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Abstract
We propose new mechanisms that can be used by
a demand response aggregator to flexibly shift the
charging of electric vehicles (EVs) to times where
cheap but intermittent renewable energy is in high
supply. Here, it is important to consider the con-
straints and preferences of EV owners, while elimi-
nating the scope for strategic behaviour. To achieve
this, we propose, for the first time, a generic
class of incentive mechanisms for settings with
both varying marginal electricity costs and multi-
dimensional preferences. We show these are domi-
nant strategy incentive compatible, i.e., EV owners
are incentivised to report their constraints and pref-
erences truthfully. We also detail a specific instance
of this class, show that it achieves≈ 98% of the op-
timal in realistic scenarios and demonstrate how it
can be adapted to trade off efficiency with profit.

1 Introduction
The widespread adoption of electric vehicles (EVs) is often
seen as a vital step for mitigating climate change. Coupled
with a shift towards clean renewable electricity generation,
such as photovoltaics (PV) or wind energy, EVs promise to
dramatically reduce emissions [Royal Academy of Engineer-
ing, 2010]. However, these renewable energy sources are typ-
ically intermittent and depend heavily on weather conditions
[Bitar et al., 2011]. In particular, peaks in renewable energy
supply (e.g., at noon for PV) may not coincide with peaks in
demand (e.g., in the evening when EV owners plug in). Thus,
more expensive and polluting conventional methods of elec-
tricity generation have to be used at those peak times.

To address this disparity in supply and demand, it is pos-
sible to exploit the flexibility of EV owners and delay charg-
ing to periods of higher renewable supply [Ipakchi and Al-
buyeh, 2009; Clement-Nyns et al., 2011]. In particular, re-
cent work has suggested the introduction of demand response

services, whereby electricity consumers are offered finan-
cial incentives to shift their consumption [Albadi and El-
Saadany, 2007]. Often, this is facilitated by an aggregator,
which procures electricity from the wholesale electricity mar-
ket and then coordinates the consumption of individual end-
users [Gkatzikis et al., 2013]. This allows the aggregator to
achieve significant cost savings.

As the end-consumers (i.e., EV owners) in these sys-
tems are self-interested agents, which balance the inconve-
nience of shifting their consumption with the associated fi-
nancial incentives, there is considerable work on modelling
this setting using game theory [Mohsenian-Rad et al., 2010;
Saad et al., 2012; Bhattacharya et al., 2014]. Typically, co-
ordination is achieved using real-time pricing mechanisms,
which adjust electricity prices depending on demand and on
the marginal costs of generation [Conejo et al., 2010]. How-
ever, participating in such a mechanism imposes a significant
burden on EV owners, as they have to reason strategically
about future demand in order to decide when to charge.

To address this, recent work has looked at coordinat-
ing the charging of EVs using online mechanism design
[Parkes, 2007]. Specifically, Gerding et al. [2011] propose a
scheduling and pricing mechanism that aggregates the multi-
dimensional preferences of dynamically arriving EV owners
and that ensures that truthful reporting of these preferences
maximises each participant’s utility (i.e., the mechanism is
dominant strategy incentive compatible, or DSIC). This re-
moves the need for strategic behaviour, allowing the mecha-
nism to find a schedule with high efficiency. Other work uses
the notion of pre-commitment to delay more flexible EV own-
ers while retaining the DSIC property, albeit only for settings
with single-dimensional preferences [Stein et al., 2012], and
this is extended to deal with a demand response setting with
variable renewable generation in [Ströhle et al., 2014].

However, these mechanisms do not consider the marginal
cost of generation, which depends on the available supply of
renewable energy and varies with the amount of energy that
is consumed. Additionally, the mechanism in [Gerding et al.,



2011] is based on a simple greedy allocation and requires can-
celling some allocations. This leads to very inefficient alloca-
tion decisions, especially when marginal costs are considered.
To address these shortcomings, we make the following novel
contributions:

• We characterise, for the first time, a general class of
DSIC online mechanisms which deal with both marginal
generation costs and multi-dimensional preferences.

• We describe one particular instance from this class of
mechanisms which, in addition to being DSIC, is com-
putationally efficient, scaling to hundreds of agents.

