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IMPROVING TRAFFIC MOVEMENT 

IN AN URBAN ENVIRONMENT 

by Andrew Hamilton 

This research seeks to investigate how additional data sources can be used within traffic control 

systems to reduce average delay and improve reliability of journey time. Current state of the art 

urban traffic control systems do not take full advantage of the improved granularity of data 

available as they use traditional, static detection methods such as inductive loops, infra-red and 

radar. 

Therefore further research was required to fully understand what new data sources are available, 

how they could be used and if there are any potential benefits for traffic control systems. The 

transport industry is moving into an era of data abundance as more people use smart phones, 

satellite navigation systems, Wi-Fi and Bluetooth devices. These richer data sources could provide 

additional information (vehicle location, speed and destination data) but it is currently unknown 

as to whether they can improve the performance of the road network. 

Much of the research in this thesis has been published through conference and journal papers. A 

novel traffic control algorithm called DEMA was developed during this research, which can 

significantly outperform MOVA (a leading industrial control algorithm) through reducing average 

delay by up to 34% when additional data sources are incorporated into the decision process. 

DEMA uses vehicle location, speed and turning intention information to select the most suitable 

stage for minimising delay.  

Also a study was conducted to determine if turning intention information could be predicted from 

outside of a vehicle, which is a previously un-researched area. The results demonstrated that 

people could correctly predict turning intention with a 70% median success rate when the 

vehicles were 50 metres from the junction.   

The outcomes of this research could have a significant impact on the future of urban traffic 

control systems as new data sources become more readily available in the transport industry. 
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Chapter 1 

1 
 

Chapter 1: Introduction 

1.1 Research Overview – The Problem 

There is an ever growing issue of congestion within urban environments around the world as the 

number of vehicle miles has increased dramatically over the past century. Building new roads is 

not a viable solution for most cities due to environmental and political concerns along with land 

restrictions (Wang, 2009 and Baskar et al., 2011). Throughout the past 60 years vehicle miles have 

increased by approximately 1000% in the UK (see Figure 1) with a similar trend globally; for 

example, vehicle miles travelled has grown by nearly 500% since 1940 in the USA (US Census 

Bureau, 2005). With evermore vehicles on the road (DfT, 2011a) the need for controlling the flow 

in an urban environment has become increasingly important to maximise safety and capacity, and 

minimise both the time loss and environmental impacts of congestion. 

 

Figure 1: A graph showing the vehicle miles driven in the UK from 1949 – 2012. Adapted from: DfT, 2013a 

Traffic signals have been used to help control the road network since the beginning of the 20th 

century (Sessions, 1971). These control systems have evolved over time but technology is 

advancing rapidly and existing Urban Traffic Control (UTC) systems have not kept pace (Chapter 2 

will provide more detail). The current generation of UTC systems are either static (fixed time 

signals) or reactive to traffic conditions through sensors on the road (inductive loops, radar, infra-
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red); however there is great potential to move towards a more proactive control system with 

accurate forecasting of events using new data sources (Zhu et al., 2010).  

Currently the most common traffic sensors are point detectors, such as inductive loops embedded 

in the road (Box and Waterson, 2010) but they only provide a brief snapshot of when a vehicle is 

present and therefore determining the state of the road can be quite challenging. However as 

new technologies seep into everyday life, new data sources become available which could provide 

useful information for assessing the state of the road network. Over 50% of the US and UK 

population have smartphones which are capable of sharing Bluetooth, Wi-Fi, cellular and GPS 

data (NewMedia, 2013 and Forbes, 2013). There were 7.5 million satellite navigation (sat-nav) 

systems in the UK in 2010 (BBC, 2010) and the use of sat-nav systems is growing so quickly that 

they are expected to be installed in most vehicles by 2022 (Oxford Economics, 2012). These new 

data sources can provide a continuous data stream of vehicle location, speed and potentially 

routing information, which could be used to control the road network differently.  
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1.2 Motivations for the Study 

Siemens is the UK market leader in traffic solutions and they sponsored this project, based on a 

good history with the University of Southampton, to find potential solutions on how to utilise the 

abundance of new data sources that are available. If traffic flow can be improved through new 

signal control techniques then there are many potential benefits in terms of reduced travel time, 

lower emissions, less wasted time in congestion and a commercial benefit to Siemens of an 

improved UTC product. This section will investigate some of the key motives for this research 

being carried out. 

 

1.2.1 Cost Reduction 

A major incentive for researching this area is the potential cost savings to road users and 

governments. Eddington (2006) estimated that congestion costs £22 billion in lost time every year 

within England, and Bloomberg (2011) stated that congestion costs the USA approximately £72 

billion in lost time each year. Therefore there is a significant saving to be made even with a 

relatively small reduction in travel time and delay. However just maintaining the current level of 

congestion is not a straightforward task, CVIS (2010) suggested there is already a very high 

pressure on London’s road network but it is expected to increase by 50% by 2025 so the 

engineering challenge is huge. 

A study suggested that adaptive traffic lights (based on wireless communication devices within 

vehicles) can provide much greater flexibility than current UTC systems as they have access to 

more detailed data sources (Gradinescu et al., 2007). This will also result in significantly lower 

costs due to cheaper detectors which could be in-vehicle devices such as smartphones, Vehicle to 

Vehicle/Infrastructure (V2X), satellite navigation systems and Bluetooth sensors. 

 

1.2.2 Increased Pressure on the Road Network 

As highlighted in Section ‎1.1, vehicle miles travelled has been steadily increasing over the past 60 

years and this is likely to continue as people enjoy much more freedom than ever before in their 

personal mobility.  Research suggests that car-ownership and overall vehicular travel are very 

likely to grow rapidly into the future. In 1950 there were approximately 1.75 trillion passenger-

miles (tpm) travelled, in 2000 there were 20 tpm, whereas it is anticipated that there will be 64 

tpm by 2050 – with high-speed modes and car travel accounting for 80% of this total (Moriarty 
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and Honnery, 2008). This is a huge spatial, environmental and economic challenge for the current 

road network where new approaches are required to manage the ever growing volume of traffic. 

 

1.2.3 Environmental Pressures 

A recent policy change which should have a significant impact on UTC is the European Union 2011 

white paper which is advocating zero carbon emissions from transport in urban centres by 2050 

(European Commission, 2011). This may provide the beginnings of the policy impetus necessary to 

begin the process of change within the transport industry. A potential change in the way UTC 

systems make decisions could be to minimise carbon emissions at every junction; which would be 

a significant change in ethos and require additional data sources to determine priority. 

 

1.2.4 New Technology 

There is a significant amount of research being carried out into Intelligent Transport Systems (ITS) 

and UTC systems because of the constraints on building new roads and the potential benefits 

associated with improving the efficiency of the network. Existing UTC systems do not fully 

incorporate new data sources which are arising from the increased use of smartphones, satellite 

navigation systems, Bluetooth devices and V2V systems (Section ‎2.3 will provide more 

information on existing UTC systems). 

CVIS (a European project) investigated the benefits of communication between vehicles and the 

surrounding infrastructure. CVIS (2010) have suggested that there could be a 15% reduction in 

travel times by using a modern architecture which enables vehicles to share information, such as 

the level of congestion and if there are any accidents or dangers on the road. Drivers in this 

project received feedback from the system to alter their driving style so that the efficiency of the 

road could be maximised. 

ABI Research (2013b) have suggested that by 2027, there will be a 61.8% penetration rate of 

Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) technology in new vehicles due to 12 

major automotive manufacturers agreeing to install Dedicated Short Range Communication 

(DSRC) devices in all new vehicles. This highlights the potential for change in architecture and 

ability to communicate with many drivers directly, giving route guidance, traffic information and 

incident detection which will inevitably have an impact on network performance. 
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There are many other potential benefits for using Vehicle to Vehicle or Vehicle to Infrastructure 

(V2X) systems; if vehicles are able to communicate directly with each other then collision 

avoidance systems could be developed to warn other vehicles of potential incidents. It is 

anticipated that 79% of accidents could be avoided if V2X systems are used (Green Car Congress, 

2011). ITS technologies are often researched to improve the safety record of the road network, 

unfortunately there were 1.24 million reported traffic fatalities in 2010 throughout the world 

(WHO, 2011) and 90% of road accidents are caused by some form of human error (WHO, 2004). 

Any traffic control system that would be developed from this research must be mindful of how it 

could impact road safety and if possible, reduce incidents.  

However in order to develop new systems effectively, then additional data sources must be 

gathered to have a better understanding of the current network. Without location, speed and 

routing information then it would be very challenging to develop a safety system which could 

alert drivers of impending incidents. Therefore, further research must be carried out to determine 

how these data streams can be obtained and what the benefits are of using such information. 

