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Abstract

We address the problem of scheduling a single batching machine to mini-
mize the maximum lateness with a constraint restricting the batch size. A
solution for this NP-hard problem is defined by a selection of jobs for each
batch and an ordering of those batches. As an alternative, we choose to
represent a solution as a sequence of jobs. This approach is justified by our
development of a dynamic program to find a schedule that minimizes the
maximum lateness while preserving the underlying job order. Given this so-
lution representation, we are able to define and evaluate various job-insert
and job-swap neighborhood searches. Furthermore we introduce a new neigh-
borhood, named split-merge, that allows multiple job inserts in a single move.
The split-merge neighborhood is of exponential size, but can be searched in
polynomial time by dynamic programming. Computational results with an
iterated descent algorithm that employs the split-merge neighborhood show
that it compares favorably with corresponding iterated descent algorithms
based on the job-insert and job-swap neighborhoods.
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1. Introduction

A batching machine is one that can process more than one job at the same
time. Batching machines are common in the metalworking, chemical and
microelectronics industries. We consider the case where the batching machine
can process up to a certain number of jobs simultaneously (restricted batch
size), and the processing time of a batch is equal to the largest processing
time among all jobs within the batch. The scheduling problem we tackle
in this paper is motivated by large-scale integrated circuit manufacturing
as explained by Lee et al. [1]. Their model considers a burn-in oven, which
operates as a batching machine to perform the final testing of printed circuits.
The purpose of burn-in operations is to subject the chips to thermal stress in
order to bring out latent defects. The burn-in time for each chip is specified
by the type of product and it is known a priori. A number of products can be
grouped in a batch to be processed together, where the processing time of the
batch is the longest processing time among all jobs, due to the fact that it is
possible to keep a circuit longer in the oven than its prescribed burn-in time
but not taken out before. This batching machine process is critical for on-
time delivery of the circuits since the processing times in burn-in operations
are much longer than other operations in the testing areas. Thus, the efficient
scheduling of these operations is of great concern to management.

A recent survey on scheduling semiconductor manufacturing operations
can be found in [2]. Different batching machine settings are analyzed in
the literature. Wang and Uzsoy [3] develop a genetic algorithm for the one
batching machine problem to minimize the maximum lateness where jobs
have release dates. Kashan et al. [4] focus on minimizing the makespan
through a genetic algorithm that outperforms the simulated annealing ap-
proach suggested by Melouk et al. [5]. Recently Wang [6] considers the
problem on minimizing total weighted tardiness with restricted batch sizes.

This paper considers a batching machine problem that has the following
characteristics. Let J = {1, . . . , n} denote a set of n jobs that are to be
processed. The maximum number of jobs the machine can process at a time
is b, where b < n, so that the batch size is restricted. Associated with each
job j, for j = 1, . . . , n, is its non-negative processing time pj and its due date
dj. We assume all jobs become available at time zero.

A schedule σ for this problem is a sequence of batches σ = (B1, . . . ,Br),
where r is the number of batches and Bk is a batch comprising a subset of
jobs for k = 1, . . . , r. There is a limit of b on the number of jobs in each
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batch, which implies that |Bk| ≤ b, for k = 1, . . . , r. The processing time of
each batch Bk is given by

p(Bk) = max
j∈Bk

{pj},

and its completion time is

C(Bk) =
k∑

j=1

p(Bj).

Further, all jobs in a batch start and complete at the same time, which
implies that the completion time of job j in schedule σ, for each j ∈ Bk is
Cj(σ) = C(Bk).

Let Lmax(σ) denote the maximum lateness of jobs in schedule σ, where
the lateness of job j is given by Lj(σ) = Cj(σ)−dj. We define d(Bk) = min

j∈ Bk

dj

to be the due date of batch Bk. Then there are two ways of computing the
maximum lateness of a given schedule σ: either over the jobs using

Lmax(σ) = max
1≤j≤n

{Cj(σ)− dj},

or over the batches using

Lmax(σ) = max
1≤ k ≤r

{C(Bk)− d(Bk)}.

The batching machine problem we study is to find an optimal schedule σ∗

which minimizes the maximum lateness Lmax(σ
∗) = minσ Lmax(σ).

To illustrate this problem, we consider an instance with five jobs, a batch
size b = 3, and processing times and due dates as follows:

Job j 1 2 3 4 5
pj 1 4 8 7 7
dj 5 10 16 16 7

A solution to this problem requires a selection of jobs for each batch and
an ordering of those batches. As shown in Figure 1, a possible schedule with
two batches is σ1 = ({1, 2, 5}, {4, 3}) with Lmax = 2, an alternative schedule
with 3 batches is σ2 = ({1}, {2, 5, 4}, {3}) with Lmax = 1. Note that a
schedule with fewer batches does not necessarily guarantee a better solution.
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Figure 1: Possible solutions for a 5-job instance

This problem is shown to be unary (or strongly) NP-hard by Brucker et
al. [7]. Hence, there is an interest in developing local search heuristics for
the problem.

A neighborhood search associates a neighborhood structure to any given
solution s, and restricts the (local) search to the neighborhood of s. It is
generally expected that a very large neighborhood will yield better solutions,
especially if it can be searched efficiently. Over the last decade there has
been much interest in such very large neighborhoods, especially to address
difficult combinatorial optimization problems, like the multi-resource gener-
alized assignment problem [8], the traveling salesman problem as in [9] or
[10], the time-tabling problem [11] or the vehicle routing problem [12], as
well as real-life applications as in the through-fleet-assignment problem [13]
or a car sequencing application in [14]. Defining an exponential size neigh-
borhood is not sufficient to guarantee an efficient local search algorithm. An
example of this is highlighted in [9] when dealing with the quadratic assign-
ment problem. Interesting reviews of very large-scaled neighborhoods can be
found in [15] and [16].

Some recent research like the ones in [12], [17], [18], [19] and [10], de-
velop polynomial or pseudo polynomial searches of the neighborhood space
for NP-hard problems. A few exponential neighborhoods for scheduling prob-
lems have been constructed in the literature before. Angel and Bampis [20]
consider a time-dependent version of the well known single-machine total
weighted tardiness scheduling problem extending the work by Congram et
al. [21], they develop a multi-start local search algorithm showing the su-
periority of dynasearch neighborhoods over traditional ones. Dynasearch,
first introduced in [21], is equivalent to performing a series of ‘independent’
swap moves. Brueggemann and Hurink [18] consider a single-machine setting
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with release dates to minimize the total completion time, introducing a very
large-scale neighborhood that is searched in polynomial time. Rios-Solis and
Sourd [17] consider a parallel machine scheduling problem with earliness and
tardiness penalties and proposed a pseudo-polynomial algorithm to explore
an exponential neighborhood. Brueggemann and Hurink [22] also considers
a parallel machine setting, but with the objective of minimizing the total
weighted completion time, developing and evaluating very large-scale neigh-
borhoods.

For batching machine scheduling, Hurink [23] analyzes an exponential
neighborhood for a single batching machine to minimize the total weighted
completion time. His model differs from ours in that the processing time of
each batch is defined as the sum of the processing time of the jobs belonging
to that batch. He uses a multiple transpose neighborhood within a tabu
search heuristic. This is the only study, as far as we know, that develops an
exponential neighborhood for a batching machine.

