

leaves and returns to work at two fixed times in a given interval, there is 

only so far in space that their path is permitted to go and this is termed the 

potential path space.  

It is accepted that Hägerstrand’s ideology is a useful descriptor of how the 

daily life of individuals unfolds in space and time, however it does not 

explain how domains and stations are produced or how meaning becomes 

associated with history, time, place and space (Harvey 1989). Following this 

critique, the argument has arisen that time-geography is too physical and 

mechanical and treats the individual as an object without thought, 

experience, feelings or expectations for the future (Lenntorp 1999).  

An objection regarding time-geography is that it does not consider an 

individual as an acting subject. Five main critiques have been delineated (Per 

Olof 1991). Firstly, it is argued that the concept represents physicalism, the 

philosophy that only physical objects exist. Therefore it is argued that time-

geography may be more suited to the physical rather than social sciences. 

This is a philosophical argument that things do not exist beyond their 

physical properties, therefore non-physical things do not exist. Secondly, it 

is argued that little consideration is given to social interaction, and 

individuals are considered as mere objects. Thirdly, humans or objects are 

not considered as acting components. Fourthly, human activity and social 

processes are not considered. Finally, time-geography is undeveloped and 

has an unproblematic perception of time. However, concepts of this 

approach are contained within the proposed methodology in this thesis. 

Population data are considered with respect to corresponding demographic 

information. Secondly population is considered as highly mobile and 

interactive. Here it is appropriate to treat population as a physical, socially 

complex asset in order to ascertain physical exposure estimates for hazard 

applications within the natural sciences.         

2.5.3 Time GIS 

There is a clear shift in the spatial distribution of population between night 

and day as people migrate between their usual residence and places of work 
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and other activities. Currently, most available population datasets have no 

temporal component (McPherson and Brown 2004). Large errors in 

population data occur in daytime estimates as they do not consider travel to 

work, education, shopping and other actives between which people may 

migrate during the day.  McPherson and Brown (2004) note that there are 

two primary methods for building population datasets: labour intensive 

demographic counts or employing the use of a GIS or remote sensing. 

Langran (1993) noted several practical issues which need to be considered 

while attempting to create a spatiotemporal database using a TGIS 

concerning representation, updates and longevity.  While this section 

focuses on the temporal component of a GIS there is inherently some 

spatiotemporal discussion as traditionally GIS are spatial in nature and this 

section attempts to address the addition of a temporal component. Whether 

there are currently any interpolation applications that are truly 

spatiotemporal in nature rather than just ‘space plus time’ is reflected upon 

in Section 2.6.      

People’s lives consist of activities undertaken in both space and time. All of 

these activities such as work, study, travel, shopping and leisure occur at a 

geographic location and for a specified time of a given duration. Societies 

devote a large amount of resources into easing or trying to overcome spatial 

or temporal constraints (Miller 2005). One of the main challenges facing the 

geo-representation of data in GIS is the problem of ‘timeless space’ based 

on the conventional two or three dimensional approaches. The argument for 

geo-representation into the future is based on the inclusion of time with 

space in order to explore the dynamic phenomena experienced (Raper 

2000). 

The addition of time as the fourth dimension into a GIS is required for a 

spatiotemporal representation. Most methods represent space with 

reference to time, such as the traditional time-slice noted by Massey (1999). 

However, systems need to shift from just organising space over time to 

representing real world phenomena in space and time (Wachowicz 1999). 

Many people consider maps a snap-shot in time, rather than of time, often 

pre-empted by the ideology of publication dates or the timespan over which 

data were collected (Wood and Fels 1986). Geographic data have been 

described as having three components; theme, location and time (Sinton 
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1978). In order to measure a component another has to be controlled and 

one fixed. Often in the case of cartography time is fixed (Langran and 

Chrisman 1988), an historical theme of space without time traditionally 

considered in GIS.   

Similarly to Hägerstrand and Pred, Wood and Fels (1986) represent a 

spatiotemporal representation of movement (of a bus) through space. This 

is represented in a three-dimensional diagram where the bus is always 

moving up, along an axis, in time. A planar representation is given, 

demonstrating the two-dimensional ‘traditional map’ depiction. The 

temporal dimension has been flattened to zero thickness and space 

emerges as the product of temporal flattening and the closure of movement.  

The proliferation, and seemingly rapid advance, of ICT and 

telecommunications has changed the ways in which people act and how they 

communicate, altering the spatial and temporal distribution of human 

activities (Yu and Shaw 2008). Of the attempts made to create a truly 

temporal GIS, Hägerstrand’s space-time prism concept is projected as a 2D 

surface, usually adding time as attribute data. This approach highlights the 

limitations in early GIS designed for handling spatial and cartographic data.     

The increasing use of dynamic information in GIS can allow some temporal 

properties to be applied to objects, such as individuals in a population. 

Dynamic information concerns the data stored about an object that can 

change in a short period of time. This can be subdivided into real time, near 

real time and time stamped data (Yu 2006). The delay in entering real time 

data into a GIS may occur due to transfer times or for data processing to 

take place. Therefore, often near-real time is currently the most realistic 

approximation to real time. Time stamped data may often utilise temporal 

information added as an attribute. Such attributes may contain when the 

event occurred, the duration or when the data was transferred.  

The differences in time described are not in the physical properties of time 

itself, but in the conceptual models used.  Models are utilised to simplify 

reality and many are temporally unconscious. Langran (1992) summarises 

three aspects of cartographic time, distinguishing database time relative to 

real world time, where database time is equal to, less or greater than world 

time. These situations are based on the statements of what we currently 
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know, how something appeared in the past and how it may appear in the 

future respectively. The traditional use of time in GIS has been to use a 

timeline. 

A common theme in the traditional use of GIS and many time models is to 

use a point in time to describe when an event occurred, but to have no 

duration. This can be referred to as ordinal time. This technique is common 

in most GIS packages and it additionally allows the calculation of a duration 

between two points  (Frank 1998). The use of integers or real numbers on a 

timeline can exclude temporal information that is available but not at the 

precise level of detail required. 

The traditional method to organise time is on a globally recognised fixed 

scale such as days, months and years. A fixed time interval might also be 

chosen by the user to reflect the temporal resolution they require or have 

available. Although the fixed time interval is relatively straightforward to 

implement, an issue arises concerning the arbitrary choice of temporal 

boundaries (Shaw et al. 2008). 

The cyclical measurement of time is widely accepted, often as a result of the 

astronomical processes first used to measure time. Many natural processes 

are influenced by these such as tidal change or diurnal animal migrations 

(Frank 1998). The order of cyclical time points is meaningless. For example 

morning is before evening which is before the following morning. Time 

measurement systems such as the 24-hour clock or dividing the day into 

two periods, post and ante meridiem allow a relative order, but is midday 

still before midnight? The same argument can also be highlighted by 

attempting to define the order of the seasons.  

GIS software continues to be updated to develop new methods for handling 

and visualising temporal data. Examples include time series animation in 

ESRI’s ArcGIS package, the earth trends modeller in the IDRISI software 

system and the TimeManager QGIS plugin to animate vector features.   

In summary, time has been recognised in GIS for nearly as long as the 

history of GIS itself, however the ability to handle temporal information has 

been a point of discussion as explored in this review. The argument has 

been proposed that although time may have been taken into consideration, 
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the complexity of handling temporal information and a primary focus on 

spatial data has often resulted in atemporal uses of GIS. The application 

examples that follow demonstrate analysis of population with respect to 

time. Better integration and recognition of time as a fourth dimension in 

contemporary, more computationally efficient, systems may highlight the 

requirement for more thought to be given to future analysis concerning time 

and space. There is still a discussion on whether current systems can truly 

be considered four-dimensional or spatiotemporal in their approach (Section 

2.6).    

The importance of the temporality of population data has been recognised 

by Bhaduri et al. (2007) in the novel LandScan USA application. LandScan 

USA has created a high resolution (90 m) population density map covering 

the USA using a dasymetric model and applied a temporal profile. As already 

noted, population data, commonly published as census outputs, are 

spatially constrained and atemporal. Censuses are usually only 

representative of who stayed where on one night, usually once in a decade. 

This is often referred to as the ‘night-time population’. The mobility of the 

population results in the temporary relocation to other, often daytime, 

locations which are different to those represented by the census counts. 

Bhaduri et al. (2007) conceptually describe day and night-time population 

as: 

𝑁𝑖𝑔ℎ𝑡 𝑡𝑖𝑚𝑒 = 𝑅𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 + 𝑁𝑖𝑔ℎ𝑡 𝑡𝑖𝑚𝑒 𝑊𝑜𝑟𝑘𝑓𝑜𝑟𝑐𝑒 + 𝑉𝑖𝑠𝑖𝑡𝑜𝑟 

+ 𝐼𝑚𝑚𝑜𝑏𝑖𝑙𝑒 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

𝐷𝑎𝑦𝑡𝑖𝑚𝑒 = 𝑊𝑜𝑟𝑘𝑓𝑜𝑟𝑐𝑒 + 𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠 & 𝑃𝑢𝑝𝑖𝑙𝑠 + 𝑉𝑖𝑠𝑖𝑡𝑜𝑟𝑠

+ 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑁𝑖𝑔ℎ𝑡 𝑡𝑖𝑚𝑒 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 + 𝐼𝑚𝑚𝑜𝑏𝑖𝑙𝑒 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

This example highlights the use of the diurnal cyclical time scale. As already 

noted precise definitions of time can pose complex challenges, and the 

same applies to the notion of ‘daytime’ which is variable in terms of length 

of daylight hours. Bhaduri (2008) suggested the use of ‘normal business 

hours’ according to the US census definition. The UK census definition for 

daytime population counts the population aged 16-74 who do not work, but 

are resident within an area as well as all people who are working in the area 

(National Statistics 2004).  



Spatiotemporal population modelling to assess exposure to flood risk 

 

 
84 

LandScan USA uses a dasymetric interpolation model to create national 

gridded population density estimates at three arc seconds (c. 90 m). The 

temporal GIS component, concerning the daytime distribution, was obtained 

using student and workforce location datasets. The LandScan global model 

exemplifies diurnal change in population distribution due to employment 

location. It uses the assumption that most people leave their night-time 

address and work during the daytime at their employer’s location. The travel 

to work time is estimated, but does not take into account the time of day 

and the effect on the journey. Therefore, it represents an average over a 24 

hour period (Bhaduri et al. 2007).  

In one dataset example, the LandScan USA model uses a national school 

dataset to identify an important location of dense and vulnerable 

population. Following calibration spatial and temporal inconsistencies were 

discovered within the national dataset (Patterson et al. 2007), highlighting  

Langran’s (1993) key spatiotemporal database issues concerning 

representation, update and longevity. The Population 24/7 method 

proposed (Section 2.7.1) can also handle a range of datasets, particularly 

those concerning school and workplace population. Its structure also 

permits updates for longevity.  

Daytime population estimates contain two distinct properties, the locations 

of daytime activities such as workplaces, and the distribution of the 

population at those locations. The first property concerning physical 

geographical locations is usually easy to obtain and static. However, it is 

extremely difficult to obtain information concerning the movement and 

magnitudes of population change during the day. Although some isolated 

datasets exist, these are rarely on a national scale, sufficient to estimate the 

displacement of night-time population counts captured in a census (Bhaduri 

2008). 

2.5.4 Analytical and simulation tools 

Microsimulation models (MSMs) provide an alternative methodology to 

represent population change over time and space. They capture interactions 

such as those between people and policy decisions at the level of the 

individual decision making units (Orcutt 1957). Lee (1973) critiqued such 
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models noting the lack of transparency for policy makers and the failure of 

large scale urban models to reach set goals. At the time, large scale was a 

reference to the costly computer resources required for models that were 

then computationally intensive.   

In contrast, the Modelling and Simulation for e-Social Sciences programme 

(MoSeS) aims to demonstrate a scenario in which the capabilities of gridded 

computing are utilised to develop tools in population modelling and 

simulation which surpass previous attempts in terms of power and capability 

(Birkin et al. 2007a).  This concerns the development of a UK national 

demographic model and simulation of the population on an individual scale 

(Birkin et al. 2007b). MoSeS is based around microsimulation, with a similar 

requirement to that of SurfaceBuilder247 in relation to establishing a 

complete and detailed representation of a base population (Birkin et al. 

2009). The MoSeS programme model attempts to simulate future population 

scenarios based on individual agents. Unlike the Population 24/7 model to 

be discussed in Sections 2.7.1 and Chapter 3, which employs a distance 

decay function based on temporally observed patterns, MoSeS relies on 

simulations to inform future patterns of a population’s behavioural 

characteristics rather than focusing on an estimated location.  An advantage 

of coupling microsimulation with agents based models permits the use of 

traditional mathematic modelling with the addition of individual behavioural 

information (Birkin and Wu 2012).     

Ahola et al. (2007) present a convincing spatiotemporal interpolation of 

population data for a city centre to improve risk assessment and decision 

support analysis to support the emergency services and military. Building 

data were used to classify areas based on their use and as a spatial 

reference for a population. This includes data such the locations of leisure 

facilities, schools and shops. Population counts were obtained from the 

number of children in schools, people in a shopping centre and data relating 

to traffic volumes. Yuan (1996) employs a three domain model which treats 

attributes, spatial and temporal data in separate linked domains. For 

example an attribute might be a building with description and number of 

population contained. The spatial component is the physical location and 

temporal information concerns the number of inhabitants expected at 

different intervals. Temporal information relating to population variations 
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were divided into ten categories broadly concerning sub-population types by 

age or occupation.  

Tools to simulate population movements are also widely used by logistics 

and transport modellers. The TransCAD transportation planning software 

(http://www.caliper.com) integrates demand modelling with GIS. It permits 

network analysis, distance/travel time estimates and destination-origin 

flows. These tools could potentially be integrated with the Population 24/7 

method currently being developed. They provide exciting practical 

developments in the ability of GIS systems to handle spatial and temporal 

data. Presently, the datasets for use with Population 24/7 also hold 

information on population origins and destinations, but it currently is not 

possible to define the exact route of flows between such sites.           

Within these sections a range of time scales have been discussed, how 

population varies within these and methods to represent this data. 

Traditional GIS software has handled population data without time, although 

spatiotemporal concepts have been around for some time (e.g. Hägerstrand 

1976; Langran and Chrisman 1988). The consideration of time in addition to 

the spatial distribution of population and how this changes has been 

demonstrated to be an important characteristic. This thesis builds on these 

concepts to develop a tool, and it’s applications regarding hazard, to handle 

spatiotemporal data. 

2.5.5 Space-time kriging 

Space-time kriging has been used for the geostatistical analysis of 

environmental data (e.g. Bogaert 1996; Heuvelink and Griffith 2010). They 

have been applied to human population data analysis in terms of diseases 

modelling (e.g. Gething et al. 2007). Rouhani and Myers (1990) suggest 

limitations in the application of this technique on some geographic datasets 

particularly where there is a high degree of dependence in either the spatial 

or temporal domain. It is acknowledged that kriging applications can be 

used with spatiotemporal data. However, this thesis is focused on the spatial 

analysis of population data considering the spatial and temporal dimensions 

rather than a geostatictical exercise. A spatiotemporal KDE is the preferred 

method of choice best suited to the population datasets available for this 

http://www.caliper.com/
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study. One advantage is the ability to use known local dispersion parameters 

for specific population sites. 

2.5.6 National Population Database 

The problems associated with static population estimates for emergency 

responses are recognized by the Health and Safety Laboratory (HSL), an 

agency of the UK’s Health and Safety Executive. They identify that national, 

robust and detailed population data are required to address the risks posed 

to people from hazardous events.  

The National Population Database (NPD) (HSL 2014) is a novel, powerful GIS 

tool created by the HSL. Its coverage extends across the whole of Great 

Britain (GB). It is formed of a geodatabase containing mixed-use population 

centroids. The population groups included within the NPD tool are 

summarised in Table 2.3. It was created by applying generic population 

multipliers to buildings, transport and land use types to produce a database 

of population density.   

 

Table 2.3 NPD population components (Smith et al. 2005) 

Population type Example/temporal properties 

Residential Day and night-time, daytime tem-time  

Sensitive Hospitals, schools and care homes 

Transport Motorway and A-road average/peak populations 

Workplace Daytime working population 

Communal establishments Prisons, campsites, stadia, leisure facilities.  

Retail Average/maximum daytime population 

 

The tool is built on a wealth of datasets including the postcode directory, 

local authority information, government administrative datasets and OS 

data. The database is restricted to public service users as a collection of 

population centroids or a 100 m grid of points. The database is queried 

though a standard GIS interface. It provides some great advantages to 

standard aggregate population data. The Population 24/7 approach that will 

be discussed and implemented within this thesis (see Chapters 3-5) uses a 

similar categorised system of population centroids. However, unlike the NPD 
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they are modelled onto a variable raster grid. This increases processing 

time, but allows higher resolution temporal estimates to be produced. This 

permits the estimation of hourly population outputs compared to singular 

day/night-time estimates currently available within the NPD.
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2.6 Spatiotemporal interpolation of population data 

Applications of the spatiotemporal interpolation of population data have 

been highlighted in Section 2.5 with examples. This section outlines the 

need to move from traditional space and time representations to truly 

spatiotemporal interpolations, although very few practical examples can be 

found in the literature (e.g. Ahola et al. 2007 and Bhaduri 2008).  

There is a large expanse of literature concerning time-space, space-time and 

timespace (e.g. Hägerstrand 1975; and Thrift 1977; Pred 1984; Massey 

1999). A literature also exists on the place for space-time within the 

geography discipline (Merriman 2012) which suggests a paradigm shift away 

from ‘science’ and views space and time as a dominant view in western 

epistemology that clouds other judgement.     

Time-space snap shots mimic the effect of a slow motion camera as the best 

approximation to spatiotemporality in a GIS (Langran 1992). Snap shots 

represent change, an important feature of time. They only represent states, 

the change from one time to another, but not the events that cause the 

change. Spatiotemporal representation has a huge potential, but it is highly 

challenging (Raper et al. 2005). Traditional GIS and spatial data models such 

as raster and vector models limit the way in which dynamic data can be 

handled. A core element of spatiotemporal modelling concerns how to 

measure change over time and analyse the results in GIS. Ahola et al. (2007) 

suggest a suitable data model is the second core element for spatiotemporal 

modelling. Such data models can be categorised according to their 

organisation as space, time, feature based or a combination. Methods have 

been used to incorporate the spatiotemporal transformation including 4D to 

2D, 2D or 1D plus time (Raper et al. 2005), where time is considered the 

fourth dimension in the space-time continuum or a two-dimensional 

approximation is considered or a simple one-dimensional snap-shot in time. 

There is a requirement to develop tools, structures and visualizations to 

fully make use of spatiotemporal information (Raper et al. 2005).  

Conventionally, GIS facilitates the representation and interpretation of 

spatial data. Therefore it is useful for analysing the spatial patterns of 

activity (Wang and Cheng 2001). The functions of GIS have been hugely 



Spatiotemporal population modelling to assess exposure to flood risk 

 

 
90 

benefited by advances in computing power and availability, but still require 

further development to describe spatial changes with time. This builds on 

the argument put forward by Massey (1999) that ‘space’ is open and 

dynamic, it is not just a classic slice through time. ‘Space’ has a necessary 

temporal component with which it should be paired.  

The static representation of most map views in GIS often favours 

description. The consideration of movement and mobility often leads to the 

problem of sorting time-dependent attributes. GIS must support a number 

of other data types for the purpose of modelling complex behaviour. These 

include flow matrices that concern the movement of an object at a given 

point in time, between an origin and destination (Goodchild 2000). 

Therefore modelling movements often needs representation and 

methodologies not currently present in most GIS. Most GIS software is based 

on handling spatial data for mapping and navigational purposes. Digital 

representations are often static descriptions because it is difficult to build 

operations that process change over time. Combining space and time raises 

the issue of the representational problem (Fisher and Unwin 2005). 

Disaster risk cannot be fully assessed without taking into account 

spatiotemporal variations in population. Several novel high-resolution 

spatiotemporal population modelling techniques are emerging that readily 

contribute to the field of disaster risk management. Day and night-time 

population estimates for Lisbon to assess population exposure to seismic 

hazards have been constructed by Freire and Aubrecht (2012) with a spatial 

resolution of 25 m. Furthermore, Aubrecht et al. (2014) have developed 

DynaPop, a spatiotemporal population dynamics model, which further 

increase temporal granularity. Population outputs in raster format from 

DynaPop at 100-500 m have an hourly temporal resolution. This example 

has the potential to make significant advances on simple previous day and 

night-time estimates. This work draws on useful parallels with the 

Population 24/7 approach, the latter will be the focus of this thesis. In 

contrast to DynaPop, the Population 24/7 technique has been tested and 

suited for UK data applications. However, as spatiotemporal modelling 

techniques continue to evolve future cross-overs may become a focus of 

further work.          
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Finer temporal resolution population density estimates are still required for 

natural and technological hazard assessment (Bhaduri et al. 2007). A 

temporal GIS can be defined by the representation of location, attribute and 

time without fixing any component. Often one dimension is fixed, and 

therefore the GIS cannot be considered truly spatiotemporal (Langran 1992). 

Previous research has shown that diurnal shifts in population can be 

estimated (McPherson and Brown 2004) as has been demonstrated in the 

LandScan USA programme (Bhaduri 2008) and by Ahola et al. (2007), a 

starting point for the recognition of the temporal variation of population 

over space.
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2.7 Space and time in populations exposed to natural 

hazards 

Population is a function of both space and time. Limitations in mapping 

population have been acknowledged for some time (e.g. Schmitt 1956). 

Methods and caveats in mapping, storing and obtaining spatiotemporal 

information have been explored throughout this review and are summarised 

here in relation to the assessment of risk and vulnerability to natural hazard 

scenarios. Requirement for a better understanding of the population 

affected by natural hazards has been noted (Bhaduri et al. 2007; Aubrecht et 

al. 2012b). Large numbers of people are at risk from natural disasters such 

as earthquakes, volcanic eruptions, floods, droughts and wildfires. Typically 

they are mostly predictable (except earthquakes and some volcanic 

eruptions) and topographically constrained. Although hazards often cannot 

be prevented their impact can be minimised through effective disaster 

planning and emergency preparedness (Bhaduri 2008).  

The spatial and temporal components of both population distributions and 

natural hazard footprints are complex and likely to be the focus for 

interdisciplinary research between both the social and natural sciences to 

improve methodologies. The hazard component itself also has complex 

spatiotemporal characteristics, independent of population and 

administrative boundaries, which may be represented by simple static risk 

maps or dynamic models. In order to make accurate risk assessments, not 

only are adequate population data required but also the likely onset time 

and extent of a hazard scenario. In the study of natural hazards it has been 

recognised that improvements are required in the spatial and temporal 

detail of population density (Cutter and Finch 2008) to better plan 

emergency response, provisions and impacts.  

Spatial population interpolation techniques lend themselves well to natural 

hazard risk evaluation and provide an alternative to traditional methods. A 

number of examples such as kriging, pycnophylactic and masked gridded 

representations have been discussed within this review. Each provides 

different advantages such as volume preservation, surface smoothing, or the 

ability to handle zero population densities. Such modelled surfaces provide 
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an alternative to the conventional choropleth map and associated and 

unrealistic uniform population densities.  

An attempt to combine population, space and hazard is exemplified through 

Houston et al’s (2011) study into pluvial flooding of urban areas. They use 

census OAs, the smallest census output geography in England and Wales, to 

demonstrate the population potentially at risk by recognising the need to 

estimate numbers of people at risk rather than just properties, common in 

existing risk assessments. While this study recognises a decadal scale, it 

contains little temporal information. It might be argued that it is impossible 

to tell exactly when a hazard will occur, but the time of day it might strike 

will have enormous implications for the population.     

The size, location and demographic characteristics of a population are all 

drivers for the impacts of a natural hazard (Cutter 2010). Three components 

provide the intellectual basis for analysing population vulnerability and 

resilience to natural hazards (Cutter 2003): 

1. Physical processes: an understanding of the science of natural 

hazards. 

2. Human systems: interactions between society and the natural 

environment which contribute to vulnerability, such as occupation of 

hazardous areas. 

3. Local geography: an understanding of specific characteristics of a 

place such as the landscape, history, demographics and economics.  

Estimating population risk and vulnerability to natural hazards is 

complicated in part, often due to data availability. In a coastal flood 

inundation scenario this estimation is further complicated in areas of rapid 

population growth and development which continuously change the factors 

influencing risk and vulnerability (Chakraborty et al. 2005). This also 

contributes to spatial variations in the populations risk and vulnerability. 

Spatiotemporal population interpolation estimation techniques have been 

developed and lend themselves for application to hazard risk management 

where vulnerability and population are defined as key characteristics (Table 

2.1). This requirement has been reflected in both the literature and 

legislation resulting from natural hazard events.     
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Decadal censuses in many countries provide accurate and comprehensive 

aggregate population counts. However, these pose limitations for 

application to natural hazards, particular in the event of cross boundary 

impacts. Areas affected by natural hazards are not constrained within 

arbitrary administrative boundaries. 

Gridded population surfaces provide a universal structure with increased 

stability through time which also promotes greater compatibility with other 

environmental datasets required in the hazard management process. 

Population data are often aggregated to administrative zones or units before 

publication. These vector data structures and arbitrary units often relate 

little to the local topography and are incompatible with traditionally raster 

based environmental datasets (Martin and Bracken 1993). Where gridded 

population datasets are available these have been applied to make better 

predictions about the population affected.  

The shift from displaying population within modifiable areal units to a 

universally compatible grid provides the first step towards enhanced 

assessment for potential hazard exposure. Where population data are not 

published as a grid, spatial interpolation methods such as those discussed 

in Section 2.4 by Tobler (1979) and Martin (1989) provide a method for 

disaggregation. Tobler’s pycnophylactic approach produces a ‘smoothed’ 

population surface. This removes abrupt changes at the boundaries of data 

contained within irregular units. However, Martin’s (1989) approach allows 

for locations of zero population density. This is particularly important when 

concerning uninhabited locations such as water, parks or woodland. 

Therefore this can provide a more realistic location for populations 

potentially at harm during a natural hazard event. While the footprint of 

some hazards may be unpredictable such as earthquakes or meteorite 

impacts, others may form predictable extents such as the path of a 

hurricane or water inundation in low lying floodplains. High resolution 

disaggregated population counts permit the micro-assessment of impact as 

well as understanding the wider implications.    

Although grids provide greater flexibility for comparison to hazard data they 

still only provide a static representation of the population at a given point in 

time. Censuses provide a ‘night-time’ residential population count to 
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produce a decadal time slice. The size, location and demographic 

characteristics of a population are all drivers for the impacts of a natural 

hazard (Cutter 2010). These all have an important implication for natural 

hazard impact assessments. The predicted or actual time of the 

manifestation of a natural hazard occurring is going to expose greater 

numbers of a potentially vulnerable population if for example it occurs at 

peak work rush-hour or during educational term time.  

Resilient societies may have developed mechanisms to cope with high 

frequency, low magnitude events. Developing and combining realistic 

temporal population estimates and natural hazard scenarios of variable 

magnitudes allows the analysis of a worst case situation and measure of 

risk. This may be in the form of an unexpected or high magnitude event that 

a population is unprepared for or vulnerable to.   

Gridded population estimations (Section 2.4.4) have been demonstrated to 

provide a more flexible and realistic distribution of population. A critical 

application for accurately estimating the population at risk during a hazard 

scenario includes assessing the population exposed or injured and 

emergency preparedness (Bhaduri et al. 2007). 

To conclude, a number of questions and considerations in the application of 

spatiotemporal population modelling to natural hazards have arisen 

following this review: 

 Develop a practical method for spatiotemporal population modelling 

 Overcome challenges of data processing and representation   

 Proper integration between population and natural hazard risk 

models which both change over time 

2.7.1 Population 24/7: spatiotemporal modelling concepts 

A new approach is required and a possible method is provided by Population 

24/7 (Martin et al. 2009) which will be introduced in the empirical chapter 

of this thesis. Like the original SurfaceBuilder software (Section 2.4.4) 

(Bracken and Martin 1989) the Population 24/7 approach also redistributes 

centroid populations onto a variable grid. A population may be associated 

with different types of locations representing spaces of human activity such 
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as places of residence and work. These are represented by centroids. A 

centroid is a geographically referenced point with an associated population 

count. Population centroids weighted to the most likely place of habitation 

have been released in recent UK census datasets. However, custom 

population centroids can also be created for use with the Population 24/7 

method to represent population activity types. Centroids can be divided into 

two categories: population origins and destinations. Origin centroids, which 

supply the population to be redistributed onto a defined grid, might be 

comprised of the aforementioned census centroids. Destination centroids 

provide locations to receive the given population at a stated capacity such as 

a business, hospital or school. These are the locations where population 

may be present at different times during the day. Importantly, temporal 

profiles can be associated with each of the destination centroids, a 

difference from the NPD (Section 2.5.6). The temporal profile governs the 

proportion of the total capacity for a destination centroid to be occupied for 

a given time. At any moment in time, the whole population is either at one 

of the locations represented by a centroid or travelling between them. These 

can be termed the ‘on-site’ and ‘in travel’ population. The on-site spread 

describes the population present at or immediately surrounding a centroid, 

either origin or destination, location. The in travel count describes the 

population in transit between centroids. The proportion of an origin 

centroid’s immobile population can be user specified or based on available 

data. A background layer may also be created to weight the in travel 

population onto road networks or to prevent placement in uninhabited areas 

such as water. 

The Population 24/7 approach has been chosen to underpin the empirical 

work within this thesis because of its ability to facilitate the production of 

gridded population distributions for a specific time and date. Its flexible 

data structure also allows the richness of population attributes to be 

increased and ensures data currency. These are fundamental considerations 

when assessing human risk to natural hazards which are both space and 

time specific. The methodology provides a mechanism to estimate 

temporary and transient populations that are not accounted for by 

traditional means. For example, this includes information on the number of 

employees or shoppers in retail locations on a high street. This would need 
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to consider both the temporal and spatial attributes. The combination of 

available datasets with the ability to store temporal information produces 

spatiotemporal gridded representations of populations accounting for local 

variation. The variable gridded method allows such micro trends to be 

resolved. 

The Population 24/7 approach also facilitates analysis of the vulnerability of 

populations through the ability to handle socioeconomic attributes for sub-

groups where data can be assembled. As already noted, vulnerability is a 

key contributing factor in the development of risk. The capacity to handle 

age information may inform management choices for groups such as the 

young or elderly who may face greater risks and require additional support 

during a natural hazard event. It also increases the accurate placement of 

populations within space and time, such as school age children at school 

locations.  

 



   

99 

Chapter 3:  Methods and Data 



Methods and Data 

 

101 

3.1 Overview 

The work presented here combines the use of a spatiotemporal gridded 

population model to estimate time-specific variations in population with 

natural hazard exposure estimates in the form of flood inundation data. It 

has been exemplified through an application centred on Southampton (UK) 

using Environment Agency flood map inundation data. The proposed 

methodology is summarised in the analytical overview provided in Figure 

3.1. This can be considered as three subcomponents. These will be outlined 

in turn within this section. Figure 3.1A covers the spatiotemporal modelling 

process, Figure 3.1B the hazard component and Figure 3.1C brings these 

GIS based datasets together for analysis. Often natural hazard and 

population models are not linked. The proposed methodology aims to 

demonstrate the improvements to risk analysis when these are considered 

together. This chapter begins with a description of the Population 24/7 

methods and creation of datasets, then the study site and flood hazard data 

are introduced. Finally the data analysis is described and results presented. 
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Figure 3.1 Overview of analytical operations to assess natural hazard exposure. 
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3.2 Modelling Population, Population 24/7 and data 

structure 

The spatiotemporal population modelling component (Figure 3.1A) follows 

the Population 24/7 methodology developed by Martin et al. (forthcoming). 

For this application population data are modelled onto a regular grid with 

200 x 200 m cell size, which is appropriate to the resolution of the available 

input aggregate data sources. The technique employs a variable kernel 

density estimation technique to redistribute population from origin to 

potential destination locations according to a distance decay function 

depending on the time of day. A dataset of destination locations was initially 

collated for the Population 24/7 project, which includes places of work, 

education, and health care. This research has extended these methods and 

datasets by building on this original ‘library’ of potential population 

locations. The library is extensible, thus allowing users to develop their own 

datasets, particularly for non-residential locations.    

Population capacity
Geographic 

coordinates and 
extent

Temporal profile
Wide Area 
Dispersion

Model Database 
Structure

Population capacity
Geographic 

coordinates and 
extent

Destination centroid Origin centroid Background mask

Wide Area 
Dispersion

 

Figure 3.2 Population model data structure 

This section provides an overview of the SurfaceBuilder247 software and the 

method for compiling the required datasets on which the model runs. The 

revised algorithm and updated software currently packaged as 

SurfaceBuilder247, the successor to the original SurfaceBuilder has several 

additional features. The spatiotemporal, ‘24/7’, version of the model has 
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been developed to accept destination centroid locations as well as an 

associated temporal profile, in addition to the original origin centroids 

(Martin et al. 2009) (Figure 3.2). This has the effect of describing a 

population’s presence at different times in a more realistic spatial 

distribution. These are described in turn in the subsequent sections.  

Following a review of the literature it is observed that the methods and 

criticisms in the interpolation of population data have been around for some 

time. It has been noted that population data are commonly aggregated into 

a wide range varying of spatial units and reporting zones. This is primarily 

driven by data management and privacy constraints. Innovative 

spatiotemporal population modelling methods developed through the 

Population 24/7 project will be developed in this thesis. It is intended that 

these developments will permit significant improvements in the assessment 

of populations exposed to natural hazards.  

3.2.1 Origin centroids 

The origin centroids provide the source, or supply pool, of population that 

can be utilised and distributed by the model. An example would be census 

centroids. However, origin centroids could be created by the user to 

georeference an associated known point of population. Locations of 

immobile populations such as prisons can be specified. An attributed 

population count specified as immobile will not be redistributed when the 

model runs. The combined population of the origin centroids defines the 

model's input population. 
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Figure 3.3 Census output areas and population weighted centroids for Southampton, UK. 

Population weighted census centroids are a common feature of many census 

datasets. The centroid represents how the population was spatially 

distributed within that reporting zone. Figure 3.3 provides an example for a 

mainly uninhabited, and therefore comparably greater spatial extent than a 

more densely populated census OA
1

 in Southampton. In this example the 

centroid is located within the area of highest population density as 

expected. Figure 3.3 also represents the highest resolution input population 

data currently available for this study.  

3.2.2 Destination centroids 

Destination centroids represent all possible locations where a population 

may move throughout the day. Common examples include places of work, 

leisure or education. The user can compile any number of destination 

centroids of choice. The purpose of this feature allows a pool of available 

population, attributed to residential origin centroids, such as ‘night-time’ 

census counts, to be allocated to more temporally relevant locations. Each 

destination centroid is assigned a capacity to receive population, which may 

                                           

1

 At the time of writing small area statistics for the 2011 UK census had not yet been fully released. 

Therefore, 2006 MYEs and 2001 output geography have been used for the current study. 
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vary depending on the time of day and day of week, and is governed by an 

associated temporal profile. The purpose of the introduction of the 

destination category of centroids is to provide more realistic daytime 

population density estimations. 

The population of the destination centroid is assumed to be drawn from the 

surrounding origin locations. The area of influence is the distance over 

which population is reallocated from origin centroids to the destination in 

question. This is equivalent to a catchment area for the destination and can 

be described by a wide area dispersion (WAD) function for each individual 

destination centroid. Careful data collection or analysis may be required to 

justify the WAD function. In some examples such as a school the 

destination’s population is likely to be constrained to origin centroids falling 

within the radius of the school’s catchment area. Future, more sophisticated 

versions of the model could be adapted to integrate spatial interaction 

models to inform the WAD. If the data were available, real-time information 

on population flows could be incorporated in the future.    

In order to describe a destination centroid location the following essential 

factors need to be considered (Martin 2011): 

 Geographical location: this provides the spatial information on 

exactly where a given population will be, such as the coordinates of 

the building or venue represented.  

 Population capacity: the population capacity for each destination. For 

a school this may be derived as the number of pupils and staff. 

Additional datasets and analysis are required when attempting to 

estimate the population of a destination whose visitor population is 

less clearly defined, such as a shopping centre (Section 3.3).    

 Time profile: information is required at each destination centroid to 

describe the temporal pattern over which population is expected to 

be present (see Section 3.3.2). 

 Spatial extent (or Local Dispersion): by definition a centroid 

represented as a single (x,y) coordinate pair is a precise ‘pinpointed’ 

location. In reality almost any feature such as a shopping centre or 

school is going to occupy a larger spatial extent. For example a 
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primary school site may cover an area with radius of 200 m so would 

be assigned an extent of 200 m to reflect this. 
 

   

 Wide Area Dispersion: The distance the population travels to reach 

the destination centroid location. As it is extremely unlikely that 

everybody travels the same distance, a wide area dispersion function 

can be specified in various ways (see Section 3.2.4).  

3.2.3 Temporal profiles 

The temporal profile is only required for destination centroids (Figure 3.4), 

referenced in the corresponding destination dataset. An exact time profile 

could be constructed from raw count data if such data are available at the 

required spatiotemporal resolution. An example would be the school age 

population allocated to a school during opening hours. A profile is not 

required for the origin centroids which represent residential locations; 

although a part of the population may be declared as ‘immobile’ if they are 

considered unable to travel to other destinations. Examples would include 

prisoners and a proportion of the elderly or hospital inpatients.   