The number of connected devices (to the internet) is rapidly growing, worldwide there are 10 

billion devices capable of wirelessly connecting to the internet and this is expected to grow to 30 

billion by 2020 (ABI Research, 2013a). With the sheer volume of data coming from connected 

devices then it becomes challenging to determine what data is both reliable and relevant. Much 

research (especially in retail) has been carried out to make use of ‘big data’ and the results show 

that data driven decisions tend to be better decisions (McAfee and Brynjolfsson, 2012). Hence this 

hypothesis is carried through to traffic control, if more relevant and reliable data is available for 

use within traffic control, then better decisions could potentially be made. If the location, speed 

and vehicle routes can be known within a network then what use is this data? To answer this, 

three key questions must be asked of any new data sources: 

1. How can the data be detected? 

2. How can the data be used? 

3. Is there a benefit to using the data? 

 

1.2.5 Potential Benefits to Using Additional Data 

It is important to recognise what benefits have been achieved by others from research in this field 

and therefore Chapter 2 explains in significant detail, the potential benefits of using new 

technologies. TRG have developed a number of signal control algorithms which use additional 
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data (location and speed) and are able to outperform existing UTC systems by a considerable 

margin. The Highbid algorithm is able to produce 25% reductions in average delay compared to 

MOVA (Waterson and Box, 2010).  

Box, Snell and Waterson (in press) carried out two experiments to test whether a machine 

learning control algorithm trained by a human expert and a machine learning controller trained by 

temporal difference learning, could beat SCOOT (the most commonly used, commercially 

available system today). The human expert trained system was able to reduce delay by 49% 

against SCOOT, and the temporal difference learning system outperformed SCOOT by 41%. These 

experiments highlight the significant improvements which could be made over the current control 

systems, hence why this research is focused on developing new control algorithms which 

incorporate new data sources. 

Not only are there significant improvements to be achieved over existing UTC systems, but there 

are many more junctions which could be improved using intelligent control algorithms. Zhao and 

Tian (2012) carried out a survey to determine the number of junctions in the USA which are 

considered as adaptive; only 6% of all junctions were classified as adaptive and therefore there is 

huge potential for improvement in the USA transport network. This research project needs to 

investigate what benefits are possible from additional data sources but also disseminate the 

results to demonstrate how adaptive traffic control can outperform traditional control methods. 
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1.3 Aims and Objectives 

The premise of this thesis is based therefore on the assumption that traffic control systems can be 

improved through richer data sets from new technologies. Any new algorithms will be tested 

against existing UTC systems to determine if there are any potential benefits. 

 

1.3.1 Research Aim 

This research will investigate the potential impact that new data sources could have on future 

urban traffic control systems. 

 

1.3.2 Objectives 

1. To understand ‘state of the art’ and future Urban Traffic Control systems, therefore 

highlighting any opportunities for improvement 

2. To better understand how and why new technologies would be used in future UTC 

systems 

3. Develop novel control algorithms which are able to incorporate modern data sources 

4. Evaluate novel control algorithms against existing UTC systems and carry out a sensitivity 

analysis. 

5. Provide recommendations based on the findings of any results from this research. 
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1.4 Contribution to the field 

Significant sections of this research has been presented at academic conferences, published in 

journal articles and discussed at industrial meetings. Key to all engineering doctorate projects is 

the relevance of novel research for industrial applications. Siemens were involved in all of the 

major decisions throughout the research and directed the work towards industrial uses. The 

following papers were presented at conferences or published in journals: 

Hamilton, A., Waterson, B., Cherrett, T., Robinson, A., Snell, I., 2012. Urban Traffic Control 

Evolution. In: UTSG 44th Annual Conference. University of Aberdeen, United Kingdom, 4th – 6th 

January 2012. 

Box, S., Snell, I., Waterson, B., Hamilton, A., 2012. A methodology for traffic state estimation and 

signal control utilizing high wireless device penetration. In: 19th ITS World Congress. Vienna, 

Austria, 22nd – 26th October 2012. 

Hamilton, A., Waterson, B., Cherrett, T., Robinson, A., Snell, I., 2013. The evolution of urban traffic 

control: changing policy and technology. Transportation Planning and Technology, 36 (1), pp. 24 – 

43. Available through: http://dx.doi.org/10.1080/03081060.2012.745318  

Box, S., Lees-Miller, J., Snowdon, J., Hammond, J., Hamilton, A., Gupta, S., Wilson, R.E., Waterson, 

B. (2013) 30 cars, figure of 8, 1 show: large scale proving ground experiments to investigate 

junction control. In: 45th Annual Conference of the Universities’ Transport Study Group, Oxford, 

GB, 2nd – 4th Jan 2013. 

Box, S., Lees-Miller, J., Snowdon, J., Hammond, J., Hamilton, A., Gupta, S., Wilson, R. E., Waterson, 

B., 2013. Lessons from Proving Ground Experiments to Investigate Junction Control. 16th 

International IEEE Annual Conference on Intelligent Transportation Systems. The Hague, The 

Netherlands, 6th – 9th October 2013. 

Hamilton, A., Waterson, B., Snell, I., 2014. Human Perceptions of vehicle turning intention: Overall 

performance and contributory factors. Transportation Research Board 93rd Annual Meeting. 

Washington D.C., United States. 12th – 16th January 2014. 

Hamilton, A., Waterson, B., Snell, I., Andrews, M., 2014. Performance evaluation of stage skipping 

and new data sources compared against MOVA control. In: 17th International IEEE Conference on 

Intelligent Transportation Systems. Qingdao, China. 8th – 11th October 2014.  

 

http://dx.doi.org/10.1080/03081060.2012.745318
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Hamilton, A., Waterson, B., Snell, I., 2015. Human Perceptions of vehicle turning intention: Overall 

performance and contributory factors. Transportation Research Record: Journal of the 

Transportation Research Board, 2458, pp. 8 – 15. Available through: 

http://dx.doi.org/10.3141/2458-02  
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1.5 Thesis Structure  
This section will explain the structure of the thesis (see Figure 2) and provide a brief summary of 

each chapter. 

 

1.5.1 ‎Chapter 2: Evolution of Urban Traffic Control 

This chapter investigates how UTC systems have evolved over time and how both policy and 

technological advances are shaping the next generation of traffic control systems. Many new 

technologies have been highlighted in this chapter, explaining what data is available and what the 

barriers to utilisation are.  

 

1.5.2 ‎Chapter 3: Key Performance Indicators 

This chapter explains which Key Performance Indicators (KPI) are important to various 

stakeholders within the transport industry as a number of interviews were carried out at different 

traffic control centres. A literature review of local and network based KPI’s demonstrated that 

delay and reliability of journey time are two important variables for assessing any new traffic 

control algorithms which are going to be developed from this research. 

 

1.5.3 ‎Chapter 4: Can turning intention data be detected? 

As discussed in Section ‎1.2.4, one of the key questions for assessing any new data sources are 

how the data can be detected. As more in-vehicle technologies are being adopted (smartphones, 

satellite navigation systems) then additional data sources are becoming available, such as 

location, speed and routing for each vehicle. This chapter investigates how turning intention data 

can also be detected without the use of in-vehicle technology. Therefore two experiments are 

described which demonstrate how accurately people can predict turning intention for oncoming 

vehicles, how far away they are able to make accurate predictions and what influencing variables 

are most useful for making predictions. The results of the experiments are that people can predict 

turning intention with a 90% success rate from 0 – 25m from the junction, falling to 70% success 

when 25 – 50m away, and the most important variables are indicator usage, junction layout, 

turning movement, lane positioning and speed of approach. 
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1.5.4 ‎Chapter 5: Turning intention data – what can it be used for? 

This chapter investigates how turning intention data can be used. If a vehicle’s route through the 

network is known then the relevant stage at the traffic light can be selected; therefore turning 

intention data can be used to manipulate stage diagrams by considering all possible phase 

combinations. This enables the control algorithm to select the best phase combination at any 

decision point which provides additional flexibility over existing control algorithms. The results 

demonstrated a maximum reduction of 24% and 15% in average delay and average journey time 

respectively when location, speed and turning intention data was incorporated into the control 

algorithm, on a theoretical junction. 

 

1.5.5 ‎Chapter 6: Novel signal control algorithms using new data sources 

This chapter investigates if there are any benefits in using additional data sources for controlling 

traffic signals compared to existing algorithms. To do this, a novel traffic control algorithm had to 

be developed which could both adhere to real world constraints and incorporate new data 

sources. Using the KPI’s defined in Chapter 3 a Delay Minimisation Algorithm (DEMA) was 

developed and tested in two real world case studies. DEMA outperformed MOVA at a T-junction 

by reducing the average delay by approximately 3 – 4 seconds (up to a 39% reduction) per vehicle. 

DEMA was also tested on an over-saturated crossroads where MOVA currently operates, and 

there were significant reductions in delay, ranging from 8% to 34% depending upon demand 

levels. However a sensitivity test was carried out to determine how DEMA would perform with 

imperfect data, which produced interesting results. The analysis highlighted how the detection 

distance should be 200 metres from the junction, and approximately 50% of vehicles need to 

provide additional data to achieve a 5% reduction in delay. When turning intention data was 

provided into DEMA, then there were drastic reductions in delay as new stages could be used to 

control the junction (up to a 75% reduction in delay over the current control algorithm). This 

chapter demonstrates that there are significant benefits in using additional data for traffic control 

purposes. 

