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ABSTRACT
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Thesis for the degree of Doctor of Philosophy

SPATIOTEMPORAL POPULATION MODELLING TO ASSESS EXPOSURE TO
FLOOD RISK

Alan Daniel Smith

There is a growing need for high resolution spatiotemporal population
estimates which allow accurate assessment of population exposure to
natural hazards. Populations vary over range of time scales and cyclical
patterns. This has important implications for how researchers and policy
makers undertake hazard risk assessments. Traditionally, static population
counts aggregated to arbitrary areal units have been used. This thesis shows
that these are inadequate for the purposes of hazard risk assessments
concerning dynamic populations. This thesis enhances and applies
spatiotemporal modelling techniques developed through the Population
24/7 project and integrates the outputs with hydrological models using a
loose-coupling approach. This is demonstrated through two case studies to
illustrate the impacts for flood risk assessment. These case studies
exemplify population fluctuations according to diurnal, weekly and seasonal
cycles. The considerably enhanced spatiotemporal population model
constructed demonstrates a much wider flexible framework. This thesis
establishes that there is a strong requirement to consider time-specific
populations for the purposes of flood hazard risk analyses. Population
movements have been shown to account for major variations in exposure
estimates through the analysis of a range of flood scenarios and population
case studies. Significant enhancements can be sought for risk analyses by
using spatiotemporal population estimates.
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Introduction

1.1  Population exposure to natural hazards

Natural hazards continue to impose one of the ultimate constraints on
human activities (Mitchell 1999b). Humans remain subject to the physical
processes of the planet we inhabit. Understanding the human occupancy of
hazardous zones, how societies respond to environmental hazards and how
to mitigate the risks posed have long been questions for researchers of
hazards (Cutter 1996). Natural hazards can occur at any time and over a
range of timescales with differing opportunities for predictions or warning.
These can be at the timescales of drought or global warming through to
earthquakes, volcanoes or flash flooding. Humans can become susceptible
to hazards for a variety of reasons such as societal attitudes (Slovic et al.
1977), economic constraints (Dobran 2003), public policy (Torrieri et al.
2002), collective memory (Slovic 2000) and population growth (Mitchell
1999b).

In the past unforeseen catastrophic natural disasters have destroyed whole
towns (e.g. Pompeii in AD 79, Giacomelli et al. 2003) or caused the collapse
of entire civilisations (e.g. Minoan civilisation, c. 1,500 BC, Antonopoulos
1992). In our modern and increasingly globalised world natural hazards still
pose great threats with increasingly global impacts. For example, the
temporary impacts of the 2011 Japanese tsunami and resultant nuclear alert
on global financial markets (IHS 2011), and the 2010 Icelandic eruption of
Eyjafjallajokull that caused an unprecedented shutdown in international air
travel (Budd et al. 2011). The modern impacts of hazards may differ
somewhat from those experienced by our early European Minoan
predecessors, but they still provide a reminder that we do not live in a world

entirely of our own making and control.

Prominent events since 2011 have refocused attention on natural hazards
and human vulnerability both in terms of fatalities and economic impacts. By
a considerable margin, 2011 was the mostly costly year to date with natural
hazard losses totalling £240 billion and 27,000 fatalities (Munich Re 2012).
Flooding continued to dominate global headlines in 2013 with Super
Typhoon Haiyan in the Philippines and severe flooding in central Europe.

Flooding in Germany, Austria and the Czech Republic saw some areas
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experience more than 400 mm of rainfall over only several days (Munich Re
2014).

This thesis aims to assess population exposure to flooding, as one exemplar
hazard, through detailed local scale analysis of population movements and
flood risks in the United Kingdom (UK). Flooding too can occur at a range of
scales from rapid onset flash floods to longer-term coastal flood plain
inundation. In the UK in February 2014 an exceptional succession of winter
storms caused serious coastal damage and widespread persistent flooding
(Met Office 2014). It is estimated that 5.2 million properties are at risk from
flooding in the UK (DEFRA 2011). Humans are found in flood risk zones for a
variety of complex reasons: normally resident as ‘inhabitants’, temporary
occupants at places of work, study or leisure, or simply in transit through

the region.

In order to better understand the risks posed to humans by hazard events,
such as flooding, an improved knowledge of the spatial and temporal
distribution of population is required (Bhaduri et al. 2007; Fielding 2007;
Harper and Mayhew 2012; Aubrecht et al. 2012a). Calculating the
population exposed is not straightforward as both the hazard and
population vary over time (McPherson and Brown 2004). Inadequacies in
mapping population have been noted for many decades (e.g. Schmitt 1956).
Commonly used official population datasets such as censuses or population
registers usually provide only residential ‘night-time’ population counts.
Better representations of population distributions that are time-specific are
required for improved risk assessment and the development of effective

emergency plans.

This thesis implements and further develops a spatiotemporal population
modelling approach, known as “Population 24/7” (Martin et al.
(forthcoming); http://www.esrc.ac.uk/my-esrc/grants/RES-062-23-

1811 /read) using SurfaceBuilder247 (v. 1.0) software. Most importantly, it

integrates the results with environmental models for the first time. The

Population 24/7 approach uses a flexible data framework to model the
distribution of population in time and space producing a variable gridded
output. A detailed model data library containing residential census

populations, workplaces, hospitals, educational establishments, leisure


http://www.esrc.ac.uk/my-esrc/grants/RES-062-23-1811/read
http://www.esrc.ac.uk/my-esrc/grants/RES-062-23-1811/read

Introduction

locations and retail centres represented as population centroids
(georeferenced locations with an associated population count) is created,
each with relevant time profile information. Population is then redistributed
around these centroids producing bespoke population distributions for each

target time.

This thesis demonstrates significant enhancements to the Population 24/7
data library and improvements to the spatial and temporal resolution in
population outputs. It integrates spatiotemporal population data with
environmental models using a loose-coupling approach (Martin 2009). These
previously standalone models are enhanced and their outputs integrated

into a compatible format for analysis using GIS.

Three separate population data libraries have been constructed for
implementation within the Population 24/7 framework based on three
different UK case studies. These case studies are intended to demonstrate
how enhanced spatiotemporal population estimates can be used to improve
flood risk assessments. The applications include a worked example centred
on Southampton to illustrate the methodological framework (Chapter 3) and
two substantive case studies. The first of these is centred on Ulley, South
Yorkshire (Chapter 4) and evaluates the risk posed to the potentially
exposed population following a simulated collapse of the Ulley reservoir
embankment, based on a near-catastrophic dam failure that occurred in June
2007. This case study examines the implications of diurnal population
cycles for flood risk assessment. The second case study is focused on St
Austell, Cornwall (Chapter 5), part of an English coastal county and a
popular tourist destination. This case study assesses the impact of daily and
seasonal population fluctuations on exposure to a range of fluvial flood

risks.

Both of the case studies, Ulley (target year 2007) and St Austell (target year
2010), have reference dates that fall between the 2001 and 2011 censuses
in the UK. These dates are either based on the actual event reconstructed
(e.g. Ulley dam failure in June 2007) or defined by the availability of required
datasets. Both applications employ the 2001 census geography, but with the
population data updated or adjusted for the respective target dates. The

latest 2011 census data not only post-dates the target dates for these case
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studies but also had not been fully published at the time this research was

undertaken.

1.2 Aims and objectives

The aims of this research are to generate innovative spatiotemporal
population estimates by implementing and further enhancing the existing
Population 24/7 modelling framework. It is intended that this will
demonstrate for the first time the applicability of such models within flood

risk assessment. Three overall aims are identified:

Aim 1 Review the existing literature regarding the assessment of
population risk to natural hazards and methods for determining

exposure.

Aim 2 Examine how population exposure fluctuates spatiotemporally to
flood hazard events using census, administrative and survey
datasets to construct a spatiotemporal population model applied to

illustrative cases studies.

Aim 3 Assess the extent to which spatiotemporal population modelling
techniques can be used to provide greater insights for integrated
disaster risk management. Discuss to what extent confidence can

be placed in their results and outline the challenges for validation.

1.2.1 Specific objectives
The following objectives have been formulated to achieve the aims outlined:

I.  Review the relevant literature on the risk posed by natural hazard
events and over what timescales they occur. Determine to what
extent population and hazard data have previously been integrated
for successful disaster risk management (Aim 1).

II.  Construct a population data library for implementation with
SurfaceBuilder247 to examine spatiotemporal cycles within
population movements for enhanced spatiotemporal population
estimates, in terms of spatial and temporal resolution, with currently

available datasets (Aim 2).
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Ill.  Examine how population fluctuates in daily and seasonal cycles and
demonstrate how this can be incorporated though implementation of
the Population 24/7 modelling framework (Aim 2).

IV. Demonstrate and attempt to quantify the difference in spatiotemporal
and static population estimates though two case studies to assess
hazard exposure integrated with environmental model outputs (Aim
2).

V.  Critically evaluate the applicability of this approach for application

within natural hazard risk management (Aim 3).

1.3 Thesis structure

This chapter introduces the thesis theme, aims and objectives and structure.

It outlines the main techniques that will be used.

Chapter two presents a selected review of the relevant literature within the
field of disaster risk management, interpolation of population data and the
considerations for spatiotemporality in both natural hazard and dynamic
population applications. It contextualises the theme of this thesis within the
inter-related fields of hazard risk management, spatial analysis of
population data and interpolation techniques. The aim of the chapter is to
underpin the arguments for the original contribution of the doctoral
research undertaken. It identifies a gap in current knowledge which this
thesis fills. The chapter is divided into five main sections. Firstly an overview
is provided of human exposure, risk and vulnerability to natural hazard
events. Secondly, a more detailed review of specific flood risks within the UK
and current international policy agendas is presented. Thirdly, methods and
techniques are reviewed for the spatial interpolation of aggregate
population data. Fourthly, examples of, and methods for, the interpolation
of population data with time are considered. Finally, the Population 24/7

tool, that will be implemented, and concept is introduced.

Chapter three describes the methods and data utilised in this thesis. A
version of the chapter has been published as Smith et al. (2014a) and is
included in this thesis as Appendix A. Firstly, the structure and concepts of
the spatiotemporal population tool, Population 24/7, are described. This

introduces the components and parameters required to construct a
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population data library for the model. A worked example is then presented
to demonstrate the creation and implementation of a population data library
based on Southampton, UK. Example outputs are provided and the
implications for population exposure in time and space to coastal and fluvial

flooding within the city are explored.

Chapter four presents the first of two case studies detailing application of
the Population 24/7 tool and integration with hydraulic flood modelling. A
condensed version of this chapter has been published as Smith et al.
(2014b). The additional hydrological modelling described in this chapter was
undertaken by the author facilitated through a knowledge transfer
internship at HR Wallingford Ltd. The case study concerns the failure of a
dam at Ulley, South Yorkshire, UK that actually occurred during 2007 and
the risk to people that it posed.

Chapter five presents the second case study centred on St Austell, Cornwall,
UK. The purpose of this case study is to examine how tourism-driven
seasonal fluctuations in population affect flood risk assessment. This
application employs seasonal tourism estimates provided by Newing (2014)
to enhance a population data library used to produce spatiotemporal
population estimates that represent daily, weekly and seasonal cycles. These
outputs were combined with the UK’s national flood risk map and fluvial
flood risk scenarios. Bespoke fluvial flood risks were provided by Quinn
(2014) created using LISFLOOD-FP, a flood inundation model. The outputs
were integrated and analysed, with the effects of population fluctuations on

exposure to flood risks examined.

Chapter six discusses the findings of the thesis, and the methodological
approach more generally. The discussion considers the integration of
spatiotemporal population estimates with environmental models, the
enhancements achieved within the Population 24/7 framework, the
challenges for model validation and finally the contribution to the field of

hazard risk management.

Chapter seven summarises the main findings of the thesis, referring back to
the original aims and objectives set out in Section 1.2. It summarises the

limitations, but also outlines the significant enhancements achieved to
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advance our understanding of population exposure to risk. In the final

section proposals for further research and extensions are identified.

Finally, a glossary is provided which defines key technical terms used in this
thesis.
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Literature review

2.1 Overview

This literature review is organized into seven sections. Following this
overview the first concerns natural hazards, their processes and impacts on
people. This is followed by the flood risk context in the UK. The third
section concerns population data and spatial interpolation. Section 2.5
reviews examples of population interpolation techniques that consider time,
while Section 2.6 examines spatiotemporal examples. Finally, all of these
components are integrated regarding their application to assess exposure

and vulnerability to natural hazards.

2.2 Natural hazards

In this section, the concepts of hazard, vulnerability, susceptibility,
resilience and risk will be explored with particular reference to the way in
which hazards impact on human populations. UK flooding case study-
specific context will then be provided, followed by an analysis of the
representation of population data. Cutter (1996) proposed three
fundamental questions that have been the focus of hazard researchers
considering these issues. These concern: (i) understanding the human
occupancy of hazard zones, (ii) how to mitigate the risk and (iii) impact from
hazards and societal response. Questions (i) and (ii) raise important
considerations that will be examined further in this review, and represent
the primary aim of this thesis. Aubrecht et al. (2012b) also address the
occupation of hazardous zones and risk mitigation. They state that the
quality of available data regarding disaster risk management, particularly
exposure and impact assessments, in terms of spatial and thematic
accuracy, is one of the most important factors. There are numerous
instances where spatiotemporal population estimates could be applied to a
natural hazard scenario to estimate human occupancy. Bhaduri (2008)
suggests these fall into two broad groups: estimating risk from disasters
and for the purpose of public health and socioeconomic analysis. The first,

focused on population and wellbeing, is considered in this thesis.

Large numbers of people are at risk from natural disasters such as
earthquakes, volcanic eruptions, floods, droughts and wildfires. Typically

they are mostly predictable (except earthquakes and some volcanic

13
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eruptions) and topographically constrained. Although hazards are often
unpreventable, their impact can be minimised through effective disaster
planning and emergency preparedness (Bhaduri 2008). The population
exposed (E) is recognised as a key component when defining risk to natural
hazards (H) in addition to their vulnerability (V). This can be empirically
represented as some function of risk (Eg. 2.1). Without the population

component no risk would exist.
Risk = f(EHV) @.1)

Understanding a population’s characteristics such as vulnerability and
exposure also presents challenges for practitioners through data
deficiencies or systems to handle such information. The formula indicates
that aspects of population and management account for all contributing
factors required for the development of a natural phenomenon into a
hazard. This shows that better representations of population are required to
make improvements in assessing the impacts of natural hazards and
disaster risk management. The variability of vulnerable populations exposed
to natural hazards needs to be recognised to make improvements in
emergency planning and develop effective procedures (Cutter and Finch
2008). The calculation of the exposed population is not straightforward as
populations are not static and shift dramatically over time (McPherson and
Brown 2004).

Humans are vulnerable to hazards which can be categorised as either
anthropogenic or natural, or considered a factor of the two. These hazards
are both numerous and complex. While a multitude of anthropogenic
hazards pose risks to life such as smoking or terrorism, only the destructive
power of extreme natural phenomena is considered here. Natural events are
capable of causing widespread disaster and considerable loss of life. Natural
hazards are widely regarded as one of the ultimate constraints on human
activity and provide reminders that we do not live in a world of entirely our

own making.

Humans are becoming more susceptible to natural hazards, largely as a
consequence of population growth and globalization. In the future it is likely
that multiple disasters with fatalities exceeding 10,000 will be experienced

on an annual basis (Huppert and Sparks 2006). The general trend (Figure
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2.1) appears to suggest that the frequency of natural hazards is increasing.
However, it is widely argued that this phenomenon probably occurs as a
result of increased exposure, improved and more robust detection and
recording methods as well as an absence of sufficient data to verify this
trend (e.g. Alexander 1993; Tobin and Montz 1997; Hilhorst and Bankoff
2008). The number of reported disasters rose by 93% between 1992-2001.
Vulnerability is a more precise measurement of exposure to risk (Hilhorst
and Bankoff 2008) rather than just disaster frequencies. Floods, droughts,
earthquakes and tropical cyclones accounted for 94% of all natural hazard
fatalities recorded between 1980-2006 (Peduzzi et al. 2009).
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Figure 2.1 Total number of natural disasters by year between 1900-2013. Data source: EM-
DAT (2014)

Grasping the variety of natural hazard definitions and concepts (Table 2.1) is
important when considering how populations are affected by them. Many
definitions contain the same components concerning the physical
occurrence of a damaging naturally occurring event, the likelihood of
occurrence, and the potential negative impact on humans or the

environment.

Natural hazards can be broken down into the following subgroups, which

may have an impact on the particular definition derived:

= Meteorological: drought, extreme temperature, lightning, cyclonic

depressions, tornado, climate change, geomagnetic storm, wildfires.
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= Hydrometeorological: flood, hail, extreme rainfall, blizzard, heavy
snow, ice, coastal storm surge.
= Geophysical: seismic activity, volcanic eruption, coastal erosion,

landslide, avalanche, lahar, subsidence, tsunami.

Furthermore, aspects of the following events might be considered natural or
as a consequence of human interaction combined with other natural triggers
(Hewitt 1997):

* Biological: disease pandemics, release of pathogens, escape of
radioactive material.

= Environmental: pollution, chemical fires, poisoning, gaseous
discharges.

= Technical: infrastructure failure.

A vast literature may be found on each of these subgroups, which in turn
may be further subdivided. For example, flooding may be broken down into
coastal, pluvial or fluvial with a range of diverse impacts and contributing
factors. Some natural hazards such as an avalanche or landslide can be
argued to have human triggers or exacerbating factors. Such complicated
relationships between humans and the natural environment can often make
it difficult to differentiate single or independent causes of an event.
Compound hazards occur as the result of another event. Fires, tsunamis and
landslides are all potential compound hazards which may occur following an

earthquake.

Historically, natural hazards have destroyed entire ecosystems and have
been recognised as causal factors in the collapse of civilizations, such as the
Minoan empire during the fifteenth century BC. In economic terms, 2011
was the mostly costly year to date regarding natural hazards losses which
totalled $380 billion with 27,000 fatalities. The most notable events
included the Japanese tsunami and Christchurch, NZ, earthquake. Other
high profile events included the occurrence of severe flooding in Thailand,
Australia and the USA as well as continued drought in east Africa (Munich Re
2012). The aim of this thesis is to examine how such populations are, and

become, exposed to hazards.
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2.2.1 Natural hazards and disasters

There is no agreed definition of ‘disaster’, which can lead to misconceptions
in the media and variations in recording data on destructive events (Perry
2007). Consequently, the integrity of databases containing related counts
should be carefully analysed within their context. These records are often
used to determine the severity of a disaster in terms of economic damage or
number of fatalities. The media and everyday language often term as
‘disasters’ events with considerably different magnitudes and causes. For
example, the ‘1989 Hillsborough Disaster’ in the UK resulted in 96 football
supporters being fatally crushed, compared to the same application for the
1931 flooding disaster in China which killed 3.7 million people (Smith and
Petley 2009). A natural hazard may become a natural disaster once there
has been a negative impact on a population, as defined in Table 2.1. In the
absence of any population, where no risk to humans exists, the same
natural phenomenon does not develop into a hazard (Alexander 1993). The
term disaster is often utilised by the media, but without proper definition or
calibration of use it may not be that useful in public communication. Many
databases will have different definitions and methods governing calculation
of fatalities associated with a disaster or natural hazard. The clear definition
of a disaster in a dataset is essential when interpreting fatalities that have
occurred directly and those that have occurred as result of a subsequent
consequence (e.g. EM-DAT 2009b). In addition, disaster fatality datasets may
become further complicated when an area affected by a hazard crosses
more than one administrative area or national boundary. The United Nations
Office for Disaster Risk Reduction’s (UNISDR) ‘Terminology on Disaster Risk
Reduction’ provides a concise one sentence definition to provide clarity for
the public, authorities and practitioners intended for dissemination to
promote better understanding. Definitions taken from the UNISDR and the

literature have been summarised in Table 2.1.
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Table 2.1 A selection of definitions and concepts regarding natural hazards

Terminology Definition Source
Natural Hazard The probability of occurrence within a specified period of time and within a given UNDRO (1982)
area of a potentially damaging natural phenomenon.
Threats to humans and what they value. Harriss et al. (1978)
A naturally occurring or man-made geologic condition or phenomenon that American Geological
presents a risk or is a potential danger to life or property. Institute (1984)
Vulnerability Being prone to, or susceptible to damage or injury. Wisner et al. (2004 p. 11)
Characteristics of a person or group and their situation that influences their Wisner et al. (2004 p. 11)
capacity to anticipate, cope with, resist and recover from the impact of a natural
hazard.
The degree of loss to each element should a hazard of a given severity occur. Blaikie et al. (1994)

The characteristics and circumstances of a community, system or asset that make UNISDR (2009:30)
it susceptible to the damaging effects of a hazard.

Vulnerability = risk amplification measures - risk mitigation measures = risk Alexander (1991)
perception factors
The degree of loss (%) resulting from a potentially damaging phenomenon. EM-DAT (2009a)

The degree of loss to a given element or set of elements at risk resulting from the UNDRO (1982)
occurrence of a natural phenomenon of a given magnitude (expressed 0 to 1, no
loss to total loss).

The degree to which different social classes are differentially at risk. Susman et al. (1984)
A possible state that is combined with high risk and an inability to cope. Cardona (2004)
Exposure People, property, systems, or other elements present in hazard zones that are UNISDR (2009 p. 15)

thereby subject to potential losses.
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Table 2.1 continued

Terminology

Definition

Source

Risk

Environmental
Hazard

Natural Disaster

Risk = Hazard x Exposed population x Vulnerability

The combination of the probability of an event and its negative consequences.

R. = ER, = EHV, where R, is the total risk, E is the elements at risk, R, is specific
risk, H represents the natural hazard and V is vulnerability.

Extreme geophysical events, biological processes and technical accidents that
release concentrations of energy or materials into the environment on a

sufficiently large scale to pose major threats to human life and economic assets.

A disaster must fulfil at least one of the following criteria:
> 10 fatalities or > 100 people affected

Declaration of a state of emergency

Call for international assistance

UNDRO (1979)

UNISDR (2009)
Alexander (1993)

Smith and Petley (2009)

EM-DAT (2009b)
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2.2.2 Vulnerability versus exposure

Some key definitions taken from the literature have been summarised in
Table 2.1. This includes an attempt to differentiate between vulnerability,
exposure, susceptibility and resilience. This is important when considering
risk to population. Vulnerability is described as a combination of factors
with varying definitions (Table 2.1). It can be described as a possible state
that is combined with high risk and an inability to cope (Cardona 2004).
Quantitatively, vulnerability can be considered a function of risk and hazard,
or a numeric figure describing the potential degree of loss. A common
factor in vulnerability definitions is a population component describing
susceptibility, exposure or other characteristics that make them vulnerable

when considered with a particular hazard and given level of risk.

Unlike vulnerability, exposure of an element or population might just simply
be considered as their physical location within a hazardous zone making
them subject to potential losses (UNISDR 2009). It could be argued that
exposure only relates to a quantifiable property or physical presence of
objects such as population counts, roads and buildings within a hazardous
area. An object is exposed as a result of its physical location whereas
vulnerability incorporates a greater range of contributing factors that affect
the ability to cope. Buildings on an active fault line may be exposed to
earthquake hazard, but those buildings built without proper planning

regulation to withstand an earthquake will be more vulnerable.

L High risk

Loy se curity

Loy Fisk

Physical expasure

High security

S
o

Population vulne rability

Figure 2.2 A simple vulnerability/exposure matrix after Smith and Petley (2009)
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Human sensitivity can be considered a combination of exposure and
vulnerability (Figure 2.2). It is clear that the sensitivity of a population to a
hazard depends on the degree of physical exposure, such as living on an
explosive active volcano. Population vulnerability can also reflect upon
preparedness regarding implementation, if any, of an emergency evacuation
plan. Populations in less developed countries might experience the same
level of exposure for a particular hazard, but have a greater sensitivity
through increased vulnerability as a result of inadequate planning or lack of
financial resources to adapt. Figure 2.2 highlights the need to understand
physical exposure and vulnerability of populations when considering risk

and security.

2.2.3 Susceptibility

Dow and Downing (1995 p. 4) define vulnerability as ‘the differential
susceptibility of circumstances contributing to vulnerability’. Consistency in
the definition and use of ‘vulnerability’ is required to advance our
understanding of the vulnerability of populations and places to natural
hazards (Cutter 1996). It is argued susceptibility can be considered a subset
of vulnerability (Dow and Downing 1995), however the two terms are often
used interchangeably with little distinction. In the interests of clarity and
usability, an attempt has here been made to differentiate these concepts.

Although their use is common there is currently little defining literature.

The concept of susceptibility is common in landslide hazard mapping,
particularly within the engineering and earth science communities (e.g. Dai
et al. 2001; Fernandez et al. 2003; Remondo et al. 2003; van Westen et al.
2003; Fell et al. 2007). These purely concern a probability of an event
occurring, where sufficient data are available. Susceptibility may be
considered as a spatial probability based on climatic or geological
conditions where there is insufficient temporal data (Remondo et al. 2003).
Unlike vulnerability, which may be defined as a characteristic that causes a
potentially harmful situation (Table 2.1), susceptibility suggests a

preconditioned detrimental characteristic.

The usage of susceptibility in this context emphasises a probability of

occurrence due to a physical pre-conditioning to experience harm rather
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than the more anthropogenic orientated vulnerability concepts defined in
Table 2.1 which consider human characteristics or potential losses. It could
be argued that a population living on a volcano is both vulnerable and
susceptible, as the consequences of the geologic process of an eruption are
independent of human characteristics with a uniform effect on the exposed
population. Conversely, it may be argued that such a population is
vulnerable due to socioeconomic constraints having a greater influence on
its geographic location of residence. In order to assess vulnerability the
susceptibility of elements at risk needs to be identified and understood
(Birkmann 2006).

2.2.4 Resilience

Resilience is a useful concept for hazard risk reduction which has been
significantly developed (Walker et al. 2004) since its introduction by Holling
(1973, 1986). The introduction of resilience theory, particularly that
concerning ecological systems, has had a notable impact within the natural
and social sciences. Figure 2.3 displays the trajectories of two population’s
densities through time, suggesting the competition for resources arriving at
equilibrium over time. The spiral represents a planar view of the density

trajectory with time.

Figure 2.3 Density change in two populations over time (Holling 1973 p.5)

Resilience is often defined as the ‘ability to spring back’. In physical terms
this can relate to the stress and strain exerted by a load placed on a

material. Since Holling’s (1973) conceptualization the term has been used in
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an increasingly metaphorical sense relating to a system’s or city’s ability to
cope with and recover from external shocks (Klein et al. 2003a). Resilience
can be attributed to promoting sustainability as a mechanism to reduce
vulnerability. However, it is perceived that while resilience may be a
desirable property, it exists as a poorly defined conceptual framework. Klein
et al. (2003a) recognise a requirement for better quantification of resilience.
The quantitative assessment of populations is important and allows the

definition of magnitudes of variation.

Dovers and Handmer (1992) identify three types of societal resilience to

environmental risk:

= Type 1 Resistance and maintenance: resistance to change and
uncertainty where the status quo are maintained. Threats are
identified and mitigated but this may lead to inaction to avoid
uncertainty. As a result the society may not be fully prepared to deal
with unexpected events.

= Type 2 Change at the margins: change that does not challenge the
basis of society and serves the interests of the affluent few. Not
generally concerned with the general population or environment.

= Type 3 Adaptability: flexibility and the ability to change basic
assumptions and institutional structures while effortlessly embracing

new ideas.

There needs to be a clear definition of resilience and the factors by which it
is determined if it is to be usefully applied to populations in a hazard
context. Although often considered a desirable characteristic, the ability of a
population to ‘spring back’ to the same perpetual state of vulnerability
following a natural hazard may not in fact be beneficial. Resilience to
natural disasters is the capacity of the population to cope with the
emergency and learn from the experience by implementing new physical
and social structures to become better adapted (Ride and Bretherton 2011).
Klein et al. (2003a) propose that usage of the term ‘resilience’ should be
reserved to describe specific system properties concerning the amount of
disturbance it can absorb while maintaining function and the degree of

capability of self-organisation.
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2.2.5 Introducing risk

There is a level of risk which exists for every activity. A large proportion of
this risk is termed acceptable risk. This is the level of potential losses that a
society considers acceptable given the existing economic, social, cultural,
political, environmental and technological conditions (UNISDR 2009). Our
knowledge of natural hazard distribution and historical frequency has
advanced, however less is known about risk and its impacts on the
population affected (Cutter 2010). Understanding and mapping risk is
another fundamental component in assessing the degree of potential harm
to humans. Risk (Table 2.1) can be defined as the product of an exposed

population, vulnerability and hazard.

2.2.6 Voluntary and involuntary risk exposure

In terms of individual risk, two main categories can be considered:
involuntary and voluntary risks. Involuntary risks occur without our
knowledge or consent such as a lightning strike, earthquake or meteorite
impact. Voluntary risks result from activities, or their potential
consequences, that individuals choose to undertaken when they consider
that the risk involved is acceptable. There are numerous voluntary risks
undertaken by individuals daily such as travelling on the road network or
smoking tobacco. Living within a flood plain or on an active volcano might
be considered voluntary although such decisions may be governed by
complex cultural, social or economic constraints outside of an individual’s

control.

It has been suggested that the observed increase in the frequency of natural
disaster events is partly a result of increased exposure. By the end of the
first decade of the twenty-first century more people lived in urban rather
than rural areas for the first time in human history, resulting in increased
population densities (Dye 2008). In Europe this accounts for 70% of the
population, while globally the trend in population growth will mainly be

urban for the foreseeable future.

Urbanisation extremes are exemplified by megacities which can be defined
as urban agglomerations exceeding 10 million inhabitants (UN 2008),

characterised by high population density and rapid development (Sekovski
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et al. 2012). Most megacities, 17 out of 21, are located in coastal regions
(Nicholls 1995; Sekovski et al. 2012; von Glasow et al. 2012). Mitchell’s
(1999b) edited volume poignantly assigns the title ‘Crucibles of Hazard’ to
megacities. Large populations in coastal megacities are vulnerable to natural
hydrological and meteorological hazards as well as tsunamis (Klein et al.
2003b). Inland cities of high population density are not immune from
hazard. The 1989 earthquake in Mexico City, which itself is situated within a
volcanic basin, is estimated to have killed 5,000-10,000 people (Mitchell
1999a). It has been suggested that the human preoccupation with achieving
economic growth, even in the face of adversity, has spatially concentrated
social and economic activities in hazardous areas (Puente 1999). As these
cities usually contain the highest concentrations of population and economic

activity they can be predisposed to suffer catastrophic natural disasters.

Current populations, or the origins of modern settlements, may have

become established because of the benefits brought by successive natural
processes. These might include the fertile ground or crossing points on a
flood plain, ash rich volcanic soils, mineral deposits or access to the coast

for trade and transportation.

Lewis (1989) speculated on a fictional earthquake striking the centre of
Tokyo and suggested the impact could devastate trading on Wall Street and
lead to global economic recession. Only six years later Japan was struck by
the 1995 Kobe earthquake, one of the most powerful ever to affect an urban
area. The M 7.2 earthquake centred on Kobe, the world’s sixth busiest
container port, resulted in c. 600 direct fatalities and made 300,000 people
homeless (Horwich 2000). Although economic growth recovered relatively
quickly following the Kobe event, the earthquake and mega-tsunami of 2011
has again raised questions about population vulnerability (Hein 2013). The
high density construction typical throughout Japan and megacities, such as

Tokyo, raises renewed questions on population risk to natural hazards.

Historically, social memory of disaster and crisis would have been
communicated by the elders of many indigenous societies. In industrial
societies it is unclear who, if anybody, facilitates the passage of collective
memory. Increasingly this information may now reside in new media or

archives (Berkes 2007). In psychology the accessibility principle suggests
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that the subjective time of an event depends on how much is known about it
since it occurred. The more that is known, the more recent it will seem
(Brown et al. 1985). Events such as extreme volcanic eruptions may only
occur on a millennial scale. Therefore it is difficult for humans to retain

memories of eruptions from specific volcanoes (Grattan and Torrence 2007).

2.2.7 Calculating risk

There are varying qualitative and quantitative definitions of risk, some of
which have been summarised in Table 2.1. Quantitative risk assessments are
often not understood by the general public and need to be communicated
more accessibly. Uncertainties need to be made clear (Smith and Petley
2009) whilst maintaining trust. In this thesis, calculating differing levels of
risk for the hazard scenarios in conjunction with fluctuations in population

allows assessments of exposure.

The key elements considered in general risk assessments regarding natural
hazards are summarised in Figure 2.4. The evaluation of the direct impact of
a hazard as well as any indirect impacts as a result of damage is required
alongside an understanding of the population or elements at risk and their
vulnerability. In a flood risk assessment this might involve understanding
the population at risk within the hazard footprint and an indication of their
vulnerability. During an earthquake, increased risk might feedback through
severe building damage as a result of construction standards, which in turn

might increase vulnerability of the population at risk.

/ \ ,/ Evaluation of \‘

{  Hazardimpact | | Elementsatrisk | |

\ ) \ ) \ vulnerability

,/Induced hazard\ ‘,/

> Scenario \N—H

\ impact ) \ )

Evaluation of effects of damagh‘
to elements at risk

Figure 2.4 Risk assessment for a given scenario after Douglas (2007)

The Disaster Risk Index (DRI) provides a quantitative approach to assessing
global exposure and vulnerability to natural hazards, with the ability for
comparisons between countries. Global statistical analysis suggests that 11%
of the population in less developed countries are exposed to natural

hazards and account for 53% of the casualties, whereas 15% of the
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population in more developed countries are exposed but account for only
1.8% of the fatalities (Peduzzi et al. 2009). The formula for calculation is
based on the United Nations definition (Table 2.1) that risk contains three
components: elements at risk, vulnerability and the hazard occurrence
probability (Peduzzi 2006). This includes accessing data on the number of
human fatalities per year and the population living in an area exposed
(Peduzzi et al. 2009) to the potentially damaging effects of a natural hazard.

The physical exposure is determined by:
Physical Exposure = Y.' F Pop; (2.2)

Where Fis the annual frequency of events of a given magnitude, Pop; is the
total population of the spatial unit for each event, j is the exposed
population per event and n is the number of events considered. Human
vulnerability was considered using a parametric model based on socio-

economic variables and the physical exposure (PhExp) (Peduzzi et al. 2009):

K = C(PRExp)*V V2 .V, P 2.3)

Where K is the number of fatalities for a certain type of hazard, Cis the
multiplicative constant, V, ,are the number of socioeconomic variables and
a is an exponent of V. This was utilised to define the generalization of the
multiplicative to derive the number of fatalities/year by taking the product

of physical exposure and vulnerability.

2.2.8 Risk management and emergency preparedness

Emergency responders need to be able to estimate who is present at a given
time at the start of a hazardous event (McPherson 2006). Perry and Lindell
(2003) suggest three critical components of emergency preparedness:
planning, training and written communications. The first, planning, will be
considered here. Accurate, high-resolution, temporally varying population
estimates are required within the planning process (Bhaduri et al. 2007). A
pre-emptive approach within the planning phase can be to consider the
‘business as usual’ scenario. This may reflect the actual composition or
distribution of potentially affected populations depending on the time of day
a hazard may occur. This approach can be suited to both rapid onset events,

where there is little time to react, and events with longer lead in times.
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Accurate population estimates are still beneficial when considering
preparedness for hazard events with slower onset speeds. It may not be
possible to account for irrational human behaviour during emergency
situations. Therefore, a realistic firm estimate of the population immediately

prior to any event is a valuable advantage for targeting plans and resources.

The ‘as low as reasonably practicable’ (ALARP) principle (Figure 2.5)
acknowledges different levels of risk and how tolerable they are considered
to be. At the top end of the spectrum, unacceptable risk posed to
individuals or society requires mitigation largely irrespective of the financial
cost. In demonstrating that a risk is ALARP any cost to further reduce the
risk would need to be grossly disproportionate to the benefits that could be
achieved (Smith and Petley 2009). The ALARP principle was developed
formally in UK policy (Melchers 2001) and popularised through legislation
particularly the Health and Safety at Work etc. Act 1974.

B
v

Unacceptable risk

Tolerable risk

Increasing individual risk

Acceptable risk

Figure 2.5 The ALARP principle after Crozier (2005)

The uncertainty associated with natural phenomena has been discussed by
scientists (Handmer et al. 2001). The precautionary principle emerged out of
ecology and sustainability discourses where it is argued that it is worth
taking preventative actions even if the risk of a disaster is low but the
consequences may be high (Smith and Petley 2009). This principle has many

similarities within the science of natural hazards and disaster risk reduction.
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2.2.9 Risk perception and communication

The international community’s response to natural disasters has generally
been reactive, with events in the developed world taking excessive
precedence in western media (Peduzzi 2006). Severe flooding on the Indian
subcontinent killed 2,000 people in August 2004 and attracted 9,000 words
in British newspapers. On the same day Hurricane Charley struck Florida
with 16 fatalities which was represented by 19,000 words (Adams 2004).
The previous section highlighted the importance of human and societal
memory, while this section only attempts to briefly acknowledge a wider
issue of risk communication and perception and the implications for risk
management. Studies have suggested inadequate levels of awareness and
understanding within communities of predictable natural hazards such as
flooding (King 2000). It has also been noted that the perception of risk
declines as any perceived benefit increases (Slovic 2000). This is likely to
have a detrimental impact on natural hazard preparedness as populations
become complacent or reliant on defences. This is illustrated by the
November 2012 flooding in Worcestershire, UK, when newly installed flood
defences failed. It was reported that some residents were unprepared or had
even been celebrating the launch of the new defence scheme when their
properties were flooded (Morris 2012b), although they had previously been

victims of flooding.

Communicating risk in a manner understandable to, or likely to have an
impact on, the general public is another important consideration for natural
hazard risk management and preparedness. Hazard maps can be one
method of communication and are considered essential in communicating
volcanic risk, although a study focused on Montserrat suggested that people
still struggled to interpret traditional maps. It concluded that enhanced
three-dimensional maps with perspective photographs aid topographic
recognition and orientation (Haynes et al. 2007). A UK flood risk poster
(Figure 2.6) is an example of a public information campaign for risk

communication.
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HOME, SWEET HOME?

2
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FLOODS

Environment
W Agency

Making a flood plan could help protect
your family and home from flooding

www.gov.uk/floodsdestroy
Floodline 0345 988 1188 / 0845 988 1188

Figure 2.6 An Environment Agency flood risk awareness campaign poster in the UK (EA 2014)

Even with prior warning and risk education, some people still fail to take
preventive measures or evacuate if required. A Californian study into flood
induced evacuation by Heath et al. (2001) found that 19.4% of households
failed to evacuate when ordered for a particular event. It found statistically
significant trends that people without children or with pets were more likely
to remain in their properties. Reasons for this behaviour might have been
due to the children’s fear or anticipation that they are more likely to be
harmed than an adult. It also suggested that pet owners were willing to risk

their own lives to remain and look after pets (Heath et al. 2001).

Evacuation research has suggested that people are more likely to take
precautionary action if they perceive a real threat (Burnside et al. 2007). This
is indicative of effective risk perception and communication. Research by
Burnside et al. (2007) on the behaviour of New Orleans residents under
evacuation orders during hurricane Katrina offers several reasons for people
failing to adhere to evacuation warnings. False alarms are given as the
primary cause for residents failing to evacuate as well as not having the
financial means to do so, while a subset will just refuse. Others may decide
to remain to protect their properties and belongings from loss by the

natural hazard or public disorder.

Cole and Fellows (2008) outline four lessons learned from risk

communication failure in New Orleans during hurricane Katrina:
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1. Effective communication is no good if followed by inadequate crisis
messages.

2. Messages should be prepared before the crisis.

3. For a message to be effective it needs to appear reliable to the
audience.

4. Risk communication messages must be adapted for the demographic

characteristics of the audience such as ethnicity, class and gender.

2.2.10 Hazard spatiotemporal characteristics

A hazard’s footprint is its manifestation in space and time (BRISK 2010). The
footprint of an earthquake might be defined by the extent of damage
inflicted or by using interferometric synthetic aperture radar (InSAR)
photogrammetry to delineate the extent of ground surface displacement.
Presently, estimates of the population exposed to a natural hazard are
based on its footprint. Proxies of a hazard’s physical footprint such as a
watershed or flood plain concerning floodwater inundation are often used
(Guha-Sapir et al. 2011).

Hazardous zones are occupied for a variety of reasons. As identified,
historic development around coastal ports, trading and industry continues
to shape urban living today where gentrification and redevelopment have
created economic wealth and jobs in areas potentially at risk. There is an
evident correlation between poverty and increased vulnerability exemplified
by a family which has insufficient income to make property improvements or
move to a safer place (Delica-Willison and Willison 2008). Poverty has been

identified as one of the largest contributors to vulnerability.

Mount Vesuvius, ltaly, is well known to be home to a large population
vulnerable to potential destructive eruptions. It is estimated that over 1
million people live on and around it (Carlino et al. 2008) making it the
world’s most populated volcano (Kilburn and McGuire 2001). Population
densities around Vesuvius are amongst the highest in Europe (Alexander
1993), while housing quality is some of the poorest (Chester et al. 2002).
These factors combine to exemplify one of the highest vulnerabilities to
natural hazards. It was reported that the Italian authorities would pay

£18,000 to property owners living on Vesuvius to leave with the aim of
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emptying 100,000 properties over 15 years. However, this is considerably
below the market value and many people could simply not afford to relocate
(Arie 2003).

As well as space, hazards have temporal characteristics. Change in intensity
and space over time is an important consideration when examining the
human occupancy of hazardous areas. One categorization for hazards types
is intensive and pervasive (Kates 1976). Intensive events are often small in
areal extent, intense in impact and short in duration. This is often
associated with sudden onsets and poor predictability. Examples may
include earthquakes, landslides and volcanoes. Conversely, pervasive
hazards such as drought, fog and temperature extremes are often
widespread, with long durations and gradual onsets. Therefore, they can
also be detected and warned against more easily. Some events such as
floods can be defined by both extremes from intensive flash to pervasive
coastal flooding. This demonstrates the importance of understanding both

space and time in hazards to deduce their impacts.

Guidance provided under the European Union Flood Directive (see Section
2.3.5) states that flood hazard maps should contain flood extents with a
low, medium (= 100 years), and high probability as well as hydrological data
such as expected depth and velocity. The specification for flood risk maps,
detailing the potential adverse side effects of the hazard should include
(Chpt 3(6) 5a&b) an indication of the number of inhabitants potentially

affected and economic activity of the area (European Council 2007).

A hazard’s ‘frequency’ can be defined as the number of events of a given
magnitude within one unit of time. It follows that a hazard’s return period is
the reciprocal of its frequency (Alexander 1993). A return period is a unit of
time, in which an event of a given magnitude is statistically likely to occur. A
return period of a five metre river flood or a magnitude nine earthquake
within a specific location, in space, may be quoted in years based on the
analysis of disaster records. An improbable combination of factors caused
severe flash flooding in the narrow valley catchment village of Boscastle,
north Cornwall, UK. The likelihood of these factors occurring together and
generating an event on a similar magnitude has been estimated as a 1 in

2000 year event (Bettess 2005; and Murray et al. 2012). It may not be
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possible to predict the onset of some particular types of hazards, such as

when and where a sinkhole will develop or lightning bolt will strike.

Statistics show extreme events, of a high magnitude, occur less frequently
than lower magnitude events (Alexander 1993). Perhaps large magnitude
events might occur in uninhabitable places such as at sea or in regions
which they are rendered hostile to human settlement and as a result do not
pose a ‘hazard’. Natural hazards can vary greatly in their onset times,
durations and spatial extent. An earthquake has a quick onset, whereas the
impact felt by a drought is gradual but over a long duration (Peduzzi et al.
2009). Disasters can be classified into two distinct phases: the impact and
long term effects. The initial impact may be short lived depending on the
type of hazard and its onset time. In this phase survivors can do little except
wait for the worst to pass. Often disaster survivors are critical of delays in
response in providing food, medical treatment and shelter (Alexander
1993). Understanding population vulnerability including more realistic
temporal density estimates will help ensure that human crises may be

managed better in the future with fewer fatalities.

Two powerful earthquakes occurred in New Zealand causing fatalities and
widespread destruction along a previously unknown fault (Elliott et al.
2011). The first M 7.1 earthquake centred on Darfield, Canterbury occurred
at 04:35 on 4 September 2010 with no direct fatalities. A powerful M 6.2
aftershock centred on Christchurch occurred at 12:51 on 22 February 2011
and caused 181 fatalities (Kaiser et al. 2012). Although the aftershock was
almost ten times less powerful it had devastating consequences and
occurred during the middle of the day. The devastation of the secondary
earthquake has been attributed to its proximity to the centre of New
Zealand’s second largest city (Kaiser et al. 2012), however it also occurred
during the middle of the day. It has long been recognised that the number
of earthquake fatalities is affected by the time of day in which it occurs
(Coburn et al. 1992).

Throughout the preceding review the importance of time and space in
hazard has been recognised and requires greater analysis in terms of its

relationship to population. The processes of disaster development and
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concepts of risk and vulnerability have important impacts when considering

the population exposed.
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2.3 Flooding in the United Kingdom

This section examines the background and conceptual context of flood risk
in the UK. The background provided exemplifies the case for advances
required in natural hazard risk assessment, which is demonstrated in the

empirical chapters of this thesis (Chapters 3-5).

In 2010, the UK government’s National Security Strategy defined
international terrorism, cyber-attacks, international military crises and major
natural hazard incidents as the highest priority risks affecting the country
for 2010-15 (HM Government 2010). In terms of natural hazards, the
highest risks, in a broad sense including social disruption and economic
harm, are specified as coastal flooding and severe effusive volcanic
eruptions (Cabinet Office 2012). The Icelandic 2010 eruption of
Eyjafjallajokull caused widespread air travel disruption and is estimated to
have cost the aviation industry $250 million a day (Gudmundsson et al.
2010). When considering flooding and overseas volcanic eruptions within
the conceptual definition of risk (Table 2.1) different concepts may be
developed. The footprint of airborne volcanic ash may ‘affect’ the whole
population, or perhaps only those using an airport; whereas the overall
vulnerability to an individual may be lower, the economic vulnerability of the
country may be greater. Coastal flooding and effusive volcanic eruptions are
considered to have the greatest national impact in the UK relative to the
occurrence of any other natural hazard, with a probability of occurrence
between 0.005 (1:200 years) and 0.0005 (1:2000 years) within the next five
years (Cabinet Office 2012).

2.3.1 Types and causes of flooding

There are seven main categories of flooding that have caused notable events

in the United Kingdom:

1. Fluvial flooding: this occurs when rivers overtop or burst their banks
as channel capacity is exceeded by intense rainfall or snowmelt. The
magnitude and response time may be exacerbated when prolonged

rainfall has saturated the ground causing water tables to rise.
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2. Coastal flooding: occurs when cyclonic conditions combine with a
high tide, which can be exacerbated by atmospheric low pressure to
form a tidal surge or higher than usual spring tides. There is an
inverse relationship between storm surge height and barometric
pressure approximately equal to a 1 cm rise per millibar reduction in
atmospheric pressure (Welander 1961). This effect is likely to be
enhanced by strong winds in an anticyclonic system, resulting in an
increase in wave heights. Coastal topography can also amplify this
affect where converging estuaries or inlets can act as a funnel to
channel storm surges.

3. Pluvial flooding: also referred to as surface water, occurs when
rainfall that is usually removed by a drainage system exceeds the
capacity of that system. This results in overland flow and
accumulation in local topographic depressions. This occurs when
intense rainfall falls on impermeable surfaces common in urban
areas, saturated or frozen ground. This usually occurs when rainfall
rates exceed 20 mm hr' for up to three hours (Houston et al. 2011).
It is estimated that 2 million people in urban areas are at risk of
pluvial flooding, and this is likely to increase as a result of
urbanisation and climate change. Pluvial flood risk accounts for
approximately one-third of the UK total flood risk (Houston et al.
2011). The majority of pluvial flood events occur during the summer
where average precipitation totals are lower, but more intense rainfall
events combined with urban ground sealing increases run-off (Smith
and Lawson 2012). Intense rainfall in urban areas can result in rapid
onset flood events in areas with high spatiotemporal variations in
population. This research provides a methodology which aims to
quantify this phenomenon.

4. Flash flooding: an extreme flood event generated by intense rainfall
over rapidly responding catchments (Brauer et al. 2011). In the UK
flash floods are considered to peak in under 3 hours in 5-10 km?
catchments typically characterised by steep basins and thin soils,
often associated with impervious underlying geology resulting in
rapid run-off (Collier 2007).

5. Infrastructure failure: this can lead to flooding which may be

considered to have both anthropogenic and natural causes. The
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failure of infrastructure due to natural or human causes has the
potential to rapidly release large volumes of water that can result in
devastating flash flooding. A damaged water main, coastal levee
failure or dam burst (reservoir flood) can all initiate flooding on a
variety of spatial extents and magnitudes.

6. Ground water flooding: occurs when the water table rises, or natural
springs reactivate, due to prolonged rainfall. This is common on
permeable bedrocks or underlying substrates such as chalk, sand and
gravel. The onset may occur days or weeks after sustained rainfall
with the potential duration to last several weeks. Properties may be
flooded through the floor or basements, while water may also emerge
from hillsides in the form of springs (Environment Agency 2011).

7. Sewer flooding: this occurs when flood water combined with raw
sewage exceeds the capacity of that system and enters properties or
emerges from breaches in the street when volumes overwhelm the
infrastructure. Parts of the UK sewer system are over 150 years old
(e.g. Manchester and London) (Tait et al. 2008) and under increasing
pressure from climate change and the construction of new housing.
Combined sewer overflows discharge excess waste water from
intense rainfall into rivers to help prevent flooding in properties and
hazards to human health (DEFRA 2012).

While other types of flooding are of significance globally, only the
commonest types with predominantly natural causes affecting the UK have
been considered above for the purpose of this review and applications

within this thesis.

2.3.2 Climate change and flooding

Flooding is the most common natural hazard in Europe, and has been linked
to consequences of climate change despite greater frequencies in the past
(Beven 1993; Wilby et al. 2008). In the UK flooding is recognised as one of

the most damaging and costly natural hazards (Brown and Damery 2002).

It is estimated that the annual cost of flood damage in the UK is £1.1 billion
with 5.2 million properties currently at risk. This is reflected in the high cost

of flood risk management, with departmental spending currently at £664
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million (DEFRA 2011). Average flood damage costs could rise to £27 billion
by 2080. Maintaining existing levels of flood defence, including
maintenance of current assets and new construction, will require spending

to increase by £1 billion per year by 2035 (UK Parliament 2012).

The UK climate projections (2009) (UKCP09) model the future climate at 30
year intervals and 25 km resolution. In general all parts of the UK are
projected to warm by 2080, with the greatest temperature increases in
southern England. On the whole there will be little change in average annual
precipitation although there will be increased seasonality. Parts of southern
England can expect a decrease in summer precipitation by 40%, while
western areas of the UK may expect a winter increase of up to 70% (Murphy
et al. 2009).

This brief summary of the potential implications of future climate change
demonstrates the impact this may have on future hazard events and
government spending. An increase in winter rainfall is likely to further
increase fluvial flood events. Warming summer temperatures may progress
the development of convective storm cells, while global sea-level rise will

increase coastal flood risk.

2.3.3 Recent flood history

A summary of significant contemporary and recent flood events is presented
in Table 2.2. These events have been selected for their recent historical
importance and to provide a context to British flood severity and policy

decisions.

The 1953 North Sea storm surge, or ‘The Big Flood’, was the worst natural
disaster to affect the UK during the twentieth century. As a direct result of
exposure or drowning there were 307 fatalities in an already vulnerable
post-war population (Baxter 2005). However, the 1947 flood event (Table
2.2) was the most extensive in the twentieth century (Marsh 2008). The
widespread damage and disruption caused by the 1947 flood event is
considered a benchmark in flood strategy for England and Wales (Horner
and Walsh 2000; Marsh 2004).

39



Spatiotemporal population modelling to assess exposure to flood risk

Contemporary flood events, particularly those during the first decade (2000
and 2007 events) of the twenty-first century have had a profound impetus
on British and European flood risk management, policy and legislation
(Andryszewski et al. 2005).
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Table 2.2 A contemporary history of notable flood events in the UK

Area affected Date

Description

Source(s)

Southern England March 1947
and Wales

Lynmouth, August 1952
Devon

Eastern Scotland January 1953
and England

Midlands and April 1998
Wales

Large scale river flooding caused by rapid snowmelt and persistent heavy rain from a
frontal system that swept across southern Britain. This followed a severely cold
winter, average February 1947 temperature was -3.8 'C, with snow depths of up to
1.2 min lowland England. Damage caused by flooding and heavy snowfall caused
coal shortages and electricity blackouts, killed 2 million sheep and left 1 million
people without a potable water supply.

