SUPPLEMENTARY FIGURES AND TABLES

The role of short RNA loops in selection of a single-hairpin exon derived from a mammalian-wide interspersed repeat

Jana Kralovicova¹, Alpa Patel², Mark Searle², Igor Vorechovsky¹

¹University of Southampton Faculty of Medicine, Southampton, United Kingdom ²University of Nottingham, Centre for Biomolecular Sciences, School of Chemistry, Nottingham, NG7 2RD, United Kingdom

SUPPLEMENTARY FIGURES

Α

FGB intron 1	1382 TATAGTCAACTGGTTAAACAGGAAAATCTGGAACCAGCCTGGCTGGGT 142 ivv v i v i v- i v v	9
MIR consensus	5 TATAGCATAGTGGTTAAGAGCACGGAC-TCTGGAGCCAGACTGCCTGGGT 53	
FGB intron 1	1430 TTTAATCTTAGCACCATCCTACTAAATGT 1458 iv iiii - i iv	
MIR consensus	54 TCGAATCCCGGCTCTGCCA-CTTACTAGCTGT 84	

В

FGB intron 1	1937	TAATGAGCACTTATTAT-TGCCAAGTACTGTTCTGAGGGTACCATATGCA v i i - i i v ivii i i	1985
MIR consensus	246	TATTGAGCGCTTACTATGTGCCAGGCACTGTTCTAAGCGCTTTACATGTA	197
FGB intron 1	1986	ATAAGTTATTTAATCCTTACAATAATCTTGTAAGGCAGATTCAAACTATC	2035
MIR consensus	196	TTAACTCATTTAATCCTCACAACAACCCTATGAGGTAGGT	151
FGB intron 1	2036	ATTACACTTATTTTACAGATGAGAAAACTGGGGCACAGATAAAGCA	2081
MIR consensus	150	ATTATCCCCATTTTACAGATGAGGAAACTGAGGCACAGAGAGGTTAAGTA	101
FGB intron 1	2082	ACTTGCCCAAGGTCTCATAGCT-GTAAGTCAACCCTACGGTCAAGACC	2128
MIR consensus	100	ACTTGCCCAAGGTCACACAGCTAGTAAGTGGCAGAGCCGGGATTCGAACC	51
FGB intron 1	2129	TACAAGTAGCCGAGCTCCAGAGTACAT 2155	
MIR consensus	50	CAGGCAGTCTGGCTCCAGAGTCCGT 26	

Figure S1 Nucleotide sequence alignment of *FGB* intron 1 MIR elements and the MIR consensus

(A) Sense MIR element. (B) Antisense MIR element. Alignments were created using the sensitive mode of the RepeatMasker Web server (<u>http://www.repeatmasker.org/cgi-bin/WEBRepeatMasker</u>), version 3.2.9.; i, transitions; v, transversions. The MIR exon is highlighted in grey, putative branch points in yellow. Branch points were predicted using a support vector machine algorithm ¹. The 24-bp hairpin is underlined.

Figure S2 Exon inclusion landscape of a MIR hairpin with 64 terminal triloops in 4 cell lines

Triloop mutants are ordered alphabetically. Exon inclusion is in %. P values for the indicated Pearson correlation coefficients are shown in parentheses.

MIR exon inclusion levels of corresponding triloop mutants are shown in Fig. 2A and Table S4.

A

Wild-type SMN2 exon7 TSL1 TSL2 GGUUUUAGACAAAAUCAAAAAGAAGGAAGGUGCUCACAUUCCUUAAAUUAAAGGA SMN2-FGB WT GGUUUUAGACAAAAUCAAAAAGGGGCACAGAUAAAGCAACUUGCCCAAAUUAAAGGA SMN2-FGB MUT GGUUUUAGACAAAAUCAAAAAGGGGCACAGAUG<mark>AAG</mark>CAACUUGCCCAAAUUAAAGGA