 

1.5.6 ‎Chapter 7: Contributions of the Research and Conclusions 

This chapter explains some of the limitations of the research but also many of the opportunities 

which have arose as a result of the work carried out. 
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1.5.7 Flow Diagram 

 
Figure 2: Structure of thesis 





Chapter 2 

15 
 

Chapter 2: Evolution of Urban Traffic Control 

This chapter provides a thorough review of the different elements of urban traffic control which is 

in response to Objective 1 and 2: 

1. To understand ‘state of the art’ and future Urban Traffic Control systems, 

therefore highlighting any opportunities for improvement 

2. To better understand how and why new technologies would be used in future 

UTC systems 

Urban traffic control has changed significantly from fixed time signal control to adaptive, multi-

faceted network control systems. Chapter 2 explains how the evolution has occurred through 

influential transport policies and the use of new technologies. By reviewing ‘state of the art’ 

traffic control systems, a comparison of what data is currently used and what data will be 

available in the near future can be carried out to determine what opportunities are likely to arise. 

Any barriers to implementation will be considered in this chapter to understand the constraints 

placed upon existing traffic control systems, whether these are technological, political, social or 

financial constraints. Much of this chapter has been published in the Journal of Transportation 

Planning and Technology (Hamilton et al., 2013). 
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2.1 Introduction 

Since the earliest days of gas powered traffic lights (Day and McNeil, 1996), urban traffic control 

has evolved with three key influencing factors: increasing numbers of vehicles on the road 

network, advances in (and limitations of) technology and the desires of policy makers to maximise 

sustainable mobility. This chapter will highlight many of the benefits that can be observed from an 

efficient urban traffic control system, such as reduced congestion, increased economic efficiency 

and improved road safety and air quality. 

There have been significant advances in vehicle detection and communications technologies 

which have enabled a series of step changes in the capabilities of UTC systems, from early (fixed 

time) signal plans to modern integrated systems. A variety of UTC systems have been 

implemented throughout the world, each with individual strengths and weaknesses. This section 

seeks to compare the leading commercial systems, and some less well known systems, to 

highlight the key characteristics and differences before assessing whether the current UTC 

systems are capable of meeting modern transport policy obligations and desires. 

This chapter then moves on to consider current and future transport policy and the technological 

landscape in which UTC will need to operate over the coming decades; where technological 

advancements are expected to move UTC from an era of limited data availability to an era of data 

abundance. 
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2.2 The Past 

2.2.1 PHASE 1 – Origins of Traffic Lights [1868 – 1920] 

The original gas powered traffic light was based on railway designs and had only two colours, red 

and green. The signals were manually operated by police officers and their purpose was to 

improve visibility of the traffic controller as the mast was 24 feet high and could be seen on all 

arms of the junction (The Engineer, 1868). However the problem with this system was that it was 

severely limited by the technology as police officers were still required at the junction because 

there was no automatic control. Unfortunately the first UK traffic signals did not last long in 

operation, as they exploded less than a month after installation (BBC, 2009). 

The subsequent electric powered traffic light was first introduced in the UK during the 1920s after 

observing its success in the USA and Germany. There were a number of policy objectives behind 

the introduction of traffic signals; primarily they were developed to relieve police officers of traffic 

management duties as traffic growth was rapidly increasing and many more police officers were 

required to direct traffic flow. This is the first example of policy driving the development of traffic 

signals; firstly, the members of parliament reasoned that there would be some improvement to 

public safety. And secondly, there was a substantial financial benefit as the installation costs were 

approximately £100 whereas a week’s wages for a police officer was £6 to £7 and therefore the 

local authorities would see a rapid return on their investment (Royal Commission on Transport, 

1929). 

 

2.2.2 PHASE 2 – ‘Fixed Time Plans’ [circa 1920 – 1980] 

This phase saw the real beginnings of UTC as rising congestion led to increased awareness of the 

issues amongst policy makers and consequently defined the basic objectives for all UTC systems. 

Congestion was highlighted as a serious issue for the United Kingdom from as early as 1964 by the 

Buchanan Report, when they predicted up to 40 million vehicles in the UK by 2010 (Buchanan, 

1964); in 2010 there were over 34 million registered vehicles (DfT, 2011b). The Buchanan Report 

did encourage the government to seek alternatives to private vehicles; and in 1969 the UK policy 

highlighted that building evermore roads was not the solution to urban congestion (Ministry of 

Transport, 1969). Whereas in 1952, President Eisenhower stated a grand plan for the US to reduce 

metropolitan congestion through building a properly articulated highway system (Connery and 

Leach, 1960), this shows the different approaches taken to manage congestion in the 1950s and 

1960s. In both cases however, it was still policy objectives leading the way with traffic control 

systems trying to match the desired outcomes. 
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During the late 1950s, proposals were being made to improve the original isolated fixed time 

plans by co-ordinating traffic signals. This involved determining offset times between 

neighbouring junctions so that a ‘green wave’ could be created and therefore reduce delay and 

congestion along arterial routes (Papageorgiou et al., 2006). To enable this local co-ordination, 

junctions were typically defined into small regions where the signals could be optimised in terms 

of split, cycle and offset times. However for fixed time plans to synchronise correctly, the cycle 

times must be the same length or a direct multiple, and the regional cycle time is therefore 

typically defined by the busiest junction in the region. By grouping junctions into small regions 

with the same cycle time, individual junction performance was negated for the benefit of the 

whole region. 

The ‘cycle time’ is the total amount of time required to complete all stages at a junction. The ‘split 

time’ is the amount of allocated green time each stage has within a complete cycle. The ‘offset 

time’ is the time delay of green time between subsequent traffic signals to create smooth traffic 

flow. In its simplest form, the one-way offset time is the travel time between two junctions so 

that the downstream junction has a green light when the vehicles arrive (U.S. DoT, 2005). The 

offset time can be biased towards heavier traffic flow in one direction if required because the 

contra-flow can be insignificant in comparison (for example, morning rush hour into a city 

compared with flow out of the city). 

Fixed time plans may be used to create green waves, give predetermined priorities, and respond 

to special traffic events which can be predicted, such as football matches. However fixed time 

plans cannot respond to unplanned incidents such as traffic accidents or road works. Fixed time 

plans age rapidly, particularly where traffic growth is high, and the benefits of linking may be lost 

in three to four years if the plans are not updated regularly, which can be an expensive process 

(Papageorgiou et al., 2006). Studies have shown that fixed time plans degrade by approximately 

three percent each year, so it is imperative that plans are regularly updated (Bell and Bretherton, 

1986). 

TRAffic Network StudY Tool (TRANSYT) 

TRANSYT is one of the most well developed and widely used fixed time control design systems 

and is still in modern usage. It assumes that the flow is known and constant for a fixed period of 

time. TRANSYT calculates the timings off line, using historical, measured traffic data to generate 

optimum plans for the specific time of day, and day of the week (Gardner et al., 2009). TRANSYT 

can be used for designing and modelling both isolated junctions and large networks (TRL, 2015). 
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TRL predicted and observed a fuel consumption reduction of three to five percent in Glasgow 

when TRANSYT was trialled to coordinate sequential junctions (Robertson, 1982). 

There are two main elements of TRANSYT; the traffic model and the signal optimiser. The traffic 

model represents traffic behaviour and predicts a Performance Index (PI) for a specific time plan 

and average set of flows on each link. The PI measures overall cost of traffic congestion, which is a 

weighted combination of total delay and the number of stops made by vehicles (Papageorgiou et 

al., 2006). Historical flow information correlated by the time of day is required by the model and a 

platoon dispersion model is applied to determine the offsets between junctions. The signal 

optimiser adjusts the signal timings in the model until the optimum PI is achieved. TRANSYT was 

shown to reduce journey times by 7.4 to 11.4% throughout the State of California compared with 

the original signal plans (Skabardonis, 2001). 

 

2.2.3 PHASE 3 – Vehicle Actuated (Isolated) Junctions [1970’s – present] 

The ever growing problem of congestion was still at large, and the UK government sought after 

technological improvements during the 1960s. Funding was made available for research and 

development to individual authorities in order to find a solution to the problem; the government 

invested in schemes in London and Glasgow to improve the efficiency of the urban network 

(Ministry of Transport, 1966). 