An unprecedented flash flood on 15 August in the steep narrow coastal catchment
on the north coast of Devon. Heavy rainfall caused by atmospheric ascent of a slow
moving low pressure frontal system promoted by orographic ascent over Exmoor.
Rainfall exceeded 200 mm, falling on saturated ground. This resulted in 34 fatalities,
damage to 93 properties and vehicles swept out to sea.

A storm surge caused by the combination of a high spring tide and cyclonic system.
Atmospheric low pressure and strong winds increased tidal heights destroying flood
defences in eastern Britain and northern Europe. This effect was amplified by the
funnel-like effect of the southern convergence of the North Sea coastlines. There was
major infrastructure failure to telephone lines, gas, water and electricity supplies.
Central London narrowly survived inundation, but water levels reached the top of the
Victoria and Chelsea embankments, spurring the eventual construction of the
Thames Barrier. Number of fatalities: 307.

The widespread Easter floods of 1998 were attributed to two frontal systems and a
slow moving depression moving south across the UK. While the rainfall levels were
not unprecedented the 48 hour maximums were more representative of summer

convective storms. Rainfall fell on saturated ground causing losses of £500 million

and five fatalities.

Marsh (2004,
2008), RMS
(2007b)

McGinnigle (2002)

Baxter (2005)

Horner and Walsh
(2000)
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Table 2.2 continued

Area affected

Date

Description

Source(s)

England and
Wales

Boscastle,
Cornwall

UK wide

UK wide

Southern England
and Wales

Winter 2000/01

August 2004

June 2007

November 2009

November 2012

Prolonged heavy rainfall during the winter caused the most extensive fluvial flooding
since the 1947 event. Rainfall was exceptional by UK standards caused by the
continual passage of frontal systems sustained by several months by south-westerly
winds. Some areas experienced constant rainfall for two weeks. Damage totalled £1
billion and 10,000 properties were inundated.

A severe flash flood within the narrow coastal catchment on the north Cornwall
coast. Unusual due to a rare combination of factors and highly localised and intense
rainfall rather than total levels. Similar to the Lynmouth 1952 event however,
remarkably there were no fatalities. This has been attributed to the proximity of an
air-sea rescue naval base and dedication of the military and coastguard who
navigated rescue helicopters into a convective storm cell, supported by the rapid
response of emergency services on the ground.

Widespread flooding affecting Northern Ireland, Scotland, England and south Wales.
The scale of the flood exceeded its predecessors and was unprecedented in recent
history, exceeding the 1947 benchmark in some areas. Rainfall totals exceeded 300%
of the average in some locations. The event resulted in the iconic image of
Tewksbury Abbey surrounded by floodwater, which was partially inundated for the
first time in 247 years.

A UK wide flood event, including the Isle of Man, with parts of northern England
worst affected. UK wide average rainfall in November 2009 was exceeded by 184%.
Cumbria attracted widespread news coverage as six river bridges collapsed, one
resulting in the death of a police officer. The army intervened to build a temporary
bridge across the River Derwent.

Numerous severe flood warnings were issued by the Environment Agency with wide

Marsh and Dale
(2002)

Rowe (2004); Burt
(2005); Lewis
(2009); Murray et
al. (2012)

RMS (2007a);
Marsh (2008)

Met Office (2009);
MOD (2009)

Environment

spread flooding across southern England and north Wales (1,800 properties flooded) Agency (2012a)
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Table 2.2 continued

Area affected Date Description Sources(s)
England and Winter 2014 During January 2014 a rapid succession of severe winter storms caused Gevertz (2014); Met
Wales widespread flooding in Somerset and on the River Thames. Repeated powerful Office (2014)

storm surges destroyed sections of seawall in southern England and Wales and

which caused the collapse of two coastal railways. Coastal flooding also caused
significant damage to the Victorian promenade at Aberystwyth and necessitated
the evacuation of 600 university students from seafront residences.
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2.3.4 The Pitt Review

An independent government review was commissioned following major
flooding in the UK between June-July 2007. The review, undertaken by Sir
Michael Pitt, made 92 recommendations for improvements. The key
recommendations (RE) in relation to flood hazard and population are
summarised here (Pitt 2008). Three recommendations have been highlighted
to provide exemplars of how spatiotemporal population modelling

techniques could be directly applied to flood risk management:

RE16: Local authorities should collate and map the main flood risk

management and drainage assets.

RE70: A programme should be established to encourage individuals to
be better prepared and become self-reliant during emergencies. This

will allow the authorities to focus on the people most in need.

RE74: The impact of flooding on the health and wellbeing of people
should be monitored and mitigations put in place to manage these

effects.

Recommendations 70 and 74 illustrate the need for a greater understanding
of exposed populations. This will aid the development of effective
emergency plans or help reduce probability of fatalities or serious injury.
Recommendation 16 largely concerns mapping the physical infrastructure,
but this provides the opportunity to highlight deficiencies in data

concerning population variability in emergency planning.

The UK government and relevant authorities have responded to
recommendations contained within the Pitt Review and provided an
additional £34.5 million of funding to address these proposals (DEFRA
2008). This has included increasing public risk awareness, publication of
online flood hazard maps, development of warning systems and the creation
of the Flood Forecasting Centre. The methodology proposed in this thesis
will involve producing local scale flood hazard maps that meet these
legislative criteria and current policy priorities. While these are always going
to be subject to change the requirement for more accurate flood maps that

consider population at a greater spatiotemporal resolution is noted.

44



Literature review

2.3.5 Management and mapping

Flood risk, mapping and management are governed by a hierarchical top-
down structure in the United Kingdom comprising of a number of
government departments and non-governmental bodies. This is enforced
through legislative acts and European Union (EU) directives. The Civil
Contingencies Act 2004 progressed into statute for the purpose of defining
a single legislative framework to deal with serious emergencies. This
resulted from a governmental review on emergency planning arrangements
in times of crisis which included the occurrence of severe flooding in
2000/01 (Table 2.2) (Cabinet Office 2011). While this act covers a multitude
of eventualities including major natural hazard incidents, civil unrest,
terrorist activity and biological hazards, it focuses on protection at the local
level concerning emergency services, utility providers, local authorities and
operators of transport infrastructure. Analysing population exposure to
hazards at a local scale is a key original contribution from this research,

which would be applicable for agencies concerning emergency management.

The EU Floods Directive (2007/60/EC) has had implications for the way flood
risk is managed in the UK. Parts of the directive (e.g. Section 6) relate more
readily to continental Europe concerning cross-border flooding and water
courses. However, interagency and international collaboration still remain
key components in flood risk management. It is necessary for member
states to provide flood hazard maps, and risk maps regarding different
flooding scenarios (Section 12). In order to comply, member states must
complete flood hazard and risk maps by 22 December 2013, and publish
flood risk management plans by 22 December 2015 (European Council
2007). In addition the Flood Risk Regulations 2009 implement the
requirements of the directive in Britain. Under these regulations the
Environment Agency is responsible for the production of the hazard and risk
maps within the time frame specified. Lead Local Flood Authorities (LLFASs)
have been identified to map local flood risk. This is being undertaken using
the National Flood Risk Assessment tool, with the consideration to update
the national flood map in line with these regulations (Environment Agency
2012b).
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The Flood and Water Management Act 2010 was the UK government’s
response from urgent recommendations for legislation arising in the Pitt
Review (RE 28), and provides a more comprehensive management of
population flood risk and protection of infrastructure including drinking
water supplies and properties. It also ratifies the EU Floods Directive in

British law.

A severe flood warning is the highest alert issued by the Environment
Agency in England and Wales, and its counterpart the Scottish Environment
Protection Agency (SEPA). This is issued when severe flooding is considered
imminent with a significant threat to life. It is preceded by a ‘flood alert’ and
‘flood warning’. Assessing the risk to life requires a prior understanding of
the distribution of exposed populations. The new methodologies proposed

in this thesis provide a mechanism to achieve this.
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2.4 Spatial interpolation of population data

This section provides a review of the methodologies used to estimate
population densities which are required to make improved judgments on
population exposure to natural hazards. Deriving population data that are
contained within flexible geographical referencing systems is a key
consideration for assessing the potential risk. Converting data into a
common format allows subsequent analysis. Interpolating population data
onto a regular grid is an output format common in the methodologies
discussed. A flexible geographical referencing system, such as a grid,
mitigates issues arising from irregular and incompatible areal units often
associated with aggregated demographic datasets. The interpolation
techniques contained within this section provide mechanisms to
disaggregate population which can be used for the purpose of assessing

exposure to natural hazards.

A structure is proposed in Figure 2.7 to divide the two main groups of
interpolation methodologies into area and point based, according to the
type of input data used, similar to Lam’s (1983) spatial interpolation review.
However, the present review subsequently sub-divides these categories for

the consideration of the use of ancillary data.

2.4.1 Representing population data

Population can be considered as a volume spread over a surface occupying a
fixed spatial area, such as the distribution of a census count within an
output area. This population or ‘volume’ is fixed. Cartographic techniques
for mapping volumetric data traditionally fall into three main categories:
choropleth, dasymetric and isarithm (Langford and Unwin 1994).
Traditionally the choropleth map has been the conventional tool for
displaying population density. This process involves the shading of arbitrary
zones, often census areal units or administrative zones. This implies that
the areal unit concerned has a uniform population density, with abrupt
changes at the boundaries, unlikely to be found in reality. Large areal units
tend to show lower population densities due to their comparatively larger
area to population ratio. Generalisation of the data increases with the size of

the areal unit in a choropleth map. Population density for a typical city may
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increase towards the centre according to a choropleth map, as expected, but
this could also be amplified through decreasing ward sizes (Langford and
Unwin 1994). Choropleth maps are a discontinuous method and therefore
poorly represent the underlying spatially continuous population (Langford
and Unwin 1994). This effect is difficult to quantify as the units are often
irregularly shaped.
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2.4.2 Limitations of zonal data

Zones, such as wards (the lowest areal units for local political representation
in England and Wales), are a central problem associated with handling
spatial data. Zones where data are available are referred to as source zones.
A compilation of various datasets may provide an array of different source
zones. For example, population data published in neighbourhood
administrative boundaries are not directly comparable to data published
within local health or education authority boundaries. The units in which
data are required are termed target zones (Mugglin and Carlin 1998).
Interpolating data on to a grid, as an example target zone, from an array of
different source zones provides a mechanism to represent data using a

common structure (Figure 2.8).

AL IN

! -

Target Zones

Figure 2.8 Incompatible source and target zones adapted from Gotway and Young (2002)

Zonal representation can become a challenging problem for policy makers
and geographers, although for many it may be favoured as a convenient way
to map and collate data. The scale threshold is one limiting factor of the
zonal approach. The threshold, the scale variance, quantifies the change in
scale where the phenomenon observed stops being invariable. Below the
scale threshold data representation can be lost. Secondly, the modifiable
areal unit problem (MAUP) (Openshaw 1984) is the phenomenon whereby
the choice of zonal boundaries for aggregated data can have more of an
impact on the output analysis than the real phenomenon observed. The
areal units to which census data are aggregated do not remain constant
between successive censuses (Openshaw 1984). “The areal units used in

many geographical studies are arbitrary, modifiable, and subject to the
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whims and fancies of whoever is doing, or did the aggregating” (Openshaw
1984 p. 3). A large number of spatial objects can be defined, but few are
sets of non-modifiable units (such as people or households in a census).
Census output geographies for example have little intrinsic geographical
meaning, but it is very likely that future analyses will depend on their
definitions (Openshaw 1984). For this reason many methodologies have
been utilised (Figure 2.7) to interpolate such data. Areal interpolation of
population data has been driven by the demand for small-area population
estimates which are often finer than the resolution of data available (Mennis
and Hultgren 2006).

In the UK, detailed socioeconomic and census data are not released at a
resolution required in point pattern analysis, but aggregated into irregular
spatial units. The protection of UK census data is strictly governed by
legislation including the Public Records Act 1958, Census Act 1920 and the
Census (confidentiality) Act 1991 which concern confidentiality and
disclosure of personal data. Data can also be aggregated for management
and analysis reasons as well as privacy. However, an unintended
consequence of fully disaggregated data from large datasets, where
available, is that it may make visualisation and analysis unmanageable
(Thurstain-Goodwin 2003).

Areal units are often not constant with respect to time, and consequently
zonal data in their raw form can become incompatible. The shire is no
longer the principal unit for British population data. The decision to
disseminate 2001 UK census data in new output areas (OAs), not the
enumeration districts (EDs) by which it was collected, resulted in little
commonality between the 1991 and 2001 censuses (Langford 2007). Direct
comparisons are not possible in areas affected by spatial unit boundary

changes.

Spatial interpolation refers to estimation of the value of a variable z (e.g.
population) at a location (x, y) given that the variable is known at a number
of other data points, which may be randomly scattered (Goodchild and Lam
1980). The ability of basic functions in most GIS applications makes it

possible to represent populations as a raster surface which can be highly
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advantageous. These methods provide a useful tool set for dealing with

aggregated outputs.

A common interpolation target zone for these methods is the grid (Figure
2.8). The mapping of populations onto regular geographical grids, as an
alternative to irregular spatial units, has a long history, and several
advantages. One is stability through time, as data relating to different dates
can be compared on a consistent grid (Martin et al. 2011). The use of a
regular grid also allows integration with other georeferenced datasets from
a range of applications covering physical and social characteristics (Martin
and Bracken 1993; Martin et al. 2011). Population density can be more
realistically represented in a uniform grid covering the entire region than
conventional choropleth maps (Mennis 2003). The grid also allows for cells

to be assigned a zero value where there is no population.

2.4.3 Point-based interpolation

Point-based interpolation methods can be categorised as either local or
global depending on whether all values are considered at once, or
individually within the pre-defined neighbourhood of each point (Wu et al.
2005). A number of point based methods have been described, and example
applications are provided in Figure 2.7. Point data may be considered
without the need for digital boundary data, or when such data is
unavailable. The use of point data in publicly available demographic
datasets such as censuses can allow easy interpolation into gridded
approximations. The desire to transform population data onto a regular grid
or into varying spatial units often reflects a desire not to be constrained by
the arbitrary or spatially irregular geographic units for which data are

initially available.

2.4.4 Kernel density estimation

Kernel Density Estimation (KDE) (Figure 2.7) is one method for transforming
population point data onto a regular geographical grid. The point based
method proposed by Bracken and Martin (1989) is an example of a
redistribution algorithm which utilises population centroids, where each

centroid corresponds to an irregularly shaped areal unit. Their approach
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redistributes the total population from the centroid locations with which it is
initially associated into the cells of a regular grid. The model uses a
distance-decay function to give the most probable distribution surrounding
each centroid. A search radius, or kernel size, is also specified. The
distance-decay function is used to evaluate the probability of each cell
within the kernel receiving some proportion of the centroid’s total
population. As a result, no cell outside of the kernel will receive a

population.

The general form of the model can be described as (Bracken and Martin
1989):

S c
S Sn-nw,
iJ

Where P;, is the population in cell i of the output grid with dimension s, P; is
the empirical population of the jth centroid, c is the number of centroids in
the area modelled. W;; is the weighting of cell j relative to centroid j, which

can be defined as:

Wij=fj[1—ﬁ],forj;tl (2.5)
Where d;; is the distance between cell i and centroid j. Therefore dj; is the
mean distance between all centroids (/) within the search radius from
centroid j. Finally, f; is a distance-decay function relating to the dispersion
of the population within the search radius, centred on centroid j (Bracken
and Martin 1989). Using a model to redistribute a population from a
centroid into a raster grid allows for some cells to remain empty,
representing an unpopulated area. The model is based upon the
assumptions that: i). the centroid is a summary value for the population
zone to which it relates and defines a point with an above average
population density. ii). the population of a given centroid is redistributed
according to a distance-decay function with a finite extent, and iii). regions
can exist within the study area where there is no population (Martin 1989).
Centroids constrained by their respective boundaries can be termed as
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points with boundaries in the conceptual framework; or vice versa areas

with points (Figure 2.7).

Bracken and Martin’s (1989) KDE model is one point-based method widely
used in the UK with census data. In the UK census population weighted
centroids (PWCs), produced by the Office for National Statistics (ONS), act as
summary points for the population derived from their respective output
geography. Ancillary data such as output geography boundaries, residential
areas digitised from maps, or the use of remote sensing can be used to
constrain the model output. (Martin 1989). To date, the 1971 census was
the only time that population data was aggregated into 1 km grid squares
for the whole of Great Britain. The use of a grid has the considerable
advantage that the grid squares remain unchanged throughout time (CRC et
al. 1980).

Currently, aggregate census data with centroids for the UK are openly
accessible online. Datasets contain the population count and British National
Grid (BNG) reference for centroids within EDs from 1971-1991, and OAs
2001 to present. In many countries including England and Wales census
outputs are in the form of irregular zones, except for Northern Ireland
where this is in addition to regular grids of cell sizes 100 m and 1 km. Using
UK census data it has been possible to validate the surface population
model outputs in raster format with a cell size as small as 50 m (Bracken
and Martin 1989).

A population model can enable socioeconomic analysis. This analysis
between decadal censuses is not straightforward, partly because of
incompatible census geographies and the format and nature of the data
(Bracken 1995). In 1991 more stringent confidentiality limits, relative to the
1981 census, meant that more EDs were restricted. Data in the 1991 small
area statistics (SASs) were restricted therefore EDs were merged with

neighbouring areas until a given threshold was met.

There are other sources of population centroids available that can be
utilised in a similar way. A further example is unit postcodes (UPCs), which
are well suited as an address based geography to map many different
datasets at a high resolution. Designed for the efficient delivery of post by

Royal Mail, UPCs contain around 14-17 properties on a delivery round. In the
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case of the CASA Town Centres Project land use indicators were
georeferenced according to their UPC and transformed using a KDE
(Thurstain-Goodwin 2003). Additionally, business addresses with UPCs from
the Annual Business Inquiry (ABI) were georeferenced, and the workforce

population represented as a point (Lloyd et al. 2003).

A further example of KDE was used in the Town Centres Project to produce a
population surface on a regular grid. This spreads out the data from each
point across the surrounding area. Town centres are difficult to delineate
because of their indeterminate nature. If defined they could be treated as an
object in conventional GIS software (Thurstain-Goodwin and Unwin 2000). In
the Town Centres project, a kernel of a specified size is passed over the
points to smooth the data by allocating a proportion to each grid cell. Cells
receive fewer people with increasing distance away from the point. A kernel
size of 200-300 m was proposed based upon surveys suggesting that this is
as far as people are willing to walk in a town centre (Lloyd et al. 2003). The
KDE was used to create continuous surface representations of four key
factors proposed to characterise a town centre. Surfaces generated for
economy, property, diversity of use and visitor attractions were combined to
into an ‘intensity of town centredness’ surface. Analysis of peaks on the
composite surface were then used to delineate town centres (Thurstain-
Goodwin and Unwin 2000).

2.4.5 Point pattern analysis

Surface population density estimation can be applied to point data to suit a
range of applications. Point pattern analysis (Figure 2.7) provides one
method to attempt to transform a series of point data into a continuous
density surface. The spacing of points, such as the mean distance to the
nearest neighbour is one method of analysis. Secondly, point data can be
analysed as a frequency in a regularly defined subgroup such as quadrats.
Imposing a fixed grid such as a quadrat is an alternative to imposing a
moving kernel. However, the use of quadrats or a fixed grid often produces
a less smooth estimation than kernel estimation. These methodologies can
broadly be categorised as distance and area-based analyses respectively
(Gatrell et al. 1996). An advantage to using point pattern analysis is that it is

readily available in most GIS software. The process depends on point, or
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disaggregated data, unlike a KDE that can redistribute data that have already

been aggregated to points such as output area centroids or unit postcodes.

In a UK application Gatrell (1994) suggested the use of postcodes
representing a number of houses that could collectively be treated as point
data with geographical coordinates. Georeferenced individual addresses for
Great Britain are now commercially available (Ordance Survey 2012). The
current situation allows data based upon an address to be georeferenced

and therefore can be treated as a point.

2.4.6 Kriging

Kriging is a geostatistical method utilizing the auto-correlation of different
attributes (Liu et al. 2008) (Figure 2.7). Liu et al. (2008) demonstrate area to
point kriging interpolation of population data as a methodology to
disaggregate census data. Additional data are not required, apart from what
are needed for the regression model. The kriging method interpolates the
residuals from regression. Accuracy improvements in population densities
are accounted for by the location dependence and spatial correlation of the
residual population density. Thus the process is two-step. Firstly, regression
based estimates need to be derived with corresponding residuals. Secondly,
the residuals are interpolated in space by the area-point kriging function (Liu
et al. 2008).

Kyriakidis (2004) defines a geostatistical framework for area to point
interpolation as a special case of kriging. Census tracts and socioeconomic
data often need to be downscaled for the purpose of detailed modelling and
a methodology is provided under the framework using kriging. Unlike the
KDE, point data derived from area-point interpolation need not lie on a
regular grid or create a surface. Kriging is a local estimation methodology
that provides the best linear unbiased estimator for an unknown quantity,
regarding minimum estimation variance (Journel and Huijbregts 1978).
However the application of kriging can be more difficult relative to other
weighting methods that produce similar results. Furthermore, simple kriging
is a linear estimation. It is unlikely that population density against distance

away from a point is a linear relationship. If structural information is
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available regarding a second-order relationship then other non-linear

techniques should be considered (Journel and Huijbregts 1978).

2.4.7 Spline functions

A spline, a polynomial function, can be applied as an alternative to a
standard exponential density function, and is a further example of a point
based methodology (Figure 2.7). Exponential functions by definition assume
population density decreases with distance away from the town centre.
Muniz et al. (2003) suggest that ‘density craters’ in city centres, greenbelts,
satellite cities and dense peripheries cannot be replicated by a standard
exponential function. A residential density function relates population
density with distance from a city, therefore, allowing density to be predicted
at a given distance from a city centre. This provides a method to describe
the structure and spatial distribution of population (Muniz et al. 2003). The
density gradient of an exponential function is constant, whereas it is
variable in a spline giving the proportion of density variation per unit of
length. The spline function requires a fixed distance relative to an origin
such as the central business district. This method could be applied to
medium sized cities and metropolitan areas using points of population data
(Muniz et al. 2003). The method might not be appropriate for population
centres or small zones outside of urban areas away from the assumed
density/distance relationship. An example case could be a large urban
conglomeration within distinct satellite settlements. However, a KDE could
be applied to all population points in turn, which would preserve the

underlying data structure and observed spatial distribution of population.

2.4.8 Distance-weighting

Inverse distance weighting (Figure 2.7) is a simple and common approach
for population interpolation. Unlike the redistributions methods discussed
(e.g. KDE) interpolation assumes that a point value falls between two other
known values. Inverse distance weighting (IDW) assumes values for non-
sampled locations based upon the value of surrounding points at a specified
distance (Mitas and Mitasova 1999). It can be a particularly useful tool for
spatially representing population density, as well as many other physical and

socioeconomic phenomena on a regular grid. This process is readily
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available in most GIS packages. Rase (2001) extends this concept for
interpolation onto an irregular triangular network (TIN) rather than the
traditional orthogonal grid of equidistant lines. He suggests that error is
minimised by interpolating irregular lines and points to a TIN rather than
regular grid. In this process nodes are calculated to populate a TIN using an
inverse distance weighting:

_ Zazpd;”

n; = =
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Where zn; is the new value for point i, z; is the value of m nearest
neighbours, d, is the distance to m nearest neighbours and p is the

exponent of the distance.

However IDW can be criticised for producing local peaks in the data surface
that do not conform to the shape implied by the original data (Mitas and
Mitasova 1999). In contrast, KDE also has a specified distance of
interpolation around a point, determined by the kernel width. However, a
KDE applies a specified function to each centroid in order to try and
realistically redistribute a point’s population. IDW is appropriate for
applications concerning point measurements, such as inferring values on a
digital elevation model. However, population density is a reference interval
function (Nordbeck and Rystedt 1970) which is only measurable with
reference to an interval or area. Interpolating population data would

artificially increase the density.

2.4.9 Area-based interpolation

The second group of methods for spatial interpolation of population data in
Figure 2.7 correspond to area-based input data. The following sections
outline alternative methods for estimating a population density grid using

area-based data.

2.4.10 Areal weighting

Areal interpolation, the simplest technique, in its standard form is based on
weighting by area and can be utilised where incompatible spatial units are
concerned. The weights are calculated by the proportion of the target zone

overlapping the source zone, therefore allowing data to be transferred from
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one reporting zone to another. This methodology provides a solution where
ancillary information on distribution is not available. However, the weighted
distributions are probably unlikely to be found in reality (Flowerdew and
Green 1989).

Goodchild et al. (1993) propose a GIS based framework and example
application for the areal interpolation of population data, citing applications
relevant to census centroids in the USA, Canada and UK. County level
population counts from census data for California are compared with major
river basin boundaries following watersheds. An areal interpolation method
is applied to transfer population, employment and socioeconomic data from
county level onto the hydrological boundaries containing data on water

consumption and availability.

2.4.11 Pycnophylactic interpolation

Tobler (1979) also proposes interpolating values from data given in arbitrary
geographical units onto a regular grid, at a specified resolution. The grid
resolution needs to be fine enough to have at least one or more points in
each geographical unit of the input data, therefore preserving the smallest
geography. A population density surface can be smoothed towards the
edges of the aggregated boundary. An important attribute of Tobler’s
(1979) area-based pycnophylactic interpolation methodology for generating
a population surface estimation is volume preservation. Pycnophylactic is a
derived Greek term for mass preservation. This example can be described as
‘pointless’ interpolation, which can be used where data are available in
aggregated units, not points. This is an alternative to using centroids, or
where they may not be available. This is exemplified through the
representation of population density by US states (Figure 2.9). Smooth
contour maps satisfying volume preservation and non-negativity can be used
to convert different output geographies for comparison (Tobler 1979). The
volume preservation of population is crucial as this ensures that people

cannot be created or destroyed.
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Figure 2.9 Contours and isometric rendering of US state population densities (Tobler 1979)

Tobler et al. (1997) report on a pycnophylactic based interpolation
methodology to create a raster model of global population, without the need
for constraining and changing political and national boundaries. The
rationale for the project is based on the availability of satellite imagery for
scientific studies concerning impacts on the spread of people in the absence
of national borders. A pycnophylactic approach was used to transpose
global population data onto five minute longitude/latitude quadrilaterals,

approximately a 9.3 km resolution at the equator.

Figure 2.10 Population surface interpolation from areal data (choropleth, left) onto a regular
grid (right) (Rase 2001)
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Rase (2001) demonstrates a pycnophylactic approach to interpolate a
smooth, volume preserving surface from areal, or polygon, data (Figure
2.10). He also raises a critique of point based interpolation methods where
centroids are considered without their polygon boundaries, and thus not

preserving volume.

2.4.12 Dasymetric mapping

Dasymetric mapping is one method which has arisen from the inadequacies
noted in earlier examples. Dasymetric mapping as an alternative (Figure 2.8)
has been available for many years, but only more recently used with the rise
of geographic information improvements in computing power (Langford and
Unwin 1994). Wright (1936) popularised dasymetric mapping in the United
States but is often wrongly accredited as its inventor, as an earlier reference
can be made to the Russian cartographer Semenov Tian-Shansky in 1922
(Mennis and Hultgren 2006).

Dasymetric methodology involves disaggregating spatial data to finer units,
often using ancillary datasets. As a result the process produces areas of
homogeneity in the mapped data that more closely resemble the scenario
being modelled (Maantay et al. 2007). Wright (1936) contrasted the
dasymetric approach against conventional choropleth mapping by reference
to Cape Cod, Massachusetts, USA. Conventional choropleth maps assigned a
single population density to large expanses of the cape that were
uninhabitable, and only occasionally frequented by backpackers, wardens or
hunters. Defining uninhabited is not straightforward. On a high resolution
map, gardens may well be considered uninhabited. However, if regions that
people sometimes cross or visit should be considered inhabited, then this
would apply to the remote sand dunes and moraines of Cape Cod that are
occasionally frequented. The basic principle of dasymetric mapping involves
distributing populations to the ‘inhabited’ areas. Unlike choropleth maps,
vast areas of water or uninhabited countryside therefore will not receive a
population density. In fact the permanent inhabitants of Cape Cod resided in
a small compact village near the harbour. The choropleth approach assigned
population densities of between 3 and 77 people per km?to vast
‘uninhabited’ areas of the Cape according to Wright’s analysis of 1930s
data.
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More recently, Wright’s technique has been applied to dasymetric population
interpolation utilising remote sensing data. Langford (2007) postulates a
straightforward methodology based upon pixel values: the colours used in
Ordnance Survey (OS) maps. In general the OS use the same 8-bit colour
palette for all raster pixel maps. This enables the process to be consistently
repeated for neighbouring tiles, until the desired area is covered. For
example the value of pixels visually containing the brown shade
representing buildings could be extracted and used as a mask in a

dasymetric interpolation.

Similarly to pixel-level interpolation for population density estimation, an
expectation maximisation algorithm can be applied to pixels to estimate
population. The estimate can be derived by iteratively regressing pixel
values based on spectral properties. This approach can be used to compute
values where data are missing or restricted. The algorithm consists of two

steps (Flowerdew and Green 1989):

= Expectation - Values are computed based upon the conditional
expectation of the given dataset.
= Maximization - Fit the derived data to the model as the maximum

likelihood that the values are from real observations.

Harvey (2002) proposes expectation maximisation in the absence of ground
reference data for pixel population values in a remote sensing application.
Firstly, pixels are classified as residential and non-residential. Initial
estimates of residential pixel populations are then iteratively refined.
Although results indicate a high level of accuracy, new population
estimation would require extensive calibrating and ground referencing.
Without adaptation the iterative model cannot be uniformly applied over
time and space, even on a national scale (Harvey 2002). The addition of
ancillary layers such as building height have been used to estimate
population at different levels. For example Aubrecht et al. (2009) use
airborne laser scanning data to estimate building heights in part of Austria.
This in turn is combined with population data to produce a highly detailed
3D building model that correctly estimates residential population density

within multi-storey buildings.

63



Spatiotemporal population modelling to assess exposure to flood risk

An alternative method of population density estimation utilises satellite
imagery and the spectral properties of individual pixels. The LandScan
Global Population project combined census data, land cover, night-time
illumination and information on topography to produce a global population
estimate at 30 arc-sec (c. 1 km at the equator) resolution (Dobson et al.
2000).

The amount of change in a dependent variable for a given change in an
independent variable can be indicated by a regression equation (Johnston
1978). Multivariate regression estimates a single regression model with
more than one outcome variable. For example, Langford et al. (1991)
compress Landsat TM land cover classifications into five categories for
analysis. Pixel counts for digitised UK census wards for each of the five

classifications were completed using GIS.

A dasymetric application to census data can use a ‘grid three class’ method
to weight areas of census output depending on land use: urban, agricultural
and forested in order to receive a proportion of the aggregated population
(Mennis 2003). A potential disadvantage of the dasymetric approach using
remotely sensed data is the misclassification of industrial areas as
residential due to their similar appearance or spectral properties (Mennis
2003). However, dasymetric mapping can be implemented in most raster-
based GIS packages without the need for programming and is adaptable to

suit a number of user requirements (Mennis 2003).

The growth of this methodology has been sustained as most publicly
available demographic datasets such as censuses are aggregated to areal
units. Data are commonly aggregated into areal units defined by statutory or
administrative boundaries (Mennis 2003). However, problems arise in the
display of such aggregated demographic data such as the display of highly

detailed spatial attributes contained within a census.

A kernel based smoothing function (Figure 2.7) can be combined with a
dasymetric methodology to utilise additional data (Wu et al. 2005). A close
approximation to a continuous population grid can be achieved using a
moving kernel. The aggregate population is divided by the area of the kernel
and applied to the central cell to estimate the new density. This process is

repeated until every pixel has been covered (KDE, Section 2.4.4). The effect
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of changing the search radius or kernel size alters the final appearance. The
larger the radius the smoother the output appears. Although the process is
similar to the KDE the method is applied to area-based dasymetric data that

has been pre-processed rather than the raw population centroids.

Langford and Unwin (1994) apply the kernel function to a dasymetric
population density estimation. The dasymetric estimation is derived by
defining residential housing in UK census units using Landsat satellite
imagery integrated within GIS. Land classification was used to designate all
other land use types unoccupied except the pixels containing some form of
residential housing. Global classification accuracy is estimated at 85-95%.
However, whether a residential pixel remains unoccupied remains uncertain
(Langford and Unwin 1994).

If little attention is given to the effect of areal units when presenting data on
population density large discrepancies in understanding can occur. The
average population density of UK cities ranges from 1000 to 6000 people
per km?. When uninhabited locations such as parks, gardens and industrial
sites are taken into account the density increase is much larger. A
dasymetric method produces more realistic population densities for parts of
Glasgow of up to 50000 km? (Langford and Unwin 1994). Populations can be
assigned to the residential area of wards instead of being uniformly
distributed across the entire area based on ancillary datasets such as a land
use classification. This technique can also be used with a KDE. A close
approximation to a continuous population surface can be derived by using
the ‘floating window/grid’ procedure (Langford and Unwin 1994). The
aggregated population is divided by the area of the kernel and the result
assigned to the centre cell, the process is then repeated, shifted by one
pixel each time. This technique could be carried out using the

neighbourhood or spatial filtering functions in a raster based GIS.

2.4.13 Alternative representation of population data

This subsection introduces alternative and emerging techniques for novel
and non-census based population data representation. It provides an
overview on the application of data that concern building levels, location

based social media and geolocated mobile telephone records.
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Wu et al. (2008) disaggregate US Census data onto individual buildings. This
example of building level data representation demonstrates a great
improvement from simple aggregate census data. Their approach requires
the use of ancillary building footprint data, from which a volume is created
within a GIS. This is coupled with occupancy data in a method to re-weight
census population onto buildings within their respective areal units. Similar
to the Aubrecht et al. (2009) approach (see Section 2.4.12) building height
data is derived from LiDAR surveys. However, Aubrecht et al. (2009)
specifically create a 3D building model with a European implementation. The
creation of accurate building level population data is identified in both
examples as having direct relevance for natural hazard planning. This is due
to the spatial improvements achieved compared to traditional aggregate

datasets.

The advancement of population data representation is continuing with
emerging novel methods. One example is the use of location-based data
from the social media site Twitter. Since its inception in 2007 half a billion
tweets (images or 140 character messages, often georeferenced) are sent
per day, and 80% of these originate from mobile telephones (Twitter 2015).
Mapping the density and distribution of georeferenced tweets has been
demonstrated for London by Hudson-Smith (2014). One of the features is
the ability to resolve major tourist sites and transportation hubs (e.g.

Heathrow Airport and railway termini).

Longley et al. (2015) also identify the significance of using Twitter social
media data to move away from traditional ‘night-time’ geodemographic
datasets. Location-based tweets have a high spatiotemporal resolution in
near real time as each contain a set of coordinates and timestamp. They
demonstrate the ability to resolve patterns of very short term population
movements at a high spatiotemporal granularity. However, two limitations of
their approach identified were the lack of uniform population coverage and

the restricted nature of user demographic data.

The WorldPop project (www.worldpop.org.uk), expanding original
implementations for the East Africa region, created national scale 100 m
resolution static population estimates. These were constructed on the basis

of reweighting census data taken at the smallest output units onto
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settlements locations. Settlement locations were derived from a combination
of Landsat satellite imagery and land cover data (Tatem et al. 2007). This
provides an example of a valuable, large coverage, high resolution

disaggregation technique, albeit with a static population.

Finally, the use of anonymised mobile telephone handset records provide an
opportunity to map temporally varying populations without census data. In
some applications mobile telephone location data provide the opportunity to
map actually observed population distributions without the need for further
modelling or disaggregation. Every mobile handset has a unique identifier
that is recorded within a database to specific cells. Cell registration data can
be used to triangulate the location of individual handsets. Successful novel
studies include applications in Portugal, France (Deville et al. 2014) and
Estonia (Ahas et al. 2010). However, mobile telephone data is subject to the
same limitations on user demographic information and coverage of the
whole population as social media Twitter data. Mobile telephone data is not

currently widely available, or restricted to sensitive commercial retail

analytical applications (e.g. Smart Steps, dynamicinsights.telefonica.com).

2.4.14 Relating population mapping and risk exposure

Like hazards, population also varies considerably in space and time which
has a large impact on sunsequent risk analyses. Natural hazard and
exposure data are combined using a dasymetric approach to assess
populations at risk by Chen et al. (2004). Hazard attributes such as intensity
and footprint are usually available in a raster layer. However, exposure data
such as population, business and dwellings are usually only available in

aggregated census units.

Similar to the critique of choropleth maps, the aggregated census output
can be incorrectly assumed to be uniformly at risk. Figure 2.11 identifies the
spatial extent of a given hazard within a postcode. Chen et al. (2004) argue
that using the hazard intensity at the centroid could be misleading. If the
centroid is determined by postcode boundaries in an irregular shape it may
not reflect the actual intensity of the hazard experienced. For example,
applying the hazard intensity at the centroid for the scenario in Figure

2.11D suggests that it is outside the hazard footprint, although the
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residential area is not. An improvement in assessing the spatial distribution
of risk is omitting the unoccupied areas within the postcode, or areal unit.
Chen et al. (2004) used a dasymetric approach to try and differentiate
residential areas. Firstly, urban road networks in the form of lines within a
GIS based map were buffered by 100 m assuming the surrounding area
would be inhabited. Data in layers containing features such as parks and

water bodies were also used to define the limits of residential areas.

Figure 2.11 lllustration of hazard intensity to an exposed population aggregated into
postcode units (left to right: A-D) (Chen et al. 2004)

Improvements suggested by this method, likely to be welcomed by
insurance industries, include more accurate loss estimation by better
representation of populations at risk. The dasymetric approach suggested
by Chen et al. (2004) aims to outline the area exposed to a particular
hazard. Simply using aggregated data in areal units could overestimate
exposure. In a case study for Sydney, Australia only 22% of the region
covering 8879 km? has been identified as residential using the approach
suggested by Chen et al. (2004). The schematic representation in Figures
2.11B and C shows how hazard exposure would be underestimated if census
output units or postcode districts were relied upon. There is still some
concern by selecting a somewhat arbitrary 100 m buffer for the road
network where residential buildings are assumed to be. However, it does
appear to be a far closer representation of reality than the aggregated

postcode districts.

Overall, it appears that the dasymetric approach to mapping offers
advantages over conventional choropleth maps. In particular it provides
more realistic demographic analysis as populations are not distributed to

uninhabited regions. It also allows improvements in representing aggregate
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census data. Conversely, uncertainties can arise from land cover
classification, in particular what can be regarded as ‘uninhabited’. Similar to
critiques of the arbitrary nature of some census output units, there is a
degree of arbitrary decision making involved in some of the dasymetric

methodologies discussed.

For risk mitigation accurate and timely population maps are required for
exposure assessments. Mobile phone data have been used to estimate
population movements in space and time for strategic malaria elimination
planning in Namibia by Tatem et al. (2014). This dynamic approach
identified key settlements with higher than average travelling populations in

specific at risk.

Day and night-time human populations vary widely, and often most in
metropolitan areas. Freire (2010) notes that accounting for the
spatiotemporal distribution of population at the local scale for risk analyses
is fundamental and often misrepresented by census data alone. For example
human susceptibility to contemporary tsunami risk in Lisbon, Portugal is
modelled by Freire et al. (2011). They use a model to create high-resolution
(25 m) daytime population estimates. A dasymetic approach is also adopted
to disaggregate census (including commuting statistics) and employment
data with road network and land use classifications. They apply three
scenarios representing a toxic plume, earthquake and shopping terrorist
attack. It is observed that traditional census datasets under-represent
exposed populations in some densely populated metropolitan areas. This
occurs where there is a large increase in daytime population density. The
simulation of daytime population density improves the assessment of
exposure and can contribute to better emergency planning (Freire et al.
2011).

It has also been demonstrated that projected future population estimates
can be applied to hazards with the potential to occur over much wider
(national) scales. For example heat stress associated with climate variability,
can affect vulnerable populations over large areas. Aubrecht et al. (2012a)
create 1 km spatiotemporal population estimates using census and ancillary
datasets. These cover a north-south European transect with population age.

The effect of heat waves on an ageing population, projected to 2030, who
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are more vulnerable to heat-related illness was considered. Aubrecht et al.
(2012a) maintain that a central objective of vulnerability assessment is to
provide indications where, when and how people may be affected by a

specific impact.

Despite censuses typically being accurate, geographically refined and
current, they only represent night-time residential population counts.
Therefore, censuses can be misleading when trying to locate and quantify
population exposure to a daytime disaster (Garb et al. 2007). Population
data utilised for the purposes of hazard risk assessment can be prepared in

advanced and kept updated.
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2.5 Interpolation of population data with time

Human population distribution is a function of both space and time, but the
view that better temporal population estimates are required has been
around for some time (e.g. Wright 1936; Foley 1954; Schmitt 1956).
However, until relatively recently interpolation methods, as discussed in the
previous sections and illustrated in Figure 2.7, have largely focused only on
the spatial component. Figure 2.12 expands on the integration of the
temporal component in the interpolation of population data. The
interpolation of such data is recognised in a wide range of applications
including security, emergency planning, transportation and healthcare
provision. It is recognised that current risk models do not sufficiently
consider the temporal variation in population distribution, whereby the
spatial distribution of populations at risk varies greatly by time of day, day
of week, time of year. The time of occurrence of a rapid onset event will
have a different outcome for those exposed depending on diurnal and
seasonal population variations. The risk to population sub-groups is also
dependant on demographic characteristics. Further analysis of this data is
required to examine this relationship. For example, students in higher
education are a highly spatially mobile section of the population, and at time
clustered at locations, with strategic importance (King and Ruiz-Gelices
2003).In 2011/12 the UK had 2.5 million students registered in higher
education (HESA 2013) comprising around 4% of the total population.

Risk models can be developed when the causes and consequences of a given
event are known, and can be used for emergency preparedness planning,
such as accounting for the number of inhabitants requiring evacuation
(Ahola et al. 2007). This section outlines representation of populations in
time-space and the role of time-geography. The concept and examples of
the spatiotemporal interpolation of population data are provided in Section

2.6, however few practical examples exist.
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Figure 2.12 Proposed structure to evaluate population interpolation methods

2.5.1 Time

In order to understand the temporal interpolation of population data and the
reasons and methodologies behind them it is important to take time to
understand the brief concept of temporality itself. The section only attempts
to briefly highlight the history and perception of time and the resultant
consequences for human reality. A large literature already exists on the
fundamentals and quantum physics of time which is not revisited in detail
for this summary (Denbigh 1981; e.g. Davies 1995; and Hawkin 1995)

Time and space create and constrain the very fabric of human interaction
(Raper 2000). However, the integration of time into our representation of
population becomes difficult as we can only ‘see’ change when motion or
rapid movement occur (Raper et al. 2005). The concept of motion is not
possible without considering time. Today’s culture views time as a line with
no end points extending infinitely into the past and future (Langran 1992).
The opinion that time can be considered an illusion is an alternative
argument in philosophy. Objects including humans form a static pattern in a
four dimensional space-time block. It is argued that time only feels as if it is
passing because our memories retain the past, as opposed to remembering
the future and the present. What is actually remembered at the present is

what has just passed (Langran 1992).

Time is always expressed relative to something. There are a number of

anthropogenic ways in which time and duration can be expressed and
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referenced. For example, in Madagascar ‘rice cooking’ and ‘the frying of a
locust’ traditionally represented half an hour and a moment respectively
(Sorokin and Merton 1937). The ancient Mayan civilisation calendar
consisting of 13 b’ak’tun, periods of 144,000 days began in 3,114 BC, and
along with the ancient Egyptians monitoring the rise and fall of the Nile,

these are some of the earliest known examples of time reference systems.

There are many temporal constructions used in the English language, also
believed to be universal across all languages. Examples include ‘the
weekend is coming’, ‘| am going to get up early tomorrow’ and ‘May is
before June’. However research suggests that tribal Amondawa speakers of
the remote Amazon living in the Uru-eu-wau-wau reservation now located in
Brazil, lack a lexicon containing any temporal definition (Shina et al. 2011).
The research suggests that it is possible for no numeric or calendar system

to exist.

Before official contact in 1986, the Amondawa population was believed to be
around 160. The population rapidly decreased on contact to just 45 by
1991. The rapid decrease was caused by the spread of colds and other
viruses in which the indigenous tribe had no immunity (Shina et al. 2011).
This rare example of self-sufficiency and isolation perhaps demonstrates an
example of space without time. However, time continues to constrain
activities whether we are conscious of the fact or not. A more widespread
time reference system is the current Gregorian calendar based on the
motion of lunar and solar cycles, and encompassing the time units used

today in Western societies.

2.5.2 Time-geography

The tradition of time-geography in human geography treats time and space
as resources that enter directly into the realms of social life (Gregory 2000).
The basic ideas were coined by the Swedish geographer Torsten
Hagerstrand. Time-geography prominently came to attention during the
1970s, but references can be traced back into the 1960s. This was an era of
self-review and realignment of the discipline of human geography. The
success of time geography has been associated with providing an alternative
to the ‘spatial science’ which resultantly promoted the study of individuals
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(Per Olof 1991). Until then first-hand geographic observation of individuals

and groups moving in their environment was rare (Hagerstrand 1973).

The notion of time geography partly evolved from the desire to understand
more about society’s interactions with nature. Hagerstrand described society
as ‘a peculiar mix of mental and physical structures, confusing and
unpredictable, which we cannot survive without’ (Hagerstrand 1976 p. 329).
It was argued that geography could contribute in an ever more positive way
if given the opportunity to contribute to prediction and planning.
Hagerstrand defined bounded areas as a set of populations comprised of
individuals who are described by continuous trajectories through time.
Humans and their society are just a pattern in the big tapestry of nature,
that history is weaving (Hagerstrand 1976). The human mosaic or tapestry
can be the outcome of collateral processes, which cannot unfold freely as
they have to accommodate the pressures and opportunities that lead from

their common coexistence in terrestrial space and time.

Hagerstrand’s geographical framework recognises that an individual’s
participation in an activity has both spatial and temporal dimensions. The
space-time relationship emerges as a key definition for an object, individual,
or population in order to attribute spatial context to a location, path or
trajectory (Hagerstrand 1973). Examples can be drawn where nature and
humans may struggle to coexist in the same space without mutual
distortion, such as road networks across a fluvial plain liable to flood. If an
area or space is ‘mapped’ over a period of time, the complete set of
unbroken space-time paths, produced by all members of the population, are
contained within a domain or pass through it. Humans are always seeking
to reach goals, which can be considered as destinations. Common goals can
be grouped into bundles to form steps to the final outcome. A project can
be defined as a total cluster of activities, individuals and items which must
participate in the reaching of some defined goal (Hagerstrand 1973) (Figure
2.13).
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Figure 2.13 Hagerstrand’s time-geography model (Cloke 1991)

The basic framework can be conceptualised across four propositions
(Gregory 2000):

1. Space and time are resources upon which ‘populations’ have to act to
reach projects.
2. Realization of a project by an individual is constrained by:

a. Capability constraints: the limitation of individuals due to their
own physical ability, or the ability to command the required
facilities e.g. time-space paths flowing through accessible
stations such as shops and schools.

b. Coupling constraints (time-space bundles): governing how long
individuals have to join other individuals or materials in order
to produce, transect or consume.

¢. Authority constraints: steering mechanisms that impose
conditions of access or movement through the time-space
domain

3. The constraints are interactive and mark out the possible paths for
individuals
4. Within the evolved structure, competition between projects for free

paths is a central problem for analysis.

A very large number of trajectories exist across the environment, by which

they are influenced (Hagerstrand 1975). ‘Bundles’ of trajectories give up
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individual degrees of freedom to allow others to be kept under control. A
number of rules or institutions aim to manage conflict where capacity in the
space makes the overlap of planned trajectories unavoidable. Traffic
regulations and laws governing the ownership of land, tools and buildings
exist in the world of barriers and prevent trajectories making certain turns,
and let them move freely in one direction. Hagerstrand’s Lund research
group simply mapped urban areas as supply points such as shops and work
places (Thrift 1977), which in turn were described according to opening

hours and their location.

It is argued by Pred (1977), a pioneer of Hagerstrand’s time-geography, that
the concept has the potential to ‘spill’ into the other social and life sciences.
This coincided with an identity crisis of human geography relying on models
from other disciplines. The physical existence, life paths of individuals,
goods, materials and other non-human populations can be traced in time.
Time-geography can specify the necessary conditions for virtually all
interactions between humans and the natural environment. The typical daily
path of a Boston merchant trader is conceptualised by Pred (1984) (Figure
2.14). The time-space context is given and individual paths and shared
interactions are represented in the form of meetings at the coffee and club
houses (Pred 1984). The path taken through time and space is represented
in Figure 2.14.
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Figure 2.14 Representation of a Boston merchant trader’s movement in time and space
for a given day (Pred 1984)

Pred (1977) was concerned that the application of time-geography may only
be considered for planning purposes. Several other applications within the
discipline were highlighted. One such application concerned the study of
regions and landscape evolution. The framework allows the classification of
landscape components, that form part of an independent region, as a whole
(Pred 1977). Innovation provides another application for time-geography.
This use involves the building up of time-space trajectories of several people
and inanimate objects, as well as information and energy, for example,
agricultural or manufacturing processes. Time-geography may be applied to
migration and urban growth. Insights into the mean migration-distance
variation between different occupational groups can be considered by the
spatiotemporal characteristics of activities and analysis of small bounded
regions (Pred 1977).

Structuration theory generally recognises that social activities take the form
of concrete interaction in space and time as actions and events making up
an individual’s temporal and spatial elements. This idea can be
conceptualised diagrammatically as an unbroken path through space-time
(Pred 1977) (Figure 2.14). There are a number of time-geographic realities

that impact on the life content of human individuals (Pred 1978): a human is
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indivisible and cannot be in more than one location at the same physical
point in time. Neither can a human, measured by tracing out trajectories,
simultaneously partake in activities spatially separated at the same time. A
person’s space-time path through both dimensions makes up an individual’s
existence. Activities occur at a precise location in space, for a limited time
period. An individual can sacrifice time for space to move to an activity
occurring at a difference ‘place’. Many activities such as working at the
office are fixed in space. The faster someone or something travels the lower
the gradient of their space-time path (Figure 2.14). This occurs as less time
is sacrificed for more space (Miller 2005). Understanding these concepts is
important as they provide key constraints in handling population data over
time in a GIS or distribution models. An individual is not divisible, cannot be
created or destroyed and can only be in one place at a ‘time’. The notion
that mobile populations are always moving between goals or destinations
also must be upheld. The temporality is a larger concern when the time of
day is considered, relative to the direction and movement of others within
the same space-time block. For example, during ‘rush hour’ periods many
people are competing at a time for the same path through space. This is
evident in many urban areas as arterial road network or town centres. As a
result Hagerstrand’s notion of constraints is apparent in dealing with the
conflict. Furthermore, this delays or restricts some people’s movements.
Thus, time-space paths, and their gradients are an important consideration
for any time GIS or model.

Every task an individual can undertake is time demanding and therefore
uses up time as a resource. Movement between two points spatially
separated can only occur with the sacrifice of time. Every facility that
provides a space that can be occupied, such as a piece of land has a limited
packing capacity. This occurs as no two physical objects can occupy the
same space at the same time (Pred 1981). Therefore a path and individual
consume the space in which they exist. As a result of this concept and the
notion that a finite space-time resource is indivisible it forces alterations in
individual movements (Pred 1981). Activity bundles form where the paths of
two or more individuals combine and their convergence is the ‘station’ or
‘domain’ (Figure 2.14). The concept of the space-time prism is similar to

that of the path. Attending something such as an ‘event’ takes up time, a
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finite resource during a day, in a bounded area containing a population.
However, an object’s path is constrained by time. For example, if a person
leaves and returns to work at two fixed times in a given interval, there is
only so far in space that their path is permitted to go and this is termed the

potential path space.

It is accepted that Hagerstrand’s ideology is a useful descriptor of how the
daily life of individuals unfolds in space and time, however it does not
explain how domains and stations are produced or how meaning becomes
associated with history, time, place and space (Harvey 1989). Following this
critique, the argument has arisen that time-geography is too physical and
mechanical and treats the individual as an object without thought,

experience, feelings or expectations for the future (Lenntorp 1999).