A time profile comprises two parts (Figure 3.4). The first part concerns the 

‘in travel’ population associated with the destination. The second defines 

the proportion of the destination’s population capacity that is actually 

present, ‘on site’ at a specified time. A defined population capacity for the 

destination is paired with a time stamped interval, t1, t2 … tn. The population 

capacity represents the notional population of the destination when it is 

fully occupied, for example when all children are at school or all employees 

at work. The time profile defines the destination’s expected population as a 

proportion of this capacity during each time period.     
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Figure 3.4 A simple temporal profile illustrating the proportion of a destination centroid 

capacity occupied (on site) and the population in travel.  

In this example (Figure 3.4) none of the destination’s capacity population 

are in travel at 4 am, and by 10 am, 81% are on site. A time profile can be 

constructed in any number of intervals covering a 24-hour day. Different 

time profiles may be assigned to different days of the week, term 

time/holiday time or seasons. A specific target time is selected for each run 

of the model, and any destination centroids within the analysis area will be 

processed according to their time profile. Therefore, if the model is run for 

10 am in this example (Figure 3.4), 81% of the capacity population is 

expected to be present. Thus, if the declared capacity is 100 people, then 

81 people will be allocated from surrounding origin centroids, which fall 

within the area of influence to the destination. 

3.2.4 Wide Area Dispersion (WAD) 

The wide area dispersion (WAD) provides important information utilised by 

the model concerning the supply of people to an area. The WAD describes 

the population demand of the destination centroid at the target time which 

is transferred from population origins within the area of influence. 

Conventionally this may be informed through spatial interaction models 

(e.g. Diansheng 2009), however the WAD in effect records data on the 

distances travelled from known locations or centroids. Population counts are 

only supplied from origins falling within this area of influence.  
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For the purpose of this model the WAD comprises bands which describe the 

proportion of population travelling from a specified distance. In the example 

represented (Figure 3.5) a proportion of a destination’s population is 

supplied from within 100 m, 2 km and 3 km. A worked example is provided 

in Section 3.3.6.  

 

Figure 3.5 Wide Area Dispersion for a destination centroid 

If there is insufficient population to supply the demand in any band, the 

search radius will be increased (Martin 2011). In some cases the WAD may 

be clearly defined such as travel constrained within a catchment area, for 

example in relation to a school.  

3.2.5 Background masking layer 

A background layer can be used to represent land use and transportation. 

This provides constraints on the locations of any population that is not 

allocated to a centroid location (e.g. the population ‘in travel’). The 

background layer should prohibit placement of population in uninhabitable 

space such as open expanses of unoccupied countryside, large water bodies 

and oceans. For the current version of SurfaceBuilder247, the dataset may 

be prepared in a GIS and exported as a raster data file to be read by the 

model. 

Using a dasymetric approach (e.g. Langford 2007) a land use classification 

may be applied in to the masking layer to constrain population to inhabited 

locations. This can be applied to the population not present around any of 

the centroids at the specified time (such as those ‘in travel’). However, this 

may have limitations within the current study as traditionally ‘uninhabited’ 
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locations such as shipping docks or areas of industry can receive large 

temporary populations when passengers and the workforce are present.       

To generate a background mask it is necessary to combine the relevant 

datasets depending on the study area or user’s requirements using GIS. 

Features can be weighted, if possible, to where they are likely to receive 

more population than others. The GIS dataset is rasterised at the required 

output resolution based on the weighting values to be read by the model. 
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3.3 Applied example: Southampton, UK 

This section provides a worked example for the creation and application of a 

retail customer dataset covering Southampton, UK for use in 

SurfaceBuilder247. An exemplar retail dataset has been created because the 

retail population is an important spatiotemporal phenomenon as many city 

centres and shopping districts see a large increase in population number 

during the day that is not apparent in traditional census datasets. This 

dataset has been developed for implementation in the current model for this 

thesis. This section describes the creation of origin census centroids, a retail 

temporal profile, retail destination capacity and finally a retail WAD. This is 

just one of many other leisure datasets that could be created to represent 

population activity in addition to work and education. While this is a specific 

retail example the principles of dataset creation are universal.   

A 25 x 25 km study area centred on Southampton has been selected to 

demonstrate dataset construction (Figure 3.6). A further 25 km buffer zone 

surrounds the study area in order to supply population to destinations 

towards the edges, helping to relieve any ‘edge effect’ on the study area in 

question. An edge effect occurs where centroids on the boundary will in 

reality be interacting with populations outside the defined study area as 

there is often no finite line where population movements and interactions 

cease. However this case may be argued along international borders or 

physical geographic barriers.     
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Figure 3.6 Southampton study area and flood risk 

3.3.1 United Kingdom census origin centroids 

Census population weighted OA centroids are used for the origin centroids. 

These provide a comprehensive population count at the current highest 

spatial resolution for the UK census. The majority of OAs contain between 

110-139 households (ONS 2012a). The centroid locations are population 

weighted, providing a best fit by means of a single point of the spatial 

distribution of population from each respective OA (ONS 2012b).   
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3.3.2 Temporal profile creation 

The retail dataset is just one of several datasets required to set up the 

population model used in this thesis. Its purpose is to map the times and 

locations of people doing their shopping that contribute to large temporary 

population variations. However, these data are not readily available so the 

necessary parameters outlined have been derived from broad national 

datasets for specific locations. In a retail example electronic point of sale 

(EPOS) data available commercially or collected by large retailers could 

instead be used as a proxy for the retail time-specific population providing a 

high temporal resolution. Where true count data are unavailable, numerous 

approaches could be devised in an attempt to create a temporal profile. 

Temporal profiles are specific to particular destination centroid type. The 

following discussion will help to demonstrate one method to construct such 

profiles. This discussion concerns the two components required for 

constructing a valid temporal profile, the on-site and in-travel populations 

(Figure 3.7). Some additional information is required: the average occupancy 

duration, the average travel time to the destination (which may also be 

required for WAD calculations) and the proportion of the total population 

capacity expected to be present at a given time.  

Figure 3.7 demonstrates that there are three principal population subgroups 

to consider in relation to destination locations. These are the population 

movements to and from a destination and the population present. This 

population can be taken from any origin centroid from within the 

destination’s catchment. 
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Figure 3.7 Modelled population movements and locations 

One method for calculating a temporal profile begins by considering the 

proportion of people expected at a given start time, the first entry on the 

time profile (t1) (Figure 3.4). The following calculation is proposed to 

estimate the on-site population, the population expected to be present at 

the destination site for the given time:    

The population on-site (O) at centroid j at for a specific time interval: 

             𝑂𝑗 = 𝐶𝑗𝑝𝑗                                                 (3.1)                   

Where, C is the population capacity of destination centroid j and P is the 

proportion of the centroid’s population expected to present (Figure 3.7).  

The in-travel population is determined through the sum of the following 

formulae (Eqs. 3.2 to 3.4) which concern three principal movement states. 

The first is associated with the in-travel population travelling to a 

destination centroid. This is calculated by detecting a population increase 

between two time intervals representing the population en route. If this 

value is zero, then nobody is in effect currently en route and thus it will not 

contribute a population count towards the overall in-travel population:  

 𝐼𝑓 (𝑃𝑡2
− 𝑃𝑡1

) + (𝑃𝑡3
− 𝑃𝑡2

) > 0, 𝑡ℎ𝑒𝑛 

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 =  (𝑃𝑡2
− 𝑃𝑡1

) + (𝑃𝑡3
− 𝑃𝑡2

) 

𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 0 

             (3.2) 
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The second component of the in-travel population estimate outlines the 

site’s capacity and its population demand at a given time. This governs how 

much of the surrounding population is drawn to the centroid. Equation 3.3 

is formed of two parts. The first is a constant derived relevant to the 

particular destination centroid. This is the total number of visitors (n) minus 

the destination centroid’s capacity (Cj) divided by the total mean duration (𝑡̅ ) 

of individuals’ visits to the location. This is then multiplied by the 

population expected to be present at centroid j (at time, t1). 

𝑛−𝐶𝑗

𝑡̅
𝑝𝑗                                            (3.3) 

As Equation 3.2, the population leaving can be considered the reverse of 

those arriving: 

                𝐼𝑓 (𝑃𝑗𝑡2
− 𝑃𝑗𝑡1

) + (𝑃𝑡1
− 𝑃𝑡2

) > 0, 𝑡ℎ𝑒𝑛 

              𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 =  (𝑃𝑡2
− 𝑃𝑡3

) + (𝑃𝑡1
− 𝑃𝑡2

) 

 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 0 

             (3.4) 

The on-site and in-travel population calculations need to be performed, and 

repeated until tn, where n is the final time interval.  

For example, the proportion of population present at centroid j (Pj) for time 

one (t1) could = 10%, t2 = 20% and t3 = 30%. This formula determines that the 

proportion present at t2 is increasing because it is greater than it was in the 

previous time step (t1) but smaller than the next (t2).    

3.3.3 Time Profile for UK retail destinations 

The development of a time profile for a retail destination dataset has been 

based upon the UK Time Use Survey (TUS) 2000 (Ipsos-RSL and ONS 2000), 

in order to estimate shopping habits in the UK following the profile 

calculation method proposed.
2

 

The survey comprises self-completed diaries of a nationally representative 

sample of UK householders. Diary episode data is available at 10 minute 

                                           

2

 The 2000 Time Use Survey is currently the most comprehensive in the UK and has not yet been 

repeated. 
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intervals covering seven days throughout a week. Time use has been 

allocated to a number of coded activities which include categories for 

shopping (Table 3.1). These will be used to estimate a temporal profile for 

retail activity.    

Table 3.1 United Kingdom 2000 Time Use Survey: 36. Shopping and Services (Ipsos-RSL and 

ONS, 2000) 

Diary Code Description 

3600 Unspecified shopping and services 

3610 Unspecified shopping 

3611 Shopping mainly for food 

3612 Shopping mainly for clothing 

3613 Shopping mainly related to accommodation 

3614 Shopping or browsing at car boot sales or antique fairs 

3615 Window shopping or other shopping as leisure 

3619 Other specified shopping 

3620 Commercial and administrative services 

3630 Personal services 

3690 Other specified shopping and services 

 

A total of 20,981 UK respondents aged eight and over kept diaries in 144 x 

10 minute intervals representing a given 24-hour period, recording a 

primary and secondary activity. The retail time profile has been based upon 

the number of respondents who stated shopping related activities (Table 

3.1) as their primary activity. The data were analysed for three separate time 

periods: Monday-Friday, Saturday and Sunday. The total number of people 

and proportion who had a primary activity code beginning 36xx was 

calculated for all days at each 10 minute interval.       

The TUS also provides a coded diary entry concerning ‘9360 – Travel related 

to shopping’. Along with the above data this has been used to create the 

average time per day spent shopping and travelling for shopping (Table 

3.2). 
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Table 3.2 Average shopping travel and duration derived from the TUS 2000 for respondents 

who shopped 

Time 

Period 

Average travel 

time for 

Shopping (min) 

Number of 

respondents 

Average 

shopping  

duration (min) 

Number of 

respondents 

Mon-Fri 38.36 3691 65.40 4287 

Sat 45.33 2707 88.88 2886 

Sun 38.97 1682 63.23 1630 

All days 35.09 8080 72.67 8803 

 

The proportion of TUS respondents who stated that they were carrying out a 

shopping related activity at a given time is displayed in Figure 3.8. A large 

peak in Saturday shopping can be observed, as expected, a traditional busy 

period when many people are off work and able to shop. A restriction on 

Sunday shopping is observed and explained in the next paragraph. 

Figure 3.8 Proportion of shoppers by time according to TUS 2000 diary data 

The time profile suggested by the TUS data appears to be consistent with 

expectations with a large surge on Saturdays and restricted opening hours 

on a Sunday. The Sunday Trading Act 1994 restricts Sunday trading of 

stores in England and Wales with a floor space > 3000 sq. ft. to a maximum 
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of six hours permitted between 10 am and 6 pm. This legislation does not 

apply to Scotland, although many major British retailers adhere to these 

restrictions UK-wide (e.g. John Lewis and Marks and Spencer). However, 

many small (< 3000 sq. ft.) convenience stores and larger food stores in 

Scotland have extended Sunday opening times as this restriction does not 

apply to them (UK Parliament 1994). Some large 24-hour supermarkets in 

Scotland are open all day, seven days a week, including Sunday. These 

factors are likely to account for the Sunday evening shopping activity 

represented in the UK TUS data.   

Three separate time profiles were created for Monday-Friday, Saturday and 

Sunday using the given methodology in Section 3.3.2, as three distinctive 

shopping patterns can be detected in the data available (Figure 3.8). The 

average shopping duration and travel time from Table 3.2, were derived 

from the TUS 2000 data.  

3.3.4 Estimating destination centroid capacity 

This is the first step in estimating a population count for retail dataset to 

complement the other database library. The following approach has been 

devised in the absence of shopping data but required to locate shopping 

activity in time and space. Firstly, the number of retail employees derived 

from the Annual Business Inquiry dataset (now Business Register and 

Employment Survey, BRES) (ONS 2006a) are considered. The ABI employee 

numbers published at LSOA level were re-weighted to OAs. A multiplier is 

created to allocate shopper numbers in proportion to the daily duration of 

shopping sustained by each retail employee for OAs: 

𝑈𝐾 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑈𝑆 𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑛𝑡𝑠 
= 2900 (3.5) 

Where the 2006 MYE population of the UK is 60,584,300 (ONS 2011) and 

the number of Time Use Survey respondents is 20,891.  

Therefore, based on the above calculation, each respondent is 

representative of 2900 people in the UK. However, not everybody shops 

every day. In fact only 42% (8803) of TUS respondents stated that they 

carried out a form of shopping as a primary activity for the day that was 
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sampled (Table 3.2). In total these TUS respondents carried out 10,662 

shopping hours per day, derived from individual diary analysis of the 

dataset, averaged over Monday to Sunday. This was performed using the 

total number of diary entries (10 minute intervals) where a shopping related 

activity was taking place. 

Table 3.3 Analysis of TUS respondents engaged in shopping (Ipsos-RSL and ONS 2000)   

TUS Respondents who stated their day contained: Count % 

Shopping as a primary activity 8803 42 

Did not undertake any form of shopping 12178 58 

Total 20981 100 

Travel for shopping as a primary activity 8141 39 

Did not travel for shopping 12840 61 

Total 20981 100 

 

Although 42% of TUS respondents stated that they engaged in some type of 

shopping as a primary activity, only 39% travelled for shopping (Table 3.3). 

The discrepancy that the number of shoppers is apparently greater than 

those who travelled for shopping, may be explained by some people who 

travelled for other purposes such as work, who then engaged in shopping or 

whose trips were of very short duration.   

The assumption has been made that the TUS is nationally representative of 

the UK. According to the calculation each respondent equates to 2900 

people of the UK’s total population. Therefore, on an average day the 

population of the UK generates 30,920,000 (4sf) shopping hours (10662 

TUS shopping hours x 2900 representative UK population). 

The following shopping hours have been calculated by scaling-up the hours 

generated by the TUS for the whole UK population. As the TUS is a UK wide 

study, the shopping hours are adjusted for England and Wales, which is the 

scope of the current ABI retail employee data used in this example. The 

2006 MYE population of England and Wales was 53,725,800 (ONS 2011), 

which comprises a proportion of 0.89 of the total UK population. The total 

UK shopping hours are multiplied by this proportion to represent those 

generated by the population of England and Wales to give 27,520,000 (4sf) 

(30,920,000 x 0.89). 
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𝐸&𝑊 𝑆ℎ𝑜𝑝𝑝𝑖𝑛𝑔 ℎ𝑜𝑢𝑟𝑠 𝑝𝑒𝑟 𝑑𝑎𝑦 (27,520,000)

𝑁𝑜. 𝑜𝑓 𝐸&𝑊 𝑟𝑒𝑡𝑎𝑖𝑙 𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠 (2,375,140)
= 11.6 ℎ𝑜𝑢𝑟𝑠 𝑑𝑎𝑦−1 𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒−1

 (3.6) 

According to the ABI the 2006 retail workforce in England and Wales was 

2,375,140 (ONS 2006a). Therefore, on average each employee generates 

11.6 shopping hours per day. This was based on the number of employees 

at businesses that fall within the retail standard industrial classification (SIC) 

2003-2007 code.
 3

 This is a wide category that includes many obvious and 

unusual sectors such as (amongst others): food, fruit, tobacco, fuel, art, 

floor coverings, textiles, clothing, cosmetics, pharmaceuticals, household 

appliances, medical goods, hardware, books, jewellery, sports goods and 

mobile telephones (ONS 2009). Therefore, further refinements would be 

possible if retail specific TUS data could be matched to the workforce data in 

more detail.     

A retail employee multiplier (Table 3.4) has been calculated to be applied to 

the number of employees in each England and Wales OA to estimate the 

expected number of shoppers based on information contained within the 

TUS.
4

    

Table 3.4 Average shopping duration and ratio to ABI employee 

Day of week Mean shopping duration 

(Hrs) 

Retail employee 

multiplier 

Weekday (Mean) 0.45 2.27 

Saturday 2.19 3.12 

Sunday 1.72 1.77 

Week (Mean) 0.88 2.32 

 

 

                                           

3

 UK SIC codes were revised in 2007 to meet EU regulations for uniformity.   

4

 An alternative methodology based on retail floor space is described in Chapter 5. 
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3.3.5 Locating destination centroids 

Georeferenced large user and small business UPCs were used as the 

destination centroid locations for retail population to represent plausible 

business locations where shopping is likely to take place. The relevant 

postcode districts were downloaded from the National Statistics Postcode 

Directory (NSPD) for August 2006 (ONS 2006b) (Figure 3.9). The study area 

including the buffer is relatively extensive and covers six postal districts: 

Southampton (SO), Portsmouth (PO), Bournemouth (BH), Salisbury (SP), 

Guildford (GU) and Reading (RG). The information required from within the 

NSPD is summarised in Table 3.5.  

Table 3.5 Information obtained from the NSPD (ONS 2006b)  

Field in NSPD Description 

UPC Unit postcode 

OACODE Output area code for which the UPC is situated 

OSEAST/NORTH British National Grid coordinates of each UPC 

USERTYPE User type: “1” (large user, >25 pieces of mail) and “0” 

(small user) 

SMLBUSCT Small business count: the number of small businesses at 

each postcode 

DOINTR Date of postcode introduction 

DOTERM Date of postcode termination 

 

Firstly, only current UPCs at the reference date of the library are of interest, 

so all terminated UPCs were omitted from the dataset which was clipped to 

the geographic extent of the study area and its buffer. Secondly, all large 

user UPCs and those with a small business count were retained while the 

rest were discarded. However, this approach will inherently also include 

offices and business closed to the public, but currently this method provides 

a plausible location. The UPC spread largely correlates with the shopping 

and business districts expected in Southampton. Clusters are evident in the 

known business districts within the city (Figure 3.9).  
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Figure 3.9 Large user and business postcodes from the National Statistics Postcode 

Directory. Used as destination locations to receive a mobile retail population for 

Southampton, UK. 

The retail customer count calculated for each OA was divided equally by the 

number of business UPCs present within their respective OA. For this 

purpose a small number of non-geographic PO Boxes used by some 

organisations had to be disregarded. As expected, some OAs did not 

contain any business UPCs and therefore the original OA centroid locations 

were retained.  

The importance of improved destination locations can be seen in Figure 

3.10. The estimate of retail footfall derived from the multiplier discussed 

was distributed onto business UPCs. This provided a more accurate spatial 

distribution compared to using the original OA centroids. The multiplier to 

the retail workforce at population weighted residential OA centroids instead 

of UPCs posed some spatial anomalies. The proposed method provides 

shopping estimates within each OA. This could be refined if detailed 

location, retail classification, time use or employee data was available.    

OS Map data © Crown Copyright/database right 2014. An Ordnance Survey/EDINA supplied service 
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Figure 3.10 SurfaceBuilder247 results for an estimated Saturday temporary retail population 

at 200 m for the Southampton study area based on (A) OA centroid locations and (B) Business 

UPC locations. Including the population travelling to and from a retail activity. 
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Local shopping 
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3.3.6 Retail Wide Area Dispersion (WAD) 

The WAD represents how far people travel to a destination location. There 

are several commercial datasets and localised studies that give some 

indication of the average distance travelled to the nearest food store in the 

UK. For a Bristol study, Sustrans (2006) estimated that 12% of shoppers 

travelled less than ½ mile, and 40% > 2 miles. The National Travel Survey 

2010 states that the average (1995-2010) trip length for shopping in Great 

Britain was 4.3 miles (DfT 2010). 

Time spent travelling for shopping at a 10 minute resolution for the UK is 

available from the TUS 2000. Travel time has been converted into distance 

in order to formulate a WAD for this example by assigning an average travel 

speed. This is likely to impact differentially on estimated distance travelled 

for those who walk to a shop rather than drive.   

A nationally representative vehicle speed estimate of 17 mph has been used 

based on the data sources detailed in Table 3.6 to estimate distance. Data 

concerning ‘A’ roads and motorways in England is available in the DfT’s 

Congestion and Reliability statistics (DfT 2011a). The data are supplied to 

the DfT by Trafficmaster. The data is obtained from GPS tagged subscribers 

for traffic information. They feedback live data supplemented by sensors 

(Trafficmaster 2012). The example WAD created is assumed to be an 

average representation. However, for small scale modelling an appropriate 

speed revision by local authority in England could be considered.  

Table 3.6 Average urban vehicle speed on ‘A’ roads during the morning 

peak (7-10am) 2010/11 (DfT 2011a) 

Unitary Authority Average speed (mph) 

City of London 9.2 

Bristol 15.5 

Manchester 15.8 

Southampton 17.0 

Liverpool 17.3 

Birmingham 18.5 

Newcastle upon Tyne 19.1 

 

According to the National Travel Survey 22% of people walk to the shops 

(DfT 2010). The Accessibility Dataset uses the assumptions that an able 



Methods and Data 

127 

person is willing to walk up to 1.2 miles (1.9 km) at a speed of 3 mph (4.8 

km/h) to reach a shop (DfT 2011c). 

Travelling 1.2 miles at 3 mph would take 24 minutes. Based on the 

assumption that people are prepared to walk for up to 24 minutes, 22% (The 

NTS proportion likely to have walked) of the TUS respondents who spent 10-

30 minutes travelling to the shops are assumed to be walkers, and have 

their travel distance reduced accordingly. As 10-30 minutes of walking at 3 

mph will produce a shorter, more realistic distance travelled over the same 

time as those driving or using public transport at 17 mph. Therefore, 22% of 

the respondents represented in the 10, 20 and 30 minute bins are assumed 

to have walked at 3 mph. This distance has been adjusted accordingly 

(Figure 3.11). 

 

Figure 3.11 Histogram of distance travelled for shopping derived from TUS 2000 shopping 

behaviour data 

The percentages used represent the proportion of the number of people 

who stated that they travelled for shopping in the TUS on the sample day in 

question. This consisted of 38.8% of all TUS respondents who travelled for 

shopping (Table 3.3). Respondents who travelled greater than 23 km were 

grouped into the final bin as at this point 78% of the respondents had 

already been accounted for, and this is to improve computational efficiency.  

The model has been designed to read population data and produce results 

for different subgroups. Currently age bands have been used, based on the 

fact that different age groups are going to have varying behaviours. 

Furthermore, it would be possible for the user to define their own bands 
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based on subgroups relevant to their application such as gender divides etc. 

The retail age bands used in this example were taken from the information 

on the age and employment status of the TUS respondents. As a category 

existed for ‘full time student over 16’ it was possible to determine the 

number of students who shopped. 

The above approach has been proposed as an option in the absence of 

available commercial datasets. The assumption has been made that there is 

a direct relationship between the number of store employees relative to the 

attracted number of customers. The approach is based on the assumption 

that a large busy store, such as a supermarket, will employ more people 

than a small newsagent. However, it currently does not take into account the 

differing ratio of retail employee to customer for the different types of retail 

activity. A major retailer might have much more accurate information about 

a sample of their own customers or a spatial interaction model to estimate 

regional flows but the exact dataset is not available. The steps outlined 

above propose an attempt for a retail activity model based on data currently 

available. This approach resolves the main locations and daily trends, 

although it could be improved with more detailed information, still provides 

a more realistic estimate than assuming the population remains at 

residential locations all day.  

The proposed retail dataset is very general and based on some fairly large 

assumptions; however it provides a plausible estimate where currently there 

is little data for widespread uniform daytime town centre population counts. 

There are a number of ways in which this dataset could be further refined if 

desired for a specific purpose or location. This dataset very broadly 

concerns ‘shopping and retail’, but it would be possible to further 

differentiate by retail type. This is important as there is likely to be a 

significant difference in any assumed employee to customer ratio. A large 

supermarket is likely to have many customers per employee compared to a 

small specialist store. Secondly, the time spent engaged in different types of 

retail activity may be different. People may be more likely to spend longer in 

a large supermarket, department or home improvement store compared to a 

small convenience store or newsagent. There may also be a considerably 

different temporal profile depending on the different types of retail activity 

mentioned. 
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A further limitation may be considered in the age of the time use survey 

which was completed in 2000. The rise of online shopping and changing 

opening hours in the form of the 24-hour mega-store are likely to have had 

an impact on customer behaviour since the TUS. A future step to attempt to 

quantify any behavioural shift might begin with a more in depth look into 

contemporary retail studies.         

The number of retail employees by LSOA according to the ABI dataset 

assumes that the given number of employees is present every day, not 

taking into account higher staffed busy periods or shift patterns. Some of 

the ABI classified retail employees may also take ‘head office’ roles inflating 

the number of employees working in a ‘shop’. It also assumes that part-time 

employees are evenly distributed throughout the week. In this 

implementation employees are redistributed over time in the same 

distribution as the retail customers.         

This approach estimates the number of potential customers to an LSOA by 

scaling-up shopping hours generated in the UK. These were then divided by 

the average shopping duration and converted into population counts. It 

provides one example of an additional activity type. Although the full 

dataset library of the model has not been described in detail it also contains 

workplace data, education data by category of institution and health data by 

type of patient. Datasets produced as part of the Population 24/7 project 

have been used for these. This can be amended or extended as required. 

Compared to static day or night-time models the results become very 

detailed when different temporal profiles and activity measures are included. 

The case studies presented in Chapters 4 and 5 demonstrate the 

comprehensive construction of new population data libraries.   

3.3.7 Study area background mask 

A rasterized population masking layer has been constructed using GIS for 

GB. This is formed of the GB outline preventing population placement 

offshore (Figure 3.1A). This is particularly important for this coastal study 

area, and a noticeable improvement from local authority boundaries that 

extend to the centre line of watercourses. The background mask also 

includes lakes as uninhabitable water bodies. The road network is 
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represented including motorways and category ‘A’ roads. The road network 

is weighted to receive a varying proportion of the in-travel population. The 

relative weight depending on the date and time is derived from the 

Department for Transport’s National Transport Model statistics (DfT 2010). 

Therefore a range of background layers have been compiled that adjust the 

transportation weighting accordingly for the day and time. A Monday at 

08:00 will have a greater weighting taking into account commuters than a 

Sunday at 08:00.  

A background mask has been created using national datasets and clipped to 

the relevant areas of interest. Firstly, a coastal outline, water bodies, 

motorways and the principal road network (OS Meridian 2) polygons/lines 

were processed using a GIS. The landmass was rasterised to the required 

output grid resolution (200 and 100 m) and assigned a cell value of zero. 

Water bodies and the surrounding ocean was assigned a no data value. This 

provides the most basic layer on which population are constrained to the 

landmass for use in SurfaceBuilder247. The model facilitates this by 

excluding the placement of population in locations containing no data 

values.  

The layer is enhanced with DfT road traffic statistics in the form of count 

data. Average Annual Daily Flows (AAFD) from the Great Britain Road Traffic 

Survey (DfT 2013) provide a vehicle count by type, georeferenced location 

on the road network (count point) and road type. The AADF is the total daily 

traffic count at a specific point on the road network averaged across a year. 

These are available for rural and urban principal (category A) and major 

(motorway) roads. Raw average daily vehicle counts by vehicle type are 

converted to population estimates based on average vehicle occupancy data 

(Table 3.7). 
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Table 3.7 Average vehicle occupancy by vehicle type and time of day (DfT 2011b) 

Vehicle type 

Weekday (by time of day)  Average 

0700t

o 

1000 

1000t

o 

1600 

1600t

o 

1900 

1900t

o 

0700 

 
Week-

day 

Week-

end 

All 

week 

Pedal cycle
1

 1 1 1 1  1 1 1 

Motorcycle
1

 1 1 1 1  1 1 1 

Cars and taxis 1.46 1.59 1.53 1.54  1.54 1.88 1.58 

Buses and 

coaches  

13.2 13.2 13.2 13.2  13.2 13.2 13.2 

Light goods 

vehicle 

1.23 1.23 1.23 1.23  1.23 1.35 1.25 

All HGVs 1 1 1 1  1 1 1 

1

Approximatly = 1 

The National Transport Model (NTM) (DfT 2005) estimates the distribution of 

the AADF on the road network depending on the time of day and day of 

week. This is given in 19 time periods (Table 3.8). This allows the temporal 

distribution of traffic counts and resultant population estimated to be 

spread accordingly on the relevant road type.  
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Table 3.8 NTM time periods used for traffic flow distribution (DfT 2005) 

Time 

Period 
Day Time Description 

Duration 

(hours) 

1 Mon-Fri 00:00-06:00 Off peak 6 

2 Mon-Fri 06:00-07:00 AM peak 1 

3 Mon-Fri 07:00-08:00 AM peak 1 

4 Mon-Fri 08:00-09:00 AM peak 1 

5 Mon-Fri 09:00-10:00 AM peak 1 

6 Mon-Fri 10:00-16:00 Inter peak 6 

7 Mon-Fri 16:00-17:00 PM peak 1 

8 Mon-Fri 17:00-18:00 PM peak 1 

9 Mon-Fri 18:00-19:00 PM peak 1 

10 Mon-Fri 19:00-22:00 Shoulders 3 

11 Mon-Fri 22:00-00:00 Off peak 2 

12 Saturday 00:00-09:00 Saturday night 9 

13 Saturday 09:00-14:00 Saturday Day 5 

14 Saturday 14:00-20:00 Saturday Day 6 

15 Saturday 20:00-00:00 Saturday night 4 

16 Sunday 00:00-10:00 Sunday Night 10 

17 Sunday 10:00-15:00 Sunday Day 5 

18 Sunday 15:00-20:00 Sunday Day 5 

19 Sunday 20:00-00:00 Sunday Night 4 

 

The method followed to produce the background mask layer in a GIS is 

outlined below: 

1. Rasterise land mass (cell value = 0, no data value = -9999) and lake 

polygons (cell value = no data) to user required resolution (200-100 

m). 

2. Import vector polyline major and principal road network. 

3. Import Annual Average Daily Flow (AADF) counts by georeferenced 

count point (CP) and vehicle type for all major roads (Motorway and A 

roads). 

4. CP attribute added to indicate whether rural or urban. 

5. Proportion of daily flow adjusted according to NTM time periods (DfT 

2005). 
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6. Population estimate based on average occupancy data (Table 3.7) 

depending on vehicle type and time of day/day of week for all CPs. 

7. Population count extracted by CP for target day and hour based on 

average hourly percentage distribution of daily flow (DfT Statistics). 

8. Interpolation tool (e.g. ArcGIS: IDW, Spatial Analyst) used to distribute 

population count onto the road network (mask). This should be 

undertaken in two stages for motorways and principal roads. This is 

in order to prevent motorway counts being spread onto the 

surrounding road network and vice versa.   

Under the UK road classification system category B to unclassified roads 

have not been considered in this application. This is partly due to the 

availability and coverage of sufficient count data. Many minor routes are not 

monitored (manually or automatically). Therefore it is not currently possible 

to make an informed decision on the traffic flow of minor roads at present.  

In 2010 the majority (64.1%) of traffic travelled on the major and principal 

road network (DfT 2011b).  

This layer helps to determine the distribution of temporary in-transit 

locations of population, ensuring that people travelling by foot, car or public 

transport will be constrained by the road network and not unrealistically 

spread over empty space in the background layer. A refinement could 

consider other aspects of the transportation network such as rail that are 

not currently included.  

3.3.8 Retail data opportunities 

Precise customer footfall data can be purchased and compared with EPOS 

information. However, difficulties can still arise when attempting to allocate 

regional footfall data to individual sites. Furthermore, access to such data 

may also be constrained by expense and geographical coverage. Some UK 

shopping centres utilise FootPath, an intelligence technology that tracks 

signals from a consumer’s mobile telephone using discreet censors. Data 

are fed back to a central processing unit for analysis that can pinpoint 

people to within a few metres (Path Intelligence 2010). However, the 

technology has attracted criticism from civil rights campaigners concerned 
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that such technology constitutes a breach of privacy, although individuals 

remain anonymous (Morris 2012a).   

An alternative to using the number of retail employees could be allocating 

footfall in proportion to the floor space of the store (see Chapter 5). The 

Department for Transport has released food store locations with coordinates 

and floor space for England under the Accessibility Destinations Dataset 

(DfT 2011c). Similarly, this concept is based on the same assumptions that 

larger stores, with assumed higher costs, are sustained by higher footfall.      

Additionally, or where data restrictions occur, free point of interest (POI) 

data are available from some commercial satellite navigation companies. 

Many major store chains release free POI downloads for users containing the 

locations and names of their stores. These can also contain additional 

information such as facilities and telephone numbers. Free data from 

commercial websites can be converted (e.g. using GPSBable: 

www.gpsbabel.org) into computer readable universal file formats and 

imported as decimal degrees into a GIS.  

3.3.9 Flood hazard component 

In the preceding sections the population model components (Figure 3.1A) 

have been discussed with an illustrated example of a dataset creation. This 

section briefly examines the natural hazard data input and study site 

context (Figure 3.1B) with analysis of the results (Figure 3.1C).  

The study area (Figure 3.6) has been chosen for an example flood risk 

application. The Solent separates the Isle of Wight from southern England 

and provides a natural deep water channel for large shipping vessels. 

Approximately 24,000 properties are considered to be within the tidal flood 

plain of a 1 in 200 year flood in the Solent (NFDC 2009). Historical record 

analysis by Ruocco et al. (2011) discovered up to 20 flood events in 

Southampton since 1935. The region’s industrial and shipping success has 

been attributed to the complex tidal system, resulting in double high-tide 

each day. However, under storm surge conditions the Solent can experience 

an increase in sea level of up to 1 m (Ruocco et al. 2011). The combination 

of the region’s topography, location and tidal system has the potential to 

dramatically increase the flood risk within this area. Southampton Water is a 

http://www.gpsbabel.org/
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narrow funnel-like channel leading from the Solent to the Port of 

Southampton, vulnerable to storm surges driven by low pressure systems, 

or north sea surges that propagate through the English Channel (Wadey et 

al. 2012). When combined with high spring tides these events pose a 

heightened flood risk and exert pressure on existing defences. This region 

and accompanying low lying areas contain major coastal transportation 

links, population centres and commercial and military ports. These activities 

have contrasting spatiotemporal patterns, making this study area of 

particular interest for spatiotemporal population modelling. 

There are large fluctuations in urban populations over a range of timescales. 

For example, the two universities within this study site, the University of 

Southampton and Southampton Solent University, had a combined 2011/12 

student population of 38,885 (HESA 2012). Likewise large events or sporting 

fixtures also contribute to these changes. A major contributor is the Port of 

Southampton which is the UK’s busiest cruise ship terminal and second 

largest container dock (ABP 2013). In celebration of the 175
th

 anniversary of 

the P&O company in July 2012, the operator’s seven cruise ships left 

Southampton Docks in formation with an estimated 40,000 passengers on 

board. Analysis of the Population 24/7 model results suggests that the 

average weekday population size of this study area is approximately 

522,000. This is greatly influenced by people commuting to work and 

shoppers in key retail locations. WestQuay is a prominent regional shopping 

centre with an average weekly footfall of c. 300,000 (WestQuay 2011).             

Figure 3.1B relates to the incorporation of natural hazard datasets or 

models. The modelled population density grids (Figure 3.1A) are combined 

with Environment Agency flood map data (for July, 2012). The Environment 

Agency is the public body responsible for issuing flood warnings and 

maintaining flood defence infrastructure within England and Wales. The 

flood map is the result of probabilistic and scenario-led hydraulic modelling. 

The most likely scenario under the ‘zone three’ (high probability) 

(Environment Agency 2012c) extent (Figure 3.6) has been utilised: this 

models inundation caused by fluvial and tidal flooding with a 1% and 0.5% 

annual probability of occurrence respectively. Within the study area, 

approximately 78 km
2

 is at risk of tidal or fluvial flood inundations under 

the zone three scenario. The modelled population surfaces and flood 



Spatiotemporal population modelling to assess exposure to flood risk 

 
136 

extents have been analysed using GIS and are stored in a results database 

with the modelled population data (Figure 3.1C). Potential exposure 

estimates to the flood hazard are reported. This has been conducted for a 

range of time slices and age bands. The methodology developed allows the 

integration of additional hazard maps or more sophisticated hazard models 

in Figure 3.1B. These results are reported in Section 3.3.11. 