В

Wild-type F9 exon 3 ACUGAAUUUUGGAAGCAGUAUGUUG

F9-FGB WT ACUGAAUUUUG<u>GGGCACAGAUAAAGCAACUUGCCC</u>AAGCAGUAUGUUG

F9-FGB MUT ACUGAAUUUUG<u>CGGCACAGAUC<mark>AAG</mark>CAACUUGCCC</u>AAGCAGUAUGUUG

С

Wild-type L1CAM exon 18 (replacement 1)
ACCCCCAGGCAAUCCCUGAGCUGGAAGGCAUUGAAAUCCUCAACUCAAGUGCCGUGCUGGUCAAGUGGCGGCGGGGGGCCAGGUCAAGGGGCCACCUCCGCGGAUACAAAU
L1CAM-FGB WT (replacement 1)
ACCCCCAGGCAAUCCCUGAGCUGGGGGCACAGAUGAAGCCAACUUGCCCAAGUGCCGUGCUGGUCAAGUGGCGGCGGGUGGACCUGGCCCAGGUCAAGGGCCACCUCCGCGGAUACAAAU
Wild-type L1CAM exon 18 (replacement 2)
ACCCCCAGGCAAUCCCUGAGCUGGAAGGCAUUGAAAUCCUCAACUCAAGUGCCGUGCUGGUCAAGUGGCGGCCGGUGGA<u>CCUGGCCCAGGUCAAGGGCCACC</u>UCCGCGGAUACAAU
L1CAM-FGB WT (replacement 2)
ACCCCCAGGCAAUCCCUGGCUGGAAGGCAUUGAAAUCCUCAACUCAAGUGCCGUGCUGGUCAAGUGGCGCCGGUGG<u>GGGCACAGAUAAAAGCAACUUGCC</u>UCCGCGGAUACAAU
L1CAM-FGB WT (replacement 2)
ACCCCCAGGCAAUCCCUGGCUGGAAGGCAUUGAAAUCCUCAACUCAAGUGCCGUGCUGGUCAAGUGGCGCCGGUGG<u>GGGCACAGAUAAAAGCAACUUGCCC</u>UCCGCGGAUACAAU
L1CAM-FGB MUT (replacement 2)
ACCCCCAGGCAAUCCCUGGACGGAUGGAAGCCAUUGAAAUCCUCAACUCAAGUGCCGUCGUGGUGGGGCCCGGUGG<u>GGGCACAGAUAAAGCAACUUGCCC</u>UCCGCGGAUACAAU
L1CAM-FGB MUT (replacement 2)
ACCCCCAGGCAAUCCCUGGAAGGCAUUGAAAUCCUCAACUCAAGUGCCGUCGUGCUGGUCGGGGGCACAGAUAAAGGCAACUUGCCCUCCGCGGAUACAAU
ACCCCCAGGCAAUCCCUGGACGGAUGGAAGCCAUUGAAAUCCUCAACUCAAGUGCCGUCGGGGCGCGGGGGGCACAGAUAAAAGCAACUUGCCUCCGCGGAUACAAU
L1CAM-FGB MUT (replacement 2)
ACCCCCAGGCAAUCCCUGGAAGGCAUUGAAAUCCUCAACUCAAGUGCCGUCGUGUCAAGUGGCGCCGGUGG<u>GGGCACAGAUAAAAGCAACUUGCC</u>UCCGCGGAUACAAU

Figure S4 Nucleotide sequences of hybrid exons

(A) *SMN2* exon 7. (B) *F9* exon 3. (C) *L1CAM* exon 18. Swapped segments are underlined. The A>G substitution leading to activation of the MIR exon in *FGB* is in red; terminal triloop mutated in each hybrid exon is highlighted in yellow. The number of sequence-verified triloop mutations was 64 for each hybrid. *SMN2* sequences forming TSL1 and TSL2 hairpins are highlighted in gray in the wild-type (WT) sequence.

Figure S5 Triloop-closing base-pairs and MIR exon selection

Terminal triloops of the MIR hairpin are shown in parentheses in the context of GC and CG closing base pairs (top). RNA products are schematically shown to the left, percentage of cryptic splicing (%CS) at the bottom.