This paper proposes a new exponential-sized neighborhood for the prob-
lem of scheduling a batching machine, where a limit is imposed on the size
of each batch, to minimize the maximum lateness of the jobs. A solution
for this problem is defined by an assignment of jobs to each batch and an
ordering of those batches. For example, in the previous instance with 5 jobs
and a batch size limit of b = 3, the two schedules: σ1 = ({1, 2, 5}, {4, 3})
and σ2 = ({1}, {2, 5, 4}, {3}) are considered. An alternative representation
of these solutions is to consider the underlying sequence of jobs, which in this
case is the same for both schedules πσ1 = πσ2 = (1, 2, 5, 4, 3). This approach
is practical if, for a given sequence, there exist an efficient procedure to per-
form a batching that will minimize Lmax while preserving the (underlying)
ordering of jobs.

The main contributions of this paper are as follows. A dynamic pro-
gramming formulation is derived that finds an optimal batching for a given
underlying sequence of jobs (Section 3.1). Hence, we are able to define local
search neighborhoods that are commonly used for sequencing problems such
those given by job-insert and job-swap operators (Section 3.2). We propose
an exponential neighborhood that can be viewed as a restricted version of a
multiple-insert neighborhood. More precisely, a given sequence is split into
two subsequences, which define the restricted multi-insert operations. We
then propose an efficient dynamic programing algorithm (Section 4.4) that
finds the best merging of these two subsequences into a single sequence. The
set of sequences created by this procedure form the split-merge neighborhood.
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Using descent, multi-start descent and iterated descent heuristics, a compu-
tational comparison of these neighborhoods (Section 5) shows the benefits of
using the split-merge neighborhood.

The remaining sections of this paper is organized as follows. In Section 2,
we present a mixed-integer linear programming formulation and discuss exact
solutions for the problem. Section 3 contains a description of a job-swap and
a job-insert sequence-preserving neighborhood for the problem that can be
explored efficiently using dynamic programming. In Section 4, we introduce
the split-merge neighborhood, analyzing its size and describing a method by
which it can be explored. Section 5 reports on our computational experience,
where we compare the performance of the split-merge neighborhood with
the widely used job-swap and job-insert neighborhoods. We conclude in
Section 6, pointing to possible further work and extensions.

2. Exact Solutions for the Batching Machine Problem

To evaluate the heuristics developed in this paper, it is useful to have a
method of finding optimal solutions for a set of instances to serve as bench-
marks for the problem. With this aim, we propose the following mixed-
integer linear programming formulation. We use zero-one decision variables
xjk, for j, k = 1, . . . , n, that are defined by

xjk =
{
1 if job j is assigned to batch Bk,
0 otherwise.

Thus, we are assuming that there are n batches, but allow some of these
batches to be empty. Further, we define continuous decision variables as
follows:

Pk: the processing time of batch Bk, for k = 1, . . . , n;
Ck: the completion time of batch Bk, for k = 1, . . . , n;
L: the maximum lateness of all jobs.

Also, we define the constant Mk =
∑k

j=1 pπ(j), where (π(1), . . . , π(n)) is a
longest processing time (LPT) sequence of the jobs, i.e., pπ(1) ≥ . . . ≥ pπ(n).
Then our MILP formulation for the batching machine problem is:

Minimize L

subject to L ≥ Ck − dj − (Mk − pj)(1− xjk) j, k = 1, . . . , n (1)
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n∑
k=1

xjk = 1 j = 1, . . . , n (2)

Pk ≥ pjxjk j, k = 1, . . . , n (3)

C1 = P1 (4)

Ck = Ck−1 + Pk k = 2, . . . , n (5)
n∑

j=1

xjk ≤ b k = 1, . . . , n (6)

xjk ∈ {0, 1} j, k = 1, . . . , n. (7)

Note that when job j is contained in batch Bk so that xjk = 1, then the right-
hand side of constraint (1) becomes Ck − dj, which is equal to the lateness
of job j. Observing that the lateness Lj of job j can be bounded by

Lj ≥ pj − dj ≥ pj − dj + (Ck −Mk),

where the first inequality is valid because the completion time of job j in any
schedule is at least pj, and the second inequality hods because the definition
of Mk ensures that it is an upper bound on the completion time of batch Bk

for k = 1, . . . , n. Thus when xjk = 0, the right-hand side of (1) is a valid
lower bound on the lateness of job j for every batch Bk. Thus, constraints
(1), together with the minimization of the objective function, ensure that
L is in effect the maximum lateness. Constraint (2) requires that every job
belongs to exactly one of the batches. The processing time of batch Bk

is evaluated through constraint (3), while the batch completion times are
calculated through constraints (4) and (5). Finally, constraint (6) imposes
the restriction on batch size, while (7) restrict the values of the decision
variables to take values consistent with their definitions.

Using the above formulation and Xpress-IVE 1.24.02, selecting the dual
algorithm with parameters set as default with a two hour time limit, we were
unable to find optimal solutions for some difficult instances of 20 jobs. Xpress
found no noticeable improvement on the feasible solution after 20 minutes.
The difference between the best solution obtained by Xpress and the optimal
solution is around 26%. To obtain the optimal solution for those difficult
instances we ran the branch and bound algorithm proposed in [24]. This
branch and bound is not based on a LP model, but rather on bounds on
partially constructed schedules, calculated through dynamic programming.
Exact solutions for 25 or more jobs were difficult to find using the branch
and bound algorithm proposed in [24]. It seems that even for instances with
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relative few jobs (i.e., around 25), finding exact solutions is computationally
time consuming.

3. Sequence-Based Neighborhoods

A natural representation for a solution for our batching machine prob-
lem, is defined by a selection of jobs for each batch and an ordering of those
batches. Recall the 5 job example presented in Section 1, with schedules
σ1 = ({1, 2, 5}, {4, 3}) and σ2 = ({1}, {2, 5, 4}, {3}). Both schedules have
the same underlying sequence of jobs π = (1, 2, 5, 4, 3). On the other hand,
since jobs within a batch are not ordered, schedule σ2 = ({1}, {2, 5, 4}, {3})
is equal to σ3 = ({1}, {4, 5, 2}, {3}) although the two schedules have different
underlying sequences πσ2 = (1, 2, 5, 4, 3) and πσ3 = (1, 4, 5, 2, 3), respectively.
Thus different sequences might lead to the same schedule. Rather than the
direct approach of assigning jobs to batches and sequencing the batches,
our solution approach is to search over possible underlying sequences. This
approach is practical if, for a given sequence, there exists an efficient proce-
dure to perform a batching that will minimize the maximum lateness, while
preserving the (underlying) ordering of jobs. In this section, we develop a dy-
namic formulation that will find such an optimal batching for a given (fixed)
sequence.