3.3.10 Potential enhancements for spatial resolution 

The example application constructed has shown the appropriate use of 

census population weighted centroids for use as origin centroids within the 

modelling process outlined. They represent a realistic distribution of 

residential population (e.g. Figure 3.3). This has permitted the use of the 

200 m output model resolution based on the spatial distribution of these 

points. By their design PWCs related to residential census populations. To 

increase model output spatial resolution further (e.g. Chapters 4 and 5) the 

use of georeferenced UPCs is suggested. 

Georeferenced UPCs can be used as one method to increase the spatial 

resolution of data within the remit of what is currently available. For the 

residential population, census OA counts can be redistributed onto UPCs 

that are contained within the respective OA. Full UPCs are available coded to 

the OA in which they are situated. Census OA counts can been re-weighted 

onto UPCs in proportion to the address count. The address count is the 

number of postal delivery locations (assumed to be approximately equal to 

the number of households) within the UPC. Typically a residential postcode 

may represent around 15 properties. The proportion of the population 

allocated to each UPC is derived from the total OA population according to 

the share of address counts each UPC contains. For example a UPC with 

address count of 25 within an OA with a total address count of 100 would 

be allocated a quarter of the OA’s population. This technique provides an 

enhanced spatial distribution of population density at a sub OA level without 

exceeding the smallest scale in which data are available. Figure 3.12 

illustrates an example LSOA and its constituent OAs each with a PWC 

alongside the residential postcode distribution. This example LSOA, located 

in Southampton, covers an urban and city parkland area. It comprises of five 

OAs indicated by the number of PWCs (as each OA only has one). This 
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includes the same OA illustrated earlier in Figure 3.3. Both the distribution 

of PWCs and UPCs within this LSOA show an accurate reflection of the likely 

places occupied by the population. They are all concentrated within the 

urban portion of the LSOA rather than the parkland.   

The increased density of UPCs compared to PWCs provides greater detail in 

the LSOAs population distribution. The same procedure can be followed for 

non-residential UPCs. The main difference is that businesses usually have 

their own unique postcode making the redistribution of employees reported 

by LSOA onto UPCs more straightforward. Where non-residential UPCs 

contain a small business count it can be taken into account within the 

overall redistribution weighting.   

       

Figure 3.12 Comparison of PWC and residential UPC distribution and density for an example 

LSOA in Southampton.  
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Enhancements based on this method have been implemented following the 

lessons learnt from this applied example to increase the model output 

resolution from 200 to 100 m for the two case studies (Chapters 4 and 5).    

3.3.11 Southampton applied example: results 

Figure 3.13A shows total population for rasterised 2001 census output 

areas and the population modelled in 200 m grid cells for three different 

times of day (Figure 3.13B-D). There is a stark difference between the 

conventional area-based population model in Figure 3.13A and the gridded 

representation in Figure 3.13B-D which much more accurately indicates the 

higher central densities and extensive unpopulated areas, even in this 

relatively urbanized region. A large daily variation in population occurs. 

During the working day (Figure 3.13B), population becomes highly 

concentrated in specific areas such as the city centre and in local clusters 

such as schools and colleges, as employees and students travel to, and 

temporally remain at, places of work and study. Population also increases in 

the non-residential areas of the city centre due to people travelling to 

engage in other activities as Southampton is a major retail and 

transportation hub. The 08:00 model differs from the 20:00 model with 

more people in the transportation network at 08:00 – mostly on their way to 

work or school (Figures 3.13B and D). 
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Figure 3.13 (A) Rasterised 2001 census output area total population counts. (B)-(D) 

Spatiotemporal model outputs showing total population for three time slices, together with 

Environment Agency flood map data. All maps at 200 m resolution for a ‘typical’ weekday. 

There are spatial (Figure 3.13) and temporal (Figure 3.14) variations in 

populations potentially exposed during the day. Preliminary analysis 

suggests that the total population exposed to the Flood Map Zone 3 flood 

risk peaks towards the end of the typical working day (Figure 3.14). 

However, differentiating the flood risk components (Figure 3.14) highlights 

an interesting phenomenon within the Southampton study area 

demonstrating the power of spatiotemporal population estimates. 

Throughout the day, exposure to fluvial flood risk closely resembles the 
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reciprocal of tidal exposure with a symmetry approximately centred during 

standard working hours (08:30-17:00). Tidal patterns have not been 

accounted for. The pattern observed may be attributable to the region’s 

coastal concentration of industry and commercial activity. As employees 

commute to the coastal regions during the day their tidal flood exposure 

increases; when they return home to residential locations further inland in 

the evening fluvial flood risk becomes the dominating factor.   

 

Figure 3.14 Estimated total population exposure by time of day for flood map zone three 

comparing the static census, a modelled ‘typical’ weekday and a typical Sunday. Where the 

annual fluvial flood risk is 1% and tidal 0.5%. 

Figure 3.15 indicates the percentage composition by age groups of the total 

population exposed at 12:00 and 20:00 and also the changes in the size of 

the exposed population over time. The reversal in exposure between tidal 

and fluvial flooding is most notable within the working aged population (16-

64), where there is a large decrease in tidal exposure in the evening when 

comparing 16-64 tidal exposure between 12:00 and 20:00. It can also be 

seen from the heights of the bars that the total population exposed 

fluctuates over time.      
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Figure 3.15 Age composition of population potentially exposed to fluvial and tidal flooding 

during the working day (midday) and evening (20:00). HE: Higher Education; FE: Further 

Education 

Further analysis of the population engaged in different activities has been 

conducted for the working age population for representative times of 08:00 

and 12:00 (Figure 3.16A-C). The figure shows the population in these 

groups who are travelling in the transportation network or at destination 

(i.e. non-residential) sites. These were selected to examine the spread of 

population during the morning commute and middle of the working day. At 

08:00 (Figure 3.16B) it can be seen that the working age population at non-

residential destinations is relatively low, compared to Figure 3.16C which 

reflects the concentration of this group at workplaces and other destinations  

during the day. As expected, when more people migrate into a hazardous 

zone their exposure is dramatically increased within this age range during 

the day (Figure 3.16D).     

 

 

 



Spatiotemporal population modelling to assess exposure to flood risk 

 
142 

 

Figure 3.16 Modelled results for (A) the working aged (16-64) population in travel, (B) on-site 

at 08:00, (C) on-site at 12:00 and (D) the flood risk exposure to the working age population 

for a typical weekday (cell size: 200 m).  

Similarly, the spread of the university student population has been 

examined for the same typical term time weekday (Figure 3.17). During the 

day it can be observed that this population is concentrated on the city’s two 

universities and spreads back into the student residential areas during the 

evening.     



Methods and Data 

143 

 

Figure 3.17 Modelled representation of the higher education (HE) student population for a 

typical term time weekday at 12:00 and 20:00 (cell size: 200 m). 

3.3.12 Observations from the Southampton example 

The modelled outputs contrast starkly with the coarse, static ‘night-time’ 

population density coverage given by the 2001 census output area map.  

The difference between the maximum cell values in the census and 

modelled outputs highlights the concentrated nature of population density 

during the working day, which is excluded from traditional census maps. 

The modelled outputs also provide a more realistic distribution with zero 

population densities for uninhabited areas. 

The selected study site has a high proportion of coastal industry and 

university students. The diurnal trends in the modelled data (Figure 3.14) 

may have been predicted, but can be isolated and quantified using the 

methodology proposed. During ‘typical’ weekday working hours there is a 

shift from fluvial to tidal flood risk. It was possible to narrow this change 

down to a particular population subgroup, those of working age population 

(Figure 3.15). Population exposure was further analysed for representative 

times of midday and 20:00. This provided insight into two contrasting 

points within the usual daily cycle. The reversal from tidal to fluvial 
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exposure occurs in the 16-64 working age category. At midday, tidal risk is 

the predominant risk to this population subgroup, however by 20:00 this 

again becomes fluvial. One suggested explanation for this pattern is 

employees travelling to work in the more exposed coastal locations. On 

return home to the predominantly inland residential locations fluvial risk 

becomes the main factor. It can also be observed that there is a notable tidal 

flood risk to higher education students throughout the day. While there is 

not such a large reversal of this trend in the evening it does decrease. 

Possible reasons for this may be the locations of student halls of residence 

or sites within the institutions. The spread of students in evening residential 

locations (Figure 3.17) shows that a large portion are within the central area 

of the city with greater exposure to risks. For vulnerability assessment and 

the purposes of emergency preparedness this spatiotemporal technique 

indicates potential improvements over traditional static hazard maps.       

The calculated fluvial and tidal population exposure according to the 2001 

census is represented by the baselines on Figure 3.14. These can be 

contrasted with the dynamic modelled results. It can be observed that the 

fluvial exposure according to the census appears to greatly overestimate 

flood exposures. However, even for emergency management this provides 

little insight due to the unrealistic spread of population densities into 

uninhabited areas which may be at risk of flooding. The modelled results 

suggest that large portions of the time-specific population at risk are highly 

concentrated in specific areas depending on the time of day and population 

age range (e.g. Figures 3.13, 3.16 and 3.17). The spread and concentration 

of this population at a given time is of more relevance to emergency 

planners for targeting resources and emergency plans.          

The modelled results provide innovative opportunities to make enhanced 

assessments of subgroups of the population and their activities. It can be 

used to simulate peak travel times according to the population in travel. 

This case study exemplifies that different age groups are more at risk at 

different times. The richness of this detail cannot be interpreted from static 

census estimates alone.  

High resolution disaggregated population counts permit the detailed 

assessment of impact as well as understanding the wider implications. The 
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flood scenarios described in the Solent study area may not be considered 

rapid onset events with modern prediction and forecasting tools, but 

flooding does have the potential to occur rapidly and without prior warning 

(Murray et al. 2012).    

In addition to the spatial grid, a structure has been tested that has the 

ability to handle the storage and representation of temporal information 

regarding population distributions. Static grids can be readily updated with 

the inclusion of ancillary datasets and temporal information. The 

methodology provides a mechanism to estimate temporary and transient 

populations that are not accounted for by traditional means. The 

combination of available datasets with the ability to store temporal 

information produces spatiotemporal gridded representations of 

populations accounting for local variation (Figure 3.14). The gridded method 

allows such detailed trends to be resolved (e.g. Figure 3.17).   

The Population 24/7 methodology also provides scope to analyse the 

vulnerability of populations through the ability to model any population sub-

groups for which relevant data can be assembled. As already noted, 

vulnerability is a key contributing factor in the development of risk. The 

capacity to handle age information may inform management choices for 

groups such as the young or elderly who may require additional support 

during an emergency situation. It also improves the accurate allocation of 

populations in space and time, such as school age children at school 

locations. This information could be used to target emergency response and 

health care provision.  

This approach cannot provide insights into human behaviour in an 

emergency situation or provide real time information. It essentially describes 

predictable population redistribution over time based on data availability 

and computational efficiency. There are very many ways in which the data 

sources and detailed distributional models could be enhanced within the 

current modelling framework. However, the approach could be utilised to 

inform emergency plans for known risks under a range of scenarios and 

temporal scales. While it is not possible to know exact future population 

movements this approach allows the computation of probable distributions. 

The temporal characteristics of the natural hazard have not been directly 
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addressed in this case study. For example, tidal information indicating a 

high spring tide under storm surge conditions in the middle of the working 

day is going to have a greater effect on some of the population subgroups 

identified in this study.  

3.3.13 Applied example: lessons learned 

This empirical chapter demonstrates the enhanced insights and 

improvements in the accuracy of exposure estimates to hazards to be 

gained by combining innovative spatiotemporal population modelling 

techniques and GIS based layers concerning natural hazard extents. The 

potential utility of such models for flood risk management has been 

demonstrated and provides a wealth of detailed data for analysis where the 

census alone is not suitable for this particular task. Pending further dataset 

development and validation, this technique has direct application to natural 

hazard scenarios both within the UK and globally. The data structure of the 

model allows the user to readily refine or supplement the input datasets. 

Web data mining and the rise of open-source data are likely to make 

compiling time-referenced population datasets easier and more accurate in 

the future. One example of their use could be to refine temporal signals in 

population movement. An additional step in this methodology would be the 

integration of a spatial interaction model to enhance the catchment areas of 

destination locations. The results in this report provide a window of 

opportunity to further refine this methodology for policy makers and 

emergency planners and address the key aims outlined at the start of this 

thesis. 



 

147 

Chapter 4: Case study I - Ulley
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4.1 Overview 

This chapter introduces the first of two case studies designed to 

demonstrate the application of the population modelling techniques 

outlined in Chapter 3. The primary focus of this case study is around the 

modelling of population exposed to a rapid onset dam failure scenario at 

Ulley in South Yorkshire, UK, on 25 June 2007 and is described in further 

detail below. The emphasis concerns the intersection of spatiotemporal 

population and environmental models. The analysis of the effect of a sudden 

onset dam failure flood event is presented, while considering a temporally 

varying diurnal population trend. Hydrological modelling has been 

undertaken to simulate the dam failure and analysed with results from the 

population modelling. The additional modelling is required to provide a 

dynamic insight on rapidly evolving events, where a static risk map alone 

may not be sufficient.  

The rest of this chapter is structured as follows: the first section provides 

the background and rationale for the choice of case study. The risk of the 

dam breach at Ulley occurred while the UK was experiencing severe 

nationwide flooding. The second section describes additional case specific 

methods and data overview. These concern the creation of a Population 

24/7 data library and the construction of embankment breach and flood 

spreading models. The third section presents the modelled outputs and 

integrates these with flood hazard data. The fourth section provides some 

comparison with census data in an attempt to validate model results. A 

condensed version of this chapter has been published in the proceedings of 

the British Dams Society (Smith et al. 2014b).
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4.2 Flood context and background 

Dam failure events can occur with little or no warning with rapid onset 

times. This may result in devastating catastrophes in downstream areas (He 

et al. 2008) with little chance to respond. The risk from such events remains 

high in locations with significant potential for severe losses, although the 

frequency is fortunately low. Human susceptibility and key infrastructural 

assets heighten vulnerability and the risk posed from sudden dam failures.  

The remainder of this chapter sets out to demonstrate this scenario by re-

examining a notable dam failure that actually occurred in the UK in 2007.  

The failure at Ulley Reservoir in South Yorkshire, a nineteenth century clay-

earth embankment dam that was left it in a critical condition, posing a real 

threat of collapse and narrowly avoiding disaster (Bissell 2010). The near-

miss situation became a focus of a period of severe nationwide flooding 

experienced in the UK that year. It featured prominently in Pitt’s (2008) 

independent review of the flooding experienced. Following the incident at 

Ulley and Pitt’s recommendations subsequent safeguards have been 

adopted and legislated for. This included a review of reservoir inspection 

and risk assessment procedures (Porter 2012). 

4.2.1 Ulley reservoir and case study location    

Ulley reservoir is located three miles south-east of Rotherham and five miles 

east of Sheffield, Yorkshire, UK. It is presently a country park, owned by 

Rotherham Metropolitan Borough Council (MBC). Construction of the earth 

embankment dam was completed in 1874. The supply of drinking water 

from Ulley ceased in 1986 when it was taken over by MBC as a recreational 

facility. During exceptional widespread flooding experienced in the UK 

during summer 2007 the dam was destabilised. A study area has been 

focused (Figure 4.1) on Ulley reservoir and the surrounding locality.  

Increasing industrialisation and population growth within the Yorkshire 

region during the nineteenth century increased the demand for an adequate 

and clean water supply. This was driven by the increase in the cotton and 

steel industries and concerns over healthcare and access to safe drinking 

water. Poor health and intermittent water supply caused by shortages 
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prompted the construction of the reservoir at Ulley to alleviate these 

concerns.  

 

Figure 4.1 Ulley study area extent with Great Britain insert 

The features described here are typical of many dam constructions. These 

are basic construction components which are important to understand in 

order to inform the modelling undertaken and the lead up to the 2007 Ulley 

flood event. Ulley dam was constructed by Messrs Lawson and Mausergh of 

Westminster between 1871 and 1874 (Arup 2008). Like many dams of 

similar design within this region it consists of a single earth embankment 

with puddle clay core. ‘Puddle’ is a watertight clay-based material. The 

puddle core forms an impermeable barrier at the centre of the embankment 

with the base excavated well into the ground to prevent water seepage 

underneath the core. At Ulley the top of the core has a width of 6 feet above 

the water level tapering out to a thickness of 15 feet at its base (original 

technical drawings provided by MBC). The core is supported by a 

surrounding layer of ‘select material’, usually a sand-based mixture or loam. 

This is intended to deter burrowing animals that may otherwise excavate 

into the core and compromise the integrity of the dam. Finally, this is 

surrounded by earth as the outermost and protective layer to form a 

traditional embankment as seen in Figure 4.2A. The reservoir is relatively 

OS Map data © Crown Copyright/database right 2014. An Ordnance Survey/EDINA supplied service 
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small at approximately one mile in length with a capacity of 580,000 m
3

 

(Arup 2008).       

Until 2007 Ulley had three spillways (two being disused) (Figures 4.2A and 

E). Spillways are channels that facilitate the controlled release of water from 

a reservoir (Figure 4.2C). These prevent dams from overtopping and allow 

the response to the variability of water levels based on rainfall and other 

inputs. The original 1874 spillways were in the form of a symmetrical pair of 

stepped masonry channels, masonry blocks joined (pointed) with mortar. 

These were disused, but would have channelled flow across the 

embankment from either side (see Figure 4.2A). These were superseded by a 

concrete stepped spillway constructed in 1943 which channels overflow 

away from the embankment. In addition to the spillway, like most dams, 

Ulley also has a scour pipe. This is a pipe or tunnel outlet that runs through 

the bottom of the dam and embankment which can be used to lower the 

reservoir water level quickly in an emergency (BDS 2010), such as during the 

threat of imminent dam collapse. This allows water to be removed from the 

reservoir and piped downstream of the embankment.  
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Figure 4.2 The anatomy of Ulley dam (A) Emergency stabilisation June 2007, limestone filled scour hole, (B) Replacement 2010 concrete spillway, (C) Remaining 

channel entrances to the original 1874 masonry stepped and superseding 1943 concrete spillways (now above maximum water level), (D) Entrance ramparts 

comprising the only remains of the 1874 spillway (the rest was removed post-2007), (E) June 2007 storm overflow in the ‘unused’ 1874 spillway. Photographs: 

Alan Smith, August 2014 (unless cited).
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4.2.2 June 2007 incident 

On 25 June 2007 a slow moving depression bought prolonged heavy rainfall 

to northern and central England, with more than 90 mm of rain falling in 18 

hours (Environment Agency 2007b; Met Office 2011). June 2007 was the 

wettest in England and Wales since 1860 (Marsh and Hannaford 2007). 

Intense slow moving frontal rainfall on the 25 June fell on saturated ground 

with some rivers already exceeding capacity and reservoir levels high. It is 

estimated that the rainfall levels that led to this event had an annual 

probability of occurrence of 1% (Warren and Stewart 2008). The prolonged 

rainfall had already caused widespread flooding in this region. The impact of 

the collapse of the Ulley embankment would have been exacerbated by 

significant volumes of standing floodwater already within the catchment 

(Section 4.2.3, Figure 4.3).   

The mechanics of the events leading to the risk of destabilisation at Ulley 

have been well documented (e.g. Hinks et al. 2008; Mason and Hinks 2008, 

2009). Despite a larger concrete spillway having been constructed in 1943, 

flood water reverted to the original masonry stepped spillway which 

intercepted the main earth embankment. This in itself represented an 

original design flaw as it exposed the vulnerable front face of the 

embankment to an unnecessary risk of erosion (Porter 2012) and 

subsequent destabilisation.  

High outflows caused by prolonged rainfall on saturated ground overtopped 

the 1943 spillway and caused the reactivation of the original 1874 masonry 

stepped spillway that it had replaced. The masonry spillway, which was 

unused but remained in situ, suffered deterioration of its channel after 

reactivation due to overspill from the 1943 spillway (Figure 4.2E). The 

hydraulic pressure of the overspill flow, the force exerted by the flow, that 

had managed to reactivate the original spillway, exceeded the retaining wall 

threshold (its resistance to spillway flow pressure) causing it to collapse and 

facilitating the erosion of the dam embankment material (Warren and 

Stewart 2008). This caused a 20 x 6 m scour hole in the face of the 

embankment (Oliver and Owen 2007), putting the stability of the entire dam 

at risk (Figure 4.2A). During the flood, peak flow on the failed spillway was 

estimated at 6.1 ms
-1

 (Figure 4.2E) (Horrocks 2010). Rotherham MBC was 
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advised to take immediate emergency action to prevent major flooding 

downstream following destabilisation of the dam (Environment Agency 

2007b). 

The larger 1943 concrete spillway was constructed following an earlier 

inspection finding that the original 1874 spillway lacked sufficient capacity 

(Arup 2008). Following the 2007 incident the previous spillways (1874 and 

1943) were removed and replaced with a single central concrete spillway, 

which was completed in 2010 (Figure 4.2B). The latest concrete spillway 

permits a further increase for peak flow capacity on the 1943 rate as well as 

greater resilience to turbulent flows compared to masonry spillways, 

particularly if the mortar pointing between blocks has been allowed to 

deteriorate. The capacity of the scour pipe was increased to twice the 

original capacity. It can now drain 40,000 m
3

 day
-1

, enough to lower the 

reservoir water level by 1 m per day (Horrocks 2010). 

Approximately 1000 people were evacuated in downstream areas of the dam 

from the villages of Catcliffe, Whiston and Treeton.  he M1 motorway was 

closed northbound between junctions 32 and 34, and southbound between 

junctions 34 and 36 (Sturcke et al. 2007) for 40 hours at an estimated cost 

of £2.3 million (Environment Agency 2007b). In addition to the population 

exposure there was also a substantial risk to critical infrastructure and 

assets. These included a high pressure gas main, high voltage electricity 

pylons, a regional substation, telecommunication towers, highways, water 

treatment works and the M1 motorway.  

Emergency work to re-stabilise the dam and reduce water levels continued 

before the motorway was reopened. The initial remedial action involved 

packing the scour hole with 2,500 tonnes of crushed limestone and 

pumping water from the reservoir into the 1943 spillway to lower the 

reservoir level. Repair of the dam cost £3.8 million and resulted in the 

construction of improved scour pipe capacity, and a new reinforced concrete 

spillway in the centre of the dam (Horrocks 2010).  
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4.2.3 Antecedent downstream conditions 

The collapse of Ulley dam would have added the reservoir’s volume to an 

already inundated downstream catchment (Figure 4.3). Measurements 

referenced from aerial imagery were used to confirm the pre-existing water 

level at 31 mAOD (Above Ordnance Datum), which was subtracted from a 2 

m LiDAR DTM to estimate depth.   

 

Figure 4.3 Aerial photograph (08:23 26/07/2007) showing antecedent flood extent on Ulley 

Brook and the River Rother (M1 junction 33 image centre). Red flood water discolouration 

caused by suspended sediment from Ulley embankment erosion (upstream) Photograph: 

Hinks and Mason (2007) 

The downstream catchment was revisited and present-day photographs 

taken against static features used to further estimate flood depth. These 

were compared to photographs taken at the time of the incident by Lomas 

(2007) (Figure 4.4). The photographs taken in Catcliffe show an antecedent 

floodwater depth at this location of 1.2-1.5 m. The red telephone box 

(located on the B6066 Orgreave Road roundabout, Catliffe, BNG: 442532, 

388467, Figure 4.4D) is the same one that is visible in Figure 4.4A-C. The 

modelled flood water depth at the same location 1.46 m (see Section 4.4) 

and can be corroborated by these observations.

Ulley Reservoir 
1 km 
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Figure 4.4 Estimating the June 2007 floodwater depth downstream from Ulley (survey pole 1.5 m). Blue dashed line: estimated water level (D). Photographs (C 

and D): Alan Smith (August 2014).
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4.2.4 Yorkshire dam failures 

Unprecedented, catastrophic dam failures are not unknown in the region 

surrounding Ulley. The complete collapse of Dale Dike Dam in 1864 (13 

miles west of Ulley) caused the Great Sheffield Flood, resulting in 

considerable downstream destruction and 244 fatalities. The dam collapsed 

under severe storm conditions while being filled for the first time. The 

breach resulted in the discharge of c. 3 million m
3

 of water (Amey 1974) into 

the narrow catchment below. The embankment was of the same earth/clay 

construction type as Ulley, which was to be constructed less than ten years 

later. In June 2007, under the same conditions that contributed to the Ulley 

incident, flooding on the River Don at Sheffield was also at its worst extent 

since the 1864 collapse of Dale Dike dam (Environment Agency 2007a).  

On 19 June 2005 the same mechanism that was to be repeated at Ulley only 

two years later resulted in a dam failure at Boltby Reservoir, North Yorkshire 

(60 miles north of Ulley). Boltby, also a nineteenth century earth 

embankment dam, had a considerably smaller capacity than Ulley at 

130,000 m
3

 (Porter 2012). However, the reactivation and failure of a 

masonry stepped spillway under a storm flow eroded the dam’s 

embankment material to expose the puddle clay core and risk collapse. The 

use of the reservoir as a drinking water supply had already ceased in 2003, 

prior to the incident. Therefore, a decision was made to permanently drain 

the reservoir to negligible levels rather than attempt a costly repair. A ‘v’ 

shaped notch was cut into the embankment to prevent the reservoir from re-

filling (Walker 2008). These incidents highlight the important nature of 

reservoir risk management and the potential for catastrophic impact on the 

exposed human populations that live downstream. In all three examples at 

Dale Dyke, Boltby and Ulley the requirement for a rapid response with little 

(or no) warning to intervene and prevent a disaster is clear. This small 

snapshot of dam failures in this specific locality demonstrates that any 

subsequent disaster has the potential to have a high impact in both human 

and economic costs. The sensitivity of the time at which an emergency 

might occur is important for the potentially exposed population. Estimating 

populations in time and space, such as the application of the Population 

24/7 techniques, provides a method to assess and analyse these 

sensitivities.               
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4.3 Case specific method and data 

This section introduces further methods and data specific to this case study 

which are in addition to what has already been presented in Chapter 3. The 

additional hydrological modelling outlined has been supported through 

collaboration with HR Wallingford Ltd. Figure 4.5 provides an analytical 

overview of the methodology. This is split into three categories: (A) 

modelling the embankment breach for Ulley under the conditions of the 

2007 incident, (B) modelling the resultant flood inundation and (C) bespoke 

considerations for the population modelling component. These will be 

discussed in turn within this section. The embankment breach modelling 

using EMBREA (A) provides an estimate of the dam’s outflow hydrograph 

should it have failed. This is a required input parameter for the flood 

inundation modelling (B). This major flow input from the dam breach 

influences the extent of flood spreading and downstream flow velocities and 

depths. The output from the inundation modelling using TELEMAC-2D 

consists of flood extent, depth and velocity. This is combined with 100 m 

gridded spatiotemporal population estimates using the Population 24/7 

approach (C). The combination of the estimate of potentially exposed 

populations that vary by time of day, flood flow velocities and depths 

facilitates the analysis of the risk posed to people. This is described in 

Section 4.3.5 in the evaluation of a flood hazard rating.  

The ability of the Population 24/7 approach to produce population 

estimates for varying time intervals allows the observation of how the risk 

posed to people by a rapid onset dam failure is time sensitive. Furthermore, 

the gridded population output permits the integration with such 

environmental models which could not be achieved with static population 

data reported in arbitrary, variable spatial units. An 8 x 10 km study area 

(Figure 4.1, BNG origin: 440000, 386000 m) centred on Rotherham 

encompassing Ulley Reservoir to the southeast has been selected. This 

covers the population immediately downstream of the reservoir that could 

be exposed to a dam failure event.   
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Figure 4.5 Analytical overview of (A) flood risk modelling components and analysis in terms of embankment breach modelling, (B) flood inundation modelling 

and (C) the population component. Model: bold type, specific software: (italicised in brackets). 
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4.3.1 Slope stability analysis 

Before any breach analysis for Ulley was conducted the warnings of 

imminent collapse were evaluated to confirm whether a breach (i) could be 

likely and (ii) if so, how it would occur. This step is required before any 

modelling is commenced. The outcome of the slope stability analysis will be 

used to inform the type of failure parameter in the embankment breach 

modelling (Figure 4.5A). There is a general acceptance that the dam almost 

certainly would have been breached if the failure of the embankment had 

been allowed to continue unchecked or unless immediate remedial action 

was not taken (e.g. Oliver and Owen 2007; Mason and Hinks 2008; Horrocks 

2010). This was required to prevent further damage and relieve pressure on 

the structure, exerted by the water contained behind the embankment.  

The physical condition of the embankment as surveyed post-incident by the 

geotechnical engineering firm Arup revealed a number of weaknesses within 

the embankment structure (Arup 2008). The clay core was found to contain 

higher than expected amounts of silt, making it more susceptible to erosion. 

There was also the possibility that cracks had formed in the core allowing 

water to permeate through the embankment. The height of the clay core was 

increased in 1969 with a concrete extension, however this was found to 

have deteriorated and was judged to be life extinct. The report also found 

that the select material surrounding the core was mostly indistinguishable 

from the rest of the embankment material. Finally, there was evidence of 

seepage at the back of the scour hole indicating that water had indeed 

penetrated the core and saturated the embankment, decreasing its stability.    

An analysis of the embankment’s slope stability under these conditions was 

conducted using the software SLOPE/W (Figure 4.6). This resolves both 

moment and force equilibrium equations to calculate a factor of safety 

(FOS). In this context the FOS is defined as the ratio of total available shear 

stress of the soil within the embankment to the shear stress required to 

maintain equilibrium along a potential slip surface (USDOI 2011). Thus it is a 

ratio of stabilising and destabilising forces that gives an indication to the 

probability of failure of an embankment depending on a set number of 

conditions.  
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The geometry of the embankment at Ulley (derived from original technical 

drawings) was created in SLOPE/W and represented as a homogenous earth 

embankment with puddle clay core (Figure 4.6). The select material was not 

treated separately because it had been deemed indistinguishable in the 

post-incident geotechnical report (Arup 2008). The geometry was altered to 

represent the removal of the supporting toe material, earth supporting the 

base of the embankment, by the scour hole. As the geotechnical report also 

indicated clear evidence of seepage the cohesion, resistive property, of the 

embankment material was reduced to simulate full saturation (Figure 4.6). 

This occurs when water has penetrated the puddle core and fills the pore 

spaces within the embankment material. This acts to reduce the supporting 

material’s cohesive strength and increases the embankment’s likelihood of 

slope failure under gravity.     

The SLOPE/W analysis suggests that the supporting embankment material 

would have been liable to slipping following erosion of the toe material 

under the 2007 incident conditions if remedial action had not been taken. 

This would have exposed the core and the horizontal force equilibrium 

would be lost causing it to be overcome by destabilising forces without the 

support of the downstream embankment structure. The Ulley embankment 

was given an FOS of 0.718 in the scenario where undercutting had been 

permitted to continue (Figure 4.6). Removal of the toe material is likely to 

have destabilised the embankment. An FOS >1.5 is considered satisfactory 

for dams while <1.0 is unsafe (FERC 2005). Undercutting of the 

embankment material was initiated during the 2007 flood event but was 

fortunately prevented from worsening following emergency remedial work. 

Should the breach have continued, these preliminary core stability 

calculations suggest that the core would have failed.
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Figure 4.6 Ulley dam cross-section and slope stability analysis using SLOPE/W 
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4.3.2 Embankment breach modelling (EMBREA) 

The EMBREA (EMbankment BREAch Assessment) complex model, developed 

by HR Wallingford Ltd., was used to undertake the breach analysis for the 

embankment at Ulley. EMBREA is a research and development model 

commercially available as HR Breach (FLOODsite 2009). It was used to 

simulate the failure mechanism of the dam and derive the resultant outflow 

hydrograph. This is necessary to predict the impact of the dam failure and it 

is a key parameter for the resultant flood spread modelling (Figure 4.5A) 

(see next Section 4.3.3). 

There are several reviews of dam breach models (e.g. Mohamed 2002; 

Mohamed et al. 2002; Wahl 2004) which evidence an established history of 

breach modelling. However, these types of models, and therefore their 

outputs, are often subject to large uncertainties (Froehlich 2008). Given the 

varied nature of dam and embankment construction designs, materials and 

types there is not a ‘one size fits all’ modelling approach. EMBREA was 

selected for this case study as it is most appropriate for earth embankment 

dam breach simulations. This is in part due to its ability to handle structures 

with multiple earth layers such as a clay core, select and embankment 

material. It also permits a range of failure options for layered embankments. 

The most likely failure scenario for Ulley (Figure 4.5A parameter) is 

embankment overtopping. This is based on the evidence of geotechnical 

reports and slope stability analysis (Section 4.3.1). Overtopping occurs when 

the embankment core fails, resulting in the release of the water contained 

behind the dam. The slope stability analysis suggested that the core would 

fail when the supporting embankment material was removed through scour 

and slope failure (Figure 4.7).        
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Figure 4.7 Cross-sectional schematic of the embankment failure process on an earth 

embankment dam. Where (a) is the initial condition and (b-d) represent the first to third stage 

failures of the embankment. 

A block failure occurs (Figure 4.7B) when an exposed section of the core is 

destabilised due to the initial slip of supporting embankment material. This 

results in a breach flow, a sudden release of dammed water which causes 

further removal of embankment material supporting the core. With 

increasing exposure of the core, stresses in the core increase and 

subsequently give rise to further block failures (Figure 4.7C and D) as the 

embankment material is eroded.  

The required input parameters used in this study for EMBREA (Figure 4.5A) 

are summarised in Tables 4.1 and 4.2. The output is a breach hydrograph 

(Figure 4.8).  

Table 4.1 Input parameters for EMBREA 

Parameter Description Source(s) 

Upstream 

condition 

Reservoir inflow Not used 

Volume stage 

curve 

The volume of water within 

the reservoir 

Arup technical report 

Dam geometry 
Dimensions of core and 

layers 

Original drawings 

Embankment 

material properties 

Physical material properties  

(see Table 4.2) 

Rotherham MBC 

geotechnical report 

 

The upstream condition parameter (Table 4.1) was not used as the inflow to 

the reservoir was not deemed significant given the enormous magnitude of 
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a potential breach. Furthermore, on un-gauged inlets it would be arbitrary to 

quantify a highly variable estimate based on current and previous conditions 

within the catchment. Like the 2007 incident, the model scenario assumes 

the reservoir is already full and at overtopping capacity. Therefore any minor 

additional input is inconsequential during the initial stages of slope failure 

considered in this case.     

The values defined for the physical properties of governing the dam breach 

modelling parameters (Figure 4.5A) in Table 4.2 have been based upon 

specific information from within the geotechnical survey (Arup 2008). Where 

these are unknown expected and default values have used under the 

guidance of consultant dam engineers at HR Wallingford. For example the 

cohesion of the clay core is much greater (by intended design) than the 

surrounding saturated select material (as anticipated under the June 2007 

conditions). The friction angle, dry unit weight, erodability, plasticity index 

and Manning’s n (a coefficient representing channel friction) have been 

assigned standard values based on the composition of materials used in 

earth/clay dam embankments.        

 

A selection of model parameters based on the dam’s physical properties are 

summarised in Table 4.2. The dam has a crest height of 16 m and a volume 

of 580,000 m
3

 (Hinks et al. 2008). Whilst there are inherent uncertainties in 

any form of modelling there still remains a known volume of water within 

Table 4.2 Dam physical material properties 

Property Clay core Select 

material 

Source(s) 

Median particle size (D50) (mm) 0.05 0.2 Arup (2008) 

Porosity (%) 0.37 0.37 Arup (2008) 

Dry unit weight (kN m
-3

) 24 
 

24  

Friction angle (deg) 30 30  

Tensile strength (kN m
-2

) 0.01 0.01  

Cohesion (kN m
-2

) 100 0.1  

Erodability coefficient (cm
3 

Ns
-1

) 0.01 5  

Plasticity index 0 0 Default 

Manning’s n 0.025 0.025 Default 
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the reservoir that will cause significant flooding downstream following a 

breach.    

Figure 4.8 is the breach hydrograph derived from EMBREA following 

successful modelling of the embankment breach through overtopping. This 

is a direct input into the next stage of flood spread modelling required for 

the risk analysis (Figure 4.5B). The hydrograph shows breach discharge 

against time from the initial failure. Three distinct peaks can be observed at 

approximately 0, 300 and 850 seconds of 250 and 600 m
3

s
-1

 respectively. It 

represents an instantaneous onset with a very short lived duration (c. 200 

seconds). The peaks (b) to (d) correspond with the series of block failures 

schematically represented in Figure 4.7. The sudden failure and removal of 

embankment material and release of stored water through these block 

failure events produces the instantaneous discharges shown in this 

hydrograph.    

 

Figure 4.8 Ulley breach discharge hydrograph 

4.3.3 Flood spreading and inundation modelling (TELEMAC-2D) 

The extent of a potential inundation following a breach at Ulley was 

simulated using the open source TELEMAC-2D hydraulic model 

(www.opentelemac.org) (Figure 4.5B). The tool has been widely used for 

flood and breach applications (e.g. Malcherek 2000; Fernandes et al. 2001; 

Cooper et al. 2013). It models free surface flows based on nodes joined in 

http://www.opentelemac.org/


Spatiotemporal population modelling to assess exposure to flood risk 

 

 
172 

an irregular triangular mesh. This allows refinement for specific areas of 

interest such as rapidly changing topography. TELEMAC-2D was employed 

for this case study because this mesh provides better description of 

topographic features that interfere with the inundation process (e.g. road 

embankments) (Di Baldassarre et al. 2009a) which are a key feature of the 

study area. TELEMAC-2D is a two-dimensional model that solves the 2D 

shallow water equations, enabling it to represent water movements between 

the channel and flood plain (Di Baldassarre et al. 2009b). The complex 

topography in this case results in flow prediction requirements from the 

embankment breach as well as constraining topographic features. For this 

reason TELEMAC-2D was appropriate to model the flood inundation from 

Ulley Reservoir.  