Figure S6

Triloop frequencies in previously determined RNA secondary structures inversely correlate with MIR exon inclusion levels of matching terminal triloops in *FGB* transcripts

(A) terminal loop mutants. (B) internal triloop mutants. Exon inclusion levels are means of duplicate transfections into COS7 cells.

Figure S7

Tetranucleotide frequencies in enhancers and silencers correlate with exon inclusion levels of corresponding terminal tetraloops

(A-C) MIR hairpin in the *FGB* minigene. (D-F) TSL1/N hairpin in the *SMN2* minigene. (G-I) TSL1/H hairpin with mutated loop-closing base pairs. Mutated nucleotides are shown in red. The 3' splice site is indicated by a red arrow. Enhancers and silencers are shown as green and red symbols, respectively. Octamer sequence in TSL1/H identical to the MIR hairpin in *FGB* is denoted by a red curve in panel G.

A ACUUCUAGCAAUACAGGAUUACAAUUAAGAGGACAAGAUCUGAAAAUCUCACAAACUAUAAAAUAAUAAAAGAAGCAGAAUUUUUAAGAUAAAAGAAACUGGUG B UUUUACAGAUGAGAAAACUGGGGCACAGAUAAAGCAACUUGCCCAAGGUCUCAUAGCU

Figure S8 Predicted optimal Tra2β binding sites in T and MIR exons

(A) T exon. (B) MIR exon (WT). Binding sites are shown in red, exons are highlighted in gray.

Figure S9 Correlation between exon inclusion and scores for predicted exonic splicing regulatory sequences of SR proteins

Scores were computed by ESEfinder $(v. 3.0)^2$ for each position of 13-mers that encompassed loops shown at the top. Triloops contributing most to positive or negative correlation are labelled.

FC	GB			IR	RE		
WT	MUT	TFRC	ACO2	ALAS2	SLC40A1	CDC42BPA	SLC11A2
A A C A C A C A C C C C C C C C C C C C	A G-C U-A G-A C C C C C C C C C C C C C C C C C C C	G U G C A C G - U A - U C C G - U - A G - C G - U - A U - A U - A U - A U - A U	G U G C A C U - A C U - A C U - A C U - A C U - A C U - A C - G U - A C - G U	GUGC ACUC-GGC UC-GCUC-AC UC-GCUC-AC GU-CUC-C	G U G U A C A - U C A - U C A - U C U - A G C - U - U - U - A G C - U - U - U - U - U - U - U - U - U -	G A G C G - C U - A G C U - A G C U - G U - G C - C A - U C A - U G C A - U G - C A - U A - U G - C A - U A - U G - C A - U	GUGUUGU ACCGACGACGACGGU

Figure S10 Similarities between *FGB* and IRE hairpins

IRE hairpins are shown for *TFRC* (transferrin receptor), *ACO2* (mitochondrial aconitase), *ALAS2* (erythroid aminolevulinic synthase), *SLC40A1* (ferroportin), *CDC42BPA* (CDC42-binding protein kinase α) and *SLC11A2* (divalent metal ion transporter). IRE secondary structure predictions are as published previously³.