Potts & Kovalyov [25] show the usefulness of dynamic programming as
a method for solving a variety of scheduling and batching problems. In
particular, they give a characterization of optimal schedules for the case
of unrestricted batch sizes (where b ≥ n) for the batching machine model
with regular scheduling criteria. If we assume that jobs are indexed accord-
ing to the SPT (shortest processing time) rule so that p1 ≤ . . . ≤ pn, an
SPT-batch schedule is one in which adjacent jobs in the sequence (1, . . . , n)
may be grouped to form batches. Brucker et al. [7] show that there exists
a SPT-batch schedule that is optimal for the unrestricted batch sizes ver-
sion of our problem of minimizing the maximum lateness. However, for the
restricted version that we are aiming to solve, there is no such guarantee.
Nevertheless, we can adapt their dynamic programming formulation to solve
the unrestricted version for any given (fixed) sequence of jobs. Specifically,
for a given sequence, we find a partition of the sequence into batches, with
no more than b jobs in a batch, that will yield the minimum value for the
maximum lateness among schedules having this underlying job sequence.
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3.1. Optimal schedule for a given sequence

Consider a fixed sequence of jobs π = (1, . . . , n) for which a batching
is required. Let Fj be the minimum value of the maximum lateness of a
schedule that contains jobs j, . . . , n from π, where the processing of the first
batch in the schedule starts at time zero. If a batch {j, . . . , k − 1}, which
has processing time p′ = maxj≤l≤k−1 pl, is inserted at the start of a schedule
for jobs k, . . . , n, then the maximum lateness of jobs k, . . . , n increases by p′,
while the maximum lateness for jobs j, . . . , k− 1 is p′ −minj≤l≤k−1 dl, which
is the processing time of the batch minus its due date. Hence, we can state
the dynamic programming recursion as follows:

Dynamic Programming Algorithm for Batching (DPB)

Initialize. Fn+1 = −∞.

Recursion. Compute for j = n, n− 1, . . . , 1

Fj = min
j<k≤min{n+1,j+b}

{max{Fk + max
j≤l≤k−1

pl, max
j≤l≤k−1

pl − min
j≤l≤k−1

dl}}. (8)

Optimal solution. The optimal solution value is equal to F1, and the
corresponding batching can be found by backtracking.

We can rewrite the recursion equation (8) as

Fj = min
j<k≤min{n+1,j+b}

{ max
j≤l≤k−1

pl +max{Fk,− min
j≤l≤k−1

dl}}. (9)

Following the ideas of Wagelmans & Gerodimos [26] to improve computa-
tional efficency of the dynamic program of Brucker et al. [7], we define for
any given j

Gk = max
j≤l≤k−1

pl +max{Fk,− min
j≤l≤k−1

dl} (10)

Then we obtain from (9) and (10) that

Fj = min
j<k≤min{n+1,j+b}

Gk.

Note that Gk can be computed for k = j + 1, . . . ,min{n + 1, j + b}, in
that order. Hence we can store the previous value of the maxj≤l≤k−1 pl and
minj≤l≤k−1 dl as k progresses through its range of values, thereby reducing
the number of computations so that constant time is required for each value
of k. Note that for each Fj there are at most b values of Gk to compare, and
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n values of j. Hence, our dynamic programming can be implemented to run
in O(nb) time.

Algorithm DPB can either be used to explore job-swap and job-insert
neighborhoods as defined in Section 3.2, or more generally as part of any
metaheuristic that uses a sequence representation to explore the solution
space of the problem.

3.2. Job-Swap and Job-Insert Neighborhoods

We now turn our attention to classical neighborhoods that can be used
for solutions that are represented as sequences. One popular choices is the k-
exchange neighborhood (where k ≥ 2). This neighborhood is composed of all
solutions that can be obtained by exchanging k elements of a given sequence.
For k = 2, the neighborhood is usually referred to as swap neighborhood. For
example, the sequence (1, 4, 3, 2, 5, 6) is a neighbor of sequence (1, 2, 3, 4, 5, 6),
obtained by exchanging element 2 with element 4. Verifying local optimality
for a k-exchange neighborhood requires Ω(nk) time, where n is the total
number of elements in the sequence. The more exchanges we allow, the more
computationally expensive it becomes to search the neighborhood. The size
of the swap neighborhood (where k = 2) is equal to n(n− 1)/2.

Another widely-used neighborhood is the insert neighborhood. This neigh-
borhood comprises all solutions that can be obtained by selecting an element
and inserting it in another position within the sequence. For example, se-
quence (1, 5, 2, 3, 4, 6) is a neighbor of sequence (1, 2, 3, 4, 5, 6), obtained by
removing element 5 and inserting it before element 2. The size of this neigh-
borhood is (n − 1)2. A block insert neighborhood is when we select a set
of adjacent elements (referred to as a block) and insert the block in an-
other position within the sequence. For example, sequence (5, 6, 1, 2, 3, 4) is
a neighbor of sequence (1, 2, 3, 4, 5, 6), obtained by removing the block (5, 6)
and inserting it before element 1. If we fix the block to be of size m (where
m ≥ 2), then the size of the neighborhood is (n−m)2 + 1.

It is also common to define neighborhoods in which several simple moves
are combined to form a compound move that is a single neighbor. For exam-
ple, the multi-insert neighborhood is one where more than one insert move is
allowed to form a neighbor. We might expect the multi-insert neighborhood
to be more powerful than a simple insert neighborhood.

We now provide specific details of neighborhoods for our batching ma-
chine scheduling problem. We define a schedule σ′ with underlying permu-
tation π′ to be in the job-swap sequence-adjusting neighborhood of schedule
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σ with underlying sequence π if π′ is a swap neighbor of π. The job-insert
sequence-adjusting neighborhood is defined analogously. For brevity, we refer
henceforth to job-swap and job-insert neighborhoods and neighbors.

The job-swap and job-insert neighborhoods can be searched efficiently
using Algorithm DPB, which evaluates the various solutions within these
neighborhoods. Recall that the swap and insert neighborhoods are of size
O(n2). Hence, searching the job-swap or job-insert neighborhood of a sched-
ule σ of our problem requires O(n3b) time. For the particular case of the
insert neighborhood the complexity can be improved to O(n2b) using a mod-
ified dynamic programming formulation, as explained with more detail in
Appendix A. Even though it might seem appealing to run this faster algo-
rithm to search the insert neighborhood, we also show in the Appendix that
its performance relative to other neighborhood does not justify its use here.

4. Split-Merge Neighborhood

In this section, we introduce our proposed split-merge neighborhood. We
define the neighborhood in Section 4.1, derive its size in Section 4.2, suggest
a splitting procedure in Section 4.3 and design a dynamic programming to
explore it efficiently in Section 4.4.

4.1. Neighborhood definition

The general idea of the split-merge neighborhood is first to partition or
split a sequence into two subsequences, and then merge these subsequences.
More formally, for our batching machine problem, consider any feasible sched-
ule σ, where π is the underlying sequence of jobs. Consider a partition of the
jobs of π, into subsequences π1 and π2 (such that every job appears once in
π1 or π2 and no jobs appears in both π1 and π2), and jobs in each of π1 and
π2 appear in the same order as in π. We define a schedule σ′ with underly-
ing permutation π′ to be in the split-merge neighborhood of schedule σ with
underlying sequence π and split π1 and π2 if π′ has the property that if job
i precedes job j in either π1 or π2, then job i precedes job j in sequence π′.

