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Abstract  

CFRP structural elements are prone to failure initiating from defects. While defects are expected after 

damage has occurred, flaws and voids can already be present after manufacturing.  To study the criticality 

of such defects CFRP cylinders have been manufactured from a lay-up that was designed to predict 

damage mode and to allow for controlled damage growth under torsional load. FEA simulations of 

defect-free and flawed cylinder models were performed to first ply / interface failure. X-ray Computed 

Tomography revealed that cylinders manufactured with different finishing had a completely different 

void content and distribution. Simulations of failure, using finite element models, for the two classes of 

void distribution are corroborated by experimental results for the ultimate load, and damage initiation 

from manufacturing flaws is confirmed. Digital Speckle Pattern Interferometry was used to identify flaws 

using thermal and mechanical loading, while infrared thermography and thermoelastic stress analysis 

were used to identify possible failure initiation sites and monitor the failure process and damage growth, 

whilst the specimen was loaded in torsion.  
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Abbreviations 

ACP ANSYS Composite PrepPost 14.5 

CFRP Carbon Fibre Reinforced Polymers 

CT Computed Tomography 

DSPI  Digital Speckle Pattern Interferometry 

FEA  Finite element analysis 

FRP Fibre Reinforced Polymers 

IRF  Inverse Reserve Factor 

IRT  infrared thermography 

MATERA+ ERA-NET Plus on Materials Research 

pd Puck ply delamination 

pmA Puck matrix failure mode A 

pmB  Puck matrix failure mode B 

pmC  Puck matrix failure mode C 

TSA  Thermoelastic stress analysis 

UD uni-directional 

WB  ANSYS Workbench 14.5 
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1. Introduction 

The design and manufacture of a structural element is normally followed by specific tests up to and 

beyond operational loads to qualify the product in view of potential material variability. As CFRP 

structural elements are prone to failure initiating from defects, an assessment of manufacturing quality, 

monitoring at regular intervals, as well as a re-assessment after an incident is recommended [1]. A major 

challenge remains in estimating the expected residual life of a component after detection of damage. 

While in fortuitous or well controlled experiments damage in CFRP can evolve gradually, in most service 

cases damage grows in an unpredictable manner leading to catastrophic failure. It is therefore of utmost 

importance to understand the failure initiators and link the damage growth to the degrading at a structural 

scale, e.g. by relating the damage type, size and location to the effect on the strain fields developed under 

operating load.  

A recently completed European MATERA+ project [2] was aimed at assessing the performance of 

composite structures, by both the detection of defects and providing an estimation of their effect on the 

residual strength and/or lifetime. The present paper describes a part of the project that examined the use 

of simulations alongside experimental examinations of defective CFRP components. The experiments 

informed a Finite Element Analysis (FEA) of the components so that defects could be included. Thus 

providing an improved estimation of failure through re-simulation, with a view to developing a basis for 

making decisions on retaining, repairing or replacing the component.  

The criticality of defects in FRP components has been studied with a general aim to determine the failure 

modes of the material and hence inform remaining life of components or structures [3].  The approach is 

to generate defined individual failure modes and use these to assess their criticality on an overall 

structure. A different approach would be to introduce artificial defects to simulate debonds, e.g. using 

Teflon inserts [4, 5] or resin inclusions [6]. However these rarely generate realistic structural failure 

modes.   When multi-axial or combined mechanical loading is essential, it is common practice to use 

cylindrical components. It was shown that loading a cylinder in torsion provided a more realistic structure 

than plain coupons of material, e.g. for fatigue loading [7]. Some examples of using cylinders for 

multiaxial load testing exist in the literature, e.g. [8, 9]. 

In the present paper, a CFRP cylinder was designed with a lay-up that encourages a controlled damage 

initiation and evolution whilst under torsional loading. The proposed outcome was to generate a known 
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failure type, viz. a delamination, and to study failure initiation and damage propagation under defined 

conditions. The paper describes the specimen design, the experimental methodologies and their 

combination with numerical modelling. From the actual failure modes and their relation to the type of 

manufacturing flaws the numerical model was updated to reproduce the experimental outcome. 