SUPPLEMENTARY TABLES

	Splicing enhancers				Splicing silencers				Neutral				
	RESCUE-ESEs	PESEs	EIEs	Trusted NI ESEs	ESEseqs (QUEPASA)	FAS-ESSs (hex2)	FAS-ESSs (hex3)	PESSs	IIEs	Trusted NI ESSs	ESSseqs (QUEPASA)	NEUTRAL QUEPASA	ESRs
Number of elements/ nucleotides	238/ 1,428	2060/ 16,480	1131/ 6,786	673/ 4,038	1,182/ 7,092	176/ 1,056	103/ 618	1019/ 8,152	708/ 4,248	386/ 2.316	1,090/ 6,540	1,824/ 10,944	285/ 1,710
Reference	4	5	6	7	8	9	9	5	6	7	8	8	10
Terminal MIR triloop (n=64, HEK293)	0.42 (0.0005)	0.46 (0.0002)	0.31 (0.01)	0.49 (0.00004)	0.57 (<i>0.0000007</i>)	-0.24 (0.06)	-0.23 (0.06)	-0.29 (0.02)	-0.19 (0.16)	-0.33 (0.008)	-0.50 (<i>0.00003</i>)	-0.08 (NS)	0.04 (NS)
Terminal MIR triloop (n=64, HepG2)	0.50 (0.00003)	0.48 (0.00005)	0.32 (0.009)	0.53 (0.000008)	0.60 (<i>0.0000001</i>)	-0.29 (0.02)	-0.28 (0.02)	-0.31 (0.01)	-0.21 (0.09)	-0.36 (0.003)	-0.56 (<i>0.000002</i>)	-0.02 (NS)	0.06 (<i>NS</i>)
Terminal MIR triloop (n=64, HeLa)	0.26 (0.04)	0.29 (0.02)	0.18 (NS)	0.33 (0.008)	0.46 (<i>0.0001</i>)	-0.17 (NS)	-0.17 ()NS	-0.25 (0.05)	-0.09 (NS)	-0.26 (0.04)	-0.41 (<i>0.0007</i>)	-0.04 (NS)	-0.03 (NS)
Terminal MIR triloop (n=64, COS7)	0.45 (0.0002)	0.47 (0.00008)	0.29 (NS)	0.50 (0.00002)	0.60 (<i>0.0000002</i>)	-0.30 (0.01)	-0.31 (0.01)	-0.32 (0.009)	-0.20 (NS)	-0.38 (0.002)	-0.56 (<i>0.000001</i>)	0.03 (NS)	0.07 (NS)
Terminal MIR tetraloop (n=76, COS7)	0.36 (0.001)	0.53 (0.0000007)	0.36 (0.001)	0.53 (0.0000007)	0.57 (<i>0.0000008</i>)	-0.39 (0.0005)	-0.37 (0.0009)	-0.34 (0.003)	-0.30 (<i>0.008</i>)	-0.44 (0.00006)	-0.59 (0.0000002)	-0.02 (NS)	0.10 (NS)
Internal MIR triloop (n=57, COS7)	0.35 (0.007)	0.22 (NS)	0.26 (0.05)	0.28 (0.03)	0.21 (NS)	-0.14 (NS)	-0.14 (NS)	-0.09 (NS)	-0.15 (NS)	-0.15 (NS)	-0.14 (NS)	-0.07 (NS)	-0.19 (NS)
FGB-SMN2 hybrid (n=62, HEK293)	0.51 (0.00002)	0.48 (0.00007)	0.38 (0.002)	0.51 (0.00002)	0.57 (0.000001)	-0.36 (0.004)	-0.36 (0.004)	-0.30 (0.02)	-0.33 (0.01)	-0.40 (0.001)	-0.58 (0.0000007)	-0.04 (NS)	-0.02 (NS)
FGB-F9 hybrid (n=36, COS7)	0.44 (0.007)	0.48 (0.003)	0.39 (0.02)	0.52 (0.001)	0.42 (0.01)	-0.28 (NS)	-0.27 (NS)	-0.18 (NS)	-0.22 (NS)	-0.28 (NS)	-0.43 (0.009)	0.03 (NS)	0.13 (NS)
FGB-L1CAM hybrid (r1) (n=61, COS7)	0.43 (0.0005)	0.30 (0.02)	0.28 (0.03)	0.37 (0.003)	0.32 (0.01)	-0.14 (NS)	-0.14 (NS)	-0.10 (NS)	-0.03 (NS)	-0.14 (NS)	-0.30 (0.02)	-0.04 (NS)	0.09 (NS)
FGB-L1CAM hybrid (r2) (n=43, COS7)	0.57 (0.00007)	0.55 (0.0001)	0.47 (0.001)	0.60 (0.00002)	0.49 (0.0008)	-0.50 (0.0006)	-0.53 (0.0003)	-0.24 (NS)	-0.24 (NS)	-0.46 (0.002)	-0.64 (0.000004)	0.42 (0.006)	0.36 (0.02)
Native SMN2 (TSL1/N) (n=60, HEK293; tetra)	0.09 (NS)	0.34 (0.008)	0.16 (NS)	0.29 (0.03)	0.55 (0.000005)	-0.22 (NS)	-0.22 (NS)	-0.63 (7x10 ⁻⁸)	-0.25 (NS)	-0.54 (0.00001)	-0.58 (0.000001)	0.11 (NS)	0.25 (NS)
Native SMN2 (TSL2/N) (n=42, HEK 293; tri)	0.08 (NS)	0.21 (NS)	0.11 (NS)	0.22 (NS)	0.44 (0.004)	-0.29 (NS)	-0.30 (NS)	-0.45 (0.003)	-0.39 (0.01)	-0.47 (0.002)	-0.55 (0.0002)	0.19 (NS)	0.03 (NS)
Native SMN2 (TSL1/H) (n=68, HEK 293; tetra)	0.23 (NS)	0.25 (0.04)	0.37 (0.002)	0.30 (0.01)	0.45 (0.0001)	-0.65 (2x10 ⁻⁹)	-0.68 (10 ⁻¹⁰)	-0.27 (0.03)	-0.06 (NS)	-0.56 (8x10 ⁻⁷)	-0.73 (2x10 ⁻¹²)	0.52 (0.000006)	0.24 (0.05)
Native SMN2 (TSL2/H) (n=42, HEK 293; tri)	0.25 (NS)	0.39 (0.01)	0.25 (NS)	0.40 (0.009)	0.53 (0.0003)	-0.31 (0.05)	-0.26 (NS)	-0.57 (0.00007)	-0.27 (NS)	-0.58 (0.00005)	-0.60 (0.00003)	0.17 (NS)	0.25 (NS)