To illustrate the definition of the split-merge neighborhood, consider a
schedule with 6 jobs having π = (1, 2, 3, 4, 5, 6) as its underlying job sequence.
Let π1 = (2, 4, 5) and π2 = (1, 3, 6) be the split of π that is selected. Then, a
feasible merging is π′ = (1, 3, 2, 4, 6, 5), which is equivalent to performing the
following two insert moves in π: insert job 3 before job 2, and insert job 6
before job 5. Note that the order of jobs in π1 and the order of jobs in π2 is
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preserved in π′, and that the initial sequence is a neighbor of itself. However,
under this choice of π1 and π2, sequence π

′′ = (1, 5, 6, 2, 3, 4) is not a neighbor
of π as job 4 precedes job 5 in π1, and job 3 precedes 6 in sequence π2. On
the other hand, if we had chosen π1 = (1, 2, 3, 4) and π2 = (5, 6), then this
would be a valid merge operation, and π′′ would be a neighbor of π. Note
that π′′ could be obtained from inserting block (5, 6) in front of job 2. Hence,
different splitting procedures for sequence π yield different restrictions on the
possible resulting neighbors.

Summarizing, the split-merge neighborhood is a restricted multiple insert
neighborhood, where the restrictions are given by the relative order of jobs
in the split sequences and initial sequence, as explained above. The two
determining factors for the effectiveness of the split-merge neighborhood are:
(i) the splitting procedure; and (ii) the merging procedure. Both procedures
are independent and the merge operation is well defined in the sense that for
a given split of the original sequence, the merge procedure we suggest will
always find the best neighbor.

In Section 4.4, we will show that given the split of the initial sequence a
merged sequence and a feasible batching to minimize the maximum lateness
of the resulting schedule can be obtained in polynomial time with a dynamic
programming algorithm. The only remaining factor is to specify a good
splitting procedure, in Section 4.3, we describe one that gave the best results.

4.2. Neighborhood Size

To calculate the size of the split-merge neighborhood, let the two subse-
quences created under splitting be π1, and π2, which contain n1 and n2 jobs,
respectively. Any feasible merged sequence π′ can be created by selecting n1

positions in π′ for the jobs of π1to be placed, and then considering the jobs
of π2 sequentially, inserting the next job of π2 in the first unfilled position in
π′. This shows that the neighborhood size is

(
n
n1

)
=

(
n
n2

)
.

Note that the neighborhood size
(
n
n1

)
is increasing in n1 for n1 < n/2

and decreasing in n1 for n1 > n/2. Therefore, the maximum value of
(
n
n1

)
occurs when n1 = n2 = n/2 (for even n). Using Stirling’s approximation (for
example, see [27]), the corresponding neighborhood size is:(

n

n/2

)
≈ nn

√
2πn e−n(

n
2

)n
πn e−n

=
2n+1/2

√
πn

,

which shows that the size of the largest neighborhood under split merge is
exponential in n. Neighborhoods of such a large size can be explored in
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polynomial time, as explained in Section 4.4. Furthermore, as larger neigh-
borhoods tend to yield better quality solutions (better local optima), we are
interested in using similarly sized split sequences to have as big a neighbor-
hood as possible.

4.3. Splitting Procedure

Note that the split sequences can be of un-equal size; if we have a se-
quence, say π1, with just one job, then the split-merge neighborhood is equiv-
alent to a simple insert neighborhood where we only allow the job in sequence
π1 to be moved. In Section 4.2, we showed that sequences with (near) equal
number of jobs are the best choice in terms of neighborhood size.

We have evaluated different splitting procedures, both deterministic and
random. In initial experiments, the best results are obtained with a splitting
that divides the sequence of jobs π randomly into τ parts, where τ is an input
parameter that is found through computational testing. A formal statement
of this procedure is given below.

Splitting Procedure (SP)

Initialize: t0 = 0, i = 0 and s = 1.

Repeat:
Generate t ∼ U [1, (2n

τ
)− 1].

Let i = i+ 1 and ti = min{ti−1 + t, n}.
Add jobs π(ti−1 + 1), . . . , π(ti) to the end of sequence πs.
If s is even s = 1, else s = 2.

Until ti = n

The aim of this splitting procedure is to divide sequence π into τ parts
of similar size on average, where the i-th part is assigned to π1 if i is odd,
and to π2 if it is even. Note that the expected value of t is n/τ , and hence
we are assigning blocks of n/τ jobs, on average, to each of the subsequences
π1 and π2, until all jobs of π are distributed between the two subsequences.

4.4. Merging Sequences

We propose the following backward dynamic programing recursion to find
a best merged sequence from two subsequences, and form batches of jobs with
the minimum value of the maximum lateness.

Let π1(1), . . . , π1(n1) denote the n1 jobs in the first subsequence, and
π2(1), . . . , π2(n2) the n2 jobs in the second sequence. Let σj1,j2 be a partial
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schedule with jobs π1(j1), . . . , π1(n1) from the first subsequence and jobs
π2(j2), . . . , π2(n2) from the second subsequence, merged in such a way that
the maximum lateness is minimized, and the relative order of the jobs in each
subsequence is preserved, as explained above. Let Lj1,j2 be the value of this
maximum lateness. Then our dynamic program is as follows.

Dynamic Programming Algorithm for Merging and Batching (DPMB)

Initialize. Ln1+1,n2+1 = −∞.

Recursion. Compute for j1 = n1, n1 − 1, . . . , 1 and j2 = n2, n2 − 1, . . . , 1

Lj1,j2 = min
k1,k2

{max{Lk1,k2 +max
k∈K

pk,max
k∈K

pk −min
k∈K

dk},

where the outer minimization over k1 and k2 is subject to: j1 ≤ k1 ≤ n1 + 1,
j2 ≤ k2 ≤ n2 + 1 and 1 ≤ k1 − j1 + k2 − j2 ≤ b; where K = {π1(j1), . . . ,
π1(k1 − 1), π2(j2), . . . , π2(k2 − 1)}.
Optimal solution. The optimal solution value is equal to L1,1, and the
corresponding batching and merged sequence can be found by backtracking.

In the recursion for Algorithm DPMB,jobs of setK = {π1(j1), . . . , π1(k1−
1), π2(j2), . . . , π2(k2 − 1)} form a batch containing the union of the jobs
occupying positions j1, . . . , k1 − 1 in π1 and positions j2, . . . , k2 − 1 in π2.
This batch is inserted at the beginning of the schedule σj1,j2 . The minimum
and maximum batch size restriction are implemented through the condition
1 ≤ k1 − j1 + k2 − j2 ≤ b.

We conclude this section by discussing the time complexity of Algorithm
DPMB. The recursion equation is applied for fewer than n2 values of j1 and
j2. Further, for each pair of values j1 and j2, there are fewer than b2 sets
K to produce the first batch. As in Section 3.1, the values maxk∈K pk and
mink∈K dk can be updated from previous values as k1 and k2 progress through
their range. This implies that Algorithm DPMB requires O(b2n2) time.

5. Computational Experience

In this section, we provide a computational evaluation of the usefulness
of our new split-merge neighborhood. Section 5.1 describes how the test
problems that we use are generated and gives details of the computing en-
vironment. Section 5.2 evaluates the performance of the split-merge ver-
sus job-insert and job-swap neighborhoods with a simple descent heuristic.
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In Section 5.3, we evaluate the different neighborhoods within multi-start
descent. Finally, Section 5.4 designs an iterated descent heuristic for the
split-merge neighborhood and evaluates its performance on larger instances.