• We empirically benchmark this mechanism and show
that it achieves near-optimal performance and signifi-
cantly outperforms the current state of the art, which
does not consider the marginal cost of generation.

2 Smart Charging System Model
We consider a smart EV charging system, which is imple-
mented by a demand response aggregator. This aggregator
acts as a broker between the EV owners and the electricity
market. Specifically, it procures electricity for EV charg-
ing from a mixture of local renewable generators, possibly
through long-term contracts, and the wholesale global elec-
tricity market. The aggregator also collects the constraints
and preferences of individual EV owners and then schedules
their charging to maximise social welfare and/or profit. This
may involve shifting the charging of flexible EV owners to
times where electricity is cheap or even curtailing consump-
tion when prices are too high.

2.1 EV Owner Model
We consider a model with discrete and possibly infinite time
steps t ∈ T . Each EV owner is represented by an agent, and
we use I = {1, . . . , n} to denote the set of all agents. At
every time step, an agent can charge a single unit of elec-
tricity (e.g., corresponding to 3 kWh), and we assume that
all EVs charge at the same rate. Each agent i ∈ I has a
limited availability for charging, which is given by an ar-
rival time ai ∈ T (i.e., earliest possible time for charging)
and a departure time di ∈ T (i.e., latest time for charg-
ing), with di ≥ ai. The agent’s valuations for charging are
given as a vector vi = {vi,1, vi,2, . . .}, where vi,k denotes
the marginal value for the kth unit. We assume these are
non-increasing, i.e., ∀k > j : vi,j ≥ vi,k, which is a nat-
ural assumption for plug-in hybrid EVs [Robu et al., 2013].
Given this, we use θi = {ai, di,vi} to summarise agent i’s
type. θ = {θ1, . . . , θn} denotes the types of all agents and
θ−i denotes the types of all agents except i. Furthermore, we
use I〈t〉 and θ〈t〉 to denote the agents and their types in the
market at or before time t.

From time ai, when agent i becomes available for charg-
ing (i.e., when the EV arrives at home and is plugged in),
he can report his type to the aggregator, e.g., using a com-
munication device that is integrated with his charging equip-
ment or via a smart phone app. Crucially, we assume that
the agent could strategically misreport his type, if this is in
his best interest. Thus, we use θ̂i = {âi, d̂i, v̂i} to denote

agent i’s report (here, âi is given implicitly by the time the
report is made). As is common in this domain, we assume
that agents cannot report an earlier arrival or later departure
time, i.e., âi ≥ ai and d̂i ≤ di. This is a natural assump-
tion in this domain, as a vehicle cannot be plugged into the
charging equipment when it is unavailable for charging, but it
is easy to delay plugging in, or to unplug early [Robu et al.,
2013].

2.2 Aggregator Mechanism
Given the reported types of EV agents, the aggregator now
uses a scheduling function πi,t(θ̂〈t〉), which keeps track of
how many units of electricity have been allocated to agent
i on or before time t. Importantly, as this is an online set-
ting, this function can only depend on the types that have
arrived on or before the current time t. Here, ∀t, âi ≤ t ≤
d̂i : πi,t(θ̂

〈t〉) − πi,t−1(θ̂〈t−1〉) ∈ {0, 1}, and this indicates
whether agent i charges at time t.

When charging EVs, the aggregator also has to procure the
necessary amount of electricity either from the global whole-
sale market or from local renewable sources. The cost for
this depends both on the time of charging and on the amount
of electricity that is needed. To model this, we use marginal
costs c(t,m), which is the marginal cost for charging themth
vehicle at time t. Here, we assume that supply is infinite, i.e.,
any number of vehicles can be charged concurrently, but the
associated marginal costs could be very high (reflecting, for
example, the need to power up additional generators). Typi-
cally, c(t,m+ 1) ≥ c(t,m), but this is not a requirement for
our mechanism. We also assume that costs are deterministic
and known in advance, but they could reflect expected costs
without changing the mechanisms presented here. Table 1
shows a part of the cost function used in the experiments.

In addition to deciding on a schedule, the mechanism also
determines a payment xi(θ̂〈d̂i〉) for each agent i, which has
to be paid on his departure. As before, this can only depend
on the reported types up to the current time. This payment,
along with the scheduling decisions, can be designed to en-
sure certain desirable properties in strategic settings, which
we briefly discuss in the following section.