Table S1

Correlation matrix for exon inclusion levels of tri-/tetra-loop mutants and corresponding tri-/tetra-nucleotide frequencies in splicing enhancers and silencers

Abbreviations of auxiliary splicing elements (top) are explained in the Materials and Methods section and Supplementary references. Constructs, hairpins, number of mutants (n) and transfected cell lines are shown in the first column. Pearson correlation coefficients are followed by P values in parentheses. The most significant silencer and enhancer P values in each table row are highlighted in red.

Internal triloop	Number of extra H bonds	Internal triloop	Number of extra H bonds
AAA	0	GAA	5
AAC	3	GAC	8
AAG	0	GAG	5
AAU	2	GAU	7
ACA	3	GCA	3
ACC	3	GCC	3
ACG	3	GCG	3
ACU	3	GCU	3
AGA	0	GGA	5
AGC	5	GGC	8
AGG	0	GGG	5
AGU	2	GGU	7
AUA	0	GUA	0
AUC	3	GUC	6
AUG	0	GUG	0
AUU	2	GUU	2
CAA	3	UAA	2
CAC	3	UAC	3
CAG	3	UAG	2
CAU	3	UAU	2
CCA	3	UCA	2
CCC	3	UCC	3
CCG	3	UCG	2
CCU	3	UCU	2
CGA	3	UGA	2
CGC	5	UGC	5
CGG	3	UGG	2
CGU	3	UGU	2
CUA	3	UUA	2
CUC	3	UUC	3
CUG	3	UUG	2
CUU	3	UUU	2

Table S2

Predicted number of hydrogen bonds between each internal triloop and the antiparallel strand of the MIR hairpin