An objection regarding time-geography is that it does not consider an
individual as an acting subject. Five main critiques have been delineated (Per
Olof 1991). Firstly, it is argued that the concept represents physicalism, the
philosophy that only physical objects exist. Therefore it is argued that time-
geography may be more suited to the physical rather than social sciences.
This is a philosophical argument that things do not exist beyond their
physical properties, therefore non-physical things do not exist. Secondly, it
is argued that little consideration is given to social interaction, and
individuals are considered as mere objects. Thirdly, humans or objects are
not considered as acting components. Fourthly, human activity and social
processes are not considered. Finally, time-geography is undeveloped and
has an unproblematic perception of time. However, concepts of this
approach are contained within the proposed methodology in this thesis.
Population data are considered with respect to corresponding demographic
information. Secondly population is considered as highly mobile and
interactive. Here it is appropriate to treat population as a physical, socially
complex asset in order to ascertain physical exposure estimates for hazard

applications within the natural sciences.

2.5.3 Time GIS

There is a clear shift in the spatial distribution of population between night

and day as people migrate between their usual residence and places of work
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and other activities. Currently, most available population datasets have no
temporal component (McPherson and Brown 2004). Large errors in
population data occur in daytime estimates as they do not consider travel to
work, education, shopping and other actives between which people may
migrate during the day. McPherson and Brown (2004) note that there are
two primary methods for building population datasets: labour intensive
demographic counts or employing the use of a GIS or remote sensing.
Langran (1993) noted several practical issues which need to be considered
while attempting to create a spatiotemporal database using a TGIS
concerning representation, updates and longevity. While this section
focuses on the temporal component of a GIS there is inherently some
spatiotemporal discussion as traditionally GIS are spatial in nature and this
section attempts to address the addition of a temporal component. Whether
there are currently any interpolation applications that are truly
spatiotemporal in nature rather than just ‘space plus time’ is reflected upon

in Section 2.6.

People’s lives consist of activities undertaken in both space and time. All of
these activities such as work, study, travel, shopping and leisure occur at a
geographic location and for a specified time of a given duration. Societies
devote a large amount of resources into easing or trying to overcome spatial
or temporal constraints (Miller 2005). One of the main challenges facing the
geo-representation of data in GIS is the problem of ‘timeless space’ based
on the conventional two or three dimensional approaches. The argument for
geo-representation into the future is based on the inclusion of time with
space in order to explore the dynamic phenomena experienced (Raper
2000).

The addition of time as the fourth dimension into a GIS is required for a
spatiotemporal representation. Most methods represent space with
reference to time, such as the traditional time-slice noted by Massey (1999).
However, systems need to shift from just organising space over time to
representing real world phenomena in space and time (Wachowicz 1999).
Many people consider maps a snap-shot in time, rather than of time, often
pre-empted by the ideology of publication dates or the timespan over which
data were collected (Wood and Fels 1986). Geographic data have been

described as having three components; theme, location and time (Sinton
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1978). In order to measure a component another has to be controlled and
one fixed. Often in the case of cartography time is fixed (Langran and
Chrisman 1988), an historical theme of space without time traditionally

considered in GIS.

Similarly to Hagerstrand and Pred, Wood and Fels (1986) represent a
spatiotemporal representation of movement (of a bus) through space. This
is represented in a three-dimensional diagram where the bus is always
moving up, along an axis, in time. A planar representation is given,
demonstrating the two-dimensional ‘traditional map’ depiction. The
temporal dimension has been flattened to zero thickness and space

emerges as the product of temporal flattening and the closure of movement.

The proliferation, and seemingly rapid advance, of ICT and
telecommunications has changed the ways in which people act and how they
communicate, altering the spatial and temporal distribution of human
activities (Yu and Shaw 2008). Of the attempts made to create a truly
temporal GIS, Hagerstrand’s space-time prism concept is projected as a 2D
surface, usually adding time as attribute data. This approach highlights the

limitations in early GIS designed for handling spatial and cartographic data.

The increasing use of dynamic information in GIS can allow some temporal
properties to be applied to objects, such as individuals in a population.
Dynamic information concerns the data stored about an object that can
change in a short period of time. This can be subdivided into real time, near
real time and time stamped data (Yu 2006). The delay in entering real time
data into a GIS may occur due to transfer times or for data processing to
take place. Therefore, often near-real time is currently the most realistic
approximation to real time. Time stamped data may often utilise temporal
information added as an attribute. Such attributes may contain when the

event occurred, the duration or when the data was transferred.

The differences in time described are not in the physical properties of time
itself, but in the conceptual models used. Models are utilised to simplify
reality and many are temporally unconscious. Langran (1992) summarises
three aspects of cartographic time, distinguishing database time relative to
real world time, where database time is equal to, less or greater than world

time. These situations are based on the statements of what we currently
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know, how something appeared in the past and how it may appear in the
future respectively. The traditional use of time in GIS has been to use a

timeline.

A common theme in the traditional use of GIS and many time models is to
use a point in time to describe when an event occurred, but to have no
duration. This can be referred to as ordinal time. This technique is common
in most GIS packages and it additionally allows the calculation of a duration
between two points (Frank 1998). The use of integers or real numbers on a
timeline can exclude temporal information that is available but not at the

precise level of detail required.

The traditional method to organise time is on a globally recognised fixed
scale such as days, months and years. A fixed time interval might also be
chosen by the user to reflect the temporal resolution they require or have
available. Although the fixed time interval is relatively straightforward to
implement, an issue arises concerning the arbitrary choice of temporal
boundaries (Shaw et al. 2008).

The cyclical measurement of time is widely accepted, often as a result of the
astronomical processes first used to measure time. Many natural processes
are influenced by these such as tidal change or diurnal animal migrations
(Frank 1998). The order of cyclical time points is meaningless. For example
morning is before evening which is before the following morning. Time
measurement systems such as the 24-hour clock or dividing the day into
two periods, post and ante meridiem allow a relative order, but is midday
still before midnight? The same argument can also be highlighted by

attempting to define the order of the seasons.

GIS software continues to be updated to develop new methods for handling
and visualising temporal data. Examples include time series animation in
ESRI’s ArcGIS package, the earth trends modeller in the IDRISI software

system and the TimeManager QGIS plugin to animate vector features.

In summary, time has been recognised in GIS for nearly as long as the
history of GIS itself, however the ability to handle temporal information has
been a point of discussion as explored in this review. The argument has

been proposed that although time may have been taken into consideration,
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the complexity of handling temporal information and a primary focus on
spatial data has often resulted in atemporal uses of GIS. The application
examples that follow demonstrate analysis of population with respect to
time. Better integration and recognition of time as a fourth dimension in
contemporary, more computationally efficient, systems may highlight the
requirement for more thought to be given to future analysis concerning time
and space. There is still a discussion on whether current systems can truly
be considered four-dimensional or spatiotemporal in their approach (Section
2.6).

The importance of the temporality of population data has been recognised
by Bhaduri et al. (2007) in the novel LandScan USA application. LandScan
USA has created a high resolution (90 m) population density map covering
the USA using a dasymetric model and applied a temporal profile. As already
noted, population data, commonly published as census outputs, are
spatially constrained and atemporal. Censuses are usually only
representative of who stayed where on one night, usually once in a decade.
This is often referred to as the ‘night-time population’. The mobility of the
population results in the temporary relocation to other, often daytime,
locations which are different to those represented by the census counts.
Bhaduri et al. (2007) conceptually describe day and night-time population

as:

Night time = Residential Population + Night time Workforce + Visitor

+ Immobile Population

Daytime = Workforce + Students & Pupils + Visitors
+ Residual Night time Population + Immobile Population

This example highlights the use of the diurnal cyclical time scale. As already
noted precise definitions of time can pose complex challenges, and the
same applies to the notion of ‘daytime’ which is variable in terms of length
of daylight hours. Bhaduri (2008) suggested the use of ‘normal business
hours’ according to the US census definition. The UK census definition for
daytime population counts the population aged 16-74 who do not work, but
are resident within an area as well as all people who are working in the area
(National Statistics 2004).
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LandScan USA uses a dasymetric interpolation model to create national
gridded population density estimates at three arc seconds (c. 90 m). The
temporal GIS component, concerning the daytime distribution, was obtained
using student and workforce location datasets. The LandScan global model
exemplifies diurnal change in population distribution due to employment
location. It uses the assumption that most people leave their night-time
address and work during the daytime at their employer’s location. The travel
to work time is estimated, but does not take into account the time of day
and the effect on the journey. Therefore, it represents an average over a 24
hour period (Bhaduri et al. 2007).

In one dataset example, the LandScan USA model uses a national school
dataset to identify an important location of dense and vulnerable
population. Following calibration spatial and temporal inconsistencies were
discovered within the national dataset (Patterson et al. 2007), highlighting
Langran’s (1993) key spatiotemporal database issues concerning
representation, update and longevity. The Population 24/7 method
proposed (Section 2.7.1) can also handle a range of datasets, particularly
those concerning school and workplace population. Its structure also

permits updates for longevity.

Daytime population estimates contain two distinct properties, the locations
of daytime activities such as workplaces, and the distribution of the
population at those locations. The first property concerning physical
geographical locations is usually easy to obtain and static. However, it is
extremely difficult to obtain information concerning the movement and
magnitudes of population change during the day. Although some isolated
datasets exist, these are rarely on a national scale, sufficient to estimate the
displacement of night-time population counts captured in a census (Bhaduri
2008).

2.5.4 Analytical and simulation tools

Microsimulation models (MSMs) provide an alternative methodology to
represent population change over time and space. They capture interactions
such as those between people and policy decisions at the level of the
individual decision making units (Orcutt 1957). Lee (1973) critiqued such
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models noting the lack of transparency for policy makers and the failure of
large scale urban models to reach set goals. At the time, large scale was a
reference to the costly computer resources required for models that were

then computationally intensive.

In contrast, the Modelling and Simulation for e-Social Sciences programme
(MoSeS) aims to demonstrate a scenario in which the capabilities of gridded
computing are utilised to develop tools in population modelling and
simulation which surpass previous attempts in terms of power and capability
(Birkin et al. 2007a). This concerns the development of a UK national
demographic model and simulation of the population on an individual scale
(Birkin et al. 2007b). MoSeS is based around microsimulation, with a similar
requirement to that of SurfaceBuilder247 in relation to establishing a
complete and detailed representation of a base population (Birkin et al.
2009). The MoSeS programme model attempts to simulate future population
scenarios based on individual agents. Unlike the Population 24/7 model to
be discussed in Sections 2.7.1 and Chapter 3, which employs a distance
decay function based on temporally observed patterns, MoSeS relies on
simulations to inform future patterns of a population’s behavioural
characteristics rather than focusing on an estimated location. An advantage
of coupling microsimulation with agents based models permits the use of
traditional mathematic modelling with the addition of individual behavioural
information (Birkin and Wu 201 2).

Ahola et al. (2007) present a convincing spatiotemporal interpolation of
population data for a city centre to improve risk assessment and decision
support analysis to support the emergency services and military. Building
data were used to classify areas based on their use and as a spatial
reference for a population. This includes data such the locations of leisure
facilities, schools and shops. Population counts were obtained from the
number of children in schools, people in a shopping centre and data relating
to traffic volumes. Yuan (1996) employs a three domain model which treats
attributes, spatial and temporal data in separate linked domains. For
example an attribute might be a building with description and number of
population contained. The spatial component is the physical location and
temporal information concerns the number of inhabitants expected at

different intervals. Temporal information relating to population variations
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were divided into ten categories broadly concerning sub-population types by

age or occupation.

Tools to simulate population movements are also widely used by logistics
and transport modellers. The TransCAD transportation planning software

(http://www.caliper.com) integrates demand modelling with GIS. It permits

network analysis, distance/travel time estimates and destination-origin
flows. These tools could potentially be integrated with the Population 24/7
method currently being developed. They provide exciting practical
developments in the ability of GIS systems to handle spatial and temporal
data. Presently, the datasets for use with Population 24/7 also hold
information on population origins and destinations, but it currently is not

possible to define the exact route of flows between such sites.

Within these sections a range of time scales have been discussed, how
population varies within these and methods to represent this data.
Traditional GIS software has handled population data without time, although
spatiotemporal concepts have been around for some time (e.g. Hagerstrand
1976; Langran and Chrisman 1988). The consideration of time in addition to
the spatial distribution of population and how this changes has been
demonstrated to be an important characteristic. This thesis builds on these
concepts to develop a tool, and it’s applications regarding hazard, to handle

spatiotemporal data.

2.5.5 Space-time kriging

Space-time kriging has been used for the geostatistical analysis of
environmental data (e.g. Bogaert 1996; Heuvelink and Griffith 2010). They
have been applied to human population data analysis in terms of diseases
modelling (e.g. Gething et al. 2007). Rouhani and Myers (1990) suggest
limitations in the application of this technique on some geographic datasets
particularly where there is a high degree of dependence in either the spatial
or temporal domain. It is acknowledged that kriging applications can be
used with spatiotemporal data. However, this thesis is focused on the spatial
analysis of population data considering the spatial and temporal dimensions
rather than a geostatictical exercise. A spatiotemporal KDE is the preferred

method of choice best suited to the population datasets available for this
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study. One advantage is the ability to use known local dispersion parameters

for specific population sites.

2.5.6 National Population Database

The problems associated with static population estimates for emergency
responses are recognized by the Health and Safety Laboratory (HSL), an
agency of the UK’s Health and Safety Executive. They identify that national,
robust and detailed population data are required to address the risks posed

to people from hazardous events.

The National Population Database (NPD) (HSL 2014) is a novel, powerful GIS
tool created by the HSL. Its coverage extends across the whole of Great
Britain (GB). It is formed of a geodatabase containing mixed-use population
centroids. The population groups included within the NPD tool are
summarised in Table 2.3. It was created by applying generic population
multipliers to buildings, transport and land use types to produce a database

of population density.

Table 2.3 NPD population components (Smith et al. 2005)

Population type Example/temporal properties

Residential Day and night-time, daytime tem-time

Sensitive Hospitals, schools and care homes

Transport Motorway and A-road average/peak populations
Workplace Daytime working population

Communal establishments Prisons, campsites, stadia, leisure facilities.
Retail Average/maximum daytime population

The tool is built on a wealth of datasets including the postcode directory,
local authority information, government administrative datasets and OS
data. The database is restricted to public service users as a collection of
population centroids or a 100 m grid of points. The database is queried
though a standard GIS interface. It provides some great advantages to
standard aggregate population data. The Population 24/7 approach that will
be discussed and implemented within this thesis (see Chapters 3-5) uses a

similar categorised system of population centroids. However, unlike the NPD
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they are modelled onto a variable raster grid. This increases processing
time, but allows higher resolution temporal estimates to be produced. This
permits the estimation of hourly population outputs compared to singular

day/night-time estimates currently available within the NPD.
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2.6 Spatiotemporal interpolation of population data

Applications of the spatiotemporal interpolation of population data have
been highlighted in Section 2.5 with examples. This section outlines the
need to move from traditional space and time representations to truly
spatiotemporal interpolations, although very few practical examples can be
found in the literature (e.g. Ahola et al. 2007 and Bhaduri 2008).

There is a large expanse of literature concerning time-space, space-time and
timespace (e.g. Hagerstrand 1975; and Thrift 1977; Pred 1984; Massey
1999). A literature also exists on the place for space-time within the
geography discipline (Merriman 2012) which suggests a paradigm shift away
from ‘science’ and views space and time as a dominant view in western

epistemology that clouds other judgement.

Time-space snap shots mimic the effect of a slow motion camera as the best
approximation to spatiotemporality in a GIS (Langran 1992). Snap shots
represent change, an important feature of time. They only represent states,
the change from one time to another, but not the events that cause the
change. Spatiotemporal representation has a huge potential, but it is highly
challenging (Raper et al. 2005). Traditional GIS and spatial data models such
as raster and vector models limit the way in which dynamic data can be
handled. A core element of spatiotemporal modelling concerns how to
measure change over time and analyse the results in GIS. Ahola et al. (2007)
suggest a suitable data model is the second core element for spatiotemporal
modelling. Such data models can be categorised according to their
organisation as space, time, feature based or a combination. Methods have
been used to incorporate the spatiotemporal transformation including 4D to
2D, 2D or 1D plus time (Raper et al. 2005), where time is considered the
fourth dimension in the space-time continuum or a two-dimensional
approximation is considered or a simple one-dimensional snap-shot in time.
There is a requirement to develop tools, structures and visualizations to

fully make use of spatiotemporal information (Raper et al. 2005).

Conventionally, GIS facilitates the representation and interpretation of
spatial data. Therefore it is useful for analysing the spatial patterns of
activity (Wang and Cheng 2001). The functions of GIS have been hugely
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benefited by advances in computing power and availability, but still require
further development to describe spatial changes with time. This builds on
the argument put forward by Massey (1999) that ‘space’ is open and
dynamic, it is not just a classic slice through time. ‘Space’ has a necessary

temporal component with which it should be paired.

The static representation of most map views in GIS often favours
description. The consideration of movement and mobility often leads to the
problem of sorting time-dependent attributes. GIS must support a number
of other data types for the purpose of modelling complex behaviour. These
include flow matrices that concern the movement of an object at a given
point in time, between an origin and destination (Goodchild 2000).
Therefore modelling movements often needs representation and
methodologies not currently present in most GIS. Most GIS software is based
on handling spatial data for mapping and navigational purposes. Digital
representations are often static descriptions because it is difficult to build
operations that process change over time. Combining space and time raises

the issue of the representational problem (Fisher and Unwin 2005).

Disaster risk cannot be fully assessed without taking into account
spatiotemporal variations in population. Several novel high-resolution
spatiotemporal population modelling techniques are emerging that readily
contribute to the field of disaster risk management. Day and night-time
population estimates for Lisbon to assess population exposure to seismic
hazards have been constructed by Freire and Aubrecht (2012) with a spatial
resolution of 25 m. Furthermore, Aubrecht et al. (2014) have developed
DynaPop, a spatiotemporal population dynamics model, which further
increase temporal granularity. Population outputs in raster format from
DynaPop at 100-500 m have an hourly temporal resolution. This example
has the potential to make significant advances on simple previous day and
night-time estimates. This work draws on useful parallels with the
Population 24/7 approach, the latter will be the focus of this thesis. In
contrast to DynaPop, the Population 24/7 technique has been tested and
suited for UK data applications. However, as spatiotemporal modelling
techniques continue to evolve future cross-overs may become a focus of

further work.
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Finer temporal resolution population density estimates are still required for
natural and technological hazard assessment (Bhaduri et al. 2007). A
temporal GIS can be defined by the representation of location, attribute and
time without fixing any component. Often one dimension is fixed, and
therefore the GIS cannot be considered truly spatiotemporal (Langran 1992).
Previous research has shown that diurnal shifts in population can be
estimated (McPherson and Brown 2004) as has been demonstrated in the
LandScan USA programme (Bhaduri 2008) and by Ahola et al. (2007), a
starting point for the recognition of the temporal variation of population

over space.
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2.7 Space and time in populations exposed to natural

hazards

Population is a function of both space and time. Limitations in mapping
population have been acknowledged for some time (e.g. Schmitt 1956).
Methods and caveats in mapping, storing and obtaining spatiotemporal
information have been explored throughout this review and are summarised
here in relation to the assessment of risk and vulnerability to natural hazard
scenarios. Requirement for a better understanding of the population
affected by natural hazards has been noted (Bhaduri et al. 2007; Aubrecht et
al. 2012b). Large numbers of people are at risk from natural disasters such
as earthquakes, volcanic eruptions, floods, droughts and wildfires. Typically
they are mostly predictable (except earthquakes and some volcanic
eruptions) and topographically constrained. Although hazards often cannot
be prevented their impact can be minimised through effective disaster

planning and emergency preparedness (Bhaduri 2008).

The spatial and temporal components of both population distributions and
natural hazard footprints are complex and likely to be the focus for
interdisciplinary research between both the social and natural sciences to
improve methodologies. The hazard component itself also has complex
spatiotemporal characteristics, independent of population and
administrative boundaries, which may be represented by simple static risk
maps or dynamic models. In order to make accurate risk assessments, not
only are adequate population data required but also the likely onset time
and extent of a hazard scenario. In the study of natural hazards it has been
recognised that improvements are required in the spatial and temporal
detail of population density (Cutter and Finch 2008) to better plan

emergency response, provisions and impacts.

Spatial population interpolation techniques lend themselves well to natural
hazard risk evaluation and provide an alternative to traditional methods. A
number of examples such as kriging, pycnophylactic and masked gridded
representations have been discussed within this review. Each provides
different advantages such as volume preservation, surface smoothing, or the

ability to handle zero population densities. Such modelled surfaces provide
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an alternative to the conventional choropleth map and associated and

unrealistic uniform population densities.

An attempt to combine population, space and hazard is exemplified through
Houston et al’s (2011) study into pluvial flooding of urban areas. They use
census OAs, the smallest census output geography in England and Wales, to
demonstrate the population potentially at risk by recognising the need to
estimate numbers of people at risk rather than just properties, common in
existing risk assessments. While this study recognises a decadal scale, it
contains little temporal information. It might be argued that it is impossible
to tell exactly when a hazard will occur, but the time of day it might strike

will have enormous implications for the population.

The size, location and demographic characteristics of a population are all
drivers for the impacts of a natural hazard (Cutter 2010). Three components
provide the intellectual basis for analysing population vulnerability and

resilience to natural hazards (Cutter 2003):

1. Physical processes: an understanding of the science of natural
hazards.

2. Human systems: interactions between society and the natural
environment which contribute to vulnerability, such as occupation of
hazardous areas.

3. Local geography: an understanding of specific characteristics of a

place such as the landscape, history, demographics and economics.

Estimating population risk and vulnerability to natural hazards is
complicated in part, often due to data availability. In a coastal flood
inundation scenario this estimation is further complicated in areas of rapid
population growth and development which continuously change the factors
influencing risk and vulnerability (Chakraborty et al. 2005). This also
contributes to spatial variations in the populations risk and vulnerability.
Spatiotemporal population interpolation estimation techniques have been
developed and lend themselves for application to hazard risk management
where vulnerability and population are defined as key characteristics (Table
2.1). This requirement has been reflected in both the literature and

legislation resulting from natural hazard events.
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Decadal censuses in many countries provide accurate and comprehensive
aggregate population counts. However, these pose limitations for
application to natural hazards, particular in the event of cross boundary
impacts. Areas affected by natural hazards are not constrained within

arbitrary administrative boundaries.

Gridded population surfaces provide a universal structure with increased
stability through time which also promotes greater compatibility with other
environmental datasets required in the hazard management process.
Population data are often aggregated to administrative zones or units before
publication. These vector data structures and arbitrary units often relate
little to the local topography and are incompatible with traditionally raster
based environmental datasets (Martin and Bracken 1993). Where gridded
population datasets are available these have been applied to make better

predictions about the population affected.

The shift from displaying population within modifiable areal units to a
universally compatible grid provides the first step towards enhanced
assessment for potential hazard exposure. Where population data are not
published as a grid, spatial interpolation methods such as those discussed
in Section 2.4 by Tobler (1979) and Martin (1989) provide a method for
disaggregation. Tobler’s pycnophylactic approach produces a ‘smoothed’
population surface. This removes abrupt changes at the boundaries of data
contained within irregular units. However, Martin’s (1989) approach allows
for locations of zero population density. This is particularly important when
concerning uninhabited locations such as water, parks or woodland.
Therefore this can provide a more realistic location for populations
potentially at harm during a natural hazard event. While the footprint of
some hazards may be unpredictable such as earthquakes or meteorite
impacts, others may form predictable extents such as the path of a
hurricane or water inundation in low lying floodplains. High resolution
disaggregated population counts permit the micro-assessment of impact as

well as understanding the wider implications.

Although grids provide greater flexibility for comparison to hazard data they
still only provide a static representation of the population at a given point in

time. Censuses provide a ‘night-time’ residential population count to

95



Spatiotemporal population modelling to assess exposure to flood risk

produce a decadal time slice. The size, location and demographic
characteristics of a population are all drivers for the impacts of a natural
hazard (Cutter 2010). These all have an important implication for natural
hazard impact assessments. The predicted or actual time of the
manifestation of a natural hazard occurring is going to expose greater
numbers of a potentially vulnerable population if for example it occurs at

peak work rush-hour or during educational term time.

Resilient societies may have developed mechanisms to cope with high
frequency, low magnitude events. Developing and combining realistic
temporal population estimates and natural hazard scenarios of variable
magnitudes allows the analysis of a worst case situation and measure of
risk. This may be in the form of an unexpected or high magnitude event that

a population is unprepared for or vulnerable to.

Gridded population estimations (Section 2.4.4) have been demonstrated to
provide a more flexible and realistic distribution of population. A critical
application for accurately estimating the population at risk during a hazard
scenario includes assessing the population exposed or injured and

emergency preparedness (Bhaduri et al. 2007).

To conclude, a number of questions and considerations in the application of
spatiotemporal population modelling to natural hazards have arisen

following this review:

= Develop a practical method for spatiotemporal population modelling
= Overcome challenges of data processing and representation
*= Proper integration between population and natural hazard risk

models which both change over time

2.7.1 Population 24/7: spatiotemporal modelling concepts

A new approach is required and a possible method is provided by Population
24/7 (Martin et al. 2009) which will be introduced in the empirical chapter
of this thesis. Like the original SurfaceBuilder software (Section 2.4.4)
(Bracken and Martin 1989) the Population 24/7 approach also redistributes
centroid populations onto a variable grid. A population may be associated

with different types of locations representing spaces of human activity such
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as places of residence and work. These are represented by centroids. A
centroid is a geographically referenced point with an associated population
count. Population centroids weighted to the most likely place of habitation
have been released in recent UK census datasets. However, custom
population centroids can also be created for use with the Population 24/7
method to represent population activity types. Centroids can be divided into
two categories: population origins and destinations. Origin centroids, which
supply the population to be redistributed onto a defined grid, might be
comprised of the aforementioned census centroids. Destination centroids
provide locations to receive the given population at a stated capacity such as
a business, hospital or school. These are the locations where population
may be present at different times during the day. Importantly, temporal
profiles can be associated with each of the destination centroids, a
difference from the NPD (Section 2.5.6). The temporal profile governs the
proportion of the total capacity for a destination centroid to be occupied for
a given time. At any moment in time, the whole population is either at one
of the locations represented by a centroid or travelling between them. These
can be termed the ‘on-site’ and ‘in travel’ population. The on-site spread
describes the population present at or immediately surrounding a centroid,
either origin or destination, location. The in travel count describes the
population in transit between centroids. The proportion of an origin
centroid’s immobile population can be user specified or based on available
data. A background layer may also be created to weight the in travel
population onto road networks or to prevent placement in uninhabited areas

such as water.

The Population 24/7 approach has been chosen to underpin the empirical
work within this thesis because of its ability to facilitate the production of
gridded population distributions for a specific time and date. Its flexible
data structure also allows the richness of population attributes to be
increased and ensures data currency. These are fundamental considerations
when assessing human risk to natural hazards which are both space and
time specific. The methodology provides a mechanism to estimate
temporary and transient populations that are not accounted for by
traditional means. For example, this includes information on the number of

employees or shoppers in retail locations on a high street. This would need
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to consider both the temporal and spatial attributes. The combination of
available datasets with the ability to store temporal information produces
spatiotemporal gridded representations of populations accounting for local
variation. The variable gridded method allows such micro trends to be

resolved.

The Population 24/7 approach also facilitates analysis of the vulnerability of
populations through the ability to handle socioeconomic attributes for sub-
groups where data can be assembled. As already noted, vulnerability is a
key contributing factor in the development of risk. The capacity to handle
age information may inform management choices for groups such as the
young or elderly who may face greater risks and require additional support
during a natural hazard event. It also increases the accurate placement of
populations within space and time, such as school age children at school

locations.
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3.1 Overview

The work presented here combines the use of a spatiotemporal gridded
population model to estimate time-specific variations in population with
natural hazard exposure estimates in the form of flood inundation data. It
has been exemplified through an application centred on Southampton (UK)
using Environment Agency flood map inundation data. The proposed
methodology is summarised in the analytical overview provided in Figure
3.1. This can be considered as three subcomponents. These will be outlined
in turn within this section. Figure 3.1A covers the spatiotemporal modelling
process, Figure 3.1B the hazard component and Figure 3.1C brings these
GIS based datasets together for analysis. Often natural hazard and
population models are not linked. The proposed methodology aims to
demonstrate the improvements to risk analysis when these are considered
together. This chapter begins with a description of the Population 24/7
methods and creation of datasets, then the study site and flood hazard data

are introduced. Finally the data analysis is described and results presented.
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Figure 3.1 Overview of analytical operations to assess natural hazard exposure.
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3.2 Modelling Population, Population 24/7 and data

structure

The spatiotemporal population modelling component (Figure 3.1A) follows
the Population 24/7 methodology developed by Martin et al. (forthcoming).
For this application population data are modelled onto a regular grid with
200 x 200 m cell size, which is appropriate to the resolution of the available
input aggregate data sources. The technique employs a variable kernel
density estimation technique to redistribute population from origin to
potential destination locations according to a distance decay function
depending on the time of day. A dataset of destination locations was initially
collated for the Population 24/7 project, which includes places of work,
education, and health care. This research has extended these methods and
datasets by building on this original ‘library’ of potential population
locations. The library is extensible, thus allowing users to develop their own
datasets, particularly for non-residential locations.

| Model Database | |

| Structure |

S Vi

| Destination centroid | [ Origin centroid | | Background mask |
Geographic Geographic
Population capacity coordinates and Population capacity coordinates and
extent extent
| | |
) Wide Area Wide Area
Temporal profile X . X .
Dispersion Dispersion

Figure 3.2 Population model data structure

This section provides an overview of the SurfaceBuilder247 software and the
method for compiling the required datasets on which the model runs. The
revised algorithm and updated software currently packaged as
SurfaceBuilder247, the successor to the original SurfaceBuilder has several

additional features. The spatiotemporal, ‘24/7’, version of the model has
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been developed to accept destination centroid locations as well as an
associated temporal profile, in addition to the original origin centroids
(Martin et al. 2009) (Figure 3.2). This has the effect of describing a
population’s presence at different times in a more realistic spatial

distribution. These are described in turn in the subsequent sections.

Following a review of the literature it is observed that the methods and
criticisms in the interpolation of population data have been around for some
time. It has been noted that population data are commonly aggregated into
a wide range varying of spatial units and reporting zones. This is primarily
driven by data management and privacy constraints. Innovative
spatiotemporal population modelling methods developed through the
Population 24/7 project will be developed in this thesis. It is intended that
these developments will permit significant improvements in the assessment

of populations exposed to natural hazards.

3.2.1 Origin centroids

The origin centroids provide the source, or supply pool, of population that
can be utilised and distributed by the model. An example would be census
centroids. However, origin centroids could be created by the user to
georeference an associated known point of population. Locations of
immobile populations such as prisons can be specified. An attributed
population count specified as immobile will not be redistributed when the
model runs. The combined population of the origin centroids defines the

model's input population.
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Figure 3.3 Census output areas and population weighted centroids for Southampton, UK.

Population weighted census centroids are a common feature of many census
datasets. The centroid represents how the population was spatially
distributed within that reporting zone. Figure 3.3 provides an example for a
mainly uninhabited, and therefore comparably greater spatial extent than a
more densely populated census OA' in Southampton. In this example the
centroid is located within the area of highest population density as
expected. Figure 3.3 also represents the highest resolution input population

data currently available for this study.

3.2.2 Destination centroids

Destination centroids represent all possible locations where a population
may move throughout the day. Common examples include places of work,
leisure or education. The user can compile any number of destination
centroids of choice. The purpose of this feature allows a pool of available
population, attributed to residential origin centroids, such as ‘night-time’
census counts, to be allocated to more temporally relevant locations. Each

destination centroid is assigned a capacity to receive population, which may

! At the time of writing small area statistics for the 2011 UK census had not yet been fully released.
Therefore, 2006 MYEs and 2001 output geography have been used for the current study.
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vary depending on the time of day and day of week, and is governed by an
associated temporal profile. The purpose of the introduction of the
destination category of centroids is to provide more realistic daytime

population density estimations.

The population of the destination centroid is assumed to be drawn from the
surrounding origin locations. The area of influence is the distance over
which population is reallocated from origin centroids to the destination in
question. This is equivalent to a catchment area for the destination and can
be described by a wide area dispersion (WAD) function for each individual
destination centroid. Careful data collection or analysis may be required to
justify the WAD function. In some examples such as a school the
destination’s population is likely to be constrained to origin centroids falling
within the radius of the school’s catchment area. Future, more sophisticated
versions of the model could be adapted to integrate spatial interaction
models to inform the WAD. If the data were available, real-time information

on population flows could be incorporated in the future.

In order to describe a destination centroid location the following essential

factors need to be considered (Martin 2011):

= Geographical location: this provides the spatial information on
exactly where a given population will be, such as the coordinates of
the building or venue represented.

= Population capacity: the population capacity for each destination. For
a school this may be derived as the number of pupils and staff.
Additional datasets and analysis are required when attempting to
estimate the population of a destination whose visitor population is
less clearly defined, such as a shopping centre (Section 3.3).

= Time profile: information is required at each destination centroid to
describe the temporal pattern over which population is expected to
be present (see Section 3.3.2).

= Spatial extent (or Local Dispersion): by definition a centroid
represented as a single (x,y) coordinate pair is a precise ‘pinpointed’
location. In reality almost any feature such as a shopping centre or

school is going to occupy a larger spatial extent. For example a
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primary school site may cover an area with radius of 200 m so would
be assigned an extent of 200 m to reflect this.

= Wide Area Dispersion: The distance the population travels to reach
the destination centroid location. As it is extremely unlikely that
everybody travels the same distance, a wide area dispersion function

can be specified in various ways (see Section 3.2.4).

3.2.3 Temporal profiles

The temporal profile is only required for destination centroids (Figure 3.4),
referenced in the corresponding destination dataset. An exact time profile
could be constructed from raw count data if such data are available at the
required spatiotemporal resolution. An example would be the school age
population allocated to a school during opening hours. A profile is not
required for the origin centroids which represent residential locations;
although a part of the population may be declared as ‘immobile’ if they are
considered unable to travel to other destinations. Examples would include

prisoners and a proportion of the elderly or hospital inpatients.

A time profile comprises two parts (Figure 3.4). The first part concerns the
‘in travel’ population associated with the destination. The second defines
the proportion of the destination’s population capacity that is actually
present, ‘on site’ at a specified time. A defined population capacity for the
destination is paired with a time stamped interval, t,, t, ... t,. The population
capacity represents the notional population of the destination when it is
fully occupied, for example when all children are at school or all employees
at work. The time profile defines the destination’s expected population as a

proportion of this capacity during each time period.
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Figure 3.4 A simple temporal profile illustrating the proportion of a destination centroid
capacity occupied (on site) and the population in travel.

In this example (Figure 3.4) none of the destination’s capacity population
are in travel at 4 am, and by 10 am, 81% are on site. A time profile can be
constructed in any number of intervals covering a 24-hour day. Different
time profiles may be assigned to different days of the week, term
time/holiday time or seasons. A specific target time is selected for each run
of the model, and any destination centroids within the analysis area will be
processed according to their time profile. Therefore, if the model is run for
10 am in this example (Figure 3.4), 81% of the capacity population is
expected to be present. Thus, if the declared capacity is 100 people, then
81 people will be allocated from surrounding origin centroids, which fall

within the area of influence to the destination.

3.2.4 Wide Area Dispersion (WAD)

The wide area dispersion (WAD) provides important information utilised by
the model concerning the supply of people to an area. The WAD describes
the population demand of the destination centroid at the target time which
is transferred from population origins within the area of influence.
Conventionally this may be informed through spatial interaction models
(e.g. Diansheng 2009), however the WAD in effect records data on the
distances travelled from known locations or centroids. Population counts are

only supplied from origins falling within this area of influence.
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For the purpose of this model the WAD comprises bands which describe the
proportion of population travelling from a specified distance. In the example
represented (Figure 3.5) a proportion of a destination’s population is

supplied from within 100 m, 2 km and 3 km. A worked example is provided

in Section 3.3.6.

Destination Centroid

Figure 3.5 Wide Area Dispersion for a destination centroid

If there is insufficient population to supply the demand in any band, the
search radius will be increased (Martin 2011). In some cases the WAD may
be clearly defined such as travel constrained within a catchment area, for

example in relation to a school.

3.2.5 Background masking layer

A background layer can be used to represent land use and transportation.
This provides constraints on the locations of any population that is not
allocated to a centroid location (e.g. the population ‘in travel’). The
background layer should prohibit placement of population in uninhabitable
space such as open expanses of unoccupied countryside, large water bodies
and oceans. For the current version of SurfaceBuilder247, the dataset may
be prepared in a GIS and exported as a raster data file to be read by the

model.

Using a dasymetric approach (e.g. Langford 2007) a land use classification
may be applied in to the masking layer to constrain population to inhabited
locations. This can be applied to the population not present around any of
the centroids at the specified time (such as those ‘in travel’). However, this

may have limitations within the current study as traditionally ‘uninhabited’
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locations such as shipping docks or areas of industry can receive large

temporary populations when passengers and the workforce are present.

To generate a background mask it is necessary to combine the relevant
datasets depending on the study area or user’s requirements using GIS.
Features can be weighted, if possible, to where they are likely to receive
more population than others. The GIS dataset is rasterised at the required

output resolution based on the weighting values to be read by the model.
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3.3 Applied example: Southampton, UK

This section provides a worked example for the creation and application of a
retail customer dataset covering Southampton, UK for use in
SurfaceBuilder247. An exemplar retail dataset has been created because the
retail population is an important spatiotemporal phenomenon as many city
centres and shopping districts see a large increase in population number
during the day that is not apparent in traditional census datasets. This
dataset has been developed for implementation in the current model for this
thesis. This section describes the creation of origin census centroids, a retail
temporal profile, retail destination capacity and finally a retail WAD. This is
just one of many other leisure datasets that could be created to represent
population activity in addition to work and education. While this is a specific

retail example the principles of dataset creation are universal.

A 25 x 25 km study area centred on Southampton has been selected to
demonstrate dataset construction (Figure 3.6). A further 25 km buffer zone
surrounds the study area in order to supply population to destinations
towards the edges, helping to relieve any ‘edge effect’ on the study area in
question. An edge effect occurs where centroids on the boundary will in
reality be interacting with populations outside the defined study area as
there is often no finite line where population movements and interactions
cease. However this case may be argued along international borders or

physical geographic barriers.
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Figure 3.6 Southampton study area and flood risk
3.3.1 United Kingdom census origin centroids

Census population weighted OA centroids are used for the origin centroids.
These provide a comprehensive population count at the current highest
spatial resolution for the UK census. The majority of OAs contain between
110-139 households (ONS 2012a). The centroid locations are population
weighted, providing a best fit by means of a single point of the spatial

distribution of population from each respective OA (ONS 2012b).
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3.3.2 Temporal profile creation

The retail dataset is just one of several datasets required to set up the
population model used in this thesis. Its purpose is to map the times and
locations of people doing their shopping that contribute to large temporary
population variations. However, these data are not readily available so the
necessary parameters outlined have been derived from broad national
datasets for specific locations. In a retail example electronic point of sale
(EPOS) data available commercially or collected by large retailers could
instead be used as a proxy for the retail time-specific population providing a
high temporal resolution. Where true count data are unavailable, numerous
approaches could be devised in an attempt to create a temporal profile.
Temporal profiles are specific to particular destination centroid type. The
following discussion will help to demonstrate one method to construct such
profiles. This discussion concerns the two components required for
constructing a valid temporal profile, the on-site and in-travel populations
(Figure 3.7). Some additional information is required: the average occupancy
duration, the average travel time to the destination (which may also be
required for WAD calculations) and the proportion of the total population

capacity expected to be present at a given time.

Figure 3.7 demonstrates that there are three principal population subgroups
to consider in relation to destination locations. These are the population
movements to and from a destination and the population present. This
population can be taken from any origin centroid from within the

destination’s catchment.
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Figure 3.7 Modelled population movements and locations

One method for calculating a temporal profile begins by considering the
proportion of people expected at a given start time, the first entry on the
time profile (t;,) (Figure 3.4). The following calculation is proposed to
estimate the on-site population, the population expected to be present at

the destination site for the given time:
The population on-site (O) at centroid j at for a specific time interval:

Where, Cis the population capacity of destination centroid jand P is the

proportion of the centroid’s population expected to present (Figure 3.7).

The in-travel population is determined through the sum of the following
formulae (Egs. 3.2 to 3.4) which concern three principal movement states.
The first is associated with the in-travel population travelling to a
destination centroid. This is calculated by detecting a population increase
between two time intervals representing the population en route. If this
value is zero, then nobody is in effect currently en route and thus it will not

contribute a population count towards the overall in-travel population:
If (P, —Pe,)+ (P, —P,) >0, then (3.2)
Population = (P, — P,) + (P, — Pt,)

Otherwise, Population =0
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The second component of the in-travel population estimate outlines the
site’s capacity and its population demand at a given time. This governs how
much of the surrounding population is drawn to the centroid. Equation 3.3
is formed of two parts. The first is a constant derived relevant to the
particular destination centroid. This is the total number of visitors (n) minus
the destination centroid’s capacity (C) divided by the total mean duration (¢ )
of individuals’ visits to the location. This is then multiplied by the
population expected to be present at centroid j (at time, t,).

n—Cj
J
i Pi

(3.3)

As Equation 3.2, the population leaving can be considered the reverse of

those arriving:
If (P, — Pj¢,) + (P, —P,) >0,  then (3.4)
Population = (P, — P,) + (P, — Pt,)
Otherwise, Population = 0

The on-site and in-travel population calculations need to be performed, and

repeated until t,, where n is the final time interval.

For example, the proportion of population present at centroid j (P) for time
one (t,) could = 10%, t, = 20% and t; = 30%. This formula determines that the
proportion present at t, is increasing because it is greater than it was in the

previous time step (t;) but smaller than the next (t,).

3.3.3 Time Profile for UK retail destinations

The development of a time profile for a retail destination dataset has been
based upon the UK Time Use Survey (TUS) 2000 (Ipsos-RSL and ONS 2000),
in order to estimate shopping habits in the UK following the profile

calculation method proposed.?

The survey comprises self-completed diaries of a nationally representative

sample of UK householders. Diary episode data is available at 10 minute

2 The 2000 Time Use Survey is currently the most comprehensive in the UK and has not yet been
repeated.
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intervals covering seven days throughout a week. Time use has been
allocated to a number of coded activities which include categories for
shopping (Table 3.1). These will be used to estimate a temporal profile for
retail activity.

Table 3.1 United Kingdom 2000 Time Use Survey: 36. Shopping and Services (Ipsos-RSL and
ONS, 2000)

Diary Code Description

3600 Unspecified shopping and services

3610 Unspecified shopping

3611 Shopping mainly for food

3612 Shopping mainly for clothing

3613 Shopping mainly related to accommodation
3614 Shopping or browsing at car boot sales or antique fairs
3615 Window shopping or other shopping as leisure
3619 Other specified shopping

3620 Commercial and administrative services

3630 Personal services

3690 Other specified shopping and services

A total of 20,981 UK respondents aged eight and over kept diaries in 144 x
10 minute intervals representing a given 24-hour period, recording a
primary and secondary activity. The retail time profile has been based upon
the number of respondents who stated shopping related activities (Table
3.1) as their primary activity. The data were analysed for three separate time
periods: Monday-Friday, Saturday and Sunday. The total number of people
and proportion who had a primary activity code beginning 36xx was

calculated for all days at each 10 minute interval.

The TUS also provides a coded diary entry concerning ‘9360 - Travel related
to shopping’. Along with the above data this has been used to create the
average time per day spent shopping and travelling for shopping (Table
3.2).
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Table 3.2 Average shopping travel and duration derived from the TUS 2000 for respondents
who shopped

Time Average R Number of Average Number of

Period el respondents shopping respondents
Shopping (min) duration (min)

Mon-Fri 38.36 3691 65.40 4287

Sat 45.33 2707 88.88 2886

Sun 38.97 1682 63.23 1630

All days 35.09 8080 72.67 8803

The proportion of TUS respondents who stated that they were carrying out a
shopping related activity at a given time is displayed in Figure 3.8. A large
peak in Saturday shopping can be observed, as expected, a traditional busy

period when many people are off work and able to shop. A restriction on
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Sunday shopping is observed and explained in the next paragraph.
Figure 3.8 Proportion of shoppers by time according to TUS 2000 diary data

The time profile suggested by the TUS data appears to be consistent with
expectations with a large surge on Saturdays and restricted opening hours
on a Sunday. The Sunday Trading Act 1994 restricts Sunday trading of
stores in England and Wales with a floor space > 3000 sq. ft. to a maximum
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of six hours permitted between 10 am and 6 pm. This legislation does not
apply to Scotland, although many major British retailers adhere to these
restrictions UK-wide (e.g. John Lewis and Marks and Spencer). However,
many small (< 3000 sq. ft.) convenience stores and larger food stores in
Scotland have extended Sunday opening times as this restriction does not
apply to them (UK Parliament 1994). Some large 24-hour supermarkets in
Scotland are open all day, seven days a week, including Sunday. These
factors are likely to account for the Sunday evening shopping activity
represented in the UK TUS data.

Three separate time profiles were created for Monday-Friday, Saturday and
Sunday using the given methodology in Section 3.3.2, as three distinctive
shopping patterns can be detected in the data available (Figure 3.8). The
average shopping duration and travel time from Table 3.2, were derived
from the TUS 2000 data.

3.3.4 Estimating destination centroid capacity

This is the first step in estimating a population count for retail dataset to
complement the other database library. The following approach has been
devised in the absence of shopping data but required to locate shopping
activity in time and space. Firstly, the number of retail employees derived
from the Annual Business Inquiry dataset (now Business Register and
Employment Survey, BRES) (ONS 2006a) are considered. The ABI employee
numbers published at LSOA level were re-weighted to OAs. A multiplier is
created to allocate shopper numbers in proportion to the daily duration of

shopping sustained by each retail employee for OAs:

UK Population

= 2900 .
Number of TUS respondents (35

Where the 2006 MYE population of the UK is 60,584,300 (ONS 2011) and

the number of Time Use Survey respondents is 20,891.

Therefore, based on the above calculation, each respondent is
representative of 2900 people in the UK. However, not everybody shops
every day. In fact only 42% (8803) of TUS respondents stated that they

carried out a form of shopping as a primary activity for the day that was
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sampled (Table 3.2). In total these TUS respondents carried out 10,662
shopping hours per day, derived from individual diary analysis of the
dataset, averaged over Monday to Sunday. This was performed using the
total number of diary entries (10 minute intervals) where a shopping related

activity was taking place.

Table 3.3 Analysis of TUS respondents engaged in shopping (Ipsos-RSL and ONS 2000)

TUS Respondents who stated their day contained: Count %
Shopping as a primary activity 8803 42
Did not undertake any form of shopping 12178 58
Total 20981 100
Travel for shopping as a primary activity 8141 39
Did not travel for shopping 12840 61
Total 20981 100

Although 42% of TUS respondents stated that they engaged in some type of
shopping as a primary activity, only 39% travelled for shopping (Table 3.3).
The discrepancy that the number of shoppers is apparently greater than
those who travelled for shopping, may be explained by some people who
travelled for other purposes such as work, who then engaged in shopping or

whose trips were of very short duration.

The assumption has been made that the TUS is nationally representative of
the UK. According to the calculation each respondent equates to 2900
people of the UK’s total population. Therefore, on an average day the
population of the UK generates 30,920,000 (4sf) shopping hours (10662
TUS shopping hours x 2900 representative UK population).

The following shopping hours have been calculated by scaling-up the hours
generated by the TUS for the whole UK population. As the TUS is a UK wide
study, the shopping hours are adjusted for England and Wales, which is the
scope of the current ABI retail employee data used in this example. The
2006 MYE population of England and Wales was 53,725,800 (ONS 2011),
which comprises a proportion of 0.89 of the total UK population. The total
UK shopping hours are multiplied by this proportion to represent those
generated by the population of England and Wales to give 27,520,000 (4sf)
(30,920,000 x 0.89).
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E&W Shopping hours per day (27,520,000)
No.of E&W retail employees (2,375,140)

= 11.6 hours day~! employee™! (3.6)

According to the ABI the 2006 retail workforce in England and Wales was
2,375,140 (ONS 2006a). Therefore, on average each employee generates
11.6 shopping hours per day. This was based on the number of employees
at businesses that fall within the retail standard industrial classification (SIC)
2003-2007 code.? This is a wide category that includes many obvious and
unusual sectors such as (amongst others): food, fruit, tobacco, fuel, art,
floor coverings, textiles, clothing, cosmetics, pharmaceuticals, household
appliances, medical goods, hardware, books, jewellery, sports goods and
mobile telephones (ONS 2009). Therefore, further refinements would be
possible if retail specific TUS data could be matched to the workforce data in

more detail.

A retail employee multiplier (Table 3.4) has been calculated to be applied to
the number of employees in each England and Wales OA to estimate the
expected number of shoppers based on information contained within the
TUS.*

Table 3.4 Average shopping duration and ratio to ABl employee

Day of week Mean shopping duration Retail employee
(Hrs) multiplier

Weekday (Mean) 0.45 2.27

Saturday 2.19 3.12

Sunday 1.72 1.77

Week (Mean) 0.88 2.32

> UK SIC codes were revised in 2007 to meet EU regulations for uniformity.
4 An alternative methodology based on retail floor space is described in Chapter 5.
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3.3.5 Locating destination centroids

Georeferenced large user and small business UPCs were used as the
destination centroid locations for retail population to represent plausible
business locations where shopping is likely to take place. The relevant
postcode districts were downloaded from the National Statistics Postcode
Directory (NSPD) for August 2006 (ONS 2006b) (Figure 3.9). The study area
including the buffer is relatively extensive and covers six postal districts:
Southampton (SO), Portsmouth (PO), Bournemouth (BH), Salisbury (SP),
Guildford (GU) and Reading (RG). The information required from within the
NSPD is summarised in Table 3.5.

Table 3.5 Information obtained from the NSPD (ONS 2006b)

Field in NSPD Description

UPC Unit postcode

OACODE Output area code for which the UPC is situated

OSEAST/NORTH  British National Grid coordinates of each UPC

USERTYPE User type: “1” (large user, >25 pieces of mail) and “0”
(small user)

SMLBUSCT Small business count: the number of small businesses at
each postcode

DOINTR Date of postcode introduction

DOTERM Date of postcode termination

Firstly, only current UPCs at the reference date of the library are of interest,
so all terminated UPCs were omitted from the dataset which was clipped to
the geographic extent of the study area and its buffer. Secondly, all large
user UPCs and those with a small business count were retained while the
rest were discarded. However, this approach will inherently also include
offices and business closed to the public, but currently this method provides
a plausible location. The UPC spread largely correlates with the shopping
and business districts expected in Southampton. Clusters are evident in the

known business districts within the city (Figure 3.9).
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Figure 3.9 Large user and business postcodes from the National Statistics Postcode
Directory. Used as destination locations to receive a mobile retail population for
Southampton, UK.

The retail customer count calculated for each OA was divided equally by the
number of business UPCs present within their respective OA. For this
purpose a small number of non-geographic PO Boxes used by some
organisations had to be disregarded. As expected, some OAs did not
contain any business UPCs and therefore the original OA centroid locations

were retained.

The importance of improved destination locations can be seen in Figure
3.10. The estimate of retail footfall derived from the multiplier discussed
was distributed onto business UPCs. This provided a more accurate spatial
distribution compared to using the original OA centroids. The multiplier to
the retail workforce at population weighted residential OA centroids instead
of UPCs posed some spatial anomalies. The proposed method provides
shopping estimates within each OA. This could be refined if detailed

location, retail classification, time use or employee data was available.

124



Methods and Data

(A) Midday

(B) Midday Eastleigh retail/leisure
— area

| Local shopping

= Hedge End - out of
L—" town retail area

.| City/retail centre
H|

Fareham shopping

centre

Retail Population

Value
High : 5013

Low: 0

Figure 3.10 SurfaceBuilder247 results for an estimated Saturday temporary retail population
at 200 m for the Southampton study area based on (A) OA centroid locations and (B) Business
UPC locations. Including the population travelling to and from a retail activity.
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3.3.6 Retail Wide Area Dispersion (WAD)

The WAD represents how far people travel to a destination location. There
are several commercial datasets and localised studies that give some
indication of the average distance travelled to the nearest food store in the
UK. For a Bristol study, Sustrans (2006) estimated that 12% of shoppers
travelled less than }2 mile, and 40% > 2 miles. The National Travel Survey
2010 states that the average (1995-2010) trip length for shopping in Great
Britain was 4.3 miles (DfT 2010).