Given this, the aggregator’s goal could be to maximise
social welfare, denoted by SW (θ), which is the sum of
marginal values minus the sum of marginal costs. Formally,
let Mπ

t denote the number of units allocated at time t, then:

SW (θ̂) =
∑
i∈I
∑πi,d̂i

(θ̂)

j=1 v̂i,j −
∑
t∈T

∑Mπ
t

m=1 c(t,m). An
alternative goal is to maximise profit, which is the total
payments received minus the total costs:

∑
i∈I xi(θ̂

〈d̂i〉) −∑
t∈T

∑Mπ
t

m=1 c(t,m). We consider both goals in Section 4.

2.3 Strategic Behaviour
We assume that EV owners are self-interested, and so we
model them as rational utility-maximisers. Specifically, the
utility of an agent i with type θi and who reports θ̂i (while
all other agents report θ̂−i) is given by Ui({θ̂−i, θ̂i}, θi) =∑πi,d̂i

({θ̂〈d̂i〉−i ,θ̂i})
j=1 vi,j − xi({θ̂〈d̂i〉−i , θ̂i}).



As a result, we must assume that agents will misreport their
types if this increases their own utility. To address this, we
aim to design a scheduling function πi,t and payment xi that
ensure the mechanism is dominant strategy incentive compat-
ible (DSIC), i.e., agents maximise their utility when reporting
their own types truthfully. Formally, we want to ensure that
∀θi, θ̂i, θ̂−i : Ui({θ̂−i, θi}, θi) ≥ Ui({θ̂−i, θ̂i}, θi).

3 Proposed Mechanism
In what follows we first introduce a generic mechanism and
then show that it satisfies the DSIC property in our setting.
The mechanism is generic, as it can be used with a variety
of pricing rules and (possibly sub-optimal) scheduling algo-
rithms. To achieve DSIC, it simply imposes certain con-
straints on these rules and algorithms. We then introduce a
specific pricing rule and scheduling heuristic that satisfy these
constraints and which are used in the experiments.

3.1 Generic Mechanism
Unlike standard mechanism design approaches, which define
a (weakly) monotonic allocation and then use critical value
payments to ensure DSIC [Bikhchandani et al., 2006], we
take a different approach. First, for each agent i, a mini-
mum price for charging at every time step t is determined,
using a pricing function f . These prices, combined with an
agent’s valuation function and his availability in the market,
determine the maximum number of units, li, which need to
be allocated to the agent by his departure time. Importantly,
prices can increase over time if more agents (with potentially
higher valuations) enter the market later and so the allocation
to agent i can decrease.

However, this has to be done carefully. Allocations have
to remain feasible by an agent’s departure time, agents with a
longer availability cannot be penalised through these revised
allocations, and, to avoid cancellations, the mechanism must
never charge more units than an agent would like, given the
final prices. To ensure these properties, we derive general
conditions on prices and allocations. The full process, which
is performed for each agent i, is detailed below.

Calculating the minimum marginal price vector We start
by computing the minimum marginal payment vector at time
t, pi〈t〉, where p〈t〉i,j is the (minimum) payment for the jth unit
of electricity. To this end, we first determine the prices of
charging at specific times in the market. We distinguish be-
tween past units, for which the prices are fixed, and future
units, for which the prices can still increase. Let f(θ̂〈t〉−i , t

′)
denote a function which determines the price of a unit of elec-
tricity at any time t′ ≥ t in the future. For brevity we use
f
〈t〉
i,t′ = f(θ̂

〈t〉
−i , t

′). We discuss a specific example function in
Section 3.3, but the mechanism can support any function as
long as it does not depend on θi and it satisfies:

∀t, t′ ≥ t+ 1 : f
〈t+1〉
i,t′ ≥ f 〈t〉i,t′ (1)

That is, prices at specific times in the future t′ > t can only in-
crease or remain unchanged as the actual time, t, approaches

these time points.1 A trivial example satisfying this constraint
is where prices are always zero. However, in that case the ag-
gregator will make a loss if costs are strictly positive.