 

2. Test specimen  

2.1 Designing failure mode 

Torsional loading of CFRP cylinders induces shear stresses which, depending on the fibre orientation and 

lay-up, are transformed into matrix shear and/or matrix and fibre compression and tension stresses. Based 

on the description of failure modes in cylinders loaded in torsion by Puck [10], three different matrix 

failure modes are predicted, depending on the layup and the loading direction, two of which dominate in 

±45° layers: mode A (tensile matrix failure pmA) and mode C (compressive matrix failure pmC). Mode C 

leads to a 50° through thickness fracture surface, as exemplified in Figure 1 for the simplest two-layer 

model. The fracture surface presents a slip plane from which delamination stresses result. By varying the 

layup, it is possible to tailor the cylinder to fail in a particular mode [11]. The CFRP cylinders in this 

work were designed with a lay-up (inside to outside) of [0°]3 [–45o]14 [+45o]6  with respect to the cylinder 

longitudinal axis.  Finite element analysis (FEA) was used to assess this layup under torsional loading. 

The FEA (described in detail in section 2.2) predicted initial  matrix compression failure pmC in the -45° 

plies, when loading in torsion so that the fibres in the external +45° layer are in compression. This initial 

pmC failure then would lead to a progressive delamination in the ±45° interface which was enforced by 

adding the three 0° layers at the inside of the cylinder.  

Using the corresponding material parameters, the predicted torsional failure load was 5900 Nm. This 

mode of failure was designed into the specimen to promote a gradual failure in contrast to a sudden 

catastrophic failure as would occur e.g. in a fibre failure scenario.  It should be noted for this laminate 

configuration that the failure load is independent of the direction of torsion, but the failure mode will 

change if the loading direction is reversed, i.e. if the outer fibres are loaded in tension, fibre failure will 

occur in the outer layer, Figure 1. For a representative model failure prediction should be accurate to 

within ±10 % of an experiment [12].  
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Figure 2: Test sample B1 as manufactured with steel inserts for torsion testing (top), and sample B6 with peel 
ply finish (bottom). 

 

2.3 Finite Element Analysis 

ANSYS Workbench 14.5 (WB) and ANSYS Composite PrepPost 14.5 (ACP) were used for the finite 

element analysis (FEA). The material properties of structural steel (used to model the metallic inserts) and 

of the carbon prepreg (used to model the cylinder) are listed in Table 1. The material properties of the 

carbon prepreg were derived from the raw materials using rules of mixtures and unpublished data gained 

from mechanical tests of similar materials. The raw materials and resin weight content are given in 

Section 2.2 above. The orthotropic elasticity and stress limits as well as the Puck constants for carbon UD 

prepreg are listed in Table 1. 

An initial cylinder model was generated using WB. The steel inserts were meshed with quadratic tetra 

elements (solid187), while the cylinder was meshed with quadratic shell elements (shell281). The inner 

cylinder surface generated in WB was used as a reference surface in ACP to define the laminate and to 

generate a layered solid model (solid186) which included all laminate information and orthotropic 

material definitions. The solid cylinder had 23 elements through the thickness (one for each layer). This 

full solid model allows capturing 3D effects such as out-of-plane and interface stresses that cannot be 

studied using layered shell elements.  The element dimensions in the central portion of the cylinder were 

4 x 4mm (laxial x wradial). The fibre orientation of the 0, –45° and +45° layer with respect to the global 

coordinate system is shown in Figure 3. 