Inductive loops were developed and installed throughout the road network so that traffic signals 

could be triggered by vehicle presence at junctions. Isolated junctions are most commonly 

controlled using vehicle actuation in the UK (Gardner et al., 2009 and DfT, 2006), and the most 

common detection method worldwide is inductive loops (Box and Waterson, 2010). The system is 

reliant on traffic detectors so that green times can be allocated accordingly. This inherently 

requires more infrastructure than fixed time signals so there is a higher initial capital required for 

vehicle actuated junctions, but there are substantial financial savings in vehicle hours and 

maintenance time. A large amount of time and resources is required to update fixed time plans, 

for example, Toronto estimated that it would take 30 person years of effort to update all of the 

fixed time signals before they decided to upgrade to a vehicle actuated system (Quan et al., 

1993). 

Inductive loops are made up of coiled wire, which is embedded in the road, and a detector at the 

side of the road which powers the wires and creates a magnetic field around the loops. The loop 

resonates at a constant frequency which is monitored by the detector, and when a vehicle passes 
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through the magnetic field, the resonant frequency increases and the detector becomes aware of 

a vehicle’s presence (Marshproducts, 2000). These loops are typically placed upstream of a 

junction so that a vehicle’s presence is detected with sufficient time to react to change the traffic 

signals. 

Other common traffic sensors are infra-red cameras which are used for the detection of vehicles 

that request and potentially extend the green phase of traffic signals. They work through the 

detection of a positive or negative temperature contrast against the background and are able to 

detect people, animals and other objects in the detection area (Xtralis, 2013). Radar sensors are 

also used to detect the presence of vehicles and are able to differentiate traffic on each lane. 

Radars are able to “follow” the movement of an individual vehicle and can therefore be used to 

determine vehicle dynamics such as speed and direction of movement (Wavetronix, 2013). Radars 

are able to detect vehicles as far as 250 metres away from a junction (Radar Speed Signs, 2013). 

 

Microprocessor Optimised Vehicle Actuation (MOVA) 

MOVA is an advanced vehicle actuated controller, it analyses lane by lane detector data and 

controls signal timing to minimise delay and stops. There are approximately 3000 junctions using 

MOVA throughout the UK, with an installation rate of over 300 junctions per year (TRL, 2014a). 

MOVA is designed to respond well to very low flows and oversaturated flows (TRL, 2014a); before 

the junction becomes saturated, MOVA operates in a mode which minimises delay but when the 

junction is saturated it operates in a maximum capacity mode. This is beneficial as no system can 

effectively deal with saturated conditions because there are simply too many vehicles on the road 

and therefore maximising capacity is a beneficial feature. Latest versions of MOVA are also 

capable of linking two or more junctions when they are not considered as isolated, for example, 

MOVA can be used in signalised roundabouts (TRL, 2014a). 

In order to determine the duration of any given stage within MOVA, there are a number of 

sequential decisions during the green time (TRL, 2011): 

1. The absolute legal minimum green period for the current green stage 

2. A further variable minimum green period for each link designed to cater for those vehicles 

which have already crossed the detectors and for which the absolute minimum green is 

insufficient. 

3. Following the minimum greens, a period when the queue on at least one specified link is 

judged to be still discharging at saturation-flow. 
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4. When saturated flow has ended for all specified links, a period when MOVA estimates the 

benefits and dis-benefits of continuing the current stage green. This optimisation process 

makes use of a performance index - a weighted combination of vehicle delay and vehicle 

stops. Unless benefits exceed dis-benefits, the green is terminated for the current stage. 

These sequential decisions are based on the assumption that a predefined stage order is observed 

unless there is no demand for the next stage. 

Determining the end of saturation flow is very important within the MOVA algorithm, as this will 

decide when a stage should be changed. Guidance from TRL suggests that the critical gap duration 

between vehicles passing over the sensors is 3.5 seconds. However this will be different when 

there are multiple lanes being released during the stage (TRL, 2011). 

MOVA does not have a strict cycle time to adhere to because of the way in which it optimises 

green time; however traffic engineers will typically impose an upper limit to ensure that the 

waiting times do not become too large (impacting delay and the ability for pedestrians to cross). If 

a cycle time is imposed on MOVA, then the engineer will provide a preferred upper green time for 

each of the stages (TRL, 2011). 

MOVA defines a lane to be oversaturated when: vehicles have been detected for an excessive 

period of time after the green period, or if the arrival rate becomes high. If the junction is 

classified as oversaturated then MOVA will attempt to maximise capacity as opposed to minimise 

the delay. MOVA is constantly evaluating what will maximise capacity through estimating the 

required green time for the other stages, and then calculating a flow efficiency rate every half 

second to maximise the capacity (TRL, 2011). 
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2.3 The Present 

Inductive loops changed the way in which urban traffic control has operated; however isolated 

vehicle actuated junctions (e.g. MOVA) are not exploiting the full potential in an urban 

environment because there is no consideration of the effects on surrounding junctions. This 

section highlights the current potential of vehicle actuation through inductive loops, radar and 

infra-red detection technology, which are the main techniques used today to coordinate 

neighbouring junctions. 

Congestion is still identified as a growing economic problem, but is also considered as an 

environmental and social issue (Eddington, 2006).  It has been estimated that congestion costs 

England at least $35 billion (£22 billion) in lost time each year (Eddington, 2006). According to 

Bloomberg, traffic congestion in the US in 2009 cost the economy $114.8 billion (approximately 

£72 billion) (Bloomberg, 2011). While the underlying policy drivers are still congestion and delay 

minimisation, the focus has increasingly become a more holistic view of people movement rather 

than individual trouble spots. 

 

2.3.1 PHASE 4 - Vehicle Actuated (Coordinated) Junctions [Late 1970s – Present] 

Vehicle actuated systems which have coordinated junctions are those most often referred to as 

Urban Traffic Control (UTC) systems. There are many different UTC systems globally; many 

theoretical UTC systems have been proposed but this section will focus on those which have been 

adopted commercially and are used in a number of locations worldwide, see Table 1. In the US 

alone, there are approximately 30 different adaptive UTC systems in operation where SCATS is the 

most commonly used system (Zhao and Tian, 2012). 

 

Table 1: Number of UTC System Installations 

UTC System Installations 

SCOOT More than 250 cities worldwide (TRL, 2014b) 

SCATS 
More than 50 locations worldwide (Zhao and Tian, 2012), 

27 countries worldwide (NSW, 2014) 

UTOPIA 
Several cities in Italy, and also in Netherlands, USA, 

Norway, Finland and Denmark (KonSULT, 2009) 

RHODES 4 Installations (Zhao and Tian, 2012) 

MOTION Installations in Germany (Mueck, 2008) 
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As with Section ‎2.2.3, vehicle actuated systems for coordinated junctions use on-street detector 

measurements to optimise signal timings on a cycle to cycle basis to better meet demand. These 

systems can be coordinated from a central computer (e.g. SCOOT) or have distributed intelligence 

and be coordinated at a local level (e.g. UTOPIA).  Centrally controlled systems use less complex 

local controllers; whereas decentralized systems take more local decisions, with some 

coordination between adjacent controllers (Papageorgiou et al., 2006). 

All of the major UTC systems operate on a similar basis of adjusting the split, cycle and offset 

times to optimise the traffic flow through a series of junctions (Papageorgiou et al., 2006). 

However, each UTC system has a different algorithm for adjusting these variables to achieve a 

higher region performance.  

An advantage of isolated vehicle actuated junctions compared with a coordinated system is that 

there is greater flexibility to change the traffic signals because there is no consideration of the 

subsequent effects on neighbouring junctions (Hounsell et al., 2001). However, if every traffic 

signal was to operate independently then the network as a whole could potentially suffer. A 

‘before and after’ study was carried out in Virginia, which showed a reduction of 30% in journey 

time between the original uncoordinated, actuated junctions and the final coordinated actuated 

junctions (Byungkyu and Chen, 2010). 

 

Split Cycle Offset Optimization Technique (SCOOT) 

SCOOT is the most commonly used UTC system in the world (Table 1) as it is installed in more 

than 250 towns and cities (TRL, 2014b). It is a dynamic UTC system which uses live traffic data to 

determine a suitable signalling time. SCOOT typically uses inductive loop detectors at the 

upstream end of links to monitor cyclic flow profiles and measure demand in real time. SCOOT has 

three optimisation procedures to adjust signal timings: split, cycle and offset times, which are 

optimised at different frequencies and using different procedures (Papageorgiou et al., 2006). 

Some of the first studies of SCOOT showed that SCOOT can reduce delays by up 12% in 

comparison to an up-to-date fixed time plan system (Hunt et al., 1981); however more recent 

studies have shown that in comparison to a typical fixed time plan system, which isn’t fully 

updated, SCOOT can reduce delays by up to 20% (Shepherd, 1994). 

SCOOT requires detection information very frequently to keep its plans updated, binary signals 

indicating the presence (or absence) of a vehicle are sent to SCOOT every second. SCOOT relies on 

the quality of input parameters to accurately model and react to vehicle behaviour (Wylie, 2009). 
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The detectors can be used to identify accidents or congestion as the velocity of vehicles is known, 

and there is typically additional software used alongside SCOOT to best deal with these problems, 

for example Comet or Stratos which provides a user friendly interface for the network operator. 