The mesh is created using Blue Kenue which is a pre/post processing 

hydraulic tool developed by the Canadian Hydraulics Centre of the National 

Research Council Canada (NRCC). The tool is currently available under a free 

use licence (NRCC 2014). It has been used to prepare model data input for 

this study as it permits the integration of geospatial data with model input 

and results data for a number of hydrological models including TELEMAC-

2D.   

For this study a notional impermeable barrier bounded the selected study 

area. This is insignificant for the modelling as the flood spreading was 

naturally constrained by topography within the area of interest. Topographic 

information was contained within the mesh which was generated from the 

creation of nodes. These represent spot heights derived from a 2 m LiDAR 

digital surface model (DSM) (Environment Agency 2013). Two-metre 

resolution LiDAR is currently the finest available at the scale required for 

this flood analysis. Natural (e.g. Ulley’s situation within the Rother Valley) 

and constructed (e.g. dam and motorway embankments) topographic 

features within the study area have a critical influence on flood water 

spreading (Figure 4.9). The 2 m resolution DSM is required to resolve 

features such as raised road and rail embankments for the purpose of the 

flood spread modelling in this example.         
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Figure 4.9 LiDAR digital surface model (resolution: 2 m, November 2012) showing M1 

junction 33 (left) and the reservoir embankment (right). 

The extensive pre-existing flood extent downstream has been accounted for 

as initial conditions within the models input parameters. The depth of 

standing flood water is mapped onto the input mesh for TELEMAC-2D 

(Figure 4.5B). If the dam had failed it would have been in addition to 

inundation on the flood plain immediately downstream. Depths for the 

existing downstream flood extent were estimated from aerial photographs 

(Figure 4.3) taken during the emergency response. The image was used to 

define boundary height forming the edges of the flood extent. This was 

achieved using Ordnance Survey spot heights on a 1:25k scale map. The 

height the antecedent flood inundation reached (31 mAOD) was extracted as 

an isoline from the topography mesh using Blue Kenue. The difference 

between the isoline and the topography was calculated to estimate the flood 

depth across the flood plain.      

The EMBREA breach hydrograph was used for the reservoir discharge 

parameter within TELEMAC-2D (Figure 4.5A). The discharge source location 

is assigned to a node’s coordinates. A location in the centre of the reservoir 

embankment was chosen. Culverts through notable barriers downstream 

such as the railway and motorway embankments are accounted for by 

breaks in the DSM (Figure 4.9). While the capability to account for friction 
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variation based on land use classification remains it was deemed 

insignificant for this study. This was attributed to most of the existing and 

output flood extent being within similar land use zones. The effect of 

friction was still accounted for by applying a representative default value 

across all areas. The modelled outputs concerning the spreading of a breach 

event for water depth and velocity were exported from the model’s mesh as 

xyz data. The data were subsequently rasterised to a 15 m resolution for 

analysis using ArcGIS. This resolution is the finest achievable based on the 

density of nodes within the model’s mesh, which is in turn derived from 

variation within the topography. 

4.3.4 Spatiotemporal population modelling 

The Population 24/7 tool that has been described in detail in Chapter 3 has 

been used to produce spatiotemporal estimates for the Ulley study area 

(Figure 4.1). The population estimates (Figure 4.5C) are analysed with the 

hydrological model outputs using ArcGIS for an assessment of the flood risk 

to people. An 8 x 10 km grid of 100 m cells (n cells = 8000) of population 

density for hourly time intervals during a ‘typical’ term-time weekday 

(reference date: June 2007) has been produced. This permits the population 

potentially exposed to the flood risk of an Ulley dam failure to be analysed 

within a diurnal cycle. The reference date for the data used to construct the 

model has been selected to be representative of the conditions at the time 

of the Ulley 2007 incident.        

Table 4.3 outlines the sources used to construct the Ulley data library for 

the Population 24/7 model. The model for Ulley only considers a term-time 

population base-line as the dam failure occurred on a June weekday. The 

workplace and education locations facilitate the known movement of people 

to their respective activities following a predictable daily trend.   
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Figure 4.10 Histogram of percentage of Rotherham OA population travelling less than 30 km 

to work 

For the purposes of the population modelling component a 30 km buffer 

zone has been applied to the study area to mitigate against edge effects 

caused by peripheral population movements. This was derived through 

analysing travel to work data from the 2001 census (Table UV80). This was 

the highest resolution and most comprehensive dataset available at the time 

of writing. 94.3% of the working population within OAs in the Rotherham 

district travelled < 30 km to work, while 91.9% travelled < 20 km (Figure 

4.10). These data concern the usual resident population aged 16-64 in 

employment (excluding those with no fixed place of work, working offshore 

or outside of the UK).  
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Table 4.3 Ulley Population 24/7 data library composition and sources  

Name Description Type 

Data source(s) 

Population 
Location  

geography 
Temporal profile 

Wide Area 

Dispersion 

Ulley usually 

resident 

population 

Baseline ‘term 

time’ population 

Origin 2007 MYE NSPD (May 2007) 

residential UPCs 

N/A N/A 

Education Count of pupils 

and students in 

full time education 

(school, college 

and university) 

Destination Schools Census (DfE 

2007) 

Independent Schools 

Census (2007) 

HESA (2007) 

NSPD (May 2007) 

Georeferenced 

UPC for 

institutions 

site(s) 

Population 24/7 

project 

Population 24/7 

project 

Education 

workforce 

Workplace 

population counts 

(SIC: P) 

Destination ABI (2007) NSPD (2007) 

Business UPCs 

LFS (2007) Census (2001, 

Table UV80) 

Health service 

workforce 

Workplace 

population counts 

(SIC: Q) 

Destination ABI (2007) NSPD (2007) 

Business UPCs 

LFS (2007) Census (2001, 

Table UV80) 

Manufacturing 

and 

construction 

workforce 

Workplace 

population counts 

(SIC: C, F) 

Destination ABI (2007) NSPD (2007) 

Business UPCs 

LFS (2007) Census (2001, 

Table UV80) 

       

Wholesale and 

retail 

workforce 

Workplace 

population counts 

(SIC: G) 

Destination ABI (2007) NSPD (2007) 

Business UPCs 

LFS (2007) Census (2001, 

Table UV80) 
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Table 4.3 continued 

Name Description Type 

Data source(s) 

Population 
Location 

geography 
Temporal profile 

Wide Area 

Dispersion 

Office based 

workforce 

Workplace 

population 

counts (SIC: 

J, K, L, M, N, 

O, R, S, T, 

U) 

Destination ABI (2007) NSPD (2007) 

Business UPCs 

LFS (2007) Census (2001, Table 

UV80) 

Transportation 

workforce 

Workplace 

population 

counts (SIC: 

H) 

Destination ABI (2007) NSPD (2007) 

Business UPCs 

LFS (2007) Census (2001, Table 

UV80) 

Catering 

workforce 

Workplace 

population 

counts (SIC: 

I) 

Destination ABI (2007) NSPD (2007) 

Business UPCs 

LFS (2007) Census (2001, Table 

UV80) 

Notes: SIC (Standard Industrial Classification, Annual Business Inquiry (ABI) 2007) 
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4.3.5 Flood hazard rating 

A flood hazard rating methodology has been developed by Penning-Rowsell 

et al. (2005) to assess the risk of death or serious injury to people exposed 

to flooding. The flood hazard rating aims to quantify the flood hazard in 

terms of the flood characteristics (depth and velocity) (DEFRA 2006). This is 

one method to compare one flood event to another against the same 

criteria. While the methodology outlined aims to quantify population 

exposure to a given hazard by time of day, the use of a flood hazard rating 

considers the magnitude of the hazard. Like population the magnitude of a 

hazard also changes throughout space and time. This method of 

quantification in conjunction with detailed hazard maps, such as those 

outlined in this chapter, permits the severity of the flood hazard to be 

analysed in space and time. This rating has been adopted for this study as a 

tool that can be applied nationally within the UK (e.g. DEFRA 2006). The 

hazard rating can be combined with assessments of the area vulnerability 

(Eq. 4.2) and the people vulnerability (Eq. 4.3) to estimate the number of 

injuries and fatalities (Eqs. 4.4 and 4.5).   

The flood hazard rating (HR) is formulated: 

 𝐻𝑅 = 𝑑(𝑣 + 0.5) + 𝐷𝐹                 (4.1) 

Where, d = depth, v = velocity and DF = debris factor (0, 0.5 or 1). The three 

stage debris factor score depends on the probability that debris will lead to 

a significantly greater hazard. The debris factor has been set to 0.5 for this 

example. The area immediately downstream of the dam is arable pasture 

with few sources of debris. The flood modelling has identified a number of 

crucial culverts. Therefore, although the sources of debris may be low, the 

effect of blocked culverts would be high. The hazard rating is assessed 

according to the criteria in Table 4.4. 
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Table 4.4 Flood hazard rating and risk to people after Priest et al. (2007) 

Hazard 

rating 

Flood 

hazard 

Description 

< 0.75 Low Flood zone with shallow water or deep standing 

water. 

0.75-1.25 Moderate Flood zone with deep water or high velocities. 

Danger for some.  

1.25-2.00 Significant Flood zone with deep fast flowing water. Danger 

for most. 

> 2 Extreme Flood zone with deep fast flowing water. 

Extreme danger for all. 

 

Area Vulnerability (AV) considers the amount of flood warning, flood onset 

speed and the nature of the area. Each parameter for the AV is given a score 

based on set criteria (Table 4.5) which is then summed (Eq. 4.2). This gives 

a range of 3 (least vulnerable) to 9 (most vulnerable) depending on the 

area’s characteristics.   

𝐴𝑉 = 𝑆𝑝𝑒𝑒𝑑 𝑜𝑓 𝑜𝑛𝑠𝑒𝑡 + 𝑁𝑎𝑡𝑢𝑟𝑒 𝑜𝑓 𝑎𝑟𝑒𝑎 + 𝐹𝑙𝑜𝑜𝑑 𝑤𝑎𝑟𝑛𝑖𝑛𝑔      (4.2) 

Table 4.5 Area vulnerability score matrix after Penning-Rowsell et al. (2005) 

Parameter 

Score 

1 (low risk) 2 (medium risk) 3 (high risk) 

Speed of 

onset 

Slow (many 

hours) 

Gradual (≈ hour) Rapid 

Nature of area Multi-storey 

apartments 

‘Typical’ 

residential 

Mobile homes, 

schools, busy roads, 

bungalows etc 

Flood warning Effective with 

emergency plans 

Warning system 

present, but 

limited 

No warning system 

 

Overall area vulnerability for the Ulley study area has been evaluated using 

Equation 4.2. This produced a score of 9 (maximum), indicating a very high 

area vulnerability. The flood warning and speed of onset parameters are 

given the highest score (3). The onset of breach events is often 

instantaneous (rapid) leaving little time to warn even if a general flood 

warning system is in place. The nature of the area includes major 

transportation infrastructure as well as a mix of typical residential dwellings 

in addition to schools and commercial units (score = 3).       
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People Vulnerability (PV) (Eq. 4.3) assesses the population characteristics 

and their propensity to experience harm. The PV is given a percentage score 

of 10, 25 or 50% based on criteria relating to the populations age and health 

(Table 4.6).  

𝑃𝑉 = %residents 𝑙𝑜𝑛𝑔𝑡𝑒𝑟𝑚 𝑖𝑙𝑙𝑛𝑒𝑠𝑠 + %residents 𝑎𝑔𝑒𝑑 > 75        (4.3) 

Table 4.6 People vulnerability score matrix after Penning-Rowsell et al. (2005) 

Parameter 

Score (%) 

10 (low risk) 25 (medium risk) 50 (high risk) 

% Pop. Aged > 75 

years 

Above national 

average 

Around national 

average 

Above national 

average 

% Pop. long-term 

sick/disabled 

Below national 

average 

Around national 

average 

Above national 

average 

 

This information has been referenced from the 2001 census because 2007 

is an inter-censual year and this level of detail is only available for 2001. The 

population aged over 75 years was obtained from Table KS002: Age 

Structure.  The percentage of the population living with a limiting long-term 

illness was obtained from Table KS008: Health and Provision of Unpaid Care. 

The values for the Ulley study area are summarised in Table 4.7. These have 

been determined from the required age and long term illness characteristics 

reported for parishes and local authorities within the study area that are at 

risk from the dam failure inundation. They represent the population across 

the whole reporting zone as published without further interpolation. 
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Table 4.7 Population characteristics by parish/local authority (Census 2001, Tables KS002 

and KS008) for locations within the study area compared to national average (England).  

Location 

Pop. aged 

over 75 (%) 

Difference 

from national 

average
†

 

Pop. Long-

term illness 

(%) 

Difference 

from national 

average
‡

 

Rotherham 7.09 -0.54 22.41  +4.48 

Catcllife 6.22 -1.32 24.63 +6.70 

Treeton 6.85 -0.69 22.00 +4.07 

     

Study area 

mean 

6.72 -0.82 23.01 +5.08 

England 

(Average) 

7.54
†

  17.93
‡

  

 

Based on the data in Table 4.6 a population vulnerability of 75% (25% + 50%) 

for the study area has been calculated. The proportion of population aged 

over 75 is around national average (score = 25%, Table 4.6). However, the 

population with a limiting long-term illness is much greater than average  

(score = 50%, Table 4.6).     

Finally, the preceding components are combined to give an estimate on the 

number of injuries and fatalities for a given flood event.  

𝑁(𝐼) = 2𝑁𝑧
𝐻𝑅×𝐴𝑉

100
× 𝑃𝑉             (4.4)

   

Where, N(I) = number of injuries, Nz = population living in the flood plain, HR 

= hazard rating, AV = area vulnerability and PV = people vulnerability 

                  𝐹𝑎𝑡𝑎𝑙𝑖𝑡𝑖𝑒𝑠 = 2𝑁(𝐼)
𝐻𝑅

100
        (4.5) 

The AV and PV have been determined based on the area as a whole. 

However the population exposed, flood depth and velocity varied by cell and 

is the output of the modelling described within this chapter. The number of 

injuries, and therefore fatalities can be calculated on a cellular level. The 

problem of spatial units still exists by means of differing resolutions 

between these gridded flood inundation (15 m) and population (100 m) 

outputs. This is much easier to overcome in a grid than with varying 

arbitrary spatial zones. The 100 m population dataset has been resampled 

and adjusted to 15 m resolution using a scale factor of 44 (100 ÷ 15)
2

. This 
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is provided with the caveat that the actual variation of population within the 

100 m output cell cannot be determined based on the resolution of 

currently available input data. Therefore an equal distribution has been 

assumed. It is important to note that this thesis does not intend or attempt 

to claim potential injuries or fatalities to the nearest 15 m. Instead this 

method allows the assessment of the overall flood event while considering 

local variations in flow parameters and population. Furthermore this is 

approach is repeated for population data for different times of the day to 

examine any spatiotemporal variability.        

A hypothetical worked example is provided in Table 4.8. The same process 

is repeated for all cells (n = 9613) within the flood polygon.  

Table 4.8 A hypothetical worked example for a single 100 m cell for time t. 

Property Value Notes 

Flood depth 0.5 m Cellular value determined from 

TELEMAC-2D depth output 

Flood velocity 2 ms
-1

 Cellular value determined from 

TELEMAC-2D velocity output 

Debris factor 0 Unlikely (range: 0-1), value applied to 

all cells 

Population exposed 35 Cellular value determined from 

Population 24/7 for time t 

Area vulnerability 9 3 + 3 + 3 (Table 4.5, Eq. 4.2) 

People vulnerability 75% 25 + 50 (Table 4.6, Eq. 4.3) 

Hazard rating 1.25 Eq. 4.1 

Number of injuries 6 Eq. 4.4 (rounded up to 0 dp)  

Number of fatalities 0.13 Eq. 4.5 
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4.4 Results 

Results following the integration the spatiotemporal population and 

environmental modelling outputs outlined in the previous section are 

presented here. They will be discussed in the following order: firstly, the 

outputs from the hydraulic modelling undertaken. This presents estimates 

for the flood extent, depth and velocities derived from the combination of 

the flood breach and spread modelling (Figure 4.5A and B). Secondly, a 

flood hazard rating has been calculated based on the flood depth and 

velocity variables according to Equation 4.1. Velocity and water level (height 

AOD) time series have additionally been extracted from the TELEMAC-2D 

inundation outputs at the motorway embankment. Thirdly, the population 

distribution has been described and spatiotemporal variation in flood risk 

exposure illustrated. The spatiotemporal population estimates have been 

compared to static census counts. Finally, a fatality estimate has been 

calculated and spatially represented.  

4.4.1 Hydraulic modelling (TELEMAC-2D)      

Water depth and velocity results derived from TELEMAC-2D for the post-

breach inundation extent for Ulley Reservoir are shown in Figure 4.11. These 

represent the flood level 45 minutes after the start of the breach. The 

maximum flood depth and velocity do not necessarily occur at the same 

time however this extent is a close approximation. The output extent 

recognises the antecedent flood conditions. The greatest depths occur in 

river channels, while increased velocity occurs from the initial breach and 

through culverts (see also Figure 4.12). The highest flows of 5.5 m s
-1

 occur 

immediately downstream of the embankment. The channelization effect of 

the culverts creates localised intensification in velocity. The maximum depth 

(up to 6 m) outside of the river channels is to the south of Catcliffe.       
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Figure 4.11 Flood inundation results for water depth (left) and velocity (right)   

4.4.2 Flood hazard rating evaluation 

The flood hazard rating (Figure 4.12) identifies the locations of greatest 

depth and velocity. The HR for each cell has been calculated (Eq. 4.1) using 

the flood modelling outputs (Figure 4.11). The highest rating occurs within 

the original channels. The majority of the centre of the southern half of the 

flood polygon has a hazard rating >5. This is well into the extreme category 

and would pose extreme danger to all exposed (Table 4.4). While we may 

not expect people to be present in the river channels where the hazard is 

rated the greatest (HR > 20), people do still enter or get into difficulties in 

the high flow of such channels which ultimately results in fatalities. Multiple 

fatalities within this region in June 2007 illustrate the extreme risk to 

people. In Humberside a man died in flood water after getting his foot stuck 

in a manhole grate as firefighters tried to free him. In Sheffield a 68 year old 

man and 14 year old boy were separately swept into swollen river channels 

resulting in two further fatalities (Williams and Glendinning 2007). 

Contained within the same report, 1000 people could not return home or 
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were evacuated in Sheffield alone by the emergency services and Royal Air 

Force.
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Figure 4.12 Flood hazard rating for the Ulley breach scenario (left). Ground observation of features of the flood model output (right) (Survey pole: 1.5 m). 

Photographs: Alan Smith (August 2014)
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Photographs relating to the flood inundation characteristics observed in the 

TELEMAC-2D model results were taken on a visit to the site in August 2014 

(Figure 4.12): 

Photograph 1:      View west along the M1. This is a major national arterial 

route that transects the centre of the flood inundation 

polygon. This is the centre of the section closed because of 

fears that a breach at Ulley could overtop the carriageway 

here.  

Photograph 2:      The bridge where Long Lane passes beneath the M1 

motorway is one of two breaks in the motorway 

embankment that acted as a culvert during the antecedent 

flooding immediately downstream from the reservoir in 

2007.  

Photograph 3:      The second culvert where the River Rother flows beneath 

the M1 and junction 33 entrance/exit slip roads.  

Photograph 4:      A view of the A360 road embankment, similar to raised 

section of M1 motorway. The study area is characterised by 

these raised earth embankments that have a notable impact 

on the flood inundation modelling (Figure 4.11)  

Photograph 5:      View of Long Lane at 31 mAOD. This section of road was 

inundated by at least 3 m of standing flood water due to the 

flooding already experienced in the area (Figure 4.8) during 

June 2007. It is also immediately downstream of the 

reservoir embankment.  

Photograph 6:      Channel entrance to the original 1874 spillway (now sealed 

and the spillway removed) where flow initiated the 

destabilisation of the embankment at Ulley in June 2007.  

A velocity time-series was taken at the motorway embankment immediately 

downstream from the reservoir (Figure 4.13) with a profile closely aligned to 

the initial hydrograph. It commences from the initial embankment failure 

with three peaks in velocity at approximately 2500, 7500 and 17500 
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seconds. This was extracted from the closest corresponding node within the 

model’s mesh using Blue Kenue. It approximately corresponds to the left of 

the Long Lane motorway underpass (Figure 4.12(2)). The three peaks of 

around 2 m s
-1

 are a response to block failures in the reservoir embankment. 

Although flood flows have slowed at this point velocities around 2 ms
-1

 are 

still significant. This is within the velocity threshold for masonry and 

concrete great enough to cause structural damage (Priest et al. 2007). 

Therefore it is possible that the integrity of the motorway structure could be 

compromised, particularly at the locations of culverts and bridges where 

localised peaks in velocity occur.
 

 

Figure 4.13 Velocity profile at motorway embankment 

A time-series for flood water depth normalised to height above ordnance 

datum (AOD) was also extracted from the model results using Blue Kenue 

(Figure 4.14). It was taken from the lowest position of the motorway 

embankment at the River Rother culvert (Figure 4.11(3)). The comparison of 

the potential water depths adjacent to the motorway and the lowest 

elevation of the carriageway surface (31.7 mAOD) according to the LiDAR 

data suggest that the motorway embankment may not have been 

overtopped. However this is based on the assumption that the culverts (or 

road underpasses acting as temporary culverts) are unobstructed. 

Nevertheless, the level of the maximum water depth for the scenario 

modelled indicates that the water level could have come within 0.70 m of 

overtopping the carriageway as during the first two peaks. It is estimated to 

have reached at least the 31 m contour (Figure 4.14).    



Spatiotemporal population modelling to assess exposure to flood risk 

 

 190 

 

Figure 4.14 Flood level at the motorway embankment 

4.4.3 Spatiotemporal population outputs 

Outputs from Population 24/7 show variations in population density at 100 

m resolution in both space and time. Features of a ‘night-time’ modelled 

population layer for the study area are identified in Figure 4.15. Low and 

high density variations in residential living spaces can be detected. Figure 

4.15 also illustrates zero densities which are exemplified by an area of 

housing adjacent to a large recreation area. The features are present 

because of the use of residential postcode centroids (Chapter 3) which 

correctly allocate population to their respective residential locations. A mix 

of land uses, including industrial is also evident. 



 

191 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15 Corroborating modelled population density output using Population 24/7 with ground observations. Photographs: Alan Smith (August 2014)  
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The population potentially exposed within the flood hazard polygon (Figure 

4.12) has been calculated in ArcGIS at hourly intervals through the day using 

both the original census data and spatiotemporal estimates (Figure 4.16). 

The two census datasets (LSOA and OA) give a single static exposure 

estimate. For the highest resolution census data at at OA level for 2001 the 

daytime population count (Table UV037) was used. This is defined as the 

population aged 16-74 resident in the area who do not work, plus all people 

who are working in the area (ONS 2004). The outputs presented from 

Population 24/7 show high population densities (up to 700 people per ha) 

emerging on highly concentrated sites by mid-day (e.g. Figure 4.17E). The 

highest of these densities are secondary school sites with up to 1500 pupils. 

By the end of the school day (16:00) fewer sites are occupied (Figure 4.17F). 

These can be explained by the relatively large number of school staff still 

present at the same sites and the workforce located at other places of work 

such as high-density office workspaces. The population ‘in travel’ is also 

distinguishable on the road network and evident around peak travelling 

times (e.g. Figure 4.17D and E). 

Figure 4.16 shows that the magnitudes to which the estimates differ is so 

great that there is an element of meaningless. For example it would not be 

logistically nor financially viable to always plan for 250% of the resources 

that ‘may’ actually be required if following the precautionary approach.  
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Figure 4.16 Population exposure estimate within the flood extent polygon 

The Population 24/7 exposure estimate shows a temporal trend within this 

study area. The estimated population exposed to a breach of Ulley reservoir 

increases between 400-600 people during the peak travelling times. The 

population density during typical working hours (10:00-15:00) remains 

constant and slightly below the night-time residential level (21:00-04:00). 

This would be as expected for the nature of the study area. The flood 

polygon encompasses mainly residential areas and major arterial routes. 

Therefore, there is a large peak in the exposed population during the typical 

commuter times and population decreases in between (as people leave the 

residential areas to work elsewhere during the day).       

Figure 4.16 illustrated the spatial variation in population density for a ‘night-

time’ usually resident population. The population within the study area has 

been modelled at hourly time-slices throughout a weekday representative of 

25 June 2007. A selection of outputs for 00:00, 08:00, 12:00, 16:00 and 

20:00 are illustrated in Figure 4.17. This also contains a comparison with 

census datasets (Figure 4.17A and B) overlaid by the predicted modelled 

flood extent.     
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Figure 4.17 Gridded Population 24/7 (100 m) spatiotemporal population estimates for the 

Ulley region compared to census datasets overlaid with TELEMAC-2D flood inundation 

polygon. 

Figure 4.17A shows rasterised LSOAs with a 2007 MYE. This is the best 

available standard published population data for the target date (2007). The 

2001 census OA population count is also illustrated (Figure 4.17B). While 

this only represents the population at the year of the 2001 census it is the 

highest resolution population data available prior to the target date without 

the need for further modelling (e.g. that undertaken using Population 24/7). 

In stark contrast to the spatiotemporal estimates (Figure 4.17C-G) they only 

provide a static count of uniform population density across large areas. The 

census representation of population is inadequate for the example 

described here. It is intended to act as an illustrated example for choosing 

the appropriate dataset or method suited to the task for which it is required. 
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However, in current flood risk assessments it is this (Figure 4.17A-B) kind of 

static population data that are often utilised (e.g. Arrighi et al. 2013; Taylor 

et al. 2013). The approach outlined here aims to demonstrate improvements 

to this practice when considering spatiotemporal variation in population 

density. It is known that populations are not static in time and this is shown 

in the Population 24/7 result. The census over-estimation results from its 

geographic coverage as a set of contiguous zones with uniform densities. 

Therefore when the flood polygon is used to extract the underlying 

population potentially exposed all cells contain a count. However, in reality 

much of the flood polygon (arable pasture) is uninhabited. If adopting the 

precautionary principle approach an over-estimate may seem desirable.  

4.4.4 Population fatality estimates 

The number of potential fatalities has been estimated from the Population 

24/7 results using the approach outlined in Section 4.3.5. These were 

calculated for each cell containing a population count that is contained 

within the breach flood risk estimate. Five sample hourly intervals have been 

chosen for a ‘typical’ weekday with a target date of June 2007. A break-

down is provided in Table 4.9.   

Table 4.9 Ulley fatality estimates 

Time of day Fatalities 

00:00 6 

08:00 8 

12:00 5 

16:00 12 

20:00 6 

 

This distribution of fatalities for 12:00 and 16:00 has been mapped in 

Figure 4.18. In line with the methodology these generally correspond with 

where the hazard rating is greatest. This occurs in the river channel where 

depths and velocities are the highest. Further refinement is likely to be 

required due to the nature of the area in this case study. The two main areas 

with the greatest fatalities predicted are located where the river channels are 

bounded by inhabited areas. It is not unreasonable to assume deaths can 

occur within the channels, as has already been reported for this area. These 
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channels (sub 100 m) cannot be resolved in the population modelling at the 

resolution achievable with currently available data. It may be likely that the 

application of a mask post-modelling may be required to constrain 

population from the channel locations. However, this raises questions for 

population volume preservation.   

These results show that population exposure and fatalities are sensitive to 

the time of day that the hazard occurs. The detailed spatiotemporal 

modelling approach illustrated has made it possible to identified high-risk 

areas with the potential to cause population fatalities. This could not be 

achieved using census data alone. It confirms that this process is sensitive 

to population and hazard fluctuations. This is a reflection on reality where 

dynamic populations inevitably intersect hazardous zones.    

 

Figure 4.18 Distribution of potential fatalities at midnight and 16:00 for a typical weekday 

(June 2007) 
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4.5 Comparison with census estimates 

The differences between the Population 24/7 estimates and census datasets 

have been examined. These should be treated with caution as they are not 

like-for-like comparisons, but rather the closest possible alternative datasets 

(e.g. highest resolution census daytime estimate only available for 2001, 

and 2007 estimate only available at LSOA level). The comparison with 

census OA level represents population counts for 2001 (census year). These 

are the highest resolution population data available for the study area, but 

six years before the target date. For this reason MYEs are produced for inter-

censual years. However, these are only available at the highest resolution for 

LSOA level. While this provides the population estimate required for the 

target date (2007) the spatial resolution is diminished.      

The difference (Δ ) for all raster 100 m cells (n= 8000) within the study area 

of selected Population 24/7 outputs (12:00, 16:00 daytime and 00:00 night-

time) between rasterised census 2001 OA daytime and 2007 LSOA night-

time counts has been evaluated in Figure 4.19 and summarised in Table 

4.10. The standard deviation (σ ) provides a comparative measure for the 

spread of values. This is not a test where any one dataset should resemble 

the other as they are both different measures although the closest available 

comparison.     
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Figure 4.19 Difference between 00:00 Population 24/7 estimate and 2007 (LSOA) night-time 

census population count. (B) Difference between 12:00 Population 24/7 estimate and 2001 

(OA) daytime census population count. 

In terms of night-time (00:00) population comparisons there is a greater 

variance in the values for the Δ  between night-time Population 24/7 2007 

estimate and the night-time LSOA 2007 count (Figure 4.19A and Table 4.10, 

σ  = 20.36) although these are closest in terms of population reference date 

(i.e. both 2007). The least amount of variance is between Δ  of the 

Population 24/7 daytime population estimate and 2001 census daytime 

count (Figure 4.19B and Table 4.10, σ  = 15.81). Although the difference 

between the two is smaller they are still datasets with reference dates six 

years apart. This measure suggests that greater resolution in the spatial 

distribution of population is more important than target date in this case. 

The difference for all of the model and census comparisons for the times 

selected is positive. This shows that these cells in the Population 24/7 layers 

are assigned higher values than their corresponding counterpart in census 

layers. This would be expected because the Population 24/7 approach 

concentrates population to locations expected to be occupied (e.g. Figure 

4.17) rather than the uniform across zone approach represent in the census 

comparison.   
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Table 4.10 Ulley study area model difference analysis 

Values  Graph  Measure 

Observed 

(model) 

Predicted 

(census) 

 
Figure 4.19 

 
SD Mean RMSE 

Ulley 00:00 2001 Census  A  15.81 0.25 15.81 

Ulley 12:00 2001 Daytime  B  32.52 3.51 32.71 

Ulley 16:00 2001 Daytime  C  26.74 0.09 26.95 

Ulley 00:00 2007 MYE  D  20.36 0.09 20.36 

   

The largest difference between the model estimates and census counts 

occurs in the daytime model comparisons (12:00 and 16:00). The greatest 

variation in values is observed for the Δ  between the census and the 12:00 

layer (σ  = 32.52). This is reduced when comparing the 2001 census daytime 

population count with the 16:00 layer (σ  = 26.74). The 12:00 layer also has 

much greater mean difference (+3.51) compared to the rest of the layers 

evaluated in Table 4.10. The difference can also be observed in Figure 4.19B 

where this layer has the greatest spread and magnitude of cells with a 

positive difference from the daytime census estimate. The concentration of 

very high populations on relatively small sites such as schools is the driver 

of this trend. The difference has reduced by 16:00 when the pupils have left 

these sites however high concentrations of staff still remain. These 

differences occur for the same reason discussed in relation to Figure 4.17. 

The Population 24/7 modelling technique concentrates population to 

workplace locations using georeferenced business or actual workplace 

postcodes. This results in the spatial concentration of population density at 

these sites rather than a uniform across zone distribution. The root mean 

square error (RMSE) (Table 4.10) calculated for these differences closely 

corresponds to the values and pattern observed in the standard deviation of 

the difference.    

The spatial distribution of the actual cellular difference for the modelled 

00:00 (Figure 4.19A) and 12:00 (Figure 4.19B) results and census estimates 

is illustrated in Figure 4.20. The green colour represents a negative 

difference (i.e. the model appears to underestimate census counts) and the 

yellow-red positive differences. The lightest green colour shows where the 

census represents a small non-zero uniform density estimate but the 
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modelled outputs represent this as zero in unoccupied locations. This 

treatment of unoccupied cells accounts for the green background colouring 

illustrated. The largest differences between 350 to 725 people per 100 m
2

 

(Figure 4.20B) occur within the daytime estimates. These typically represent 

concentrated populations at schools.  

The spatial distribution for the selected daytime difference (Figure 4.20B) 

also shows some large decreases within population density of up to 125 

people per 100 m
2

 represented by the dark green colour. This primarily 

occurs within Rotherham town centre. This can be explained by the larger 

increase in the census daytime estimate, caused by representing people at 

their nominated place of work, increasing the density within these town 

centre OAs. Therefore the difference from the model is greatest outside of 

specific cells where employees have been concentrated at workplace 

locations rather than spread across the whole OA. These phenomena 

highlighted demonstrated the importance of accurate population 

distribution for realistic representations. The degree to which the census 

differs varies by time with the greatest changes occurring during daytime 

hours. This daytime difference is caused by the inadequate representation of 

daytime population clusters within traditional census outputs.   
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Figure 4.20 Cellular (100 m) population difference between the (A) 00:00 modelled outputs 

and the ‘night-time’ 2001 OA census estimate and (B) 12:00 modelled output and the 

daytime 2001 OA census estimate. 

4.6 Summary 

The chapter has presented one potential flood output from a reservoir 

breach event that actually nearly occurred during June 2007. It is 

acknowledged that this does not represent the only possible flood event 

from this reservoir but was constructed using the best available data. 

However, the modelled results can be corroborated with reasonable flood 

depth estimates from photographs taken at the time of the event (e.g. 

Figure 4.4). The rapid onset of this and documented similar events, and the 

volume of water within the reservoir to be released can be determined to a 

high degree of certainty. The primary focus of this chapter was to assess 

how vulnerable, exposed, populations fluctuate with time to a given hazard 

event. 

This case study has demonstrated strong diurnal cycles in population 

exposure that includes population not resident within the flood zone (e.g. 
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those working or travelling through the area). These spatiotemporal 

movements are not represented using census data alone. The static census 

estimates have been shown to dramatically overestimate population 

exposures (e.g. Figure 4.16). This lacks the sufficient detail to begin 

targeting specific locations and times when populations will be most 

vulnerable. The flood risk analyses undertaken are sensitive to population 

fluctuations, as would be expected in reality. The spatiotemporal method 

applied does not attempt to give the final answer on Ulley’s flood risk that is 

subject to external conditions and changes in physical characteristics. 

However, this example does show that time-specific populations are 

required to make improved assessments of hazard risk.        
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Chapter 5:  Case study II – St Austell
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5.1 Overview 

This chapter outlines the second Population 24/7 application case study 

focused around St Austell, Cornwall, UK and considers the population 

exposed to fluvial and coastal flooding. It offers innovations beyond the 

standard implementation of the spatiotemporal population modelling 

framework offered in Martin et al. (forthcoming) through expansion of the 

population data library. This location has been chosen because it 

experiences large seasonal population fluctuations driven by tourism and 

overnight visitors. These spatiotemporal properties have been evaluated 

within the framework of Population 24/7. The previous examples (Ulley, 

Chapter 4 and Southampton, Chapter 3) have demonstrated that daily cycles 

can be resolved. This chapter aims to enhance this by examining how 

population varies in both space and time with seasonal influences with a 

100 m resolution.  

This chapter is structured as follows: it begins with the background to the St 

Austell study area and flood risk context (Section 5.2). Section 5.3 

introduces case study specific flood inundation data. Bespoke flood 

modelling has been completed by Quinn (2014) and provided for use in this 

case study. This section also outlines the construction of a flood hazard 

rating and population fatality estimate (following the method introduced in 

Chapter 4). Section 5.4 offers case specific population enhancements for use 

within the Population 24/7 framework. This centres on creating a new 

seasonally varying population origin classification concerning tourist 

populations. This is based on seasonal overnight visitor data provided by 

Newing (2014). Further non-term time origin population dataset is also 

outlined. The creation of new destination datasets is introduced. These 

include the development of retail, healthcare and leisure destinations. The 

results following the integration of the flood and population modelling are 

presented in Section 5.5. Finally, a difference analysis and model evaluation 

is provided in Section 5.6. 
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5.2 Study area and flood context 

A 15 × 20 km study area named after its most populous town, St Austell, 

has been selected in Cornwall, UK (BNG origin x: 200000, y: 49000 m). 

Cornwall is an English coastal county and local authority area which 

comprises most of the south-westerly peninsula of Great Britain (Figure 5.1). 

This area has been selected because of the large seasonal fluctuations in 

population that it experiences as a result of its status as a major domestic 

tourism destination. Preliminary analysis of tourism data (see Section 5.4.1) 

suggested that a peak increase of greater than 10,000 temporary overnight 

visitors occurs over the year from the low to peak tourism season. A recent 

2011 Census report, published since this research has been undertaken, on 

coastal communities has identified locations such as St Austell has having 

unique and notable characteristics (ONS 2014c). According to this report 

these are often identified has having higher than average populations aged 

over 65 (an important consideration for flood risk vulnerability) and greater 

than usual occupation by people other than ‘usual residents’. 