In the model assembly, the steel inserts and solid carbon cylinder are joined together through a bonded 

contact, Figure 4. Stress concentrations were anticipated at the interface between the steel inserts and the 

carbon fibre cylinder. Mesh refinement at these locations was performed until sufficient stress 

convergence (< 1% change in predicted stress) was reached. In analogy to the test machine, the loading is 

applied to the lateral faces of the metallic inserts highlighted in blue and red in Figure 4. The fixed 

support is defined on the left and the positive torsional moment is applied through a deformable remote 

point on the right. The axis of the torsional moment is aligned with the global x-axis. The red arrow on 

the right indicates the orientation of the torsional moment. Torsion with this orientation applies a 

compressive load to the fibres of the outer +45° layers and a tensile load to the inner –45° layers. 
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3.1 X-ray CT inspection 

X-ray CT scans of cylinders with both finishing types were performed on representative sections to 

identify size and distribution of manufacturing flaws [14]. The cylinders were scanned with an X-ray 

cone-beam micro-tomography setup consisting of an X-ray tube “XT9160-TXD” from Viscom with a 

focal spot of 4 µm at an acceleration voltage of 80 kV and 120-125 µA tube current, a rotation table 

“UPR-160F air” from Micos and an X-ray flat panel detector “1621-CN3 ES” from Perkin Elmer. For all 

CT measurements an exposure time of 3.6 s was chosen. The projection images were reconstructed with 

an in-house GPU implementation of the Feldkamp-David-Kress algorithm [15]. For sample B1, a total of 

720 projections were recorded yielding a volume of 1400 x 1400 x 2048 voxels with a nominal size of 

50x50 x50 µm3. In the measurement of sample B3, 720 projections were used to reconstruct a volume of 

1200 x 1200 x 2000 voxels with a nominal size of 60 x 60 x 60 µm3. A total of 900 projections were 

acquired from sample B6 to reconstruct a volume of 1400 x 1400 x 2048 voxels with a nominal size of 50 

x 50 x 50 µm3. The data were analysed with the commercial software package VG Studio Max 2.2 from 

Volume Graphics (Heidelberg, Germany). The Defect Analysis Module was used to calculate the defect 

size, while the Wall Thickness Module was used to calculate the defect depth. 

 

3.2 DSPI inspection 

DSPI was performed in the laboratory over the entire specimen surface to find and delineate flaws. Phase 

maps for in- and out-of-plane deformation were obtained using a 3D DSPI set-up (Steinbichler 

Optotechnik GmbH, Neubeuern, Germany), from which phase gradient maps were obtained to better 

visualize damage size. Loading of the cylinders was by halogen lamp heating from outside, hot air from 

inside, or by mechanical point load from the back side.  

 

3.3 IRT and TSA inspection 

TSA was used in a non-destructive cyclic loading regime to identify manufacturing flaws and to delineate 

defects post-failure. Assessment of the surface stresses allowed potential damage initiation sites to be 

1500 Nm failure event 

B6 peel-ply not loaded - - pristine pristine 
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identified in the pristine specimen and to estimate the extent of damage in the damaged specimen. In 

addition, IRT was applied to monitor the surface temperature during quasi-static tests to failure with a 

view to identifying the actual failure initiation site by observing the temperature rise associated with the 

formation of a crack. A FLIR SC7000 series camera (FLIR Systems ATS, Croissy-Beaubourg, France) 

was used, with a 320 x 256 pixel Indium Antimonide detector array and a 50 mm lens. To enable the full 

specimen surface to be viewed simultaneously, two metallic mirrors were placed behind the specimen 

under an angle, see Figure 5. To obtain data with higher spatial resolution, the camera was moved closer 

to the specimen. To access the full specimen surface in this case, the specimen was rotated four times 

about 90° in the grips, and the camera was positioned at different heights to collect data along the full 

length of the specimen. The TSA data were then stitched together.  

 

Figure 5: Test specimen mounted on the test machine with the two metal mirrors. Rotated view. 

 

3.4 Torsion testing 

A servo-hydraulic test machine Instron 1346 (Instron, Norwood, MA, USA) with a maximum torsional 

load of 20 kNm was used. The load was applied using position control. Quasi-static tests to failure were 

performed using an angle control ramp corresponding to about 2 Nm/s; cyclic loading with position 

control was applied for the TSA measurements with frequencies from 1 to 5 Hz and amplitudes in the 

range of 100 to 350 Nm. 
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Figure 7: Void volume distribution of cylinder B1 (VD1, blue) and B6 (VD2, red).  