SCOOT makes a large number of small optimisation decisions, typically over 10,000 per hour in a 

network of 100 junctions (Hounsell et al., 2001), so there is a lot of information being processed. 

SCOOT has flexibility in the system to override values and set parameters for different regions at 

different times, for example, gating strategies to protect an area from excessive traffic or bus 

priority measures to improve bus punctuality and regularity (Papageorgiou et al., 2006). SCOOT is 

able to provide differential bus priority if required by recalling, skipping or extending stages to 

ensure bus priority is given (Bowen, 1997).  

SCOOT is able to follow trends over time in traffic flow and local short term changes; however, as 

the optimisation procedure only allows a small amount of change to split, cycle and offset times, 

then SCOOT could be constrained by this during a sudden change in flow (for example, a football 

match). However, a study in Toronto showed that SCOOT reduced delays after a baseball game by 

61% in comparison with the previous fixed time plans (Quan et al., 1993). 

 

Sydney Coordinated Adaptive Traffic System (SCATS)  

SCATS works on a combination of coordinated vehicle actuation and fixed time plans as it uses a 

library of fixed time plans which have been developed to work in specific scenarios. It operates at 

two basic levels; the “upper level” which involves offset plan selection and the “lower level” 

which involves the optimisation of various junction parameters (Lowrie, 1982), such as split and 

cycle times (SCATS, 2012). 

SCATS operates in real time and has many distributed controllers however it does not use fully 

comprehensive plans, it uses many smaller libraries of offsets and phase split plans. SCATS relies 

on incremental feedback from detectors to change the signal plans over time. There is a central 

control override for local junctions to implement incremental split plans which make 2% 

adjustments to the previous traffic signal phases. A critical junction must be named for each of 

the regions which the surrounding junction plans is based on. The ratio of detected flow to 

saturated flow is determined in each region to assess the congestion levels. (Martin, 2001). 

SCATS determines offsets through “marriages and divorces”; a library of external offset options 

are used and a marriage is where two adjacent regions adopt the same common cycle time. 

Internal offsets are driven by cycle length and can be adjusted by a traffic signals engineer 
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(Martin, 2001). SCATS is able to change cycle time after every cycle if the road conditions have 

changed sufficiently. 

SCATS is able to provide priority for buses and trams through a three tiered system (high, medium 

and low). Trams can expect to receive high priority, which results in stages being skipped to 

prevent trams stopping, whereas buses would typically get medium priority which involves 

shortened or extended stages to reduce the number of stops (Gardner et al., 2009). 

SCATS biggest performance weakness is the optimisation of its offsets, which has an impact on 

the progression of vehicles between regions, SCATS is based on stop line detection which means 

that there is no concept of how long the queue is (Lowrie, 1982). SCATS does however have a 

useful oversaturation feature; as the road reaches saturation flow then SCATS gives all of the 

extra cycle time to the busiest phase to reduce the impacts of congestion. Consequently SCATS is 

very good at coping with heavy flows which are close to saturation, complex flow patterns and 

unpredictable variations (Martin, 2001).  

SCATS was shown to outperform an uncoordinated set of junctions by reducing travel time up to 

23%, reducing vehicle stops by 46% and a reduction of fuel usage by 12% (Shepherd, 1994). 

 

Urban Traffic OPtimization by Integrated Automation (UTOPIA) 

UTOPIA is a hierarchical, decentralised traffic signal control strategy. It aims to minimise the total 

time lost by vehicles, however public vehicles are prioritised highly in an attempt to prevent them 

from stopping at signalised junctions (Mauro and Taranto, 1990). UTOPIA is based on an 

optimising cost function depending upon vehicle delays and stops, delays to public transport and 

deviation from reference plan and historical signal timings. Optimisation is applied to both the 

local and network level; the local level determines the signal timings based on the cost function 

and is optimised for a 120 second time horizon (repeated every three seconds). At the network 

level, the cost function considers neighbouring junctions to build a dynamic signal co-ordination 

(Gardner et al., 2009). 

UTOPIA has a three tiered hierarchical architectural system: 

 Local Level – applies a microscopic model to estimate the state of the junction directly 

collecting the measurements which characterises the junction (saturation flows, turning 

percentages, delays). UTOPIA optimises the signal strategy over a time horizon, consisting 
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of the next 120 seconds, where the road state is determined every 3 seconds (Shepherd, 

1994). 

 Area Level - less detailed traffic model to monitor the state of the whole controlled 

network. This level validates the local detection, checking changes in the traffic data 

compared with historical data 

 Town Supervisor Level – integrates the congestion information given by UTOPIA with data 

from other systems, such as bus travel times. A macroscopic model is used at this level, 

which has the advantage of collecting different sources of information and having 

coverage of the whole city (Hounsell et al., 2001) 

UTOPIA has been explicitly designed with public transport priority in mind (KonSULT, 2009); 

consequently UTOPIA is combined with System for Priority and Optimisation of Traffic (SPOT) 

which provides bus priority through shifting the ‘green window’ to coincide with the anticipated 

arrival time of buses. Bus location technology is used far upstream of signalised junctions and the 

system can gradually adapt the junctions to match the arrival times. UTOPIA uses loop detectors 

at key locations in the network which are just downstream of the previous junction (Gardner et 

al., 2009). 

UTOPIA in Turin had a significant impact on journey time as it resulted in reductions of 20% for 

public transport vehicle journey times and 10 - 15% for other vehicles (Papageorgiou et al., 2006). 

UTOPIA appears to be more adaptive throughout the network, but the cost function has a lot of 

uncertainty associated with it, and requires regular updating to ensure sufficient efficiency. 

UTOPIA is fairly dependent on accurate journey time forecasting and detection technology so that 

priority can be given to public transport (Gardner et al., 2009). 

 

Real-time Hierarchical Optimized Distributed and Effective System (RHODES)  

Similar to UTOPIA, RHODES architecture is based on a three tiered hierarchy: the highest level 

assigns traffic to the network to determine base levels of traffic, this takes into account evolving 

traffic demand and network geometry. The level below is based on predicted platoon arrival 

patterns to determine signal timings. Thirdly, at the junction level the movements of individual 

movements are modelled. 

RHODES responds to the natural stochastic behaviour of traffic (Mirchandani and Head, 2001). 

There are two significant processes: ‘estimation and prediction’ and the ‘decision system’ process. 

The first stage is based on actual upstream data collected, and the second stage is where the split 
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and cycle times are selected to optimise the given objective (minimal queue length, delay per 

vehicle or number of stops) (Mirchandani and Head, 2001). 

 

Method for the Optimization of Traffic signals In Online controlled Networks (MOTION) 

MOTION has two main components, MOTION Central and MOTION Local. The central function 

creates plans which can then be adjusted by the local element (Gardner et al., 2009). MOTION 

operates on four different functional levels (Hounsell et al., 2001):  

 Data acquisition – this is used for different functions: network incident detection and for 

Origin and Destination pairs. 

 Dynamic traffic model – through estimation of the most important traffic streams and 

analysis of traffic by determination of current traffic status. 

 Optimizing control variables – iterations of common cycle times and split times are carried 

out to determine the optimum green times. The platoon model is used to try and 

optimise the offset timings between junctions.  

 Decision – the new signal programs are compared to the current signal program. If there 

are major improvements then the signals are changed, however, if only minor 

improvements then the current signals are not changed.  

MOTION does consider both the local and network levels; however, it is unclear how much the 

local plans can change the more strategic network plan.  

 

Worldwide UTC Systems 

There are many UTC systems worldwide which are not widely discussed in the literature but are 

significant improvements over fixed time systems. The UTC system in Singapore is Green Link 

Determining (GLIDE), and it is a dynamic system which optimises green time for every approach. 

GLIDE has increased the average journey speeds by 8% in morning peak against fixed time 

systems (Keong, 1993). 

The Japanese UTC system is Universal Traffic Management System (UTMS) and it uses infra-red 

technology to detect and communicate with vehicles. Therefore UTMS is able to re-route drivers 

if they have an infra-red device installed in the car, as was shown in the Nagano Winter Olympics 

where drivers with the infra-red device could arrive at the destination up to 11% faster than 

drivers without (Kitamura, 1998). 
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2.3.2 Discussion and Conclusion for UTC Systems 

The most challenging problem of comparing UTC systems, both directly and in relation to their fit 

to policy drivers, is that there are very few field studies with two commercial systems directly 

compared. Each UTC system has different detector requirements for a junction and therefore it 

would be very expensive to carry out a real world trial of competing systems. Some UTC systems 

require sensors more than 100 metres from the junction whereas others require stop line sensors, 

so cost is always an important factor in deciding which UTC system should be used (as well as 

performance). 