5.1. Test Problems and Experimental Design

We have used a set of data generated for instances with 20 jobs, similar
to the ones used in [24], to compare the different local search heuristics we
propose. The processing times of the jobs are integers uniformly distributed
from 1 to 100. An estimate on the makespan of the schedule, given the
processing times and the batch size b, is T = 1

b

∑n
j=1 pj. An obvious choice for

generating the due dates is from a uniform distribution with values between
1 and T . However, to mimic different scenarios for the due dates, we have
used a parameter λ that is assigned values λ = 0.5, λ = 1.0 and λ = 1.5,
and then the due dates are integers uniformly distributed between 1 and λT .
Hence, λ = 0.5 corresponds to a tight due date scenario, and λ = 1.5 is a
slack scenario. For the 20-job set of instances, the maximum batch sizes are
chosen as b = 2, 3 or 4, and we have 10 instances for each choice of b and λ.

We also generate new sets of data for 50 and 100 jobs to test an iter-
ated descent algorithm incorporating the split-merge neighborhood that we
propose in Section 4. The processing times and due dates of the jobs for
this set of instances follow the same distributions as described above. For
n = 50, the maximum maximum batch sizes are b = 2, b = 5, b = 10 and
b = 25, and for n = 100, we select b = 5, b = 10, b = 15, b = 25 and b = 50.
We generated 10 instances for each choice of b and λ. Thus, there are 120
and 150 instances with n = 50 and n = 100, respectively. All our heuristics
were coded in C and the instances are run on a MacBook Pro with an Intel�

CoreTM i7 processor at 2.8 Ghz. The operating system is Mac OS X Lion
10.7.5.

For the various local search heuristics that are evaluated in this section,
we use various performance measures. First, for n = 20, (global) optimal
solutions are known from the branch and bound algorithm proposed by Pos-
sani [24]. Thus, we compute the following statistics.

• DV: average percentage deviation from the optimal solution value,

• NO: number of optimal solutions found,

• AT: average computation time in seconds over all instances considered.
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The percentage of deviation from the optimal solution value is computed
using (Lmax(πLO)− Lmax(πGO)

|Lmax(πGO)|
)
100,

where πLO is the schedule corresponding to the local optimum obtained from
the local search heuristic under consideration and πGO is global optimum
schedule. Note that this measure of deviation is not well defined when
Lmax(πGO) is zero, however, this is not the case in any of our instances.

5.2. Neighborhood comparison within descent

In this section, we compare the split-merge neighborhood with the swap
and insert neighborhoods introduced in Section 3.2. These neighborhoods are
used within a classical descent heuristic, either with a first improve or a best
improve policy for selecting moves. A first-improve descent heuristic executes
a move when the first improving neighbor is found, whereas a best-improve
descent heuristic will only execute a move after the complete neighborhood
has been searched and a best move has been found. Both descent heuristics
stop once there is no improvement on the previous move. A local search
in the split-merge neighborhood can be viewed as a best-improve descent,
where the restricted moves are specified by the two subsequences and the
merging operation finds the best neighbor. Based on these ideas we propose
the following descent heuristic for the split-merge neighborhood:

Descent Heuristic in split-merge neighborhood
begin

- Construct an initial sequence π′ where jobs are in EDD order.

- Obtain an optimum batching for sequence π′ with Algorithm DPB of
Section 3.1 and evaluate the maximum lateness Lmax(π

′).
repeat

- Set π = π′ and Lmax(π) = Lmax(π
′)

- Split π into two subsequences π1 and π2 using procedure SP as described
in Section 4.3.

- Merge subsequences π1 and π2 with Algorithm DPMB of Section 4.4
to obtain a new sequence π′, and an optimal batching with maximum
lateness Lmax(π

′).

16



until Stopping criterion is met.
end

Recall that from Section 4 for every new sequence π′ obtained by the
DPMB, π′ is a neighbor of π and thus Lmax(π

′) ≤ Lmax(π). The case
Lmax(π) = Lmax(π

′) corresponds to a neutral move where as Lmax(π) <
Lmax(π

′) yields a descent move. The standard stopping criterion would be
Lmax(π) = Lmax(π

′). Initial experiments with this criterion found that a move
within the repeat-until loop was performed only once or twice. We interpret
this as indicating that the split-merge neighborhood has a flat landscape,
thus making it hard to escape from the first local optimum. To avoid this,
we substitute the termination criterion with a criterion to stop after a cer-
tain amount of computation time l. This time is calculated as the average
time it takes to perform a best-improve insert descent, since the split-merge
neighborhood can be viewed as a restricted multi-insert best-improve neigh-
borhood.

In this section, we compare five descent heuristics for the different neigh-
borhoods. The first four have Lmax(π) = Lmax(π

′) as stopping criterion, while
the last one uses the time stopping criterion as explained above:

I-FI: Insert neighborhood within first-improve descent;
I-BI: Insert neighborhood within best-improve descent;
S-FI: Swap neighborhood within first-improve descent;
S-BI: Swap neighborhood within best-improve descent;
SM: Split-merge neighborhood.

The results for the computational experiments using the set of 20-job
instances introduced in Section 5.1 are displayed in Table 1. These results
are aggregated over the different maximum batch sizes (i.e., b = 2, 3 and
4). Thus, the main entries in Table 1 represent the performance over 30
instances. Further, the overall results combine the three different due date
scenarios to give the performance over 90 instances. In this table, because
of the small computation times, we have listed average computation times in
microseconds in the columns labeled AT’.

A first-improve descent heuristic executes a move when the first improv-
ing neighbor is found, whereas a best-improve descent heuristic will only
execute a move after the complete neighborhood has been searched. Thus,
we might expect a first-improve descent heuristic to take less time than a
best-improve descent heuristic. This behavior is clearly confirmed in Table 1,
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Table 1: Comparison of descent heuristics for 20-job instances.

I-FI I-BI
Neighborhood λ DV NO AT’ DV NO AT’
Insert 1.5 39.52 23 614 36.87 25 989

1 13.90 3 1233 12.65 5 1817
0.5 16.31 1 959 10.78 1 1952

Overall 23.24 27 935 20.10 31 1600

S-FI S-BI
λ DV NO AT’ DV NO AT’

Swap 1.5 53.26 24 1101 6.85 26 610
1 10.96 7 749 7.55 4 1083
0.5 6.34 4 924 5.34 7 1328

Overall 23.18 35 925 6.58 37 1007

SM
λ DV NO AT’

Split-Merge 1.5 4.74 26 1600
1 6.51 9 1600
0.5 6.13 5 1600

Overall 5.79 40 1600
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where we observe that the best-improve descent requires more computation
time. However, solution quality is better under best-improve. Specifically
average percentage deviations from the global optimum solution values are
smaller under the best-improve strategy. This behavior is more apparent
in the swap neighborhood, where the first-improve descent has an average
deviation of 23.18%, whereas best-improve yields a 6.58% average deviation.
We notice that, in most cases, it is harder to find global optima for those
instances with more restrictive due dates.

The split-merge neighborhood yields the best performance overall. It
finds more global optima, and it exhibits a smaller average deviation from
the global optimum solution value than the other descent heuristics. Fur-
thermore, the average deviations for heuristic SM from the global optimum
do not depend significantly on whether or not the due dates are restrictive,
as they do with the other heuristics.