 

Figure 8 shows the manufacturing flaws in cylinder B1. The map of defect depths in colour code from the 

CT data shows that in VD1 large defects are predominantly found in the external layers with a preferred 

orientation along the fibres above the void at +45°, while with increasing depth the defect volume 

decreases and the orientation rotates by 90°. When comparing X-ray CT scan and DSPI results obtained 

from the same section, it is clear that DSPI is more sensitive to the superficial voids than to voids at 

deeper layers. The defects were further analysed using TSA at a torsional load of 250 ±100 Nm at 5 Hz in 

the test machine. Again, areas with stress concentrations are seen at the same locations and confirm the 

results found in the CT scan. Thus, the larger defects near the surface clearly show in all three data sets 

(X-ray CT, DSPI and TSA). In view of the large number of voids, a one-to-one identification is neither 

viable nor useful for this specimen. 
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Figure 10:  Section cut of the final solid model with two highlighted voids. 

 

4.3 Effect of voids on failure strength and failure modes 

The expected failure mode was calculated from the stress values reached in each laminate layer for a 

torsionally loaded cylinder without voids. Figure 11 shows a plot of the resulting inverse reserve factor 

(IRF) for each ply through the thickness of the cylinder wall, from the inner ply (left) to the outer ply 

(right). The IRF is the ratio of the actual load and the failure load such that a value of IRF < 1 indicates a 

‘safe’ load, while an IRF > 1 indicates that the local stress combinations exceed the respective Puck 

failure criterion. For the defect free cylinder, the strength distribution is roughly homogeneous and an 

exemplary through-the-thickness plot shows that the maximum IRF occurs just below the –45°/45° 

interface highlighted with a dash-dotted line.  With the external load applied such that the surface fibres 

are in compression, the failure mode in this and the adjacent –45° plies is shear compression (pmC) . In a 

cylinder without voids, it would be expected that the failure initiates in the -45° ply, just below this 

interface.  

The effect of the voids on the failure mode was investigated by considering 50 randomly generated defect 

configurations based on the void distribution VD1, with the cylinder strength evaluated for each; all of the 

configurations gave similar results. The failure torque of the cylinders was reduced from 5900 Nm for a 

void-free cylinder, to 1200 Nm for a typical defect rich cylinder. A representative example of the overall 

failure distribution is visualized in Figure 12 in terms of the IRF. The difference between the defect free 

regions and those with voids is clearly identified. Furthermore the illustration shows that the orientation 
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of the voids has a relevant effect regarding the strength. Because orientation is given by fibre direction of 

the ply above the void, the voids oriented from bottom-left to top-right are found in the outer +45° layers 

and are prone to failure while those with a void rotated by 90° are found in the inner -45° layers and are 

more stable. Note that the calculated IRF at the edges of the voids are strongly influenced by edge effects 

resulting from the mesh. Results are therefore only to be trusted from the middle of the voids. 

 

 

Figure 11: Inverse reserve factors for each layer of a laminate without voids calculated for a torsional moment 
of 1200 Nm. 

 

 

Figure 12: Element-wise maximum IRF of the Puck 3D failure criterion for a load of 1200 Nm. Three voids are 
highlighted in the box. 
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The same evaluations were repeated for VD2. Due to the smaller void size, a finer mesh was needed to 

obtain reliable results. The simulated external load was taken to be 1400 Nm in accordance with the 

measured limit loads of cylinders with peel ply finish B2, B4 and B5 of 1400, 1400 and 1500 Nm, 

respectively. A typical IRF distribution is shown in Figure 14. In this case, it is less obvious how the 

through-the-thickness distribution of the voids affects the strength. Due to the smaller size of the voids in 

VD2, the edge effects due to meshing are more prominent than in VD1.  

 

Figure 14: Global IRF distribution for a load of 1400 Nm and detail view of simulated void distribution VD2. 
Three Voids are high-lighted in the box. 