Time spent travelling for shopping at a 10 minute resolution for the UK is
available from the TUS 2000. Travel time has been converted into distance
in order to formulate a WAD for this example by assigning an average travel
speed. This is likely to impact differentially on estimated distance travelled

for those who walk to a shop rather than drive.

A nationally representative vehicle speed estimate of 17 mph has been used
based on the data sources detailed in Table 3.6 to estimate distance. Data
concerning ‘A’ roads and motorways in England is available in the DfT’s
Congestion and Reliability statistics (DfT 2011a). The data are supplied to
the DfT by Trafficmaster. The data is obtained from GPS tagged subscribers
for traffic information. They feedback live data supplemented by sensors
(Trafficmaster 2012). The example WAD created is assumed to be an
average representation. However, for small scale modelling an appropriate

speed revision by local authority in England could be considered.

Table 3.6 Average urban vehicle speed on ‘A’ roads during the morning
peak (7-10am) 2010/11 (DfT 2011a)

Unitary Authority Average speed (mph)
City of London 9.2

Bristol 15.5

Manchester 15.8

Southampton 17.0

Liverpool 17.3

Birmingham 18.5

Newcastle upon Tyne 19.1

According to the National Travel Survey 22% of people walk to the shops
(DfT 2010). The Accessibility Dataset uses the assumptions that an able
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person is willing to walk up to 1.2 miles (1.9 km) at a speed of 3 mph (4.8
km/h) to reach a shop (DfT 2011c¢).

Travelling 1.2 miles at 3 mph would take 24 minutes. Based on the
assumption that people are prepared to walk for up to 24 minutes, 22% (The
NTS proportion likely to have walked) of the TUS respondents who spent 10-
30 minutes travelling to the shops are assumed to be walkers, and have
their travel distance reduced accordingly. As 10-30 minutes of walking at 3
mph will produce a shorter, more realistic distance travelled over the same
time as those driving or using public transport at 17 mph. Therefore, 22% of
the respondents represented in the 10, 20 and 30 minute bins are assumed
to have walked at 3 mph. This distance has been adjusted accordingly

(Figure 3.11).
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Figure 3.11 Histogram of distance travelled for shopping derived from TUS 2000 shopping
behaviour data

The percentages used represent the proportion of the number of people
who stated that they travelled for shopping in the TUS on the sample day in
question. This consisted of 38.8% of all TUS respondents who travelled for
shopping (Table 3.3). Respondents who travelled greater than 23 km were
grouped into the final bin as at this point 78% of the respondents had

already been accounted for, and this is to improve computational efficiency.

The model has been designed to read population data and produce results
for different subgroups. Currently age bands have been used, based on the
fact that different age groups are going to have varying behaviours.
Furthermore, it would be possible for the user to define their own bands
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based on subgroups relevant to their application such as gender divides etc.
The retail age bands used in this example were taken from the information
on the age and employment status of the TUS respondents. As a category
existed for ‘full time student over 16’ it was possible to determine the

number of students who shopped.

The above approach has been proposed as an option in the absence of
available commercial datasets. The assumption has been made that there is
a direct relationship between the number of store employees relative to the
attracted number of customers. The approach is based on the assumption
that a large busy store, such as a supermarket, will employ more people
than a small newsagent. However, it currently does not take into account the
differing ratio of retail employee to customer for the different types of retail
activity. A major retailer might have much more accurate information about
a sample of their own customers or a spatial interaction model to estimate
regional flows but the exact dataset is not available. The steps outlined
above propose an attempt for a retail activity model based on data currently
available. This approach resolves the main locations and daily trends,
although it could be improved with more detailed information, still provides
a more realistic estimate than assuming the population remains at

residential locations all day.

The proposed retail dataset is very general and based on some fairly large
assumptions; however it provides a plausible estimate where currently there
is little data for widespread uniform daytime town centre population counts.
There are a number of ways in which this dataset could be further refined if
desired for a specific purpose or location. This dataset very broadly
concerns ‘shopping and retail’, but it would be possible to further
differentiate by retail type. This is important as there is likely to be a
significant difference in any assumed employee to customer ratio. A large
supermarket is likely to have many customers per employee compared to a
small specialist store. Secondly, the time spent engaged in different types of
retail activity may be different. People may be more likely to spend longer in
a large supermarket, department or home improvement store compared to a
small convenience store or newsagent. There may also be a considerably
different temporal profile depending on the different types of retail activity

mentioned.
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A further limitation may be considered in the age of the time use survey
which was completed in 2000. The rise of online shopping and changing
opening hours in the form of the 24-hour mega-store are likely to have had
an impact on customer behaviour since the TUS. A future step to attempt to
quantify any behavioural shift might begin with a more in depth look into

contemporary retail studies.

The number of retail employees by LSOA according to the ABI dataset
assumes that the given number of employees is present every day, not
taking into account higher staffed busy periods or shift patterns. Some of
the ABI classified retail employees may also take ‘head office’ roles inflating
the number of employees working in a ‘shop’. It also assumes that part-time
employees are evenly distributed throughout the week. In this
implementation employees are redistributed over time in the same

distribution as the retail customers.

This approach estimates the number of potential customers to an LSOA by
scaling-up shopping hours generated in the UK. These were then divided by
the average shopping duration and converted into population counts. It
provides one example of an additional activity type. Although the full
dataset library of the model has not been described in detail it also contains
workplace data, education data by category of institution and health data by
type of patient. Datasets produced as part of the Population 24/7 project
have been used for these. This can be amended or extended as required.
Compared to static day or night-time models the results become very
detailed when different temporal profiles and activity measures are included.
The case studies presented in Chapters 4 and 5 demonstrate the

comprehensive construction of new population data libraries.

3.3.7 Study area background mask

A rasterized population masking layer has been constructed using GIS for
GB. This is formed of the GB outline preventing population placement
offshore (Figure 3.1A). This is particularly important for this coastal study
area, and a noticeable improvement from local authority boundaries that
extend to the centre line of watercourses. The background mask also

includes lakes as uninhabitable water bodies. The road network is
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represented including motorways and category ‘A’ roads. The road network
is weighted to receive a varying proportion of the in-travel population. The
relative weight depending on the date and time is derived from the
Department for Transport’s National Transport Model statistics (DfT 2010).
Therefore a range of background layers have been compiled that adjust the
transportation weighting accordingly for the day and time. A Monday at
08:00 will have a greater weighting taking into account commuters than a
Sunday at 08:00.

A background mask has been created using national datasets and clipped to
the relevant areas of interest. Firstly, a coastal outline, water bodies,
motorways and the principal road network (OS Meridian 2) polygons/lines
were processed using a GIS. The landmass was rasterised to the required
output grid resolution (200 and 100 m) and assigned a cell value of zero.
Water bodies and the surrounding ocean was assigned a no data value. This
provides the most basic layer on which population are constrained to the
landmass for use in SurfaceBuilder247. The model facilitates this by
excluding the placement of population in locations containing no data

values.

The layer is enhanced with DfT road traffic statistics in the form of count
data. Average Annual Daily Flows (AAFD) from the Great Britain Road Traffic
Survey (DfT 2013) provide a vehicle count by type, georeferenced location
on the road network (count point) and road type. The AADF is the total daily
traffic count at a specific point on the road network averaged across a year.
These are available for rural and urban principal (category A) and major
(motorway) roads. Raw average daily vehicle counts by vehicle type are
converted to population estimates based on average vehicle occupancy data
(Table 3.7).
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Table 3.7 Average vehicle occupancy by vehicle type and time of day (DfT 2011b)

Weekday (by time of day) Average
Vehicle type 0700t 1000t 1600t 1900t Week- Week- All
o o o o da end week
1000 1600 1900 0700 y
Pedal cycle' 1 1 1 1 1 1 1
Motorcycle' 1 1 1 1 1 1 1
Cars and taxis 1.46 1.59 1.53 1.54 1.54 1.88 1.58
Buses and 13.2 13.2 13.2 13.2 13.2 13.2 13.2
coaches
Light goods 1.23 1.23 1.23 1.23 1.23 1.35 1.25
vehicle
All HGVs 1 1 1 1 1 1 1

'Approximatly = 1

The National Transport Model (NTM) (DfT 2005) estimates the distribution of
the AADF on the road network depending on the time of day and day of
week. This is given in 19 time periods (Table 3.8). This allows the temporal
distribution of traffic counts and resultant population estimated to be

spread accordingly on the relevant road type.
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Table 3.8 NTM time periods used for traffic flow distribution (DfT 2005)

P-Ie-zir"i"oed Day Time Description [zll:;?‘t::)n
1 Mon-Fri  00:00-06:00 Off peak 6
2 Mon-Fri  06:00-07:00 AM peak 1
3 Mon-Fri  07:00-08:00 AM peak 1
4 Mon-Fri  08:00-09:00 AM peak 1
5 Mon-Fri  09:00-10:00 AM peak 1
6 Mon-Fri  10:00-16:00 Inter peak 6
7 Mon-Fri  16:00-17:00 PM peak 1
8 Mon-Fri  17:00-18:00 PM peak 1
9 Mon-Fri  18:00-19:00 PM peak 1
10 Mon-Fri  19:00-22:00 Shoulders 3
11 Mon-Fri  22:00-00:00 Off peak 2
12 Saturday 00:00-09:00 Saturday night 9
13 Saturday 09:00-14:00 Saturday Day 5
14 Saturday 14:00-20:00 Saturday Day 6
15 Saturday 20:00-00:00 Saturday night 4
16 Sunday 00:00-10:00 Sunday Night 10
17 Sunday 10:00-15:00 Sunday Day 5
18 Sunday 15:00-20:00 Sunday Day 5
19 Sunday 20:00-00:00 Sunday Night 4

outlined below:

The method followed to produce the background mask layer in a GIS is

. Rasterise land mass (cell value = 0, no data value = -9999) and lake

polygons (cell value = no data) to user required resolution (200-100

m).

. Import vector polyline major and principal road network.

. Import Annual Average Daily Flow (AADF) counts by georeferenced

count point (CP) and vehicle type for all major roads (Motorway and A

roads).

. CP attribute added to indicate whether rural or urban.

5. Proportion of daily flow adjusted according to NTM time periods (DfT

2005).
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6. Population estimate based on average occupancy data (Table 3.7)
depending on vehicle type and time of day/day of week for all CPs.

7. Population count extracted by CP for target day and hour based on
average hourly percentage distribution of daily flow (DfT Statistics).

8. Interpolation tool (e.g. ArcGIS: IDW, Spatial Analyst) used to distribute
population count onto the road network (mask). This should be
undertaken in two stages for motorways and principal roads. This is
in order to prevent motorway counts being spread onto the

surrounding road network and vice versa.

Under the UK road classification system category B to unclassified roads
have not been considered in this application. This is partly due to the
availability and coverage of sufficient count data. Many minor routes are not
monitored (manually or automatically). Therefore it is not currently possible
to make an informed decision on the traffic flow of minor roads at present.
In 2010 the majority (64.1%) of traffic travelled on the major and principal
road network (DfT 2011b).

This layer helps to determine the distribution of temporary in-transit
locations of population, ensuring that people travelling by foot, car or public
transport will be constrained by the road network and not unrealistically
spread over empty space in the background layer. A refinement could
consider other aspects of the transportation network such as rail that are

not currently included.

3.3.8 Retail data opportunities

Precise customer footfall data can be purchased and compared with EPOS
information. However, difficulties can still arise when attempting to allocate
regional footfall data to individual sites. Furthermore, access to such data
may also be constrained by expense and geographical coverage. Some UK
shopping centres utilise FootPath, an intelligence technology that tracks
signals from a consumer’s mobile telephone using discreet censors. Data
are fed back to a central processing unit for analysis that can pinpoint
people to within a few metres (Path Intelligence 2010). However, the

technology has attracted criticism from civil rights campaigners concerned
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that such technology constitutes a breach of privacy, although individuals

remain anonymous (Morris 2012a).

An alternative to using the number of retail employees could be allocating
footfall in proportion to the floor space of the store (see Chapter 5). The
Department for Transport has released food store locations with coordinates
and floor space for England under the Accessibility Destinations Dataset
(DfT 201 1¢). Similarly, this concept is based on the same assumptions that

larger stores, with assumed higher costs, are sustained by higher footfall.

Additionally, or where data restrictions occur, free point of interest (POI)
data are available from some commercial satellite navigation companies.
Many major store chains release free POl downloads for users containing the
locations and names of their stores. These can also contain additional
information such as facilities and telephone numbers. Free data from
commercial websites can be converted (e.g. using GPSBable:

www.gpsbabel.org) into computer readable universal file formats and

imported as decimal degrees into a GIS.

3.3.9 Flood hazard component

In the preceding sections the population model components (Figure 3.1A)
have been discussed with an illustrated example of a dataset creation. This
section briefly examines the natural hazard data input and study site

context (Figure 3.1B) with analysis of the results (Figure 3.1C).

The study area (Figure 3.6) has been chosen for an example flood risk
application. The Solent separates the Isle of Wight from southern England
and provides a natural deep water channel for large shipping vessels.
Approximately 24,000 properties are considered to be within the tidal flood
plain of a 1 in 200 year flood in the Solent (NFDC 2009). Historical record
analysis by Ruocco et al. (2011) discovered up to 20 flood events in
Southampton since 1935. The region’s industrial and shipping success has
been attributed to the complex tidal system, resulting in double high-tide
each day. However, under storm surge conditions the Solent can experience
an increase in sea level of up to 1 m (Ruocco et al. 2011). The combination
of the region’s topography, location and tidal system has the potential to

dramatically increase the flood risk within this area. Southampton Water is a
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narrow funnel-like channel leading from the Solent to the Port of
Southampton, vulnerable to storm surges driven by low pressure systems,
or north sea surges that propagate through the English Channel (Wadey et
al. 2012). When combined with high spring tides these events pose a
heightened flood risk and exert pressure on existing defences. This region
and accompanying low lying areas contain major coastal transportation
links, population centres and commercial and military ports. These activities
have contrasting spatiotemporal patterns, making this study area of

particular interest for spatiotemporal population modelling.

There are large fluctuations in urban populations over a range of timescales.
For example, the two universities within this study site, the University of
Southampton and Southampton Solent University, had a combined 2011/12
student population of 38,885 (HESA 2012). Likewise large events or sporting
fixtures also contribute to these changes. A major contributor is the Port of
Southampton which is the UK’s busiest cruise ship terminal and second
largest container dock (ABP 2013). In celebration of the 175" anniversary of
the P&O company in July 2012, the operator’s seven cruise ships left
Southampton Docks in formation with an estimated 40,000 passengers on
board. Analysis of the Population 24/7 model results suggests that the
average weekday population size of this study area is approximately
522,000. This is greatly influenced by people commuting to work and
shoppers in key retail locations. WestQuay is a prominent regional shopping

centre with an average weekly footfall of c. 300,000 (WestQuay 2011).

Figure 3.1B relates to the incorporation of natural hazard datasets or
models. The modelled population density grids (Figure 3.1A) are combined
with Environment Agency flood map data (for July, 2012). The Environment
Agency is the public body responsible for issuing flood warnings and
maintaining flood defence infrastructure within England and Wales. The
flood map is the result of probabilistic and scenario-led hydraulic modelling.
The most likely scenario under the ‘zone three’ (high probability)
(Environment Agency 2012c) extent (Figure 3.6) has been utilised: this
models inundation caused by fluvial and tidal flooding with a 1% and 0.5%
annual probability of occurrence respectively. Within the study area,
approximately 78 km? is at risk of tidal or fluvial flood inundations under

the zone three scenario. The modelled population surfaces and flood
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extents have been analysed using GIS and are stored in a results database
with the modelled population data (Figure 3.1C). Potential exposure
estimates to the flood hazard are reported. This has been conducted for a
range of time slices and age bands. The methodology developed allows the
integration of additional hazard maps or more sophisticated hazard models

in Figure 3.1B. These results are reported in Section 3.3.11.

3.3.10 Potential enhancements for spatial resolution

The example application constructed has shown the appropriate use of
census population weighted centroids for use as origin centroids within the
modelling process outlined. They represent a realistic distribution of
residential population (e.g. Figure 3.3). This has permitted the use of the
200 m output model resolution based on the spatial distribution of these
points. By their design PWCs related to residential census populations. To
increase model output spatial resolution further (e.g. Chapters 4 and 5) the

use of georeferenced UPCs is suggested.

Georeferenced UPCs can be used as one method to increase the spatial
resolution of data within the remit of what is currently available. For the
residential population, census OA counts can be redistributed onto UPCs
that are contained within the respective OA. Full UPCs are available coded to
the OA in which they are situated. Census OA counts can been re-weighted
onto UPCs in proportion to the address count. The address count is the
number of postal delivery locations (assumed to be approximately equal to
the number of households) within the UPC. Typically a residential postcode
may represent around 15 properties. The proportion of the population
allocated to each UPC is derived from the total OA population according to
the share of address counts each UPC contains. For example a UPC with
address count of 25 within an OA with a total address count of 100 would
be allocated a quarter of the OA’s population. This technique provides an
enhanced spatial distribution of population density at a sub OA level without
exceeding the smallest scale in which data are available. Figure 3.12
illustrates an example LSOA and its constituent OAs each with a PWC
alongside the residential postcode distribution. This example LSOA, located
in Southampton, covers an urban and city parkland area. It comprises of five
OAs indicated by the number of PWCs (as each OA only has one). This
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includes the same OA illustrated earlier in Figure 3.3. Both the distribution
of PWCs and UPCs within this LSOA show an accurate reflection of the likely
places occupied by the population. They are all concentrated within the

urban portion of the LSOA rather than the parkland.

The increased density of UPCs compared to PWCs provides greater detail in
the LSOAs population distribution. The same procedure can be followed for
non-residential UPCs. The main difference is that businesses usually have
their own unique postcode making the redistribution of employees reported
by LSOA onto UPCs more straightforward. Where non-residential UPCs
contain a small business count it can be taken into account within the

overall redistribution weighting.

e PWC [ ]LS0A2001 ———
®* UPC (Residential) [ | OA2001 O 250 500 Metres

Census output is Crown copyright and is reproduced with the permission of the Controller of HMSO
OS Map data © Crown Copyright/database right 2014. An Ordnance Survey/EDINA supplied service

Figure 3.12 Comparison of PWC and residential UPC distribution and density for an example
LSOA in Southampton.
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Enhancements based on this method have been implemented following the
lessons learnt from this applied example to increase the model output

resolution from 200 to 100 m for the two case studies (Chapters 4 and 5).

3.3.11 Southampton applied example: results

Figure 3.13A shows total population for rasterised 2001 census output
areas and the population modelled in 200 m grid cells for three different
times of day (Figure 3.13B-D). There is a stark difference between the
conventional area-based population model in Figure 3.13A and the gridded
representation in Figure 3.13B-D which much more accurately indicates the
higher central densities and extensive unpopulated areas, even in this
relatively urbanized region. A large daily variation in population occurs.
During the working day (Figure 3.13B), population becomes highly
concentrated in specific areas such as the city centre and in local clusters
such as schools and colleges, as employees and students travel to, and
temporally remain at, places of work and study. Population also increases in
the non-residential areas of the city centre due to people travelling to
engage in other activities as Southampton is a major retail and
transportation hub. The 08:00 model differs from the 20:00 model with
more people in the transportation network at 08:00 - mostly on their way to

work or school (Figures 3.13B and D).
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Figure 3.13 (A) Rasterised 2001 census output area total population counts. (B)-(D)
Spatiotemporal model outputs showing total population for three time slices, together with
Environment Agency flood map data. All maps at 200 m resolution for a ‘typical’ weekday.
There are spatial (Figure 3.13) and temporal (Figure 3.14) variations in
populations potentially exposed during the day. Preliminary analysis
suggests that the total population exposed to the Flood Map Zone 3 flood
risk peaks towards the end of the typical working day (Figure 3.14).
However, differentiating the flood risk components (Figure 3.14) highlights
an interesting phenomenon within the Southampton study area
demonstrating the power of spatiotemporal population estimates.

Throughout the day, exposure to fluvial flood risk closely resembles the
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reciprocal of tidal exposure with a symmetry approximately centred during
standard working hours (08:30-17:00). Tidal patterns have not been
accounted for. The pattern observed may be attributable to the region’s
coastal concentration of industry and commercial activity. As employees
commute to the coastal regions during the day their tidal flood exposure
increases; when they return home to residential locations further inland in

the evening fluvial flood risk becomes the dominating factor.
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Figure 3.14 Estimated total population exposure by time of day for flood map zone three
comparing the static census, a modelled ‘typical’ weekday and a typical Sunday. Where the
annual fluvial flood risk is 1% and tidal 0.5%.

Figure 3.15 indicates the percentage composition by age groups of the total
population exposed at 12:00 and 20:00 and also the changes in the size of
the exposed population over time. The reversal in exposure between tidal
and fluvial flooding is most notable within the working aged population (16-
64), where there is a large decrease in tidal exposure in the evening when
comparing 16-64 tidal exposure between 12:00 and 20:00. It can also be
seen from the heights of the bars that the total population exposed

fluctuates over time.

140



Methods and Data

12000
10000 -
0>65
§ 8000 - @16-64
g 16-64 HE
[}
N 6000 4 m16-64 FE
£ @11-15
3 4000 -
E4-10
2000 - m0-3
0 ‘ BN ‘ :

Fluvial 12:00 Tidal 12:00 Fluvial 20:00 Tidal 20:00

Figure 3.15 Age composition of population potentially exposed to fluvial and tidal flooding
during the working day (midday) and evening (20:00). HE: Higher Education; FE: Further
Education

Further analysis of the population engaged in different activities has been
conducted for the working age population for representative times of 08:00
and 12:00 (Figure 3.16A-C). The figure shows the population in these
groups who are travelling in the transportation network or at destination
(i.e. non-residential) sites. These were selected to examine the spread of
population during the morning commute and middle of the working day. At
08:00 (Figure 3.16B) it can be seen that the working age population at non-
residential destinations is relatively low, compared to Figure 3.16C which
reflects the concentration of this group at workplaces and other destinations
during the day. As expected, when more people migrate into a hazardous
zone their exposure is dramatically increased within this age range during
the day (Figure 3.16D).
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(D) Population exposure
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Figure 3.16 Modelled results for (A) the working aged (16-64) population in travel, (B) on-site
at 08:00, (C) on-site at 12:00 and (D) the flood risk exposure to the working age population
for a typical weekday (cell size: 200 m).

Similarly, the spread of the university student population has been
examined for the same typical term time weekday (Figure 3.17). During the
day it can be observed that this population is concentrated on the city’s two
universities and spreads back into the student residential areas during the

evening.
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Figure 3.17 Modelled representation of the higher education (HE) student population for a
typical term time weekday at 12:00 and 20:00 (cell size: 200 m).

3.3.12 Observations from the Southampton example

The modelled outputs contrast starkly with the coarse, static ‘night-time’
population density coverage given by the 2001 census output area map.
The difference between the maximum cell values in the census and
modelled outputs highlights the concentrated nature of population density
during the working day, which is excluded from traditional census maps.
The modelled outputs also provide a more realistic distribution with zero

population densities for uninhabited areas.

The selected study site has a high proportion of coastal industry and
university students. The diurnal trends in the modelled data (Figure 3.14)
may have been predicted, but can be isolated and quantified using the
methodology proposed. During ‘typical’ weekday working hours there is a
shift from fluvial to tidal flood risk. It was possible to narrow this change
down to a particular population subgroup, those of working age population
(Figure 3.15). Population exposure was further analysed for representative
times of midday and 20:00. This provided insight into two contrasting

points within the usual daily cycle. The reversal from tidal to fluvial
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exposure occurs in the 16-64 working age category. At midday, tidal risk is
the predominant risk to this population subgroup, however by 20:00 this
again becomes fluvial. One suggested explanation for this pattern is
employees travelling to work in the more exposed coastal locations. On
return home to the predominantly inland residential locations fluvial risk
becomes the main factor. It can also be observed that there is a notable tidal
flood risk to higher education students throughout the day. While there is
not such a large reversal of this trend in the evening it does decrease.
Possible reasons for this may be the locations of student halls of residence
or sites within the institutions. The spread of students in evening residential
locations (Figure 3.17) shows that a large portion are within the central area
of the city with greater exposure to risks. For vulnerability assessment and
the purposes of emergency preparedness this spatiotemporal technique

indicates potential improvements over traditional static hazard maps.

The calculated fluvial and tidal population exposure according to the 2001
census is represented by the baselines on Figure 3.14. These can be
contrasted with the dynamic modelled results. It can be observed that the
fluvial exposure according to the census appears to greatly overestimate
flood exposures. However, even for emergency management this provides
little insight due to the unrealistic spread of population densities into
uninhabited areas which may be at risk of flooding. The modelled results
suggest that large portions of the time-specific population at risk are highly
concentrated in specific areas depending on the time of day and population
age range (e.g. Figures 3.13, 3.16 and 3.17). The spread and concentration
of this population at a given time is of more relevance to emergency

planners for targeting resources and emergency plans.

The modelled results provide innovative opportunities to make enhanced
assessments of subgroups of the population and their activities. It can be
used to simulate peak travel times according to the population in travel.
This case study exemplifies that different age groups are more at risk at
different times. The richness of this detail cannot be interpreted from static

census estimates alone.

High resolution disaggregated population counts permit the detailed

assessment of impact as well as understanding the wider implications. The
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flood scenarios described in the Solent study area may not be considered
rapid onset events with modern prediction and forecasting tools, but
flooding does have the potential to occur rapidly and without prior warning
(Murray et al. 2012).

In addition to the spatial grid, a structure has been tested that has the
ability to handle the storage and representation of temporal information
regarding population distributions. Static grids can be readily updated with
the inclusion of ancillary datasets and temporal information. The
methodology provides a mechanism to estimate temporary and transient
populations that are not accounted for by traditional means. The
combination of available datasets with the ability to store temporal
information produces spatiotemporal gridded representations of
populations accounting for local variation (Figure 3.14). The gridded method

allows such detailed trends to be resolved (e.g. Figure 3.17).

The Population 24/7 methodology also provides scope to analyse the
vulnerability of populations through the ability to model any population sub-
groups for which relevant data can be assembled. As already noted,
vulnerability is a key contributing factor in the development of risk. The
capacity to handle age information may inform management choices for
groups such as the young or elderly who may require additional support
during an emergency situation. It also improves the accurate allocation of
populations in space and time, such as school age children at school
locations. This information could be used to target emergency response and

health care provision.

This approach cannot provide insights into human behaviour in an
emergency situation or provide real time information. It essentially describes
predictable population redistribution over time based on data availability
and computational efficiency. There are very many ways in which the data
sources and detailed distributional models could be enhanced within the
current modelling framework. However, the approach could be utilised to
inform emergency plans for known risks under a range of scenarios and
temporal scales. While it is not possible to know exact future population
movements this approach allows the computation of probable distributions.

The temporal characteristics of the natural hazard have not been directly
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addressed in this case study. For example, tidal information indicating a
high spring tide under storm surge conditions in the middle of the working
day is going to have a greater effect on some of the population subgroups

identified in this study.

3.3.13 Applied example: lessons learned

This empirical chapter demonstrates the enhanced insights and
improvements in the accuracy of exposure estimates to hazards to be
gained by combining innovative spatiotemporal population modelling
techniques and GIS based layers concerning natural hazard extents. The
potential utility of such models for flood risk management has been
demonstrated and provides a wealth of detailed data for analysis where the
census alone is not suitable for this particular task. Pending further dataset
development and validation, this technique has direct application to natural
hazard scenarios both within the UK and globally. The data structure of the
model allows the user to readily refine or supplement the input datasets.
Web data mining and the rise of open-source data are likely to make
compiling time-referenced population datasets easier and more accurate in
the future. One example of their use could be to refine temporal signals in
population movement. An additional step in this methodology would be the
integration of a spatial interaction model to enhance the catchment areas of
destination locations. The results in this report provide a window of
opportunity to further refine this methodology for policy makers and
emergency planners and address the key aims outlined at the start of this

thesis.
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4.1 Overview

This chapter introduces the first of two case studies designed to
demonstrate the application of the population modelling techniques
outlined in Chapter 3. The primary focus of this case study is around the
modelling of population exposed to a rapid onset dam failure scenario at
Ulley in South Yorkshire, UK, on 25 June 2007 and is described in further
detail below. The emphasis concerns the intersection of spatiotemporal
population and environmental models. The analysis of the effect of a sudden
onset dam failure flood event is presented, while considering a temporally
varying diurnal population trend. Hydrological modelling has been
undertaken to simulate the dam failure and analysed with results from the
population modelling. The additional modelling is required to provide a
dynamic insight on rapidly evolving events, where a static risk map alone

may not be sufficient.

The rest of this chapter is structured as follows: the first section provides
the background and rationale for the choice of case study. The risk of the
dam breach at Ulley occurred while the UK was experiencing severe
nationwide flooding. The second section describes additional case specific
methods and data overview. These concern the creation of a Population
24/7 data library and the construction of embankment breach and flood
spreading models. The third section presents the modelled outputs and
integrates these with flood hazard data. The fourth section provides some
comparison with census data in an attempt to validate model results. A
condensed version of this chapter has been published in the proceedings of
the British Dams Society (Smith et al. 2014b).
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4.2 Flood context and background

Dam failure events can occur with little or no warning with rapid onset
times. This may result in devastating catastrophes in downstream areas (He
et al. 2008) with little chance to respond. The risk from such events remains
high in locations with significant potential for severe losses, although the
frequency is fortunately low. Human susceptibility and key infrastructural

assets heighten vulnerability and the risk posed from sudden dam failures.

The remainder of this chapter sets out to demonstrate this scenario by re-
examining a notable dam failure that actually occurred in the UK in 2007.
The failure at Ulley Reservoir in South Yorkshire, a nineteenth century clay-
earth embankment dam that was left it in a critical condition, posing a real
threat of collapse and narrowly avoiding disaster (Bissell 2010). The near-
miss situation became a focus of a period of severe nationwide flooding
experienced in the UK that year. It featured prominently in Pitt’s (2008)
independent review of the flooding experienced. Following the incident at
Ulley and Pitt’s recommendations subsequent safeguards have been
adopted and legislated for. This included a review of reservoir inspection

and risk assessment procedures (Porter 2012).

4.2.1 Ulley reservoir and case study location

Ulley reservoir is located three miles south-east of Rotherham and five miles
east of Sheffield, Yorkshire, UK. It is presently a country park, owned by
Rotherham Metropolitan Borough Council (MBC). Construction of the earth
embankment dam was completed in 1874. The supply of drinking water
from Ulley ceased in 1986 when it was taken over by MBC as a recreational
facility. During exceptional widespread flooding experienced in the UK
during summer 2007 the dam was destabilised. A study area has been

focused (Figure 4.1) on Ulley reservoir and the surrounding locality.

Increasing industrialisation and population growth within the Yorkshire
region during the nineteenth century increased the demand for an adequate
and clean water supply. This was driven by the increase in the cotton and
steel industries and concerns over healthcare and access to safe drinking

water. Poor health and intermittent water supply caused by shortages
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prompted the construction of the reservoir at Ulley to alleviate these

concerns.

study area

0 1 2 4 Kilometres
OS Map data © Crown Copyright/database right 2014. An Ordnance Survey/EDINA supplied service

Figure 4.1 Ulley study area extent with Great Britain insert

The features described here are typical of many dam constructions. These
are basic construction components which are important to understand in
order to inform the modelling undertaken and the lead up to the 2007 Ulley
flood event. Ulley dam was constructed by Messrs Lawson and Mausergh of
Westminster between 1871 and 1874 (Arup 2008). Like many dams of
similar design within this region it consists of a single earth embankment
with puddle clay core. ‘Puddle’ is a watertight clay-based material. The
puddle core forms an impermeable barrier at the centre of the embankment
with the base excavated well into the ground to prevent water seepage
underneath the core. At Ulley the top of the core has a width of 6 feet above
the water level tapering out to a thickness of 15 feet at its base (original
technical drawings provided by MBC). The core is supported by a
surrounding layer of ‘select material’, usually a sand-based mixture or loam.
This is intended to deter burrowing animals that may otherwise excavate
into the core and compromise the integrity of the dam. Finally, this is
surrounded by earth as the outermost and protective layer to form a

traditional embankment as seen in Figure 4.2A. The reservoir is relatively
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small at approximately one mile in length with a capacity of 580,000 m?
(Arup 2008).

Until 2007 Ulley had three spillways (two being disused) (Figures 4.2A and
E). Spillways are channels that facilitate the controlled release of water from
a reservoir (Figure 4.2C). These prevent dams from overtopping and allow
the response to the variability of water levels based on rainfall and other
inputs. The original 1874 spillways were in the form of a symmetrical pair of
stepped masonry channels, masonry blocks joined (pointed) with mortar.
These were disused, but would have channelled flow across the
embankment from either side (see Figure 4.2A). These were superseded by a
concrete stepped spillway constructed in 1943 which channels overflow
away from the embankment. In addition to the spillway, like most dams,
Ulley also has a scour pipe. This is a pipe or tunnel outlet that runs through
the bottom of the dam and embankment which can be used to lower the
reservoir water level quickly in an emergency (BDS 2010), such as during the
threat of imminent dam collapse. This allows water to be removed from the

reservoir and piped downstream of the embankment.

153



2010 Spillway
location

Photograph: Hinks et al. (2008)~s#

Photograph: Hinks et al. (2008)

Figure 4.2 The anatomy of Ulley dam (A) Emergency stabilisation June 2007, limestone filled scour hole, (B) Replacement 2010 concrete spillway, (C) Remaining
channel entrances to the original 1874 masonry stepped and superseding 1943 concrete spillways (now above maximum water level), (D) Entrance ramparts
comprising the only remains of the 1874 spillway (the rest was removed post-2007), (E) June 2007 storm overflow in the ‘unused’ 1874 spillway. Photographs:

Alan Smith, August 2014 (unless cited).
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4.2.2 June 2007 incident

On 25 June 2007 a slow moving depression bought prolonged heavy rainfall
to northern and central England, with more than 90 mm of rain falling in 18
hours (Environment Agency 2007b; Met Office 2011). June 2007 was the
wettest in England and Wales since 1860 (Marsh and Hannaford 2007).
Intense slow moving frontal rainfall on the 25 June fell on saturated ground
with some rivers already exceeding capacity and reservoir levels high. It is
estimated that the rainfall levels that led to this event had an annual
probability of occurrence of 1% (Warren and Stewart 2008). The prolonged
rainfall had already caused widespread flooding in this region. The impact of
the collapse of the Ulley embankment would have been exacerbated by
significant volumes of standing floodwater already within the catchment
(Section 4.2.3, Figure 4.3).

The mechanics of the events leading to the risk of destabilisation at Ulley
have been well documented (e.g. Hinks et al. 2008; Mason and Hinks 2008,
2009). Despite a larger concrete spillway having been constructed in 1943,
flood water reverted to the original masonry stepped spillway which
intercepted the main earth embankment. This in itself represented an
original design flaw as it exposed the vulnerable front face of the
embankment to an unnecessary risk of erosion (Porter 2012) and

subsequent destabilisation.

High outflows caused by prolonged rainfall on saturated ground overtopped
the 1943 spillway and caused the reactivation of the original 1874 masonry
stepped spillway that it had replaced. The masonry spillway, which was
unused but remained in situ, suffered deterioration of its channel after
reactivation due to overspill from the 1943 spillway (Figure 4.2E). The
hydraulic pressure of the overspill flow, the force exerted by the flow, that
had managed to reactivate the original spillway, exceeded the retaining wall
threshold (its resistance to spillway flow pressure) causing it to collapse and
facilitating the erosion of the dam embankment material (Warren and
Stewart 2008). This caused a 20 x 6 m scour hole in the face of the
embankment (Oliver and Owen 2007), putting the stability of the entire dam
at risk (Figure 4.2A). During the flood, peak flow on the failed spillway was
estimated at 6.1 ms"' (Figure 4.2E) (Horrocks 2010). Rotherham MBC was
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advised to take immediate emergency action to prevent major flooding
downstream following destabilisation of the dam (Environment Agency
2007b).

The larger 1943 concrete spillway was constructed following an earlier
inspection finding that the original 1874 spillway lacked sufficient capacity
(Arup 2008). Following the 2007 incident the previous spillways (1874 and
1943) were removed and replaced with a single central concrete spillway,
which was completed in 2010 (Figure 4.2B). The latest concrete spillway
permits a further increase for peak flow capacity on the 1943 rate as well as
greater resilience to turbulent flows compared to masonry spillways,
particularly if the mortar pointing between blocks has been allowed to
deteriorate. The capacity of the scour pipe was increased to twice the
original capacity. It can now drain 40,000 m?® day', enough to lower the

reservoir water level by 1 m per day (Horrocks 2010).

Approximately 1000 people were evacuated in downstream areas of the dam
from the villages of Catcliffe, Whiston and Treeton. he M1 motorway was
closed northbound between junctions 32 and 34, and southbound between
junctions 34 and 36 (Sturcke et al. 2007) for 40 hours at an estimated cost
of £2.3 million (Environment Agency 2007b). In addition to the population
exposure there was also a substantial risk to critical infrastructure and
assets. These included a high pressure gas main, high voltage electricity
pylons, a regional substation, telecommunication towers, highways, water

treatment works and the M1 motorway.

Emergency work to re-stabilise the dam and reduce water levels continued
before the motorway was reopened. The initial remedial action involved
packing the scour hole with 2,500 tonnes of crushed limestone and
pumping water from the reservoir into the 1943 spillway to lower the
reservoir level. Repair of the dam cost £3.8 million and resulted in the
construction of improved scour pipe capacity, and a new reinforced concrete

spillway in the centre of the dam (Horrocks 2010).
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4.2.3 Antecedent downstream conditions

The collapse of Ulley dam would have added the reservoir’s volume to an
already inundated downstream catchment (Figure 4.3). Measurements
referenced from aerial imagery were used to confirm the pre-existing water
level at 31 mAOD (Above Ordnance Datum), which was subtracted from a 2
m LiDAR DTM to estimate depth.

3

al

Ulley Reservoir

By

Figure 4.3 Aerial photograph (08:23 26/07/2007) showing antecedent flood extent on Ulley
Brook and the River Rother (M1 junction 33 image centre). Red flood water discolouration
caused by suspended sediment from Ulley embankment erosion (upstream) Photograph:
Hinks and Mason (2007)

The downstream catchment was revisited and present-day photographs
taken against static features used to further estimate flood depth. These
were compared to photographs taken at the time of the incident by Lomas
(2007) (Figure 4.4). The photographs taken in Catcliffe show an antecedent
floodwater depth at this location of 1.2-1.5 m. The red telephone box
(located on the B6066 Orgreave Road roundabout, Catliffe, BNG: 442532,
388467, Figure 4.4D) is the same one that is visible in Figure 4.4A-C. The
modelled flood water depth at the same location 1.46 m (see Section 4.4)

and can be corroborated by these observations.
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(A) Catcliffe B6066 roundabout, June 2007 (B) Catcliffe B6066 roundabout, o/s The Plough public house, June 2007
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Figure 4.4 Estimating the June 2007 floodwater depth downstream from Ulley (survey pole 1.5 m). Blue dashed line: estimated water level (D). Photographs (C
and D): Alan Smith (August 2014).
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4.2.4 Yorkshire dam failures

Unprecedented, catastrophic dam failures are not unknown in the region
surrounding Ulley. The complete collapse of Dale Dike Dam in 1864 (13
miles west of Ulley) caused the Great Sheffield Flood, resulting in
considerable downstream destruction and 244 fatalities. The dam collapsed
under severe storm conditions while being filled for the first time. The
breach resulted in the discharge of c. 3 million m* of water (Amey 1974) into
the narrow catchment below. The embankment was of the same earth/clay
construction type as Ulley, which was to be constructed less than ten years
later. In June 2007, under the same conditions that contributed to the Ulley
incident, flooding on the River Don at Sheffield was also at its worst extent

since the 1864 collapse of Dale Dike dam (Environment Agency 2007a).

On 19 June 2005 the same mechanism that was to be repeated at Ulley only
two years later resulted in a dam failure at Boltby Reservoir, North Yorkshire
(60 miles north of Ulley). Boltby, also a nineteenth century earth
embankment dam, had a considerably smaller capacity than Ulley at
130,000 m? (Porter 2012). However, the reactivation and failure of a
masonry stepped spillway under a storm flow eroded the dam’s
embankment material to expose the puddle clay core and risk collapse. The
use of the reservoir as a drinking water supply had already ceased in 2003,
prior to the incident. Therefore, a decision was made to permanently drain
the reservoir to negligible levels rather than attempt a costly repair. A ‘v’
shaped notch was cut into the embankment to prevent the reservoir from re-
filling (Walker 2008). These incidents highlight the important nature of
reservoir risk management and the potential for catastrophic impact on the
exposed human populations that live downstream. In all three examples at
Dale Dyke, Boltby and Ulley the requirement for a rapid response with little
(or no) warning to intervene and prevent a disaster is clear. This small
snapshot of dam failures in this specific locality demonstrates that any
subsequent disaster has the potential to have a high impact in both human
and economic costs. The sensitivity of the time at which an emergency
might occur is important for the potentially exposed population. Estimating
populations in time and space, such as the application of the Population
24/7 techniques, provides a method to assess and analyse these

sensitivities.

160



Case study | - Ulley

4.3 Case specific method and data

This section introduces further methods and data specific to this case study
which are in addition to what has already been presented in Chapter 3. The
additional hydrological modelling outlined has been supported through
collaboration with HR Wallingford Ltd. Figure 4.5 provides an analytical
overview of the methodology. This is split into three categories: (A)
modelling the embankment breach for Ulley under the conditions of the
2007 incident, (B) modelling the resultant flood inundation and (C) bespoke
considerations for the population modelling component. These will be
discussed in turn within this section. The embankment breach modelling
using EMBREA (A) provides an estimate of the dam’s outflow hydrograph
should it have failed. This is a required input parameter for the flood
inundation modelling (B). This major flow input from the dam breach
influences the extent of flood spreading and downstream flow velocities and
depths. The output from the inundation modelling using TELEMAC-2D
consists of flood extent, depth and velocity. This is combined with 100 m
gridded spatiotemporal population estimates using the Population 24/7
approach (C). The combination of the estimate of potentially exposed
populations that vary by time of day, flood flow velocities and depths
facilitates the analysis of the risk posed to people. This is described in

Section 4.3.5 in the evaluation of a flood hazard rating.

The ability of the Population 24/7 approach to produce population
estimates for varying time intervals allows the observation of how the risk
posed to people by a rapid onset dam failure is time sensitive. Furthermore,
the gridded population output permits the integration with such
environmental models which could not be achieved with static population
data reported in arbitrary, variable spatial units. An 8 x 10 km study area
(Figure 4.1, BNG origin: 440000, 386000 m) centred on Rotherham
encompassing Ulley Reservoir to the southeast has been selected. This
covers the population immediately downstream of the reservoir that could

be exposed to a dam failure event.
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Figure 4.5 Analytical overview of (A) flood risk modelling components and analysis in terms of embankment breach modelling, (B) flood inundation modelling
and (C) the population component. Model: bold type, specific software: (italicised in brackets).
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4.3.1 Slope stability analysis

Before any breach analysis for Ulley was conducted the warnings of
imminent collapse were evaluated to confirm whether a breach (i) could be
likely and (ii) if so, how it would occur. This step is required before any
modelling is commenced. The outcome of the slope stability analysis will be
used to inform the type of failure parameter in the embankment breach
modelling (Figure 4.5A). There is a general acceptance that the dam almost
certainly would have been breached if the failure of the embankment had
been allowed to continue unchecked or unless immediate remedial action
was not taken (e.g. Oliver and Owen 2007; Mason and Hinks 2008; Horrocks
2010). This was required to prevent further damage and relieve pressure on

the structure, exerted by the water contained behind the embankment.

The physical condition of the embankment as surveyed post-incident by the
geotechnical engineering firm Arup revealed a number of weaknesses within
the embankment structure (Arup 2008). The clay core was found to contain
higher than expected amounts of silt, making it more susceptible to erosion.
There was also the possibility that cracks had formed in the core allowing
water to permeate through the embankment. The height of the clay core was
increased in 1969 with a concrete extension, however this was found to
have deteriorated and was judged to be life extinct. The report also found
that the select material surrounding the core was mostly indistinguishable
from the rest of the embankment material. Finally, there was evidence of
seepage at the back of the scour hole indicating that water had indeed

penetrated the core and saturated the embankment, decreasing its stability.

An analysis of the embankment’s slope stability under these conditions was
conducted using the software SLOPE/W (Figure 4.6). This resolves both
moment and force equilibrium equations to calculate a factor of safety
(FOS). In this context the FOS is defined as the ratio of total available shear
stress of the soil within the embankment to the shear stress required to
maintain equilibrium along a potential slip surface (USDOI 2011). Thus it is a
ratio of stabilising and destabilising forces that gives an indication to the
probability of failure of an embankment depending on a set number of

conditions.

164



Case study | - Ulley

The geometry of the embankment at Ulley (derived from original technical
drawings) was created in SLOPE/W and represented as a homogenous earth
embankment with puddle clay core (Figure 4.6). The select material was not
treated separately because it had been deemed indistinguishable in the
post-incident geotechnical report (Arup 2008). The geometry was altered to
represent the removal of the supporting toe material, earth supporting the
base of the embankment, by the scour hole. As the geotechnical report also
indicated clear evidence of seepage the cohesion, resistive property, of the
embankment material was reduced to simulate full saturation (Figure 4.6).
This occurs when water has penetrated the puddle core and fills the pore
spaces within the embankment material. This acts to reduce the supporting
material’s cohesive strength and increases the embankment’s likelihood of

slope failure under gravity.

The SLOPE/W analysis suggests that the supporting embankment material
would have been liable to slipping following erosion of the toe material
under the 2007 incident conditions if remedial action had not been taken.
This would have exposed the core and the horizontal force equilibrium
would be lost causing it to be overcome by destabilising forces without the
support of the downstream embankment structure. The Ulley embankment
was given an FOS of 0.718 in the scenario where undercutting had been
permitted to continue (Figure 4.6). Removal of the toe material is likely to
have destabilised the embankment. An FOS >1.5 is considered satisfactory
for dams while <1.0 is unsafe (FERC 2005). Undercutting of the
embankment material was initiated during the 2007 flood event but was
fortunately prevented from worsening following emergency remedial work.
Should the breach have continued, these preliminary core stability

calculations suggest that the core would have failed.
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4.3.2 Embankment breach modelling (EMBREA)

The EMBREA (EMbankment BREAch Assessment) complex model, developed
by HR Wallingford Ltd., was used to undertake the breach analysis for the
embankment at Ulley. EMBREA is a research and development model
commercially available as HR Breach (FLOODsite 2009). It was used to
simulate the failure mechanism of the dam and derive the resultant outflow
hydrograph. This is necessary to predict the impact of the dam failure and it
is a key parameter for the resultant flood spread modelling (Figure 4.5A)

(see next Section 4.3.3).

There are several reviews of dam breach models (e.g. Mohamed 2002;
Mohamed et al. 2002; Wahl 2004) which evidence an established history of
breach modelling. However, these types of models, and therefore their
outputs, are often subject to large uncertainties (Froehlich 2008). Given the
varied nature of dam and embankment construction designs, materials and
types there is not a ‘one size fits all’ modelling approach. EMBREA was
selected for this case study as it is most appropriate for earth embankment
dam breach simulations. This is in part due to its ability to handle structures
with multiple earth layers such as a clay core, select and embankment
material. It also permits a range of failure options for layered embankments.
The most likely failure scenario for Ulley (Figure 4.5A parameter) is
embankment overtopping. This is based on the evidence of geotechnical
reports and slope stability analysis (Section 4.3.1). Overtopping occurs when
the embankment core fails, resulting in the release of the water contained
behind the dam. The slope stability analysis suggested that the core would
fail when the supporting embankment material was removed through scour

and slope failure (Figure 4.7).
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Figure 4.7 Cross-sectional schematic of the embankment failure process on an earth
embankment dam. Where (a) is the initial condition and (b-d) represent the first to third stage
failures of the embankment.

A block failure occurs (Figure 4.7B) when an exposed section of the core is
destabilised due to the initial slip of supporting embankment material. This
results in a breach flow, a sudden release of dammed water which causes
further removal of embankment material supporting the core. With
increasing exposure of the core, stresses in the core increase and
subsequently give rise to further block failures (Figure 4.7C and D) as the

embankment material is eroded.

The required input parameters used in this study for EMBREA (Figure 4.5A)
are summarised in Tables 4.1 and 4.2. The output is a breach hydrograph
(Figure 4.8).

Table 4.1 Input parameters for EMBREA

Parameter Description Source(s)
Upstream Reservoir inflow Not used
condition
Volume stage The volume of water within Arup technical report
curve the reservoir

Dimensions of core and Original drawings
Dam geometry I

ayers
Embankment Physical material properties = Rotherham MBC
material properties (see Table 4.2) geotechnical report

The upstream condition parameter (Table 4.1) was not used as the inflow to

the reservoir was not deemed significant given the enormous magnitude of
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a potential breach. Furthermore, on un-gauged inlets it would be arbitrary to
quantify a highly variable estimate based on current and previous conditions
within the catchment. Like the 2007 incident, the model scenario assumes
the reservoir is already full and at overtopping capacity. Therefore any minor
additional input is inconsequential during the initial stages of slope failure

considered in this case.

The values defined for the physical properties of governing the dam breach
modelling parameters (Figure 4.5A) in Table 4.2 have been based upon
specific information from within the geotechnical survey (Arup 2008). Where
these are unknown expected and default values have used under the
guidance of consultant dam engineers at HR Wallingford. For example the
cohesion of the clay core is much greater (by intended design) than the
surrounding saturated select material (as anticipated under the June 2007
conditions). The friction angle, dry unit weight, erodability, plasticity index
and Manning’s n (a coefficient representing channel friction) have been
assigned standard values based on the composition of materials used in

earth/clay dam embankments.

Table 4.2 Dam physical material properties

Property Clay core Select Source(s)
material

Median particle size (Ds,) (mm) 0.05 0.2 Arup (2008)

Porosity (%) 0.37 0.37 Arup (2008)

Dry unit weight (kN m?) 24 24

Friction angle (deg) 30 30

Tensile strength (kN m?) 0.01 0.01

Cohesion (kN m?) 100 0.1

Erodability coefficient (cm*Ns') 0.01 5

Plasticity index 0 0 Default

Manning’s n 0.025 0.025 Default

A selection of model parameters based on the dam’s physical properties are
summarised in Table 4.2. The dam has a crest height of 16 m and a volume
of 580,000 m? (Hinks et al. 2008). Whilst there are inherent uncertainties in

any form of modelling there still remains a known volume of water within
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the reservoir that will cause significant flooding downstream following a

breach.

Figure 4.8 is the breach hydrograph derived from EMBREA following
successful modelling of the embankment breach through overtopping. This
is a direct input into the next stage of flood spread modelling required for
the risk analysis (Figure 4.5B). The hydrograph shows breach discharge
against time from the initial failure. Three distinct peaks can be observed at
approximately 0, 300 and 850 seconds of 250 and 600 m3s™ respectively. It
represents an instantaneous onset with a very short lived duration (c. 200
seconds). The peaks (b) to (d) correspond with the series of block failures
schematically represented in Figure 4.7. The sudden failure and removal of
embankment material and release of stored water through these block
failure events produces the instantaneous discharges shown in this

hydrograph.
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Figure 4.8 Ulley breach discharge hydrograph
4.3.3 Flood spreading and inundation modelling (TELEMAC-2D)

The extent of a potential inundation following a breach at Ulley was
simulated using the open source TELEMAC-2D hydraulic model

(www.opentelemac.org) (Figure 4.5B). The tool has been widely used for

flood and breach applications (e.g. Malcherek 2000; Fernandes et al. 2001;

Cooper et al. 2013). It models free surface flows based on nodes joined in
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an irregular triangular mesh. This allows refinement for specific areas of
interest such as rapidly changing topography. TELEMAC-2D was employed
for this case study because this mesh provides better description of
topographic features that interfere with the inundation process (e.g. road
embankments) (Di Baldassarre et al. 2009a) which are a key feature of the
study area. TELEMAC-2D is a two-dimensional model that solves the 2D
shallow water equations, enabling it to represent water movements between
the channel and flood plain (Di Baldassarre et al. 2009b). The complex
topography in this case results in flow prediction requirements from the
embankment breach as well as constraining topographic features. For this
reason TELEMAC-2D was appropriate to model the flood inundation from

Ulley Reservoir.

The mesh is created using Blue Kenue which is a pre/post processing
hydraulic tool developed by the Canadian Hydraulics Centre of the National
Research Council Canada (NRCC). The tool is currently available under a free
use licence (NRCC 2014). It has been used to prepare model data input for
this study as it permits the integration of geospatial data with model input
and results data for a number of hydrological models including TELEMAC-
2D.