When looking at published statistics from the designer, there will always be an element of bias 

due to the commercial nature of the product. Every city is different and has different 

requirements due to varying (and evolving) policies within countries; for example, environmental 

policies in many countries encourage the use of public transport and bicycles over private motor 

vehicles, whereas this may not be the policy or culture in other countries. Therefore choosing a 

UTC system is a specialised task; Hounsell et al. (2001) highlights some of the reasons why a local 

authority may choose one UTC system over another: 

 National  standards or preferences 

 Expertise or available support for the system 

 Robust demonstrations of its effectiveness in similar operating situations 

 Implementation, operating and maintenance costs  

 Traffic characteristics (modal split, growth, variability, level of congestion) 

 Issues surrounding detector dependent systems (cost of maintenance) 

 Prospects for future development 

As growth in a town or city occurs, typically fixed time signals have been replaced by some form 

of UTC system to improve the efficiency of the network. However as fixed time signals have been 

replaced, it was observed by Transportation Research Board (TRB) that UTC systems are 

considered much more operationally demanding than fixed time systems because of the 

additional technical expertise required to operate them (NCHRP, 2010). Therefore they have 

higher installation costs due to the required training and equipment. 

A potential weakness of adaptive UTC systems was highlighted in a survey that was carried out by 

TRB: UTC operators appeared to believe that they were often not given sufficient time or training 

to learn how to fully operate the systems (NCHRP, 2010). Clearly UTC systems have substantial 

performance benefits over fixed time systems as seen throughout this section; but insufficient 

training can cause significant problems for the efficiency of UTC systems if the operators do not 
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understand how they work. Therefore it is important for UTC operators to have the relevant 

training to achieve the full benefits of adaptive UTC systems. 

Table 2 indicates the advantages and disadvantages of the three different types of control system 

and it also shows the requirements of detection and communication technologies. As there are no 

direct comparisons of UTC systems, it is not possible to state objectively which system is best; 

however using Table 2 it is possible to identify the strengths and weaknesses of different systems 

and select a system based on the requirements. 

The UTC systems which have been described in this section have been shaped by the technology 

available. Currently UTC systems only have snapshots of the traffic state on the road due to the 

detection technologies used (inductive loops, infra-red, radar). For UTC systems to improve 

beyond current limitations a better understanding of the road state is required and this can only 

occur through advances in detection and communication technologies which provide improved 

spatial and temporal data sources. 
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Table 2: Summary of advantages and disadvantages of different types of UTC system (After: Papageorgiou et al., 2006) 
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2.3.3 PHASE 5 - Integrated UTC & Intelligent Transport Systems [1997 – present] 

The most advanced urban traffic control systems are becoming more centrally integrated with 

other traffic management systems to reduce the workload of network operators and to improve 

the efficiency of the network. There are many different elements to consider when managing 

traffic control (see Figure 3), and through effective integration the operator involvement can be 

reduced. This has been enabled through a number of technological advances, most of which are 

either improvements in detection techniques or methods of communicating with drivers. 

 

Figure 3: Schematic Illustration of a UTMC system (after DETR, 1999) 

 

Urban Traffic Management and Control (UTMC) Systems 

UTMC was a UK Department for Transport initiative to help local authorities obtain the most from 

their combined UTC system and Intelligent Transport Systems (ITS). UTMC systems are designed 

to allow different applications used within traffic management systems to communicate and 

share information with each other (DfT, 2009). This helps to build a more dynamic, intelligent and 

real-time information based traffic management system. Transport policy in the UK during the 

1990’s had targets of (Glaister, 2001): 

 A safe and efficient transport system 

 A better, more integrated public transport system 

 A more environmentally sustainable transport system 

 Better and more strategic integration of transport and land use planning 

These targets were fairly generic but it is clear that integration was crucial to the policy of this era, 

and this was exactly the aim of UTMC. 
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Fundamentally UTMC systems are considered as modular, open systems which incorporate and 

build on existing functionalities of current signal control and other traffic management systems 

(Papageorgiou et al., 2006). The UTC system is at the heart of a UTMC system; however the other 

features add significant benefits by providing additional information about the network. Accurate 

and up to date information is critical for a successful UTMC system; for example the operators can 

inform road users of congestion or accidents in the network and re-route them accordingly, or 

inform motorists of available parking facilities in a city centre. UTMC systems are built-up of many 

Intelligent Transport Systems, see Figure 3. 

UTMC has many advantages for the road user (UTMC, 2009): 

 Advice – the system can advise motorists on journey times, for example, using Automatic 

Number Plate Recognition cameras, the average speed can be determined and journey 

time displayed on Variable Messaging Signs (VMS).  

 Warn – motorists can be warned of dangers on the network using VMS. For example, 

‘Strong wind’ messages can be displayed on bridges to warn motorists.  

 Guide – motorists can be informed of delays on the road due to congestion or an accident 

using VMS. Also many cities use car park VMS upon entering city centre so that motorists 

can plan which car park to use. 

A major benefit for the operators of UTMC is that national standards were created so that 

communication between ITS features would become easier. Standardisation was a policy led 

approach to deal with the issues of complex interactions between initially separate UTC and ITS 

systems, but this also enables a wider (and potentially cheaper) selection of products for local 

authorities (UTMC, 2009). A common language was developed to share information much faster 

and therefore the transport network can utilise other forms of communication without paying the 

high installation costs, for example, the cable TV network can be used to send information (UTMC, 

2009). The cost of running individual ITS were higher as individual detectors and communication 

devices were required, whereas detectors can now be used for more than one purpose. A shift to 

an all-inclusive traffic control system has created a more competitive market, with a wider choice 

of systems and suppliers. The interoperability of data is now much easier due to a standard 

format within UTMC systems, which is essentially a common database, and now there are 

systems such as CUTLAS, Comet or Stratos which manage the data from various UTC and ITC 

sources to try to gain operational advantage (Envitia Plc., 2012)(Siemens, 2012). 
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2.3.4 Summary 

Sections ‎2.2 and ‎2.3 have demonstrated that at any point in time the leading UTC systems were 

defined by the capabilities of the available technology, and hence UTC systems have historically 

had to wait for technological advances to facilitate step changes in performance. A new phase is 

beginning where technological advances are faster than the development rate of UTC systems, 

causing a rebalancing of the relationship between policy, technology and UTC systems.  
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2.4 The Future  

The continued policy desire to enable sustainable mobility is unlikely to change in the near future, 

with the key drivers remaining lower costs and lower environmental impacts. This section will 

demonstrate that the near future of urban traffic control will be shaped by the advances in 

technology which are likely to be implemented relatively soon into the transport industry. 

However it is imperative for policy measures to maintain pace with technology or infiltration rates 

of technologies will be much slower as vehicle manufacturers are not forced into including new 

technologies. With improved integration of technology into traffic control: 

“[For the commuter] intelligently connected transport networks mean better travel information, 

fewer delays and less stress; [for the environment] it means fewer emissions” (Siemens, 2010). 

 

2.4.1 What technologies are likely to be used in the near future? 

The future will depend on a very large number of variables ranging from technological 

breakthroughs, political decisions to public acceptance of the latest inventions. Therefore it is very 

challenging to accurately predict what the future will be like in 10 years or more; and this is why 

studies frequently consider multiple scenarios for what the future could look like so that the 

reader can understand what is likely to happen depending on circumstances. This section will 

highlight some technologies, which could be used in the future, with varying degrees of certainty 

depending on how the barriers to public acceptance and implementation are overcome. 

Wolfgang Homburger (a transport engineer for more than 50 years) stated that: 

“Knowledge is always expanding. Technological progress is inevitable and rapid, and will 

bring us tools and analysis methods that we might label as science fiction today. And the 

priorities of the public may well shift again, but in what direction?  

Opportunities for more automation of traffic control equipment, of entire highways and 

rail transit lines and of enforcement will abound. Environmental health will continue to be 

a major policy issue - carbon dioxide emissions are only the latest addition to the list of 

global concerns.” (Homburger, 2002) 

The transport industry needs to be dynamic and fast moving to keep pace with the ever improving 

advances in technology. However there are always barriers and constraints which need to be 

overcome before any new technology can be implemented. 
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Smartphones and Satellite Navigation 

It is generally accepted within the transport industry that there is an ever growing number of data 

sources which are unutilised to their maximum potential. More than half of the population in the 

UK and US have smartphones, which are capable of sharing data using Bluetooth and Wi-Fi 

(NewMedia, 2013 and Forbes, 2013). Researchers are only beginning to realise the potential that 

this data has for the transportation network. A smartphone creates an opportunity to not only 

detect the presence of a road user, but also can communicate with them using clear, concise and 

relevant messages for their individual transport needs. Foell et al. (2013) believes that a thorough 

investigation of how this data could be used effectively is missing in current literature. 