 

The through-the-thickness distribution of the IRF (Figure 15) corresponding to Voids 1 and 2 highlight 

again, that the IRF is critical if the void is above the -45/+45° interface, similar to what is observed in 

VD1. In this case, the maximum IRF is 1.0 and 0.5 for Void 1 and 2, respectively, and the failure mode 

distribution is similar to VD1, Figure 13, i.e. if the void is at or above the -45°/+45° interface, the critical 

failure mode is pmA, with IRF increasing towards the surface ply. Void 3 in the distribution VD2 

investigates the effect of stacking voids, one above (3a) and two below (3b and 3c) the critical interface, a 

typical situation that is also found in the CT data of specimen B6.  
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Similar results were obtained when the torque was reversed, i.e. the outer fibres were loaded in 

compression. As expected, the FE simulation predicts a change of the dominant failure mode from pmA 

to pmC and vice versa for the +45° and -45° layers, respectively. Voids in the interface or one of the outer 

layers lead to an increase of the IRF towards the cylinder surface layer, as seen above for Voids 1 and 2, 

and a dominant pmC failure. Inclusion of a void in the inner layers such as Void 3 in VD1 or Void 3c in 

VD2 also increases IRF near the void. But the effect is much more pronounced under reversed loading 

and failure initiation is expected at the inner layer next to the void.  

 

4.4 Estimating the TSA signal 

The simulations of the surface stress distribution on top of the voids using the updated FE model allows 

for a calculation of the expected TSA response using typical material parameters. In Table 3 the surface 

stress components are given for a non-defective cylinder as well as for Void 1 and Void 2 of VD2, see 

Figure 14. Principal stress component σ2 increases by a factor of 6 in the presence of voids. Since the 

Coefficient of Thermal Expansion transverse to the fibre direction is much larger than along the fibre, 

typically 26x10-6 K-1 compared to-0.3…-0.9 x10-6 K-1 , an increase in the thermoelastic response of a 

factor of 2 to 5 is expected. Experimental data corroborate this finding. TSA values found for the non-

defective areas of the cylinder are compared to areas with higher response in Table 3, see Figure 18 and 

Figure 19 below, revealing an increased TSA response by a factor of 5 to 7. 

 

Table 3: Simulated surface stresses for a torsional load of 600 Nm and experimental thermoelastic responses 
for 200 Nm. 

 σ1 (FEA) 

[MPa] 

σ2 (FEA) 

[MPa] 

∆T (Exp)  

specimen B4 

[K] 

∆T (Exp)  

specimen B1 

[K] 

non-defective area -97.7  2.0  0.010 to 0.013 K 0.002 K 

void 1 (VD2) -76.0  12.5  
0.05 to 0.10 K 0.012 to 0.015 K 

void 2 (VD2) -66.0  12.4  
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4.5 Torsion tests on smooth surface specimens 

An initial test was conducted using specimen B0 to verify that the inspection using TSA under torsional 

loading as described in section 3.3 could reveal defects. Figure 18 shows TSA amplitude images, each 

containing three views: the central direct view to the cylinder and two reflected views from the mirrors 

(above and below in these rotated views) showing the specimen from behind and to either side. The data 

obtained (Figure 18, top left) show that the majority of the specimen has a fairly low response (typical for 

CFRP) of the order of 0.004 °C. In a number of areas, the thermoelastic response is significantly greater 

(0.01 – 0.025°C) which confirms that defects have a clearly visible effect on the thermoelastic response 

under torsion. The large difference in the thermoelastic response between a defect free and void 

containing region provided confidence in using TSA to inspect the specimens prior to the static tests to 

failure. Two potential failure initiation sites were thus identified in specimen B0, circled in red in Figure 

18, top left. The torsional load was increased in steps of 250 Nm and cycled at each level with amplitude 

of 100 Nm for TSA measurements. Failure occurred at 1000 Nm, slightly lower than the FEA predictions 

for model void distribution VD1. A comparison between the images before and after failure suggests that 

the failure initiated indeed from the region of increased thermoelastic response highlighted in Figure 18, 

top left. Furthermore, the failure manifested the explosive growth of a matrix crack in the surface ply and 

a corresponding delamination at the –45°/+45° interface. 