For this study a notional impermeable barrier bounded the selected study
area. This is insignificant for the modelling as the flood spreading was
naturally constrained by topography within the area of interest. Topographic
information was contained within the mesh which was generated from the
creation of nodes. These represent spot heights derived from a 2 m LiDAR
digital surface model (DSM) (Environment Agency 2013). Two-metre
resolution LiDAR is currently the finest available at the scale required for
this flood analysis. Natural (e.g. Ulley’s situation within the Rother Valley)
and constructed (e.g. dam and motorway embankments) topographic
features within the study area have a critical influence on flood water
spreading (Figure 4.9). The 2 m resolution DSM is required to resolve
features such as raised road and rail embankments for the purpose of the

flood spread modelling in this example.
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Figure 4.9 LiDAR digital surface model (resolution: 2 m, November 2012) showing M1
junction 33 (left) and the reservoir embankment (right).

The extensive pre-existing flood extent downstream has been accounted for
as initial conditions within the models input parameters. The depth of
standing flood water is mapped onto the input mesh for TELEMAC-2D
(Figure 4.5B). If the dam had failed it would have been in addition to
inundation on the flood plain immediately downstream. Depths for the
existing downstream flood extent were estimated from aerial photographs
(Figure 4.3) taken during the emergency response. The image was used to
define boundary height forming the edges of the flood extent. This was
achieved using Ordnance Survey spot heights on a 1:25k scale map. The
height the antecedent flood inundation reached (31 mAOD) was extracted as
an isoline from the topography mesh using Blue Kenue. The difference
between the isoline and the topography was calculated to estimate the flood
depth across the flood plain.

The EMBREA breach hydrograph was used for the reservoir discharge
parameter within TELEMAC-2D (Figure 4.5A). The discharge source location
is assigned to a node’s coordinates. A location in the centre of the reservoir
embankment was chosen. Culverts through notable barriers downstream
such as the railway and motorway embankments are accounted for by
breaks in the DSM (Figure 4.9). While the capability to account for friction

173



Spatiotemporal population modelling to assess exposure to flood risk

variation based on land use classification remains it was deemed
insignificant for this study. This was attributed to most of the existing and
output flood extent being within similar land use zones. The effect of
friction was still accounted for by applying a representative default value
across all areas. The modelled outputs concerning the spreading of a breach
event for water depth and velocity were exported from the model’s mesh as
xyz data. The data were subsequently rasterised to a 15 m resolution for
analysis using ArcGIS. This resolution is the finest achievable based on the
density of nodes within the model’s mesh, which is in turn derived from

variation within the topography.

4.3.4 Spatiotemporal population modelling

The Population 24/7 tool that has been described in detail in Chapter 3 has
been used to produce spatiotemporal estimates for the Ulley study area
(Figure 4.1). The population estimates (Figure 4.5C) are analysed with the
hydrological model outputs using ArcGIS for an assessment of the flood risk
to people. An 8 x 10 km grid of 100 m cells (n cells = 8000) of population
density for hourly time intervals during a ‘typical’ term-time weekday
(reference date: June 2007) has been produced. This permits the population
potentially exposed to the flood risk of an Ulley dam failure to be analysed
within a diurnal cycle. The reference date for the data used to construct the
model has been selected to be representative of the conditions at the time
of the Ulley 2007 incident.

Table 4.3 outlines the sources used to construct the Ulley data library for
the Population 24/7 model. The model for Ulley only considers a term-time
population base-line as the dam failure occurred on a June weekday. The
workplace and education locations facilitate the known movement of people

to their respective activities following a predictable daily trend.
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Figure 4.10 Histogram of percentage of Rotherham OA population travelling less than 30 km
to work
For the purposes of the population modelling component a 30 km buffer
zone has been applied to the study area to mitigate against edge effects
caused by peripheral population movements. This was derived through
analysing travel to work data from the 2001 census (Table UV80). This was
the highest resolution and most comprehensive dataset available at the time
of writing. 94.3% of the working population within OAs in the Rotherham
district travelled < 30 km to work, while 91.9% travelled < 20 km (Figure
4.10). These data concern the usual resident population aged 16-64 in
employment (excluding those with no fixed place of work, working offshore

or outside of the UK).
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Table 4.3 Ulley Population 24/7 data library composition and sources

Data source(s)

Name Description Type ) Location . Wide Area
Population Temporal profile . .
geography Dispersion
Ulley usually  Baseline ‘term Origin 2007 MYE NSPD (May 2007) N/A N/A
resident time’ population residential UPCs
population
Education Count of pupils Destination  Schools Census (DfE  NSPD (May 2007) Population 24/7 Population 24/7
and students in 2007) Georeferenced project project
full time education Independent Schools UPC for
(school, college Census (2007) institutions
and university) HESA (2007) site(s)
Education Workplace Destination  ABI (2007) NSPD (2007) LFS (2007) Census (2001,
workforce population counts Business UPCs Table UV80)
(SIC: P)
Health service Workplace Destination  ABI (2007) NSPD (2007) LFS (2007) Census (2001,
workforce population counts Business UPCs Table UV80)
(SIC: Q)
Manufacturing Workplace Destination  ABI (2007) NSPD (2007) LFS (2007) Census (2001,
and population counts Business UPCs Table UV80)
construction  (SIC: C, F)
workforce
Wholesale and Workplace Destination  ABI (2007) NSPD (2007) LFS (2007) Census (2001,
retail population counts Business UPCs Table UV80)
workforce (SIC: Q)
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Table 4.3 continued

Name

Data source(s)

Description Type .
Population

Location
geography

Temporal profile

Wide Area
Dispersion

Office based
workforce

Transportation
workforce

Catering
workforce

Workplace Destination ABI (2007)
population

counts (SIC:

J, K, L, M, N,

O,R,S, T,

U)

Workplace Destination ABI (2007)
population

counts (SIC:

H)

Workplace Destination ABI (2007)
population

counts (SIC:

)

NSPD (2007)
Business UPCs

NSPD (2007)

Business UPCs

NSPD (2007)
Business UPCs

LFS (2007)

LFS (2007)

LFS (2007)

Census (2001, Table
uv80)

Census (2001, Table
uv80)

Census (2001, Table
Uvs8o0)

Notes: SIC (Standard Industrial Classification, Annual Business Inquiry (ABI) 2007)
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4.3.5 Flood hazard rating

A flood hazard rating methodology has been developed by Penning-Rowsell
et al. (2005) to assess the risk of death or serious injury to people exposed
to flooding. The flood hazard rating aims to quantify the flood hazard in
terms of the flood characteristics (depth and velocity) (DEFRA 2006). This is
one method to compare one flood event to another against the same
criteria. While the methodology outlined aims to quantify population
exposure to a given hazard by time of day, the use of a flood hazard rating
considers the magnitude of the hazard. Like population the magnitude of a
hazard also changes throughout space and time. This method of
guantification in conjunction with detailed hazard maps, such as those
outlined in this chapter, permits the severity of the flood hazard to be
analysed in space and time. This rating has been adopted for this study as a
tool that can be applied nationally within the UK (e.g. DEFRA 2006). The
hazard rating can be combined with assessments of the area vulnerability
(Eq. 4.2) and the people vulnerability (Eq. 4.3) to estimate the number of
injuries and fatalities (Egs. 4.4 and 4.5).

The flood hazard rating (HR) is formulated:
HR =d(v + 0.5) + DF 4.1)

Where, d = depth, v = velocity and DF = debris factor (0, 0.5 or 1). The three
stage debris factor score depends on the probability that debris will lead to
a significantly greater hazard. The debris factor has been set to 0.5 for this
example. The area immediately downstream of the dam is arable pasture
with few sources of debris. The flood modelling has identified a number of
crucial culverts. Therefore, although the sources of debris may be low, the
effect of blocked culverts would be high. The hazard rating is assessed

according to the criteria in Table 4.4.
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Table 4.4 Flood hazard rating and risk to people after Priest et al. (2007)

Hazard Flood Description

rating hazard

<0.75 Low Flood zone with shallow water or deep standing
water.

0.75-1.25 Moderate Flood zone with deep water or high velocities.

Danger for some.

1.25-2.00 Significant  Flood zone with deep fast flowing water. Danger
for most.

> 2 Extreme Flood zone with deep fast flowing water.
Extreme danger for all.

Area Vulnerability (AV) considers the amount of flood warning, flood onset
speed and the nature of the area. Each parameter for the AV is given a score
based on set criteria (Table 4.5) which is then summed (Eq. 4.2). This gives
a range of 3 (least vulnerable) to 9 (most vulnerable) depending on the

area’s characteristics.

AV = Speed of onset + Nature of area + Flood warning (4.2)

Table 4.5 Area vulnerability score matrix after Penning-Rowsell et al. (2005)

Score
Parameter : : : : :

1 (low risk) 2 (medium risk) 3 (high risk)

Speed of Slow (many Gradual (= hour) Rapid

onset hours)

Nature of area Multi-storey ‘Typical’ Mobile homes,
apartments residential schools, busy roads,

bungalows etc

Flood warning Effective with Warning system  No warning system

emergency plans present, but

limited

Overall area vulnerability for the Ulley study area has been evaluated using
Equation 4.2. This produced a score of 9 (maximum), indicating a very high
area vulnerability. The flood warning and speed of onset parameters are
given the highest score (3). The onset of breach events is often
instantaneous (rapid) leaving little time to warn even if a general flood
warning system is in place. The nature of the area includes major
transportation infrastructure as well as a mix of typical residential dwellings

in addition to schools and commercial units (score = 3).

180



Case study | - Ulley

People Vulnerability (PV) (Eg. 4.3) assesses the population characteristics
and their propensity to experience harm. The PV is given a percentage score
of 10, 25 or 50% based on criteria relating to the populations age and health
(Table 4.6).

PV = % esidents longterm illness + Y%residents aged > 75 (4.3)

Table 4.6 People vulnerability score matrix after Penning-Rowsell et al. (2005)

Score (%)

Parameter ) ) . . .
10 (low risk) 25 (medium risk) 50 (high risk)

% Pop. Aged > 75  Above national  Around national Above national
years average average average

% Pop. long-term Below national Around national  Above national
sick/disabled average average average

This information has been referenced from the 2001 census because 2007
is an inter-censual year and this level of detail is only available for 2001. The
population aged over 75 years was obtained from Table KS002: Age
Structure. The percentage of the population living with a limiting long-term
illness was obtained from Table KSO08: Health and Provision of Unpaid Care.
The values for the Ulley study area are summarised in Table 4.7. These have
been determined from the required age and long term illness characteristics
reported for parishes and local authorities within the study area that are at
risk from the dam failure inundation. They represent the population across

the whole reporting zone as published without further interpolation.
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Table 4.7 Population characteristics by parish/local authority (Census 2001, Tables KS002
and KS008) for locations within the study area compared to national average (England).

Pop. aged Difference Pop. Long- Difference

Location over 75 (%) from national term illness from national
average! (%) average’

Rotherham 7.09 -0.54 22.41 +4.48

Catcllife 6.22 -1.32 24.63 +6.70

Treeton 6.85 -0.69 22.00 +4.07

Study area 6.72 -0.82 23.01 +5.08

mean

England 7.541 17.93¢

(Average)

Based on the data in Table 4.6 a population vulnerability of 75% (25% + 50%)
for the study area has been calculated. The proportion of population aged
over 75 is around national average (score = 25%, Table 4.6). However, the
population with a limiting long-term illness is much greater than average
(score = 50%, Table 4.6).

Finally, the preceding components are combined to give an estimate on the

number of injuries and fatalities for a given flood event.

HRXAV

N(I) = 2N, —*

X PV 4.4)

Where, N(l) = number of injuries, N, = population living in the flood plain, HR
= hazard rating, AV = area vulnerability and PV = people vulnerability

Fatalities = 2N(1)% (4.5)

The AV and PV have been determined based on the area as a whole.
However the population exposed, flood depth and velocity varied by cell and
is the output of the modelling described within this chapter. The number of
injuries, and therefore fatalities can be calculated on a cellular level. The
problem of spatial units still exists by means of differing resolutions
between these gridded flood inundation (15 m) and population (100 m)
outputs. This is much easier to overcome in a grid than with varying
arbitrary spatial zones. The 100 m population dataset has been resampled

and adjusted to 15 m resolution using a scale factor of 44 (100 + 15)2. This
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is provided with the caveat that the actual variation of population within the
100 m output cell cannot be determined based on the resolution of
currently available input data. Therefore an equal distribution has been
assumed. It is important to note that this thesis does not intend or attempt
to claim potential injuries or fatalities to the nearest 15 m. Instead this
method allows the assessment of the overall flood event while considering
local variations in flow parameters and population. Furthermore this is
approach is repeated for population data for different times of the day to

examine any spatiotemporal variability.

A hypothetical worked example is provided in Table 4.8. The same process

is repeated for all cells (n = 961 3) within the flood polygon.

Table 4.8 A hypothetical worked example for a single 100 m cell for time t.

Property Value Notes

Flood depth 0.5m Cellular value determined from
TELEMAC-2D depth output

Flood velocity 2 ms’ Cellular value determined from
TELEMAC-2D velocity output

Debris factor 0 Unlikely (range: 0-1), value applied to
all cells

Population exposed 35 Cellular value determined from
Population 24/7 for time t

Area vulnerability 9 3+ 3+ 3 (Table 4.5, Eq. 4.2)

People vulnerability 75% 25 + 50 (Table 4.6, Eq. 4.3)

Hazard rating 1.25 Eqg. 4.1

Number of injuries 6 Eq. 4.4 (rounded up to 0 dp)

Number of fatalities 0.13 Eqg. 4.5
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44 Results

Results following the integration the spatiotemporal population and
environmental modelling outputs outlined in the previous section are
presented here. They will be discussed in the following order: firstly, the
outputs from the hydraulic modelling undertaken. This presents estimates
for the flood extent, depth and velocities derived from the combination of
the flood breach and spread modelling (Figure 4.5A and B). Secondly, a
flood hazard rating has been calculated based on the flood depth and
velocity variables according to Equation 4.1. Velocity and water level (height
AOD) time series have additionally been extracted from the TELEMAC-2D
inundation outputs at the motorway embankment. Thirdly, the population
distribution has been described and spatiotemporal variation in flood risk
exposure illustrated. The spatiotemporal population estimates have been
compared to static census counts. Finally, a fatality estimate has been

calculated and spatially represented.

4.4.1 Hydraulic modelling (TELEMAC-2D)

Water depth and velocity results derived from TELEMAC-2D for the post-
breach inundation extent for Ulley Reservoir are shown in Figure 4.11. These
represent the flood level 45 minutes after the start of the breach. The
maximum flood depth and velocity do not necessarily occur at the same
time however this extent is a close approximation. The output extent
recognises the antecedent flood conditions. The greatest depths occur in
river channels, while increased velocity occurs from the initial breach and
through culverts (see also Figure 4.12). The highest flows of 5.5 m s occur
immediately downstream of the embankment. The channelization effect of
the culverts creates localised intensification in velocity. The maximum depth

(up to 6 m) outside of the river channels is to the south of Catcliffe.
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Figure 4.11 Flood inundation results for water depth (left) and velocity (right)
4.4.2 Flood hazard rating evaluation

The flood hazard rating (Figure 4.12) identifies the locations of greatest
depth and velocity. The HR for each cell has been calculated (Eq. 4.1) using
the flood modelling outputs (Figure 4.11). The highest rating occurs within
the original channels. The majority of the centre of the southern half of the
flood polygon has a hazard rating >5. This is well into the extreme category
and would pose extreme danger to all exposed (Table 4.4). While we may
not expect people to be present in the river channels where the hazard is
rated the greatest (HR > 20), people do still enter or get into difficulties in
the high flow of such channels which ultimately results in fatalities. Multiple
fatalities within this region in June 2007 illustrate the extreme risk to
people. In Humberside a man died in flood water after getting his foot stuck
in a manhole grate as firefighters tried to free him. In Sheffield a 68 year old
man and 14 year old boy were separately swept into swollen river channels
resulting in two further fatalities (Williams and Glendinning 2007).

Contained within the same report, 1000 people could not return home or
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were evacuated in Sheffield alone by the emergency services and Royal Air

Force.
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6. Pre 2007 (1943) storm overflow at Ulley reservoir

Figure 4.12 Flood hazard rating for the Ulley breach scenario (left). Ground observation of features of the flood model output (right) (Survey pole: 1.5 m).
Photographs: Alan Smith (August 2014)
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Photographs relating to the flood inundation characteristics observed in the

TELEMAC-2D model results were taken on a visit to the site in August 2014

(Figure 4.12):

Photograph 1:

Photograph 2:

Photograph 3:

Photograph 4:

Photograph 5:

Photograph 6:

View west along the M1. This is a major national arterial
route that transects the centre of the flood inundation
polygon. This is the centre of the section closed because of
fears that a breach at Ulley could overtop the carriageway

here.

The bridge where Long Lane passes beneath the M1
motorway is one of two breaks in the motorway
embankment that acted as a culvert during the antecedent
flooding immediately downstream from the reservoir in
2007.

The second culvert where the River Rother flows beneath

the M1 and junction 33 entrance/exit slip roads.

A view of the A360 road embankment, similar to raised
section of M1 motorway. The study area is characterised by
these raised earth embankments that have a notable impact

on the flood inundation modelling (Figure 4.11)

View of Long Lane at 31 mAOD. This section of road was
inundated by at least 3 m of standing flood water due to the
flooding already experienced in the area (Figure 4.8) during
June 2007. It is also immediately downstream of the

reservoir embankment.

Channel entrance to the original 1874 spillway (now sealed
and the spillway removed) where flow initiated the

destabilisation of the embankment at Ulley in June 2007.

A velocity time-series was taken at the motorway embankment immediately

downstream from the reservoir (Figure 4.13) with a profile closely aligned to

the initial hydrograph. It commences from the initial embankment failure

with three peaks in velocity at approximately 2500, 7500 and 17500
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seconds. This was extracted from the closest corresponding node within the
model’s mesh using Blue Kenue. It approximately corresponds to the left of
the Long Lane motorway underpass (Figure 4.12(2)). The three peaks of
around 2 m s’ are a response to block failures in the reservoir embankment.
Although flood flows have slowed at this point velocities around 2 ms' are
still significant. This is within the velocity threshold for masonry and
concrete great enough to cause structural damage (Priest et al. 2007).
Therefore it is possible that the integrity of the motorway structure could be
compromised, particularly at the locations of culverts and bridges where

localised peaks in velocity occur.
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Figure 4.13 Velocity profile at motorway embankment

A time-series for flood water depth normalised to height above ordnance
datum (AOD) was also extracted from the model results using Blue Kenue
(Figure 4.14). It was taken from the lowest position of the motorway
embankment at the River Rother culvert (Figure 4.11(3)). The comparison of
the potential water depths adjacent to the motorway and the lowest
elevation of the carriageway surface (31.7 mAOD) according to the LiDAR
data suggest that the motorway embankment may not have been
overtopped. However this is based on the assumption that the culverts (or
road underpasses acting as temporary culverts) are unobstructed.
Nevertheless, the level of the maximum water depth for the scenario
modelled indicates that the water level could have come within 0.70 m of
overtopping the carriageway as during the first two peaks. It is estimated to

have reached at least the 31 m contour (Figure 4.14).
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Figure 4.14 Flood level at the motorway embankment
4.4.3 Spatiotemporal population outputs

Outputs from Population 24/7 show variations in population density at 100
m resolution in both space and time. Features of a ‘night-time’ modelled
population layer for the study area are identified in Figure 4.15. Low and
high density variations in residential living spaces can be detected. Figure
4.15 also illustrates zero densities which are exemplified by an area of
housing adjacent to a large recreation area. The features are present
because of the use of residential postcode centroids (Chapter 3) which
correctly allocate population to their respective residential locations. A mix

of land uses, including industrial is also evident.
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5. Canklow industrial estate

Figure 4.15 Corroborating modelled population density output using Population 24/7 with ground observations. Photographs: Alan Smith (August 2014)

191



Case study | - Ulley

The population potentially exposed within the flood hazard polygon (Figure
4.12) has been calculated in ArcGIS at hourly intervals through the day using
both the original census data and spatiotemporal estimates (Figure 4.16).
The two census datasets (LSOA and OA) give a single static exposure
estimate. For the highest resolution census data at at OA level for 2001 the
daytime population count (Table UV037) was used. This is defined as the
population aged 16-74 resident in the area who do not work, plus all people
who are working in the area (ONS 2004). The outputs presented from
Population 24/7 show high population densities (up to 700 people per ha)
emerging on highly concentrated sites by mid-day (e.g. Figure 4.17E). The
highest of these densities are secondary school sites with up to 1500 pupils.
By the end of the school day (16:00) fewer sites are occupied (Figure 4.17F).
These can be explained by the relatively large number of school staff still
present at the same sites and the workforce located at other places of work
such as high-density office workspaces. The population ‘in travel’ is also
distinguishable on the road network and evident around peak travelling

times (e.g. Figure 4.17D and E).

Figure 4.16 shows that the magnitudes to which the estimates differ is so
great that there is an element of meaningless. For example it would not be
logistically nor financially viable to always plan for 250% of the resources

that ‘may’ actually be required if following the precautionary approach.
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Figure 4.16 Population exposure estimate within the flood extent polygon

The Population 24/7 exposure estimate shows a temporal trend within this
study area. The estimated population exposed to a breach of Ulley reservoir
increases between 400-600 people during the peak travelling times. The
population density during typical working hours (10:00-15:00) remains
constant and slightly below the night-time residential level (21:00-04:00).
This would be as expected for the nature of the study area. The flood
polygon encompasses mainly residential areas and major arterial routes.
Therefore, there is a large peak in the exposed population during the typical
commuter times and population decreases in between (as people leave the

residential areas to work elsewhere during the day).

Figure 4.16 illustrated the spatial variation in population density for a ‘night-
time’ usually resident population. The population within the study area has
been modelled at hourly time-slices throughout a weekday representative of
25 June 2007. A selection of outputs for 00:00, 08:00, 12:00, 16:00 and
20:00 are illustrated in Figure 4.17. This also contains a comparison with
census datasets (Figure 4.17A and B) overlaid by the predicted modelled
flood extent.
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Figure 4.17 Gridded Population 24/7 (100 m) spatiotemporal population estimates for the
Ulley region compared to census datasets overlaid with TELEMAC-2D flood inundation

polygon.

Figure 4.17A shows rasterised LSOAs with a 2007 MYE. This is the best
available standard published population data for the target date (2007). The

2001 census OA population count is also illustrated (Figure 4.17B). While

this only represents the population at the year of the 2001 census it is the

highest resolution population data available prior to the target date without

the need for further modelling (e.g. that undertaken using Population 24/7).

In stark contrast to the spatiotemporal estimates (Figure 4.17C-G) they only

provide a static count of uniform population density across large areas. The

census representation of population is inadequate for the example

described here. It is intended to act as an illustrated example for choosing

the appropriate dataset or method suited to the task for which it is required.
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However, in current flood risk assessments it is this (Figure 4.17A-B) kind of
static population data that are often utilised (e.g. Arrighi et al. 2013; Taylor
et al. 2013). The approach outlined here aims to demonstrate improvements
to this practice when considering spatiotemporal variation in population
density. It is known that populations are not static in time and this is shown
in the Population 24/7 result. The census over-estimation results from its
geographic coverage as a set of contiguous zones with uniform densities.
Therefore when the flood polygon is used to extract the underlying
population potentially exposed all cells contain a count. However, in reality
much of the flood polygon (arable pasture) is uninhabited. If adopting the

precautionary principle approach an over-estimate may seem desirable.

4.4.4 Population fatality estimates

The number of potential fatalities has been estimated from the Population
24/7 results using the approach outlined in Section 4.3.5. These were
calculated for each cell containing a population count that is contained
within the breach flood risk estimate. Five sample hourly intervals have been
chosen for a ‘typical’ weekday with a target date of June 2007. A break-
down is provided in Table 4.9.

Table 4.9 Ulley fatality estimates

Time of day Fatalities
00:00 6
08:00 8
12:00 5
16:00 12
20:00 6

This distribution of fatalities for 12:00 and 16:00 has been mapped in
Figure 4.18. In line with the methodology these generally correspond with
where the hazard rating is greatest. This occurs in the river channel where
depths and velocities are the highest. Further refinement is likely to be
required due to the nature of the area in this case study. The two main areas
with the greatest fatalities predicted are located where the river channels are
bounded by inhabited areas. It is not unreasonable to assume deaths can

occur within the channels, as has already been reported for this area. These
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channels (sub 100 m) cannot be resolved in the population modelling at the
resolution achievable with currently available data. It may be likely that the
application of a mask post-modelling may be required to constrain
population from the channel locations. However, this raises questions for

population volume preservation.

These results show that population exposure and fatalities are sensitive to
the time of day that the hazard occurs. The detailed spatiotemporal
modelling approach illustrated has made it possible to identified high-risk
areas with the potential to cause population fatalities. This could not be
achieved using census data alone. It confirms that this process is sensitive
to population and hazard fluctuations. This is a reflection on reality where

dynamic populations inevitably intersect hazardous zones.
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Figure 4.18 Distribution of potential fatalities at midnight and 16:00 for a typical weekday
(June 2007)
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4.5 Comparison with census estimates

The differences between the Population 24/7 estimates and census datasets
have been examined. These should be treated with caution as they are not
like-for-like comparisons, but rather the closest possible alternative datasets
(e.g. highest resolution census daytime estimate only available for 2001,
and 2007 estimate only available at LSOA level). The comparison with
census OA level represents population counts for 2001 (census year). These
are the highest resolution population data available for the study area, but
six years before the target date. For this reason MYEs are produced for inter-
censual years. However, these are only available at the highest resolution for
LSOA level. While this provides the population estimate required for the
target date (2007) the spatial resolution is diminished.

The difference (a) for all raster 100 m cells (n= 8000) within the study area
of selected Population 24/7 outputs (12:00, 16:00 daytime and 00:00 night-
time) between rasterised census 2001 OA daytime and 2007 LSOA night-
time counts has been evaluated in Figure 4.19 and summarised in Table
4.10. The standard deviation (o) provides a comparative measure for the
spread of values. This is not a test where any one dataset should resemble
the other as they are both different measures although the closest available

comparison.
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Figure 4.19 Difference between 00:00 Population 24/7 estimate and 2007 (LSOA) night-time
census population count. (B) Difference between 12:00 Population 24/7 estimate and 2001
(OA) daytime census population count.

In terms of night-time (00:00) population comparisons there is a greater
variance in the values for the A between night-time Population 24/7 2007
estimate and the night-time LSOA 2007 count (Figure 4.19A and Table 4.10,
o = 20.36) although these are closest in terms of population reference date
(i.e. both 2007). The least amount of variance is between A of the
Population 24/7 daytime population estimate and 2001 census daytime
count (Figure 4.19B and Table 4.10, o = 15.81). Although the difference
between the two is smaller they are still datasets with reference dates six
years apart. This measure suggests that greater resolution in the spatial
distribution of population is more important than target date in this case.
The difference for all of the model and census comparisons for the times
selected is positive. This shows that these cells in the Population 24/7 layers
are assigned higher values than their corresponding counterpart in census
layers. This would be expected because the Population 24/7 approach
concentrates population to locations expected to be occupied (e.g. Figure
4.17) rather than the uniform across zone approach represent in the census

comparison.
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Table 4.10 Ulley study area model difference analysis

Values Graph Measure
(on?gsz\llf d Fcr::;;tsd Figure 4.19 SD Mean RMSE
Ulley 00:00 2001 Census A 15.81 0.25 15.81
Ulley 12:00 2001 Daytime B 32.52 3.51 32.71
Ulley 16:00 2001 Daytime C 26.74 0.09 26.95
Ulley 00:00 2007 MYE D 20.36 0.09 20.36

The largest difference between the model estimates and census counts
occurs in the daytime model comparisons (12:00 and 16:00). The greatest
variation in values is observed for the A between the census and the 12:00
layer (c = 32.52). This is reduced when comparing the 2001 census daytime
population count with the 16:00 layer (c = 26.74). The 12:00 layer also has
much greater mean difference (+3.51) compared to the rest of the layers
evaluated in Table 4.10. The difference can also be observed in Figure 4.19B
where this layer has the greatest spread and magnitude of cells with a
positive difference from the daytime census estimate. The concentration of
very high populations on relatively small sites such as schools is the driver
of this trend. The difference has reduced by 16:00 when the pupils have left
these sites however high concentrations of staff still remain. These
differences occur for the same reason discussed in relation to Figure 4.17.
The Population 24/7 modelling technique concentrates population to
workplace locations using georeferenced business or actual workplace
postcodes. This results in the spatial concentration of population density at
these sites rather than a uniform across zone distribution. The root mean
square error (RMSE) (Table 4.10) calculated for these differences closely
corresponds to the values and pattern observed in the standard deviation of

the difference.

The spatial distribution of the actual cellular difference for the modelled
00:00 (Figure 4.19A) and 12:00 (Figure 4.19B) results and census estimates
is illustrated in Figure 4.20. The green colour represents a negative
difference (i.e. the model appears to underestimate census counts) and the
yellow-red positive differences. The lightest green colour shows where the

census represents a small non-zero uniform density estimate but the
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modelled outputs represent this as zero in unoccupied locations. This
treatment of unoccupied cells accounts for the green background colouring
illustrated. The largest differences between 350 to 725 people per 100 m?
(Figure 4.20B) occur within the daytime estimates. These typically represent

concentrated populations at schools.

The spatial distribution for the selected daytime difference (Figure 4.20B)
also shows some large decreases within population density of up to 125
people per 100 m? represented by the dark green colour. This primarily
occurs within Rotherham town centre. This can be explained by the larger
increase in the census daytime estimate, caused by representing people at
their nominated place of work, increasing the density within these town
centre OAs. Therefore the difference from the model is greatest outside of
specific cells where employees have been concentrated at workplace
locations rather than spread across the whole OA. These phenomena
highlighted demonstrated the importance of accurate population
distribution for realistic representations. The degree to which the census
differs varies by time with the greatest changes occurring during daytime
hours. This daytime difference is caused by the inadequate representation of

daytime population clusters within traditional census outputs.
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Figure 4.20 Cellular (100 m) population difference between the (A) 00:00 modelled outputs
and the ‘night-time’ 2001 OA census estimate and (B) 12:00 modelled output and the
daytime 2001 OA census estimate.

4.6 Summary

The chapter has presented one potential flood output from a reservoir
breach event that actually nearly occurred during June 2007. It is
acknowledged that this does not represent the only possible flood event
from this reservoir but was constructed using the best available data.
However, the modelled results can be corroborated with reasonable flood
depth estimates from photographs taken at the time of the event (e.g.
Figure 4.4). The rapid onset of this and documented similar events, and the
volume of water within the reservoir to be released can be determined to a
high degree of certainty. The primary focus of this chapter was to assess
how vulnerable, exposed, populations fluctuate with time to a given hazard

event.

This case study has demonstrated strong diurnal cycles in population

exposure that includes population not resident within the flood zone (e.g.
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those working or travelling through the area). These spatiotemporal
movements are not represented using census data alone. The static census
estimates have been shown to dramatically overestimate population
exposures (e.g. Figure 4.16). This lacks the sufficient detail to begin
targeting specific locations and times when populations will be most
vulnerable. The flood risk analyses undertaken are sensitive to population
fluctuations, as would be expected in reality. The spatiotemporal method
applied does not attempt to give the final answer on Ulley’s flood risk that is
subject to external conditions and changes in physical characteristics.
However, this example does show that time-specific populations are

required to make improved assessments of hazard risk.

203



Chapter 5: Case study Il - St Austell

205



Case study Il - St Austell

5.1 Overview

This chapter outlines the second Population 24/7 application case study
focused around St Austell, Cornwall, UK and considers the population
exposed to fluvial and coastal flooding. It offers innovations beyond the
standard implementation of the spatiotemporal population modelling
framework offered in Martin et al. (forthcoming) through expansion of the
population data library. This location has been chosen because it
experiences large seasonal population fluctuations driven by tourism and
overnight visitors. These spatiotemporal properties have been evaluated
within the framework of Population 24/7. The previous examples (Ulley,
Chapter 4 and Southampton, Chapter 3) have demonstrated that daily cycles
can be resolved. This chapter aims to enhance this by examining how
population varies in both space and time with seasonal influences with a

100 m resolution.

This chapter is structured as follows: it begins with the background to the St
Austell study area and flood risk context (Section 5.2). Section 5.3
introduces case study specific flood inundation data. Bespoke flood
modelling has been completed by Quinn (2014) and provided for use in this
case study. This section also outlines the construction of a flood hazard
rating and population fatality estimate (following the method introduced in
Chapter 4). Section 5.4 offers case specific population enhancements for use
within the Population 24/7 framework. This centres on creating a new
seasonally varying population origin classification concerning tourist
populations. This is based on seasonal overnight visitor data provided by
Newing (2014). Further non-term time origin population dataset is also
outlined. The creation of new destination datasets is introduced. These
include the development of retail, healthcare and leisure destinations. The
results following the integration of the flood and population modelling are
presented in Section 5.5. Finally, a difference analysis and model evaluation

is provided in Section 5.6.
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5.2 Study area and flood context

A 15 x 20 km study area named after its most populous town, St Austell,
has been selected in Cornwall, UK (BNG origin x: 200000, y: 49000 m).
Cornwall is an English coastal county and local authority area which
comprises most of the south-westerly peninsula of Great Britain (Figure 5.1).
This area has been selected because of the large seasonal fluctuations in
population that it experiences as a result of its status as a major domestic
tourism destination. Preliminary analysis of tourism data (see Section 5.4.1)
suggested that a peak increase of greater than 10,000 temporary overnight
visitors occurs over the year from the low to peak tourism season. A recent
2011 Census report, published since this research has been undertaken, on
coastal communities has identified locations such as St Austell has having
unique and notable characteristics (ONS 2014c). According to this report
these are often identified has having higher than average populations aged
over 65 (an important consideration for flood risk vulnerability) and greater

than usual occupation by people other than ‘usual residents’.

The range of tourist attractions, rural landscapes and attractive coastline
makes the county a desirable visitor destination. This area was chosen to
examine seasonally dependant temporal signals in population change using
the SurfaceBuilder247 software. So far examples presented here
(Southampton and Ulley) have demonstrated strong daily population cycles
in exposure to flood risk. However, the St Austell application provides an
additional perspective on how these cycles also vary by season and day of
week. There are two factors that this case study specifically considers: the
influx of seasonal population and the changes in the student population

which is discussed in detail in Section 5.4.1.
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Figure 5.1 St Austell study area outlined in red, showing location within Cornwall (shaded
grey) and Great Britain insets. An example 100 m gridded population distribution provided
for contextual purposes.

The study area consists of the primary locations: St Austell, the largest town
in Cornwall by population (19,958 2011 Census), Bodmin, Par, Lostwithiel
and Fowey. The A30 (principal trunk road) and Great Western mainline
railway (London to Penzance, including stations at Lostwithiel, Par and St
Austell) are important infrastructural assets that intersect the study area.
The south of the study area is bounded by the coast along St Austell Bay and
the Fowey estuary. Relatively small settlements are dispersed throughout

pastoral farmland with the large expanse of Bodmin Moor to the northeast.

The following paragraphs concern the flood context to the study area and
events of significance within the wider region in which it is situated. The
West and East Cornwall Catchment Flood Management Plans (EA 2012b,
2012a) provide an overview of the flood risk within the study area.
Catchment and Shoreline Management Plans (CFMPs and SMPs) assess the

risk from tidal and inland flooding.

The St Austell Bay area including Par and St Blazey is subject to fluvial, tidal
and surface water flooding. Exposed critical infrastructure includes three
electricity substations, fire and police station (St Blazey), telephone

exchanges and a care home (Par). St Austell is not served by a flood warning
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system. The warning system on the River Par provides less than two hours’
notice of flooding (EA 2012b). Although St Austell’s elevated position is at
little risk from tidal flooding the increase in settlements in surrounding low
lying coastal areas such as Par and St Blazey are of concern. Furthermore,
the ‘tide-locking’ of local watercourses, high tides preventing drainage at
coastal outlets, poses an additional risk of fluvial flooding. Tidal flood risk
dominates the east of the study area (Par, Fowey and Lostwithiel) (EA
2012a).

The Par area (including the neighbouring village of St Blazey) contains the
highest number of properties at risk from current and predicted future
flooding (2100 projection for 1% annual probability) in the whole of
Cornwall, even when considering existing flood defences.

Table 5.1 Number of properties at risk from current and future flooding (1% annual

probability of occurrence) in selected principal locations within the study area for the years
2010 and 2100

Properties Projected
Location presently at increase Flood hazards
risk (2010) (2100)
St Austell 230 White River
Par/St Blazey 630 } 75 River Par, St Blazey
Stream
Lostwithiel/Fowey 350 70 Fowey estuary and
tidal flooding
Camelford/Bodmin 214 30 River Camel
Total 1424 175

Major flood events in Cornwall can occur at any time of the year (Figure 5.2),
however the probability based on a record of major historic flood events
(Cornwall Council 2011) varies by month. A general cycle in events appears
to correlate with unsettled autumn weather and winter depressions (October
to January) and summer convective storms (June to August). Major flood

events within the study area are summarised in Table 5.2.
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Figure 5.2 Annual distribution of major flood events in Cornwall (1800-2010) (Data: Cornwall

Council 2011)

Table 5.2 Selected major flood events (1800-2010) from within the study area (Cornwall

Council 2011)

Date

Location

Description

November 1852
November 1954
August 1959
February 1974

July & September
1975

March 1976
September 1976

December 1979
October 1981
December 1981

May 1996

Par and St Blazey
Lostwithiel

St Blazey

Par and St Blazey
St Austell

Par and St Blazey

St Austell, Par and St
Blazey,

Lostwithiel, Bodmin
Lostwithiel
Fowey

St Austell, Par and St
Blazey

Lostwithiel

Serious flooding

80 properties flooded
Flooding

50 properties flooded

Flooding following leat
breach

Extensive flooding

Widespread flooding
following severe storms

60 properties flooded
Storm surge and high tides
Fluvial and surface water

15 properties flooded

More recently a succession of south-westerly winter depressions and

associated storm surges during January-February 2014 caused severe tidal

flooding in southern England and Wales which also affected parts of

Cornwall. Coastal railways in Gwynedd (Wales) and Devon (England)

collapsed into the sea following the destruction of supporting
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embankments. In Aberystwyth, Wales, 600 students were evacuated from
seafront residences following the direct threat of severe coastal flooding
(Gevertz 2014). The general synopsis of the 2014 flooding conditions has
been described here for the region in which the St Austell study area is
situated because of their impacts on understanding how people react during
emergency situations. The village of Moorland in Somerset was particularly
badly affected and isolated by floodwater. A severe flood warning indicating
imminent danger to life was issued by the Environment Agency. A police
helicopter’s public address system was used to broadcast overhead
evacuation warnings of imminent flood danger (BBC 2014a). According to
this media report the police intervention caused panic to some local
residents who continued to ignore evacuation directions despite rapidly

rising flood waters.

A 100 m section of the Great Western mainline railway at Dawlish, 75 miles
east from Par station (National Rail Timetable 2014), collapsed into the sea
following a storm surge on 5 February 2014 (Figure 5.3). This exhibited
unprecedented levels of damage and repeated storm surges. As a result the
only rail connection to the southwest of England, including the St Austell

study area was lost for two months while the sea wall was repaired.

Figure 5.3 Collapse of the railway at Dawlish, Devon in February 2014 following a succession
of storm surges. Photograph: www.networkrail.co.uk
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5.3 Case specific flood risk mapping

Environment Agency flood risk mapping has been obtained for the study
area and follows the method described in Chapter 3 and Smith et al.
(2014a). It is used to determine the potential exposure of population to the
flood risk within the study area. The Environment Agency flood map zone
three (April 2014) (Figure 5.4) represents the extent of the annual
probability of occurrence for flood risk from rivers and the sea of > 1% and >
0.5% respectively. Additionally an ~ 8 x 4 km subsection of the study area
has been modelled using LISFLOOD-FP, a raster based flood inundation
model, by Quinn (2014) (dashed outline Figure 5.4) (see next Section 5.3.1).
This area was selected because it covers the main population centres within
the study area as well as the greatest flood risk identified by the
Environment Agency flood map. The seasonal variation of population within
this zone and potential exposure to flood risk has been performed in

additional detail.

Figure 5.4 shows that the study area has a dispersed range of leisure and
tourism attractions which are labelled in Figure 5.4. These are of
significance in terms of the justification for the choice of study area and
impact of seasonal population change within an area of flood risk. This is
examined in more detail within Section 5.4 which addresses the population

characteristics to be modelled.
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OS Map data © Crown Copyright/database right 2014. An Ordnance Survey/EDINA supplied service

Contains Environment Agency information © Environment Agency and database right
Figure 5.4 Flood risk within the St Austell study area

5.3.1 LISFLOOD-FP flood inundation model

In contrast to the static Environment Agency flood map (Figure 5.4),
designed for national coverage, bespoke modelling of the individual
characteristics of the precise area concerned provides the potential to
support more detailed analysis and scrutiny. For this study area LISFLOOD-
FP was used. The LISFLOOD-FP flood inundation model predicts channel and
floodplain flows. Although there are a wide range of hydraulic models suited
to different tasks (a selection have already been discussed or implemented
in Chapter 4, e.g. TELEMAC-2D) LISFLOOD-FP provides a simplified

alternative.

Three LISFLOOD-FP scenarios at a 5 m resolution have been created and
provided for this case study by Quinn (2014). It has been suggested that at

least a 5 m resolution is essential for modelling flow dynamics within urban
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areas to account for small scale variations (Mark et al. 2004; Fewtrell et al.
2008). The layers provided represent return periods (R) of 100, 250 and 500
years (Figure 5.5) for an extreme rainfall event of 11 hours duration. The
LISFLOOD-FP layers explicitly account for flood defences, topographic
features and blocking due to buildings (derived from 2m LiDAR). The risk
posed by rainfall intensity for each return period was calculated using the
Flood Estimation Handbook software (CEH 2014) by Quinn (2014). This
estimates rainfall frequency for the UK which relates rainfall depths to a

given probability of occurrence.

N
N
i “E
\ 5
g e
\
LISFLOOD-FP R100 LISFOOD-FP R500 0 1 2km
uisFLoob-FP R250 [l EA Flood Map Zone 3
OS Map data: © Crown Copyright/database right 2014. An Ordnance Survey/EDINA supplied service

Contains Environment Agency information © Environment Agency and database right

Figure 5.5 Comparison of LISFLOOD-FP and Environment Agency flood inundation for the
selected area covering St Austell and Par within the study area.

LISFLOOD-FP is an appropriate model for this application because it is both
computationally efficient at high resolution (1-10 m) and the code can be
run on the latest high performance computing technology (Neal et al. 2011).
The 5 m (minimum) resolution is required for this case study to accurately
predict flow hydraulics within the urban centres of the study area and to
model flow around buildings and coastal defences. This information is
required to produce flow velocity and depth estimates. These were
combined by Quinn (2014) to calculate a flood hazard rating. This follows
the same method presented in Chapter 4. Three raster layers with a flood

hazard rating for each 5 m cell corresponding to the three return periods of
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100, 250 and 500 years with a flood hazard rating were provided for

analysis with population outputs from SurfaceBuilder247.

In comparison, the Environment Agency’s flood map zone three represents
the amalgamation of return periods of 100 (fluvial) and 200 (tidal) years for
flood risk and does not account for the presence of any defences. While it is
possible to obtain an extract of nationally consistent coverage, the
LISFLOOD-FP outputs provide a more realistic scenario accounting for
existing defences. The EA flood map provides an inundation polygon but
does not estimate flow depth or velocities. Without these data, which are
contained within LISFLOOD-FP outputs, it is not possible to evaluate a flood

hazard rating or fatality estimate.

The Environment Agency flood map shows a much greater extent of inland
flooding (Figure 5.5), however it also includes coastal flooding and assumes
that there are no defences whereas the bespoke LISFLOOD-FP extracts
specifically account for these. Furthermore, in November 2014 it was
reported that the EA is reassessing English coastal flood risk as some maps
may underestimate these risks (BBC 2014b). This follows a review of the
widespread coastal flooding experienced at the start of 2014, which was
summarised at the start of this chapter. All layers have been combined with
seasonally varying population estimates to analyse the effect of
spatiotemporal cycles. The EA Flood Map has also been included here
because it is the currently accepted national flood risk assessment used by

planners and local authorities.

5.3.2 Flood hazard rating and fatality estimates

This subsection reintroduces the method for calculating a flood hazard
rating, the first of a series of subsequent stages to obtain a population
fatality estimate. The hazard rating aims to quantify the flood hazard
characteristics (depth and velocity). It follows the same method as
previously demonstrated in the Ulley example (Section 4.3.5 and Penning-
Rowsell et al. 2005). Following the calculation of a flood hazard rating, area
and people vulnerability ratings need to be determined to finally estimate

the number of injuries and derive a fatality prediction.
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For this case study the flood hazard rating has been calculated by Quinn
(2014) using the depth and debris outputs from the LISFLOOD-FP inundation
modelling and provided as a raster layer. This has been conducted following
the same widely accepted hazard rating formula (Eg. 4.1) used in the Ulley

example.

An Area Vulnerability has been calculated for the St Austell study area as 6
(1 + 3 + 2). This is based on the score matrix provided previously in Table
4.4 where speed of onset = 1 (low risk, many hours - based on a model
scenario for an 11 hour rainfall duration), nature of area = 3 (high risk,
mobile homes, bungalows and busy roads) and flood warning = 2 (medium
risk, warning system present but limited). There is a flood warning system

within the area but not on all rivers (see Section 5.2).

To determine the study area’s people vulnerability (PV) score (see Chapter 4,
Eg. 4.3, Table 4.6) population data on age composition and long-term illness
was taken from the 2001 Census (Table 5.3). Overall the population within
the study area aged over 75 and the proportion of those with a long-term
illness are above the average for England. Therefore a PV score of 100% was
assigned (50% + 50%).

Table 5.3 Population characteristics within the St Austell study area by parish (Census 2001,
Tables KS002 and KS008) compared to the national average (England).

Pob. aged Difference Pop. Long- Difference
Location P- ag o,y from national term illness from national

over 75 (%) o

average! (%) average’

St Austell Bay 10.91 +3.37 19.01 +1.08
Tywardreath and 12.85 +5.31 23.98 +6.05
Par
St Blazey 6.61 -0.93 21.23 +3.30
Lostwithiel 10.96 +3.42 20.34 +2.41
Fowey 13.45 +5.91 23.41 +5.48
Study area mean 10.95 +3.42 21.59 +3.66
England 7.541 17.93¢
(Average)

The hazard rating, area and people vulnerabilities were combined according

to Egs. 4.4 and 4.5 to estimate the number of fatalities for each of the
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LISFLOOD-FP scenarios (see 5.4 Results, Table 5.11). This was evaluated for
each cell of the spatiotemporal population outputs. These were evaluated
using raster based calculations of these equations in ArcGIS. The
spatiotemporal population output was resampled from 100 mto 5 m
(resolution of LISFLOOD-FP cells) for the purpose of the raster based

calculations using ArcGIS.
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5.4 Case specific population method and data

This section outlines specific population modelling using SurfaceBuilder247
(Figure 5.6) and data sources for the St Austell study area. These are in
addition to the broad overview described within the main methodological
section (Chapter 3). Specific enhancements have been identified to ensure
the best representation of the study area’s population within the Population
24/7 framework. While the main methods overview is still applicable a
number of additional enhancements have been developed which have been
identified as specific to the requirements of this study area. These
enhancements are discussed in turn within the following subsections:
accounting for seasonal population variations, creating a population leisure
destination dataset, enhancing retail footfall estimates and producing a
healthcare dataset and finally determining a weekday/weekend workplace

capacity estimate.

For the purpose of the spatiotemporal population modelling a 25 km buffer
has been assigned to the study area based on analysis of average distances
travelled to work for each OA (2001 Census, Table UV35) to eliminate any
potential edge affects. However, the study area and buffer region is largely
geographically constrained in this example to the north and south by the
coastline (Figure 5.6). Furthermore, the northeast of the study area is
constrained by Bodmin Moor, 150 square miles of moorland which also
contains Cornwall’s highest point at 1,368 ft AOD (Visit Cornwall 2014).
Within the model these features are represented through the background
masking layer (Figure 5.6) which prevents population placement off-shore.
They are also represented within the postcode centroid dataset where there
is a natural lower density of origin and destinations locations on the moor
and surrounding rural landscape which are geographically constrained to

the physical vicinity of residential addresses.
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A diagrammatic overview of population origin and destination datasets and
their seasonal variation is provided in Figure 5.7. It is constructed in two
rows and three columns. Each column represents the seasonal scenario
modelled. The first row concerns population origins and shows two different
classes of origin which contain the usually resident and overnight visitor
populations separately. The second row contains the destination locations.
The connecting arrows show that the different origin classes populate
different (or different proportions of) destination locations. For example the
visitor population does not populate workplace or school destinations but is
assigned to leisure destinations. Table 5.4 summarises the data sources
used to construct the model’s data library. These are referred to in the
following sections regarding the construction of case specific population

data libraries to undertake the spatiotemporal modelling.

In keeping with the previous applied examples the population has been
modelled in seven age subgroups. The population is subdivided into the
following age subgroups: 0 to 3 years, 4 to 10 years (primary school pupils),
11 to 15 years (secondary school pupils), 16 to 64 years (further education
students), 16 to 64 years (higher education students), 16 to 64 working
aged and those aged over 65. These have been chosen for their unique

spatiotemporal characteristics.
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Figure 5.7 Diagrammatic overview of population origin and destination datasets used to construct the St Austell case study model
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Table 5.4 Summary of content and sources for the St Austell study area population data library constructed for SurfaceBuilder247

File Name

Data source(s)

File Description File Type Population Location Temporal Wide Area
geography profile Dispersion
St Austell Baseline ‘term Origin 2010 MYE NSPD (Feb N/A N/A
usually resident time’ population 2010)
population residential UPCs
St Austell non-  Baseline non- ‘term Origin 2010 MYE; NSPD (Feb N/A N/A
term time time’ population Census (2001, 2010)
resident Tables UVOS5, residential UPCs
population KS13)
St Austell JAN Resident overnight Origin Newing (2014); NSPD (Feb N/A N/A
visitors in January VisitEngland 2010)
(2010) residential UPCs
St Austell MAY  Resident overnight Origin Newing (2014); NSPD (Feb N/A N/A
visitors in May VisitEngland 2010)
(2010) residential UPCs
St Austell AUG  Resident overnight Origin Newing (2014); NSPD (Feb N/A N/A
visitors in August VisitEngland 2010)
(2010) residential UPCs
Education Count of pupils Destination Schools Census NSPD (Feb Population Population
and students in full (DfE 2010); 2010) 24/7 project 24/7 project
time education Independent Georeferenced
(school, college Schools Census,  UPC

and university)

HESA (2010)
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Table 5.4 continued

File Name

File Description

Data source(s)

File Type P . Location Temporal Wide Area
opulation h . .
geography profile Dispersion
Retail visits Retail outlets and Destination See section 5.4.4 GMAP (2014) TUS (2001) NTS (2010)
centres
Visitor E.g. historic Destination Visit England Site location TUS (2001) Visit England
attractions houses, gardens, (2010); English (UPC) (2010)
places of worship Heritage (2010)
Healthcare Healthcare patients Destination HES (2010); local Site location HES (2010) Roberts et al.
websites and (UPQO) arrival times (2014)
FOls.
Education Workplace Destination BRES (2010) NSPD (2010) LFS (2010) Census (2001,
workforce population counts Business UPCs Table UV80)
(SIC: P)
Health service  Workplace Destination BRES (2010) NSPD (2010) LFS (2010) Census (2001,
workforce population counts Business UPCs Table UV80)
(SIC: Q)
Manufacturing  Workplace Destination BRES (2010) NSPD (2010) LFS (2010) Census (2001,
and population counts Business UPCs Table UV80)
construction (SIC: C, F)
workforce
Wholesale and  Workplace Destination BRES (2010) NSPD (2010) LFS (2010) Census (2001,

retail workforce

population counts
(SIC: G)

Business UPCs

Table UV80)
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Table 5.4 continued

Data source(s)

File Name File Description File Type Location Temporal Wide Area
Population h . .
geography profile Dispersion

Transportation Workplace Destination BRES (2010) NSPD (2010) LFS (2010) Census (2001,

workforce population counts Business UPCs Table UV80)
(SIC: H)

Catering Workplace Destination BRES (2010) NSPD (2010) LFS (2010) Census (2001,

workforce population counts Business UPCs Table UV80)
(SIC: 1)

Notes: SIC (Standard Industrial Classification, BRES 2010)
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5.4.1 Seasonal visitor population

This subsection outlines seasonality within the student and overnight
domestic visitor populations and discusses how and why they are addressed
separately for the purpose of the spatiotemporal population modelling for
this case study. Cornwall attracts more than 4.4 million annual domestic
visits (2006-2009 average) which makes it the second most popular English
county destination outside of London (Visit England 2010a). Tourism
accounts for 25% of all employment in Cornwall and tourism is estimated to
contribute £1.8 billion to the UK’s economy (Visit Cornwall 2011). This large
fluctuation in population, as well as daytime movements, is not represented
in traditional census counts or one single dataset alone. In order to
determine this seasonal, as well as spatial cycle the Population 24/7
approach is employed (Chapter 3). This requires the compilation of an

extensive population data library (Table 5.4).