This relatively new data source (smartphones were only released in 2007), creates an opportunity 

for monitoring people flow and informing road users like never before. It is now possible to data 

mine large amounts of origin and destination pairs with accurate journey times (data mining is 

looking for trends in current data to help predict future scenarios). Having access to historical 

data enables the system to determine an individual’s “typical” route and therefore could advise 

them on the best route. There is the option of personalising the Key Performance Indicator (KPI) 

which is most important to the user – KPI’s could be avoiding congestion, cheapest, quickest or 

shortest route or reducing emissions. This routing information could be used to determine the 

most suitable location of bus routes, train stations, cycle routes, pedestrian zones or home zones, 

speed cameras (the Dutch police used TomTom data to place speed cameras but it was not very 

popular amongst TomTom users and therefore was stopped (Engadget, 2011)), or it could even be 

used for advertising relevant local events, shops or restaurants. 

Since it would be possible to accurately detect individual, yet anonymous, location data (where 

historical journeys could be accessed) then journeys could become much more predictable and 

potentially be used in signal control. The system could gather the vehicle’s location, speed, 

predicted route and approximate arrival time of each person with a smartphone and therefore 

could generate a much richer data set which could be used in a novel signal control algorithm. 

Smartphone usage has other potential benefits within the transport industry, ‘apps’ also make 

live public transport timetables readily available and could be used to promote the use of greener 

modes of transport. 

Data mining would not be the only source for predicting journeys; satellite navigation systems 

could also be used by uploading a user’s intended journey and approximate timings to determine 

additional information for signal control and routing. Sat-navs could also provide a valuable 
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method of communication with the network operator as messages could be pushed to sat-nav 

devices, informing the road user of congestion or potentially quicker routes. 

Satellite navigation systems are currently used by approximately 28% of road vehicles (Oxford 

Economics, 2012). There are huge potential savings through the use of sat-navs, for example, a 

survey carried out to investigate the effects of sat-navs amongst drivers who were travelling to an 

unfamiliar destination reduced vehicle mileage by up to 16% and reduced time spent travelling by 

up to 18% (Oxford Economics, 2012). 

Further research into the potential advantages of using smartphone and sat-nav data needs to be 

carried out and could realistically be trialled within the next decade. However, a major barrier to 

using smartphone data is public acceptance and dealing with their privacy concerns. A real benefit 

of this system is that the infrastructure is already in place to connect to smartphones and sat-

navs. The major risk with implementing a control system based on smartphone or sat-nav data is 

that there is no control over how the public uses them and people could choose to boycott any 

control system or stop using the devices. 

 

Vehicle to Vehicle and Vehicle to Infrastructure Systems 

Currently any information which is passed to a driver is mainly through variable messaging signs, 

prior internet usage or social media. However there have been significant amounts of investment 

in Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) communication systems which could 

be used to improve route choice, provide valuable information for drivers and improve signal 

coordination. A European funded project called Cooperative Vehicle-Infrastructure Systems (CVIS) 

has researched and developed a new communications architecture which enables vehicles to 

communicate with one another and the surrounding infrastructure. The medium of 

communicating is through WLAN, infrared, cellular (GPRS/UTMS) or digital broadcast 

communication (CVIS, 2010a), which means there is a high potential for infiltration as a large 

number of vehicles will be able to communicate by one of these methods. Trials using the CVIS 

architecture and traffic control system have suggested that vehicles could save approximately 

15% on travel time, and minor road traffic could save up to five seconds per vehicle per junction 

(CVIS, 2010a). This system was based on vehicles communicating with the surrounding 

infrastructure so that vehicles would be informed of the downstream signal plan and a suitable 

speed so that they arrive during a green wave. 
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Also, if vehicles are able to communicate with one another and there is heavy congestion then 

this information can be passed upstream of the incident rapidly. The EU project COOPERS used a 

driving simulator to demonstrate that drivers change their driving behaviour when advanced 

warning is given of severe driving conditions, and the driver’s average speed dropped by 14% 

(COOPERS, 2010). Therefore incoming vehicles could avoid joining queues or entering congested 

areas by using this information; hence improving the state of the network. A study carried out by 

the National Highway Traffic Safety Administration in 2010 says that V2V has the potential to 

reduce 79% of target vehicle crashes on the road because vehicles would be able to communicate 

with one another to avoid accidents occurring (Green Car Congress, 2011). As V2V and V2I is 

already in the trial phase with many major investors (Compass4D, 2013), then it is very probable 

that this will feature in various cities within the next decade as high end manufacturers begin to 

install more advanced systems in their vehicles.  

Traffic View (Dashtinezhad et al., 2004) was an early research project which experimented with 

Vehicle Adhoc Networks (VANET), where vehicles had short ranged wireless communication 

devices installed and therefore vehicles could share information with one another. By using 

VANET’s, vehicles transmitted location, identification number, speed, direction, state and a 

timestamp to the surrounding vehicles. Then UTC junctions were able to detect this information 

and determine appropriate signal timings based on the number of vehicles at each arm. 

There has been a recent trial in Michigan with over 3000 vehicles that could communicate to one 

another (Funkhouser, 2012). These vehicles use dedicated short range communications (a 

wireless radio spectrum) which has a range of approximately 200m. The vehicles were able to 

share information regarding journey times, incidents on the road or weather conditions. This type 

of V2X technology enables vehicles to share additional data such as the vehicle’s location, speed 

and destination. 

One of the biggest barriers to implementing V2X (either V2V or V2I) technology for traffic control 

is the low levels of infiltration in vehicles, however, 12 major vehicle manufacturers have set a 

self-imposed target of including V2X hardware in all new vehicles from 2015 onwards (ITS, 2012). 

This will obviously take time to filter through, Green Car Congress (2013) have predicted that 

there will be a 10% infiltration of V2X by 2018 and ABI research (2013b) predicts up to 61.8% 

infiltration by 2027. Public acceptance of these systems is still very important to ensure the 

success of this technology but it will be helped by the fact that 12 major manufacturers are 

including the technology in all new vehicles. 
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Bluetooth 

Bluetooth sensors are becoming more popular for journey time estimation and Transport for 

London (TfL) have carried out trials to find out if Bluetooth could be used to send information to 

drivers along key urban routes (TfL, 2006). One of the problems with Bluetooth sensors is that 

there is no certainty of the infiltration rate within vehicles which makes it inadequate for 

accurately determining flow, however it does provide good speed and presence detection data 

(ITS, 2011a). 

Manchester (UK) has recently invested in Bluetooth technologies in order to determine average 

link-based journey times along a major route (TDC, 2013). This information is desirable so that it 

can be communicated to incoming drivers so that they will not add to the congestion by 

potentially seeking an alternative route. One of the significant benefits of Bluetooth is the cost of 

the equipment, very little infrastructure is required to detect Bluetooth enabled devices (mobile 

phones and vehicle stereos) and therefore it is a cheap data source for local authorities. 

 

Floating Vehicle Data 

Floating vehicle data is a detection technique likely to be used more in the near future as it has 

already been tested (e.g. by ITIS Holdings plc and OPTUS (PR Newswire, 2009)). This is where 

active mobile phones can be used as traffic sensors; the location and velocity of the vehicle can be 

inferred which informs the network operators of the state of the road. One of the most beneficial 

features of this technology is that no extra hardware is required through the network; however 

new system architecture would be required to incorporate the new source of information into the 

traffic controls, as the current systems use a single detector point as opposed to a continuous 

data stream. Currently it is quite difficult to calibrate and validate UTC systems, but when floating 

vehicle data is used, it could become easier due to the simplicity of data collection (CVIS, 2010b). 

 

Communication Systems 

Currently variable messaging signs are the main method of conveying network information to the 

driver. However as live traffic feeds for satellite navigation systems or smartphones becomes 

more commonplace then the operator could inform the motorist of any delays and re-route the 

vehicles through in-vehicle technologies. According to the CVIS project, the future ideal ITS needs 

a communication sub system which: (CVIS, 2010c) 

 Is available wherever and whenever a vehicle is present in a traffic situation 
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 Can communicate vehicle to vehicle and vehicle to infrastructure in a transparent way 

 Relieves the application from the need to know about communication setup and 

management 

 Uses modern internet techniques and standards for global usability (IPv6) 

 Provides a range of different possibilities related to data speeds, communication distance, 

cost and many other parameters 

Augmented Reality Dashboards 

In-vehicle technologies continue to expand so that vehicles can become not only safer, but have 

much greater functionality than a basic car. Augmented Reality (AR) dashboards could be used in 

the near future to highlight hazards or other important information to the driver. 

 “So if you're approaching a car too quickly, a red box may appear on the car you're 

approaching and arrows will appear showing you how to manoeuvre into the next lane 

before you collide with the other car. An augmented reality GPS system could highlight the 

actual lane you need to be in and show you where you need to turn down the road without 

you ever having to take your eyes off the road” (HowStuffWorks, 2012). 

This provides another method of communicating with road users which enables them to receive 

up-to-date routing information or information about potential delays. AR systems are designed to 

provide information safely to the driver without the need for them to take their eyes off the road. 

BMW are currently developing AR dashboards as they already have a windshield display which 

shows drivers some basic information (HowStuffWorks, 2012). 