The range of tourist attractions, rural landscapes and attractive coastline 

makes the county a desirable visitor destination. This area was chosen to 

examine seasonally dependant temporal signals in population change using 

the SurfaceBuilder247 software. So far examples presented here 

(Southampton and Ulley) have demonstrated strong daily population cycles 

in exposure to flood risk. However, the St Austell application provides an 

additional perspective on how these cycles also vary by season and day of 

week. There are two factors that this case study specifically considers: the 

influx of seasonal population and the changes in the student population 

which is discussed in detail in Section 5.4.1. 
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Figure 5.1 St Austell study area outlined in red, showing location within Cornwall (shaded 

grey) and Great Britain insets. An example 100 m gridded population distribution provided 

for contextual purposes. 

The study area consists of the primary locations: St Austell, the largest town 

in Cornwall by population (19,958 2011 Census), Bodmin, Par, Lostwithiel 

and Fowey. The A30 (principal trunk road) and Great Western mainline 

railway (London to Penzance, including stations at Lostwithiel, Par and St 

Austell) are important infrastructural assets that intersect the study area. 

The south of the study area is bounded by the coast along St Austell Bay and 

the Fowey estuary. Relatively small settlements are dispersed throughout 

pastoral farmland with the large expanse of Bodmin Moor to the northeast.     

The following paragraphs concern the flood context to the study area and 

events of significance within the wider region in which it is situated. The 

West and East Cornwall Catchment Flood Management Plans (EA 2012b, 

2012a) provide an overview of the flood risk within the study area. 

Catchment and Shoreline Management Plans (CFMPs and SMPs) assess the 

risk from tidal and inland flooding.  

The St Austell Bay area including Par and St Blazey is subject to fluvial, tidal 

and surface water flooding. Exposed critical infrastructure includes three 

electricity substations, fire and police station (St Blazey), telephone 

exchanges and a care home (Par). St Austell is not served by a flood warning 
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system. The warning system on the River Par provides less than two hours’ 

notice of flooding (EA 2012b). Although St Austell’s elevated position is at 

little risk from tidal flooding the increase in settlements in surrounding low 

lying coastal areas such as Par and St Blazey are of concern. Furthermore, 

the ‘tide-locking’ of local watercourses, high tides preventing drainage at 

coastal outlets, poses an additional risk of fluvial flooding. Tidal flood risk 

dominates the east of the study area (Par, Fowey and Lostwithiel) (EA 

2012a).   

The Par area (including the neighbouring village of St Blazey) contains the 

highest number of properties at risk from current and predicted future 

flooding (2100 projection for 1% annual probability) in the whole of 

Cornwall, even when considering existing flood defences.  

Table 5.1 Number of properties at risk from current and future flooding (1% annual 

probability of occurrence) in selected principal locations within the study area for the years 

2010 and 2100 

Location 

Properties 

presently at 

risk (2010) 

Projected 

increase 

(2100) 

Flood hazards 

St Austell 230 

} 75 

White River  

Par/St Blazey 630 River Par, St Blazey 

Stream 

Lostwithiel/Fowey 350 70 Fowey estuary and 

tidal flooding 

Camelford/Bodmin 214 30 River Camel 

Total 1424 175  

 

Major flood events in Cornwall can occur at any time of the year (Figure 5.2), 

however the probability based on a record of major historic flood events 

(Cornwall Council 2011) varies by month. A general cycle in events appears 

to correlate with unsettled autumn weather and winter depressions (October 

to January) and summer convective storms (June to August). Major flood 

events within the study area are summarised in Table 5.2.   
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Figure 5.2 Annual distribution of major flood events in Cornwall (1800-2010) (Data: Cornwall 

Council 2011) 

Table 5.2 Selected major flood events (1800-2010) from within the study area (Cornwall 

Council 2011) 

Date Location Description 

November 1852 Par and St Blazey Serious flooding 

November 1954 Lostwithiel 80 properties flooded 

August 1959  St Blazey Flooding 

February 1974 Par and St Blazey 50 properties flooded 

July & September 

1975 

St Austell Flooding following leat 

breach 

March 1976 Par and St Blazey Extensive flooding 

September 1976 St Austell, Par and St 

Blazey, 

Lostwithiel, Bodmin 

Widespread flooding 

following severe storms 

December 1979 Lostwithiel 60 properties flooded 

October 1981 Fowey Storm surge and high tides 

December 1981 St Austell, Par and St 

Blazey 

Fluvial and surface water 

May 1996 Lostwithiel 15 properties flooded 

 

More recently a succession of south-westerly winter depressions and 

associated storm surges during January-February 2014 caused severe tidal 

flooding in southern England and Wales which also affected parts of 

Cornwall. Coastal railways in Gwynedd (Wales) and Devon (England) 

collapsed into the sea following the destruction of supporting 
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embankments. In Aberystwyth, Wales, 600 students were evacuated from 

seafront residences following the direct threat of severe coastal flooding 

(Gevertz 2014). The general synopsis of the 2014 flooding conditions has 

been described here for the region in which the St Austell study area is 

situated because of their impacts on understanding how people react during 

emergency situations. The village of Moorland in Somerset was particularly 

badly affected and isolated by floodwater. A severe flood warning indicating 

imminent danger to life was issued by the Environment Agency. A police 

helicopter’s public address system was used to broadcast overhead 

evacuation warnings of imminent flood danger (BBC 2014a). According to 

this media report the police intervention caused panic to some local 

residents who continued to ignore evacuation directions despite rapidly 

rising flood waters.  

A 100 m section of the Great Western mainline railway at Dawlish, 75 miles 

east from Par station (National Rail Timetable 2014), collapsed into the sea 

following a storm surge on 5 February 2014 (Figure 5.3). This exhibited 

unprecedented levels of damage and repeated storm surges. As a result the 

only rail connection to the southwest of England, including the St Austell 

study area was lost for two months while the sea wall was repaired.            

 

Figure 5.3 Collapse of the railway at Dawlish, Devon in February 2014 following a succession 

of storm surges. Photograph: www.networkrail.co.uk 
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5.3 Case specific flood risk mapping 

Environment Agency flood risk mapping has been obtained for the study 

area and follows the method described in Chapter 3 and Smith et al. 

(2014a). It is used to determine the potential exposure of population to the 

flood risk within the study area. The Environment Agency flood map zone 

three (April 2014) (Figure 5.4) represents the extent of the annual 

probability of occurrence for flood risk from rivers and the sea of ≥ 1% and ≥ 

0.5% respectively. Additionally an ~ 8 × 4 km subsection of the study area 

has been modelled using LISFLOOD-FP, a raster based flood inundation 

model, by Quinn (2014) (dashed outline Figure 5.4) (see next Section 5.3.1). 

This area was selected because it covers the main population centres within 

the study area as well as the greatest flood risk identified by the 

Environment Agency flood map. The seasonal variation of population within 

this zone and potential exposure to flood risk has been performed in 

additional detail. 

Figure 5.4 shows that the study area has a dispersed range of leisure and 

tourism attractions which are labelled in Figure 5.4. These are of 

significance in terms of the justification for the choice of study area and 

impact of seasonal population change within an area of flood risk. This is 

examined in more detail within Section 5.4 which addresses the population 

characteristics to be modelled.   
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Figure 5.4 Flood risk within the St Austell study area 

5.3.1 LISFLOOD-FP flood inundation model 

In contrast to the static Environment Agency flood map (Figure 5.4), 

designed for national coverage, bespoke modelling of the individual 

characteristics of the precise area concerned provides the potential to 

support more detailed analysis and scrutiny. For this study area LISFLOOD-

FP was used. The LISFLOOD-FP flood inundation model predicts channel and 

floodplain flows. Although there are a wide range of hydraulic models suited 

to different tasks (a selection have already been discussed or implemented 

in Chapter 4, e.g. TELEMAC-2D) LISFLOOD-FP provides a simplified 

alternative.   

Three LISFLOOD-FP scenarios at a 5 m resolution have been created and 

provided for this case study by Quinn (2014). It has been suggested that at 

least a 5 m resolution is essential for modelling flow dynamics within urban 
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areas to account for small scale variations (Mark et al. 2004; Fewtrell et al. 

2008). The layers provided represent return periods (R) of 100, 250 and 500 

years (Figure 5.5) for an extreme rainfall event of 11 hours duration. The 

LISFLOOD-FP layers explicitly account for flood defences, topographic 

features and blocking due to buildings (derived from 2m LiDAR). The risk 

posed by rainfall intensity for each return period was calculated using the 

Flood Estimation Handbook software (CEH 2014) by Quinn (2014). This 

estimates rainfall frequency for the UK which relates rainfall depths to a 

given probability of occurrence.     

 

Figure 5.5 Comparison of LISFLOOD-FP and Environment Agency flood inundation for the 

selected area covering St Austell and Par within the study area.   

LISFLOOD-FP is an appropriate model for this application because it is both 

computationally efficient at high resolution (1-10 m) and the code can be 

run on the latest high performance computing technology (Neal et al. 2011). 

The 5 m (minimum) resolution is required for this case study to accurately 

predict flow hydraulics within the urban centres of the study area and to 

model flow around buildings and coastal defences. This information is 

required to produce flow velocity and depth estimates. These were 

combined by Quinn (2014) to calculate a flood hazard rating. This follows 

the same method presented in Chapter 4. Three raster layers with a flood 

hazard rating for each 5 m cell corresponding to the three return periods of 
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100, 250 and 500 years with a flood hazard rating were provided for 

analysis with population outputs from SurfaceBuilder247.   

In comparison, the Environment Agency’s flood map zone three represents 

the amalgamation of return periods of 100 (fluvial) and 200 (tidal) years for 

flood risk and does not account for the presence of any defences. While it is 

possible to obtain an extract of nationally consistent coverage, the 

LISFLOOD-FP outputs provide a more realistic scenario accounting for 

existing defences. The EA flood map provides an inundation polygon but 

does not estimate flow depth or velocities. Without these data, which are 

contained within LISFLOOD-FP outputs, it is not possible to evaluate a flood 

hazard rating or fatality estimate.       

The Environment Agency flood map shows a much greater extent of inland 

flooding (Figure 5.5), however it also includes coastal flooding and assumes 

that there are no defences whereas the bespoke LISFLOOD-FP extracts 

specifically account for these. Furthermore, in November 2014  it was 

reported that the EA is reassessing English coastal flood risk as some maps 

may underestimate these risks (BBC 2014b). This follows a review of the 

widespread coastal flooding experienced at the start of 2014, which was 

summarised at the start of this chapter. All layers have been combined with 

seasonally varying population estimates to analyse the effect of 

spatiotemporal cycles. The EA Flood Map has also been included here 

because it is the currently accepted national flood risk assessment used by 

planners and local authorities.        

5.3.2 Flood hazard rating and fatality estimates 

This subsection reintroduces the method for calculating a flood hazard 

rating, the first of a series of subsequent stages to obtain a population 

fatality estimate. The hazard rating aims to quantify the flood hazard 

characteristics (depth and velocity). It follows the same method as 

previously demonstrated in the Ulley example (Section 4.3.5 and Penning-

Rowsell et al. 2005). Following the calculation of a flood hazard rating, area 

and people vulnerability ratings need to be determined to finally estimate 

the number of injuries and derive a fatality prediction.    
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For this case study the flood hazard rating has been calculated by Quinn 

(2014) using the depth and debris outputs from the LISFLOOD-FP inundation 

modelling and provided as a raster layer. This has been conducted following 

the same widely accepted hazard rating formula (Eq. 4.1) used in the Ulley 

example.   

An Area Vulnerability has been calculated for the St Austell study area as 6 

(1 + 3 + 2). This is based on the score matrix provided previously in Table 

4.4 where speed of onset = 1 (low risk, many hours – based on a model 

scenario for an 11 hour rainfall duration), nature of area = 3 (high risk, 

mobile homes, bungalows and busy roads) and flood warning = 2 (medium 

risk, warning system present but limited). There is a flood warning system 

within the area but not on all rivers (see Section 5.2).  

To determine the study area’s people vulnerability (PV) score (see Chapter 4, 

Eq. 4.3, Table 4.6) population data on age composition and long-term illness 

was taken from the 2001 Census (Table 5.3). Overall the population within 

the study area aged over 75 and the proportion of those with a long-term 

illness are above the average for England. Therefore a PV score of 100% was 

assigned (50% + 50%).  

Table 5.3 Population characteristics within the St Austell study area by parish (Census 2001, 

Tables KS002 and KS008) compared to the national average (England).  

Location 
Pop. aged 

over 75 (%) 

Difference 

from national 

average
†

 

Pop. Long-

term illness 

(%) 

Difference 

from national 

average
‡

 

St Austell Bay 10.91 +3.37 19.01  +1.08 

Tywardreath and 

Par 

12.85 +5.31 23.98 +6.05 

St Blazey 6.61 -0.93 21.23 +3.30 

Lostwithiel 10.96 +3.42 20.34 +2.41 

Fowey 13.45 +5.91 23.41 +5.48 

     

Study area mean 10.95 +3.42 21.59 +3.66 

England 

(Average) 

7.54
†

  17.93
‡

  

 

The hazard rating, area and people vulnerabilities were combined according 

to Eqs. 4.4 and 4.5 to estimate the number of fatalities for each of the 



Spatiotemporal population modelling to assess exposure to flood risk 

 

 218 

LISFLOOD-FP scenarios (see 5.4 Results, Table 5.11). This was evaluated for 

each cell of the spatiotemporal population outputs. These were evaluated 

using raster based calculations of these equations in ArcGIS. The 

spatiotemporal population output was resampled from 100 m to 5 m 

(resolution of LISFLOOD-FP cells) for the purpose of the raster based 

calculations using ArcGIS. 



Case study II – St Austell 

 

219 

5.4 Case specific population method and data 

This section outlines specific population modelling using SurfaceBuilder247 

(Figure 5.6) and data sources for the St Austell study area. These are in 

addition to the broad overview described within the main methodological 

section (Chapter 3). Specific enhancements have been identified to ensure 

the best representation of the study area’s population within the Population 

24/7 framework. While the main methods overview is still applicable a 

number of additional enhancements have been developed which have been 

identified as specific to the requirements of this study area. These 

enhancements are discussed in turn within the following subsections: 

accounting for seasonal population variations, creating a population leisure 

destination dataset, enhancing retail footfall estimates and producing a 

healthcare dataset and finally determining a weekday/weekend workplace 

capacity estimate.    

For the purpose of the spatiotemporal population modelling a 25 km buffer 

has been assigned to the study area based on analysis of average distances 

travelled to work for each OA (2001 Census, Table UV35) to eliminate any 

potential edge affects. However, the study area and buffer region is largely 

geographically constrained in this example to the north and south by the 

coastline (Figure 5.6). Furthermore, the northeast of the study area is 

constrained by Bodmin Moor, 150 square miles of moorland which also 

contains Cornwall’s highest point at 1,368 ft AOD (Visit Cornwall 2014). 

Within the model these features are represented through the background 

masking layer (Figure 5.6) which prevents population placement off-shore. 

They are also represented within the postcode centroid dataset where there 

is a natural lower density of origin and destinations locations on the moor 

and surrounding rural landscape which are geographically constrained to 

the physical vicinity of residential addresses.
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Figure 5.6 SurfaceBuilder247 software interface showing St Austell study area (red rectangle 15 × 20 km, surrounding buffer 25 km) session 

parameters 
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A diagrammatic overview of population origin and destination datasets and 

their seasonal variation is provided in Figure 5.7. It is constructed in two 

rows and three columns. Each column represents the seasonal scenario 

modelled. The first row concerns population origins and shows two different 

classes of origin which contain the usually resident and overnight visitor 

populations separately. The second row contains the destination locations. 

The connecting arrows show that the different origin classes populate 

different (or different proportions of) destination locations. For example the 

visitor population does not populate workplace or school destinations but is 

assigned to leisure destinations. Table 5.4 summarises the data sources 

used to construct the model’s data library. These are referred to in the 

following sections regarding the construction of case specific population 

data libraries to undertake the spatiotemporal modelling. 

In keeping with the previous applied examples the population has been 

modelled in seven age subgroups. The population is subdivided into the 

following age subgroups: 0 to 3 years, 4 to 10 years (primary school pupils), 

11 to 15 years (secondary school pupils), 16 to 64 years (further education 

students), 16 to 64 years (higher education students), 16 to 64 working 

aged and those aged over 65. These have been chosen for their unique 

spatiotemporal characteristics.
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Destinations

Leisure: 4% resident

Leisure: 96% visitors

Students: School, FE 
and University

Workforce:
Retail, Construction, 

health care, 
education etc

Healthcare: Patients

January weekday (low season)

Usually resident 
term-time 
population

Overnight visitors 
(January)

Retail: 85% resident

Retail: 15% visitors

Leisure: 4% resident

Leisure: 96% visitors

Students: School, FE 
and University

Workforce:
Retail, Construction, 

health care, 
education etc

Healthcare: Patients

Usually resident 
NON term-time 

population

Overnight visitors 
(August)

Origins

August weekday (peak season)

Retail: 50% resident

Retail: 50% visitors

Leisure: 4% resident

Leisure: 96% visitors

Students: School, FE 
and University

Workforce:
Retail, Construction, 

health care, 
education etc

Healthcare: Patients

Usually resident 
term-time 
population

Overnight visitors 
(May)

Retail: 75% resident

Retail: 25% visitors

May weekday (fringe)

 

Figure 5.7 Diagrammatic overview of population origin and destination datasets used to construct the St Austell case study model 
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Table 5.4 Summary of content and sources for the St Austell study area population data library constructed for SurfaceBuilder247   

File Name File Description File Type 

Data source(s) 

Population 
Location 

geography 

Temporal 

profile 

Wide Area 

Dispersion 

St Austell 

usually resident 

population 

Baseline ‘term 

time’ population 

Origin 2010 MYE NSPD (Feb 

2010) 

residential UPCs 

N/A N/A 

St Austell non-

term time 

resident 

population 

Baseline non- ‘term 

time’ population 

Origin 2010 MYE; 

Census (2001, 

Tables UV05, 

KS13) 

NSPD (Feb 

2010) 

residential UPCs 

N/A N/A 

St Austell JAN Resident overnight 

visitors in January  

Origin Newing (2014); 

VisitEngland 

(2010) 

NSPD (Feb 

2010) 

residential UPCs 

N/A N/A 

St Austell MAY Resident overnight 

visitors in May 

Origin Newing (2014); 

VisitEngland 

(2010) 

NSPD (Feb 

2010) 

residential UPCs 

N/A N/A 

St Austell AUG Resident overnight 

visitors in August 

Origin Newing (2014); 

VisitEngland 

(2010) 

NSPD (Feb 

2010) 

residential UPCs 

N/A N/A 

Education Count of pupils 

and students in full 

time education 

(school, college 

and university) 

Destination Schools Census 

(DfE 2010); 

Independent 

Schools Census, 

HESA (2010) 

NSPD (Feb 

2010) 

Georeferenced 

UPC  

Population 

24/7 project 

Population 

24/7 project 
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Table 5.4 continued 

File Name File Description File Type 

Data source(s) 

Population 
Location 

geography 

Temporal 

profile 

Wide Area 

Dispersion 

Retail visits Retail outlets and 

centres 

Destination See section 5.4.4 GMAP (2014) TUS (2001) NTS (2010) 

Visitor 

attractions 

E.g. historic 

houses, gardens, 

places of worship 

Destination Visit England 

(2010); English 

Heritage (2010) 

Site location 

(UPC) 

 

TUS (2001) Visit England 

(2010) 

Healthcare Healthcare patients Destination HES (2010); local 

websites and 

FOIs.  

Site location 

(UPC) 

HES (2010) 

arrival times 

Roberts et al. 

(2014) 

Education 

workforce 

Workplace 

population counts 

(SIC: P) 

Destination BRES (2010) NSPD (2010) 

Business UPCs 

LFS (2010) Census (2001, 

Table UV80) 

Health service 

workforce 

Workplace 

population counts 

(SIC: Q) 

Destination BRES (2010) NSPD (2010) 

Business UPCs 

LFS (2010) Census (2001, 

Table UV80) 

Manufacturing 

and 

construction 

workforce 

Workplace 

population counts 

(SIC: C, F) 

Destination BRES (2010) NSPD (2010) 

Business UPCs 

LFS (2010) Census (2001, 

Table UV80) 

Wholesale and 

retail workforce 

Workplace 

population counts 

(SIC: G) 

Destination BRES (2010) NSPD (2010) 

Business UPCs 

LFS (2010) Census (2001, 

Table UV80) 
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Table 5.4 continued 

File Name File Description File Type 

Data source(s) 

Population 
Location 

geography 

Temporal 

profile 

Wide Area 

Dispersion 

Transportation 

workforce 

Workplace 

population counts 

(SIC: H) 

Destination BRES (2010) NSPD (2010) 

Business UPCs 

LFS (2010) Census (2001, 

Table UV80) 

Catering 

workforce 

Workplace 

population counts 

(SIC: I) 

Destination BRES (2010) NSPD (2010) 

Business UPCs 

LFS (2010) Census (2001, 

Table UV80) 

Notes: SIC (Standard Industrial Classification, BRES 2010) 
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5.4.1 Seasonal visitor population 

This subsection outlines seasonality within the student and overnight 

domestic visitor populations and discusses how and why they are addressed 

separately for the purpose of the spatiotemporal population modelling for 

this case study. Cornwall attracts more than 4.4 million annual domestic 

visits (2006-2009 average) which makes it the second most popular English 

county destination outside of London (Visit England 2010a). Tourism 

accounts for 25% of all employment in Cornwall and  tourism is estimated to 

contribute £1.8 billion to the UK’s economy (Visit Cornwall 2011). This large 

fluctuation in population, as well as daytime movements, is not represented 

in traditional census counts or one single dataset alone. In order to 

determine this seasonal, as well as spatial cycle the Population 24/7 

approach is employed (Chapter 3). This requires the compilation of an 

extensive population data library (Table 5.4).  

In comparison to the previous case study and worked example (Ulley and 

Southampton) this study area is predominately rural with urban clusters of 

population. Seasonal fluctuations comprise a large proportion of the usually 

resident population due to its tourism industry. A usual resident is defined 

as someone who spends the majority of their time residing at that address 

(National Statistics 2004, p. 17). It does not include students living away 

from home or people temporarily present at the location while on holiday or 

visiting friends. Therefore additional information is required to account for 

overnight visitors who are not enumerated within the usually resident 

census population. Three seasonal scenarios have been chosen for January, 

May and August (target year 2010) to represent the low, fringe and peak 

tourism seasons respectively.  

Seasonal overnight visitor counts in Cornwall for January, May and August 

2010 have been provided by Newing (2014) aggregated to postcode level 

with population age breakdown. These have been constructed at the level of 

individually georeferenced commercial accommodation sites (e.g. a hotel, 

guesthouse, campsite or holiday park or commercial accommodation chain). 

These counts also include all overnight visitors staying with family or friends 

or within a second/holiday home, with these visits being distributed across 

the existing residential housing stock.  
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The methodology is based on bed space and occupancy data which is 

described fully in Newing et al. (2013a). They derive the location of tourism 

accommodation providers and the total number of bed spaces available for 

each individual site from data collected by South West Tourism. In addition 

the locations of second homes are derived from the 2001 Census. 

Population at second homes is not included in the usually resident census 

count. Having established accommodation provision utilised by visitors, 

occupancy rates are then applied. Occupancy rates were derived from data 

published by South West Tourism and Visit Cornwall and show a strong 

seasonal cycle. In August (peak season) occupancy rates were high (94%) 

falling to just 9% in January (Newing et al. 2013a).    

These data have been directly used as provided except for the required 

additional formatting for use as SurfaceBuilder247 population origin 

datasets. The location of accommodation provision remains constant but the 

occupancy rate varies by season so three separate origin datasets were 

created to represent overnight visitors in January, May and August (Figure 

5.7). They represent the night-time temporary address of domestic 

overnight visitors and are not included within the usually resident census 

population. The change in overnight visitor estimates in each of these 

seasons for the St Austell study area is summarised in Table 5.5.  

Table 5.5 Overnight visitor estimates within the St Austell 

study area. Original data source: Newing (2014) 

Month (season) Overnight visitor estimate 

January 2010 (Low) 1,049 

May 2010 (Fringe) 6,269 

August 2010 (Peak) 12,389 

5.4.2 Non-term time population 

Seasonality within traditional census counts is limited, as already 

highlighted in the previous section. However, it is still possible to make an 

important distinction between the educational term and non-term time 

populations. The movement of student populations, particularly those in 

higher education moving away from their census non-term time ‘home’ 

addresses to places of study, results in a seasonal change. For the purpose 

of the census students are enumerated at their term-time address (e.g. 
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college/university halls of residence or other private temporary 

accommodation). Basic characteristics are reported separately at their non-

term time OA (National Statistics 2004). Therefore using the following 

method it is possible to use these two reporting outputs to derive the term 

and non-term time student counts for each census OA (2001 census table 

references in brackets): 

Term-time population = Usually resident population (KS001)              (5.1) 

Used as reported as this can be considered the term-time count with 

students enumerated at their term-time address.  

Non-term time population: KS001 + UV05 – KS13                (5.2) 

Where 2001 Census Table KS001 is the Total usually resident population, 

Census Table UV05 represents the Schoolchildren and Students in Full-time 

Education Living Away From Home During Term-time and Census Table 

KS13 is the Total number of full-time students and schoolchildren: Aged 18-

74 (Qualifications and Students). 

To derive the non-term time population base, this basic adjustment returns 

students to their respective OAs that have lost their student population to 

term time residences (2001 Census Table UV05) and removes those who 

were there during term-time (i.e. who would have returned to their 

respective non-term time OAs) (2001 Census Table KS13). The greatest 

magnitude in change is likely to be experienced within university towns and 

cities. This is where the term-time student population would be expected to 

be highly concentrated within an accessible distance to higher education 

institutions. In contrast the non-term time population is very dispersed.  

The caveat in the method applied here is the absence of the recognition of 

international students, who if ‘resident’ within the UK on the census night 

would have been enumerated at their British term time address. However, 

they would be removed from their respective OAs during vacation periods 

following this method. In reality it is not certain whether these students 

remain at their term-time location, return to their country of origin or reside 

elsewhere. Secondly, Scottish and Northern Irish students retuning to a 

home address outside of England and Wales are lost. These are important 

limitations to consider, but it is not deemed a matter of significance within 
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the study area selected for the reasons outlined in the following paragraph.  

The difference in the term and non-term time population following this 

method for the St Austell study area is summarised in Table 5.6. 

Table 5.6 Usually resident population within the St Austell 

study area (2001 Census adjusted for 2010 MYE).  

Origin file Population 

Term time 67,599 

Non-term time 67,830 

 

As expected for this study area the usually resident population summary 

(Table 5.6) following the approach outlined (Eq. 5.2) shows little term to 

non-time population change, with a negligible increase during non-term 

time periods (+0.34%). This study area does not contain any higher 

education institutions (HEIs) and therefore it does not attract large numbers 

of term-time only student populations. The rise in the non-term time 

approach can be explained by those students who have studied at HEIs 

external to the study area having then returned home for vacation periods. 

The distinction has been made for this study area in order to demonstrate 

this conceptual component of the Population 24/7 modelling approach. This 

illustrates that the model can handle, and that it is important to consider, 

multiple input population origin datasets to best represent the baseline 

population required for the time, location and scenario modelled.    

The approach outlined within these subsections can be viewed in context 

within the overview diagram (Figure 5.7). It reveals that each seasonal 

scenario requires a pair of population origin files, the usually resident 

census population and temporary visitors. It has been highlighted that both 

of these change throughout the year. For example, the August (peak season) 

scenario has the greatest number of overnight visitors (Table 5.5) as well as 

a non-term time baseline census population as August is a vacation period, 

whereas January and May receive their respective portion of overnight 

visitors but use the same baseline census term-time resident population 

origin because these months fall within academic term-time. Following the 

method outlined in Chapter 3 all census population origin data have been 

re-weighted from census reporting zones (OA and LSOAs) onto 

georeferenced residential postcode centroids weighted according to their 
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address count. This is with the exception of the overnight visitor data that 

has already been constructed at this level. The usually resident 2001 Census 

baseline populations have been adjusted to mid-2010 counts (target year). 

The data match the target year but use the 2001 Census geography (as 

2010 is an inter-censual year).   

For the purpose of the non-term time August scenario the education 

(students and pupils) destination dataset has not been used. Separate 

usually resident and overnight visitor origins ensure that destinations 

receive their population from the correct base (Figure 5.7). For example only 

the usually resident population is drawn by the workplace and education 

(term time only) destinations. The non-working overnight visitor population 

populates their share of the retail and leisure destination locations (as well 

as their own origin centroids).       

Since this research has been undertaken an alternative out of term time 

population base has been created for England and Wales in the 2011 Census 

(ONS 2014b). This recognises that society is increasingly complicated and 

mobile. This out of term population base includes students and school 

children at their term time address (if no out of term address was provided), 

students and school children at the ‘home’ address (if a non-term time 

address was provided and was located within England and Wales) and all 

other usual residents at their usual residence.    

5.4.3 Leisure destinations 

This subsection outlines the creation of a leisure destination dataset within 

the flexible framework of the Population 24/7 approach. This dataset 

comprises the sites that overnight visitors and the usually resident 

population visit for leisure purposes as shown in the diagrammatic overview 

(Figure 5.7) for each month. This has been identified as a requirement in 

addition to Martin et al.’s (forthcoming) implementation to reflect visitor 

population movements within the model’s data library.   

The creation of this leisure destination dataset is described in the following 

order within this subsection: firstly the locations associated with leisure 

activities are defined and, where possible, associated with annual visitor 

numbers (currently only routinely published at the annual level). However, a 
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seasonally varying daily estimate is required for the population data library. 

A method is proposed to derive daily proxies at the spatiotemporal 

resolution required. Secondly, the geographic location of leisure sites is 

required and is obtained based on georeferenced UPCs within the respective 

postal addresses of these sites. Thirdly, the age distribution of visitors to 

these leisure sites is obtained from demographic visitor data. This is 

required to divide the total population for each site into population 

subgroups according to age. Fourthly, the catchment area of each leisure 

site has been derived using national travel statistics. This governs the 

spatial extent of population origins that populate each leisure destination 

site. Finally, the ratio of usual residents to overnight visitors using these 

sites is estimated.  

Within the Population 24/7 framework this leisure destination dataset will be 

populated by two classes of origin datasets concerning the usually resident 

and visitor populations as shown in Figure 5.7. Leisure attractions are not 

mutually exclusive to visitors or usual residents, however data shows that 

ratio of visitor to resident footfall to these sites is not equal and varies with 

seasonal cycles. Therefore three leisure destination datasets have been 

created for each seasonal scenario (Jan, May and Aug). They all contain the 

same attractions but seasonally varying population capacities. Each of these 

destination datasets is further subdivided to reflect the proportion occupied 

by visitors and residents. These are drawn from the respective origin class 

for each season represented by the links in Figure 5.7.              

It has already been noted in the previous section (5.4.1) that temporarily 

resident visitors, at times, comprise a significant proportion of the study 

area’s population. During the August peak the influx of seasonal overnight 

visitors represents an 18% increase on the usually resident non-term time 

baseline population (Tables 5.5 and 5.6). As expected for an area within a 

tourism-driven economy, the study area and buffer contain a large number 

of prominent visitor attractions. To account for these within the 

spatiotemporal modelling a leisure destination dataset has been constructed 

(analytical overview, Figure 5.7). These contain a range of locations such as 

historic houses, castles, gardens, botanic sites and places of worship. These 

are locations with known associated visitor numbers. These data are 
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supplied by Visit England (2010b) in the Annual Survey of Visits to Visitor 

Attractions. 

Thirty attractions with reported annual visitor numbers are located within 

the study area and buffer zone. These have been collated to produce a 

leisure destination dataset. A selection have been summarised in Table 5.7. 

The geographical location of each destination is assigned using postcode 

data. The postcodes for each site were determined from their respective 

websites. These were converted into national grid references using 

GeoConvert (UKDS 2014) to provide the destination centroid location. This 

facilitates the creation of a destination centroid dataset comprising a 

georeferenced location which can be assigned a population capacity for each 

attraction.          

Table 5.7 Example attractions and 2010 visitor numbers within the St Austell study area and 

buffer (Visit England 2010b) 

Attraction Type Visitor numbers 

The Eden Project Botanic site 1,000,511 

Tintagel Castle Historic property 190,246 

Lanhydrock House Historic property 210,362 

Truro Cathedral Place of worship 170,000 

Trelissick Gardens Garden 128,671 

 

The Visit England survey shows that in 2010 the Eden Project, a major 

attraction comprising artificial biomes, was the most visited site in Cornwall 

and second in southwest England (after Stonehenge) with over a million 

visitors (Table 5.7). The Eden Project is also within the centre of focus within 

the study area located 3 miles NE of St Austell. The local tourism economy 

within this coastal area supports many large attractions. Sites of this size 

that attract major footfalls are of very high significance and therefore need 

to be addressed as destination locations within the spatiotemporal 

modelling undertaken for this study area.  

The annual visitor count requires subdivision into monthly estimates which 

are not routinely published for each site. Monthly visitor data for 2010 for a 

typical tourist attraction within the area, Tintagel Castle, have been provided 

by English Heritage (2010) (Figure 5.8). Following personal communication 

footfall counts were made available for each month during 2010 by English 
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Heritage who manages Tintagel Castle on behalf of the UK government. The 

annual distribution has been used to derive monthly, and then daily, 

estimates for attractions within the study area for January, May and August. 

These months receive a 0.65%, 9.93% and 27.59% share of the 2010 annual 

visitor footfall respectively which is calculated from the Tintagel footfall 

distribution. The daily footfall was estimated by dividing monthly counts by 

the number of days (thirty-one) within each month chosen. This is a trade-

off because daily footfalls are currently not available at the required 

spatiotemporal resolution. Typical for a tourism-driven region August 

received the highest proportion of annual visitors at 27% (Figure 5.8).  

 

Figure 5.8 Monthly distribution of annual visitors at Tintagel Castle, Cornwall. Data: English 

Heritage (2010) 

The temporal distribution of daily population capacities is governed by a 

temporal profile (previously described in Chapter 3). If hourly footfall figures 

were available this would inform the profile. However, a proxy has been 

constructed using the TUS (Ipsos-RSL and ONS 2000), episodic diary data 

detailing daily activities, because data at this level of granularity are 

currently not available. The diary entry codes for visiting a botanic, historic 

site and historic house reported at 10 minute intervals were used to 

construct the temporal profile. These are from a nationally representative 

survey which is the most recent comprehensive survey for time use in the 

UK.  

Following the establishment of a daily footfall estimate, further information 

is required on the age characteristics of the destination population capacity 

for this case study (Table 5.4). This is required to maintain continuity in the 
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seven age subgroups modelled as population subgroups within this 

example. Limited demographic information on visitors to attractions is 

provided at a regional level by Visit England. This can be used to inform the 

main age subgroups required. These data generally only contain adult 

respondents which limits the information available for visitors less than 18 

years of age. The missing information of child demographics has been 

substituted by analysis of data collected for the Taking Part in Heritage 

report (National Statistics 2014). This details adult and child visits to 

heritage sites. This distinction is of importance for two reasons: (i) child 

population subgroups have been modelled because of their unique 

spatiotemporal characteristics, and (ii) heritage sites are often frequented 

through school trips and community organisations by these subgroups.             

A further requirement for creating a destination dataset for the modelling 

undertaken is to define the destination centroid’s catchment, the origins 

from which to draw population. Again, due to the granularity of currently 

available data, an appropriate substitute has had to be derived. The National 

Travel Survey (total respondents = 17169) records the distance travelled for 

a daytrip. The 2001-2012 average (Figure 5.9) has been calculated based on 

this variable (“LDJDistance”, DfT 2012b) where participants specified the 

distance (miles) travelled for this purpose (daytrip travellers = 15058, mean 

distance = 87 miles). Within this survey a trip is defined as a one way course 

of travel having a single main purpose (DfT 2012a), appropriate for 

destination catchment calculations. While this method does not allow the 

determination of the exact activity undertaken for day trips it does give an 

appropriate quantification for leisure travel. These data have been computed 

into five bins for those who travelled less than or equal to 50 miles up to a 

distance greater than 150 miles.       
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Figure 5.9 Distance travelled for day trips (NTS 2001-2012 average) 

Finally, an adjustment is required specific to the nature of this study area. It 

has already been noted that two population origins classes (which also vary 

by season) are required for the three seasonal scenarios modelled (analytical 

overview, Figure 5.7). The leisure destination file has been split on the ratio 

of visitor (94%) to usually resident population (6%) footfall. This is illustrated 

in Figure 5.7 by the connection of the population origin class types to their 

respective share of the leisure destination capacity. This is an important 

consideration to represent the correct proportion of attraction footfall to 

visitors. The ratio has been informed using Visit England data providing the 

origin of visit by region. This has been used as a proxy to estimate the 

proportion of visits external to the study area that can be deemed as visitors 

for the purpose of this case study. Visits that originate within the same 

region have been designated as residential footfall. This distinction ensures 

that residential visits are drawn from the usually resident population origin 

dataset and external visitors from the overnight visitor origins. While the 

resident to visitor footfall ratio has been fixed the destination capacity does 

not remain constant by month. This varies in line with the seasonal cycle 

actually measured within the region (Figure 5.8). Six separate leisure 

destination datasets have been created based on this information (Figure 

5.7): two leisure destination datasets (populated by the usually resident 

origin population and visitors respectively) for each of the three months 
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modelled. The capacity of each month’s respective resident and visitor 

populated destinations reflects variation within seasonal footfall.   