In comparison to the previous case study and worked example (Ulley and
Southampton) this study area is predominately rural with urban clusters of
population. Seasonal fluctuations comprise a large proportion of the usually
resident population due to its tourism industry. A usual resident is defined
as someone who spends the majority of their time residing at that address
(National Statistics 2004, p. 17). It does not include students living away
from home or people temporarily present at the location while on holiday or
visiting friends. Therefore additional information is required to account for
overnight visitors who are not enumerated within the usually resident
census population. Three seasonal scenarios have been chosen for January,
May and August (target year 2010) to represent the low, fringe and peak

tourism seasons respectively.

Seasonal overnight visitor counts in Cornwall for January, May and August
2010 have been provided by Newing (2014) aggregated to postcode level
with population age breakdown. These have been constructed at the level of
individually georeferenced commercial accommodation sites (e.g. a hotel,
guesthouse, campsite or holiday park or commercial accommodation chain).
These counts also include all overnight visitors staying with family or friends
or within a second/holiday home, with these visits being distributed across

the existing residential housing stock.
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The methodology is based on bed space and occupancy data which is
described fully in Newing et al. (2013a). They derive the location of tourism
accommodation providers and the total number of bed spaces available for
each individual site from data collected by South West Tourism. In addition
the locations of second homes are derived from the 2001 Census.
Population at second homes is not included in the usually resident census
count. Having established accommodation provision utilised by visitors,
occupancy rates are then applied. Occupancy rates were derived from data
published by South West Tourism and Visit Cornwall and show a strong
seasonal cycle. In August (peak season) occupancy rates were high (94%)

falling to just 9% in January (Newing et al. 2013a).

These data have been directly used as provided except for the required
additional formatting for use as SurfaceBuilder247 population origin
datasets. The location of accommodation provision remains constant but the
occupancy rate varies by season so three separate origin datasets were
created to represent overnight visitors in January, May and August (Figure
5.7). They represent the night-time temporary address of domestic
overnight visitors and are not included within the usually resident census
population. The change in overnight visitor estimates in each of these

seasons for the St Austell study area is summarised in Table 5.5.

Table 5.5 Overnight visitor estimates within the St Austell
study area. Original data source: Newing (2014)

Month (season) Overnight visitor estimate
January 2010 (Low) 1,049
May 2010 (Fringe) 6,269
August 2010 (Peak) 12,389
5.4.2 Non-term time population

Seasonality within traditional census counts is limited, as already
highlighted in the previous section. However, it is still possible to make an
important distinction between the educational term and non-term time
populations. The movement of student populations, particularly those in
higher education moving away from their census non-term time ‘home’
addresses to places of study, results in a seasonal change. For the purpose

of the census students are enumerated at their term-time address (e.g.
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college/university halls of residence or other private temporary
accommodation). Basic characteristics are reported separately at their non-
term time OA (National Statistics 2004). Therefore using the following
method it is possible to use these two reporting outputs to derive the term
and non-term time student counts for each census OA (2001 census table

references in brackets):
Term-time population = Usually resident population (KS001) (5.1)

Used as reported as this can be considered the term-time count with

students enumerated at their term-time address.
Non-term time population: KSO01 + UV05 - KS13 (5.2)

Where 2001 Census Table KSO001 is the Total usually resident population,
Census Table UVO5 represents the Schoolchildren and Students in Full-time
Education Living Away From Home During Term-time and Census Table
KS13 is the Total number of full-time students and schoolchildren: Aged 18-
74 (Qualifications and Students).

To derive the non-term time population base, this basic adjustment returns
students to their respective OAs that have lost their student population to
term time residences (2001 Census Table UV05) and removes those who
were there during term-time (i.e. who would have returned to their
respective non-term time OAs) (2001 Census Table KS13). The greatest
magnitude in change is likely to be experienced within university towns and
cities. This is where the term-time student population would be expected to
be highly concentrated within an accessible distance to higher education

institutions. In contrast the non-term time population is very dispersed.

The caveat in the method applied here is the absence of the recognition of
international students, who if ‘resident’ within the UK on the census night
would have been enumerated at their British term time address. However,
they would be removed from their respective OAs during vacation periods
following this method. In reality it is not certain whether these students
remain at their term-time location, return to their country of origin or reside
elsewhere. Secondly, Scottish and Northern Irish students retuning to a
home address outside of England and Wales are lost. These are important

limitations to consider, but it is not deemed a matter of significance within
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the study area selected for the reasons outlined in the following paragraph.
The difference in the term and non-term time population following this

method for the St Austell study area is summarised in Table 5.6.

Table 5.6 Usually resident population within the St Austell
study area (2001 Census adjusted for 2010 MYE).

Origin file Population
Term time 67,599
Non-term time 67,830

As expected for this study area the usually resident population summary
(Table 5.6) following the approach outlined (Eq. 5.2) shows little term to
non-time population change, with a negligible increase during non-term
time periods (+0.34%). This study area does not contain any higher
education institutions (HEIs) and therefore it does not attract large numbers
of term-time only student populations. The rise in the non-term time
approach can be explained by those students who have studied at HEls
external to the study area having then returned home for vacation periods.
The distinction has been made for this study area in order to demonstrate
this conceptual component of the Population 24/7 modelling approach. This
illustrates that the model can handle, and that it is important to consider,
multiple input population origin datasets to best represent the baseline

population required for the time, location and scenario modelled.

The approach outlined within these subsections can be viewed in context
within the overview diagram (Figure 5.7). It reveals that each seasonal
scenario requires a pair of population origin files, the usually resident
census population and temporary visitors. It has been highlighted that both
of these change throughout the year. For example, the August (peak season)
scenario has the greatest number of overnight visitors (Table 5.5) as well as
a non-term time baseline census population as August is a vacation period,
whereas January and May receive their respective portion of overnight
visitors but use the same baseline census term-time resident population
origin because these months fall within academic term-time. Following the
method outlined in Chapter 3 all census population origin data have been
re-weighted from census reporting zones (OA and LSOAs) onto

georeferenced residential postcode centroids weighted according to their
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address count. This is with the exception of the overnight visitor data that
has already been constructed at this level. The usually resident 2001 Census
baseline populations have been adjusted to mid-2010 counts (target year).
The data match the target year but use the 2001 Census geography (as

2010 is an inter-censual year).

For the purpose of the non-term time August scenario the education
(students and pupils) destination dataset has not been used. Separate
usually resident and overnight visitor origins ensure that destinations
receive their population from the correct base (Figure 5.7). For example only
the usually resident population is drawn by the workplace and education
(term time only) destinations. The non-working overnight visitor population
populates their share of the retail and leisure destination locations (as well

as their own origin centroids).

Since this research has been undertaken an alternative out of term time
population base has been created for England and Wales in the 2011 Census
(ONS 2014b). This recognises that society is increasingly complicated and
mobile. This out of term population base includes students and school
children at their term time address (if no out of term address was provided),
students and school children at the ‘home’ address (if a non-term time
address was provided and was located within England and Wales) and all

other usual residents at their usual residence.

5.4.3 Leisure destinations

This subsection outlines the creation of a leisure destination dataset within
the flexible framework of the Population 24/7 approach. This dataset
comprises the sites that overnight visitors and the usually resident
population visit for leisure purposes as shown in the diagrammatic overview
(Figure 5.7) for each month. This has been identified as a requirement in
addition to Martin et al.’s (forthcoming) implementation to reflect visitor

population movements within the model’s data library.

The creation of this leisure destination dataset is described in the following
order within this subsection: firstly the locations associated with leisure
activities are defined and, where possible, associated with annual visitor

numbers (currently only routinely published at the annual level). However, a
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seasonally varying daily estimate is required for the population data library.
A method is proposed to derive daily proxies at the spatiotemporal
resolution required. Secondly, the geographic location of leisure sites is
required and is obtained based on georeferenced UPCs within the respective
postal addresses of these sites. Thirdly, the age distribution of visitors to
these leisure sites is obtained from demographic visitor data. This is
required to divide the total population for each site into population
subgroups according to age. Fourthly, the catchment area of each leisure
site has been derived using national travel statistics. This governs the
spatial extent of population origins that populate each leisure destination
site. Finally, the ratio of usual residents to overnight visitors using these

sites is estimated.

Within the Population 24/7 framework this leisure destination dataset will be
populated by two classes of origin datasets concerning the usually resident
and visitor populations as shown in Figure 5.7. Leisure attractions are not
mutually exclusive to visitors or usual residents, however data shows that
ratio of visitor to resident footfall to these sites is not equal and varies with
seasonal cycles. Therefore three leisure destination datasets have been
created for each seasonal scenario (Jan, May and Aug). They all contain the
same attractions but seasonally varying population capacities. Each of these
destination datasets is further subdivided to reflect the proportion occupied
by visitors and residents. These are drawn from the respective origin class

for each season represented by the links in Figure 5.7.

It has already been noted in the previous section (5.4.1) that temporarily
resident visitors, at times, comprise a significant proportion of the study
area’s population. During the August peak the influx of seasonal overnight
visitors represents an 18% increase on the usually resident non-term time
baseline population (Tables 5.5 and 5.6). As expected for an area within a
tourism-driven economy, the study area and buffer contain a large number
of prominent visitor attractions. To account for these within the
spatiotemporal modelling a leisure destination dataset has been constructed
(analytical overview, Figure 5.7). These contain a range of locations such as
historic houses, castles, gardens, botanic sites and places of worship. These

are locations with known associated visitor numbers. These data are
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supplied by Visit England (2010b) in the Annual Survey of Visits to Visitor
Attractions.

Thirty attractions with reported annual visitor numbers are located within
the study area and buffer zone. These have been collated to produce a
leisure destination dataset. A selection have been summarised in Table 5.7.
The geographical location of each destination is assigned using postcode
data. The postcodes for each site were determined from their respective
websites. These were converted into national grid references using
GeoConvert (UKDS 2014) to provide the destination centroid location. This
facilitates the creation of a destination centroid dataset comprising a
georeferenced location which can be assigned a population capacity for each

attraction.

Table 5.7 Example attractions and 2010 visitor numbers within the St Austell study area and
buffer (Visit England 2010b)

Attraction Type Visitor numbers
The Eden Project Botanic site 1,000,511
Tintagel Castle Historic property 190,246
Lanhydrock House Historic property 210,362

Truro Cathedral Place of worship 170,000
Trelissick Gardens Garden 128,671

The Visit England survey shows that in 2010 the Eden Project, a major
attraction comprising artificial biomes, was the most visited site in Cornwall
and second in southwest England (after Stonehenge) with over a million
visitors (Table 5.7). The Eden Project is also within the centre of focus within
the study area located 3 miles NE of St Austell. The local tourism economy
within this coastal area supports many large attractions. Sites of this size
that attract major footfalls are of very high significance and therefore need
to be addressed as destination locations within the spatiotemporal

modelling undertaken for this study area.

The annual visitor count requires subdivision into monthly estimates which
are not routinely published for each site. Monthly visitor data for 2010 for a
typical tourist attraction within the area, Tintagel Castle, have been provided
by English Heritage (2010) (Figure 5.8). Following personal communication
footfall counts were made available for each month during 2010 by English
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Heritage who manages Tintagel Castle on behalf of the UK government. The
annual distribution has been used to derive monthly, and then daily,
estimates for attractions within the study area for January, May and August.
These months receive a 0.65%, 9.93% and 27.59% share of the 2010 annual
visitor footfall respectively which is calculated from the Tintagel footfall
distribution. The daily footfall was estimated by dividing monthly counts by
the number of days (thirty-one) within each month chosen. This is a trade-
off because daily footfalls are currently not available at the required
spatiotemporal resolution. Typical for a tourism-driven region August

received the highest proportion of annual visitors at 27% (Figure 5.8).
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Figure 5.8 Monthly distribution of annual visitors at Tintagel Castle, Cornwall. Data: English
Heritage (2010)

The temporal distribution of daily population capacities is governed by a
temporal profile (previously described in Chapter 3). If hourly footfall figures
were available this would inform the profile. However, a proxy has been
constructed using the TUS (Ipsos-RSL and ONS 2000), episodic diary data
detailing daily activities, because data at this level of granularity are
currently not available. The diary entry codes for visiting a botanic, historic
site and historic house reported at 10 minute intervals were used to
construct the temporal profile. These are from a nationally representative

survey which is the most recent comprehensive survey for time use in the
UK.

Following the establishment of a daily footfall estimate, further information
is required on the age characteristics of the destination population capacity

for this case study (Table 5.4). This is required to maintain continuity in the
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seven age subgroups modelled as population subgroups within this
example. Limited demographic information on visitors to attractions is
provided at a regional level by Visit England. This can be used to inform the
main age subgroups required. These data generally only contain adult
respondents which limits the information available for visitors less than 18
years of age. The missing information of child demographics has been
substituted by analysis of data collected for the Taking Part in Heritage
report (National Statistics 2014). This details adult and child visits to
heritage sites. This distinction is of importance for two reasons: (i) child
population subgroups have been modelled because of their unique
spatiotemporal characteristics, and (ii) heritage sites are often frequented

through school trips and community organisations by these subgroups.

A further requirement for creating a destination dataset for the modelling
undertaken is to define the destination centroid’s catchment, the origins
from which to draw population. Again, due to the granularity of currently
available data, an appropriate substitute has had to be derived. The National
Travel Survey (total respondents = 17169) records the distance travelled for
a daytrip. The 2001-2012 average (Figure 5.9) has been calculated based on
this variable (“LDJDistance”, DfT 2012b) where participants specified the
distance (miles) travelled for this purpose (daytrip travellers = 15058, mean
distance = 87 miles). Within this survey a trip is defined as a one way course
of travel having a single main purpose (DfT 2012a), appropriate for
destination catchment calculations. While this method does not allow the
determination of the exact activity undertaken for day trips it does give an
appropriate quantification for leisure travel. These data have been computed
into five bins for those who travelled less than or equal to 50 miles up to a

distance greater than 150 miles.
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Figure 5.9 Distance travelled for day trips (NTS 2001-2012 average)

Finally, an adjustment is required specific to the nature of this study area. It
has already been noted that two population origins classes (which also vary
by season) are required for the three seasonal scenarios modelled (analytical
overview, Figure 5.7). The leisure destination file has been split on the ratio
of visitor (94%) to usually resident population (6%) footfall. This is illustrated
in Figure 5.7 by the connection of the population origin class types to their
respective share of the leisure destination capacity. This is an important
consideration to represent the correct proportion of attraction footfall to
visitors. The ratio has been informed using Visit England data providing the
origin of visit by region. This has been used as a proxy to estimate the
proportion of visits external to the study area that can be deemed as visitors
for the purpose of this case study. Visits that originate within the same
region have been designated as residential footfall. This distinction ensures
that residential visits are drawn from the usually resident population origin
dataset and external visitors from the overnight visitor origins. While the
resident to visitor footfall ratio has been fixed the destination capacity does
not remain constant by month. This varies in line with the seasonal cycle
actually measured within the region (Figure 5.8). Six separate leisure
destination datasets have been created based on this information (Figure
5.7): two leisure destination datasets (populated by the usually resident

origin population and visitors respectively) for each of the three months
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modelled. The capacity of each month’s respective resident and visitor

populated destinations reflects variation within seasonal footfall.

5.4.4 Retail destinations

Retail locations are another major category of destinations which
populations temporarily occupy. A retail destination dataset specific to this
study area has been created as part of the modelling data library (Figure
5.7). This section introduces significant improvements regarding the
creation of a retail destination dataset from what has already been described
in Chapter 3. The difficulty in making such estimates was the focus of the
work presented in Chapter 3. The rest of this section is structured as
follows: the use of commercial retail centre data to locate retail destination
centroids; the estimation of footfall based on sales density, floor space and
average transaction values to assign a capacity to retail destination
centroids, and finally, the analysis of the ratio by season of footfall

generated by visitors and usual residents.

Detailed retail footfall data and innovative products are commercially
available (e.g. Experian Goad, Telefonica Dynamic Insights). However for the
purpose of this thesis demonstrating model development and application
these are not financially viable for the scale required. It does not mean that
these site specific counts could not be used, as they can be implemented
following the same framework described for the creation of an alternative
approach. The hybrid approach for estimating retail footfall for the study
area within this section uses a combination of commercially available and

public data.

Commercially available retail centres with associated national grid reference
and floor space (GMAP 2014) were used as retail destination centroid
locations. These are locations that mark the location of a retail ‘centre’, such
as a parade of shops, a large stand-alone store (e.g. supermarket) or a retail
park (Figure 5.10). Each is available with a total floor area subdivided into
grocery and comparison retail space. For the purpose and enhancement of
the population modelling undertaken these have some advantages. Using
the retail centre centroids reduces point density for improved computational

efficiency, rather than attempting to represent individual stores within a
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centre as separate ‘destinations’. The use of building level retail data is a
finer resolution than it is currently possible to resolve within the model’s
100 m output cells. The model output cell size, although flexible, is
currently constrained by the resolution of currently available population
data. Therefore this resolution at the sub-cellular T00 m output level would
be lost, but still result in an increase in computation time with no change in
final results (Figure 5.10). Furthermore, consumers will likely visit multiple
stores within any one centre. The spatial footprint around the retail centre
centroid is still conserved as it is the sum of the constituent floor space,
which is used to define the centroid’s local dispersion for the modelling

process.

*+— 100m —» & Retail centroid

Figure 5.10 Hypothetical retail units within a 100 m model output cell (A) individual retail
outlet location centroids, (B) a single centroid representing the retail centre.

In the absence of further and costly commercial footfall estimates a method
has been devised to assign a population capacity to each centroid using
publicly available data. It must be noted that this approach is just one
option that only attempts to estimate retail consumer footfall. It is
acknowledged that the commercial datasets mentioned could provide closer
approximations but due to the required costs are not available for this
demonstrative case study. The approach uses average sales density, income
per unit floor area (e.g. £/sq. ft), divided by average transaction values per
person (Eq. 5.3). This first portion of this equation estimates the customer
footfall generated per unit area of retail floor space. The second part of Eq.
5.3 adjusts this accordingly depending on the size, in terms of the total
floor space (square feet) of the particular retail centroid. Therefore, larger

retail centroids support a greater footfall.
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Sales density (£ per sq.ft
Footfall = Y (E per 5q.7t)

x Centroid floorspace (sq. ft) (5.3)

Average transaction value (£)

Sales density, and sometimes average transaction value, is often reported by
major retailers in their annual financial report for shareholders (e.g. John
Lewis Partnership 2010; Morrisons 2013; Sainsbury's 2014; Tesco 2014). A
further report by the GLA (2005) used commercial data and convenience
store databases representing 11,000 retailers in and around London to
provide a comprehensive sales density average. These sales density values
were used to produce a comprehensive average for grocery and comparison
shopping. Equation 5.3 was applied individually to the comparison and
grocery floor space for all retail centroids, adjusting the average transaction
value accordingly. The footfall generated for the grocery and comparison
retail space for each centroid was summed to give a total estimate. This
distinction was made due to variations in average transaction values for
grocery and comparison spend which would have affected footfall estimates.
Values have been adjusted to account for inflation up to 2010 (target year).
The average transaction for value for food and non-food was derived from
the Living Costs and Food Survey (ONS 201 2c¢).

Like visits to leisure attractions (Section 5.4.3) there is not an even ratio of
the usually resident population to overnight visitor population who shop at
these retail locations. This is because of the study area’s unique
characteristics influenced by the seasonal change in overnight visitors due
to tourism which are important considerations for spatiotemporal
modelling. Analysis of retail transactions based on loyalty card data for the
same region by Newing et al. (2013b) shows large seasonal variations in
footfall and the resident to non-resident sales ratio. Newing et al.’s (2013b)
analysis of weekly loyalty card transactions indicates the number of sales
within a store’s catchment (local residents) or external (visiting population).
This varies greatly by month and can be used to allocate the correct portion
of residents and non-residents from the respective origin files. The ratio
used for the three months chosen for this case study is summarised in Table
5.8.
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Table 5.8 Ratio of residents to visitors by month for study area
retail sites. Data after Newing et al. (2013b)

Month Residents Overnight
visitors

January 85% 15%

May 75% 25%

August 50% 50%

These data are used to create copies of each retail destination dataset with
the footfall divided in the ratio identified in Table 5.8, for the season
concerned, between visitors and usual residents. This allows the correct
population origin category to populate each site (represented by the retail

destination links in Figure 5.7).

Newing et al. (2013b) make specific mention of the St Austell Tesco
supermarket highlighting that it is a unique store with highly seasonal
demand, particularly from summer visitors on holiday nearby and visiting
the Eden Project. To alleviate the shortage of space and overtrading (when a
larger store would not be sustainable during quieter winter months) they
describe that such stores locate a temporary sales marquee in the car park
during the summer peak. This is illustrated in the image of Tesco’s St
Austell store (Figure 5.11). This additional space addresses the seasonal

fluctuations in the footfall experienced.

Figure 5.11 A temporary marquee in the store car park at Tesco, St Austell. (Imagery: Google
Maps, June 2014)
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In conclusion there are a number of improvements since the creation of a
retail dataset for the Southampton worked example (Chapter 3, Smith et al.
2014a). The location of retail destination centroids has been improved and
made more computationally efficient due to the availability of the GMAP
(2014) dataset for this case study. This is in contrast to using business
postcodes as a retail location proxy in the Southampton example. The GMAP
retail centres ensure greater spatial accuracy for retail locations. Enhanced
footfall estimates have been derived based on the actual retail floor space
data and averages for sales density. Analysis of industry retail data by
Newing et al. (2013b) relevant to this study area can directly inform
seasonality within retail destination footfall, which is a unique temporal
consideration for this study area. It is acknowledged that this model could
be improved further with the application of actual sales or footfall data but
to date it is not financially viable to access these data for the area required.
The example presented here provides a hybrid commercial/public comprise
suitable for demonstration of the unique spatiotemporal concepts within
this thesis.

5.4.5 Healthcare destinations

Another case study specific enhancement for the spatiotemporal population
modelling approach is the development of a healthcare destination dataset.
An initial review of healthcare statistics indicates that only small scale
providers (e.g. community hospital and treatment centres) operate within
the study area. Nevertheless, for the interests of completeness a healthcare
dataset has been constructed. Healthcare provision has important
spatiotemporal characteristics. For example, a large hospital will have
admitted immobile populations who are present on site for substantial or
long-term periods, while emergency and outpatients will be present for
much shorter timescales. When considering spatiotemporal variations in
populations these are important destinations that can often have highly
concentrated temporary populations occupying the site. This subsection
addresses the creation of a healthcare destination dataset which is a

component of this case study’s population data library (Figure 5.7).

In the UK a list of public healthcare providers by institution is available,

organised within primary care trusts (PCTs) during 2010. A PCT may contain
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just one institution such as a major accident and emergency or university
hospital, or multiple smaller community hospitals and providers. Annual
Hospital Episode Statistics (HES) (HSCIC 2010) provide the number of
consultation episodes and accident and emergency admissions by PCT.
Where a PCT contains more than one care provider the annual hospital
episodes have been allocated weighting them by the number of bed spaces
(as an indication of size). Publicly available sources of the number of bed
spaces within a provider vary widely and a combination of data sources need
to be used. These range from data contained within existing Freedom of
Information Requests, PCT websites and hospital review sites. Reweighting
these data by bed spaces means that providers with the greatest number of
bed spaces get the greatest proportional allocation of annual patient
episodes accordingly. The annual allocation is divided by 365 to get an
average daily estimate. HES data at a daily resolution is currently not

available.

Within the HES data basic patient demographic information is recorded and
the data on the age of patients are used to inform the population subgroup
split by age for the modelling undertaken. Average arrival by hour at
accident and emergency (A&E) departments and minor injury units (MIUs) is
available at provider level. This has been analysed for providers within the
study area to construct temporal profiles for attendance (Figure 5.12). MIUs
provide care for less serious injuries that do not need immediate emergency
treatment and have restricted opening hours that can be observed within the
temporal profile created (Figure 5.12). They are typically open between

08:00-22:00, compared to the 24 hour service at A&E departments.
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Figure 5.12 Accident and emergency (A&E) and minor injury unit (MIU) temporal profiles for
the St Austell study area. Data: HES (HSCIC 2010)

Finally, the healthcare destination’s catchment has been constructed using
the data reported by Roberts et al. (2014). They analysed HES data reporting
a patient’s home location (by LSOA) and the postcode of the hospital where
treatment was received to derive distances travelled. These HES data are not
routinely published and require an application for a bespoke extract,
therefore the information within the report by Roberts et al. (2014) has been
used for this case study. There is a cost associated with the extraction of
HES data which also require access approval. Their approach could be
followed for the construction of a population library for a stakeholder
however sufficient detail has been maintained for the purpose of a

demonstration within this case study.

5.4.6 Weekday versus weekend workplace capacities

The final enhancement created for this case study is the estimation of the
change in workplace capacities for a typical ‘weekday’ versus a weekend. In
the previous examples only a daily cycle has been analysed. So far this
chapter has discussed seasonal variation within the St Austell study area.
However, there is also a weekly change that can be accounted for within the
model’s framework. Workplace data have been constructed using ABI/BRES

(2010) labour force statistics following the process outlined in Chapter 3
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(see Table 5.4 for breakdown summary). However, it is known that not
everyone works routine set hours seven days a week, whereas, some
employees will work shifts including, or exclusively, weekends. Analysis of
the Labour Force Survey (LFS) for the broad SICs modelled has been
undertaken for the usual days worked by each sector. Respondents are
asked whether they usually work on the day in questions for all days within
the week. This has been summarised in Table 5.9. Separate workplace
destination datasets have been created for weekdays and weekends and
have been allocated the correct proportion of the workforce accordingly.
This is based on the percentage distribution by day worked of all
respondents within each SIC category. These have been aggregated to
represent weekdays (Monday to Friday) and weekends (Saturday and
Sunday). This gives the proportion of the total number of employees within
each SIC who would be expected to be working on any given weekday or
weekend. For example the proportion calculated to be present and working
on weekends will include employees who stated they exclusively worked
weekends within the LFS or whose usual working days also included a

weekend day.

Table 5.9 Employees by SIC for the St Austell study area and the breakdown for those who
usually work a weekday or weekend. Data: LFS 2010

Percentage

Workforce g:;gl':;:;"(}’; xvv:;tdays %) weskends %)
Office based 23 94 6
Retail 20 84 16
Healthcare 14 93 7
Accommodation and 14 82 18
catering

Manufacturing and 13 94 6
construction

Education 10 93 7
Transport 4 90 10
Agriculture and fishing 2 79 21
Total 100

Subsequent modelling has been carried out that for weekdays and weekends
based on the distribution presented in Table 5.9.
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5.5 Results

This section provides the results of analysis from differing flood risks
associated with a seasonally changing population for the St Austell study
area. It has already been noted that results at this spatiotemporal scale are
not achievable using static population or hazard data alone. In contrast to
the two previous examples (Ulley and Southampton) the discussion in this
chapter has highlighted that this case study demonstrates some unique
characteristics in space and time. Its location is geographically constrained
by the coastline while the area is largely rural. However, the study area
notably experiences a large flux of visitors on a seasonal scale. For this
reason (masking effect), and in part due to the rural nature, daily commuter
flows do not dominate this example. Instead different temporal factors on a

larger seasonal scale are the primary influences on this region.

5.5.1 SurfaceBuilder247 data library construction

The distribution of origin and destination centroids, constructed for the
SurfaceBuilder247 data library, within the St Austell study area is shown in
Figure 5.13. The origin centroids are comprised of residential UPCs and
show clusters of residential locations (e.g. along the southern coast and
Bodmin) interspersed with rural settlements. The origin centroids are
populated by the usually resident and overnight visitor population. In
contrast the destination centroids are more tightly clustered to the main
residential concentrations. This shows the distribution of leisure locations
(attractions), workplaces (business UPCs), education establishments,
hospitals and retail centres. These all receive temporary, and usually
daytime, population counts such as employees at work and children at
school from the surrounding origin centroids. Origin and destination sites
are each referenced by a single point (e.g. UPC) but population is dispersed
into the immediate surrounding area governed by a local dispersion
parameter that reflects the size of the site. This size of the site is estimated

based on its type or referenced from known sources (e.g. retail floor space).
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Figure 5.13 Origin and destination centroids within the St Austell study area

5.5.2 Spatiotemporal population distribution

Hourly spatiotemporal population estimates have been produced for the
study area representing a ‘typical’ working weekday within each month for
three seasonal scenarios (January - low, May - fringe and August - peak).
January and May represent school and university term-time and therefore
use the same term-time usually resident population origin base (Figure 5.7).
August is a school and university summer vacation period in England and
Wales. Therefore it is represented by a non-term time population origin base
(Figure 5.7). The population exposure to the EA’s flood map zone three has
been calculated for the whole study area (Figure 5.4) and is presented in
Figure 5.14. It has been compared with static exposure estimates from
rasterised census outputs representing: the baseline 2001 Census
population at OA level (highest resolution available), 2001 Census daytime
population at OA (only released for 2001) and the 2010 mid-year estimate
(closest to target date but only available at LSOA level).
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Figure 5.14 Flood exposure estimates from the EA Flood Map Zone 3 for the St Austell study
area using seasonal spatiotemporal model outputs at hourly intervals for a ‘typical’ weekday.
The St Austell case study differs in some important respects from the
previously reported Ulley and Southampton examples. Firstly, the census
estimates underestimate exposure in this case study compared to large
overestimations in the previous examples. This is likely to be for a number
of reasons: the modelled outputs have accounted for seasonal visitor
influxes in addition to the census population. On average the visitors
increase the usually resident population by +6,570 in May and by greater
than 12,000 at the peak in August (Table 5.5). The rural characteristics of
the study area result in geographically larger OAs and LSOAs (to meet
minimum population confidentiality levels), producing lower population
densities compared to an urban region. In contrast smaller OAs (by area) in
urban locations produce higher population densities although all OAs
contain roughly similar numbers of households. Secondly, there are no very
distinct daily cycles in the modelled outputs for St Austell. It is possible to
identify what appears to be a familiar daily cycle in the January output
characterised by a morning and evening travelling peak (around 08:00 and
16:00, Figure 5.14) which is also evident in the previous examples.
However, as larger numbers of overnight visitors are accounted for in the
May and August examples the daily cycle in the baseline residential
population (closely attuned to the January example with few visitors)

appears to be masked by their movements. There is a clear seasonal cycle in

247



Spatiotemporal population modelling to assess exposure to flood risk

overall exposure although the daily signal appears to become more variable.
However, it is the temporal variation at a seasonal scale that is the main

feature of this particular case study.

A spatial comparison of the rasterised (and density adjusted) census
datasets and SurfaceBuilder247 model output is illustrated in Figure 5.15.
The 2001 Census (OA) is the highest resolution data available prior to the
target date (Figure 5.15A). A 2001 daytime census population at OA level
(Figure 5.15B) is also available. This is defined as the count of people aged
16-74 who do not work plus those who work in the area (National Statistics
2004). The population estimate closest to the target year (but at lower
resolution) is the 2010 mid-year estimate at LSOA level (Figure 5.15C).
These are all static with no seasonal variation or areas of zero population
density due to the census structure of contiguous zones. In contrast, the
model output for a May weekday ‘night-time’ population illustrates the
enhancement in spatial resolution (Figure 5.15D). Population is concentrated
in inhabited areas with surrounding unoccupied farm and moorland
receiving a zero population density. The area is characterised by dispersed
groups of rural dwellings which receive a low but non-zero population
producing a speckled effect in the modelled results which corresponds with
the population origin centroids (Figure 5.13). This is another contrast to
modelled outputs for the Ulley and Southampton case studies where the
population had previously been concentrated in large urban zones, rather

than the dispersed rural settlement pattern observed here.

The seasonal spatiotemporal variation has been illustrated for a weekday
day (12:00) and night-time population (00:00) estimate for each of the three
seasons modelled. The usually resident and overnight visitors have been
displayed separately. These selected spatiotemporal outputs are displayed
in Figure 5.16 (January - low), Figure 5.17 (May - fringe) and Figure 5.18
(August - peak). In all three examples a general concentration in the usually
resident day-time (12:00) population occurs from the night-time (00:00)
locations (Figures 5.16-18A and B). There is increased clustering at the main
population centres in the day-time examples (St Austell to the south and
Bodmin in the north) and a greater population in travel on the road network.
The concentration is observed in the main population centres, analogous

with the main workplace locations showing a rural to urban commute from
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the surrounding areas. For example, for the May usually resident population
there is a peak in concentration in the St Austell town centre at 12:00
(Figure 5.17B) of 1,400 people/100 m?, compared to just 54 people/100 m?
at 00:00. This is presented at the group of orange coloured cells in the
south-western corner of the study area in Figure 5.17B. It also highlights the
known phenomenon that town centres are predominantly only populated
during the daytime as they host a range of retail, leisure and workplace

locations but at night have very few usually resident people.

Similarly, there is a concentration in the overnight visitor population from
the night time locations they occupy to concentrated locations of daytime
activity (Figures 5.16-18C and D). These daytime concentrations, most
notable in August with the visitor peak, occur in the main town centres (e.g.
St Austell, Bodmin and Lostwithiel). There is a large increase in the overnight
visitor population of greater than 12,000 people between January and
August (Table 5.5). Another clear observation is that the distribution as well
as concentration and number of estimated overnight visitors increase
between January and August. Most notable is the August night-time
concentration of visitors in the coastal areas south of St Austell (Figure
5.18C). Secondly, the central area of the study area’s extent receives a
greater share of overnight visitors. This is attributed to the location of rural
guesthouses, campsites and caravan parks which are not populated with the

additional population in traditional census datasets.

An increase in the concentration of the daytime (12:00) usually resident
population is observed between January and May (Figure 5.16B and 5.17B)
although they come from the same term-time population origin base. This
change can be explained by seasonal variation in different sets of
destination sites for the two months. Footfall at leisure attractions and retail
locations increases between January and May and this is attributed to the

change observed.
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Figure 5.15 Comparison of rasterised (100 m) census datasets for the St Austell study area
for (A) 2001 OA counts, (B) 2001 OA daytime counts, (C) mid-2010 LSOA counts and (D)

example model results for May 00:00.
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Figure 5.16 Modelled seasonal population outputs (100 m) for the St Austell study area for a
January weekday. (A) Usually resident night-time (00:00) population, (B) Usually resident
daytime (12:00) population, (C) Overnight visitor night-time (00:00) population and (D)

Overnight visitor daytime (12:00) population.
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Figure 5.17 Modelled seasonal population outputs (100 m) for the St Austell study area for a
May weekday. (A) Usually resident night-time (00:00) population, (B) Usually resident daytime

(12:00) population, (C) Overnight visitor night-time (00:00) population and (D) Overnight
visitor daytime (12:00) population.
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Figure 5.18 Modelled seasonal population outputs (100 m) for the St Austell study area for
an August weekday. (A) Usually resident night-time (00:00) population, (B) Usually resident
daytime (12:00) population, (C) Overnight visitor night-time (00:00) population and (D)
Overnight visitor daytime (12:00) population.
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To further exemplify the spatiotemporal population outputs achieved using
SurfaceBuilder247 comparative extracts for a week day at 10:00 and a
weekend at 12:00 are shown in Figure 5.19. These represent the total
population (i.e. visitors and usual residents combined). Population has been
modelled at hourly intervals for three seasonal scenarios (e.g. Figure 5.14).
Until now only representative examples for a weekday daytime (12:00) and
night-time (00:00) population have been spatially illustrated. The
comparison of the population at 10:00 for a weekday in January and August
(Figure 5.19A and B) shows greater clustering and in-travel populations in
the August example. A notable difference, in terms of the in travel
population, can be observed between the January weekday 10:00 scenario
(Figure 5.19A) and the January weekday 12:00 scenario (Figure 5.16B and
D). In this example there is a greater in travel population at 12:00 compared

to 10:00, a change observed in just a two hour period.

A similar feature of the in travel population is also observed in the total
population for a May weekday at 12:00 (Figure 5.19C) and May weekend at
12:00 (Figure 5.19D). This represents the same total population scenario
but for different days (weekday vs. weekend). The weekday example has a
considerably greater in travel population for the same time (12:00) on a
weekday compared to a weekend. However, the weekend population is more

concentrated, corresponding with retail centre locations (Figure 5.13).

If all scenarios were to be illustrated concerning the two population
classifications (visitors and residents), six seasonal scenarios (January, May
and August for a weekday and weekend) and three LISFLOOD-FP extents
over 24 hours, there would be 864 possible unique combinations (2 x 6 x 3
x 24) in this example alone. The temporal aspect of the modelling
undertaken allows much greater insights into possible population cycles. If
sufficient data were available to further increase the temporal resolution to
15 minute intervals (24 x 4 = 96) and consider weekdays individually (3
seasons x 7 days = 21) the number of possible combinations would increase
t0 12,096 (2 x 21 x 3 x 96). Introducing temporal granularity within the
environmental modelling would increase this even further. In addition to this
the seven population subgroups for the two population origin classes

chosen could also be considered separately.
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In contrast the census output, even with a sophisticated static areal
interpolation, with the three flood scenarios would still only give six
possible combinations (2 x 3), using the census residential and daytime
population counts. However, the difference in many of these 864 possible
combinations is likely to be negligible and therefore it is important to
choose appropriate and contrasting snapshots for analysis and static
visualisation. The SurfaceBuilder247 approach adopted facilitates detailed
evaluations for population exposure to flood risk while considering changes
in season and time of day. In any final assessment there is the potential for
large variations in the outcome depending on the combination of events
chosen, as exemplified in the St Austell application illustrated in this

chapter.
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Figure 5.19 Population comparisons of (A) January (term-time, low season) weekday 10:00
and (B) August (non-term time, peak season) weekday at 10:00; (C) May weekday at 12:00
and (D) May weekend 12:00. All represent total populations (residents and visitors).
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A detailed comparison has been conducted using selected 1 km national
grid square extracts from the St Austell study area model results (Figure
5.20). Two have been selected from August daytime (A and B) scenario for
the total population and two for an August night-time (C and D). All
represent the total population (usually resident and visitors combined). The
distribution of 100 m output cells is clearly visible within the detailed 1 km
square extracts. The modelled results have been compared to Ordnance

Survey base mapping and aerial imagery for the same location and scale.

The OS map extract for the first example (Figure 5.20A) shows a part of
Fowey, with a range of tourist attractions (indicated by the blue map
symbology). The August daytime model results for the same area show that
the population is appropriately constrained to the land mass (due to the
background masking layer) and concentrated on the coastal locations of the

amenities outlined on the map extract.

The second extract is focused on one of the highest concentrations within
the study area (Figure 5.20B), showing part of St Austell town centre. The
August daytime population concentration exceeds 1000 people per 100 m?2.
The Holmbush area is a retail district which includes the St Austell Tesco
supermarket (Figure 5.11). St Austell has the highest floor space in terms of
retail within the study area which is informed by the retail destination
datasets that have been created for this case study. Comparison with the

aerial imagery shows close model alignment with the populated areas.

The third extract is the first of two August night-time examples. Figure
5.20C shows the location of a large static caravan site immediately behind
Par Beach. Population densities within the model cells correspond with the
caravan site, summing to approximately 150 people. The aerial imagery
provides the detail which is just shown as a series of tracks on the OS
background mapping (as caravans are not permanent structures and
therefore not mapped). This area also corresponds to high levels of flood

risk under all of the inundation scenarios (Figure 5.5).

Finally the fourth extract (Figure 5.20D) shows the night-time population
estimate for what appears to be an uninhabited area, but which is clearly
designated as a campsite in the OS mapping and discernible within aerial

imagery. The population density corresponding to the campsite area shows
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moderate population densities of up to 50 people per 100 m?. The small
settlement of Lower Penhale is represented by an area of low non-zero
population densities. This appears to be a slight overspread, but still
demonstrates a refinement based on the census zonal data alone.
Furthermore it would not be possible to resolve the August peak in
population at this campsite (which is simply an unoccupied field at other
times of the year) relying on the census data alone. This example tests the
limits of the current spatial resolution of the model using currently available
population data for this case study; however they are still significant
improvements. Reasons for this overspread are likely to be caused by the
underling population origin centroid density. As residential postcodes were
used the rural locations identified on the map, Lower Penhale and Polgassick
Farm (Figure 5.20D) are likely to share a postcode which may not be
georeferenced directly on one particular site. The dispersed nature of rural
properties sharing a rural postcode is greater than in concentrated streets in
urban areas. This is another important factor to consider the application of
models using only postcode centroids where spatial accuracy and density

can vary.
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Figure 5.20 A detailed comparison of SurfaceBuilder247 (100 m resolution) results within the
St Austell study area with 1:25000 scale Ordnance Survey (OS) background mapping and
aerial imagery for selected 1 km national grid squares. (A) and (B): August weekday ‘daytime’
population. (C) and (D): August weekday ‘night-time’ population.
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Figure 5.21 (A) Par beach looking southwest from the low level sand dunes (B) protecting the
caravan site behind from coastal inundation. Photographs: Alan Smith (May 2014)
A large caravan site is situated immediately behind Par Beach (Figure 5.20C
and 5.21). This location is only protected by small natural sand dunes and
all flood inundation scenarios used in this case study identify this site as
high risk (Figure 5.5). McEwen et al. (2002) highlight the susceptibility of
caravan sites often located in flood prone locations (usually because
permanent structures may not be permitted) and note the vulnerability of
residents and their associated high exposure to flood risks (such as this Par
example). They recommend that there is strong evidence to treat such
residents as a distinct vulnerable group with specific requirements for the

purpose of flood warning and emergency planning.
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5.5.3 Population exposure to flood risk

An assessment of the population’s exposure to flood risk has been carried
out for the sub-area of the study area identified in Figure 5.4 using the EA
and LISFLOOD-FP inundation scenarios (Figure 5.5). This has been
undertaken for daytime population estimates (12:00) for the three
illustrative seasons selected. Within each season the visitor and usually
resident population has been analysed separately (Table 5.10).

Table 5.10 Daytime usually resident and visitor population exposure to three LISFLOOD-FP

inundation scenarios (R = return period) and EA flood map zone three for January, May and
August (increasing levels of inundation left to right).

Population LISFLOOD LISFLOOD LISFLOOD EA Flood

R100 R250 R500 Map
Residents 12:00 542 939 1069 1725
Jan
Visitors 12:00 Jan 2 5 7 15
Total 544 944 1076 1740
Residents 12:00 546 994 1139 1729
May
Visitors 12:00 34 108 131 114
May
Total 580 1102 1270 1843
Residents 12:00 498 1019 1178 1741
Aug
Visitors 12:00 65 206 249 212
Aug
Total 563 1225 1427 1953

An interesting phenomenon observed in the seasonal flood map analysis
(Table 5.10) is actually a decrease in the August 12:00 exposure to the
LISFLOOD-FP R100 flood risk, compared to the May 12:00 exposure total to
the same LISFLOOD-FP R100 flood extent. Total population exposure for a
weekday at 12:00 under the LISFLOOD-FP R100 scenario decreases from 580
to 563 from May to August. This is driven by the usually resident
population. It is the reverse of the cycle observed in all of the other
scenarios modelled where the August 12:00 residential population exposure
increases relative to the respective January and May levels. The midday
January and May exposure of the usual residents for the LISFLOOD-FP R100

scenario remain similar. This could be expected as they are derived from the
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same term time census population base. The August usually resident
population base is different to account for non-term time changes but
nonetheless this is still an increase in population (Table 5.6) so not a cause
for the exposure decrease. The variability between the January and May
usually resident population for the other scenarios modelled (progressively
larger polygons, Figure 5.5) is likely to occur due to more seasonally varying
destination locations. Visitor exposure has increased in line with
expectations between January and August for all inundation scenarios,
following the cycle in the tourism season. It was expected that the overall
increase in visitor numbers would inevitably also lead to an increase in flood

exposure by season.

To examine the unexpected decline (as all other examples increase with the
seasonal cycle) in flood risk exposure for the August and May LISFLOOD-FP
R100 scenario (Table 5.10) the population has been further analysed at the
population subgroup level for seven age subgroups for both usual residents
and visitors (Figure 5.22). It can be observed that the largest contribution in
the decline in exposure to flood risk between May and August (at 12:00 for
LISFLOOD-FP R100) is the 16-64 working aged population. Exposure in this

group decreases from 389 to 281 between May and August.

Age subgroups

500 - XY Over 65

116 to 64 (Working
116 to 64 (HE)
Y 16 to 64 (FE)
400 - Bl 111015

I 4 to 10

O to 3

300

200

Population exposure (count)

-

o

o
1

May Visitors May Residents ~ August Visitors August Residents

Figure 5.22 Comparison of daytime (12:00) population LISFLOOD-FP R100 exposure
estimates broken down into age subgroups for visitors and residents in May and August

Figure 5.23 illustrates the movement in the working aged (16-64) population
subgroup between May and August. It shows greater concentration within

the urban centres of the study area. This corresponds to the locations of
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attractions and retail centres (Figure 5.13). Known seasonal variation in
capacity at these sites means that a greater number of the 16-64 subgroup
occupies these locations in August. Although this is the ‘working’ aged
population it does not necessarily mean that they only populate workplace
locations. This would suggest the greater August concentration of this
population subgroup at inland locations is perhaps reducing exposure to
flood risk following the movement of the population from the surrounding

areas into relatively safer locations.

Although the total population exposure to flood risk in August for
LISFLOOD-FP R100 decreases compared to May, the number of the elderly
(>65 years) potentially exposed increases (Figure 5.22). This increase of
385% (May to August) is derived from the influx of overnight visitors. While
overall it would appear that flood risk is lower, there is actually a large
increase in the elderly population exposed to flooding in the R100 August
weekday 12:00 scenario. This does not mean that overall elderly visitors
dominate the whole study area’s August tourist population (also dominated
by family holidays) but just the flood polygon analysed. This insight could
not be achieved looking at the total population alone or without modelling

exposure at population subgroup level.

Population subgroups from the August residential population base that
actually increase in LISFLOOD-FP R100 12:00 exposure (although overall
there is a net decrease) those containing the school aged population
(population subgroups 4 - 10 and 11 - 15, Figure 5.22). The spatial
distribution at 12:00 for May and August for one of these subgroups, 11 -
15 (secondary school aged) has also been illustrated in Figure 5.23C and D.
It is clear that in May (midday term-time weekday) this subgroup is highly
concentrated at school sites. During August, non-term time (i.e. school
vacation period), this population is dispersed throughout the surrounding
residential locations. In this example these school sites appear to be in
places of relative safety according to the inundation scenarios modelled.
However, the more dispersed non-term location has increased the chances
of exposure to potential flood risk through greater spatial distribution,

including within potentially hazardous zones.
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(A) May 12:00 Working population (16-64) (B) August 12:00 Working population (16-64)

(C) May 12:00 secondary school population (11-15)
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Figure 5.23 Spatial distribution of the usually resident 12:00 weekday population subgroups
(Working aged 16 - 64 (A and B) and secondary school aged 11 - 15 (C and D)) for May and

August within the St Austell study area.
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5.5.4 Population fatality estimates

Population fatality estimates have been calculated using the spatiotemporal
population distributions generated and the LISFLOOD-FP layers provided.
This follows the calculation of a flood hazard rating and method introduced
in Chapter 4.3.5 and summarised previously in Section 5.3.2. Fatality
estimates have been calculated for the extent of the LISFLOOD-FP model
(Figure 5.4) for a weekday at midday in January and August 2010 broken
down into the usually resident and visitor population (Table 5.11). The
methodological steps outlined to estimate the number of injuries, flood
hazard rating (raster LISFLOOD-FP layer provided by Quinn 2014) and
potential fatalities were combined with the spatiotemporal population
outputs and evaluated using raster based calculations in ArcGIS. The months
chosen intend to represent the difference between the low (January, term-

time) and peak (August, non-term time) tourism season.

Table 5.11 Total population and fatality estimate for the LISFLOOD-FP model extent within
the St Austell study area for January and August 2010

Total Fatality estimate for return period:
Weekday (12:00) .

population 100 years 250 years 500 years
January Visitors 350 0.3 0.35 0.42
January Residents 28,887 61 79 100
August Visitors 4,945 13 16 17
August Residents 38,288 67 85 105

It is evident that there is a large increase in the visitor population from 350
to c. 5,000 between January and August within this subsection of the St
Austell study area (Table 5.11). In August this 8 x 4 km subsection (Figure
5.4) accounts for almost half of the entire study area’s visitor population
(Table 5.5). Consequently exposure and risk of fatalities to the visitor
population also increases from the low to peak season. In the worst case
scenario presented (500 year return period) for this subsection the January
to August influx of additional visitors accounts for an estimated increase of
fatalities of up to 17 people. In contrast the relatively low visitor population
in January (e.g. Figure 5.16D) is insignificant however the increased visitor
population in August is of great concern. The spatiotemporal characteristics

of seasonally varying populations outlined in this application demonstrate
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their importance for consideration in risk from hazards. The estimated

number of all fatalities increases with event magnitude.

Another notable observation in Table 5.11 is the c. 9,400 person increase in
the baseline usually resident population from January (term-time) to August
(non-term time) for this study area subsection. This is generated by non-
overnight visitors drawn from the neighbouring regions to the leisure
destinations. It has already been determined that there is little change in the
study area’s overall non-term time population (Table 5.6). However, it is
possible the slight non-term time increase is concentred within this
subsection (also the main population centre) and does also contributed
towards the increase observed. The most likely explanation is the usually
resident population’s increase in daytime visits to attractions and leisure
locations within this study area. Like the overnight visitor population their
leisure activity also follows seasonal cycles and concentrations. The non-
term time summer vacation period in August is also peak season for the
usually resident population’s leisure activities. The spatial distribution of
fatality estimates for the 250 year scenario contained within Table 5.11 is
shown in Figure 5.24. The January and August visitor fatality (Figure 5.24B
and D) estimates are concentrated around Tywardreath Highway and
adjacent to the River Par south of Par railway station. In addition, the fatality
potential for the usually resident population (Figure 5.24A and C) also
includes a greater area expanded around the River Par including St Blazey,

as well adjacent to drainage channels in Holmbush, St Austell
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(A) January Residents, 2010 12:00

(B) January Visitors, 2010 12:00

(C) August Residents, 2010 12:00

(D) August Visitors, 2010 12:00

Figure 5.24 Population fatality estimates under the LISFLOOD-FP 1 in 250 year event scenario for the visitor and usually resident populations in January and

OS Map data: © Crown Copyright/database right 2014. An Ordnance Survey/EDINA supplied service
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5.6 Comparison with census estimates

A final analysis has been undertaken to compare modelled results for
January with rasterised census datasets for the St Austell study area at a
cellular level (100 m). The difference (A) has been calculated between the
January night-time (00:00) model output and the 2001 Census (at OA level)
(Figure 5.25A), January day-time (12:00) model output and the 2001 Census
daytime count (at OA level) (Figure 5.25B) and the January night-time (00:00)
model output and the 2010 mid-year population estimate (at LSOA level)
(Figure 5.25C). All graphs show that overall the positive difference is greater
(i.e. the model output produces greater values than the corresponding
rasterised census cells). This can be visually explained through reviewing
the spatial distribution of population in the modelled results (e.g. Figures
5.16-18, 5.23). It can be observed, and it is an intention of this model, to
appropriately concentrate population onto the actual locations where they
are likely to be present depending on the season and time of day. This also
more accurately reflects areas of zero population density. In contrast to the
uniform density across contiguous zones census structure this will result in
the model cells containing higher population counts in occupied areas and

zero in between.

The greatest difference occurs in the daytime comparison of the model and
census daytime estimate (Figure 5.25B) where the standard deviation (o) =
11.16. This comparison also exhibits the greatest positive difference. This is
expected, as in terms of the spatiotemporal modelled outputs this is when
population within this study area will be the most concentrated at school
and workplace destination cells. This highlights an issue with the
underestimation of population occupying daytime locations within the

census data.