Primer	Sequence (5'-3')			
Cloning of the FGB minigene				
C-F (cloning, forward)	tat tat tgc caa gta ctg ttc			
C-R (cloning, reverse)	aat gta act att cca aca ccc			
S (sequencing)	tcg aag tgg aga gga cac			
Cloning of hybrid constructs				
SMN2-FGB-F	ggg cac aga tga agc aac ttg ccc aaa tta agg agt aag tct			
SMN2-FGB-R	ggg caa gtt gct tca tct gtg ccc ctt ttt gat ttt gtc taa aac			
F9-FGB-F	ggg cac aga tga agc aac ttg ccc aag cag tat gtt ggt aag c			
F9-FGB-R	ggg caa gtt gct tca tct gtg ccc caa aat tca gtc tat aaa			
L1CAM(r1)-FGB-F1	ggg cac aga tga agc aac ttg ccc aag tgc cgt gct ggt caa g			
L1CAM(r1)-FGB-R1	ggg caa gtt gct tca tct gtg ccc cag ctc agg gat tgc ctg			
L1CAM(r2)-FGB-F2	ggg cac aga tga agc aac ttg ccc tcc gcg gat aca atg taa g			
L1CAM(r2)-FGB-R2	ggg caa gtt gct tca tct gtg ccc cca ccg gcc gcc act tga			
Primers for triloop mutagenesis				
M (FGB)	tgg ggc aca gat gnn nca act tgc cca a			
SMN2-NNN	aat caa aaa ggg gca cag atg nnn caa ctt gcc caa att aag ga			
F9-NNN	act gaa ttt tgg ggc aca gat gnn nca act tgc cca agc agt atg tt			
<i>L1CAM(r1)</i> -NNN	aat ccc tga gct ggg gca cag atg nnn caa ctt gcc caa gtg ccg t			
L1CAM(r2)-NNN	cgg ccg gtg ggg gca cag atg nnn caa ctt gcc ctc cgc gga t			
Cloning of in vitro splicing reporter				
PY7-FGB-F-XhoI	att act cga gct tgt aag gca gat tca aa			
PY7-FGB-R-BamHI	ata ggg atc cga ctt aca gct atg aga cct			
pCR-PY7F-NheI	att agc tag ctt gtc gag gag gac a			
Cloning of expression plasmids				
Tra2β-F-BamHI	att agg atc cat gag cga cag cgg cga gca			
Tra2β-R- <i>Not</i> I	att agc ggc cgc tta ata gcg acg agg tga gt			
Tra2α-F- <i>Bam</i> HI	att agg atc cat gag tga tgt gga gga aaa c			
Tra2α-R-NotI	att age gge ege tte egt tat eaa tag egt ett			
Mutagenesis of expression plasmids				
Tra2β-F163A	gag gat ttg ccg ctg tat att ttg aa			
Tra2α-F163A	gag gat ttg ctg ctg tgt att ttg a			
Tra2β-F193A	atc aga gtt gat gcc tct ata aca aaa			
<u>Tra2α-Y193A</u>	gaa ttc ggg tgg atg ctt cta taa cca a			
Tra2β-R190A	ggg cgt agg atc gca gtt gat ttc tct			
Tra2α-R190A	ggt aga aga att gcg gtg gat tat tct			
Detection of spliced products in				
exogenous transcripts using R1-PC1				
PL1 PL2	act cac tat agg gag acc			
PL2				
SSO-AAG				
SSO-GAU				
SSO-5'stem				
SSO-3'stem				
555 5 5tom	T and ODs and and			

Table S3 Primers

Antisense oligoribonucleotide were 2'-O-methyl-modified at each sugar residue and uniformly labeled with phosphorothioates.