5.4.4 Retail destinations 

Retail locations are another major category of destinations which 

populations temporarily occupy. A retail destination dataset specific to this 

study area has been created as part of the modelling data library (Figure 

5.7). This section introduces significant improvements regarding the 

creation of a retail destination dataset from what has already been described 

in Chapter 3. The difficulty in making such estimates was the focus of the 

work presented in Chapter 3. The rest of this section is structured as 

follows: the use of commercial retail centre data to locate retail destination 

centroids; the estimation of footfall based on sales density, floor space and 

average transaction values to assign a capacity to retail destination 

centroids, and finally, the analysis of the ratio by season of footfall 

generated by visitors and usual residents.   

Detailed retail footfall data and innovative products are commercially 

available (e.g. Experian Goad, Telefonica Dynamic Insights). However for the 

purpose of this thesis demonstrating model development and application 

these are not financially viable for the scale required. It does not mean that 

these site specific counts could not be used, as they can be implemented 

following the same framework described for the creation of an alternative 

approach. The hybrid approach for estimating retail footfall for the study 

area within this section uses a combination of commercially available and 

public data. 

Commercially available retail centres with associated national grid reference 

and floor space (GMAP 2014) were used as retail destination centroid 

locations. These are locations that mark the location of a retail ‘centre’, such 

as a parade of shops, a large stand-alone store (e.g. supermarket) or a retail 

park (Figure 5.10). Each is available with a total floor area subdivided into 

grocery and comparison retail space. For the purpose and enhancement of 

the population modelling undertaken these have some advantages. Using 

the retail centre centroids reduces point density for improved computational 

efficiency, rather than attempting to represent individual stores within a 
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centre as separate ‘destinations’. The use of building level retail data is a 

finer resolution than it is currently possible to resolve within the model’s 

100 m output cells. The model output cell size, although flexible, is 

currently constrained by the resolution of currently available population 

data.  Therefore this resolution at the sub-cellular 100 m output level would 

be lost, but still result in an increase in computation time with no change in 

final results (Figure 5.10). Furthermore, consumers will likely visit multiple 

stores within any one centre. The spatial footprint around the retail centre 

centroid is still conserved as it is the sum of the constituent floor space, 

which is used to define the centroid’s local dispersion for the modelling 

process.  

 

Figure 5.10 Hypothetical retail units within a 100 m model output cell (A) individual retail 

outlet location centroids, (B) a single centroid representing the retail centre. 

In the absence of further and costly commercial footfall estimates a method 

has been devised to assign a population capacity to each centroid using 

publicly available data. It must be noted that this approach is just one 

option that only attempts to estimate retail consumer footfall. It is 

acknowledged that the commercial datasets mentioned could provide closer 

approximations but due to the required costs are not available for this 

demonstrative case study. The approach uses average sales density, income 

per unit floor area (e.g. £/sq. ft), divided by average transaction values per 

person (Eq. 5.3). This first portion of this equation estimates the customer 

footfall generated per unit area of retail floor space. The second part of Eq. 

5.3 adjusts this accordingly depending on the size, in terms of the total 

floor space (square feet) of the particular retail centroid. Therefore, larger 

retail centroids support a greater footfall.    
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Footfall ≈  
𝑆𝑎𝑙𝑒𝑠 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (£ 𝑝𝑒𝑟 𝑠𝑞.𝑓𝑡)

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒 (£)
× 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 𝑓𝑙𝑜𝑜𝑟𝑠𝑝𝑎𝑐𝑒 (𝑠𝑞. 𝑓𝑡)          (5.3) 

Sales density, and sometimes average transaction value, is often reported by 

major retailers in their annual financial report for shareholders (e.g. John 

Lewis Partnership 2010; Morrisons 2013; Sainsbury's 2014; Tesco 2014). A 

further report by the GLA (2005) used commercial data and convenience 

store databases representing 11,000 retailers in and around London to 

provide a comprehensive sales density average. These sales density values 

were used to produce a comprehensive average for grocery and comparison 

shopping. Equation 5.3 was applied individually to the comparison and 

grocery floor space for all retail centroids, adjusting the average transaction 

value accordingly. The footfall generated for the grocery and comparison 

retail space for each centroid was summed to give a total estimate. This 

distinction was made due to variations in average transaction values for 

grocery and comparison spend which would have affected footfall estimates. 

Values have been adjusted to account for inflation up to 2010 (target year). 

The average transaction for value for food and non-food was derived from 

the Living Costs and Food Survey (ONS 2012c). 

Like visits to leisure attractions (Section 5.4.3) there is not an even ratio of 

the usually resident population to overnight visitor population who shop at 

these retail locations. This is because of the study area’s unique 

characteristics influenced by the seasonal change in overnight visitors due 

to tourism which are important considerations for spatiotemporal 

modelling. Analysis of retail transactions based on loyalty card data for the 

same region by Newing et al. (2013b) shows large seasonal variations in 

footfall and the resident to non-resident sales ratio. Newing et al.’s (2013b) 

analysis of weekly loyalty card transactions indicates the number of sales 

within a store’s catchment (local residents) or external (visiting population). 

This varies greatly by month and can be used to allocate the correct portion 

of residents and non-residents from the respective origin files. The ratio 

used for the three months chosen for this case study is summarised in Table 

5.8.    
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Table 5.8 Ratio of residents to visitors by month for study area 

retail sites. Data after Newing et al. (2013b) 

Month Residents Overnight 

visitors 

January 85% 15% 

May 75% 25% 

August 50% 50% 

 

These data are used to create copies of each retail destination dataset with 

the footfall divided in the ratio identified in Table 5.8, for the season 

concerned, between visitors and usual residents. This allows the correct 

population origin category to populate each site (represented by the retail 

destination links in Figure 5.7).  

Newing et al. (2013b) make specific mention of the St Austell Tesco 

supermarket highlighting that it is a unique store with highly seasonal 

demand, particularly from summer visitors on holiday nearby and visiting 

the Eden Project. To alleviate the shortage of space and overtrading (when a 

larger store would not be sustainable during quieter winter months) they 

describe that such stores locate a temporary sales marquee in the car park 

during the summer peak. This is illustrated in the image of Tesco’s St 

Austell store (Figure 5.11). This additional space addresses the seasonal 

fluctuations in the footfall experienced.    

 

Figure 5.11 A temporary marquee in the store car park at Tesco, St Austell. (Imagery: Google 

Maps, June 2014) 
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In conclusion there are a number of improvements since the creation of a 

retail dataset for the Southampton worked example (Chapter 3, Smith et al. 

2014a). The location of retail destination centroids has been improved and 

made more computationally efficient due to the availability of the GMAP 

(2014) dataset for this case study. This is in contrast to using business 

postcodes as a retail location proxy in the Southampton example. The GMAP 

retail centres ensure greater spatial accuracy for retail locations. Enhanced 

footfall estimates have been derived based on the actual retail floor space 

data and averages for sales density. Analysis of industry retail data by 

Newing et al. (2013b) relevant to this study area can directly inform 

seasonality within retail destination footfall, which is a unique temporal 

consideration for this study area. It is acknowledged that this model could 

be improved further with the application of actual sales or footfall data but 

to date it is not financially viable to access these data for the area required. 

The example presented here provides a hybrid commercial/public comprise 

suitable for demonstration of the unique spatiotemporal concepts within 

this thesis.            

5.4.5 Healthcare destinations 

Another case study specific enhancement for the spatiotemporal population 

modelling approach is the development of a healthcare destination dataset. 

An initial review of healthcare statistics indicates that only small scale 

providers (e.g. community hospital and treatment centres) operate within 

the study area. Nevertheless, for the interests of completeness a healthcare 

dataset has been constructed. Healthcare provision has important 

spatiotemporal characteristics. For example, a large hospital will have 

admitted immobile populations who are present on site for substantial or 

long-term periods, while emergency and outpatients will be present for 

much shorter timescales. When considering spatiotemporal variations in 

populations these are important destinations that can often have highly 

concentrated temporary populations occupying the site. This subsection 

addresses the creation of a healthcare destination dataset which is a 

component of this case study’s population data library (Figure 5.7).       

In the UK a list of public healthcare providers by institution is available, 

organised within primary care trusts (PCTs) during 2010. A PCT may contain 
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just one institution such as a major accident and emergency or university 

hospital, or multiple smaller community hospitals and providers. Annual 

Hospital Episode Statistics (HES) (HSCIC 2010) provide the number of 

consultation episodes and accident and emergency admissions by PCT. 

Where a PCT contains more than one care provider the annual hospital 

episodes have been allocated weighting them by the number of bed spaces 

(as an indication of size). Publicly available sources of the number of bed 

spaces within a provider vary widely and a combination of data sources need 

to be used. These range from data contained within existing Freedom of 

Information Requests, PCT websites and hospital review sites. Reweighting 

these data by bed spaces means that providers with the greatest number of 

bed spaces get the greatest proportional allocation of annual patient 

episodes accordingly. The annual allocation is divided by 365 to get an 

average daily estimate. HES data at a daily resolution is currently not 

available.           

Within the HES data basic patient demographic information is recorded and 

the data on the age of patients are used to inform the population subgroup 

split by age for the modelling undertaken. Average arrival by hour at 

accident and emergency (A&E) departments and minor injury units (MIUs) is 

available at provider level. This has been analysed for providers within the 

study area to construct temporal profiles for attendance (Figure 5.12). MIUs 

provide care for less serious injuries that do not need immediate emergency 

treatment and have restricted opening hours that can be observed within the 

temporal profile created (Figure 5.12). They are typically open between 

08:00-22:00, compared to the 24 hour service at A&E departments.      
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Figure 5.12 Accident and emergency (A&E) and minor injury unit (MIU) temporal profiles for 

the St Austell study area. Data: HES (HSCIC 2010) 

Finally, the healthcare destination’s catchment has been constructed using 

the data reported by Roberts et al. (2014). They analysed HES data reporting 

a patient’s home location (by LSOA) and the postcode of the hospital where 

treatment was received to derive distances travelled. These HES data are not 

routinely published and require an application for a bespoke extract, 

therefore the information within the report by Roberts et al. (2014) has been 

used for this case study. There is a cost associated with the extraction of 

HES data which also require access approval. Their approach could be 

followed for the construction of a population library for a stakeholder 

however sufficient detail has been maintained for the purpose of a 

demonstration within this case study. 

5.4.6 Weekday versus weekend workplace capacities 

The final enhancement created for this case study is the estimation of the 

change in workplace capacities for a typical ‘weekday’ versus a weekend. In 

the previous examples only a daily cycle has been analysed. So far this 

chapter has discussed seasonal variation within the St Austell study area. 

However, there is also a weekly change that can be accounted for within the 

model’s framework. Workplace data have been constructed using ABI/BRES 

(2010) labour force statistics following the process outlined in Chapter 3 
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(see Table 5.4 for breakdown summary). However, it is known that not 

everyone works routine set hours seven days a week, whereas, some 

employees will work shifts including, or exclusively, weekends. Analysis of 

the Labour Force Survey (LFS) for the broad SICs modelled has been 

undertaken for the usual days worked by each sector. Respondents are 

asked whether they usually work on the day in questions for all days within 

the week. This has been summarised in Table 5.9. Separate workplace 

destination datasets have been created for weekdays and weekends and 

have been allocated the correct proportion of the workforce accordingly. 

This is based on the percentage distribution by day worked of all 

respondents within each SIC category. These have been aggregated to 

represent weekdays (Monday to Friday) and weekends (Saturday and 

Sunday). This gives the proportion of the total number of employees within 

each SIC who would be expected to be working on any given weekday or 

weekend. For example the proportion calculated to be present and working 

on weekends will include employees who stated they exclusively worked 

weekends within the LFS or whose usual working days also included a 

weekend day.        

Table 5.9 Employees by SIC for the St Austell study area and the breakdown for those who 

usually work a weekday or weekend. Data: LFS 2010  

Workforce 

Percentage 

distribution of 

employees (%) 

Work 

weekdays (%) 

Work 

weekends (%) 

Office based 23 94 6 

Retail 20 84 16 

Healthcare 14 93 7 

Accommodation and 

catering 

14 82 18 

Manufacturing and 

construction 

13 94 6 

Education 10 93 7 

Transport 4 90 10 

Agriculture and fishing 2 79 21 

Total 100   

 

Subsequent modelling has been carried out that for weekdays and weekends 

based on the distribution presented in Table 5.9.  
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5.5 Results 

This section provides the results of analysis from differing flood risks 

associated with a seasonally changing population for the St Austell study 

area. It has already been noted that results at this spatiotemporal scale are 

not achievable using static population or hazard data alone. In contrast to 

the two previous examples (Ulley and Southampton) the discussion in this 

chapter has highlighted that this case study demonstrates some unique 

characteristics in space and time. Its location is geographically constrained 

by the coastline while the area is largely rural. However, the study area 

notably experiences a large flux of visitors on a seasonal scale. For this 

reason (masking effect), and in part due to the rural nature, daily commuter 

flows do not dominate this example. Instead different temporal factors on a 

larger seasonal scale are the primary influences on this region.    

5.5.1 SurfaceBuilder247 data library construction 

The distribution of origin and destination centroids, constructed for the 

SurfaceBuilder247 data library, within the St Austell study area is shown in 

Figure 5.13. The origin centroids are comprised of residential UPCs and 

show clusters of residential locations (e.g. along the southern coast and 

Bodmin) interspersed with rural settlements. The origin centroids are 

populated by the usually resident and overnight visitor population. In 

contrast the destination centroids are more tightly clustered to the main 

residential concentrations. This shows the distribution of leisure locations 

(attractions), workplaces (business UPCs), education establishments, 

hospitals and retail centres. These all receive temporary, and usually 

daytime, population counts such as employees at work and children at 

school from the surrounding origin centroids. Origin and destination sites 

are each referenced by a single point (e.g. UPC) but population is dispersed 

into the immediate surrounding area governed by a local dispersion 

parameter that reflects the size of the site. This size of the site is estimated 

based on its type or referenced from known sources (e.g. retail floor space).   
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Figure 5.13 Origin and destination centroids within the St Austell study area 

5.5.2 Spatiotemporal population distribution 

Hourly spatiotemporal population estimates have been produced for the 

study area representing a ‘typical’ working weekday within each month for 

three seasonal scenarios (January – low, May – fringe and August – peak). 

January and May represent school and university term-time and therefore 

use the same term-time usually resident population origin base (Figure 5.7). 

August is a school and university summer vacation period in England and 

Wales. Therefore it is represented by a non-term time population origin base 

(Figure 5.7). The population exposure to the EA’s flood map zone three has 

been calculated for the whole study area (Figure 5.4) and is presented in 

Figure 5.14. It has been compared with static exposure estimates from 

rasterised census outputs representing: the baseline 2001 Census 

population at OA level (highest resolution available), 2001 Census daytime 

population at OA (only released for 2001) and the 2010 mid-year estimate 

(closest to target date but only available at LSOA level).   
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Figure 5.14 Flood exposure estimates from the EA Flood Map Zone 3 for the St Austell study 

area using seasonal spatiotemporal model outputs at hourly intervals for a ‘typical’ weekday. 

The St Austell case study differs in some important respects from the 

previously reported Ulley and Southampton examples. Firstly, the census 

estimates underestimate exposure in this case study compared to large 

overestimations in the previous examples. This is likely to be for a number 

of reasons: the modelled outputs have accounted for seasonal visitor 

influxes in addition to the census population. On average the visitors 

increase the usually resident population by +6,570 in May and by greater 

than 12,000 at the peak in August (Table 5.5). The rural characteristics of 

the study area result in geographically larger OAs and LSOAs (to meet 

minimum population confidentiality levels), producing lower population 

densities compared to an urban region. In contrast smaller OAs (by area) in 

urban locations produce higher population densities although all OAs 

contain roughly similar numbers of households. Secondly, there are no very 

distinct daily cycles in the modelled outputs for St Austell. It is possible to 

identify what appears to be a familiar daily cycle in the January output 

characterised by a morning and evening travelling peak (around 08:00 and 

16:00, Figure 5.14) which is also evident in the previous examples. 

However, as larger numbers of overnight visitors are accounted for in the 

May and August examples the daily cycle in the baseline residential 

population (closely attuned to the January example with few visitors) 

appears to be masked by their movements. There is a clear seasonal cycle in 
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overall exposure although the daily signal appears to become more variable. 

However, it is the temporal variation at a seasonal scale that is the main 

feature of this particular case study.   

A spatial comparison of the rasterised (and density adjusted) census 

datasets and SurfaceBuilder247 model output is illustrated in Figure 5.15. 

The 2001 Census (OA) is the highest resolution data available prior to the 

target date (Figure 5.15A). A 2001 daytime census population at OA level 

(Figure 5.15B) is also available. This is defined as the count of people aged 

16-74 who do not work plus those who work in the area (National Statistics 

2004). The population estimate closest to the target year (but at lower 

resolution) is the 2010 mid-year estimate at LSOA level (Figure 5.15C). 

These are all static with no seasonal variation or areas of zero population 

density due to the census structure of contiguous zones. In contrast, the 

model output for a May weekday ‘night-time’ population illustrates the 

enhancement in spatial resolution (Figure 5.15D). Population is concentrated 

in inhabited areas with surrounding unoccupied farm and moorland 

receiving a zero population density. The area is characterised by dispersed 

groups of rural dwellings which receive a low but non-zero population 

producing a speckled effect in the modelled results which corresponds with 

the population origin centroids (Figure 5.13). This is another contrast to 

modelled outputs for the Ulley and Southampton case studies where the 

population had previously been concentrated in large urban zones, rather 

than the dispersed rural settlement pattern observed here.      

The seasonal spatiotemporal variation has been illustrated for a weekday 

day (12:00) and night-time population (00:00) estimate for each of the three 

seasons modelled. The usually resident and overnight visitors have been 

displayed separately. These selected spatiotemporal outputs are displayed 

in Figure 5.16 (January – low), Figure 5.17 (May – fringe) and Figure 5.18 

(August – peak). In all three examples a general concentration in the usually 

resident day-time (12:00) population occurs from the night-time (00:00) 

locations (Figures 5.16-18A and B). There is increased clustering at the main 

population centres in the day-time examples (St Austell to the south and 

Bodmin in the north) and a greater population in travel on the road network. 

The concentration is observed in the main population centres, analogous 

with the main workplace locations showing a rural to urban commute from 
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the surrounding areas. For example, for the May usually resident population 

there is a peak in concentration in the St Austell town centre at 12:00 

(Figure 5.17B) of 1,400 people/100 m
2

, compared to just 54 people/100 m
2

 

at 00:00. This is presented at the group of orange coloured cells in the 

south-western corner of the study area in Figure 5.17B. It also highlights the 

known phenomenon that town centres are predominantly only populated 

during the daytime as they host a range of retail, leisure and workplace 

locations but at night have very few usually resident people.  

Similarly, there is a concentration in the overnight visitor population from 

the night time locations they occupy to concentrated locations of daytime 

activity (Figures 5.16-18C and D). These daytime concentrations, most 

notable in August with the visitor peak, occur in the main town centres (e.g. 

St Austell, Bodmin and Lostwithiel). There is a large increase in the overnight 

visitor population of greater than 12,000 people between January and 

August (Table 5.5). Another clear observation is that the distribution as well 

as concentration and number of estimated overnight visitors increase 

between January and August. Most notable is the August night-time 

concentration of visitors in the coastal areas south of St Austell (Figure 

5.18C). Secondly, the central area of the study area’s extent receives a 

greater share of overnight visitors. This is attributed to the location of rural 

guesthouses, campsites and caravan parks which are not populated with the 

additional population in traditional census datasets.          

An increase in the concentration of the daytime (12:00) usually resident 

population is observed between January and May (Figure 5.16B and 5.17B) 

although they come from the same term-time population origin base. This 

change can be explained by seasonal variation in different sets of 

destination sites for the two months. Footfall at leisure attractions and retail 

locations increases between January and May and this is attributed to the 

change observed.   
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Figure 5.15 Comparison of rasterised (100 m) census datasets for the St Austell study area 

for (A) 2001 OA counts, (B) 2001 OA daytime counts, (C) mid-2010 LSOA counts and (D) 

example model results for May 00:00. 
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Figure 5.16 Modelled seasonal population outputs (100 m) for the St Austell study area for a 

January weekday. (A) Usually resident night-time (00:00) population, (B) Usually resident 

daytime (12:00) population, (C) Overnight visitor night-time (00:00) population and (D) 

Overnight visitor daytime (12:00) population. 
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Figure 5.17 Modelled seasonal population outputs (100 m) for the St Austell study area for a 

May weekday. (A) Usually resident night-time (00:00) population, (B) Usually resident daytime 

(12:00) population, (C) Overnight visitor night-time (00:00) population and (D) Overnight 

visitor daytime (12:00) population. 



Case study II – St Austell 

 

253 

 

Figure 5.18 Modelled seasonal population outputs (100 m) for the St Austell study area for 

an August weekday. (A) Usually resident night-time (00:00) population, (B) Usually resident 

daytime (12:00) population, (C) Overnight visitor night-time (00:00) population and (D) 

Overnight visitor daytime (12:00) population. 
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To further exemplify the spatiotemporal population outputs achieved using 

SurfaceBuilder247 comparative extracts for a week day at 10:00 and a 

weekend at 12:00 are shown in Figure 5.19. These represent the total 

population (i.e. visitors and usual residents combined). Population has been 

modelled at hourly intervals for three seasonal scenarios (e.g. Figure 5.14).  

Until now only representative examples for a weekday daytime (12:00) and 

night-time (00:00) population have been spatially illustrated. The 

comparison of the population at 10:00 for a weekday in January and August 

(Figure 5.19A and B) shows greater clustering and in-travel populations in 

the August example. A notable difference, in terms of the in travel 

population, can be observed between the January weekday 10:00 scenario 

(Figure 5.19A) and the January weekday 12:00 scenario (Figure 5.16B and 

D). In this example there is a greater in travel population at 12:00 compared 

to 10:00, a change observed in just a two hour period.  

A similar feature of the in travel population is also observed in the total 

population for a May weekday at 12:00 (Figure 5.19C) and May weekend at 

12:00 (Figure 5.19D). This represents the same total population scenario 

but for different days (weekday vs. weekend). The weekday example has a 

considerably greater in travel population for the same time (12:00) on a 

weekday compared to a weekend. However, the weekend population is more 

concentrated, corresponding with retail centre locations (Figure 5.13).   

If all scenarios were to be illustrated concerning the two population 

classifications (visitors and residents), six seasonal scenarios (January, May 

and August for a weekday and weekend) and three LISFLOOD-FP extents 

over 24 hours, there would be 864 possible unique combinations (2 × 6 × 3 

× 24) in this example alone. The temporal aspect of the modelling 

undertaken allows much greater insights into possible population cycles. If 

sufficient data were available to further increase the temporal resolution to 

15 minute intervals (24 × 4 = 96) and consider weekdays individually (3 

seasons × 7 days = 21) the number of possible combinations would increase 

to 12,096 (2 × 21 × 3 × 96). Introducing temporal granularity within the 

environmental modelling would increase this even further. In addition to this 

the seven population subgroups for the two population origin classes 

chosen could also be considered separately.   
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In contrast the census output, even with a sophisticated static areal 

interpolation, with the three flood scenarios would still only give six 

possible combinations (2 × 3), using the census residential and daytime 

population counts. However, the difference in many of these 864 possible 

combinations is likely to be negligible and therefore it is important to 

choose appropriate and contrasting snapshots for analysis and static 

visualisation. The SurfaceBuilder247 approach adopted facilitates detailed 

evaluations for population exposure to flood risk while considering changes 

in season and time of day. In any final assessment there is the potential for 

large variations in the outcome depending on the combination of events 

chosen, as exemplified in the St Austell application illustrated in this 

chapter.   
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Figure 5.19 Population comparisons of (A) January (term-time, low season) weekday 10:00 

and (B) August (non-term time, peak season) weekday at 10:00; (C) May weekday at 12:00 

and (D) May weekend 12:00. All represent total populations (residents and visitors).    
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A detailed comparison has been conducted using selected 1 km national 

grid square extracts from the St Austell study area model results (Figure 

5.20). Two have been selected from August daytime (A and B) scenario for 

the total population and two for an August night-time (C and D). All 

represent the total population (usually resident and visitors combined). The 

distribution of 100 m output cells is clearly visible within the detailed 1 km 

square extracts. The modelled results have been compared to Ordnance 

Survey base mapping and aerial imagery for the same location and scale. 

The OS map extract for the first example (Figure 5.20A) shows a part of 

Fowey, with a range of tourist attractions (indicated by the blue map 

symbology). The August daytime model results for the same area show that 

the population is appropriately constrained to the land mass (due to the 

background masking layer) and concentrated on the coastal locations of the 

amenities outlined on the map extract.       

The second extract is focused on one of the highest concentrations within 

the study area (Figure 5.20B), showing part of St Austell town centre. The 

August daytime population concentration exceeds 1000 people per 100 m
2

.  

The Holmbush area is a retail district which includes the St Austell Tesco 

supermarket (Figure 5.11). St Austell has the highest floor space in terms of 

retail within the study area which is informed by the retail destination 

datasets that have been created for this case study. Comparison with the 

aerial imagery shows close model alignment with the populated areas. 

The third extract is the first of two August night-time examples. Figure 

5.20C shows the location of a large static caravan site immediately behind 

Par Beach. Population densities within the model cells correspond with the 

caravan site, summing to approximately 150 people. The aerial imagery 

provides the detail which is just shown as a series of tracks on the OS 

background mapping (as caravans are not permanent structures and 

therefore not mapped). This area also corresponds to high levels of flood 

risk under all of the inundation scenarios (Figure 5.5). 

Finally the fourth extract (Figure 5.20D) shows the night-time population 

estimate for what appears to be an uninhabited area, but which is clearly 

designated as a campsite in the OS mapping and discernible within aerial 

imagery. The population density corresponding to the campsite area shows 
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moderate population densities of up to 50 people per 100 m
2

. The small 

settlement of Lower Penhale is represented by an area of low non-zero 

population densities. This appears to be a slight overspread, but still 

demonstrates a refinement based on the census zonal data alone. 

Furthermore it would not be possible to resolve the August peak in 

population at this campsite (which is simply an unoccupied field at other 

times of the year) relying on the census data alone. This example tests the 

limits of the current spatial resolution of the model using currently available 

population data for this case study; however they are still significant 

improvements. Reasons for this overspread are likely to be caused by the 

underling population origin centroid density. As residential postcodes were 

used the rural locations identified on the map, Lower Penhale and Polgassick 

Farm (Figure 5.20D) are likely to share a postcode which may not be 

georeferenced directly on one particular site. The dispersed nature of rural 

properties sharing a rural postcode is greater than in concentrated streets in 

urban areas. This is another important factor to consider the application of 

models using only postcode centroids where spatial accuracy and density 

can vary.     
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Figure 5.20 A detailed comparison of SurfaceBuilder247 (100 m resolution) results within the 

St Austell study area with 1:25000 scale Ordnance Survey (OS) background mapping and 

aerial imagery for selected 1 km national grid squares. (A) and (B): August weekday ‘daytime’ 

population. (C) and (D): August weekday ‘night-time’ population. 
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Figure 5.21 (A) Par beach looking southwest from the low level sand dunes (B) protecting the 

caravan site behind from coastal inundation. Photographs: Alan Smith (May 2014) 

A large caravan site is situated immediately behind Par Beach (Figure 5.20C 

and 5.21). This location is only protected by small natural sand dunes and 

all flood inundation scenarios used in this case study identify this site as 

high risk (Figure 5.5). McEwen et al. (2002) highlight the susceptibility of 

caravan sites often located in flood prone locations (usually because 

permanent structures may not be permitted) and note the vulnerability of 

residents and their associated high exposure to flood risks (such as this Par 

example). They recommend that there is strong evidence to treat such 

residents as a distinct vulnerable group with specific requirements for the 

purpose of flood warning and emergency planning.  
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5.5.3 Population exposure to flood risk 

An assessment of the population’s exposure to flood risk has been carried 

out for the sub-area of the study area identified in Figure 5.4 using the EA 

and LISFLOOD-FP inundation scenarios (Figure 5.5). This has been 

undertaken for daytime population estimates (12:00) for the three 

illustrative seasons selected. Within each season the visitor and usually 

resident population has been analysed separately (Table 5.10).   

Table 5.10 Daytime usually resident and visitor population exposure to three LISFLOOD-FP 

inundation scenarios (R = return period) and EA flood map zone three for January, May and 

August (increasing levels of inundation left to right).  

Population 
LISFLOOD 

R100 

LISFLOOD 

R250 

LISFLOOD 

R500 

EA Flood 

Map 

Residents 12:00 

Jan 
542 939 1069 1725 

Visitors 12:00 Jan 2 5 7 15 

Total 544 944 1076 1740 

Residents 12:00 

May 
546 994 1139 1729 

Visitors 12:00 

May 
34 108 131 114 

Total 580 1102 1270 1843 

Residents 12:00 

Aug 
498 1019 1178 1741 

Visitors 12:00 

Aug 
65 206 249 212 

Total 563 1225 1427 1953 

 

An interesting phenomenon observed in the seasonal flood map analysis 

(Table 5.10) is actually a decrease in the August 12:00 exposure to the 

LISFLOOD-FP R100 flood risk, compared to the May 12:00 exposure total to 

the same LISFLOOD-FP R100 flood extent. Total population exposure for a 

weekday at 12:00 under the LISFLOOD-FP R100 scenario decreases from 580 

to 563 from May to August. This is driven by the usually resident 

population. It is the reverse of the cycle observed in all of the other 

scenarios modelled where the August 12:00 residential population exposure 

increases relative to the respective January and May levels. The midday 

January and May exposure of the usual residents for the LISFLOOD-FP R100 

scenario remain similar. This could be expected as they are derived from the 
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same term time census population base. The August usually resident 

population base is different to account for non-term time changes but 

nonetheless this is still an increase in population (Table 5.6) so not a cause 

for the exposure decrease. The variability between the January and May 

usually resident population for the other scenarios modelled (progressively 

larger polygons, Figure 5.5) is likely to occur due to more seasonally varying 

destination locations. Visitor exposure has increased in line with 

expectations between January and August for all inundation scenarios, 

following the cycle in the tourism season. It was expected that the overall 

increase in visitor numbers would inevitably also lead to an increase in flood 

exposure by season.  

To examine the unexpected decline (as all other examples increase with the 

seasonal cycle) in flood risk exposure for the August and May LISFLOOD-FP 

R100 scenario (Table 5.10) the population has been further analysed at the 

population subgroup level for seven age subgroups for both usual residents 

and visitors (Figure 5.22). It can be observed that the largest contribution in 

the decline in exposure to flood risk between May and August (at 12:00 for 

LISFLOOD-FP R100) is the 16-64 working aged population. Exposure in this 

group decreases from 389 to 281 between May and August. 

 

Figure 5.22 Comparison of daytime (12:00) population LISFLOOD-FP R100 exposure 

estimates broken down into age subgroups for visitors and residents in May and August 

Figure 5.23 illustrates the movement in the working aged (16-64) population 

subgroup between May and August. It shows greater concentration within 

the urban centres of the study area. This corresponds to the locations of 
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attractions and retail centres (Figure 5.13). Known seasonal variation in 

capacity at these sites means that a greater number of the 16-64 subgroup 

occupies these locations in August. Although this is the ‘working’ aged 

population it does not necessarily mean that they only populate workplace 

locations. This would suggest the greater August concentration of this 

population subgroup at inland locations is perhaps reducing exposure to 

flood risk following the movement of the population from the surrounding 

areas into relatively safer locations.    

Although the total population exposure to flood risk in August for 

LISFLOOD-FP R100 decreases compared to May, the number of the elderly 

(>65 years) potentially exposed increases (Figure 5.22). This increase of 

385% (May to August) is derived from the influx of overnight visitors. While 

overall it would appear that flood risk is lower, there is actually a large 

increase in the elderly population exposed to flooding in the R100 August 

weekday 12:00 scenario. This does not mean that overall elderly visitors 

dominate the whole study area’s August tourist population (also dominated 

by family holidays) but just the flood polygon analysed. This insight could 

not be achieved looking at the total population alone or without modelling 

exposure at population subgroup level.    

Population subgroups from the August residential population base that 

actually increase in LISFLOOD-FP R100 12:00 exposure (although overall 

there is a net decrease) those containing the school aged population 

(population subgroups 4 – 10 and 11 – 15, Figure 5.22). The spatial 

distribution at 12:00 for May and August for one of these subgroups, 11 – 

15 (secondary school aged) has also been illustrated in Figure 5.23C and D. 

It is clear that in May (midday term-time weekday) this subgroup is highly 

concentrated at school sites. During August, non-term time (i.e. school 

vacation period), this population is dispersed throughout the surrounding 

residential locations. In this example these school sites appear to be in 

places of relative safety according to the inundation scenarios modelled. 

However, the more dispersed non-term location has increased the chances 

of exposure to potential flood risk through greater spatial distribution, 

including within potentially hazardous zones.    
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Figure 5.23 Spatial distribution of the usually resident 12:00 weekday population subgroups 

(Working aged 16 – 64 (A and B) and secondary school aged 11 – 15 (C and D)) for May and 

August within the St Austell study area. 
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5.5.4 Population fatality estimates 

Population fatality estimates have been calculated using the spatiotemporal 

population distributions generated and the LISFLOOD-FP layers provided. 

This follows the calculation of a flood hazard rating and method introduced 

in Chapter 4.3.5 and summarised previously in Section 5.3.2. Fatality 

estimates have been calculated for the extent of the LISFLOOD-FP model 

(Figure 5.4) for a weekday at midday in January and August 2010 broken 

down into the usually resident and visitor population (Table 5.11). The 

methodological steps outlined to estimate the number of injuries, flood 

hazard rating (raster LISFLOOD-FP layer provided by Quinn 2014) and 

potential fatalities were combined with the spatiotemporal population 

outputs and evaluated using raster based calculations in ArcGIS. The months 

chosen intend to represent the difference between the low (January, term-

time) and peak (August, non-term time) tourism season.     

Table 5.11 Total population and fatality estimate for the LISFLOOD-FP model extent within 

the St Austell study area for January and August 2010 

Weekday (12:00) 
Total 

population 

Fatality estimate for return period: 

100 years 250 years 500 years 

January Visitors 350 0.3 0.35 0.42 

January Residents 28,887 61 79 100 

August Visitors 4,945 13 16 17 

August Residents 38,288 67 85 105 

 

It is evident that there is a large increase in the visitor population from 350 

to c. 5,000 between January and August within this subsection of the St 

Austell study area (Table 5.11). In August this 8 × 4 km subsection (Figure 

5.4) accounts for almost half of the entire study area’s visitor population 

(Table 5.5). Consequently exposure and risk of fatalities to the visitor 

population also increases from the low to peak season. In the worst case 

scenario presented (500 year return period) for this subsection the January 

to August influx of additional visitors accounts for an estimated increase of 

fatalities of up to 17 people. In contrast the relatively low visitor population 

in January (e.g. Figure 5.16D) is insignificant however the increased visitor 

population in August is of great concern. The spatiotemporal characteristics 

of seasonally varying populations outlined in this application demonstrate 



Spatiotemporal population modelling to assess exposure to flood risk 

 266 

their importance for consideration in risk from hazards. The estimated 

number of all fatalities increases with event magnitude.      

Another notable observation in Table 5.11 is the c. 9,400 person increase in 

the baseline usually resident population from January (term-time) to August 

(non-term time) for this study area subsection. This is generated by non-

overnight visitors drawn from the neighbouring regions to the leisure 

destinations. It has already been determined that there is little change in the 

study area’s overall non-term time population (Table 5.6). However, it is 

possible the slight non-term time increase is concentred within this 

subsection (also the main population centre) and does also contributed 

towards the increase observed. The most likely explanation is the usually 

resident population’s increase in daytime visits to attractions and leisure 

locations within this study area. Like the overnight visitor population their 

leisure activity also follows seasonal cycles and concentrations. The non-

term time summer vacation period in August is also peak season for the 

usually resident population’s leisure activities. The spatial distribution of 

fatality estimates for the 250 year scenario contained within Table 5.11 is 

shown in Figure 5.24. The January and August visitor fatality (Figure 5.24B 

and D) estimates are concentrated around Tywardreath Highway and 

adjacent to the River Par south of Par railway station. In addition, the fatality 

potential for the usually resident population (Figure 5.24A and C) also 

includes a greater area expanded around the River Par including St Blazey, 

as well adjacent to drainage channels in Holmbush, St Austell   
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Figure 5.24 Population fatality estimates under the LISFLOOD-FP 1 in 250 year event scenario for the visitor and usually resident populations in January and 

August at 12:00.
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5.6 Comparison with census estimates 

A final analysis has been undertaken to compare modelled results for 

January with rasterised census datasets for the St Austell study area at a 

cellular level (100 m). The difference (Δ ) has been calculated between the 

January night-time (00:00) model output and the 2001 Census (at OA level) 

(Figure 5.25A), January day-time (12:00) model output and the 2001 Census 

daytime count (at OA level) (Figure 5.25B) and the January night-time (00:00) 

model output and the 2010 mid-year population estimate (at LSOA level) 

(Figure 5.25C). All graphs show that overall the positive difference is greater 

(i.e. the model output produces greater values than the corresponding 

rasterised census cells). This can be visually explained through reviewing 

the spatial distribution of population in the modelled results (e.g. Figures 

5.16-18, 5.23). It can be observed, and it is an intention of this model, to 

appropriately concentrate population onto the actual locations where they 

are likely to be present depending on the season and time of day. This also 

more accurately reflects areas of zero population density. In contrast to the 

uniform density across contiguous zones census structure this will result in 

the model cells containing higher population counts in occupied areas and 

zero in between.            