The experiment was repeated with cylinder B1. The ΔT image in Figure 18, top right, shows the 

thermoelastic response of the pristine specimen again with signatures of near surface flaws which had 

been corroborated with CT and DSPI pre-test (see Figure 8). A quasi-static load ramp was then applied 

until a crack was initiated on the surface of the specimen at 1200 Nm. The crack initiated from the defect 

circled in red in Figure 18, top right. After crack initiation, the load was reduced again to 250 Nm and a 

delamination was grown by further cyclic loading with amplitude of 100 Nm. The grown defect is 

highlighted by red circles in Figure 18, bottom right. The TSA images were taken at a mean load of -250 

Nm with amplitude of 100 Nm. Thus, the specimen was still able to support load, i.e. it was not 

completely failed. The extent of the damage in specimens B0 and B1 was assessed post-failure with 

close-up TSA in-situ and with DSPI in the laboratory, see section 4.7. 
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Note that what appears to be noise in the TSA data are actually 45° striations associated with the fibre 

orientation in the surface ply, and fibre waviness commonly observed in UD carbon fibre laminates made 

from prepreg material.  

Both specimens B4 and B5 were subsequently loaded to failure in a quasi-static test, failing at 1400 Nm 

and 1500 Nm, respectively. An IRT image of specimen B4 is shown in Figure 20. The image focuses on 

the face in the TSA data in Figure 19 because this had the highest thermoelastic response. Figure 20 is the 

first frame immediately after the failure has occurred and is taken from a video recorded at 383 Hz.  

 

 

Figure 20: IRT image of specimen B4 showing the first frame after failure. The temperature increase at the 
newly formed crack surfaces is clearly visible. Points 1 – 4 highlight points where small cracks initiated before 
final failure. 

Several matrix cracks can be seen on the surface, still ‘hot’ from the energy released during the sudden 

formation of the crack surfaces, i.e. 1-2 K warmer than the surrounding material. The marks 1 – 4 number 

points in order of appearance where a small temperature rise of the order of 0.1 to 0.2 K was registered 

prior to failure. This small temperature rise was due to the heat released during the formation of a crack 

and represents the onset of failure. A strong correlation is found between crack initiation and bands of 

high thermoelastic response that are associated with increased void density. Point 1, where the first of 
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these cracks formed, lies exactly on the line of increased thermoelastic response highlighted in Figure 19.  

Point 2, where the second crack formed, lies just next to a second such line of increased thermoelastic 

response. These initial cracks formed at a load of approximately 1300 Nm, 100 Nm before final failure. 

Final failure then occurred suddenly over a fairly large area that encompasses points 1 and 4. Points 2 and 

3 were just beyond the limit of the main area of delamination which occurred in the -45°/+45° interface. 

This corresponds with the results from the FEA which showed both a change in failure mode and failure 

load resulting from the voids. The increase in thermoelastic surface response above a void was found to 

be 5 to 8 times greater than that of the surroundings in the experiment. In the simulation the response was 

found to be 3 to 5 times greater than the surroundings.. This may be explained by the slightly simplified 

geometry in the model, and the experiment containing several overlaid voids as opposed to single voids at 

different defect depths.  

 

4.7 Post-failure assessment 

After failure, cylinder B0 was subjected to low level loading using TSA to find the delamination 

boundaries with higher spatial resolution, along with comparative measurements obtained using DSPI. In 

Figure 21 four sectors are shown covering the full circumference of the cylinder at the damage location 

with the DSPI views slightly rotated and axially shifted w.r.t. the TSA images. The damage boundaries 

follow the +45° orientation of the fibres. While TSA mainly delineates the borders of the delamination as 

the stress is a maximum at those locations, DSPI shows the area more clearly due to the larger 

deformation of the debonded layers under thermal and mechanical load  

For cylinder B1 the growth of one of the initial voids into a small delamination is evidenced in Figure 22. 