In spite of the strong relative performance of heuristic SM, 40 out of the 90
global optima are found, which is only a 44% success rate in finding the global
optima. Thus, it is of interest to explore other local search heuristics. An
easy option is to re-start the descent from a new solution once the search has
stopped. This can be done in two ways, one is through a multi-start descent
scheme and the other is an iterated approach. In the following subsections,
both are analyzed.

5.3. Neighborhood comparisons within multi-start

A multi-start descent heuristic is one in which a descent procedure is
applied from different starting solutions, and the best of the local minima is
selected as the heuristic solution. A recent survey on multi-start methods
is provided by Mart́ı et al. [28]. The idea is to diversify the search of
the solution space in the hope of finding a better solution by starting in
different points rather than just a simple descent from a single initial point.
In this section, we compare the neighborhoods of interest within a multi-start
setting.

Recall from Section 5.2 that best-improve descent heuristic yields better
results than those for first-improve descent, both in terms of average percent-
age deviations from the global optima and the number of global optima found.
Hence, we restrict our attention henceforth to best-improve when consider-
ing descent heuristics. Regarding the termination time l for the split-merge
neighborhood search we use the same time as in Section 5.2. Thus, in this
subsection, we compare the following three multi-start heuristics:
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I-MBI: Insert neighborhood within multi-start best-improve descent;
S-MBI: Swap neighborhood within multi-start best-improve descent;
SM-M: Split-merge neighborhood within multi-start descent.

In our multi-start heuristics, we generate 10 random starting solutions in the
form of sequences for use in I-MBI, S-MBI and SM-M. Each random starting
solution yields a local optimum, and the best among the 10 local optima
is then selected as the overall solution for the relevant multi-start heuristic.
As in the previous subsections, we use the same set of 20-job instances, and
aggregate the results over the different maximum batch sizes b = 2, 3 and
4. Thus, each of our presented results is the average over 30 different 20-job
instances. The overall behavior over all 90 instances is also presented.

Table 2: Comparison of multi-start heuristics for 20-job instances

I-MBI S-MBI SM-M
DV NO NTW AT DV NO NTW AT DV NO NTW AT

λ = 1.5 18.03 17 18 0.048 11.58 17 17 0.023 2.36 28 29 0.016
λ = 1 8.66 5 5 0.047 7.79 5 6 0.023 3.59 12 21 0.016
λ = 0.5 5.27 2 3 0.046 2.74 7 9 0.022 2.84 9 18 0.016
Overal 10.65 24 26 0.047 7.37 29 32 0.023 2.93 49 68 0.016

The results for our multi-start descent heuristics are listed in Table 2. In
addition to the performance statistics DV, NO and AT used previously, we
also include:

• NTW: number of times the winning heuristic. In this measure, a count
is made of the number of times the heuristic finds a solution no worse
than that found with either of the other two heuristics.

For our multi-start descent heuristics, we use randomly constructed se-
quences to create starting solutions instead of the EDD ordered sequence
used in Section 5.2. We first discuss the insert neighborhood, and specifi-
cally the performance of heuristic I-MBI. A good initial solution seems to be
of importance for the insert neighborhood, as observed by comparing with
the results given in Tables 1 and 2. The overall solution quality for the insert
neighborhood is arguably better with EDD, even though in multi-start we
are running descent for each of the 10 starting solutions. This conclusion is
reached from the 31 global optima found using the EDD sequence compared
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with the 24 global optima resulting from the 10 randomly generated starting
solutions. We also note the much larger total computation times with the
multi-start descent heuristic (4701 microseconds compared with 1600 mi-
croseconds for heuristic I-BI). Further, heuristic I-MBI finds the ‘winning’
solution in only 26 of the 90 instances, compared to 32 for S-MBI and 68 for
SM-M.

We now assess the performance of the swap neighborhood in multi-start
best-improve descent through the results obtained for heuristic S-MBI. A
comparison of results for heuristics I-MBI and S-MBI shows that, for each
of the performance measures NO, DV, NTW and AT, S-MBI exhibits better
performance than I-MBI. Our intuition for these results is that a swap move
allows more batches to remain intact than an insert move. In this way, many
more features of a solution can be retained within the swap neighborhood
than is the case under insert. The starting solution also seems to play an im-
portant role for the swap neighborhood within multi-start descent, since S-BI
with its EDD starting solution produces better overall performance measures
than S-MBI with its random starting sequences. In spite the preference for
swap over insert, the performance measures for S-MBI are significantly worse
than for the multi-start heuristic with the split-merge neighborhood SM-M.

As implied above, the best multi-start descent heuristic is SM-M which
uses the split-merge neighborhood. It finds about 54% of the global optima
(49 out of 90), and found the ‘winning’ solutions in about 75% of the instances
(68 out of 90). However, since it did not find the global optima for all the
20-job instances, it is of interest to see whether we can achieve better results
by retaining some of the features of the previously obtained local optimum.
We develop this idea by exploring an iterated descent heuristic in the next
subsection.

5.4. Neighborhood comparisons within iterated descent

An iterated local search heuristic also uses multiple applications of a
local search, but rather than starting from random solutions, it restarts from
a modification of the previous local optimum. In the literature, this process
of modification is frequently achieved by means of a kick. The key idea is to
dislodge the local search from its current locality within the solution space
with a view to exploring different areas.

A common method of performing a kick is to execute a series of random
neighborhood moves using the same neighborhood as for the local search.
As the split-merge neighborhood is a restricted version of the multi-insert
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neighborhood, we have chosen a kick to be a certain number of randomly
selected insert moves. Equivalently, a kick for the swap neighborhood consists
of a series of random swap moves. The number of moves is referred to as
the size of the kick, κ. We want the kick to be sufficiently large to move
to a solution that is not too close to the previous local optimum so that a
return to this local optimum is avoided, but not so far away that the good
characteristics of the previous local optimum are lost and we effectively have a
multi-start procedure. We do not consider the insert neighborhood as it gave
poor results as seen in previous sections, and the split-merge neighborhood
is a restricted version of a multi-insert neighborhood.

We performed some initial experiments with the 20-job instances to de-
termine appropriate values of κ; the values tried were: 2, 3, 4, 5 and 6. To
make a fair comparison with multi-start, our iterated descent algorithms each
have 10 iterations, where each new iteration starts with a kick and ends with
a local optima. The best choices for the parameter value κ in our initial
experiments are obtained with κ = 3, for the swap neighborhood, and κ = 2
for the split-merge.

Table 3 shows the results obtained with the swap neighborhood. We
compare multi-start with iterated descent starting from a randomly generated
initial sequence (Iterated RS) and also starting with a sequence in EDD order
(Iterated EDD).

Table 3: Comparison of heuristics using Swap Best Improve for 20-job instances

MultiStart Iterated RS Iterated EDD
DV NO AT DV NO AT DV NO AT

λ = 1.5 11.58 17 0.0231 16.50 16 0.0098 1.97 27 0.0096
λ = 1 7.79 5 0.0226 9.54 10 0.0111 4.92 8 0.0098
λ = 0.5 2.74 7 0.0217 3.87 6 0.0099 2.50 13 0.0094
Overal 7.37 29 0.0225 9.97 32 0.0103 3.13 48 0.0096

Using an iterated local search seems to improve the total number of op-
timal solutions that are found. We also notice that the average time was
reduced by more than half. As expected, the best results are obtained when
the initial sequence has jobs in EDD order, since more optima were found in
less time and with smaller deviations.