Figure 5.25C shows the least variance within the three examples (c = 7.42)
for the model difference from the mid-2010 LSOAs. However, there is in fact
little overall difference between the model compared to the 2001 OA and
2010 LSOA (Figures 5.25A and C). There is a slight improvement with fit
using the newer 2010 adjusted LSOA counts. This is the same target year
(2010) for the population data modelled. It also has the lowest mean
difference by cell (0.07) and lowest RMSE (Table 5.12)
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Figure 5.25 Difference at a cellular level (100 m) between day and night-time model results
for January and rasterised census data concerning the 2001 OA population (A), 2001 OA
daytime population (B) and 2010 LSOA mid-year estimate (C) across the St Austell study area.

In addition to the mean difference and standard deviation a mean
percentage error (MPE) and root mean square error (RMSE) have been
calculated (Table 5.12). The modelled result is taken as the observed value
and the census the predicted. The closest model scenario that corresponds
to the census count has been chosen. The census baseline and MYE does
not account for seasonal variation and is considered a night-time count.
Therefore, the January 00:00 model output was chosen. A January daytime
model estimate (12:00) was chosen to correspond with the census daytime

count.

Table 5.12 St Austell study area model difference analysis

Values Measure
?n?;g;‘l’)ed fcr::;fltsd SD Mean  MPE  RMSE
January 00:00 2001 Census 8.09 0.66 34.31% 8.12
January 12:00 2001 Daytime 11.16 0.71 52.21% 11.16
January 00:00 2010 MYE 7.42 0.07 13.34% 7.42

Where A is the difference between the observed and predicted values
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The RMSE closely corresponds with the standard deviation, it represents the
average ‘error’ (or difference) for each observation (in this example 30,000
100 m cells). On ‘average’ the model observations overestimate the census
values, by up to more than 50% (daytime scenario). For greater clarity the
actual difference at a cellular level (100 m) is displayed spatially in Figure
5.25. This shows the model difference from the census day and night-time
value (first two rows of Table 5.12). The percentage ‘error’ or difference
from the night-time model (January 00:00) results and the 2001 Census
(considered a night-time count) is shown in Figure 5.26A. The actual
difference in population count between the daytime model (January 12:00)
and the 2001 Census daytime count is shown in Figure 5.26B. The greatest
positive difference occurs outside of the main population centres (St Austell
and Bodmin). In the night-time evaluation (Figure 5.26A) the model clusters
population to actual residential locations. Lanivet, Lostwihiel, Lerryn and
Golant are labelled as examples. These are predominantly rural settlements,
and in contrast the census distributes this population over geographically
larger OAs. This results in lower census population densities. Where the
model concentrates this population to inhabited residential locations large
differences occur from the census count that approximately correspond with
the outline of these settlements. This occurs to a lesser extent in the main
population centres for the converse of this argument. For example, OAs in
more densely populated areas such as St Austell are geographically smaller
in comparison and result in higher census population densities. In these
locations there is less of a difference between the modelled and census

outputs.
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(A) January 00:00 - 2001 Census

(B) January 12:00 - 2001 Census daytime pop.
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Figure 5.26 Cellular (100 m) difference between spatiotemporal population model results
and rasterised day and night-time 2001 Census counts

The contiguous zonal structure of the census does not permit areas of zero
population density. Where the model does assign a zero density (e.g.
unoccupied countryside between settlements) it ‘appears’ to be
underestimating the census counts by up 5 people per 100 m cell. This is
indicated by the light green background colour in Figure 5.26. However, in
reality these locations are not ‘inhabited’ by people and the model reflects
this. The largest difference of +130 people occurs in the small hamlet of
Cardinham, situated on the extreme northern edge of the study area
northwest of Bodmin (Figure 5.26B). The corresponding cell has a daytime
census population density of 0.12 people/100 m?. However, this location
contains a small primary school (Cardinham School) with a weekday term-
time population of 78 pupils; its centroid is visible in Figure 5.13. This
increases further with the inclusion of additional staff. In reality the census
estimate simply does not account for localised daytime concentrations in
population, including school sites. Administrative datasets (e.g. School

Census) used to construct this model’s data library confirm that it is known
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that there is a population associated with that school site for the time

modelled.

Parts of the road network can be discerned in yellow in Figure 5.26B. This
indicates areas where the daytime model output seems to overestimate the
census baseline by up to 6 people per cell. This is expected because the
census does not account for the population on the road network where this

model specifically does.
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5.7 Summary

This chapter has evaluated a case study within a rural coastal setting that is
driven by large temporary fluctuations in the seasonal tourism population.
At times this additional population has accounted for a significant
proportion of the census baseline estimate. Seasonal overnight visitor data
have been combined with a usually resident term and non-term time
population base to illustrate variation throughout the tourism season,

exemplified for three distinct months.

In conclusion the spatiotemporal modelling approach adopted has facilitated
the inclusion of a highly influential seasonally varying tourism population.
This has advanced current insights on high resolution variation in space and
time to produce a range of realistic population estimates. For example, the
comparison of a night-time peak season modelled output (seasonally
adjusted to account for overnight visitors) with OS background mapping
(Figure 5.19) has allowed the identification of temporally occupied locations.
In this example an empty field becomes a busy campsite during the peak

season.

These insights are simply not possible using static or traditional datasets in
isolation. Inclusion of peak summer tourism population has been shown to
increase the residential baseline population by up to 18%. Results have
demonstrated large changes in population exposure to flood risk by time of
day within the same and varying flood inundation scenarios as well as
seasonal increase in potentially vulnerable populations. Furthermore it
highlights the season specific requirements for vulnerable groups such as

occupants of highly exposed caravan sites.

Validation and error analysis is demonstrably difficult for the model results
obtained. However, assessment of the differences between the model and
census counts supported with administrative datasets show that the model
more accurately portrays locations of population at a sub-OA scale. There is
a high confidence that the modelled outputs, although contrasting to the
census, do depict accurate population clusters. For example, the case of
children being present on a school site which is not portrayed in the census

is confirmed by administrative datasets. It is acknowledged that the actual
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magnitudes can be highly variable and subject to external influences such as
the weather, tourism economy and social trends. Therefore it is difficult to
define a precise value. Nonetheless, predicted clusters appear to correspond

with concentrated centres of population.

This application has demonstrated what Martin et al. (forthcoming) term the
modifiable spatiotemporal areal unit problem where even the most detailed
spatial data may be inadequate to support time-sensitive analyses. In this
case study population exposure outcome is highly dependent on the time of
day, season of the year and varying extent of flood inundation polygons.
Just a few of a potentially exponential range of scenarios have been
demonstrated and these show large variations in the results obtained. For
this reason, an analysis using static data without the temporal insights
achieved here will only provide one result which has been demonstrated to

have strong spatiotemporal sensitivities.
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6.1 Overview

This thesis has sought to develop appropriate methods for the integration of
spatiotemporal population estimates with existing environmental models
and to demonstrate their practical implementation. Applied examples in
Southampton (Chapter 3), Ulley (Chapter 4) and St Austell (Chapter 5) have
demonstrated the implementation of spatiotemporal population estimates
created for this thesis. The creation of a population data library within a
flexible framework has been presented to better represent population
movements in space and time. Population movements have been explored

for daily, weekly and seasonal time scales.

Following the review of population exposure to natural hazards and
techniques for the interpolation of population data (Chapter 2), the
importance of spatiotemporal population estimates at appropriate
resolutions for the purpose of flood risk analysis was identified and
illustrated using appropriate case studies (Aim 1, Specific objectives I, Il, IV).
The construction and evaluation of two datasets and a population model
data library for use with SurfaceBuilder247 was completed (Aim 2, Specific
objectives Il and V). This chapter discusses the final aim, to assess the
extent to which spatiotemporal population modelling techniques can be
used to provide greater insights for integrated disaster risk management,
and examine to what extent confidence can be placed in their results (Aim
3).

To achieve this aim the focus has been to enhance and apply the newly
developed Population 24/7 modelling tool, generating spatiotemporal
gridded population estimates beyond the original implementation by Martin
et al. (forthcoming). New data libraries have been created for this thesis.
Relevant extensions of the work of others have been identified and, where
appropriate, integrated into the examples presented. This includes small
area seasonal visitor estimates (Newing 2014) and bespoke LISFLOOD-FP
flood inundation layers (Quinn 2014).

This chapter is divided into five main sections. The first discusses the extent
to which model integration has been achieved and important considerations

for population exposure that have arisen throughout this process. Section
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6.3 discusses the enhancements made to the Population 24/7 modelling
framework. This evaluates the creation of a new expanded Population 24/7
data library to account for variation in output resolution and population
movements for different temporal scales. It deals with the integration of new
data types and creation of new parameter estimates which have not been
produced before. Section 6.4 explores model validation against census
estimates and examines the challenges involved in validating spatiotemporal
population estimates. Finally, Section 6.5 outlines the potential
contributions of this research to the field of dynamic population modelling

and disaster risk management.

280



Discussion

6.2 Integration of spatiotemporal population

estimates and environmental models

This section discusses the suitability of the method developed for the
creation of spatiotemporal population estimates for integration with
environmental models. It compares the gridded spatiotemporal population
estimates with other current ambient population estimates available. The
integration of population and hazard models that vary in space and time
raises questions about application scale (Section 6.2.3). Practical
considerations regarding the integration of population and environment
models will be discussed in Section 6.2.4. This draws on the evidence
proposed in the two case studies (Chapters 3 and 4). Finally, the potential
contribution to the improvement of natural hazard risk assessment and

further application contexts is discussed in Section 6.2.5.

6.2.1 Spatiotemporal gridded population outputs

The representation of population data was the focus of the literature review
in Section 3.3. Chapters 3 to 5 have demonstrated the advantageous nature
of gridded population estimates through applied examples and case studies.
Generating gridded population representations has proved to be beneficial,

particularly for the accurate delineation of occupied areas.

The use of a grid as a universal format has many advantages, including the
ease of integration of population and environmental model outputs or
datasets. This is discussed in more detail in Section 6.2.4. A second
advantage is the simple data structure of a grid (e.g. ASCII grid format) for
subsequent analysis in GIS, editing outputs, cellular level comparisons and
software compatibility. The gridded format provides the stability through
time, alignment with national grid reference systems and data refresh
options. For the purposes of flood risk analysis it can be beneficial to update
population datasets to represent different target dates or scenarios. The
grid provides a stable platform of consistent units which allows direct like

for like comparisons of different output data from a range of sources.
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6.2.2 Spatiotemporal and ambient population estimates

The results and analysis (Chapters 4 and 5) have demonstrated high-
resolution spatiotemporal population estimates, at hourly intervals for 100
m cells. It has been shown that variations depending on time of day (e.g.
Figures 4.16 and 5.14), day of week (e.g. Figure 5.19) and time of the year
(e.g. Figures 5.16-18) can be resolved in the spatiotemporal population

modelling approach that has been followed.

It has been observed that static daytime population tables are available from
2001 and 2011 censuses, which provide a comparison to residential night-
time counts. The global LandScan database is an example of an ambient
population estimate, a population average over a 24-hour period. LandScan
USA increases the temporal resolution further with separate day and night-
time population estimates (Bhaduri et al. 2007). However, the Population
24/7 approach adopted here has produced time-specific population
estimates at a much greater temporal (hourly) resolution, which is
extensible even further if required. Ambient population estimates are simply
not sufficient for most hazard modelling or emergency planning scenarios
and also suffer from a lack of agreement over what constitutes ‘ambient’.
Therefore, for the purpose of this thesis the day/night-time and ambient
population datasets also available are not considered spatiotemporal in the
same sense at the Population 24/7 outputs demonstrated. This is directly
beneficial for emergency planners for the assessment of the risk posed to
those affected with a range of scenarios. This is one example of producing
greater insights on population movements, valuable for integrated disaster

risk management (Aim 3).

Novel evolving applications already noted such as hourly population
estimates (e.g. DynaPop, Section 2.6, Aubrecht et al. 2014) show promising
advances towards truly spatiotemporal population estimates for the
purposes of hazard risk reduction. High spatial resolution day and night-
time population estimates have also been noted at resolutions of 250 m
(McPherson and Brown 2004), 250 m (LandScan USA, Ahola et al. 2007) and
25 m (Freire and Aubrecht 2012). There are merits in terms of increased
spatial resolution demonstrated within the ambient population examples.

However, DynaPop and Population 24/7 further advance temporal
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granularity, minimising the ambiguity associated with ambient estimates,
which is an important consideration within some disaster risk reduction

contexts.

6.2.3 Spatiotemporal scales of hazard

It has already been identified that hazards occur at a range of
spatiotemporal scales in the literature review (Section 2.2.10). However,
analysis of the case study results has identified important considerations for

the assessment of risk for potentially exposed population.

Types of hazard vary widely in terms of physical characteristics, warning
periods and onset speeds. This thesis has undertaken a detailed analysis for
two hydrological events, deliberately chosen to represent hazards with very
different onset times. In the case of Ulley, a dam failure, the onset is near
instantaneous, with total event duration of around 40 minutes (Chapter 4).
This potentially results in little or no time for any effective warning.
Therefore, there is a compelling case for high-resolution spatiotemporal
population estimates to assess the risk from specific events such as this.
The approach presented set out to examine how the risk posed from a
sudden onset and worst-case scenario flood event varies according to time

of day. It has shown that risk assessments at this scale are feasible.

In contrast, the St Austell example (Chapter 5) explores an event with a
much longer onset time. It involves varying levels of flood inundation based
on an 11-hour rainfall event. In reality, this would also have been combined
with prior weather warnings. In this scenario it is acknowledged that such
weather events and warnings could have an impact on the population
present within flood risk zones. The argument is maintained that it is not
unreasonable to again consider the worst-case scenario with the maximum
population present. Brown and Damery’s (2002) suggestion for enhanced
flood risk management requires long-term risk strategies to be grounded in
an understanding of exposure to flood hazards and patterns of vulnerability.
This is required as a starting position for the development of targeted
warning systems, emergency plans and future policies. Equally, in the
absence of relevant data, it is difficult to substantiate assumptions as to

who may, or may not, be present or who could, or could not, have
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responded to prior warnings. The Population 24/7 approach demonstrated
in this thesis could be used to prioritise warnings and to make informed
decisions about effective measures to be targeted at the most vulnerable

population subgroups and areas.

The Population 24/7 modelling approach estimates population distributions
based on quantifiable cycles and known administrative data counts
associated with specific locations. The implementation in this thesis does
not attempt to simulate human behaviour during a hazard scenario. For this
type of application an agent based model or microsimulation may be more
appropriate, but these would require a different type of modelling that has
not been the focus of this thesis. However, the Population 24/7 process
could be used to seed such models (see Section 7.6). To some extent the
Population 24/7 data library can be modified to better represent population
during a hazard scenario, but this is not the same as a dynamic simulation.
The background layer can be modified to reflect severe congestion or
closures on major arterial traffic routes if appropriate data are available. In
Chapter 5, seasonal adjustments were made to the population baseline to

reflect tourist cycles.

6.2.4 Integration of existing models and datasets

This research has successfully demonstrated the ability to integrate the
population results with those from hydrological models (TELEMAC-2D,
LISFLOOD-FP) (Specific objective IV). Unlike zonal census or administrative
data both the hydrological models used and SurfaceBuilder247 produce a
raster gridded output. These have all produced grids at different resolutions
(Table 6.1). A feature of all three models is the capability to produce outputs
with a variable grid resolution. The SurfaceBuilder247 output is governed by
the resolution of available input aggregate data sources to avoid
overspreading (Martin et al. 2000). An increase in resolution from Martin et
al.’s (forthcoming) original implementation and Fielding’s (2007) static
application (using the original non-temporal SurfaceBuilder) of 200 to 100 m
has been achieved by re-weighting aggregate census data onto
georeferenced postcodes. While it is technically possible to produce gridded
population estimates to such high resolution as the hydrological models

listed, it is not defensible to do so due to current data limitations. The
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Population 24/7 approach provides a framework that is adaptable to
multiple input data sources allowing the spatiotemporal resolution to be
increased in the future should appropriate datasets become available. The
LISFLOOD-FP layers were produced by Quinn (2014) at an output resolution
within the range considered appropriate to resolve flow characteristics (Neal
et al. 2011). The TELEMAC-2D output was converted from an irregular

triangular mesh at 15 m to preserve all data points.

Table 6.1 Model output resolutions

Model Output resolution Application example

(metres)
SurfaceBuilder 200 Fielding (2007)
SurfaceBuilder247 200 Martin et al. (forthcoming)
SurfaceBuilder247 100 This thesis, Chapters 4 & 5
TELEMAC-2D 15 This thesis; Smith et al. (2014b)
LISFLOOD-FP 5 Quinn (2014)

Although in this case all model outputs have different resolutions, a benefit
of a regular grid means that they all can be aligned to the same national
grid system to undertake spatial analysis. The population grid was
resampled to the same common resolution as the hydrological outputs. The
ability to compare corresponding output cells of each model permits the
calculation of exposure estimates and evaluation of Penning-Rowsell’s
(2005) flood hazard methodology with specific population exposure values
at a cellular level. The advantage of achieving a common data structure is
that this further analysis can be undertaken in standard GIS or statistical
software package without additional specialist knowledge. Datasets
produced for alternative purposes or by different organisations are often
available at different levels of aggregation. The approach presented in this
thesis permits the creation of outputs that could provide valuable
enhancements in flood risk management, by allowing spatiotemporal
population estimates to be combined with environmental models where

there is no single ideal population dataset for the purpose.

Through application case studies it has been demonstrated that recasting all
the data into a common format, in this case a regular grid aligned to the

national grid reference system, can be used to successfully integrate
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environmental and population models. However, this is just one mechanism
that demonstrates the real advantages for the handling, alignment and
integration of temporal data cycles. These examples have been evaluated for
UK applications; however the underlying concept for transferability remains
the same. Where data are sufficiently available for the resolution required
there is no reason why the model framework and integration method
presented cannot be created for other contexts and in other countries (See
Section 6.3).

The seasonal and hourly population patterns modelled represent ‘typical’
baseline conditions. In the example of the Ulley case study (Chapter 4) only
one static flood map was incorporated. This is justified on the need to
understand the baseline population in advance, and keep it updated, prior
to a hazard event occurring. This is a key factor for hazard risk reduction
(McPherson and Brown 2004; Freire et al. 2011). The extensible framework
and data library construction for Population 24/7 permits data to be
refreshed or modified. As demonstrated (Chapters 3-5), methodologically it
is possible to combine raster based hazard and population data using
simple GIS functions. However, changes in human behaviour and
spatiotemporal distribution are not the focus of the Population 24/7 data
library constructed. Therefore, it is not appropriate to use the same
population data library for multiple hazard time-slices without the ability to

account for changes in population behaviour as the hazard unfolds.

6.2.5 Improvements for population risk assessment

Results from the case studies have shown dynamic population fluctuations,
which in comparison to static census outputs give valuable time dependent
assessments of population exposure to hazards. Chen et al. (2004) (Chapter
2.4.13) illustrated the problem of aggregate population units in population
hazard risk assessments. The approach demonstrated improves the spatial
accuracy in mapping population placement (e.g. Figure 5.20). However,
these distributions vary both spatially and in intensity with time which can
be related to quantifiable population cycles. The analysis undertaken
demonstrates this cyclical nature such as the increasing density of the
usually resident population with seasonally dependant retail, leisure and

work activity (e.g. Figures 5.16B and 5.18B). These insights are only
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achieved by also considering the temporal resolution of such data, and the
Population 24/7 framework provides a mechanism to handle this in addition
to the spatial dimension. There is an increase in the spatial distribution and
concentration of the temporary overnight visitor population driven by the
tourist seasons (e.g. Figures 5.16D and 5.18D) which is not accounted for in

existing datasets.

Aubrecht et al. (2013) also discuss the integration of spatiotemporal
population characteristics for disaster risk management. They highlight that
the requirement to understand the development of risk over time is crucial
and population changes in both space and time are often not sufficiently
studied. The Population 24/7 development and applications presented have
shown that it can produce high resolution population estimates in space and

time suitable for hazard risk assessments.

One crucial population characteristic resolved using the Population 24/7
approach was the temporary occupation of caravan sites and holiday parks
by seasonal visitors. In the St Austell example caravans placed directly
behind sand dunes on Par beach are within the flood risk and former
intertidal zone (Figures 5.20 and 5.21). McEwen et al. (2002) highlights the
particularly high susceptibility of caravan sites to flood risks due to their
structural integrity and often precarious placement. This Population 24/7
approach at the 100 m scale facilitates these observations. Caravan and
campsites are not occupied all year around and do not contain usually
resident census populations. This approach not only identifies these
population features that are otherwise omitted, but also shows how they

vary seasonally with the tourism cycle.

The sensitivity of aggregate data analysis, particularly prevalent in
population data, depends spatially on the MAUP (Openshaw 1984) and
temporally on the modifiable temporal unit problem (Coltekin et al. 2011).
Subsequent data analysis can be restricted by imposed temporal constraints
such as the representative time slices considered. Martin et al. (forthcoming)
term this the modifiable spatiotemporal unit problem (MSTUP), which
combines the two phenomena. They propose that data required for analysis
need to be sufficiently detailed in both the spatial and temporal dimensions.

This limits the effect of distortion in data analysis. Appropriate resolutions
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are dependent on specific application requirements. These phenomena can
potentially have significant impacts on risk analyses generated. This is not a
barrier for spatiotemporal flood risk assessment, but does draw attention to
the requirement to consider the spatial and temporal granularity of input
data used. These phenomena highlight the problems of using static,
aggregate population data for risk analyses to derive single values for highly

variable characteristics.

In the examples demonstrated in this thesis the finest spatial resolution
currently achievable, 100 m, is appropriate for the application scale and
data limitations and has been implemented within the Population 24/7
framework. This is based on the availability of input data sources with
variable resolutions. The aim of this research was to create estimates with
the finest spatial and temporal resolution based on the data currently
available to limit the effect of the modifiable spatiotemporal unit problem
outlined by Martin et al. (forthcoming). Overspreading of population data
occurs with the current data library for output resolutions < 100 m. The
current output resolutions is appropriate for the centroid density and
variation between urban and rural locations. If it was possible to increase
the spatial resolution further, for example to 75 m, this may pose
limitations for integration with some environmental datasets. For example,
data sets aligned to 1 km national grid squares where 75 m is not wholly
divisible. Aside from available input data resolution, it is not currently
possible to accurately predict high spatial resolution (e.g. 25 m) population

distributions for the desired temporal granularity with current data.

A high degree of variation in terms of population exposure can be observed
within the hourly temporal scale used (e.g. Figures 4.16 and 5.14). This
demonstrates one instance of the modifiable temporal unit problem where
consideration of just one time-slice (e.g. using a static population base or
considering just one hourly interval) can have large impacts on the results
obtained. Greater temporal granularity, such as that beginning to be shown
in the results presented within the two case studies, has important
implications for analysis where risk to people is concerned. The method
proposed captures these important variations and demonstrates that static

representation is inadequate in these examples.
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6.3 Enhancements to the Population 24/7 framework

Martin et al.’s (forthcoming) objective through the Population 24/7 project
was to produce a framework for spatiotemporal population modelling. This
was intended to be extensible and the initial implementation did not explore
all the necessary details. This thesis has tested the extensible nature of this
framework through the creation of two brand new population data libraries
for each case study presented. One benefit of constructing a population data
library within the flexible modelling framework is the ability to account for

specific population characteristics.

The creation of new population data libraries for use with the Population
24/7 tool and application to two case studies has demonstrated a range of
enhancements beyond the original implementation by Martin et al.
(forthcoming). These enhancements are evaluated and discussed in turn
within this section. This section begins by discussing creation and use of
multiple population origin datasets and their importance in applications for
disaster risk management. Section 6.3.2 discusses the enhancements to
hazard risk assessment achievable when considering population subgroups.
Section 6.3.3 discusses the enhancements for hazard risk analysis through
more realistic representation of population using destination centroids.
Section 6.3.4 evaluates improvements achieved in the spatial resolution of
population distributions using UPC data for population centroids. Finally,
Section 6.3.5 comments on the challenges associated with the static

representation of dynamic datasets.

6.3.1 Multiple population origin classes

The St Austell case study (Chapter 5) demonstrated the advantages of
creating multiple categories of population origins within the model’s data
library. These were temporary overnight visitors by season, the usually
resident term time population and usually resident non-term time
population. The non-term time population was created based on a
secondary analysis of census data following the method proposed in
Chapter 5.3.2.
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Since this research was undertaken, ONS have released a specific non-term
time census dataset in addition to the usually resident census baseline
population (considered a term-time count, National Statistics 2004). The
ONS (2014b) report on the methodology is largely consistent with the
methods proposed in this thesis. This new 2011 Census release could be
used in the same way to construct a non-term time population origin dataset
within future applications for desired target dates since 2011. For
consistency with the data available, the St Austell case study, completed
before the 2011 census release, corresponds to a target year of 2010. The
ONS (2014b) report on out of term time populations recognises the effect
that the unique spatiotemporal characteristics of the student population has
on the ‘usually’ resident population. The non-term time origin dataset was
created for the St Austell (Chapter 5) application because analysis of the
peak tourism season in August also corresponded with non-term time for
the usually resident population. Although subsequent analysis showed little
difference from the term-time estimate (Table 5.6) for this study area
location it is a matter of wider significance. For example, according to the
2011 Census, ONS (2014b) report large university cities such as Leeds,
Manchester and Sheffield had a non-term time population of at least 20,000
people lower than their usually resident populations. A non-term time origin
dataset was not created for the Ulley case study (Chapter 4) because its
focus was on the representation of the June 2007 (term time) flood risk
situation. Secondly the temporal scale of this case study focuses on diurnal

rather than seasonal population cycles.

A second significant enhancement to the Population 24/7 framework was
the creation of a seasonally varying population origin class comprised of
temporary overnight visitors. This was based on visitor data constructed by
Newing (2014). The analysis demonstrates large fluctuations within the St
Austell study area of greater than 12,000 people (Table 5.5). These are
based on known population flows informed by bed space occupancy
surveys, census data on second home ownership (where no ‘usually’
resident population is enumerated) and the pull factors of some of
southwest England’s largest tourist attractions. These produce insights on

quantifiable population fluctuations that simply cannot be achieved from
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census data alone and account for potentially significant exposed

population groups.

One example of the significance of temporary overnight tourists is
illustrated in Figures 5.20C and D. The comparisons with Ordnance Survey
background mapping for selected 1 km national grid squares, they show the
level of accuracy achieved in the georeferenced placement of tourist
populations. In these examples it is clear where the model has assigned a
population density that corresponded with caravan parks and campsites.
These would be considered uninhabited by a usually resident census
population, but become temporally occupied by overnight visitors. The
modelling approach adopted allows the identification of this known

phenomenon that otherwise is not possible using the census alone.

It has been noted (Section 5.2.2, Figure 5.20D) that a slight overspreading
of lower population densities is observed, particularly around Lower Penhale
in the example illustrated. This was attributed to the wider dispersion of
rural households around a single postcode. However, it is encouraging that
the spatial distribution of model outputs does correspond to local features.
This in itself demonstrates significant improvements over standard
choropleth census density maps. It is worth reiterating that the modelling
undertaken does not claim to predict individual human behaviour. While this
data library has been constructed to the highest geographical resolution
currently achievable, deliberating on the micro scale fluctuations within what
may happen in an additional 50-100 m of a centroid is not within the scope
of this application. This application is focused on the wider impacts of larger
scale flood risk on spatiotemporally varying populations. Population counts
at individual household level are currently not publicly available in the UK. It
is possible that future research (see Section 7.6) could further improve the
accuracy in the representation of rural dispersed dwellings. An advantage of
the Population 24/7 framework and creation of individual population origin
classes is the ability to update the data library when new data become

available.

The enhancements discussed in this section demonstrated modest
improvements for disaster risk management. They have all been

implemented within the existing extensible Population 24/7 framework. It

291



Spatiotemporal population modelling to assess exposure to flood risk

demonstrates that the data library constructed for use with the Population
24/7 modelling tool can be adapted for straightforward applications, as
proposed in Martin et al. (forthcoming), or account for more specific

characteristics (e.g. Chapter 4 and 5).

6.3.2 Modelling population subgroups

Modelling population subgroups to assess exposure to flood hazard has
provided significant enhancements to understanding risk in the examples
presented. The insights gained from accounting for vulnerable population
subgroup exposure to hazards based on age or other demographic
characteristics (for gridded population outputs) have been demonstrated
before. Fielding’s (2007) environmental injustice paper on the
disproportionate exposure to flood risk of those from lower socioeconomic
backgrounds in England and Wales (200 m grid), measures exposure by
socioeconomic classification. Secondly, Aubrecht et al. (2012a) consider the
population aged over 60 years at 1 km resolution to assess heat-related
vulnerability and exposure. The applications constructed here also build on

these developments in the area of risk management.

In both Martin et al.’s (forthcoming) implementation and the applications
presented in this thesis seven population subgroups defined by age were
modelled. These were chosen because of the unique spatiotemporal
characteristics they exhibit. For example school aged children spend term-
time weekdays highly concentrated on school sites, and higher education
students have already been observed as being highly mobile and a
significant proportion of the population (e.g. Section 5.4.2; Figure 5.23;
Smith et al. 2014a). Age subgroups can also be used to infer the resilience
of populations typically considered more vulnerable (e.g. the very young and
elderly). Age subgroups also lend themselves well to the data library
structure created. The appropriately aged populations can be drawn from
origin centroids for the most appropriate destination categories. For
example, only school age children populate school destination centroids
(together with the associated staff) and the 16-64 working aged population
occupy their respective workplace destination centroids. Fielding (2007)
created a static implementation using population subgroups based on

socioeconomic status. This exemplifies a possible alternative to age.
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However, for a spatiotemporal implementation, it becomes more difficult to
differentiate population subgroups by socioeconomic group and decide
relevant occupancy of destination locations. Although age is not the only
method for defining population subgroups within the Population 24/7
framework, the inclusion of alternative demographic classifications would
require further careful consideration on how allocation to destination sites
might work and whether suitable data were available to inform such

allocation.

The Southampton worked example (Chapter 3; Smith et al. 2014a)
demonstrated a diurnal cycle in the weekday dominance of fluvial and tidal
flood risk exposure (Figure 3.14). Based on the population subgroup
breakdown by age (Figure 3.15) it was shown that the working aged
population became more exposed to tidal flooding during the working day.
This was explained by the nature of the coastal concentration of industry
and commerce within the Southampton example. It was only possible to
achieve this insight based on subsequent analysis of the population
subgroups modelled. This illustrates two important contributions by this
thesis to traditional flood risk management: (i) flood risk to people is not
static and varies by both time of day and flood hazard type, and (ii)
modelling of age subgroups allows a more precise estimate of the
population sector that is most at risk. It would not have been possible to
derive these assessments using only static population data or without the
consideration of population subgroups. The 100 m output resolution has
also been shown to be appropriate to resolve these features on a city level
scale compared to alternative gridded resolutions (e.g. 1 km Gridded

Population of the World).

The St Austell case study (Chapter 5) shows another advantage of age based
population subgroups. This example illustrated the requirement to account
for the effects of large seasonal population fluctuations. In one flood
scenario for August the exposed population decreased despite the fact that
the study area total increased (Table 5.10, LISFLOOD-FP R100). The
suggested cause of the decrease in this scenario was the increased
clustering of population in lower risk areas. However, investigating the age
breakdown (Figure 5.22) showed a disproportionate increase in the

retirement aged population (over 65 years) within the August 12:00
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LISFLOOD-FP R100 exposure estimate. This increase was primarily
comprised of the August visitor population. The exposure of the population
aged over 65 increased by 385% between May and August for the same
flood scenario (R100). It is possible that the overall result for the total
population exposure (all ages, residents and visitors combined) for the R100
flood scenario (Table 5.10) may have been disregarded on the basis of an
overall decrease in population exposure. However, the analysis of the
population subgroups for the same scenario revealed a significant increase
in the older, and more vulnerable, population exposed. This is potentially of
high significance to emergency planners where vulnerability assessment and
risk mitigation is concerned, particularly within less resilient population

subgroups.

Two recent examples have been chosen to support the spatiotemporal
population estimates produced for risk evaluation within this thesis. A
potential critique is that this approach does not account for human
behaviour, but this is not the intention of the work present here.
Nonetheless, in the example of 2014 flooding in Moorland, Somerset
(Section 5.1; BBC 2014a) some residents still refused to evacuate despite the
village being isolated by floodwater and immediate evacuation requests
from overhead police helicopters. Secondly, Cole and Fellows (2008)
identified that a number of population subgroups failed to evacuate New
Orleans during Hurricane Katrina. They proposed a variety of reasons from
concerns for security of property, caring for pets not permitted inside
evacuation shelters and those with reduced mobility and their carers. These
examples show that even the best intentions can struggle to account for
unpredictable human behaviour. Considering a ‘normal’ population baseline
prior to any hazard event permits estimation of the worst case scenario and
identification of potentially vulnerable population subgroups. This allows
the development of effective and targeted risk mitigation strategies without

waiting until it is too late.

6.3.3 Development of destination datasets

The development of destination centroids for the SurfaceBuilder247 data
library allows the more accurate placement of population at sites with

known population capacities and temporal signals. Static census counts
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provide a reliable residential population count. However, they do not

account for population movements away from residential locations.

The mechanism to create destination centroids based on known population
locations and capacities within the flexible Population 24/7 framework is a
powerful tool. Where sufficient data exist this allows for appropriate
representation of the temporal characteristics of the chosen population to
be modelled. For this thesis, new destination datasets were created to

represent education, workplaces, healthcare, retail and leisure attractions.

One improvement is shown in the development of a retail destination
dataset created for the Southampton applied example (Chapter 3) and the St
Austell case study (Chapter 5). The approach outlined in Chapter 3 used
business postcodes as a proxy for retail locations that excluded residential
address, and devised a footfall estimate based on the number of retail
employees. Actual retail footfall data are beyond the financial resources for
this demonstration of the Population 24/7 modelling techniques, and often
restricted due to commercial sensitivities (Newing et al. 2013a). Instead,
feasible alternatives using available data have been used for case study
demonstration purposes. An advantage of the Population 24/7 approach is
the framework that allows the adaptation to new or evolving datasets. The
retail example demonstrated here could be enhanced by a research team

with access to commercial datasets.

Retail estimates for the St Austell case study were improved using
commercially available GMAP (2014) retail centres. These replaced business
postcode locations and only represent retail locations, as opposed to other
businesses, for greater spatial accuracy. Another advantage was the
inclusion of an estimate of retail floor space for each centre. This permitted
footfall to be estimated based on average sales density (income per floor
area) and average transaction values obtained from publicly available
financial reports. This resulted in greater spatial accuracy by using a hybrid
of commercial and open data. Retail is an important destination category
because town centres are often associated with high retail footfalls within
the commercial districts. Accounting for high concentrations of temporally
varying population is of high relevance within disaster risk management and

for emergency preparedness. The Population 24/7 framework adopted has
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enhanced the original implementation because it can accommodate different
types of data relating to destination activities. The detail and range of
destination categories (e.g. retail and leisure) are dependent on the study
area selection. The flexible modelling framework has been demonstrated to

handle these location specific characteristics.

6.3.4 Use of unit postcode (UPC) data for centroids

The previous subsection identified some disadvantages associated with
using business UPCs to identify retail centres because retail cannot be
distinguished from other business types. However, their use for the
construction of other origin and destination centroids has permitted an
increase in model output resolution to 100 m. The use of residential UPCs
for reweighting census OA counts is shown to increase resolution and
accuracy of residential population densities (e.g. Section 3.3.10, Figure
3.12). Although this results in a greater centroid density and associated
computational time, it is @ major improvement on using single OA centroids
or PWCs.

Similarly, workforce counts reported at LSOA (the finest available areal unit
for which they are published) from the ABI/BRES were re-weighted onto
business UPCs. There is a significant difference in the spatial distribution of
residential and business UPCs (e.g. Figure 5.13) which more accurately
reflects these locations compared to using the same census centroids for
both. UPCs, although originally created for the delivery of mail, are often
used as reporting zones in some administrative and survey datasets which
can support the collation of datasets otherwise reported in varying spatial

units.

6.3.5 Static visualisation of dynamic data

A challenge associated with reporting and communicating spatiotemporal
data effectively is visualisation. This can be difficult in traditional media
such as print. This thesis has described dynamic population examples, but
so far has had to rely on static time-slices for illustration. The examples
shown are part of a greater temporally varying dataset that has been

created. A 3D visualisation has been developed for display in Google Earth.
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The example provided in Figure 6.1 is a screenshot captured from Google
Earth showing the total St Austell population at midday for a weekday in
August. The vertical bars signify population density. This dynamic method
for illustration allows a much more interactive approach to data

communication.

o Tregorrick

Image Landsat. l .
180/m Image ® 2014 Getmapping plc
I—;Q—J Data S10, NO Navy, NGA, GEBCO

magery. Dates 12005 = Apri10, 2013 50°19'52.83" N 4°47'01.26"W \elev. Om Eyealt. 500m

Figure 6.1 Static image from an interactive 3D visualisation of SurfaceBuilder247 results

using Google Earth. Vertical bar height represents population density (cell size 100 m).
The ability to visualise spatiotemporal population estimates interactively is
an additional powerful toolset. It makes use of standard, freely available,
software and existing functionality such as the time slider, zoom and
panning tools. Complicated population datasets can be difficult to display
and interpret, even for practitioners. This is further complicated by the
addition of temporal components. The use of familiar interactive software
can be used to aid risk communication with non-specialist audiences or

engage policy makers.
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6.4 Challenges and model validation

This section discusses the significant challenges associated with
spatiotemporal model validation. It is broken down into the following
subsections: firstly, known limitations in the general application of census
data and then for risk applications are examined. Secondly, the extent to
which it is possible to validate the spatiotemporal estimates produced in
this thesis is discussed. Finally the options are explored for future

validation.

6.4.1 Known limitations of traditional datasets

Censuses in developed countries are often considered the gold standard in
population data. This is usually because of their high levels of accuracy and
universal coverage. The EU Census Hub project (Eurostat 2014) aims to
create comparable census statistics EU-wide. The value of small area census
statistics across environment, health and commercial sectors is summarised
in RGS (2014) with example case studies. While censuses provide valuable
information for governments and policy makers for the provision of services
and funding they are not universally suitable for all hazard risk analysis
applications. Known limitations associated with unrealistic uniform daytime
population densities across census zones have been accepted for some time
(e.g. Wright 1936). Openshaw (1984)’s MAUP highlights the impact of the
spatial units chosen for analysis and the effect on any results obtained.
Furthermore, Langford and Unwin (1994) have described how traditional
choropleth maps, such as those commonly derived from census, grossly
distort and mask underlying population densities. Based on the known
limitations of traditional census data, for applications such as risk analysis
where detailed population estimates are required, this thesis presents one

alternative which also varies with time.

The gridded spatiotemporal population estimates generated reduce the
MAUP by allowing the comparison and analysis of data on a high resolution
stable uniform grid. Unlike static census data, and addressing Wright’s
(1936) reservations, the Population 24/7 approach concentrates daytime
population to known occupied locations depending on the time of day. For

the purposes of flood risk assessment this contributes enhanced dynamic
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insights into population movement that are not captured in static uniform
census densities. The origin centroids for the modelling undertaken were
constructed using census data, but the argument proposed intends to
highlight the benefits achieved using a model to combine multiple relevant
datasets into a stable output format that accounts for temporal variation.
Static areal interpolations (e.g. Martin 1989) address some of the limitations
discussed but still do not account for population movements in time as well

das Space.

For confidentially purposes published census data are aggregated to areal
units. In England and Wales it is likely that census data will continue to be
released for just a single aggregation geography (to prevent unlawful
disclosure of census data). Duke-Williams and Rees (1998) suggest that it
could be possible to safely publish census data at a 5 km grid in addition to
the standard areal units. The approach presented in the two case studies
demonstrates the current ability to achieve much greater resolutions down
to 100 m. A 5 km census grid may address some of the data analysis and
integration limitations for England and Wales. However, some censuses are
already routinely published as a high resolution grid. E.g. 100 m in Northern
Ireland (NISRA 2015) and from 100 m in Austria (Statistics Austria 201 3).
This may provide further refinement opportunities for Population 24/7 as
exemplified with the static SurfaceBuilder implementation against 100 m
gridded Northern Ireland census data (Martin et al. 2011). Future
implementations or advances in input data resolution could allow the spatial

resolution of Population 24/7 to be increased further.

Census data alone are still static and the spatiotemporal estimates produced
show great potential to resolve cyclical trends at higher resolutions.
Population variation has been demonstrated within 1 km national grid cells
using the 100 m outputs created (e.g. Figure 5.20). For the application scale
presented these are valuable insights for risk management that would not

be resolved using lower resolution data.

6.4.2 Model comparison with census estimates

SurfaceBuilder247 model results have been contrasted with equivalent (as

far as possible) census data in a comparison exercise (e.g. Sections 4.5 and
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5.6). These results (e.g. Figure 5.26) demonstrate the extent to which
census data in contiguous areal units do not represent observed population
distributions. In reality, as predicted by the model, populations are
concentrated at residential or other occupied known locations. They are not
universally distributed as the census reporting mechanism suggests.
Another observed census limitation (Section 5.5) is that it does not account
for the daytime concentration of the population at places of work or study.
Where this is accounted for in the model large discrepancies from the
census baseline appear to occur (Figure 5.26). These estimates can be
corroborated with known population counts from administrative data

sources.

The comparison attempt has highlighted that the census is fundamentally at
odds with known, corroborated, day and night-time population
concentrations. This raises a wider question for further validation returning
to the original aim that there is no single dataset currently capable of
providing these insights. Future validation possibilities have been
considered and are proposed as possible extensions to this research in
Section 7.6. Such possibilities could include the use of ‘big’ data sources to
enhance or calibrate the existing model. The framework has already been
demonstrated as capable of being adapted to include a range of data. There
are potentially opportunities to utilise real-time data feeds to inform
dynamic population movements. These types of enhancement may become
more widely accepted by academics, practitioners and policy-makers in the

future as supplementary material to traditional censuses.

The comparison with census data suggests that the least amount of variance
occurs in the daytime model result January 2010, 12:00) compared to the
2001 Census OA daytime population count in the Ulley example (Figure
4.17B). However, for the St Austell case study it is the night-time model
results (January 2010, 00:00) compared to the 2010 LSOA MYE (as
considered a night-time residential count) that show the least variance. In
both examples an appropriate model extract representing day or night-time
population estimates was compared to the corresponding day or night
census estimates. The January seasonal population scenario was used

because census estimates represent term-time counts without temporary
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visitors. January is both term-time and has the lowest number of visitors in
the Population 24/7 data library.

In the case of St Austell it might be reasonable to expect that the 2010 LSOA
MYE more closely resemble the same 2010 target date for the model data
library rather than the 2001 census releases (although at LSOA level, the
2010 MYE is at a lower resolution than 2001 Census OA counts). The range
of formal ‘error’ quantification conducted (Table 5.12) supports this
expectation. The St Austell model shows least variance from the 2010 MYE

compared to the higher resolution 2001 census OA estimates.

In contrast to St Austell, the Ulley model (for target year 2007) appears to
show greater correspondence with the 2001 daytime census estimate than
the LSOA estimate. This could be because the difference from the census
year to the application target date is less (e.g. 2001-2007 for Ulley rather
than 2001-2010 for St Austell). This contradicts the perception (and St
Austell example) that comparing population estimate datasets of the same
location and target date would have the least variance. In the Ulley case this
suggests that data resolution rather than the target date is a greater
contributing factor. 2001 OA estimates are at a much greater resolution (c.
300 people) compared to the target year 2007 LSOAs (c. 1,500 people) (e.g.
OA-LSOA comparison Figure 3.12). The Ulley example includes Rotherham, a
large metropolitan area. In this location more OAs cover smaller
geographical areas (compared to rural St Austell) and still comply with the
minimum population thresholds for census confidentiality (due to higher
urban population densities). Therefore, when rasterised they too result in
higher population densities. A feature observed in the Population 24/7
model outputs is the concentration of populations to known occupied
locations. Smaller OAs tend to result in higher population densities
compared geographically larger LSOAs. Therefore when higher urban OA
densities are compared with the model outputs the difference between the
highest concentrations reduces. Analysis on these study areas suggests that
spatial resolution can have a greater effect than reference date in urban
areas. The analyses indicated that there is no universal best fit or validation

technique.
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The model comparison with small area census statistics has raised some
important issues. The traditionally accepted view that the census provides a
‘true’ population value is questionable, given the static nature of the census
and the limitations outlined (Section 6.4.1), when trying to validate
spatiotemporal population outputs. Indeed a decennial census can be
considered as giving a true and highly accurate reflection of the residential
population on the census night (except for the representation of uniform
population densities) but when these values are used out of context for risk
assessment and spatiotemporal model calibration, differences arise that are

not necessarily indicative of failings in the modelling undertaken.

The modelling undertaken here has used administrative and government
datasets that give a robust estimate of the population occupying the
destination locations modelled. Census counts have been used to inform the
residential origin population. Model outputs will differ from the census
because it shows only a uniform density night-time residential population

count.

6.4.3 Handling population subgroups

One of the strengths of the Population 24/7 approached demonstrated is
the ability to handle population subgroups and observe how these also
change in space and time. However, incorporating population subgroups
while constructing the population data library is challenging. One challenge
is based on the availability of input data and the ability to resolve the
desired subgroups. Uniformity in subgroupings also needs to be maintained
throughout all constituent library datasets (e.g. origin and destination
datasets). In the examples presented age was chosen. Age permits
spatiotemporal characteristic judgements to be made (e.g. working ‘aged’
population, school ‘aged’). Constructing age subgroups is increasing
challenging even with the wealth of new data becoming available. For
example the new 2011 Census releases report age at a range of spatial
resolutions and groupings (single year - 5 year age bands) for the usually
resident population, out of term time population, student population and
workplace zone population. Finding commonality within just one dataset can
govern the subgroups (e.g. age) that it is possible to define as opposed to

those that are desired.
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Fielding (2007) implements an interesting static gridded population using
socioeconomic subgroups. Further work is required to examine how or if
alternative subgroups such as socioeconomic classifications can be aligned
to a temporal profile in the same way as age for spatiotemporal
applications. Defining population subgroups (e.g. age or gender), if desired,
is an important consideration during the initial stages of data library

construction for the Population 24/7 approach.
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6.5 Contribution of enhancements for hazard

applications

Finally, this section discusses how the work demonstrated through the two
case studies presented can make a tangible contribution to practices and
conceptual frameworks within the field of natural hazard risk management.
This is divided into two sections outlining the enhancements to risk
assessment practices and the wider applicability of the research presented

here.

6.5.1 Enhancements to risk assessment practices

The research presented demonstrates the innovative development and
application of a new spatiotemporal population modelling technique and
shows modest enhancements to current risk management practices. The
need for better spatiotemporal population estimates to assess vulnerability
and exposure to natural hazards, where aggregate census data alone are
insufficient has been widely documented (e.g. Ahola et al. 2007; Bhaduri et
al. 2007; Cutter and Finch 2008; Zevenbergen et al. 2008; Aubrecht et al.
2013). Producing truly spatiotemporal high-resolution (100 m) population
estimates as opposed to ‘ambient’ representations is the most significant
contribution of this research. It acknowledges that there are varying
circumstances where high or low resolution estimates are most appropriate
but this intends to enhance what others have done considering the former.
It has successfully integrated spatiotemporal population estimates with the
outputs from established environmental models (e.g. LISFLOOD-FP and
TELEMAC-2D) using a loose-coupling approach. Previously, this integration
has had to rely on inadequate population data in lieu of an appropriate
alternative. The method presented provides an example of such an

alternative.

Integration with environmental models has demonstrated the ability to
resolve population fluctuations in terms of hazard exposure and potential
fatalities estimates. The output resolution achieved has permitted these
cycles to be distinguished at the city or town level. These observations are
not possible using static census data alone. Furthermore, modelling

305



Spatiotemporal population modelling to assess exposure to flood risk

population based on age subgroups has proven to be of relevance for
emergency planners. The case studies have demonstrated that it is possible
to differentiate certain subgroups that are more vulnerable based on their

age and spatiotemporal characteristics.

In terms of policy impact this research directly addresses current national
and international agendas. The applications of the approach described
within this thesis are well aligned with the UK Government’s National
Security Strategy (HM Government 2010). Natural hazards are identified as
high priority risks. Following the Pitt review (2008) of severe flooding
experienced within the UK this research has the ability to directly address at
least three key recommendations contained within this report (Section 2.3).
These concern the mapping of flood risks at local authority level, equipping
individuals to be better prepared and aware of flood risks and the
monitoring and mitigating the impacts of flooding on population health and
wellbeing. Within a national perspective it also has the potential to
contribute to the UK’s obligations under the EU Floods Directive (Section
2.3.5). This requires member states to assess flood risk for differing flood
scenarios. However, the methodological development and application of the
flexible framework is of greater relevance than to just a single county’s
identified priorities. Hazards do continue to affect humans, but this method
provides an option to better account for these impacts more generally. This
thesis has demonstrated that flood risk is not static because hazards and

populations both vary spatiotemporally and in their composition.

6.5.2 Applications for spatiotemporal population data

The spatiotemporal population modelling techniques demonstrated through
the example case studies have focused on population exposure to natural
hazards. However, this is only a small part of a much wider range of
potential applications for such data. These applications have been
demonstrated for, but are not limited to, flood risk examples. The
collaboration developed to integrate Newing’s (2014) seasonal visitor
estimates utilised a dataset originally created to estimate store level retail
demand. Spatiotemporal population estimates have been identified as
appropriate for many examples. These are some examples: retail store

planning and commercial interests (e.g. Newing et al. 2013b); assessing
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population exposure to radiological hazards (e.g. Martin et al. 2014);
healthcare provision; transportation modelling; national security (e.g.
Bhaduri et al. 2007) and crime analysis (Malleson et al. 2010; Ceccato and
Uittenbogaard 2013). As new sources of complex and big data continue to
emerge it is likely interest in spatiotemporal population estimates will only

get greater.
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7.1 Overview

This chapter summarises the findings of the thesis. It is structured in five
sections. The first section provides a summary of the main research
findings. This is followed by a reconsideration of the research aims set out
in the introduction. The third section reviews the limitations and
applicability of the work undertaken. The fourth section presents
conclusions on the overall contribution of the research undertaken and the
enhancements this may offer for future hazard risk assessment and
spatiotemporal population estimates. The final section identifies and

recommends areas for further research.

7.2 Main findings

Findings from the creation and application of time-specific population

estimates for flood risk assessments are summarised below:

*= Population exposure to flood risk fluctuates with time as populations
move within zones of flood risk. Population exposure has been shown
to vary depending on the time of day, day of week and season of the
year.

= Spatiotemporal population fluctuations have a large impact on hazard
risk analysis once it has been accepted that population is dynamic
and constantly varying in both space and time.

= Baseline population levels (e.g. census estimates) can experience
significant fluctuations. This is exemplified in the St Austell case
study (Chapter 5) where the change observed is driven by temporary
overnight visitors which peaks in August, aligned to the tourist
season. In a fluvial flood risk analysis for an estimated return period
1 in 100 years (LISFLOOD-FP R100) the proportion of the population
aged over 65 years exposed increases nearly four-fold between May
and August. In this single flood risk assessment example it is
demonstrated that population subgroups can be underestimated by
up to 400% depending on whether a static census baseline is used or

not. This has major impacts on any resultant flood risk assessment.
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= The construction of a highly detailed population data library and
spatiotemporal population outputs provides insights that are not
available from using a single dataset alone.

= The daily transition of the 16-64 aged working population in
Southampton (Chapter 3) towards the coast generates an increase in
exposure to tidal flood risk during ‘typical’ working hours on
weekdays, overnight fluvial flood risks dominate. This effect is less
pronounced over the same period on weekends. It shows the different
population subgroups experience different flood risks at different
times.

* Flood inundation modelling concerning an embankment breach at
Ulley reservoir (Chapter 4) suggest that the flood depths would have
been dangerously close to overtopping the carriageway of the M1
motorway. Baseline population exposure to a breach at Ulley
increases by up to 100% due to employment related circulation
during a typical working weekday. Where vulnerable populations are
under direct threat the effect of the population baseline used to
adequately account for population exposure will have a large impact
on subsequent risk analysis.

»= Re-weighting the finest resolution UK census data (OA level) onto
georeferenced postcodes to represent residential locations and
workplaces permits an increase in previous spatial resolutions using
SurfaceBuilder247 to 100 m.