The greatest difference occurs in the daytime comparison of the model and 

census daytime estimate (Figure 5.25B) where the standard deviation (σ ) = 

11.16. This comparison also exhibits the greatest positive difference. This is 

expected, as in terms of the spatiotemporal modelled outputs this is when 

population within this study area will be the most concentrated at school 

and workplace destination cells. This highlights an issue with the 

underestimation of population occupying daytime locations within the 

census data.   

Figure 5.25C shows the least variance within the three examples (σ  = 7.42) 

for the model difference from the mid-2010 LSOAs. However, there is in fact 

little overall difference between the model compared to the 2001 OA and 

2010 LSOA (Figures 5.25A and C). There is a slight improvement with fit 

using the newer 2010 adjusted LSOA counts. This is the same target year 

(2010) for the population data modelled. It also has the lowest mean 

difference by cell (0.07) and lowest RMSE (Table 5.12)  
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Figure 5.25 Difference at a cellular level (100 m) between day and night-time model results 

for January and rasterised census data concerning the 2001 OA population (A), 2001 OA 

daytime population (B) and 2010 LSOA mid-year estimate (C) across the St Austell study area. 

In addition to the mean difference and standard deviation a mean 

percentage error (MPE) and root mean square error (RMSE) have been 

calculated (Table 5.12). The modelled result is taken as the observed value 

and the census the predicted. The closest model scenario that corresponds 

to the census count has been chosen. The census baseline and MYE does 

not account for seasonal variation and is considered a night-time count. 

Therefore, the January 00:00 model output was chosen. A January daytime 

model estimate (12:00) was chosen to correspond with the census daytime 

count.  

Table 5.12 St Austell study area model difference analysis 

Values  Measure 

Observed 

(model) 

Predicted 

(census) 

 
SD Mean MPE RMSE 

January 00:00 2001 Census  8.09 0.66 34.31% 8.12 

January 12:00 2001 Daytime  11.16 0.71 52.21% 11.16 

January 00:00 2010 MYE  7.42 0.07 13.34% 7.42 

Where Δ  is the difference between the observed and predicted values 
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The RMSE closely corresponds with the standard deviation, it represents the 

average ‘error’ (or difference) for each observation (in this example 30,000 

100 m cells). On ‘average’ the model observations overestimate the census 

values, by up to more than 50% (daytime scenario). For greater clarity the 

actual difference at a cellular level (100 m) is displayed spatially in Figure 

5.25. This shows the model difference from the census day and night-time 

value (first two rows of Table 5.12). The percentage ‘error’ or difference 

from the night-time model (January 00:00) results and the 2001 Census 

(considered a night-time count) is shown in Figure 5.26A. The actual 

difference in population count between the daytime model (January 12:00) 

and the 2001 Census daytime count is shown in Figure 5.26B. The greatest 

positive difference occurs outside of the main population centres (St Austell 

and Bodmin). In the night-time evaluation (Figure 5.26A) the model clusters 

population to actual residential locations. Lanivet, Lostwihiel, Lerryn and 

Golant are labelled as examples. These are predominantly rural settlements, 

and in contrast the census distributes this population over geographically 

larger OAs. This results in lower census population densities. Where the 

model concentrates this population to inhabited residential locations large 

differences occur from the census count that approximately correspond with 

the outline of these settlements. This occurs to a lesser extent in the main 

population centres for the converse of this argument. For example, OAs in 

more densely populated areas such as St Austell are geographically smaller 

in comparison and result in higher census population densities. In these 

locations there is less of a difference between the modelled and census 

outputs. 
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Figure 5.26 Cellular (100 m) difference between spatiotemporal population model results 

and rasterised day and night-time 2001 Census counts 

The contiguous zonal structure of the census does not permit areas of zero 

population density. Where the model does assign a zero density (e.g. 

unoccupied countryside between settlements) it ‘appears’ to be 

underestimating the census counts by up 5 people per 100 m cell. This is 

indicated by the light green background colour in Figure 5.26. However, in 

reality these locations are not ‘inhabited’ by people and the model reflects 

this. The largest difference of +130 people occurs in the small hamlet of 

Cardinham, situated on the extreme northern edge of the study area 

northwest of Bodmin (Figure 5.26B). The corresponding cell has a daytime 

census population density of 0.12 people/100 m
2

. However, this location 

contains a small primary school (Cardinham School) with a weekday term-

time population of 78 pupils; its centroid is visible in Figure 5.13. This 

increases further with the inclusion of additional staff. In reality the census 

estimate simply does not account for localised daytime concentrations in 

population, including school sites. Administrative datasets (e.g. School 

Census) used to construct this model’s data library confirm that it is known 
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that there is a population associated with that school site for the time 

modelled.   

Parts of the road network can be discerned in yellow in Figure 5.26B. This 

indicates areas where the daytime model output seems to overestimate the 

census baseline by up to 6 people per cell. This is expected because the 

census does not account for the population on the road network where this 

model specifically does.
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5.7 Summary 

This chapter has evaluated a case study within a rural coastal setting that is 

driven by large temporary fluctuations in the seasonal tourism population. 

At times this additional population has accounted for a significant 

proportion of the census baseline estimate. Seasonal overnight visitor data 

have been combined with a usually resident term and non-term time 

population base to illustrate variation throughout the tourism season, 

exemplified for three distinct months.     

In conclusion the spatiotemporal modelling approach adopted has facilitated 

the inclusion of a highly influential seasonally varying tourism population. 

This has advanced current insights on high resolution variation in space and 

time to produce a range of realistic population estimates. For example, the 

comparison of a night-time peak season modelled output (seasonally 

adjusted to account for overnight visitors) with OS background mapping 

(Figure 5.19) has allowed the identification of temporally occupied locations. 

In this example an empty field becomes a busy campsite during the peak 

season.  

These insights are simply not possible using static or traditional datasets in 

isolation. Inclusion of peak summer tourism population has been shown to 

increase the residential baseline population by up to 18%. Results have 

demonstrated large changes in population exposure to flood risk by time of 

day within the same and varying flood inundation scenarios as well as 

seasonal increase in potentially vulnerable populations. Furthermore it 

highlights the season specific requirements for vulnerable groups such as 

occupants of highly exposed caravan sites.   

Validation and error analysis is demonstrably difficult for the model results 

obtained. However, assessment of the differences between the model and 

census counts supported with administrative datasets show that the model 

more accurately portrays locations of population at a sub-OA scale. There is 

a high confidence that the modelled outputs, although contrasting to the 

census, do depict accurate population clusters. For example, the case of 

children being present on a school site which is not portrayed in the census 

is confirmed by administrative datasets. It is acknowledged that the actual 
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magnitudes can be highly variable and subject to external influences such as 

the weather, tourism economy and social trends. Therefore it is difficult to 

define a precise value. Nonetheless, predicted clusters appear to correspond 

with concentrated centres of population.           

This application has demonstrated what Martin et al. (forthcoming) term the 

modifiable spatiotemporal areal unit problem where even the most detailed 

spatial data may be inadequate to support time-sensitive analyses. In this 

case study population exposure outcome is highly dependent on the time of 

day, season of the year and varying extent of flood inundation polygons. 

Just a few of a potentially exponential range of scenarios have been 

demonstrated and these show large variations in the results obtained. For 

this reason, an analysis using static data without the temporal insights 

achieved here will only provide one result which has been demonstrated to 

have strong spatiotemporal sensitivities.     
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6.1 Overview 

This thesis has sought to develop appropriate methods for the integration of 

spatiotemporal population estimates with existing environmental models 

and to demonstrate their practical implementation. Applied examples in 

Southampton (Chapter 3), Ulley (Chapter 4) and St Austell (Chapter 5) have 

demonstrated the implementation of spatiotemporal population estimates 

created for this thesis. The creation of a population data library within a 

flexible framework has been presented to better represent population 

movements in space and time. Population movements have been explored 

for daily, weekly and seasonal time scales.    

Following the review of population exposure to natural hazards and 

techniques for the interpolation of population data (Chapter 2), the 

importance of spatiotemporal population estimates at appropriate 

resolutions for the purpose of flood risk analysis was identified and 

illustrated using appropriate case studies (Aim 1, Specific objectives I, II, IV). 

The construction and evaluation of two datasets and a population model 

data library for use with SurfaceBuilder247 was completed (Aim 2, Specific 

objectives III and V). This chapter discusses the final aim, to assess the 

extent to which spatiotemporal population modelling techniques can be 

used to provide greater insights for integrated disaster risk management, 

and examine to what extent confidence can be placed in their results (Aim 

3).         

To achieve this aim the focus has been to enhance and apply the newly 

developed Population 24/7 modelling tool, generating spatiotemporal 

gridded population estimates beyond the original implementation by Martin 

et al. (forthcoming). New data libraries have been created for this thesis. 

Relevant extensions of the work of others have been identified and, where 

appropriate, integrated into the examples presented. This includes small 

area seasonal visitor estimates (Newing 2014) and bespoke LISFLOOD-FP 

flood inundation layers (Quinn 2014).  

This chapter is divided into five main sections. The first discusses the extent 

to which model integration has been achieved and important considerations 

for population exposure that have arisen throughout this process. Section 
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6.3 discusses the enhancements made to the Population 24/7 modelling 

framework. This evaluates the creation of a new expanded Population 24/7 

data library to account for variation in output resolution and population 

movements for different temporal scales. It deals with the integration of new 

data types and creation of new parameter estimates which have not been 

produced before. Section 6.4 explores model validation against census 

estimates and examines the challenges involved in validating spatiotemporal 

population estimates. Finally, Section 6.5 outlines the potential 

contributions of this research to the field of dynamic population modelling 

and disaster risk management. 
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6.2 Integration of spatiotemporal population 

estimates and environmental models 

This section discusses the suitability of the method developed for the 

creation of spatiotemporal population estimates for integration with 

environmental models. It compares the gridded spatiotemporal population 

estimates with other current ambient population estimates available. The 

integration of population and hazard models that vary in space and time 

raises questions about application scale (Section 6.2.3). Practical 

considerations regarding the integration of population and environment 

models will be discussed in Section 6.2.4. This draws on the evidence 

proposed in the two case studies (Chapters 3 and 4). Finally, the potential 

contribution to the improvement of natural hazard risk assessment and 

further application contexts is discussed in Section 6.2.5. 

6.2.1 Spatiotemporal gridded population outputs 

The representation of population data was the focus of the literature review 

in Section 3.3. Chapters 3 to 5 have demonstrated the advantageous nature 

of gridded population estimates through applied examples and case studies. 

Generating gridded population representations has proved to be beneficial, 

particularly for the accurate delineation of occupied areas.  

The use of a grid as a universal format has many advantages, including the 

ease of integration of population and environmental model outputs or 

datasets. This is discussed in more detail in Section 6.2.4. A second 

advantage is the simple data structure of a grid (e.g. ASCII grid format) for 

subsequent analysis in GIS, editing outputs, cellular level comparisons and 

software compatibility. The gridded format provides the stability through 

time, alignment with national grid reference systems and data refresh 

options. For the purposes of flood risk analysis it can be beneficial to update 

population datasets to represent different target dates or scenarios. The 

grid provides a stable platform of consistent units which allows direct like 

for like comparisons of different output data from a range of sources.              
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6.2.2 Spatiotemporal and ambient population estimates 

The results and analysis (Chapters 4 and 5) have demonstrated high-

resolution spatiotemporal population estimates, at hourly intervals for 100 

m cells. It has been shown that variations depending on time of day (e.g. 

Figures 4.16 and 5.14), day of week (e.g. Figure 5.19) and time of the year 

(e.g. Figures 5.16-18) can be resolved in the spatiotemporal population 

modelling approach that has been followed.     

It has been observed that static daytime population tables are available from 

2001 and 2011 censuses, which provide a comparison to residential night-

time counts. The global LandScan database is an example of an ambient 

population estimate, a population average over a 24-hour period. LandScan 

USA increases the temporal resolution further with separate day and night-

time population estimates (Bhaduri et al. 2007). However, the Population 

24/7 approach adopted here has produced time-specific population 

estimates at a much greater temporal (hourly) resolution, which is 

extensible even further if required. Ambient population estimates are simply 

not sufficient for most hazard modelling or emergency planning scenarios 

and also suffer from a lack of agreement over what constitutes ‘ambient’. 

Therefore, for the purpose of this thesis the day/night-time and ambient 

population datasets also available are not considered spatiotemporal in the 

same sense at the Population 24/7 outputs demonstrated. This is directly 

beneficial for emergency planners for the assessment of the risk posed to 

those affected with a range of scenarios. This is one example of producing 

greater insights on population movements, valuable for integrated disaster 

risk management (Aim 3). 

Novel evolving applications already noted such as hourly population 

estimates (e.g. DynaPop, Section 2.6, Aubrecht et al. 2014) show promising 

advances towards truly spatiotemporal population estimates for the 

purposes of hazard risk reduction. High spatial resolution day and night-

time population estimates have also been noted at resolutions of 250 m 

(McPherson and Brown 2004), 250 m (LandScan USA, Ahola et al. 2007) and 

25 m (Freire and Aubrecht 2012). There are merits in terms of increased 

spatial resolution demonstrated within the ambient population examples. 

However, DynaPop and Population 24/7 further advance temporal 
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granularity, minimising the ambiguity associated with ambient estimates, 

which is an important consideration within some disaster risk reduction 

contexts.                 

6.2.3 Spatiotemporal scales of hazard 

It has already been identified that hazards occur at a range of 

spatiotemporal scales in the literature review (Section 2.2.10). However, 

analysis of the case study results has identified important considerations for 

the assessment of risk for potentially exposed population.   

Types of hazard vary widely in terms of physical characteristics, warning 

periods and onset speeds. This thesis has undertaken a detailed analysis for 

two hydrological events, deliberately chosen to represent hazards with very 

different onset times. In the case of Ulley, a dam failure, the onset is near 

instantaneous, with total event duration of around 40 minutes (Chapter 4). 

This potentially results in little or no time for any effective warning. 

Therefore, there is a compelling case for high-resolution spatiotemporal 

population estimates to assess the risk from specific events such as this. 

The approach presented set out to examine how the risk posed from a 

sudden onset and worst-case scenario flood event varies according to time 

of day. It has shown that risk assessments at this scale are feasible.  

In contrast, the St Austell example (Chapter 5) explores an event with a 

much longer onset time. It involves varying levels of flood inundation based 

on an 11-hour rainfall event. In reality, this would also have been combined 

with prior weather warnings. In this scenario it is acknowledged that such 

weather events and warnings could have an impact on the population 

present within flood risk zones. The argument is maintained that it is not 

unreasonable to again consider the worst-case scenario with the maximum 

population present. Brown and Damery’s (2002) suggestion for enhanced 

flood risk management requires long-term risk strategies to be grounded in 

an understanding of exposure to flood hazards and patterns of vulnerability. 

This is required as a starting position for the development of targeted 

warning systems, emergency plans and future policies. Equally, in the 

absence of relevant data, it is difficult to substantiate assumptions as to 

who may, or may not, be present or who could, or could not, have 
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responded to prior warnings. The Population 24/7 approach demonstrated 

in this thesis could be used to prioritise warnings and to make informed 

decisions about effective measures to be targeted at the most vulnerable 

population subgroups and areas.     

The Population 24/7 modelling approach estimates population distributions 

based on quantifiable cycles and known administrative data counts 

associated with specific locations. The implementation in this thesis does 

not attempt to simulate human behaviour during a hazard scenario. For this 

type of application an agent based model or microsimulation may be more 

appropriate, but these would require a different type of modelling that has 

not been the focus of this thesis. However, the Population 24/7 process 

could be used to seed such models (see Section 7.6). To some extent the 

Population 24/7 data library can be modified to better represent population 

during a hazard scenario, but this is not the same as a dynamic simulation. 

The background layer can be modified to reflect severe congestion or 

closures on major arterial traffic routes if appropriate data are available. In 

Chapter 5, seasonal adjustments were made to the population baseline to 

reflect tourist cycles.         

6.2.4 Integration of existing models and datasets 

This research has successfully demonstrated the ability to integrate the 

population results with those from hydrological models (TELEMAC-2D, 

LISFLOOD-FP) (Specific objective IV). Unlike zonal census or administrative 

data both the hydrological models used and SurfaceBuilder247 produce a 

raster gridded output. These have all produced grids at different resolutions 

(Table 6.1). A feature of all three models is the capability to produce outputs 

with a variable grid resolution. The SurfaceBuilder247 output is governed by 

the resolution of available input aggregate data sources to avoid 

overspreading (Martin et al. 2000). An increase in resolution from Martin et 

al.’s (forthcoming) original implementation and Fielding’s (2007) static 

application (using the original non-temporal SurfaceBuilder) of 200 to 100 m 

has been achieved by re-weighting aggregate census data onto 

georeferenced postcodes. While it is technically possible to produce gridded 

population estimates to such high resolution as the hydrological models 

listed, it is not defensible to do so due to current data limitations. The 
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Population 24/7 approach provides a framework that is adaptable to 

multiple input data sources allowing the spatiotemporal resolution to be 

increased in the future should appropriate datasets become available. The 

LISFLOOD-FP layers were produced by Quinn (2014) at an output resolution 

within the range considered appropriate to resolve flow characteristics (Neal 

et al. 2011). The TELEMAC-2D output was converted from an irregular 

triangular mesh at 15 m to preserve all data points. 

Table 6.1 Model output resolutions 

Model Output resolution 

(metres) 

Application example 

SurfaceBuilder 200 Fielding (2007) 

SurfaceBuilder247 200 Martin et al. (forthcoming) 

SurfaceBuilder247 100 This thesis, Chapters 4 & 5 

TELEMAC-2D 15 This thesis; Smith et al. (2014b) 

LISFLOOD-FP 5 Quinn (2014) 

 

Although in this case all model outputs have different resolutions, a benefit 

of a regular grid means that they all can be aligned to the same national 

grid system to undertake spatial analysis. The population grid was 

resampled to the same common resolution as the hydrological outputs. The 

ability to compare corresponding output cells of each model permits the 

calculation of exposure estimates and evaluation of Penning-Rowsell’s 

(2005) flood hazard methodology with specific population exposure values 

at a cellular level. The advantage of achieving a common data structure is 

that this further analysis can be undertaken in standard GIS or statistical 

software package without additional specialist knowledge. Datasets 

produced for alternative purposes or by different organisations are often 

available at different levels of aggregation. The approach presented in this 

thesis permits the creation of outputs that could provide valuable 

enhancements in flood risk management, by allowing spatiotemporal 

population estimates to be combined with environmental models where 

there is no single ideal population dataset for the purpose.        

Through application case studies it has been demonstrated that recasting all 

the data into a common format, in this case a regular grid aligned to the 

national grid reference system, can be used to successfully integrate 
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environmental and population models. However, this is just one mechanism 

that demonstrates the real advantages for the handling, alignment and 

integration of temporal data cycles. These examples have been evaluated for 

UK applications; however the underlying concept for transferability remains 

the same. Where data are sufficiently available for the resolution required 

there is no reason why the model framework and integration method 

presented cannot be created for other contexts and in other countries (See 

Section 6.3). 

The seasonal and hourly population patterns modelled represent ‘typical’ 

baseline conditions. In the example of the Ulley case study (Chapter 4) only 

one static flood map was incorporated. This is justified on the need to 

understand the baseline population in advance, and keep it updated, prior 

to a hazard event occurring. This is a key factor for hazard risk reduction 

(McPherson and Brown 2004; Freire et al. 2011). The extensible framework 

and data library construction for Population 24/7 permits data to be 

refreshed or modified. As demonstrated (Chapters 3-5), methodologically it 

is possible to combine raster based hazard and population data using 

simple GIS functions. However, changes in human behaviour and 

spatiotemporal distribution are not the focus of the Population 24/7 data 

library constructed. Therefore, it is not appropriate to use the same 

population data library for multiple hazard time-slices without the ability to 

account for changes in population behaviour as the hazard unfolds.            

6.2.5 Improvements for population risk assessment 

Results from the case studies have shown dynamic population fluctuations, 

which in comparison to static census outputs give valuable time dependent 

assessments of population exposure to hazards. Chen et al. (2004) (Chapter 

2.4.13) illustrated the problem of aggregate population units in population 

hazard risk assessments. The approach demonstrated improves the spatial 

accuracy in mapping population placement (e.g. Figure 5.20). However, 

these distributions vary both spatially and in intensity with time which can 

be related to quantifiable population cycles. The analysis undertaken 

demonstrates this cyclical nature such as the increasing density of the 

usually resident population with seasonally dependant retail, leisure and 

work activity (e.g. Figures 5.16B and 5.18B). These insights are only 
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achieved by also considering the temporal resolution of such data, and the 

Population 24/7 framework provides a mechanism to handle this in addition 

to the spatial dimension. There is an increase in the spatial distribution and 

concentration of the temporary overnight visitor population driven by the 

tourist seasons (e.g. Figures 5.16D and 5.18D) which is not accounted for in 

existing datasets.    

Aubrecht et al. (2013) also discuss the integration of spatiotemporal 

population characteristics for disaster risk management. They highlight that 

the requirement to understand the development of risk over time is crucial 

and population changes in both space and time are often not sufficiently 

studied. The Population 24/7 development and applications presented have 

shown that it can produce high resolution population estimates in space and 

time suitable for hazard risk assessments.      

One crucial population characteristic resolved using the Population 24/7 

approach was the temporary occupation of caravan sites and holiday parks 

by seasonal visitors. In the St Austell example caravans placed directly 

behind sand dunes on Par beach are within the flood risk and former 

intertidal zone (Figures 5.20 and 5.21). McEwen et al. (2002) highlights the 

particularly high susceptibility of caravan sites to flood risks due to their 

structural integrity and often precarious placement. This Population 24/7 

approach at the 100 m scale facilitates these observations. Caravan and 

campsites are not occupied all year around and do not contain usually 

resident census populations. This approach not only identifies these 

population features that are otherwise omitted, but also shows how they 

vary seasonally with the tourism cycle. 

The sensitivity of aggregate data analysis, particularly prevalent in 

population data, depends spatially on the MAUP (Openshaw 1984) and 

temporally on the modifiable temporal unit problem (Çöltekin et al. 2011). 

Subsequent data analysis can be restricted by imposed temporal constraints 

such as the representative time slices considered. Martin et al. (forthcoming) 

term this the modifiable spatiotemporal unit problem (MSTUP), which 

combines the two phenomena. They propose that data required for analysis 

need to be sufficiently detailed in both the spatial and temporal dimensions. 

This limits the effect of distortion in data analysis. Appropriate resolutions 
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are dependent on specific application requirements. These phenomena can 

potentially have significant impacts on risk analyses generated. This is not a 

barrier for spatiotemporal flood risk assessment, but does draw attention to 

the requirement to consider the spatial and temporal granularity of input 

data used. These phenomena highlight the problems of using static, 

aggregate population data for risk analyses to derive single values for highly 

variable characteristics. 

In the examples demonstrated in this thesis the finest spatial resolution 

currently achievable, 100 m, is appropriate for the application scale and 

data limitations and has been implemented within the Population 24/7 

framework. This is based on the availability of input data sources with 

variable resolutions. The aim of this research was to create estimates with 

the finest spatial and temporal resolution based on the data currently 

available to limit the effect of the modifiable spatiotemporal unit problem 

outlined by Martin et al. (forthcoming). Overspreading of population data 

occurs with the current data library for output resolutions < 100 m. The 

current output resolutions is appropriate for the centroid density and 

variation between urban and rural locations. If it was possible to increase 

the spatial resolution further, for example to 75 m, this may pose 

limitations for integration with some environmental datasets. For example, 

data sets aligned to 1 km national grid squares where 75 m is not wholly 

divisible. Aside from available input data resolution, it is not currently 

possible to accurately predict high spatial resolution (e.g. 25 m) population 

distributions for the desired temporal granularity with current data.          

A high degree of variation in terms of population exposure can be observed 

within the hourly temporal scale used (e.g. Figures 4.16 and 5.14). This 

demonstrates one instance of the modifiable temporal unit problem where 

consideration of just one time-slice (e.g. using a static population base or 

considering just one hourly interval) can have large impacts on the results 

obtained. Greater temporal granularity, such as that beginning to be shown 

in the results presented within the two case studies, has important 

implications for analysis where risk to people is concerned. The method 

proposed captures these important variations and demonstrates that static 

representation is inadequate in these examples.
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6.3 Enhancements to the Population 24/7 framework 

Martin et al.’s (forthcoming) objective through the Population 24/7 project 

was to produce a framework for spatiotemporal population modelling. This 

was intended to be extensible and the initial implementation did not explore 

all the necessary details. This thesis has tested the extensible nature of this 

framework through the creation of two brand new population data libraries 

for each case study presented. One benefit of constructing a population data 

library within the flexible modelling framework is the ability to account for 

specific population characteristics. 

The creation of new population data libraries for use with the Population 

24/7 tool and application to two case studies has demonstrated a range of 

enhancements beyond the original implementation by Martin et al. 

(forthcoming). These enhancements are evaluated and discussed in turn 

within this section. This section begins by discussing creation and use of 

multiple population origin datasets and their importance in applications for 

disaster risk management. Section 6.3.2 discusses the enhancements to 

hazard risk assessment achievable when considering population subgroups. 

Section 6.3.3 discusses the enhancements for hazard risk analysis through 

more realistic representation of population using destination centroids. 

Section 6.3.4 evaluates improvements achieved in the spatial resolution of 

population distributions using UPC data for population centroids. Finally, 

Section 6.3.5 comments on the challenges associated with the static 

representation of dynamic datasets.   

6.3.1 Multiple population origin classes 

The St Austell case study (Chapter 5) demonstrated the advantages of 

creating multiple categories of population origins within the model’s data 

library. These were temporary overnight visitors by season, the usually 

resident term time population and usually resident non-term time 

population. The non-term time population was created based on a 

secondary analysis of census data following the method proposed in 

Chapter 5.3.2.  
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Since this research was undertaken, ONS have released a specific non-term 

time census dataset in addition to the usually resident census baseline 

population (considered a term-time count, National Statistics 2004). The 

ONS (2014b) report on the methodology is largely consistent with the 

methods proposed in this thesis. This new 2011 Census release could be 

used in the same way to construct a non-term time population origin dataset 

within future applications for desired target dates since 2011. For 

consistency with the data available, the St Austell case study, completed 

before the 2011 census release, corresponds to a target year of 2010. The 

ONS (2014b) report on out of term time populations recognises the effect 

that the unique spatiotemporal characteristics of the student population has 

on the ‘usually’ resident population. The non-term time origin dataset was 

created for the St Austell (Chapter 5) application because analysis of the 

peak tourism season in August also corresponded with non-term time for 

the usually resident population. Although subsequent analysis showed little 

difference from the term-time estimate (Table 5.6) for this study area 

location it is a matter of wider significance. For example, according to the 

2011 Census, ONS (2014b) report large university cities such as Leeds, 

Manchester and Sheffield had a non-term time population of at least 20,000 

people lower than their usually resident populations. A non-term time origin 

dataset was not created for the Ulley case study (Chapter 4) because its 

focus was on the representation of the June 2007 (term time) flood risk 

situation. Secondly the temporal scale of this case study focuses on diurnal 

rather than seasonal population cycles. 

A second significant enhancement to the Population 24/7 framework was 

the creation of a seasonally varying population origin class comprised of 

temporary overnight visitors. This was based on visitor data constructed by 

Newing (2014). The analysis demonstrates large fluctuations within the St 

Austell study area of greater than 12,000 people (Table 5.5). These are 

based on known population flows informed by bed space occupancy 

surveys, census data on second home ownership (where no ‘usually’ 

resident population is enumerated) and the pull factors of some of 

southwest England’s largest tourist attractions. These produce insights on 

quantifiable population fluctuations that simply cannot be achieved from 
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census data alone and account for potentially significant exposed 

population groups. 

One example of the significance of temporary overnight tourists is 

illustrated in Figures 5.20C and D. The comparisons with Ordnance Survey 

background mapping for selected 1 km national grid squares, they show the 

level of accuracy achieved in the georeferenced placement of tourist 

populations. In these examples it is clear where the model has assigned a 

population density that corresponded with caravan parks and campsites. 

These would be considered uninhabited by a usually resident census 

population, but become temporally occupied by overnight visitors. The 

modelling approach adopted allows the identification of this known 

phenomenon that otherwise is not possible using the census alone.  

It has been noted (Section 5.2.2, Figure 5.20D) that a slight overspreading 

of lower population densities is observed, particularly around Lower Penhale 

in the example illustrated. This was attributed to the wider dispersion of 

rural households around a single postcode. However, it is encouraging that 

the spatial distribution of model outputs does correspond to local features. 

This in itself demonstrates significant improvements over standard 

choropleth census density maps. It is worth reiterating that the modelling 

undertaken does not claim to predict individual human behaviour. While this 

data library has been constructed to the highest geographical resolution 

currently achievable, deliberating on the micro scale fluctuations within what 

may happen in an additional 50-100 m of a centroid is not within the scope 

of this application. This application is focused on the wider impacts of larger 

scale flood risk on spatiotemporally varying populations. Population counts 

at individual household level are currently not publicly available in the UK. It 

is possible that future research (see Section 7.6) could further improve the 

accuracy in the representation of rural dispersed dwellings. An advantage of 

the Population 24/7 framework and creation of individual population origin 

classes is the ability to update the data library when new data become 

available.               

The enhancements discussed in this section demonstrated modest 

improvements for disaster risk management. They have all been 

implemented within the existing extensible Population 24/7 framework. It 
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demonstrates that the data library constructed for use with the Population 

24/7 modelling tool can be adapted for straightforward applications, as 

proposed in Martin et al. (forthcoming), or account for more specific 

characteristics (e.g. Chapter 4 and 5).             

6.3.2 Modelling population subgroups 

Modelling population subgroups to assess exposure to flood hazard has 

provided significant enhancements to understanding risk in the examples 

presented. The insights gained from accounting for vulnerable population 

subgroup exposure to hazards based on age or other demographic 

characteristics (for gridded population outputs) have been demonstrated 

before. Fielding’s (2007) environmental injustice paper on the 

disproportionate exposure to flood risk of those from lower socioeconomic 

backgrounds in England and Wales (200 m grid), measures exposure by 

socioeconomic classification. Secondly, Aubrecht et al. (2012a) consider the 

population aged over 60 years at 1 km resolution to assess heat-related 

vulnerability and exposure. The applications constructed here also build on 

these developments in the area of risk management.           

In both Martin et al.’s (forthcoming) implementation and the applications 

presented in this thesis seven population subgroups defined by age were 

modelled. These were chosen because of the unique spatiotemporal 

characteristics they exhibit. For example school aged children spend term-

time weekdays highly concentrated on school sites, and higher education 

students have already been observed as being highly mobile and a 

significant proportion of the population (e.g. Section 5.4.2; Figure 5.23;  

Smith et al. 2014a). Age subgroups can also be used to infer the resilience 

of populations typically considered more vulnerable (e.g. the very young and 

elderly). Age subgroups also lend themselves well to the data library 

structure created. The appropriately aged populations can be drawn from 

origin centroids for the most appropriate destination categories. For 

example, only school age children populate school destination centroids 

(together with the associated staff) and the 16-64 working aged population 

occupy their respective workplace destination centroids. Fielding (2007) 

created a static implementation using population subgroups based on 

socioeconomic status. This exemplifies a possible alternative to age. 
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However, for a spatiotemporal implementation, it becomes more difficult to 

differentiate population subgroups by socioeconomic group and decide 

relevant occupancy of destination locations. Although age is not the only 

method for defining population subgroups within the Population 24/7 

framework, the inclusion of alternative demographic classifications would 

require further careful consideration on how allocation to destination sites 

might work and whether suitable data were available to inform such 

allocation.        

The Southampton worked example (Chapter 3; Smith et al. 2014a) 

demonstrated a diurnal cycle in the weekday dominance of fluvial and tidal 

flood risk exposure (Figure 3.14). Based on the population subgroup 

breakdown by age (Figure 3.15) it was shown that the working aged 

population became more exposed to tidal flooding during the working day. 

This was explained by the nature of the coastal concentration of industry 

and commerce within the Southampton example. It was only possible to 

achieve this insight based on subsequent analysis of the population 

subgroups modelled. This illustrates two important contributions by this 

thesis to traditional flood risk management: (i) flood risk to people is not 

static and varies by both time of day and flood hazard type, and (ii) 

modelling of age subgroups allows a more precise estimate of the 

population sector that is most at risk. It would not have been possible to 

derive these assessments using only static population data or without the 

consideration of population subgroups. The 100 m output resolution has 

also been shown to be appropriate to resolve these features on a city level 

scale compared to alternative gridded resolutions (e.g. 1 km Gridded 

Population of the World).               

The St Austell case study (Chapter 5) shows another advantage of age based 

population subgroups. This example illustrated the requirement to account 

for the effects of large seasonal population fluctuations. In one flood 

scenario for August the exposed population decreased despite the fact that 

the study area total increased (Table 5.10, LISFLOOD-FP R100). The 

suggested cause of the decrease in this scenario was the increased 

clustering of population in lower risk areas. However, investigating the age 

breakdown (Figure 5.22) showed a disproportionate increase in the 

retirement aged population (over 65 years) within the August 12:00 



Spatiotemporal population modelling to assess exposure to flood risk 

 

 294 

LISFLOOD-FP R100 exposure estimate. This increase was primarily 

comprised of the August visitor population. The exposure of the population 

aged over 65 increased by 385% between May and August for the same 

flood scenario (R100). It is possible that the overall result for the total 

population exposure (all ages, residents and visitors combined) for the R100 

flood scenario (Table 5.10) may have been disregarded on the basis of an 

overall decrease in population exposure. However, the analysis of the 

population subgroups for the same scenario revealed a significant increase 

in the older, and more vulnerable, population exposed. This is potentially of 

high significance to emergency planners where vulnerability assessment and 

risk mitigation is concerned, particularly within less resilient population 

subgroups.            

Two recent examples have been chosen to support the spatiotemporal 

population estimates produced for risk evaluation within this thesis. A 

potential critique is that this approach does not account for human 

behaviour, but this is not the intention of the work present here. 

Nonetheless, in the example of 2014 flooding in Moorland, Somerset 

(Section 5.1; BBC 2014a) some residents still refused to evacuate despite the 

village being isolated by floodwater and immediate evacuation requests 

from overhead police helicopters. Secondly, Cole and Fellows (2008) 

identified that a number of population subgroups failed to evacuate New 

Orleans during Hurricane Katrina. They proposed a variety of reasons from 

concerns for security of property, caring for pets not permitted inside 

evacuation shelters and those with reduced mobility and their carers. These 

examples show that even the best intentions can struggle to account for 

unpredictable human behaviour. Considering a ‘normal’ population baseline 

prior to any hazard event permits estimation of the worst case scenario and 

identification of potentially vulnerable population subgroups. This allows 

the development of effective and targeted risk mitigation strategies without 

waiting until it is too late.     

6.3.3 Development of destination datasets 

The development of destination centroids for the SurfaceBuilder247 data 

library allows the more accurate placement of population at sites with 

known population capacities and temporal signals. Static census counts 
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provide a reliable residential population count. However, they do not 

account for population movements away from residential locations.     

The mechanism to create destination centroids based on known population 

locations and capacities within the flexible Population 24/7 framework is a 

powerful tool. Where sufficient data exist this allows for appropriate 

representation of the temporal characteristics of the chosen population to 

be modelled. For this thesis, new destination datasets were created to 

represent education, workplaces, healthcare, retail and leisure attractions.  

One improvement is shown in the development of a retail destination 

dataset created for the Southampton applied example (Chapter 3) and the St 

Austell case study (Chapter 5). The approach outlined in Chapter 3 used 

business postcodes as a proxy for retail locations that excluded residential 

address, and devised a footfall estimate based on the number of retail 

employees. Actual retail footfall data are beyond the financial resources for 

this demonstration of the Population 24/7 modelling techniques, and often 

restricted due to commercial sensitivities (Newing et al. 2013a). Instead, 

feasible alternatives using available data have been used for case study 

demonstration purposes. An advantage of the Population 24/7 approach is 

the framework that allows the adaptation to new or evolving datasets. The 

retail example demonstrated here could be enhanced by a research team 

with access to commercial datasets.      

Retail estimates for the St Austell case study were improved using 

commercially available GMAP (2014) retail centres. These replaced business 

postcode locations and only represent retail locations, as opposed to other 

businesses, for greater spatial accuracy. Another advantage was the 

inclusion of an estimate of retail floor space for each centre. This permitted 

footfall to be estimated based on average sales density (income per floor 

area) and average transaction values obtained from publicly available 

financial reports. This resulted in greater spatial accuracy by using a hybrid 

of commercial and open data. Retail is an important destination category 

because town centres are often associated with high retail footfalls within 

the commercial districts. Accounting for high concentrations of temporally 

varying population is of high relevance within disaster risk management and 

for emergency preparedness. The Population 24/7 framework adopted has 
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enhanced the original implementation because it can accommodate different 

types of data relating to destination activities. The detail and range of 

destination categories (e.g. retail and leisure) are dependent on the study 

area selection. The flexible modelling framework has been demonstrated to 

handle these location specific characteristics.                      