Once we reach a certain time step, the prices at that time
are fixed and no longer change. Formally, if t is the current
time step, and the current price is given by f 〈t〉i,t , then:

∀t, t′ > t : f
〈t′〉
i,t = f

〈t〉
i,t (2)

Given this, we can compute a price vector at time t as follows:

ηi
〈t〉 =

{
f
〈âi〉
i,âi

, f
〈âi+1〉
i,âi+1 , . . . , f

〈t〉
i,t , f

〈t〉
i,t+1, . . . , f

〈t〉
i,d̂i

}
(3)

Note that this vector consists of two parts: the prices from
the agent’s reported arrival, âi, up to the current time, t, are
fixed, whereas the remaining prices are future prices and so
they can still increase.

Now, the price vector ηi〈t〉 determines the prices at differ-
ent time steps, but the agent is not interested in when it is
allocated the units but would simply like the cheapest ones
within the period that he is available in the market. To ensure
that the agent always gets the best price (which is not nec-
essarily the price at the time he is charged by the scheduling
mechanism), we sort the prices in ascending order to obtain
the minimum marginal payment vector:

pi
〈t〉 = incr(ηi

〈t〉), (4)

where incr(.) is an operator which arranges the input vector
in ascending order.

Determining the scheduling constraints We now com-
pute the number of units to be assigned to agent i by his
reported departure, d̂i, given the current prices, pi〈t〉, and
the agent’s valuation vi, such that his utility is maximised.
Specifically:

li
〈t〉 = argmax

0≤k≤d̂i−âi+1

∑k

j=1

(
v̂i,j − p〈t〉i,j

)
(5)

Note that d̂i− âi+1 is an upper bound on the number of units
which can be allocated within the time that the agent is avail-
able in the market. As a result, even if prices are zero, the
mechanism never allocates more than is physically possible
(recall that we assume unlimited supply). Henceforth we re-
fer to li〈t〉 as the temporarily assigned number of units, which
is imposed on the scheduling algorithm (as detailed below).

The temporarily assigned number of units includes possi-
ble future allocations (up to the agent’s reported deadline).
Therefore, if prices increase, the number of assigned units
could decrease over time. In order to prevent the mechanism
from over-allocating units, which then later would need to be
cancelled, we impose an additional constraint on the number
of units which the scheduler can allocate up to the current
time. This constraint uses only the fixed prices from the price
vector. Specifically, let:

η′
i
〈t〉

=
{
f
〈âi〉
i,âi

, f
〈âi+1〉
i,âi+1 , . . . , f

〈t〉
i,t

}
1This is not a major restriction as typically new agents entering

the market in the future will push up prices.



denote the vector of fixed prices. Similarly, p′i
〈t〉

=

incr(η′
i
〈t〉
) and l′i

〈t〉 is given by:

l′i
〈t〉

= argmax
0≤k≤t−âi+1

∑k

j=1

(
v̂i,j − p′

〈t〉
i,j

)
(6)

Note that the upper bound of l′i is t− âi +1. We refer to l′i
〈t〉

as the upper limit allocation for agent i at time t.

Scheduling algorithm We now proceed with the actual al-
location of units to agents. As with the prices, we consider
both the past allocations as well as future allocations. Let
π
〈t〉
i,t′ = πi(θ

〈t〉, t′) denote a scheduling algorithm which spec-
ifies the total number of units allocated to agent i by time
t′ when the current time is t. Note that, since we have that
only a single unit can be allocated per time step, necessarily
∀t′, t : π

〈t〉
i,t′+1 − π

〈t〉
i,t′ ≤ 1. Note that this is an extension

of the notation introduced in Section 2.2, which allows the
scheduling algorithm to make (potentially temporary) alloca-
tion decisions for future time t′ > t, given the information
available at time t. Specifically, π〈t〉i,t = πi,t. Naturally, the
scheduling algorithm cannot change past allocations and so:

∀t, t′ > t : π
〈t′〉
i,t = π

〈t〉
i,t = πi,t (7)

In terms of future allocations, any allocation function can be
used, as long as it meets the following constraints at every t:

π
〈t〉
i,d̂i

= li
〈t〉 (8)

That is, by the reported deadline agent i needs to be able to
receive its temporarily assigned number of units. Note that
this future allocation can still decrease over time (when prices
increase), but it should be possible to allocate the necessary
number of units if prices and corresponding allocations do not
change. At the same time, it needs to meet the constraint:

π
〈t〉
i,t ≤ l

′〈t〉
i (9)

That is, the scheduler cannot assign more than the upper limit
allocation by the current time. In Section 3.2 we show that,
provided that the pricing conditions are met, these constraints
can always be satisfied.