For the split-merge neighborhood we allow each descent to run for the
same time as allowed for multi-start. Table 4 compares results for multi-
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start, iterated descent starting on a random initial sequence (Iterated RS)
and iterated descent starting from a sequence containing jobs in EDD order
(Iterated EDD)

Table 4: Comparison of heuristics using Split-Merge for 20-job instances

MultiStart Iterated RS Iterated EDD
DV NO AT DV NO AT DV NO AT

λ = 1.5 2.36 28 0.0160 1.30 28 0.0160 1.03 28 0.0160
λ = 1 3.59 12 0.0160 2.36 18 0.0160 2.45 18 0.0160
λ = 0.5 2.84 9 0.0160 3.04 11 0.0160 1.89 14 0.0160
Overal 2.93 49 0.0160 2.24 57 0.0160 1.79 60 0.0160

AT: Average Time in seconds

Again, the iterated descent finds more global optima than multi-start,
and produces solutions of superior quality compared to those obtained using
the swap neighborhood. It is interesting to notice that the benefits of starting
with a EDD sequence as compared to a random sequence are not as significant
as when using the swap neighborhood. Hence, the split merge neighborhood
is less dependent on the starting solution.

In an attempt to obtain the 90 global optima for this set of instances, we
allow split merge to run for a longer period of time, using more kicks in the
search. Using the same time for the local search as in Table 4, we obtained
the 90 global optima when starting with a random initial sequence, with 350
kicks and a running time of 0.56 seconds for each instance. If the local search
starts with an EDD sequence, then to find the 90 optima we need 300 kicks
and only 0.48 seconds.

5.5. Neighborhood comparisons for bigger instances

We now present and discuss our results for the larger instances with 50
and 100 jobs, that are generated using the method explained in Section 5.1.
For these instances, we do not have global optimal solutions, but instead
can evaluate the heuristic solutions relative to a lower bound. The lower
bound is that of the SPT-EDD-dynamic batch schedule as proposed in Pos-
sani [24]. This lower bound in based on a relaxation of the fact that each
job is characterized by its processing time pj and its due date dj. In the
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SPT-EDD-dynamic batch schedule the restriction on the batch size is not vi-
olated, but the pj and dj of job j may be disassociated, allowing consecutive
batches one to contain the pj and the other the dj. Let πLO be the schedule
corresponding to the local optimum obtained as a result of the local search
heuristic. Then, we consider specific performance measures as follows:

• DLB, which refers to the average percentage relative deviation of the
heuristic solution value from a lower bound. For a single instance, the
deviation is computed using

DLB =
Lmax(πLO)− LB

LB
100,

where LB is the lower bound given by SPT-EDD-dynamic batch sched-
ule.

• NO, number of optima found, based on the lower bound. Thus, if
DLB = 0, the local optimum is a global optimum.

• IEED, which refers to the average percentage improvement on the value
of the optimal schedule for the EDD sequence over the instances con-
sidered. Let πEDD denote the optimal schedule obtained from the EDD
sequence. Then, the improvement on the EDD sequence value for a
single instance is defined by

IEED =
Lmax(πEDD)− Lmax(πLO)

Lmax(πEDD)
100.

Our results of running an iterated descent heuristic on the split-merge
neighborhood starting on a random sequence for the 50-job instances are
summarized in Table 5, where entries IEDD, and DLB indicate the aver-
age over 10 instances, NO is the total number of optima found. The first
parameter we need to fix is the running time for each descent move within
the split-merge neighborhood. We set this time to be equal to the average
computation time it takes a descent on the best-improve insert neighborhood
starting in a random sequence (similar to how we set it in Section 5.2) which
for 50 jobs is 0.24 seconds. The second parameter to set is the number of
kicks, and finally the size of the kick. We did experiments for size of kick
κ = 6, 8, 10, 12 and 16, and number of kicks: 50, 100 and 150. The best
results were obtained with κ = 10 and 100 kicks. This means that after
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each descent move, 10 random insert moves are performed on the last best
solution to obtain a new starting point for a new descent; 100 descent moves
are performed in total.

Table 5: Results for the 50-job instances

λ = 1.5 λ = 1.0 λ = 0.5
b IEDD DLB NO IEDD DLB NO IEDD DLB NO

2 23.4 63.8 4 53.7 502.7 0 26.8 854.5 0
5 44.4 22.1 3 52.2 120.3 0 39.6 304.0 0
10 32.7 134.8 1 41.4 60.0 0 35.6 143.2 0
25 9.6 12.6 3 9.6 30.3 0 12.9 49.9 0

With these parameters we were able to obtain the most optima, in this
case 11, as seen in Table 5. For 100-job instances, we also ran the iterated
split-merge heuristic, with κ = 10 and 100 kicks. We change the computation
time for descent accordingly, so that it is run for 5.08 seconds. On average for
each instance the heuristic took 8.4 minutes, and found 9 optima, as shown
in Table 6.

Table 6: Results for 100-job instances

λ = 1.5 λ = 1.0 λ = 0.5

b IEDD DLB NO IEDD DLB NO IEDD DLB NO
5 60.9 43.2 2 62.1 203.3 0 42.9 604.8 0
10 55.7 9.4 5 53.1 126.8 0 43.9 299.5 0
15 47.9 14.5 2 46.8 96.9 0 41.9 197.3 0
25 25.0 19.0 0 31.5 60.6 0 31.3 117.9 0
50 7.5 15.5 0 8.5 39.2 0 14.9 48.9 0

It is interesting to notice that even though we are starting on a random
sequence the heuristic always improves on the value of the EDD sequence.
Improvements range from 9.6 % to 53.7 % for the 50-job instances, and
from 7.5% to 62.1 % for the 100-job instances. In general, the improvement
was smaller as the batch size b increases. For both the 50- and 100-job
instances, global optima are only found for some instances with slack due
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dates (λ = 1.5), which suggests that such instances might be easier. It
is difficult to provide meaningful comments about solution quality relative
to the optimum because the results listed under DLB and NO depend on
the quality of the lower bound. However, we can notice that as the batch
size increases the deviation from the lower bound decreases, as does the
improvement on the EDD sequence, meaning that the gap between the value
for an EDD sequence and the lower bound decreases.

6. Concluding remarks

This paper introduces a new neighborhood, split-merge, to solve the prob-
lem of scheduling jobs on a batching machine to minimize the maximum
lateness of the jobs, where there is a limit on the size of a batch. For this
problem, solutions can be represented as sequences of jobs since in this pa-
per we develop a dynamic program (DPB), that optimally partitions the
sequence into batches. A neighbor in split-merge is formed by splitting the
sequence into two subsequences, and then using another dynamic program
(DPMB) to merge the subsequences to form a new sequence. This is equiva-
lent to exploring a restricted multi-insert neighborhood in one move. A key
property is that the split-merge neighborhood is exponential in size, but can
be searched in polynomial time.