The through-the-thickness failure plots for the different voids show that the critical failure mode is matrix 

failure due to tension (pmA) if a void can be found in the outer layers, Figure 13. Assuming that this is 

the initial failure, it is probable that this defect propagates inwards as long as the fibre orientation does not 

change. At the -45°/45° interface the crack may stop, propagate further inwards or initiate a delamination. 

Failure modes at the interface may be of type pd and pmC which then further propagate and cause the 

large debonding/delamination as confirmed with DSPI. An X-ray CT scan of specimen B3 after failure is 

shown in Figure 23. The failure pattern indicates that matrix failure occurred in the outer layer bundle, 

stopped at the -45°/+45 interface, from where a large delamination is observed. 
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predict either the failure mode or the failure load. A good agreement between measured and evaluated 

failure load (first ply failure) has been achieved. Furthermore, the data from FE simulation were used to 

estimate the temperature response in TSA measurements.  

For the specific layup in the CFRP cylinders it has been shown that the failure load and failure mode are 

similar for both smooth and rough cylinders, despite the significant difference in the number and size of 

voids resulting from the two manufacturing processes. It can be concluded that the most critical location 

of a void is near the surface, with a secondary influence coming from size.  

It was possible to grow a defect by applying torsion fatigue when considerable voids were already present 

in the specimen. While in specimen B1 a debonding was grown by cyclic torsional loading from an 

appreciable manufacturing flaw, small manufacturing voids in the peel-ply specimen B2 could not be 

grown by applying torsion. These voids led to catastrophic failure at loads well below those expected 

from an unflawed specimen.   
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Figure Captions 

Figure 1: Puck matrix failures (reproduced from [10]). 

Figure 2: Test sample B1 as manufactured with steel inserts for torsion testing (top), and sample B6 with 

peel ply finish (bottom). 

Figure 3: Fibre orientation for 0°, –45°, +45° and the global coordinate system. 

Figure 4: Model assembly - bonded contact of the steel inserts and CFRP cylinder. 

Boundary conditions: fixed support on the left and torsional moment is applied on the right. 

Figure 5: Test specimen mounted on the test machine with the two metal mirrors. 

Figure 6: CT scans of a 110 mm section of cylinder B1 (top) and B6 (bottom) with colour coded defect 

volume. Note that the colour scale is different by a factor of 120 for the two specimens. 

Figure 7: Void volume distribution of cylinder B1 (VD1, blue) and B6 (VD2, red). 

Figure 8: Section of cylinder B1 with manufacturing flaws. CT-data colour coded for defect depth (top); 

DSPI phase gradient data (centre). TSA amplitude data with a slightly rotated view (bottom). The images 

are flipped in order to reproduce the orientation of the CT data. 

Figure 9:  Exemplary void distribution for VD1 (left) and VD2 (right). 

Figure 10:  Section cut of the final solid model with two highlighted voids. 

Figure 11: Inverse reserve factors for each layer of a laminate without voids calculated for a torsional 

moment of 1200 Nm. 

Figure 12: Element-wise maximum IRF of the Puck 3D failure criterion for a load of 1200 Nm. Three 

voids are highlighted in the box. 

Figure 13: Through-the-thickness IRF distribution of Void 1 (red), Void 2 (blue) and Void 3 (grey)  for 

VD1 and a torsional moment of 1200 Nm. 

Figure 14: Global IRF distribution for a load of 1400 Nm and detail view of simulated void distribution 

VD2. Three Voids are high-lighted in the box. 

Figure 15: Through-the-thickness IRF distribution of Void 1 (red), Void 2 (blue) and stacked Voids 3a, b, 

c (grey) for void distribution VD2. 

Figure 16: Defect depth distribution for sample B6. 