6.3.4 Use of unit postcode (UPC) data for centroids 

The previous subsection identified some disadvantages associated with 

using business UPCs to identify retail centres because retail cannot be 

distinguished from other business types. However, their use for the 

construction of other origin and destination centroids has permitted an 

increase in model output resolution to 100 m. The use of residential UPCs 

for reweighting census OA counts is shown to increase resolution and 

accuracy of residential population densities (e.g. Section 3.3.10, Figure 

3.12). Although this results in a greater centroid density and associated 

computational time, it is a major improvement on using single OA centroids 

or PWCs.  

Similarly, workforce counts reported at LSOA (the finest available areal unit 

for which they are published) from the ABI/BRES were re-weighted onto 

business UPCs. There is a significant difference in the spatial distribution of 

residential and business UPCs (e.g. Figure 5.13) which more accurately 

reflects these locations compared to using the same census centroids for 

both. UPCs, although originally created for the delivery of mail, are often 

used as reporting zones in some administrative and survey datasets which 

can support the collation of datasets otherwise reported in varying spatial 

units.        

6.3.5 Static visualisation of dynamic data 

A challenge associated with reporting and communicating spatiotemporal 

data effectively is visualisation. This can be difficult in traditional media 

such as print. This thesis has described dynamic population examples, but 

so far has had to rely on static time-slices for illustration. The examples 

shown are part of a greater temporally varying dataset that has been 

created. A 3D visualisation has been developed for display in Google Earth. 
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The example provided in Figure 6.1 is a screenshot captured from Google 

Earth showing the total St Austell population at midday for a weekday in 

August. The vertical bars signify population density. This dynamic method 

for illustration allows a much more interactive approach to data 

communication. 

         

Figure 6.1 Static image from an interactive 3D visualisation of SurfaceBuilder247 results 

using Google Earth. Vertical bar height represents population density (cell size 100 m). 

The ability to visualise spatiotemporal population estimates interactively is 

an additional powerful toolset. It makes use of standard, freely available, 

software and existing functionality such as the time slider, zoom and 

panning tools. Complicated population datasets can be difficult to display 

and interpret, even for practitioners. This is further complicated by the 

addition of temporal components. The use of familiar interactive software 

can be used to aid risk communication with non-specialist audiences or 

engage policy makers.     
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6.4 Challenges and model validation 

This section discusses the significant challenges associated with 

spatiotemporal model validation. It is broken down into the following 

subsections: firstly, known limitations in the general application of census 

data and then for risk applications are examined. Secondly, the extent to 

which it is possible to validate the spatiotemporal estimates produced in 

this thesis is discussed. Finally the options are explored for future 

validation.     

6.4.1 Known limitations of traditional datasets 

Censuses in developed countries are often considered the gold standard in 

population data. This is usually because of their high levels of accuracy and 

universal coverage. The EU Census Hub project (Eurostat 2014) aims to 

create comparable census statistics EU-wide. The value of small area census 

statistics across environment, health and commercial sectors is summarised 

in RGS (2014) with example case studies. While censuses provide valuable 

information for governments and policy makers for the provision of services 

and funding they are not universally suitable for all hazard risk analysis 

applications. Known limitations associated with unrealistic uniform daytime 

population densities across census zones have been accepted for some time 

(e.g. Wright 1936). Openshaw (1984)’s MAUP highlights the impact of the 

spatial units chosen for analysis and the effect on any results obtained. 

Furthermore, Langford and Unwin (1994) have described how traditional 

choropleth maps, such as those commonly derived from census, grossly 

distort and mask underlying population densities. Based on the known 

limitations of traditional census data, for applications such as risk analysis 

where detailed population estimates are required, this thesis presents one 

alternative which also varies with time.             

The gridded spatiotemporal population estimates generated reduce the 

MAUP by allowing the comparison and analysis of data on a high resolution 

stable uniform grid. Unlike static census data, and addressing Wright’s 

(1936) reservations, the Population 24/7 approach concentrates daytime 

population to known occupied locations depending on the time of day. For 

the purposes of flood risk assessment this contributes enhanced dynamic 
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insights into population movement that are not captured in static uniform 

census densities. The origin centroids for the modelling undertaken were 

constructed using census data, but the argument proposed intends to 

highlight the benefits achieved using a model to combine multiple relevant 

datasets into a stable output format that accounts for temporal variation. 

Static areal interpolations (e.g. Martin 1989) address some of the limitations 

discussed but still do not account for population movements in time as well 

as space.        

For confidentially purposes published census data are aggregated to areal 

units. In England and Wales it is likely that census data will continue to be 

released for just a single aggregation geography (to prevent unlawful 

disclosure of census data). Duke-Williams and Rees (1998) suggest that it 

could be possible to safely publish census data at a 5 km grid in addition to 

the standard areal units. The approach presented in the two case studies 

demonstrates the current ability to achieve much greater resolutions down 

to 100 m. A 5 km census grid may address some of the data analysis and 

integration limitations for England and Wales. However, some censuses are 

already routinely published as a high resolution grid. E.g. 100 m in Northern 

Ireland (NISRA 2015) and from 100 m in Austria (Statistics Austria 2013). 

This may provide further refinement opportunities for Population 24/7 as 

exemplified with the static SurfaceBuilder implementation against 100 m 

gridded Northern Ireland census data (Martin et al. 2011). Future 

implementations or advances in input data resolution could allow the spatial 

resolution of Population 24/7 to be increased further.     

Census data alone are still static and the spatiotemporal estimates produced 

show great potential to resolve cyclical trends at higher resolutions. 

Population variation has been demonstrated within 1 km national grid cells 

using the 100 m outputs created (e.g. Figure 5.20). For the application scale 

presented these are valuable insights for risk management that would not 

be resolved using lower resolution data.   

6.4.2 Model comparison with census estimates 

SurfaceBuilder247 model results have been contrasted with equivalent (as 

far as possible) census data in a comparison exercise (e.g. Sections 4.5 and 
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5.6). These results (e.g. Figure 5.26) demonstrate the extent to which 

census data in contiguous areal units do not represent observed population 

distributions. In reality, as predicted by the model, populations are 

concentrated at residential or other occupied known locations. They are not 

universally distributed as the census reporting mechanism suggests. 

Another observed census limitation (Section 5.5) is that it does not account 

for the daytime concentration of the population at places of work or study. 

Where this is accounted for in the model large discrepancies from the 

census baseline appear to occur (Figure 5.26). These estimates can be 

corroborated with known population counts from administrative data 

sources.  

The comparison attempt has highlighted that the census is fundamentally at 

odds with known, corroborated, day and night-time population 

concentrations. This raises a wider question for further validation returning 

to the original aim that there is no single dataset currently capable of 

providing these insights. Future validation possibilities have been 

considered and are proposed as possible extensions to this research in 

Section 7.6. Such possibilities could include the use of ‘big’ data sources to 

enhance or calibrate the existing model. The framework has already been 

demonstrated as capable of being adapted to include a range of data. There 

are potentially opportunities to utilise real-time data feeds to inform 

dynamic population movements. These types of enhancement may become 

more widely accepted by academics, practitioners and policy-makers in the 

future as supplementary material to traditional censuses.           

The comparison with census data suggests that the least amount of variance 

occurs in the daytime model result (January 2010, 12:00) compared to the 

2001 Census OA daytime population count in the Ulley example (Figure 

4.17B). However, for the St Austell case study it is the night-time model 

results (January 2010, 00:00) compared to the 2010 LSOA MYE (as 

considered a night-time residential count) that show the least variance. In 

both examples an appropriate model extract representing day or night-time 

population estimates was compared to the corresponding day or night 

census estimates. The January seasonal population scenario was used 

because census estimates represent term-time counts without temporary 
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visitors. January is both term-time and has the lowest number of visitors in 

the Population 24/7 data library. 

In the case of St Austell it might be reasonable to expect that the 2010 LSOA 

MYE more closely resemble the same 2010 target date for the model data 

library rather than the 2001 census releases (although at LSOA level, the 

2010 MYE is at a lower resolution than 2001 Census OA counts). The range 

of formal ‘error’ quantification conducted (Table 5.12) supports this 

expectation. The St Austell model shows least variance from the 2010 MYE 

compared to the higher resolution 2001 census OA estimates.                       

In contrast to St Austell, the Ulley model (for target year 2007) appears to 

show greater correspondence with the 2001 daytime census estimate than 

the LSOA estimate. This could be because the difference from the census 

year to the application target date is less (e.g. 2001-2007 for Ulley rather 

than 2001-2010 for St Austell). This contradicts the perception (and St 

Austell example) that comparing population estimate datasets of the same 

location and target date would have the least variance. In the Ulley case this 

suggests that data resolution rather than the target date is a greater 

contributing factor. 2001 OA estimates are at a much greater resolution (c. 

300 people) compared to the target year 2007 LSOAs (c. 1,500 people) (e.g. 

OA-LSOA comparison Figure 3.12). The Ulley example includes Rotherham, a 

large metropolitan area. In this location more OAs cover smaller 

geographical areas (compared to rural St Austell) and still comply with the 

minimum population thresholds for census confidentiality (due to higher 

urban population densities). Therefore, when rasterised they too result in 

higher population densities. A feature observed in the Population 24/7 

model outputs is the concentration of populations to known occupied 

locations. Smaller OAs tend to result in higher population densities 

compared geographically larger LSOAs. Therefore when higher urban OA 

densities are compared with the model outputs the difference between the 

highest concentrations reduces. Analysis on these study areas suggests that 

spatial resolution can have a greater effect than reference date in urban 

areas. The analyses indicated that there is no universal best fit or validation 

technique.  
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The model comparison with small area census statistics has raised some 

important issues. The traditionally accepted view that the census provides a 

‘true’ population value is questionable, given the static nature of the census 

and the limitations outlined (Section 6.4.1), when trying to validate 

spatiotemporal population outputs. Indeed a decennial census can be 

considered as giving a true and highly accurate reflection of the residential 

population on the census night (except for the representation of uniform 

population densities) but when these values are used out of context for risk 

assessment and spatiotemporal model calibration, differences arise that are 

not necessarily indicative of failings in the modelling undertaken. 

The modelling undertaken here has used administrative and government 

datasets that give a robust estimate of the population occupying the 

destination locations modelled. Census counts have been used to inform the 

residential origin population. Model outputs will differ from the census 

because it shows only a uniform density night-time residential population 

count. 

6.4.3 Handling population subgroups 

One of the strengths of the Population 24/7 approached demonstrated is 

the ability to handle population subgroups and observe how these also 

change in space and time. However, incorporating population subgroups 

while constructing the population data library is challenging. One challenge 

is based on the availability of input data and the ability to resolve the 

desired subgroups. Uniformity in subgroupings also needs to be maintained 

throughout all constituent library datasets (e.g. origin and destination 

datasets). In the examples presented age was chosen. Age permits 

spatiotemporal characteristic judgements to be made (e.g. working ‘aged’ 

population, school ‘aged’). Constructing age subgroups is increasing 

challenging even with the wealth of new data becoming available. For 

example the new 2011 Census releases report age at a range of spatial 

resolutions and groupings (single year – 5 year age bands) for the usually 

resident population, out of term time population, student population and 

workplace zone population. Finding commonality within just one dataset can 

govern the subgroups (e.g. age) that it is possible to define as opposed to 

those that are desired.       
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Fielding (2007) implements an interesting static gridded population using 

socioeconomic subgroups. Further work is required to examine how or if 

alternative subgroups such as socioeconomic classifications can be aligned 

to a temporal profile in the same way as age for spatiotemporal 

applications. Defining population subgroups (e.g. age or gender), if desired, 

is an important consideration during the initial stages of data library 

construction for the Population 24/7 approach.         
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6.5 Contribution of enhancements for hazard 

applications 

Finally, this section discusses how the work demonstrated through the two 

case studies presented can make a tangible contribution to practices and 

conceptual frameworks within the field of natural hazard risk management. 

This is divided into two sections outlining the enhancements to risk 

assessment practices and the wider applicability of the research presented 

here.   

6.5.1 Enhancements to risk assessment practices 

The research presented demonstrates the innovative development and 

application of a new spatiotemporal population modelling technique and 

shows modest enhancements to current risk management practices. The 

need for better spatiotemporal population estimates to assess vulnerability 

and exposure to natural hazards, where aggregate census data alone are 

insufficient has been widely documented (e.g. Ahola et al. 2007; Bhaduri et 

al. 2007; Cutter and Finch 2008; Zevenbergen et al. 2008; Aubrecht et al. 

2013). Producing truly spatiotemporal high-resolution (100 m) population 

estimates as opposed to ‘ambient’ representations is the most significant 

contribution of this research. It acknowledges that there are varying 

circumstances where high or low resolution estimates are most appropriate 

but this intends to enhance what others have done considering the former.  

It has successfully integrated spatiotemporal population estimates with the 

outputs from established environmental models (e.g. LISFLOOD-FP and 

TELEMAC-2D) using a loose-coupling approach. Previously, this integration 

has had to rely on inadequate population data in lieu of an appropriate 

alternative. The method presented provides an example of such an 

alternative.     

Integration with environmental models has demonstrated the ability to 

resolve population fluctuations in terms of hazard exposure and potential 

fatalities estimates. The output resolution achieved has permitted these 

cycles to be distinguished at the city or town level. These observations are 

not possible using static census data alone. Furthermore, modelling 
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population based on age subgroups has proven to be of relevance for 

emergency planners. The case studies have demonstrated that it is possible 

to differentiate certain subgroups that are more vulnerable based on their 

age and spatiotemporal characteristics.  

In terms of policy impact this research directly addresses current national 

and international agendas. The applications of the approach described 

within this thesis are well aligned with the UK Government’s National 

Security Strategy (HM Government 2010). Natural hazards are identified as 

high priority risks. Following the Pitt review (2008) of severe flooding 

experienced within the UK this research has the ability to directly address at 

least three key recommendations contained within this report (Section 2.3). 

These concern the mapping of flood risks at local authority level, equipping 

individuals to be better prepared and aware of flood risks and the 

monitoring and mitigating the impacts of flooding on population health and 

wellbeing. Within a national perspective it also has the potential to 

contribute to the UK’s obligations under the EU Floods Directive (Section 

2.3.5). This requires member states to assess flood risk for differing flood 

scenarios. However, the methodological development and application of the 

flexible framework is of greater relevance than to just a single county’s 

identified priorities. Hazards do continue to affect humans, but this method 

provides an option to better account for these impacts more generally. This 

thesis has demonstrated that flood risk is not static because hazards and 

populations both vary spatiotemporally and in their composition.            

6.5.2 Applications for spatiotemporal population data 

The spatiotemporal population modelling techniques demonstrated through 

the example case studies have focused on population exposure to natural 

hazards. However, this is only a small part of a much wider range of 

potential applications for such data. These applications have been 

demonstrated for, but are not limited to, flood risk examples. The 

collaboration developed to integrate Newing’s (2014) seasonal visitor 

estimates utilised a dataset originally created to estimate store level retail 

demand. Spatiotemporal population estimates have been identified as 

appropriate for many examples. These are some examples: retail store 

planning and commercial interests (e.g. Newing et al. 2013b); assessing 
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population exposure to radiological hazards (e.g. Martin et al. 2014); 

healthcare provision; transportation modelling; national security (e.g. 

Bhaduri et al. 2007) and crime analysis (Malleson et al. 2010; Ceccato and 

Uittenbogaard 2013). As new sources of complex and big data continue to 

emerge it is likely interest in spatiotemporal population estimates will only 

get greater.                   
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7.1 Overview 

This chapter summarises the findings of the thesis. It is structured in five 

sections. The first section provides a summary of the main research 

findings. This is followed by a reconsideration of the research aims set out 

in the introduction. The third section reviews the limitations and 

applicability of the work undertaken. The fourth section presents 

conclusions on the overall contribution of the research undertaken and the 

enhancements this may offer for future hazard risk assessment and 

spatiotemporal population estimates. The final section identifies and 

recommends areas for further research.     

7.2 Main findings 

Findings from the creation and application of time-specific population 

estimates for flood risk assessments are summarised below:  

 Population exposure to flood risk fluctuates with time as populations 

move within zones of flood risk. Population exposure has been shown 

to vary depending on the time of day, day of week and season of the 

year. 

 Spatiotemporal population fluctuations have a large impact on hazard 

risk analysis once it has been accepted that population is dynamic 

and constantly varying in both space and time.     

 Baseline population levels (e.g. census estimates) can experience 

significant fluctuations. This is exemplified in the St Austell case 

study (Chapter 5) where the change observed is driven by temporary 

overnight visitors which peaks in August, aligned to the tourist 

season. In a fluvial flood risk analysis for an estimated return period 

1 in 100 years (LISFLOOD-FP R100) the proportion of the population 

aged over 65 years exposed increases nearly four-fold between May 

and August. In this single flood risk assessment example it is 

demonstrated that population subgroups can be underestimated by 

up to 400% depending on whether a static census baseline is used or 

not. This has major impacts on any resultant flood risk assessment.    
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 The construction of a highly detailed population data library and 

spatiotemporal population outputs provides insights that are not 

available from using a single dataset alone. 

 The daily transition of the 16-64 aged working population in 

Southampton (Chapter 3) towards the coast generates an increase in 

exposure to tidal flood risk during ‘typical’ working hours on 

weekdays, overnight fluvial flood risks dominate. This effect is less 

pronounced over the same period on weekends. It shows the different 

population subgroups experience different flood risks at different 

times.   

 Flood inundation modelling concerning an embankment breach at 

Ulley reservoir (Chapter 4) suggest that the flood depths would have 

been dangerously close to overtopping the carriageway of the M1 

motorway. Baseline population exposure to a breach at Ulley 

increases by up to 100% due to employment related circulation 

during a typical working weekday. Where vulnerable populations are 

under direct threat the effect of the population baseline used to 

adequately account for population exposure will have a large impact 

on subsequent risk analysis.   

 Re-weighting the finest resolution UK census data (OA level) onto 

georeferenced postcodes to represent residential locations and 

workplaces permits an increase in previous spatial resolutions using 

SurfaceBuilder247 to 100 m. 

 Using SurfaceBuilder247 to produce gridded outputs allows the 

integration of datasets published for different geographies and 

produces a time dependant gridded output. It has been shown that 

this can be effectively loosely-coupled with environmental datasets 

and models. 
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7.3 Evaluation of research aims 

Three research aims, and five specific objectives were outlined at the 

beginning of this thesis (Section 1.2). Following the work presented they will 

be reviewed and evaluated in turn within this section: 

Aim 1 Review the existing literature regarding the assessment of 

population risk to natural hazards and methods for determining 

exposure. 

The first aim was to review the relevant existing literature regarding 

population exposure to natural hazards. The hazard and population data 

interpolation literature is a broad and well established field. The ultimate 

focus of this literature review was to examine the risks posed by hazards to 

people by considering spatiotemporal population estimates. Its purpose was 

not to deal with specific physical characteristics of hazards, although 

inevitably some of these were subsequently discussed in relation to the 

flood inundation modelling undertaken within the case study chapters 

(Chapters 4 and 5).  

The review of existing literature confirms that the consideration of 

population distributions in space and time for improved vulnerability 

assessments is crucial (e.g. Cutter and Finch 2008). The limitations of using 

static population data, especially when it is constrained within arbitrary 

contiguous reporting zones, have been long established (e.g. Schmitt 1956; 

Openshaw 1984; Langford and Unwin 1994). These limitations have been 

cited by others in examples such as the LandScan USA project (Bhaduri et al. 

2007) and by Aubrecht et al. (2013) where better representations of 

population distributions in time and space have been sought. 

The literature review identifies an emerging field for the creation and 

application of spatiotemporal population estimates. The application for 

natural hazard risk and vulnerability assessments has been identified as one 

key area where significant enhancements can be brought. The work shown 

in this thesis contributes to this area through the bottom-up construction of 

high-resolution, in time and space, spatiotemporal population estimates to 

complement hazard risk analysis. 
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There are very few examples of true spatiotemporal population tools being 

developed around the world none of which are fully mature or fit within 

existing accepted frameworks. There are still larger conceptual and data 

issues to be addressed. The Population 24/7 approach has been developed 

within this thesis as one example of an extensible spatiotemporal 

framework that was deemed to be best suited to the UK flood hazard case 

studies presented.                  

Aim 2 Examine how population exposure fluctuates spatiotemporally 

to flood hazard events using census, administrative and survey 

datasets to construct a spatiotemporal population model applied to 

illustrative cases studies. 

In the work presented within this thesis, the Southampton example (Chapter 

3), Ulley (Chapter 4) and St Austell (Chapter 5) case studies have 

demonstrated that population exposure to flood hazard fluctuates 

considerably with time. A range of publicly available and subscription 

datasets such as census counts, education and employment registers, visitor 

surveys, healthcare statistics, retail data and tourism estimates were used to 

construct a data library to produce detailed spatiotemporal population 

estimates. A substantial amount of preparatory data modelling and analysis 

was required to gain the most from currently available datasets. Data 

linkages were also created to combine census and business employment 

register counts with UPCs to increase the modelling output resolution to its 

current potential within the example illustrated. The Population 24/7 model 

has been developed in various new ways to account for tourist populations, 

retail footfalls and leisure activities.          

The application examples have demonstrated population variability at a 

range of spatial and temporal scales. Spatially, predominantly urban (e.g. 

Southampton and Ulley) applications have been contrasted with the rural St 

Austell example. Through enhancement of the Population 24/7 approach 

improvements in spatial gridded resolution from 200 to 100 m have been 

achieved compared to Martin et al. (forthcoming) and Feilding’s (2007) (non-

temporal) original implementations. The range of case studies selected 

fulfilled their purpose to demonstrate population fluctuations across 
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differing temporal scales. The applications have shown temporal variation in 

population exposure to flood hazards at daily, weekly and seasonal scales.         

Despite being a predominantly rural study area with urban centres, the St 

Austell case study shows the greatest population variation in terms of net 

fluctuation and magnitude change from the usually resident baseline. 

Compared to the urban example presented, where flood risk assessments 

often dominate, St Austell perhaps shows the most interesting impacts of 

spatiotemporal population estimates for hazard risk analysis. 

The precise numeric values of the exposure estimates produced are subject 

to the same scrutiny, assumptions and interpretation as any other example. 

They do not attempt to profess ‘the’ definitive answer, if there even is one at 

all. However, the data presented have been based on the best information 

available for this study with rigorous interrogation. The purpose of these 

examples, using numeric values as a guide, is to demonstrate a credible 

framework to account for population variation in time and space for hazard 

based applications.               

Aim 3 Assess the extent to which spatiotemporal population 

modelling techniques can be used to provide greater insights for 

integrated disaster risk management. Discuss to what extent 

confidence can be placed in their results and outline the challenges 

for validation.  

The illustrative examples presented are part of a much wider class of 

spatiotemporal population modelling approach that demonstrates the 

enhancements achievable within disaster risk management. This thesis has 

shown the development of Martin et al.’s (forthcoming) framework within 

the spatiotemporal hazard concepts identified by others and included within 

the literature review.         

There are many advantages associated with a greater understanding of time-

specific population distributions in often time critical hazard scenarios. 

Firstly, the basic requirement to understand the potentially exposed 

population is a fundamental emergency preparedness principle. The 

examples and techniques developed within this thesis show spatiotemporal 

changes in population and hazard intensity all have the potential to radically 
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change how hazard risk assessments are conducted. It has allowed the 

identification of specific locations or population subgroups that are 

particularly vulnerable such as the elderly. The technique shows that the 

location of such subgroups fluctuates in spatial distribution and intensity 

with time. These dynamic insights are simply not available when using 

aggregate static population data alone. This spatiotemporal modelling 

technique permits the combination of crucial datasets that are relevant to 

the study area or hazard scenario and the gridded output produces a 

useable universal format. It equips the user with a method to combine 

multiple datasets that are often produced in incompatible spatial units in 

their original publication. This is often the case because datasets are usually 

produced to serve a certain purpose and conform to the original producer’s 

desired reporting zones (usually also associated with data confidentially 

concerns). However, these datasets can often serve valuable alternative 

purposes. This research has identified relevant datasets and brought them 

together to produce spatiotemporal population estimates where no single 

dataset has sufficiently done so before.          

There are instances where advanced planning for the worst case scenario or 

taking the ‘business as usual’ population approach for a hazard event of a 

given magnitude is useful. The evacuation of 600 students from seafront 

residences in Aberystwyth, UK, in January 2014 (Gevertz 2014) due to fears 

of imminent coastal flooding demonstrates this principle well. In this 

example Aberystwyth is an isolated university town where students 

comprise a significant proportion of the population and alternative 

accommodation is severely limited. University policies to restrict student’s 

cars from being brought into the town and the coastal railway as the only 

main transport connection increase vulnerability under these circumstances. 

In terms of health and physical ability, younger students may be considered 

one of the least vulnerable population subgroups. However, under this 

unique combination of circumstances that actually occurred, they suddenly 

become susceptible. Emergency preparedness accounting for 

spatiotemporal population variations, such as the Population 24/7 approach 

implemented in this thesis, provides a powerful tool for risk analysis by 

producing advance insights. The specific consideration of population 

subgroups, daily and seasonal cycles (e.g. term vs. non-term time when 
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students would not be expected to be present) that have been demonstrated 

within this thesis have great impacts for any risk analyses undertaken.                            

During the first applications of innovative techniques validation can be 

challenging as already discussed in Section 6.4. It is intended in the future 

that newly emerging datasets (see Section 7.4) will continue to strengthen 

and provide additional validation opportunities for these complex 

spatiotemporal questions. However, the estimates provided within this 

thesis are based on known robust administrative, survey and census counts 

of population occupancy for specific locations which adhere to predictable 

cycles. It is acknowledged that these estimates are subject to variation 

based on external factors such as the weather, economy and local decision 

making. A high degree of confidence is placed in the primary temporal 

cycles observed and affirmed by the underlying data on which they have 

been constructed. It is the wider ability to resolve these cycles for the 

purposes of emergency planning that is deemed of significance, rather than 

the micro level variation in the values presented within the illustrative case 

studies contained within this thesis.          
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7.4 Limitations and applicability 

The potential limitations of the technique proposed have been openly 

addressed, particularly around validation. Like any method, in the current 

form presented here, it may be more appropriately suited to some 

applications more than others. This is the same for a physical tool or device 

that is designed to fulfil a particular task. All current attempts to model 

time-specific populations (e.g. LandScan USA) are subject to the same 

validation difficulties. However, this alone should not limit the valuable 

applications achievable through developing such models. Potential 

enhancements and important questions for flood risk analysis relating to 

population exposure is just one example. This section summarises two 

areas which concern application scale and data availability where additional 

consideration for application may necessary.   

7.4.1 Scale of application 

Following the completion of the original Population 24/7 project 200 m 

population estimates covering the whole of England and Wales were made 

available online (http://pop247.mimas.ac.uk) for selected temporal 

intervals. This demonstrated an example of national coverage. It would be 

very time-consuming to replicate the work presented here in its current 

format at the same scale for hazard applications. It is proposed that the 

scale of application achieved by the work presented here is an intermediate 

compromise. In order to scale this application up to the national level, 

assumptions already made, or decisions that reflect the unique 

characteristics to one particular region concerned, could potentially become 

inflated. For example it might not be possible to justify the decision that the 

retail or workplace behaviour of residents in St Austell is the same as that 

for a small Welsh market town or for the centre of London. Larger funded 

studies may be able draw on government, commercial and transportation 

datasets that could not be used in this thesis in order to gain empirical 

evidence and reduce assumptions.      

At the other end of the spectrum the 100 m resolution achieved is based on 

the detail of available input datasets. A feature of the flexible structure of 

the Population 24/7 framework is the variable grid. Any grid size could be 

http://pop247.mimas.ac.uk/
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selected, but this decision is ultimately driven by the availability of suitable 

input data. It has been clearly stated that even at the 100 m output 

resolution, it was not the aim of this research to predict individual human 

behaviour. Therefore, it was not intended to produce an isolated street-level 

estimate, but rather to combine cellular uncertainties within a much more 

robust city level approach. This has the effect of mitigating for small area 

(sub or inter grid cell fluctuations) when decisions are made at higher 

scales.                  

7.4.2 User access to data 

Where possible the applications presented within this thesis have sought to 

use open data. However, there have been occasions where commercial or 

datasets requiring institutional subscriptions have been required. Where 

these have been used it has been to prevent compromises that may 

undermine the credibility or output resolution achievable through these 

examples. One constraint of this approach is therefore the access to 

appropriate datasets to derive the output detail required. This remains a 

challenge for applications within countries with limited data provision or 

quality, although as demonstrated the modelling framework exists. The 

recommendations for further research (Section 7.6) suggest that future 

prevalence of innovative datasets may offer alternatives and new 

opportunities for spatiotemporal model construction.        
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7.5 Contribution 

This research has made a tangible contribution to the development of 

spatiotemporal population estimates and demonstrated relevant 

enhancements within the hazard risk assessment field. It has produced 

spatiotemporal estimates that are arguably amongst the first of their kind, 

certainly for the locations modelled. It has acknowledged the associated 

challenges but continues to pave the way for future developments. This 

research has significantly enhanced the Population 24/7 approach beyond 

the first implementation and work completed for the original project. 

Expansion of the population data library and improvements in resolution are 

just two examples contributed by this work. However, the greatest 

contribution is the enhancement of the method to handle data for time-

specific population applications.           

The spatiotemporal methods implemented within this study can be 

extended and further developed to build appropriately calibrated time-space 

population models from the wealth of data available. This includes data that 

might become accessible in the future. The Population 24/7 technique 

implemented provides a method to handle data with a fully extensible 

framework. It is the ability to handle spatiotemporal data to produce 

meaningful results that is unique. New datasets will continue to arise and 

almost certainly will eventually be surpassed, but it is the flexible framework 

to capture and adapt to such information that is important and 

demonstrated here.  

The research presented has demonstrated a challenging first step of 

combining time-specific population data with environmental model outputs 

using a loose-coupling approach. This has developed a pathway aiming 

towards truly integrated dynamic population and environmental models. 

This research has tested the boundaries for the integration of population 

and environmental data by successfully tackling the fundamental issues of 

data resolution (spatial and temporal) and format. 

This research has contributed, through the publication of original research 

papers (e.g. Appendix A), to the development of this field. It has tackled 

current UK and EU priority issues on population exposure to hazards and 

flood risk assessment, but these are of greater significance beyond national 
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boundaries. This research contributes to a greater conceptual issue on 

representing dynamic populations. It has identified relevant work being 

undertaken by others, sometimes for entirely different purposes, and 

successfully integrated them to enhance the spatiotemporal population 

estimates presented. Finally, it has sought to introduce a practical method 

that may change how populations exposed to hazards are considered.     
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7.6 Recommendations for further research 

Future advances in the release of new administrative datasets, crowd 

sourced geographic information (e.g. Open Street Map), the open data 

movement (e.g. EU Open Data Portal, data.gov.uk) and prevalence of big 

data (e.g. Zhong et al. 2014) will inevitably provide opportunities to enhance 

this research in the future. Some of these datasets are already emerging but 

they are often focused on large cities and urban areas (e.g. London 

Datastore; Dublin Dashboard;  Batty 2013).  

Work undertaken by others has already shown the potential in emerging 

data feeds such as public transport travel-card data, cycle hire scheme 

usage statistics and analysis of georeferenced tweets (e.g. 

http://www.bartlett.ucl.ac.uk/casa). Tafazolli (2014) proposes that 

development of the fifth-generation (5G) of mobile data networks will enable 

properly connected smart cities in the future. This is likely to produce even 

greater opportunities for innovative or real-time data that may inform 

population movements. 

Work currently being undertaken by Deville et al. (2014) has already 

demonstrated the ability to undertake dynamic population analysis using 

mobile telephone data with proven accuracy. This has shown an alternative 

method capable of mapping population movements in space and time. It is 

believed that this type of analysis could go some way towards validating the 

spatiotemporal population estimates presented within this thesis, although 

does still only represent the population with a phone that is in their 

possession. This information could also be used to enhance existing 

spatiotemporal models by integrating the intelligence gained from temporal 

signals within the dataset. 

The new UK ESRC Administrative Data Research Network and Consumer Data 

Research Centre may provide future opportunities for streamlined access to 

linked or previously unavailable data. These opportunities and those already 

discussed within this section can potentially further develop data libraries 

for spatiotemporal population modelling or provide validation opportunities.  

Options have been considered to advance the research presented here 

further. These explore the possibility to utilise UK mobile telephone data as 

http://www.bartlett.ucl.ac.uk/casa
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a validation technique and working with non-academic partner organisations 

on the role of spatiotemporal population estimates in their hazard analysis. 

There is an interest to develop the model’s software interface to harness 

real-time and ‘big’ data feeds. In relation to flood hazard, these could be in 

the form of reports that provide local area updates such as evacuated areas. 

There are many applications for accurate spatiotemporal population 

estimates, beyond the flood risk examples presented here. Potential sectors 

for further applicability could include retail, resource allocation, public 

health and network and transport planning. The research that has been 

presented demonstrates the wide potential benefits for detailed time-

specific population estimates.               
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Appendix A Published research paper 

Accepted research paper in Applied Spatial Analysis and Policy: 

Smith, A.D., Martin, D. and Cockings, S. (2014 online first) 24/7 Population 

modelling for enhanced assessment of exposure to natural hazards. Applied 

Spatial Analysis and Policy. 

Full text open access: http://dx.doi.org/10.1007/s12061-014-9110-6

http://dx.doi.org/10.1007/s12061-014-9110-6
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Glossary 

Annual Business Inquiry (ABI): The ABI is an ONS survey that contains 

employment and financial information from businesses. One variable 

produced is the number of employees, grouped according to their SIC (see 

Glossary). Access can be requested for these data published at LSOA or 

postcode sector level. In 2009 the Business Register Employment Survey 

(BRES) replaced the ABI and the Business Register Survey.  

Areal interpolation: the re-aggregation of data from one set of zones 

(source) to another (target).  

ASCII Grid: A raster format that can be used with GIS to transfer information 

within cell based systems.   

Dasymetric Mapping: A type of areal interpolation used in population 

mapping that utilises ancillary datasets to distribute population that reflects 

more probable locations of placement.  It builds on critiques arising from 

conventional choropleth mapping, where population densities are uniformly 

distributed (e.g. Wright 1936; Mennis 2003).    

Geographic Information System (GIS): a data management system to store, 

retrieve, analyse, manage and display geographic information.   

Great Britain (GB): The island that consists of England, Wales and Scotland. 

As opposed to the United Kingdom which includes Great Britain and 

Northern Ireland.  

Lower Layer Super Output Area (LSOA): are the second smallest areal unit 

for which census estimates are published in England and Wales (after output 

areas). They typically contain 1,500 people and approximately five OAs. 

They are also the smallest areal unit for which MYEs are published.   

Mid-year Population Estimates (MYEs): Mid-year population estimates 

provide an updated estimate on the population between census years. It 

refers to the population that is usually resident on 30 June for the reference 

year. For England and Wales MYEs provide population estimates by sex and 

single year of age down to LSOA level (ONS 2013a).    

Modifiable Areal Unit Problem (MAUP): A phenomenon where the choice of 

zonal boundaries in which statistics are aggregated has a greater effect on 

the output analysis than the real distribution of the phenomenon being 

observed (Thurstain-Goodwin 2003). The issue was first proposed by Gehlke 

and Biehl (1934) and described by Openshaw (1984). 

Modifiable Spatiotemporal Unit Problem (MSTUP): In an extension to the 

MAUP, the SMAUP is a term used by Martin et al. (forthcoming) that states 

data are required in the finest spatial and temporal units to mitigate the 

effects of spatiotemporal aggregation and data distortion.  
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Output Area (OA): The output area is the smallest areal until for the census 

in England, Wales and Northern Ireland. OAs must contain a minimum of 

100 people and 40 households, but typically represent around 300 people. 

All residential addresses receive a census form that is allocated a grid 

reference to a resolution of 1 m. This is used to aggregate households into 

OAs for census outputs to protect census confidentiality thresholds 

(National Statistics 2004).     

Population weighted centroid (PWC): PWCs are a summary reference point 

for the population within every census OA, LSOA or Medium Super Output 

Area (MSOA) in England and Wales. They represent the spatial distribution of 

population, based on the location of the highest density (ONS 2013b). 

Pycnophylactic: A Greek term coined by Tobler (1979) defined as mass 

preservation. A process that describes the reallocation of aggregated data, 

without points to form a population surface estimation.  

Source Zones: The areal units in which spatial data are available 

Standard Industrial Classification (SIC): a classification of business based 

on the type of economic activity in which they are engaged. 

Target Zones: The areal units in which spatial data are needed, often 

incompatible or different from Source Zones.  

Unit Postcode (UPC):  A UPC is an alphanumeric code (e.g. SO17 1BJ 

representing the University of Southampton) with an associated national grid 

reference. UPCs are UK wide and maintained by Royal Mail to identify mail 

delivery addresses. UPCs have two main categories for large (receiving over 

1,000 pieces of mail per day) and small users. Small user postcodes typically 

represent 15 adjacent addresses (ONS 2014a). 

Usually resident population: Where this term has been used it refers to the 

2001 census definition for England and Wales. This is defined as someone 

who spends the majority of their time residing at that address.  
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