Computational experiments with simple descent, multi-start descent and
iterated descent heuristics that use the swap, insert and split-merge neigh-
borhoods show that the proposed split-merge neighborhood is preferred. It
appears that the ability of the split-merge neighborhood to explore diverse
areas of the solution space is a major factor contributing to the high-quality
solutions that it generates.

Future research will explore the potential of the split-merge neighborhood
for producing competitive local search algorithms for other problems. Differ-
ent batching machine problems could be investigated to include the number
of late jobs on a single batching machine, or multi-objective functions.

Appendix A.

In this Appendix, we show that the best insert neighbor can be found
by dynamic programming in O(n2b) time. Let π = (1, . . . , n) be the current
sequence of jobs, and let πi = (πi(1), . . . , πi(n′)) = (1, . . . , i− 1, i+ 1, . . . , n)
be the resulting sequence that is obtained when job i is removed from the
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current sequences, where n′ = n − 1. Our aim is to provide a dynamic
program that finds the best position to insert job i into πi and produces an
optimal batching that is associated with this new sequence.

Let Fj be the minimum value of the maximum lateness of a schedule that
contains jobs πi(j), . . . , πi(n′) where the processing of the first batch in the
schedule starts at time zero. Further, let F ′

j be the minimum value of the
maximum lateness of a schedule that contains jobs i, πi(j), . . . , πi(n′), where
the processing of the first batch in the schedule starts at time zero, and job
i is inserted in its optimal position in the sequence (πi(j), . . . , πi(n′)) (which
includes occupying the first or last position).

The values of Fj are computed recursively in the same way as for Algo-
rithm DPB. For the computation of F ′

j , either job i appears in the first batch
of the schedule that contains jobs {i, j, . . . , k−1} for some k ∈ {j, . . . ,min{j+
b−1, n′+1}}, while the remaining part of the schedule is the batching implicit
in the computation of Fk, or job i is not in the first batch of the schedule that
contains jobs {j, . . . , k−1} for some k ∈ {j+1, . . . ,min{j+b, n′+1}}, while
the remaining part of the schedule including job i is the batching implicit in
the computation of F ′

k. Thus, we have the following dynamic programming
algorithm.

Dynamic Programming Algorithm for Insertion and Batching (DPIniB)

Initialize. Fn′+1 = −∞ and F ′
n′+1 = pi − di

Recursion. Compute for j = n′, n′ − 1, . . . , 1

Fj = min
j<k≤min{n′+1,j+b}

{max{Fk +max
l∈Ijk

pl,max
l∈Ijk

pl −min
l∈Ijk

dl}}. (A.1)

F ′
j = min{ min

j≤k≤min{n′+1,j+b−1}
Gk, min

j<k≤min{n′+1,j+b}
G′

k}, (A.2)

where
Gk = max{Fk + max

l∈Ijk∪{i}
pl, max

l∈Ijk∪{i}
pl − min

l∈Ijk∪{i}
dl},

and
G′

k = max{F ′
k +max

l∈Ijk
pl,max

l∈Ijk
pl −min

l∈Ijk
dl},

where Ijk = {πi(j), . . . , πi(k − 1)}.
Optimal solution. The optimal solution value is equal to F ′

1, and the
corresponding insertion position of job i and batching can be found by back-
tracking.
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We can rewrite Gk and G′
k as

Gk = max
l∈Ijk∪{i}

pl +max{Fk,− min
l∈Ijk∪{i}

dl}}, (A.3)

G′
k = max

l∈Ijk
pl +max{F ′

k,−min
l∈Ijk

dl}}, (A.4)

Based on the method described in Section 3.1, Gk and G′
k can be computed

for k = j, . . . ,min{n′ + 1, j + b − 1} and k = j + 1, . . . ,min{n′ + 1, j + b}
respectively in that order, in O(b) time. This each Fj and F ′

j are computed in
O(b) time, and the desired value of F ′

1 is computed in O(nb) time. Algorithm
DPIniB is applied for i = 1, . . . , n so that each job is considered for insertion,
given an overall time complexity of O(n2b) to find the best insert neighbor.

In Table A.7 we show a comparison between the standard O(n3b) ex-
ploration of the insert neighborhood versus the O(n2b) using DPIniB. The
same test instances as explained in Section 5.1 are used. The first set of
columns show the results for the standard implementation of first-improve
(I-FI) and best-improve (I-BI) neighborhood, and the second set of columns
for first and best improve using the above DPIniB algorithm, (I-FDPInB)
and (I-BDPinB) respectively.

Table A.7: Comparison of Insert heuristics for 20-job instances

I-FI I-FDPInB
DV NO μ-sec DV NO μ-sec

λ = 1.5 39.52 23 614 20.85 7 121
λ = 1 13.90 3 1233 63.09 5 96
λ = 0.5 16.31 1 959 20.73 7 109
Overall 23.24 27 935 34.89 19 109

I-BI I-BDPInB
DV NO μ-sec DV NO μ-sec

λ = 1.5 36.81 25 989 10.00 11 265
λ = 1 12.65 5 1817 43.30 6 335
λ = 0.5 10.78 1 1952 8.92 10 455
Overall 20.10 31 1600 20.74 27 351

Figures under DV show the average percentage of deviation from the
optimal solution value, under NO the number of optimal solutions found,

28



and under μ-sec the average computational time in micro-seconds over all in-
stances considered. As expected, the running times are reduced by employing
DPIniB; first-improve by a factor of 9, and for the best-improve by a factor
of 4.5. However, DPIniB found less number of optima in both cases. Further
analysis shows that in some instances the DPIniB search found better solu-
tions, but it was not consistently better overall. The differences are due to
existence of multiple local optima, and the order in which the neighborhood
is explored.

In Table A.8 we compare the DPIniB under multi-start descent scheme.
The first set of columns (I-MBI) repeat the results of experiments done in
Section 5.3 for the best improve descent with 10 randomly generated starting
points. The second set of columns (I-MDPInB) show the results of exploring
the neighborhood using DPIniB with 10 randomly generated starting points.
Figures under NTW count the number of times the heuristic finds a solution
no worse than that found with either of the other two, and the figures un-
der sec the average time overall instances. Again the computation time is
reduced, in this case by a factor of 5. Based on this, we increase the number
of random start by the same factor (50 random starts), and the results are
shown in the third set of columns.

As expected, starting from 50 different point improves the number of
optima found in comparison with I-MBI using 10 starting points. However,
when comparing with S-MBI from Table 2, we observe that the same numbers
of optima are obtained but the swap neighborhood is twice as fast. Hence,
it seems not to be worthwhile using DPIniB for further comparisons.

Table A.8: Comparison of multi-start heuristics for 20-job instances

I-MBI 10 starts I-MDPInB 10 starts I-MDPInB 50 starts
DV NO NTW sec DV NO NTW sec DV NO NTW sec

λ = 1.5 18.03 17 17 0.048 9.52 9 10 0.0060 2.942 12 22 0.030
λ = 1 8.66 5 14 0.047 18.9 6 9 0.0080 11.670 8 22 0.042
λ = 0.5 5.27 2 17 0.046 10.13 8 10 0.0104 5.439 9 18 0.051
Overall 10.65 24 47 0.047 12.85 23 29 0.0081 6.684 29 62 0.041
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