Triloop	Exon inclusion (%)	Tetraloop	Exon inclusion (%)
AAA	20.96	AGAG	99.91
AAC	40.65	GACG	97.80
AAG	67.99	GAUG	95.34
AAT	35.34	GAAG	92.89
ACA	22.47	GCCG	89.55
ACC	17.80	GGAG	89.50
ACG	52.29	GAGA	88.92
ACT	38.95	GAGC	88.04
AGA	14.48	ACUG	87.78
AGC	29.06	GCGA	79.27
AGG	4.52	ACCG	75.89
AGT	29.91	CCAG	74.00
ATA	10.46	UCUG	69.93
ATC	30.76	UCCG	69.41
ATG	33.29	CCUG	67.50
ATT	23.33	CGCG	67.20
CAA	12.67	GCUG	67.15
CAC	21.70	AACG	64.87
CAG	29.65	ACAG	64.72
CAT	32.00	GGGA	64.17
CCA	28.02	CGAG	62.77
CCC	0.46	GAGG	62.32
CCG	52.25	GAAA	61.13
CCT	0.49	GGAA	59.60
CGA	58.61	AUCG	58.27
CGC	41.85	GUCG	58.11
CGG	8.73	GUGA	57.26
CGT	55.20	CAAG	53.32
CTA	18.35	AGCG	47.83
CTC	0.47	UCAG	42.25
CTG	53.12	UGAG	37.43
CTT	30.48	CACG	37.38
GAA	62.53	GCAG	35.43
GAC	70.79	CGUG	33.45
GAG	72.92	AGGU	33.42
GAT	86.04	AAUG	32.88
GCA	11.39	AAGG	31.88
GCC	6.74	GCGG	30.45
GCG	30.31	AAAG	28.15
GCT	18 38	GCAA	26.94
GGA	46.98	UGCG	26.51
GGC	1 32	GUUG	25.73
GGG	0.92	ACGG	23.25
GGT	8.19	CUCU	22.81
GTA	7.91	AUCA	20.56
GTC	28.39	AUUG	20.30
GTG	22.85	GUGG	19.21
GTT	22.05	CUGG	18.90
ТАА	0.75	GGGU	17.68
TAC	6.20	UUCG	17.66
TAG	0.46	CCGG	16.85
TAT	7.64	CCCG	16.54
TCA	18 33	AUGG	16.36
TCC	0.67	AGUG	16.35
TCG	42.05	AGCU	14 41
TCT	18.7	UCGG	13.12
TGA	34.89	UACG	10.12
TGC	0.98	CAUG	9.86
TGG	3 45	CCCC	9 54
TGT	13 59	CUCG	9.44
TTA	2 44	UGUG	7.75
TTC	10.95		7.75
TTG	11.88	GGUG	7.65
TTT	7.15	CAGG	6.54
111	1.15	UAUG	4.1
		CUUG	3.63
	+	GGCC	3.05
		GUAA	1.54
			0.70
		LICCC	0.79
		UGGG	0.08
		UAAG	0.65
		GUAG	0.05
		CUAG	0.55
		6666	0.51
		AGGG	0.46
	1	UAGG	0.12

Table S4Mean exon inclusion levels of 64 terminal triloop and 76 tetraloop FGB mutantstransfected into COS7 cells.

SUPPLEMENTARY REFERENCES

1. Corvelo A, Hallegger M, Smith CW, Eyras E. Genome-wide association between branch point properties and alternative splicing. PLoS Comput Biol 2010; 6:e1001016.

2. Cartegni L, Wang J, Zhu Z, Zhang MQ, Krainer AR. ESEfinder: a web resource to identify exonic splicing enhancers. Nucleic Acids Res 2003; 31:3568-71.

3. Piccinelli P, Samuelsson T. Evolution of the iron-responsive element. RNA 2007; 13:952-66.

4. Fairbrother WG, Yeo GW, Yeh R, Goldstein P, Mawson M, Sharp PA, et al. RESCUE-ESE

identifies candidate exonic splicing enhancers in vertebrate exons. Nucleic Acids Res 2004; 32:W187-90.

5. Zhang XH, Chasin LA. Computational definition of sequence motifs governing constitutive exon splicing. Genes Dev 2004; 18:1241-50.

6. Zhang C, Li WH, Krainer AR, Zhang MQ. RNA landscape of evolution for optimal exon and intron discrimination. Proc Natl Acad Sci USA 2008; 105:5797-802.

7. Stadler MB, Shomron N, Yeo GW, Schneider A, Xiao X, Burge CB. Inference of splicing regulatory activities by sequence neighborhood analysis. PLoS Genet 2006; 2:e191.

8. Ke S, Shang S, Kalachikov SM, Morozova I, Yu L, Russo JJ, et al. Quantitative evaluation of all hexamers as exonic splicing elements. Genome Res 2011; 21:doi10.1101/gr.119628.110.

9. Wang Z, Rolish ME, Yeo G, Tung V, Mawson M, Burge CB. Systematic identification and analysis of exonic splicing silencers. Cell 2004; 119:831-45.

10. Goren A, Ram O, Amit M, Keren H, Lev-Maor G, Vig I, et al. Comparative analysis identifies exonic splicing regulatory sequences. The complex definition of enhancers and silencers. Mol Cell 2006; 22:769-81.