= Using SurfaceBuilder247 to produce gridded outputs allows the
integration of datasets published for different geographies and
produces a time dependant gridded output. It has been shown that
this can be effectively loosely-coupled with environmental datasets

and models.
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7.3 Evaluation of research aims

Three research aims, and five specific objectives were outlined at the
beginning of this thesis (Section 1.2). Following the work presented they will

be reviewed and evaluated in turn within this section:

Aim 1 Review the existing literature regarding the assessment of
population risk to natural hazards and methods for determining

exposure.

The first aim was to review the relevant existing literature regarding
population exposure to natural hazards. The hazard and population data
interpolation literature is a broad and well established field. The ultimate
focus of this literature review was to examine the risks posed by hazards to
people by considering spatiotemporal population estimates. Its purpose was
not to deal with specific physical characteristics of hazards, although
inevitably some of these were subsequently discussed in relation to the
flood inundation modelling undertaken within the case study chapters
(Chapters 4 and 5).

The review of existing literature confirms that the consideration of
population distributions in space and time for improved vulnerability
assessments is crucial (e.g. Cutter and Finch 2008). The limitations of using
static population data, especially when it is constrained within arbitrary
contiguous reporting zones, have been long established (e.g. Schmitt 1956;
Openshaw 1984; Langford and Unwin 1994). These limitations have been
cited by others in examples such as the LandScan USA project (Bhaduri et al.
2007) and by Aubrecht et al. (2013) where better representations of

population distributions in time and space have been sought.

The literature review identifies an emerging field for the creation and
application of spatiotemporal population estimates. The application for
natural hazard risk and vulnerability assessments has been identified as one
key area where significant enhancements can be brought. The work shown
in this thesis contributes to this area through the bottom-up construction of
high-resolution, in time and space, spatiotemporal population estimates to

complement hazard risk analysis.
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There are very few examples of true spatiotemporal population tools being
developed around the world none of which are fully mature or fit within
existing accepted frameworks. There are still larger conceptual and data
issues to be addressed. The Population 24/7 approach has been developed
within this thesis as one example of an extensible spatiotemporal
framework that was deemed to be best suited to the UK flood hazard case

studies presented.

Aim 2 Examine how population exposure fluctuates spatiotemporally
to flood hazard events using census, administrative and survey
datasets to construct a spatiotemporal population model applied to

illustrative cases studies.

In the work presented within this thesis, the Southampton example (Chapter
3), Ulley (Chapter 4) and St Austell (Chapter 5) case studies have
demonstrated that population exposure to flood hazard fluctuates
considerably with time. A range of publicly available and subscription
datasets such as census counts, education and employment registers, visitor
surveys, healthcare statistics, retail data and tourism estimates were used to
construct a data library to produce detailed spatiotemporal population
estimates. A substantial amount of preparatory data modelling and analysis
was required to gain the most from currently available datasets. Data
linkages were also created to combine census and business employment
register counts with UPCs to increase the modelling output resolution to its
current potential within the example illustrated. The Population 24/7 model
has been developed in various new ways to account for tourist populations,

retail footfalls and leisure activities.

The application examples have demonstrated population variability at a
range of spatial and temporal scales. Spatially, predominantly urban (e.g.
Southampton and Ulley) applications have been contrasted with the rural St
Austell example. Through enhancement of the Population 24/7 approach
improvements in spatial gridded resolution from 200 to 100 m have been
achieved compared to Martin et al. (forthcoming) and Feilding’s (2007) (non-
temporal) original implementations. The range of case studies selected

fulfilled their purpose to demonstrate population fluctuations across

314



Conclusions

differing temporal scales. The applications have shown temporal variation in

population exposure to flood hazards at daily, weekly and seasonal scales.

Despite being a predominantly rural study area with urban centres, the St
Austell case study shows the greatest population variation in terms of net
fluctuation and magnitude change from the usually resident baseline.

Compared to the urban example presented, where flood risk assessments
often dominate, St Austell perhaps shows the most interesting impacts of

spatiotemporal population estimates for hazard risk analysis.

The precise numeric values of the exposure estimates produced are subject
to the same scrutiny, assumptions and interpretation as any other example.
They do not attempt to profess ‘the’ definitive answer, if there even is one at
all. However, the data presented have been based on the best information
available for this study with rigorous interrogation. The purpose of these
examples, using numeric values as a guide, is to demonstrate a credible
framework to account for population variation in time and space for hazard

based applications.

Aim 3 Assess the extent to which spatiotemporal population
modelling techniques can be used to provide greater insights for
integrated disaster risk management. Discuss to what extent
confidence can be placed in their results and outline the challenges

for validation.

The illustrative examples presented are part of a much wider class of
spatiotemporal population modelling approach that demonstrates the
enhancements achievable within disaster risk management. This thesis has
shown the development of Martin et al.’s (forthcoming) framework within
the spatiotemporal hazard concepts identified by others and included within

the literature review.

There are many advantages associated with a greater understanding of time-
specific population distributions in often time critical hazard scenarios.
Firstly, the basic requirement to understand the potentially exposed
population is a fundamental emergency preparedness principle. The
examples and techniques developed within this thesis show spatiotemporal

changes in population and hazard intensity all have the potential to radically
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change how hazard risk assessments are conducted. It has allowed the
identification of specific locations or population subgroups that are
particularly vulnerable such as the elderly. The technique shows that the
location of such subgroups fluctuates in spatial distribution and intensity
with time. These dynamic insights are simply not available when using
aggregate static population data alone. This spatiotemporal modelling
technique permits the combination of crucial datasets that are relevant to
the study area or hazard scenario and the gridded output produces a
useable universal format. It equips the user with a method to combine
multiple datasets that are often produced in incompatible spatial units in
their original publication. This is often the case because datasets are usually
produced to serve a certain purpose and conform to the original producer’s
desired reporting zones (usually also associated with data confidentially
concerns). However, these datasets can often serve valuable alternative
purposes. This research has identified relevant datasets and brought them
together to produce spatiotemporal population estimates where no single

dataset has sufficiently done so before.

There are instances where advanced planning for the worst case scenario or
taking the ‘business as usual’ population approach for a hazard event of a
given magnitude is useful. The evacuation of 600 students from seafront
residences in Aberystwyth, UK, in January 2014 (Gevertz 2014) due to fears
of imminent coastal flooding demonstrates this principle well. In this
example Aberystwyth is an isolated university town where students
comprise a significant proportion of the population and alternative
accommodation is severely limited. University policies to restrict student’s
cars from being brought into the town and the coastal railway as the only
main transport connection increase vulnerability under these circumstances.
In terms of health and physical ability, younger students may be considered
one of the least vulnerable population subgroups. However, under this
unique combination of circumstances that actually occurred, they suddenly
become susceptible. Emergency preparedness accounting for
spatiotemporal population variations, such as the Population 24/7 approach
implemented in this thesis, provides a powerful tool for risk analysis by
producing advance insights. The specific consideration of population

subgroups, daily and seasonal cycles (e.g. term vs. non-term time when
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students would not be expected to be present) that have been demonstrated

within this thesis have great impacts for any risk analyses undertaken.

During the first applications of innovative techniques validation can be
challenging as already discussed in Section 6.4. It is intended in the future
that newly emerging datasets (see Section 7.4) will continue to strengthen
and provide additional validation opportunities for these complex
spatiotemporal questions. However, the estimates provided within this
thesis are based on known robust administrative, survey and census counts
of population occupancy for specific locations which adhere to predictable
cycles. It is acknowledged that these estimates are subject to variation
based on external factors such as the weather, economy and local decision
making. A high degree of confidence is placed in the primary temporal
cycles observed and affirmed by the underlying data on which they have
been constructed. It is the wider ability to resolve these cycles for the
purposes of emergency planning that is deemed of significance, rather than
the micro level variation in the values presented within the illustrative case

studies contained within this thesis.
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7.4 Limitations and applicability

The potential limitations of the technique proposed have been openly
addressed, particularly around validation. Like any method, in the current
form presented here, it may be more appropriately suited to some
applications more than others. This is the same for a physical tool or device
that is designed to fulfil a particular task. All current attempts to model
time-specific populations (e.g. LandScan USA) are subject to the same
validation difficulties. However, this alone should not limit the valuable
applications achievable through developing such models. Potential
enhancements and important questions for flood risk analysis relating to
population exposure is just one example. This section summarises two
areas which concern application scale and data availability where additional

consideration for application may necessary.

7.4.1 Scale of application

Following the completion of the original Population 24/7 project 200 m
population estimates covering the whole of England and Wales were made

available online (http://pop247.mimas.ac.uk) for selected temporal

intervals. This demonstrated an example of national coverage. It would be
very time-consuming to replicate the work presented here in its current
format at the same scale for hazard applications. It is proposed that the
scale of application achieved by the work presented here is an intermediate
compromise. In order to scale this application up to the national level,
assumptions already made, or decisions that reflect the unique
characteristics to one particular region concerned, could potentially become
inflated. For example it might not be possible to justify the decision that the
retail or workplace behaviour of residents in St Austell is the same as that
for a small Welsh market town or for the centre of London. Larger funded
studies may be able draw on government, commercial and transportation
datasets that could not be used in this thesis in order to gain empirical

evidence and reduce assumptions.

At the other end of the spectrum the 100 m resolution achieved is based on
the detail of available input datasets. A feature of the flexible structure of

the Population 24/7 framework is the variable grid. Any grid size could be
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selected, but this decision is ultimately driven by the availability of suitable
input data. It has been clearly stated that even at the 100 m output
resolution, it was not the aim of this research to predict individual human
behaviour. Therefore, it was not intended to produce an isolated street-level
estimate, but rather to combine cellular uncertainties within a much more
robust city level approach. This has the effect of mitigating for small area
(sub or inter grid cell fluctuations) when decisions are made at higher

scales.

7.4.2 User access to data

Where possible the applications presented within this thesis have sought to
use open data. However, there have been occasions where commercial or
datasets requiring institutional subscriptions have been required. Where
these have been used it has been to prevent compromises that may
undermine the credibility or output resolution achievable through these
examples. One constraint of this approach is therefore the access to
appropriate datasets to derive the output detail required. This remains a
challenge for applications within countries with limited data provision or
quality, although as demonstrated the modelling framework exists. The
recommendations for further research (Section 7.6) suggest that future
prevalence of innovative datasets may offer alternatives and new

opportunities for spatiotemporal model construction.
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7.5 Contribution

This research has made a tangible contribution to the development of
spatiotemporal population estimates and demonstrated relevant
enhancements within the hazard risk assessment field. It has produced
spatiotemporal estimates that are arguably amongst the first of their kind,
certainly for the locations modelled. It has acknowledged the associated
challenges but continues to pave the way for future developments. This
research has significantly enhanced the Population 24/7 approach beyond
the first implementation and work completed for the original project.
Expansion of the population data library and improvements in resolution are
just two examples contributed by this work. However, the greatest
contribution is the enhancement of the method to handle data for time-

specific population applications.

The spatiotemporal methods implemented within this study can be
extended and further developed to build appropriately calibrated time-space
population models from the wealth of data available. This includes data that
might become accessible in the future. The Population 24/7 technique
implemented provides a method to handle data with a fully extensible
framework. It is the ability to handle spatiotemporal data to produce
meaningful results that is unique. New datasets will continue to arise and
almost certainly will eventually be surpassed, but it is the flexible framework
to capture and adapt to such information that is important and

demonstrated here.

The research presented has demonstrated a challenging first step of
combining time-specific population data with environmental model outputs
using a loose-coupling approach. This has developed a pathway aiming
towards truly integrated dynamic population and environmental models.
This research has tested the boundaries for the integration of population
and environmental data by successfully tackling the fundamental issues of

data resolution (spatial and temporal) and format.

This research has contributed, through the publication of original research
papers (e.g. Appendix A), to the development of this field. It has tackled
current UK and EU priority issues on population exposure to hazards and

flood risk assessment, but these are of greater significance beyond national
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boundaries. This research contributes to a greater conceptual issue on
representing dynamic populations. It has identified relevant work being
undertaken by others, sometimes for entirely different purposes, and
successfully integrated them to enhance the spatiotemporal population
estimates presented. Finally, it has sought to introduce a practical method

that may change how populations exposed to hazards are considered.
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7.6 Recommendations for further research

Future advances in the release of new administrative datasets, crowd
sourced geographic information (e.g. Open Street Map), the open data
movement (e.g. EU Open Data Portal, data.gov.uk) and prevalence of big
data (e.g. Zhong et al. 2014) will inevitably provide opportunities to enhance
this research in the future. Some of these datasets are already emerging but
they are often focused on large cities and urban areas (e.g. London
Datastore; Dublin Dashboard; Batty 2013).

Work undertaken by others has already shown the potential in emerging
data feeds such as public transport travel-card data, cycle hire scheme
usage statistics and analysis of georeferenced tweets (e.g.

http://www.bartlett.ucl.ac.uk/casa). Tafazolli (2014) proposes that

development of the fifth-generation (5G) of mobile data networks will enable
properly connected smart cities in the future. This is likely to produce even
greater opportunities for innovative or real-time data that may inform

population movements.

Work currently being undertaken by Deville et al. (2014) has already
demonstrated the ability to undertake dynamic population analysis using
mobile telephone data with proven accuracy. This has shown an alternative
method capable of mapping population movements in space and time. It is
believed that this type of analysis could go some way towards validating the
spatiotemporal population estimates presented within this thesis, although
does still only represent the population with a phone that is in their
possession. This information could also be used to enhance existing
spatiotemporal models by integrating the intelligence gained from temporal

signals within the dataset.

The new UK ESRC Administrative Data Research Network and Consumer Data
Research Centre may provide future opportunities for streamlined access to

linked or previously unavailable data. These opportunities and those already
discussed within this section can potentially further develop data libraries

for spatiotemporal population modelling or provide validation opportunities.

Options have been considered to advance the research presented here

further. These explore the possibility to utilise UK mobile telephone data as
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a validation technique and working with non-academic partner organisations
on the role of spatiotemporal population estimates in their hazard analysis.
There is an interest to develop the model’s software interface to harness
real-time and ‘big’ data feeds. In relation to flood hazard, these could be in
the form of reports that provide local area updates such as evacuated areas.
There are many applications for accurate spatiotemporal population
estimates, beyond the flood risk examples presented here. Potential sectors
for further applicability could include retail, resource allocation, public
health and network and transport planning. The research that has been
presented demonstrates the wide potential benefits for detailed time-

specific population estimates.
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Abstract There is a growing need for high resolution spatio-temporal population
estimates which allow accurate assessment of population exposure to natural hazards.
Current approaches to population estimation are usually limited either by the use of
arbitrary administrative boundaries or insufficient resolution in the temporal dimension.
The innovative approach proposed here combines the use of a spatio-temporal gridded
population model with flood inundation data to estimate time-specific variations in
population exposed to natural hazards. The approach is exemplified through an appli-
cation centred on Southampton (UK) using Environment Agency flood map inundation
data. Results demonstrate that large fluctuations occur over time in the population
distribution within flood risk zones. Variations in the spatio-temporal distribution of
population subgroups are explored. Analysis using GIS indicates a diurnal shift in
exposure between fluvial and tidal flooding, particularly attributable to the movement
of the working age population. This illustrates the improvements achievable to flood
risk management as well as potential application to other natural hazard scenarios both
within the UK and globally.

Keywords Spatio-temporal modelling - Population surface modelling - Natural hazards -
Vulnerability- Urban exposure

Introduction

Natural hazards are one of the ultimate constraints on human activities (Mitchell 1999)
and occur on a variety of time scales from sudden onset events such as earthquakes to
gradual processes such as drought. A natural hazard has the potential to develop into a
disaster as soon as it poses a risk to humans. Increasing incidence and frequency of
natural hazards events during the last century have been attributed to better recording
and increased habitation of hazardous areas (Alexander 1993; Tobin and Montz 1997;
Hilhorst and Bankoff 2008). Humans are becoming more susceptible to hazards as a

A Smith (&) - D. Martin - 8. Cockings
Geography and Environment, University of Southampton, Southampton SG17 1BJ, UK
e-mail: Alan Smithi@soton.ac.uk

Published online: 01 August 2014 @ Springer

329



Appendix A

A. Smith et al.

consequence of population growth and urbanisation (Huppert and Sparks 2006). In
particular, flood losses are increasing in major coastal cities (Hallegatte et al. 2013).
Prominent events since 2011 have refocused attention on natural hazards and human
vulnerability both in terms of fatalities and economic impacts. By a considerable
margin, 2011 was the mostly costly year to date with natural hazards losses totalling
US$380 billion and 27,000 fatalities (Munich Re 2012). The most notable events
included the Japanese tsunami and Christchurch earthquake as well as severe flooding
in Thailand, Australia and the USA and continued drought in east Africa.

To better understand the effects of natural hazards and develop mote robust emer-
gency plans, an improved knowledge of the spatial and temporal distribution of
population i3 requited (Bhaduri et al. 2007; Fielding 2007; Aubrecht et al. 2012a;
Harper and Mayhew 2012). Calculating the population exposed is not straightforward
as both the hazard and population vary over time (McPherson and Brown 2004).
Inadequacies in mapping population have been noted for many decades (e.g. Schmitt
1956). Commonly used official population datasets such as census or population
registers usually provide only residential “night-time” population counts. In the United
Kingdom (UK) it has been estimated that 5.2 million properties are at risk from
flooding (DEFRA 2011), but there is little understanding of the numbers of people at
risk. This paper highlights the significant improvements that can be achieved in assess-
ment of population exposure to natural hazards by the integration of innovative spatio-
temiporal population modelling methods with maps of hazard extents. It demonstrates the
importance of high-resolution space- and time-specific population data and illustrates
their utility in a UK flood risk case study. The analysis is implemented using the
SurfaceBuilder247 software (Martin 2011} and Geographic Information Systems (GIS).

The remainder of the paper is structured as follows. The next section provides an
overview of flooding in the UK and the proposed spatio-temporal population modelling
approach. The third section describes the source datasets and modelling methodology.
Section four introduces the study site used for the combination of flood hazard and spatio-
temporal population modelling. This is followed by the results and discussion in sections
five and six. The final section presents some conclusions and suggested further work.

Background

For the first time in human history mote people now live in urban than rural areas
(United Nations 2008). Rapid urbanisation and the concentration of population in flood
prone areas has increased human susceptibility to flood-related hazards. New building
and redevelopment in urban areas has increased ground surface sealing and encroach-
ment into low lying land and areas at risk of flooding. A reconsideration of risk
management policies is required in order to account for population at varying spatio-
temiporal scales and reverse the trend of increasing urban flood risk (Zevenbergen et al.
2008). Northem Europe, including the UK, has a long history of severe coastal flooding
(Ruocco et al. 2011). Qualitative descriptions of these events and their impacts on local
populations are contained within numerous historical records. The most catastrophic
sudden onset event to occur in the UK during the last 500 years was the 20 January
1607 flood in the Bristol Channel (Horsburgh and Horritt 2006; RMS 2007) which led
to many fatalities in Southwest England and South Wales. The UK continues to have a
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record of significant destructive fluvial (Marsh 2008; 2004), tidal (Baxter 2005) and
flash (Bettess 2003; Burt 2005; Murray et al. 2012; Rowe 2004; McGinnigle 2002)
flood events.

Prominent flood events over the last decade in the UK and Europe have had a
significant impact on legislation and policy. Major natural hazard incidents have been
recognised by the UK government as one of the highest priority risks facing the country
(HM Government 2010). The Pitt review (Pitt 2008), which was commissioned
following substantial UK-wide flooding in June and July 2007, resulted in 92 recom-
mendations. Key recommendations concetning flood risk assessment and management
included: calls for local authorities to collate and map the main flood risk management
and drainage assets (Recommendation 16); encouragement for individuals to be better
prepared and hecome self-reliant during emergencies allowing the authorities to focus
on the people most in need (70); and the impact of flooding on the health and wellbeing
of people to be monitored and mitigations put in place to manage these effects (74).
Recommendations 70 and 74 illustrate the need for a greater understanding of exposed
populations, while recommendation 16 concerns mapping the physical infrastructure.
Improved mapping and modelling of both the hazard and the population exposed are
required for effective emergency planning and management.

The European Union Floods directive of the European Parliament (OJ 2007) has
also had implications for the way flood risk is managed in the UK. Inter-agency and
international collaboration remain key components in flood risk management. Member
states were to have provided flood hazard and risk maps by 22 December 2013 and
flood risk management plans by 22 December 2015 (OJ 2007). The Flood Risk
Regulations 2009 implement the requirements of the directive in the UK. The UK
Environment Agency is responsible for producing the relevant hazard and risk maps for
England and Wales within the specified timescale and lead Local Flood Authorities
have been identified to map local flood risk.

The spatial and temporal distributions of population and natural hazards are complex
and occur at a range of scales. The population exposed is a key component when
defining risk to natural hazards, as is vulnerability of specific population subgroups.
Variation in the location and magnitude of vulnerable populations exposed to natural
hazards at different times needs to be recognised if emergency planning is to be
improved (Cutter and Finch 2008). Lack of data or inadequate sophistication in either,
or both, of the spatial and temporal aspects of population estimation have seriously
hampered previous efforts to understand such characteristics. Some researchers have
quarntified population exposure based on properties exposed and average occupancy
rates (e.g. Hunter et al. 2008; Hall et al. 2005; Wadey et al. 2012). The methodology
presented here extends population exposure estimation into the temporal dimension.
The paper is not concerned with the definition and investigation of vulnerability and
resilience per se, nor does it attempt to make predictions of perceptions of risk or
human behaviour during emergencies, all of which are also important; rather, it
demonstrates how enhanced spatio-temporal estimates of population can facilitate the
identification of vulnerable populations exposed to natural hazards. Such estimates can
then inform improved risk and emergency management plans.

The hazard component also has complex spatio-temporal characteristics, which may
be represented by simiple static risk maps or dynamic models. In order to make accurate
risk assessments, knowledge of the likely onset time, severity, duration and
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geographical extent of a hazard scenario are required. For example, while a storm surge
may have a long lead-time a tsunami may not.

The detailed spatial distribution of population is often obscured by the convention of
displaying uniform densities in contiguous zones, such as census areas, that cover the
entire surface (Martin and Bracken 1993). Similarly, the spatial distribution of natural
hazards does not conform to administrative boundaries. Any analysis using geograph-
ically aggregated data is prone to the modifiable areal unit problem (MAUP) Openshaw
(1984), although the effects of MAUP can be minimised by using data at the finest
possible spatial resolution. Dasymetric methods can improve the spatial accuracy of
interpolation via the use of ancillary datasets and have been successfully employed in
population surface estimation (e.g. Mennis 2003).

Interpolating data onto a grid is a further method which can offer some resilience to
the problems associated with irregular zonal representations. Benefits include the
inclusion of unpopulated cells; the standard size and shape of individual cells; the
invariant nature of the cell boundaries over time and the relative ease of incorporating
data from statistical models of physical phenomena. Examples of gridded population
models include the 1 km disaggregated gridded population for Europe (Aubrecht et al.
2012b) and gridded population of the world (CIESIN 2013).

Although gridded population models provide many advantages for estimating pop-
ulation exposure to natural hazards they are still only a static representation of
population at a given point in time. The method proposed in this paper offers flexibility
and granularity in the temporal dimension while building on the inherent advantages of
the gridded model, but a gridded representation is not a pre-requisite for its
implementation.

Methods and Data

The methodology proposed here contains three subcomponents, shown in Fig. 1.
Figure la covers the spatio-temporal population modelling process, 1b the hazard
component and 1c brings these GIS-based datasets together for analysis. Often natural
hazard and population models are not linked. The proposed methodology aims to
demonstrate the improvements to risk analysis when these subcomponents are more
fully integrated.

The spatio-temporal population modelling component (Fig. 1a) is illustrated sche-
matically in Fig. 2, which shows a small area containing three locations a, b and ¢ at
two times, Ty and T,. For each time, the left hand diagram shows population density on
the vertical axis and space on the horizontal, while the right hand diagram shows the
same population distribution in map view. In this highly simplified example, T,
represents night time, when population is present at locations a and b, which are the
centroids of residential areas of differing spatial extent, but no population is present at
location ¢ which is a workplace, only occupied during the day. In the absence of exact
areal extents for every possible population location, it is necessary to employ a distance
decay function around points of high information such as population-weighted cen-
troids. We here use the Cressman (1959) distance decay function, established in this
context (Martin 1996). T, represents day time, when lower population densities are
present at residential locations a and b, but the workplace ¢ displays a high population
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Fig. 1 Overview of analytical operations to assess natural hazard exposure

density over a relatively small spatial extent, Between these times, the study arca may
have exchanged commuters with neighbouring areas and the total population contained
at times T and T, therefore need not be the same. At either time period, the population
present may be aggregated to any relevant mapping units, such as the cells of a regular
grid. (Martin 1989, 1996) presented a surface modelling algorithm which mapped
population from population-weighted centroid locations onto a regular grid by means
of adaptive kernel density estimation, with the local density of centroids determining
the spatial extent over which population is spread. In common with most conventional
census mapping, this approach effectively reproduced only the night time residential
situation shown here at time T; without any explicit consideration of reference times.

T,.00:00
SR ” c@
T, 12:00
O,
NS G

Fig. 2 Schematic of population centroid density represented by vertical density curves (left) and spread (right)
at two given times of the day

@ Springer

333



Appendix A

A. Smith et al.

In this paper, we employ an extension of this approach using the SurfaceBuilder247
software described in Martin (2011), which is a development of the original model and
which uses a time profile of human activity at each centroid rather than a single value.
The same algorithm is employed for redistribution of population across space, but is
here undertaken with reference to the populations anticipated to be present at each
centroid at a specified target time. In the SurfaceBuilder247 implementation, centroids
are designated as either origins or destinations. The total population to be modelled is
determined by the sum of the populations at the origin centroids within the study area,
such as a and b in Fig. 2.

Processing begins with the establishment of a full dataset of origin and destination
locations for the chosen study area and a surrounding region to reflect anticipated
commuting flows. Detailed file specifications and data field definitions are provided in
Martin (2011). Censuses typically provide an accurate and comprehensive small area
population count and the smallest spatial units for which detailed census data are
available in England and Wales are output areas (OAs), with a mean population size
of 300. Population weighted QA centroids from the 2001 census, updated with data
from 2006 mid-year estimates, have been used as the origin centroids in this study. Tt
should be noted that the full range of equivalent data from the 2011 census had not been
published at the time this research was undertaken.

Secondly, destination centroids represent the range of possible non-residential
locations of population. A population capacity is assigned to each destination centroid,
such as the number of staff and students at a school or patients and staff at a hospital,
obtained from administrative data sources. Any number of destination centroids may be
introduced to represent additional locations of human activity which do not contribute
to the residential population base. The spatial extents and catchment areas of destina-
tions are specified, which indicate, respectively, the size of the site and the geographical
range from which population should be drawn. Thus (for example) a primary school
could be represented as a destination location, with a time profile in which all children
on the roll are present during the school day, allocated to a small site of extent 100 m
and drawn from a catchment radius of 3 km. A dataset of destination locations was
initially collated for the Population 24/7 project,’ which includes places of work,
education, and health care. The example presented here extends these datasets by
building on this original library of potential population locations. It is a feature of the
model’s structure (Fig. 1a) that users can develop their own datasets, particularly for
non-residential locations. Time profiles, the thitd component in Fig. la, have been
developed for each destination centroid, based on a range of data sources describing the
opening hours of different workplaces and services. The time profile derived from
ancillary information provides the proportion of a site’s capacity population which is
present at any specific time.

The development of retail destinations is provided here as an example of how
additional activity types can be added to the Population 24/7 destination datasets. This
example serves to exemplify the process of dataset creation and is just one of many
destination types that could be represented. Retail was chosen as it is another major
activity type which attracts significant non-residential populations and was not explic-
itly included in the original Population 24/7 estimates. This example uses national time

! Population24/7 project details: http:/Awww.esre.ac. uk/my-esre/grants/RES-062-23-1811 fread
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use survey data to estimate the total number of shopping trips and then allocates these
to destinations based on the recorded size of the retail workforce in each area.
Equivalent retail data of higher accuracy could be derived from commercial sources
as part of a large-scale implementation but were neither available nor necessary for the
purposes of this example.

A temporal profile for shopping activity was created as a simple estimate of retail
activity (Fig. 3) by analysing episodic diary data from the Time Use Survey (TUS)
(Ipsos-RSL, and ONS 2000). Respondents (n: 20,981) kept a coded diary entry for
10 min intervals throughout the day. Analysis of the retail components within the TUS
data identified average shopping durations and travel times. These were both used to
inform travel to catchment parameters and length of retail trips by individuals. In line
with expectations, it can be observed that people shop for longer on a Saturday and
travel further. These data produced estimates of the total numbers of shoppers and time
spent shopping.

The number of retail employees at the Lower Layer Super Output Area (LSOA)
geography was derived from the Annual Business Inquiry (ABI) dataset (ONS 2006a).
The size of the retail workforce was then used to allocate total retail activity from the
TUS to approximate retail locations based on business postcodes (ONS 2006b). LSOAs
are the next smallest statistical units in England and Wales after census OAs and
typically contain 1,500 residents. They are the smallest units for which ABI data are
available. Postcodes are georeferenced locations designed to facilitate the delivery of
mail and businesses receiving large amounts of mail will generally be allocated their
own postcode. It is acknowledged that large user postcodes will also include non-retail
offices and business locations, but this simple approach nevertheless permits the
reallocation of large population volumes from residential to retail locations during
shopping hours. The total shopping time from the time use survey and retail employees
from ABI were combined to estimate the number of shopping hours supported by cach
retail employee, taking account of the demand pattern for each day and the variable
duration of shopping activities. Estimated population numbers engaged in retail activity
are thus allocated to each business postcode by time of day.

A background raster GIS data layer constrains the population distribution, delineat-
ing areas of uninhabitable space such as the sea and other water bodies, and incorpo-
rating the principal road network weighted according to UK Department for Transport
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Fig. 3 Retail temporal profiles according to TUS {2000) respondents who engaged in retail activity
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traffic count data (DfT 2013). Average annual daily flows for each DT survey point by
vehicle type are redistributed according to time of day, day of week and road category
(motorway and principal urban/rural roads) according to the National Transport Model
(DIT 2005). This reproduces observed temporal variations in traffic flow throughout
the week. The traffic count by vehicle type is subsequently convetrted to a population
estimate for each rasterized road cell based on specific vehicle occupancy rates (DAT
2009). The population estimated to be travelling at any target time is assigned onto this
weighted background layer.

For this study, population data are modelled onto a regular spatial gtid with 200 m
cell size which is appropriate to the resolution of the available input data sources. The
Population 24/7 methodology has been designed to allow subgroups of the population
to be modelled separately. In the application described here, modelling has been
undertaken for seven age groups: pre-school aged children, primary school age,
secondary school age, further education students, higher education students, remaining
working age population and those retired. These subgroups have distinctive temporal
patterns such as typical school hours and term times. The modelling technique is
volume preserving. Population counts derived from the origin locations are
redistributed across origin and destination locations and the background layer, ensuring
that the overall population total is preserved within each modelled age group. Known
in- and out- flows to the system, such as long-distance commuting, can be incorporated
into the model but have not been applied in this case study.

Figure 1b relates to the natural hazard modelling component. In the example
application presented here (Environment Agency flood map (for July 2012)) (EA 2012)
are employed to delineate the spatial footprint of the flood hazard. The flood map is the
result of probabilistic and scenario-led hydraulic modelling. The most likely scenatio
under the ‘zone three’ extent (high probability) (EA 2012) has been utilised. Its spatial
extent is shown in Fig. 4. This scenario models inundation caused by fluvial and tidal
flooding with a 1 % and 0.5 % annual probability of occurrence respectively. The
modelled population surfaces (Fig. la) and flood extents (Fig. 1b) have then been
integrated using GIS (Fig. 1c).

The modelling framework allows exploration of variation in population exposure to
flooding over a range of temporal scales e.g. hourly, daily or seasonally, broken down
by different subgroups of the population. In this paper, the populations for a typical
working weekday and a Sunday during school term time for 2007 are modelled and
population exposure estimates within the potential flood extent are calculated for two-
hourly intervals between 08:00 and 20:00. A static baseline exposure estimate using
rasterised 2001 census data has also been calculated for comparative analysis.

Example Application: Study Area

A 23 % 25 km study area centred on Southampton Water (Fig. 4) has been chosen for an
example flood risk application. The Solent separates the Isle of Wight from southetn
England and provides a natural deep water charmel for large shipping vessels. The
region’s industrial and shipping success has been attributed to the complex tidal system,
which produces a double high-tide, but the combination of the region’s topography,
location and tidal system also has the potential to dramatically increase the flood risk
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Fig. 4 Application study area centred on Southampton (UK) showing potential flood inundation

within the area. Southampton Water is a narrow funnel-like channel leading from the
Solent to the Port of Southampton, vulnerable to storm surges driven by low pressure
systems which can lead to increases in sea level of up to 1 m (Ruocco et al. 2011) or
north sea surges that propagate through the English Channel (Wadey et al. 2012). When
combined with high spring tides these events pose a heightened flood risk and exert
pressure on existing defences. Historical record analysis by Ruocco et al. (2011)
discovered up to 20 flood events in Southampton since 1935. Approximately 24,000
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properties are considered to be within the tidal flood plain of a 1 in 200 year flood event
in the Solent region (NFDC 2009). Within the study area, approximately 78 km” is at
risk of tidal or fluvial flood inundations under the zone three scenario (shown in blue in
Fig. 4).

The study area and its low lying urban areas contain major coastal transpottation
links, population centres and commetcial and military ports. These activities have
contrasting spatio-temporal patterns, making the area of particular interest for spatio-
temporal population modelling. A major employer is the Port of Southampton which is
the country’s busiest cruise ship terminal and second largest container dock (ABP
2013). On a busy summer weekend, the central area population may be swelled for
example by tens of thousands of passengers and crew on-board cruise ships visiting the
port {not modelled here) and by visitors to the region’s major shopping centre which
has an average weekly footfall of c. 300,000 (WestQuay 2011).

Estimates of potential exposure to the hazard are calculated for various subgroups of
the population for a range of time slices. Students in higher education are recognised as
a key spatially mobile section of the population with strategic importance (King and
Ruiz-Gelices 2003). The predominant local authority (Southampton) modelled in the
study area for this paper had a 2011 residential population count of 236,882, including
32,111 (13.6 %) full-time students in higher education. The two universities within the
study area (University of Southampton and Southampton Solent University) had a
combined 2011/12 student population of 38,885 (HESA 2012). Students account for a
significant proportion of population flows and seasonal variation. Notably, two evac-
uations of the student population in Aberystwyth, UK, during severe coastal flood
events in January 2014 (Gevertz 2014) has demonstrated their vulnerability and
strategic importance, even if they are generally considered to be a relatively resilient
sector of society.

Results

Figure 5a shows total population for rasterised 2001 census OAs and the population
modelled in 200 m grid cells for three different times of day (Fig. 5b to d). There is a
stark difference between the conventional static census based population model in
Fig. 5a and the gridded representations in 5b-5d which much more accurately indicate
the higher central densities and extensive unpopulated areas, even in this relatively
urbanized region. A large daily variation in population occurs. During the working day
(Fig. 5c), population becomes highly concentrated in specific areas such as the city
centre and in local clusters such as schools and colleges, as employees and students
travel to, and temporally remain at, places of work and study. Population also increases
in other non-residential areas of the city associated with activities such as retail and
transport. The 08:00 model differs from the 20:00 model with more people in the
transportation netwotrk at 08:00 — mostly on their way to work ot school (Fig. 5b and d).

There are spatial (Fig. 5) and temporal (Fig. 6) variations in populations potentially
exposed to flood hazards during the day. Analysis of the results suggests that the total
population exposed peaks towards the end of the typical working day (Fig. 6). Differ-
entiating the flood risk components (Fig. 6) reveals a further interesting phenomenon
within the Southampton study area: throughout the day, exposure to fluvial flood risk
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A) 2001 Census

B) Model time: 08:00 weekda

»

2001 Census Modelled Pop.
High : 5490.6 High : 5490.6
- 9 . 0 [ Flood Map Zone 3 0 10 km
Low : 106 Low:0 Flood Map © Copyright Environment Agency 2012

2001 Census Output Area Boundaries © Crown copyright 2003
Bing Maps Acrial © Copyright Microsoft Corporation and its data suppliers 2010

Fig. 5 Rasterised 2001 census output area total population counts (a). Spatio-temporal model outputs
showing total population for three time slices, together with Environment Agency flood map data (b to d).
All maps at 200 m resolution for a ‘typical’ weekday

closely resembles the reciprocal of tidal exposure with a symmetry approximately
aligned to typical working hours (09:00-17:00). This is attributable to the concentration
of industry and commercial activity in coastal locations compared to large residential
areas inland close to major rivers (Itchen and Test). As employees commute to the
coastal regions during the day their tidal flood exposure increases; when they return
home to residential locations further inland in the evening fluvial flood risk becomes
the dominating factor. This spatio-temporal variation contrasts strongly with the static
representation of population exposure produced by the traditional census (also shown
in Fig. 6), which generally tends to overestimate exposure.

@ Springer

339



Appendix A

A. Smith et al.

——— WhdFluvial
WhdTidal

==#==SunFluvial

--&--SunTidal

Census Fluvial

Population exposed
g
8

Census Tidal

4000

08:00:00 08:00:00 10:00:00 12:00:00 14:00:00 15:00:00 16:00:00 17:00:00 18:00:00 20:00:00

Time
Fig. 6 Estimated total population exposure by time of day for flood map zone three comparing the static
census, a modelled ‘typical’ weekday and a typical Sunday. Where the annual fluvial flood risk is 1 % and
tidal 0.5 %

Figure 7 indicates the total population exposed to fluvial and tidal flood risk at 12:00
and 20:00, showing the composition by age group. The differences in exposure
between tidal and fluvial flooding at different times of day are most notable within
the working aged population (16-64). It can also be seen from the heights of the bars
that the total population exposed fluctuates over time with tidal exposure at 20:00 being
the lowest.

Further analysis of the population engaged in different activities at representative
times of 08:00 and 12:00 has been conducted for the working age population (Fig. 8a to
¢). The figure shows the population in these groups who are travelling in the transpor-
tation network (in travel) or at a non-residential destination site (on site). These were
selected to demonstrate the utility of the method for analysing the distribution of
population during a typical morning commute and middle of working day. At 08:00
(Fig. 8b) it can be seen that the working age population density at non-residential
destinations is relatively low, compared to Fig. 8c which reflects the concentration of
this subgroup at workplaces and other destinations during the day. As expected, when
more people migrate into a hazardous zone, exposure is dramatically increased within
this age range during the day. Figure 8d shows a large increase in the working age
population in both potential exposure to fluvial and tidal flood risk at midday when this
population is typically on site at a place of work. The distribution of the university
student population has also been examined for the same typical term time weekday
(Fig. 9). During the day, the student population is concentrated on the city’s two
universities and spreads back into the student residential arcas during the evening.

12000
10000+
065
B 8000 01664
g 01664 HE
@
g 60007 81664 FE
£ 4000 01115
= 04-10
2000 =03

04

Fluvial 12:00 Tidal 12:00 Fluvial 20:00  Tidal 20:00
Fig. 7 Age composition of population potentially exposed to fluvial and tidal flooding during the working
day (midday) and evening (20:00} HE: Higher Education; FE: Further Education
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The daily variation of the student population that only occurs during term time
demonstrates how their potential susceptibility is time dependent (Fig. 6).

The diurnal trends in the modelled data (Fig. 6) might have been predicted, but can
be isolated and quantified using the methodology proposed. During ‘typical’” weekday
working hours there is a shift from fluvial to tidal flood risk. It was possible to narrow
this change down to the working aged population (Fig. 7). Population exposure was
further analysed for representative times of midday and 20:00. This provided insight
into two contrasting points in the usual daily cycle. The reversal from tidal to fluvial
exposure occurs in the 16-64 working age population. At midday tidal risk is the
predominant risk to this population subgroup, however by 20:00 this again becomes
fluvial. As the working population returns to primarily residential locations further

A) Model time: 08:00 In Travel : _ B) Model time: 08:00 On Site

» : y P »

(D) Population exposure

6000

{ oFluvial: In Travel
3 Fluvial: On Site
@Tidal: In Travel
@ Tidal: On Site

5000 |

4000 -

Population exposed
N w
o o
o o
o o
!

1000 -

08:00:00 12:00:00

Time
: N
Workingage (16-64) pop. [ T T T ]
High : 5404.45 0 5 10 km A
. [ Flood Map Zone 3
Low: 0 Flood Map © Copyright Environment Agency 2012
2001 Census Output Area Boundaries © Crown copyright 2003

Bing Maps Acrial © Copyright Microse

Fig. 8 Modelled results for the working aged (16—64) population in travel (a) and on site (b) at 08:00 and at
12:00 (c). The flood risk exposure to the working age population (d)

“orporation and its data suppliers 2010
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Fig. 9 Modelled representation of the higher education (HE) student population for a typical term time
weekday at 12:00 and 20:00

inland, fluvial risk becomes the main factor. It can also be observed that there is a
notable tidal flood risk to higher education students throughout the day. While there is
not such a large reversal of this trend in the evening it does decrease reflecting the
locations of student halls of residence or sites within the institutions. The spread of
students in evening residential locations (Fig. 9) shows that a large portion are within
the central area of the city with more prominent flood risks. For vulnerability assess-
ment and the purposes of emergency preparedness this technique provides valuable
improvements over traditional static hazard maps.

Figure 6 shows that calculating fluvial and tidal population exposure using the 2001
census residential locations tends to overestimate flood exposure, particularly for
fluvial flooding in this study area. As well as providing better differentiation of which
areas are inhabited or not at specific times the modelled results suggest that large
portions of the time-specific population at risk are highly concentrated in specific areas
depending on the time of day and age range (e.g. Figs. 5, 8 and 9): the spread and
concentration of population at given times is of critical importance to emergency
planners for targeting resources and developing plans.

Discussion

The modelled outputs, even in this relatively simple example, contrast starkly with the
coarse, static ‘night-time’ population density coverage given by the 2001 census OA
map. The modelled outputs reveal the ebb and flow in population density at different
locations during the working day, including areas which are uninhabited. Despite their
widespread use for exposure assessment, such variations in population density are not
captured by traditional census maps. The proposed methodology allows the integration
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of additional hazard maps or more sophisticated hazard models in Fig. 1b. Urban areas
and large conurbations experience a diverse range of population interactions and
fluctuations. While the hazard footprints used in this case study appear static they are
in fact based on complex hydrological modelling undertaken by the Environment
Agency and their partners. Important trends can be resolved in the static hazard data
and the techniques could be equally applied to more dynamic models.

Figure 3 illustrates an example temporal profile for a specific population activity.
Acquiring data of sufficient resolution to inform temporal distributions of population
for a given activity is one challenge for this approach. In this example, time use data
from a large scale nationally representative survey were employed. The assumed
constant ratio of customers to retail employees is used as a proxy for store size and
resultant footfall in the absence of uniform data coverage. This approach encompasses
numerous simplifying assumptions but nevertheless achieves transfer of population into
major retail centres following a realistic temporal profile. This can be amended without
fundamentally altering the overall modelling approach. In terms of retail activity it
would be possible to improve this profile and destination capacities using detailed site
specific commercial datasets. Indeed, any or all of the input datasets could be enhanced
or updated without fundamentally altering the overall modelling approach.

The temporal characteristics of the natural hazard have not been directly addressed in
this case study. Tidal time and height are not accounted for here but vary continuously as
part ofa predictable pattern. Tidal information indicating a high spring tide under storm
surge conditions in the middle of the working day would potentially have a greater effect
on some of the population subgroups identified in this study. Such temporally-specific
hazard information could be easily implemented to advance the modelling further.

The modelled results provide enhanced assessments of subgroups of the population
and their activities. They can be used to simulate peak travel times and populations in
transit. This case study confirms that specific age groups are more at risk at different
times. The richness of this detail cannot be derived from static census estimates alone,
although the availability of accurate census small area statistics remains an important
data source. The enhancements seen here come partly from the non-space-filling nature
of the gridded model used, but importantly also reflect the continuous temporal
redistribution within the course of a day. Alternative spatial models include dasymetric
approaches (e.g. Mennis 2003) and other areal interpolation techniques (e.g. Goodchild
and Lam 1980; Xie 1995). These all provide means of representing more realistic
spatial population distributions compared to the basic census zone approach but none of
them provide a method for modelling population in both space and time: the spatio-
termporal gridded method adopted in this paper provides one possible solution. While a
raster output may not be desired in all situations it does facilitate integration with the
raster outputs of flood inundation models. High resolution disaggregated spatio-
termporal population counts permit detailed assessment of potential hazard exposure
and impact as well as understanding of wider implications. The flood scenarios
described in the example study area may not be considered rapid onset events with
modern prediction and forecasting tools, but flooding does have the potential to occur
rapidly and without prior warning (Murray et al. 2012).

The key contribution of this study has been to test a modelling approach which
combines a non-space-filling representation with the ability to store and analyse the
temporal redistribution of the population. The methodology provides a mechanism to
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estimate temporary and fransient populations not previously accounted for in many
flood risk applications.

The Population 24/7 method also provides scope to analyse the vulnerability of
entire populations in more detail through the ability to study population subgroups with
differing vulnerability characteristics. Vulnerability is a key confributing factor in the
development of a hazard: the capacity to estimate vulnerability may inform manage-
ment choices for groups such as the young or elderly who may require additional
support during an emergency situation. The prominence of the student subgroup in the
Southampton example serves to illustrate the impottance of daily movements by large
subgroups and the sensitivity of analysis to other cyclical timescales, in this case
educational term dates. The approach followed here also improves the allocation of
population subgroups to specific location and activities, such as school age children at
school locations during school time. This type of information is of importance when
targeting emergency response and health care provision.

Like hazards, the global population is unevenly distributed, often being concentrated
on coastlines, along rivers and active seismic or volcanic regions. The size, location and
demographic characteristics of a population are all drivers for the impacts of a natural
hazard (Cutter 2010). Spatio-temporal population estimates can highlight cyclical
patterns in population distribution. These may be on seasonal scales such as tourism,
seasonal shoppers or students arriving at a university town during term time. Notable
diurnal cycles have also been observed such as children attending school or employees
arriving at work. These all have important implications for natural hazard impact
assessments. The timing of the manifestation of a natural hazard will affect the
population numbers and vulnerability of those exposed.

This approach does not attempt to provide insights into human behaviour in an
emergency situation or provide real time information. It essentially describes predict-
able population redistribution over time. There are many ways in which the data
sources and detailed distributional models could be enhanced within the current
modelling framework. For the purpose of this simple demonstration a static flood
hazard map has been utilised. Integrating this model with dynamic hazard models is
a logical further step that would greatly enhance the understanding of spatio-temporal
variations in risk to flooding. The approach can be utilised to inform emergency plans
for known risks under a range of scenarios and tempotral scales and, while it is not
possible to know exact future population movements, it allows for the computation of
probable distributions.

Validation of this approach and its modelled oufputs is difficult. Where data are
available and accessible at the required scale, there are some potential routes for
validation. Approaches to consider may be the use of geo-referenced social media
interactions, mobile telephony data or individual membership and visitor datasets.
These suggestions may allow validation based on certain subgroups of the population,
specific geographic areas or specific times, but it is not possible to validate all temporal
and spatial scales at once. Currently, there is still work to be done on the availability,
coverage, and release of such potentially sensitive data. Further evaluation needs to be
undertaken of the sensitivity of modelled outputs to variation in input parameters and
the production of measures of uncertainty. It is an inherent feature of this modelling
approach that it cannot allocate more population to a location (e.g. pupils to a school)
than are in fact recorded in the relevant data source.
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The methodology proposed in this paper can be used to estimate population at risk to
a given hazard event and can be adapted to a range of spatial and temporal scales. This
has the potential to aid policy makers in managing risk such as defining local flood
hazard under the EU Flood Directive which meets legislative criteria. The directive’s
preliminary flood risk assessment stipulates a requirement to assess the potential adverse
consequences of future flood events for human health, including the position of popu-
lated areas. While this technique may not be appropriate at the micro level because of
uncertainties within population movements it does provide richness of information at a
regional level to better inform flood risk in populated areas. The main advantage in any
technique with temporal variation is to acknowledge that the extents and populations of
inhabited areas are not static. A major development of this methodology would be the
integration of a spatial interaction model to enhance the catchment areas of destination
locations, and the location of populations in the transportation system more broadly.

Conclusion

This paper demonstrates improvements in the accuracy of estimated population exposure to
hazards to be gained via the adoption of an innovative integrated modelling approach which
takes explicit account of both space and time. This is of particular importance when
assessing population exposure to natural hazards which are themselves subject to continu-
ous spatio-temporal variation. The potential utility of such models in flood risk management
has been demonstrated, providing a wealth of detailed data for further analysis which could
not be achieved using conventional means of processing key sources such as census data.
Pending further dataset development and validation, this technique has direct application to
natural hazard scenarios both within the UK and globally. The data structure of the model
allows the user to readily refine or supplement the input datasets. Web data mining and the
rise of open-source data are likely to make compiling time-referenced population datasets
easiet, albeit with increased challenges for data interpretation and validation. The results in
this paper provide significant opportunities to further refine this methodology for policy
miakers and emergency planners.
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Glossary

Annual Business Inquiry (ABI): The ABI is an ONS survey that contains
employment and financial information from businesses. One variable
produced is the number of employees, grouped according to their SIC (see
Glossary). Access can be requested for these data published at LSOA or
postcode sector level. In 2009 the Business Register Employment Survey
(BRES) replaced the ABI and the Business Register Survey.

Areal interpolation: the re-aggregation of data from one set of zones
(source) to another (target).

ASCII Grid: A raster format that can be used with GIS to transfer information
within cell based systems.

Dasymetric Mapping: A type of areal interpolation used in population
mapping that utilises ancillary datasets to distribute population that reflects
more probable locations of placement. It builds on critiques arising from
conventional choropleth mapping, where population densities are uniformly
distributed (e.g. Wright 1936; Mennis 2003).

Geographic Information System (GIS): a data management system to store,
retrieve, analyse, manage and display geographic information.

Great Britain (GB): The island that consists of England, Wales and Scotland.
As opposed to the United Kingdom which includes Great Britain and
Northern Ireland.

Lower Layer Super Output Area (LSOA): are the second smallest areal unit
for which census estimates are published in England and Wales (after output
areas). They typically contain 1,500 people and approximately five OAs.
They are also the smallest areal unit for which MYEs are published.

Mid-year Population Estimates (MYEs): Mid-year population estimates
provide an updated estimate on the population between census years. It
refers to the population that is usually resident on 30 June for the reference
year. For England and Wales MYEs provide population estimates by sex and
single year of age down to LSOA level (ONS 2013a).

Modifiable Areal Unit Problem (MAUP): A phenomenon where the choice of
zonal boundaries in which statistics are aggregated has a greater effect on
the output analysis than the real distribution of the phenomenon being
observed (Thurstain-Goodwin 2003). The issue was first proposed by Gehlke
and Biehl (1934) and described by Openshaw (1984).

Modifiable Spatiotemporal Unit Problem (MSTUP): In an extension to the
MAUP, the SMAUP is a term used by Martin et al. (forthcoming) that states
data are required in the finest spatial and temporal units to mitigate the
effects of spatiotemporal aggregation and data distortion.
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Glossary

Output Area (OA): The output area is the smallest areal until for the census
in England, Wales and Northern Ireland. OAs must contain a minimum of
100 people and 40 households, but typically represent around 300 people.
All residential addresses receive a census form that is allocated a grid
reference to a resolution of 1 m. This is used to aggregate households into
OAs for census outputs to protect census confidentiality thresholds
(National Statistics 2004).

Population weighted centroid (PWC): PWCs are a summary reference point
for the population within every census OA, LSOA or Medium Super Output
Area (MSOA) in England and Wales. They represent the spatial distribution of
population, based on the location of the highest density (ONS 2013b).

Pycnophylactic: A Greek term coined by Tobler (1979) defined as mass
preservation. A process that describes the reallocation of aggregated data,
without points to form a population surface estimation.

Source Zones: The areal units in which spatial data are available

Standard Industrial Classification (SIC): a classification of business based
on the type of economic activity in which they are engaged.

Target Zones: The areal units in which spatial data are needed, often
incompatible or different from Source Zones.

Unit Postcode (UPC): A UPC is an alphanumeric code (e.g. SO17 1BJ
representing the University of Southampton) with an associated national grid
reference. UPCs are UK wide and maintained by Royal Mail to identify mail
delivery addresses. UPCs have two main categories for large (receiving over
1,000 pieces of mail per day) and small users. Small user postcodes typically
represent 15 adjacent addresses (ONS 2014a).

Usually resident population: Where this term has been used it refers to the

2001 census definition for England and Wales. This is defined as someone
who spends the majority of their time residing at that address.
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