Figure 17: Maximum IRF vs void's position and area. Torsional load is 850 Nm. 
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Figure 18: Left: TSA amplitude data, ΔT, from specimen B0 cyclically loaded at (-500±100) Nm and 

frequency 2 Hz, before (top left) and after failure (bottom left). Right: Specimen B1 before (top right) and 

after growth of debonding (bottom right), measured at (-250±100) Nm and frequency 2 Hz. 

Figure 19: TSA amplitude data, ΔT, of specimen B4 showing bands of increased thermoelastic response 

along the peel ply overlaps. 

Figure 20: IRT image of specimen B4 showing the first frame after failure. The temperature increase at 

the newly formed crack surfaces is clearly visible. Points 1 – 4 highlight points where small cracks 

initiated before final failure. 

Figure 21: Assessment of the delaminated area in cylinder B0: Comparison of TSA amplitude data from 

torsional loading (top), DSPI phase gradient data from thermal loading (middle) and mechanical loading 

(bottom). 

Figure 22: DSPI phase gradient images of cylinder B1 before testing (top) and after damage growth 

(bottom). Refer also to Figure 18 (right) 

Figure 23: X-ray CT scan of specimen B3 after failure (left) and detail view of the delamination (right). 
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Tables 

Table 1: Material property values of the steel inserts and the carbon unidirectional (UD) prepreg used in the 
FEA. Parameter definitions are found in ref [13]. 

Structural Steel E = 200.0 GPa   = 0.30  

Carbon  

UD prepreg 

 

Orthotropic Elasticity  

E1 = 123.34 GPa 12 = 0.27 G12 = 5.00 GPa 

E2 = 7.78 GPa 13 = 0.27 G13 = 5.00 GPa 

E3 = 7.78 GPa 23 = 0.42 G23 = 3.08 GPa 

Orthotropic Stress Limits [MPa] 1 

XT = 2600 YT = 34 ZT = 34 

XC = -1300 YC = -68 ZC = -68 

S12 = 80 S13 = 80 S23 = 55 

Puck Constants [dimensionless] 

 )(
||

p  = 0.35  )(

||

p  = 0.30  

 )(
p  = 0.30  )(

p  = 0.25  

Degradation factor M 

= 0.5 

Degradation factor s 

= η = 0.5 

Interface weakening 

factor  

fw = 0.8 

 

1 For unidirectional prepreg, X and Y correspond to the failure stresses in the principal material directions 
(i.e. 1 and 2). S is the failure shear stress. The subscripts T and C stand for tension and compression, 
respectively. 
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Table 2: Test specimens, surface finish, torsion tests and measurements performed. 

 

 

  

No Finish Torsion tests IRT TSA DSPI CT scan 

B0 smooth Quasi-static load to 1000 Nm - - post failure - 

B1 smooth Quasi-static load to 1200 Nm 

Cyclic load, defect grown by 

fatigue cycling 

- pristine and 

after defect 

growth 

pristine and 

after defect 

growth 

pristine 

B2 peel-ply fatigued to 80000 cycles 

Quasi-static test to failure  

1400 Nm 

during 

failure event 

Every 1500 

cycles 

pristine - 

B3 peel-ply Quasi-static test to failure   

1300 Nm 

during 

failure event 

pristine post failure post failure 

B4 peel-ply Quasi-static test to failure  

1400 Nm 

during 

failure event 

pristine  pristine - 

B5 peel-ply Quasi-static test to failure  

1500 Nm 

during 

failure event 

pristine  pristine - 

B6 peel-ply not loaded - - pristine pristine 
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Table 3: Simulated surface stresses for a torsional load of 600 Nm and experimental thermoelastic responses 
for 200 Nm. 

 

 σ1 (FEA) 

[MPa] 

σ2 (FEA) 

[MPa] 

ΔT (Exp)  

specimen B4 

[K] 

ΔT (Exp)  

specimen B1 

[K] 

non-defective area -97.7  2.0  0.010 to 0.013 K 0.002 K 

void 1 (VD2) -76.0  12.5  
0.05 to 0.10 K 0.012 to 0.015 K 

void 2 (VD2) -66.0  12.4  

 

 

 