Payment Finally, the payment, which is computed on the
(reported) departure of agent i, is given by:

xi(θ̂
〈d̂i〉) =

∑π
〈d̂i〉
i,d̂i

κ=1
p
〈d̂i〉
i,κ (10)

3.2 Theoretical Properties
Before we show that the proposed class of mechanisms is al-
ways DSIC, we first show that Eqs. 8 and 9 can always be
satisfied using a feasible schedule.

Definition 1 (Feasible schedule). A schedule is feasible if ∀t :
π
〈t〉
i,t − π

〈t−1〉
i,t−1 ∈ {0, 1}, i.e., we assign at most one unit per

time step, and we do not reduce the allocations.

Lemma 1. Given unlimited supply and given that v̂i, i ∈ I
are marginally non-increasing, if Eqs. 8 and 9 are satisfied
at time t − 1, there always exists a feasible schedule which
satisfies the equations at time t.

Proof. First we show π
〈t〉
i,t − π

〈t−1〉
i,t−1 ≥ 0, i.e., the constraints

never lead to a decrease in actual allocations. Because a new
price is added to the fixed price vector at each time step,
we have that l′i

〈t〉 ≥ l′i
〈t−1〉, i.e., the upper limit allocation

can only increase. At the same time, because future prices
increase, we have that li〈t〉 ≤ li

〈t−1〉, i.e., the temporar-
ily assigned number of units can decrease. However, this
can never go below the upper limit allocations. In particu-
lar: li〈t〉 ≥ l′i

〈t−1〉. To see this, note that all fixed prices
in p′i

〈t−1〉 are also in pi〈t〉. Therefore, with more (possibly
lower) prices to choose from, the allocation which maximises
the agent’s utility, Eq. 5, is at least as high Eq. 6.

To ensure that π〈t〉i,t − π
〈t−1〉
i,t−1 ≤ 1, we consider two cases.

Case 1: π〈t−1〉i,t−1 < l′i
〈t′〉. In this case, given that the con-

straints are satisfied at t − 1, because li〈t〉 ≤ li
〈t−1〉 we can

always satisfy both constraints at time t by charging at time
t, i.e., by setting π〈t〉i,t = π

〈t−1〉
i,t−1 + 1.

Case 2: π〈t−1〉i,t−1 = l′i
〈t′〉. In this case, in order to satisfy

Eq. 9 we cannot charge at time t. We have to show that we
can still satisfy Eq. 8. Note that such a schedule is feasible
as long as li〈t〉 − l′i

〈t〉 ≤ d̂i − t, i.e., the total number of
units to be allocated by the deadline is at most the number
of remaining time steps (since we can only allocate at most
one unit per time step). Note that pi〈t〉 contains all the prices
in p′i

〈t〉 plus exactly d̂i − t additional values. In addition,
the differences in the upper bounds is also exactly d̂i − t (in
particular, note that p′i

〈d̂i〉 = pi
〈d̂i〉. Therefore, provided that

the marginal valuations are non-increasing, we have that the
difference between li〈t〉 and l′i

〈t〉 is at most d̂i − t.2

Lemma 2. There always exists a feasible schedule where
Constraints 8 and 9 can be satisfied on arrival.

Proof. This can be achieved by setting π〈âi〉i,âi
= l′i

〈âi〉.

The above results not only imply that a feasible schedule
always exists but, more importantly, any existing scheduling
algorithm can be adapted by simply introducing the neces-
sary constraints at each time step, which automatically en-
sures that the constraints can be satisfied in the next time step.
We now show that the constraints always lead to the mecha-
nism being DSIC.

Theorem 1. Given limited misreports and non-increasing
marginal valuations v̂i of agents i ∈ I , any mechanism with

2The assumption that marginal valuations are non-increasing is
important here. Suppose otherwise, e.g., vi = {0, 0, 10}, âi =

1, d̂i = 3, p′
i
〈2〉

= {1, 1} and pi
〈2〉 = {1, 1, 1}, we have that

l′i
〈2〉

= 0 and li〈2〉 = 3, resulting in an infeasible schedule since
π
〈2〉
i,3 − π

〈2〉
i,2 = 3− 0 = 3.



pricing function f(θ̂
〈t〉
−i , t

′) satisfying Eq. 1 and scheduling
algorithm satisfying Eq. 8 is DSIC.

Proof. (1) We show that, regardless of the reported arrival
and departure, it is a dominant strategy to truthfully report vi.
(2) We then show that, given vi = v̂i, there is no incentive to
report a later arrival or an earlier departure.

(1) Given that pricing function f does not depend on θi, the
marginal prices on departure of agent i, pi〈d̂i〉, only depend
on âi and d̂i, and not on v̂i. Therefore the agent cannot in-
fluence the prices by misreporting vi but only the allocation.
For a given allocation πi, and payments according to Eq. 10,

the utility of agent i is given by:
∑πi
j=1

(
vi,j − p〈d̂i〉i,j

)
. Due

to Constraint 8, the allocation on (reported) departure max-
imises Eq. 5, which corresponds to the agent’s utility when
vi = v̂i. Therefore, reporting vi truthfully is optimal.

(2) Suppose that the agent reports a later arrival, âi > ai.
According to Eq. 1 we have that f 〈âi〉i,t ≥ f

〈ai〉
i,t , which

means that prices for the same corresponding time period

in price vector η〈d̂i〉i can increase (and never decrease). In

addition, η〈d̂i〉i contains âi − ai fewer prices. Because the
marginal payment vector pi〈d̂i〉 is in ascending order, the pay-
ment can only increase by having fewer prices. Now sup-

pose that d̂i < di. Let η〈d̂i〉i = {f 〈âi〉i,âi
, . . . , f

〈d̂i〉
i,d̂i
} denote

the final price vector when misreporting, and let η〈di〉i ={
f
〈âi〉
i,âi

, . . . , f
〈d̂i〉
i,d̂i

, f
〈d̂i+1〉
i,d̂i+1

, . . . , f
〈di〉
i,di

}
denote the final prices

using the agent’s true departure. Note that, in both cases, the
first d̂i− âi+1 prices are identical. Therefore, by misreport-
ing an earlier departure, the price vector only contains fewer
prices. This means marginal payments can only increase.

3.3 Specific Mechanism
Although our approach guarantees DSIC for a range of pric-
ing functions and scheduling algorithms, a poor choice can
lead to poor efficiency and a loss for the aggregator if it can-
not recoup the incurred marginal costs from the suppliers (for-
mally, our class of mechanisms does not guarantee weak bud-
get balance). In this section we demonstrate our approach for
a specific pricing function and scheduling algorithm, which
we then evaluate empirically in Section 4.

Pricing Function In this section we instantiate the pricing
function f(θ̂〈t〉−i , t

′). Note that different prices need to be cal-
culated for each agent i ∈ I , and we cannot use agent i’s type
when doing so. In addition we need to calculate prices for
each future time point t′, where t ≤ t′ ≤ d̂i. To reduce the
computational costs, we use a heuristic approach.

In detail, we run a virtual version of the market without
agent i and with all known agents θ̂〈t〉−i , and we allocate the
units to those agents in a greedy manner as follows.3 We take

3The market needs to be run from before the first arrival, e.g.,
when the market first started or from the beginning of each day (de-
noted by t1).

the agent with the highest marginal value, and allocate this
agent the unit with the lowest available marginal cost given
the agent’s arrival and departure time, and provided that the
marginal value is equal to or higher than the marginal cost
(otherwise no match is made). We remove the matched values
and costs from the market, and we repeat this process until no
more matches can be made. Let SW (θ̂

〈t〉
−i ) denote the social

welfare of the resulting allocation.
Now, to compute the prices at time t′, we allocate a single

unit at time t′ to agent i and we rerun the market as before.
Let SWt′(θ̂

〈t〉
−i ) denote the social welfare of the resulting allo-

cation, excluding agent i’s value for the unit. Given this, the
pricing function for agent i is defined as follows.

If t = t1, f(θ̂〈t〉−i , t
′) = SW (θ̂

〈t〉
−i )−SWt′(θ̂

〈t〉
−i ). Otherwise:

f(θ̂
〈t〉
−i , t

′) = max
{
SW (θ̂

〈t〉
−i )− SWt′(θ̂

〈t〉
−i ), f

〈t−1〉
i,t′

}
Intuitively, the payment is the externality imposed on the sys-
tem excluding agent i if a unit at time t′ is allocated to i.4
Note that the max operator ensures that Eq. 1 always holds.

Scheduling Algorithm To determine the prices we used a
fast heuristic scheduling algorithm since this needs to be re-
peated for each agent and future time step. Also, for the
prices we did not need to consider the scheduling constraints.
In contrast, the scheduling algorithm for the actual alloca-
tion needs to be computed only once at every current time
step. Hence, for the allocation we optimise the social wel-
fare considering all agents, subject to Eqs. 8 and 9 for each
agent. The optimization is executed by solving a Mixed Inte-
ger Program (MIP) using the Gurobi5 solver with a tolerance
of 10−4. Note that, although this algorithm is near-optimal,
this is not a requirement for the mechanism to satisfy DSIC.

4 Numerical Analysis
To quantify the performance of our proposed mechanism in
realistic demand response settings, we now evaluate it numer-
ically, comparing it to existing state-of-the-art mechanisms.

4.1 Experimental Setup
We determine the hourly marginal costs c(t,m) of a 24-hour
period of a typical day as follows. For electricity prices we
use the data from the Japan Electric Power Exchange6 on the
5th of June, 2013. To determine the costs, in addition we use
the typical energy consumption of Japanese households on a
fine June day7. Taking regular household consumption into
account is important, since EV charging will use energy on
top of what is normally consumed. Furthermore, we assume
that the charging rate of all agents is 3kW, and so a single unit

4The intuition is similar to the well-known Vickrey-Clarke-
Groves mechanism for static settings, but our approach does not as-
sume optimality and only considers a single unit at a time.

5http://www.gurobi.com/
6http://www.jepx.org/english/index.html
7We use data from the Architectural Institute of Japan, see

http://tkkankyo.eng.niigata-u.ac.jp/HP/HP
/database/index.htm.



Table 1: A part of the marginal cost table [JPY]
time(t)

13 14 15 16
1 0.1 0.1 42.7 66.1

number of 2 8.2 0.2 60.1 66.2
agents (m) 3 57.9 0.3 60.9 66.3

· · · · · ·

is 3kWh. Details are omitted due to space constraints but a
small sample is shown in Table 1. Here, c(13, 1) = 0.1 is
the cost in JPY for charging a single vehicle at time step 13.
The marginal cost for the second vehicle is c(13, 2) = 8.2,
resulting in a total cost of 8.3 JPY for charging both.

To obtain the distribution of the agents’ arrival and depar-
ture times, we use the results from a questionnaire of 340 citi-
zens in Nagoya City in Japan, which asked about daily move-
ments. From this questionnaire we use the answers regard-
ing when and for how long cars were parked at home during
weekdays. For the simulations, each agent’s arrival-departure
pair is randomly selected from the 340 samples. Finally, the
remaining capacity of each agent is randomly chosen between
1 and 6 units of charge. For each unit, the agent’s marginal
valuation is uniformly drawn from 0 to 100 JPY and these are
arranged in descending order.

4.2 Benchmark Mechanisms
We compare the performance of the mechanism from Sec-
tion 3.3, called Proposed, with those from the literature.

Greedy optimally allocates the available electricity in each
time step without considering future time steps. As noted in
[Gerding et al., 2011], this mechanism violates weak mono-
tonicity and therefore is not truthful in settings with multi-
dimensional valuations (even when costs are zero).

Greedy with cancellation on departure (GCOD) works
like Greedy except that allocations are sometimes cancelled
on departure as specified in [Gerding et al., 2011] to ensure
DSIC.

First Come First Serve (FCFS) optimally schedules each
agent in order of their arrival. If multiple agents arrive at the
same time, they are scheduled in order of their ID, which is
assigned to all agents beforehand. This mechanism is DSIC
when the payment is set equal to the incurred marginal costs
(but the aggregator makes no profit).

Myopically Optimal (MO) optimises social welfare using
all information currently available. The allocations are re-
calculated whenever a new agent enters the market. This is
the same scheduling mechanism used in Section 3.3 without
considering the constraints, and is not DSIC.

Optimal uses the same algorithm as MO but assumes per-
fect foresight of the agents arriving in the future.

4.3 Results
We first compare the efficiency, which is the obtained social
welfare as a proportion of the Optimal. To this end, we vary
the number of agents from 10 to 300, and for each setting we
run 1000 trials. Each trial simulates a 48-hour period, and
the cost table is assumed to be the same for these two days.
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Figure 1: Comparing efficiency of all mechanisms (left) and
top 3 mechanisms only (right). 95% confidence intervals are
smaller than 0.05% of the efficiency and therefore omitted.
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Figure 2: Trade off between efficiency and aggregator profit.

The results in Figure 1 show that Proposed is very close to
Optimal. As expected, MO outperforms Proposed since the
former is not bound by the constraints. However, Proposed
outperforms all other DSIC mechanisms, especially GCOD
and even Greedy. GCOD performs especially poorly due to
the costs which are still incurred even if the allocation is can-
celled (and so the electricity is unused). Note that the effi-
ciency of the top three mechanisms first decreases when the
number of agents is less than 30 agents, and then increases.
This is because, when there are few agents, scheduling is rel-
atively easy since there is little competition. When there are
a lot of agents, many of them will have similar high marginal
values and so it does not matter too much which of them are
scheduled. The fact that this happens around 30 is mainly due
to the cost table used.

Surprisingly, the simple mechanism FCFS also performs
very well in terms of efficiency, whilst also being DSIC. How-
ever, as mentioned in Section 4.2, no profit is made by the
aggregator since the payment is equal to the marginal costs.

A simple way for the aggregator to increase profits of any
mechanism (whilst maintaining DSIC) is to artificially in-
crease costs by a constant, and pocket the difference. How-
ever, as with reserve prices, this lowers efficiency. In this part,
we compare the mechanisms Proposed and FCFS in terms of
their trade off between profit and efficiency. Specifically, we
multiply the costs used in the pricing rule by a constant, α.

To this end, Figure 2 shows the relation between efficiency



and aggregator profit for different values of α, where α is
varied from 1.0 to 2.5. The number of agents is set to 200,
and each point shows the average over 1000 trials. Here, ef-
ficiency is w.r.t. the Optimal with original costs. The top left
is where α = 1. As we increase α, as expected, initially the
profit increases for both mechanisms, but eventually the profit
decreases (since the efficiency becomes very low). Compar-
ing the two mechanisms, we can see that the Proposed mecha-
nism is able to obtain≈ 44% higher profits than FCFS whilst
having the same efficiency. Conversely, for the same level of
profit, the efficiency of Proposed is considerably higher.

Finally, we briefly comment on the computational
tractability. Even though Proposed requires more computa-
tion than the other approaches, it is scalable to hundreds of
agents. For example, a 48-hour trial with 300 agents takes 52
seconds on average on an Intel(R)Core(TM)i7-4770K CPU
@ 3.50GHz using a single core.

5 Conclusions
We have proposed a novel approach for designing online
mechanisms for multi-dimensional valuations and marginal
costs. The approach can be used in combination with any
pricing and allocation function, subject to a set of constraints
being met. We have shown that the constraints are always
feasible in settings with marginally non-increasing valuations
and that the resulting mechanisms are DSIC. We have em-
pirically compared an instantiation and have shown that, in a
realistic setting with varying marginal costs, our mechanism
outperforms existing DSIC mechanisms in terms of efficiency
and profit. It is also computationally efficient and scales to
hundreds of agents.

In future, we plan to extend the mechanisms to allow for
multiple units to be allocated to an agent in a single time step
(to capture settings where EVs can be charged at different
rates). Moreover, we will consider mechanisms for settings
where the marginal valuations of agents can be increasing.
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