For this system to work, advances in car internet systems would need to be developed further. 

According to CarandDriver (2010), internet in cars is currently in its infancy, with only a few high 

end manufacturers experimenting with it in their latest models. They expect that most new cars 

will become Wi-Fi hot spots, either sharing an internet connection with a smartphone or with its 

own data plan. They predicted that in 2015, nearly 25% of cars will be connected to the internet, 

and Bracken (2013) predicts that every new car will be connected to the internet by 2025. If cars 

are connected to the internet in the near future then this makes communicating with them, and 

surrounding vehicles, much faster and easier than traditional VMS techniques. This will enable 

vehicles to emit a vehicle status containing vital information such as velocity, route and journey 

time, and the vehicle can be used as an active safety measure. If two cars are rapidly approaching 

a junction at the same time then they both could be warned before an accident takes place. In 

Japan, Nissan are testing an in-car system which can let drivers know where other cars have had 
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accidents, preview hidden road hazards, and ‘sense’ the cell-phone signals of pedestrians to alert 

drivers of their presence (CarandDriver, 2010). 

 

2.4.2 What systems are likely to be used in the near future? 

Artificial Intelligence Signal Control Methods 

Trends in data become even more difficult to spot to the human eye as data sets grow ever larger; 

and the transport industry will inevitably turn to Artificial Intelligence systems to aid them with 

data manipulation (Foresight Report 2006). Traffic flow patterns can be recognised easily and are 

well documented for all major cities, but this information could be used more within signal 

control plans. It may be used for the design of the junction, but UTC systems do not consider the 

likely impending flow upon the junction. Traffic operators currently use specific strategies (or 

plans) to accommodate individual scenarios, but what if these indicators could be automatically 

detected and the relevant plan put into action? For example, if there is a football match in city 

centre then there will be a sudden, large influx of traffic trying to use the arterial routes at the 

end of the match. Detectors on the roads surrounding the stadium could be used in an intelligent 

way to prioritise all arterial routes out of the city so that the duration of congestion is minimised; 

however the current practice of resolving this situation is for a network operator to pre-empt the 

influx of traffic and set the strategy for a particular time within the UTC system. 

The University of Southampton have worked on new signal control algorithms which are able to 

pre-empt traffic flow using machine learning techniques, which are able to reduce the delay on 

vehicles compared to SCOOT and MOVA (Box and Waterson, 2012). However a major barrier to 

implementing a new traffic control system is the need for a new architecture to manage all the 

new data sources available throughout the network. Also, current systems such as SCOOT, SCATS 

or UTOPIA are thoroughly tested systems, whereas any new product has only simulated results 

and it could be very challenging to persuade a town or city to trial the new system.  

However, there is no reason why a new traffic control system could not be implemented within 

the next decade, even with these barriers to implementation. The required detection and 

communication technology is already available to trial new systems but the inertia within the 

industry and the logical desire to defend one’s market share may prevent new systems from 

entering the market. The existing systems have been used for more than 30 years and a new 

system could help to bring UTC in line with the technology available today.  

 



Chapter 2 

41 
 

Machine Vision and Automated Vehicles 

Globally, it has been estimated that there are 1.2 million people killed annually in road traffic 

accidents and a further 50 million seriously injured (Mohan, 2002 and WHO, 2010). This motivates 

many companies to try to improve safety standards through more automated processes within 

vehicles, especially as 90% of all accidents are due to human error (WHO, 2004). However there 

are many barriers to this, primarily the law need to be changed so that driverless vehicles can be 

legally used without the need for a person monitoring the car (ReadWrite, 2013). There are 

already many automatic systems in vehicles to reduce accidents, such as Collision Avoidance 

Systems, Automatic Parking, Lane Monitoring and Driver Monitoring to avoid a driver falling 

asleep at the wheel. 

Advances in machine vision and semi-automated vehicles could have a significant impact on 

reducing accidents but also by smoothing traffic on the road network (Bose and Ioannou, 2003). 

Vehicles would be able travel closer together and at a more constant speed, therefore reducing 

the space on the road and improving fuel efficiency. As vehicles become more automated and 

have more sensors then the network operator will have a much richer data set which could be 

used for signal control, traffic monitoring and provide route choice information to the vehicles or 

drivers. Also there are many social benefits to using fully automated vehicles, especially for 

people who are unable to drive, the elderly, and it could eliminate drunk-driving accidents 

(DaVinci Institute, 2006).  

The improvements in machine vision are not limited to automated vehicles; they could greatly 

improve roadside monitoring for traffic operators. Current traffic cameras could be used to help 

predict and monitor turning proportions, vehicle occupation and other road user statistics. 

The biggest barrier to automated vehicles is liability concerns. Who is responsible if there is an 

accident in a driverless vehicle: the passenger, the manufacturer, the software developer or the 

maintenance garage? This is a serious issue which needs to be resolved before fully automated, 

commercially viable, vehicles could become a reality. The Google driverless vehicle is only legal 

when there are two passengers monitoring the vehicle at all times, however the only accidents in 

which the vehicle has had were two human error situations where a person was driving and 

another vehicle drove into the back of the vehicle (Wall Street Journal, 2013). The other potential 

barrier for the driverless car is: would people be willing to concede driving to an automated 

vehicle? According to Cisco (2013) 57% of people would be willing to use a driverless vehicle, and 

it is very likely that this will increase if there are no at fault accidents when the driverless vehicle is 

introduced. 
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Connected Vehicles 

A connected vehicle is one which is connected to the internet through some means of 

communication, such as 3G, 4G or V2X. If all modes of transport were controlled by one authority 

then there are potential benefits for the local authority, road user and the environment. A road 

user could use a smartphone (or other connected device) at the start of their journey to 

determine the most suitable route to their destination. The decision could be based on cost, time, 

environmental impact or distance and the device could suggest the best route for that individual 

based on the current (or predicted) road conditions, public transport infrastructure, weather and 

user’s willingness to walk or cycle. An integrated system could be used to pay for the entire 

journey so that travelling on different modes can become simpler and could be fairly compared. 

This ‘future of transport’ would have a number of barriers, similar to what the Oyster card in 

London faced, but could increase the use of public transport and enable people to make an 

informed choice about their route. The biggest barrier would be for different modes of transport 

to be controlled under one authority or willingness to use shared tickets which would remove a 

potential differentiator in the competitive mobility market. 

 

Google Traffic 

A recent example of how a non-government commercial innovation can be applied to a higher 

level transport system is Google Maps. Since 2007 Google Maps have displayed live traffic 

information for users who planned their route before travelling. This uses crowd-sourced data 

(where Google users share information) to gather anonymous location and velocity data to 

estimate the road conditions (Barth, 2009). Google then processes the information to output a 

visualisation of how congested or ‘free flowing’ the road is (although during the summer of 2011 

the feature was briefly removed as Google themselves believed it to be “too inaccurate” 

(Schwartz, 2011)). 

 

Feedback to Drivers 

Wiering et al. (2004) stated that being able to predict traffic conditions is very important for 

optimal traffic control and emphasised that communication with drivers would be very beneficial 

to help reduce the effects of congestion. Levinson (2003) highlighted that by increasing the 

percentage of ‘informed’ drivers (i.e. choosing the best route) then the average journey time 

would reduce for both the informed and uninformed drivers. This highlights the benefit to having 

feedback to drivers within the network so that delay can be reduced for all users. 
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Internet of Things 

The ‘internet of things’ is a methodology with which vehicles will be able to send and receive 

data. Individual vehicles have unique identities and act as messaging systems in which other 

vehicles, pedestrians and UTC operators will be able to read data sent from the vehicle. This could 

be where they have been, where they are going, what the weather was like in the previous road 

section and many other characteristics which may be of use (EPoSS, 2008). 

 

Privacy Concerns 

One of the largest problems with the location technologies described here are privacy issues 

regarding the information gathered from mobile phones or satellite navigation systems (Leduc, 

2008). The data collected is made anonymous before being used to describe the road condition; 

however the general public may not believe this or understand the reasons behind collecting the 

information (Cruickshanks and Waterson, 2010). Many companies use vehicle tracking to locate 

all of their fleet at any given time, but employees must first be told that they are being tracked, 

but employers do not have the right to track company vehicles when they are being used outside 

of working hours (Expert Market, 2014). 

Members of the public want to know what data is being collected, if it can be traced back to 

individuals, why the transport authorities need it, should it be constrained to law enforcement 

only and can fines be issued because of this data? These questions need to be addressed so that 

the public can feel reassured that their privacy is not breached in any way (ACLU, 2012). 

 

Discussion of Future Technologies 

There are a vast number of potential scenarios in the near future and it is very difficult to predict 

with any real accuracy. However with the rapidly increasing number of new data sources, then it 

is inevitable that more automated control processes and machine learning is essential for the 

future of transportation engineering. The technology used in vehicles and roads is rapidly 

improving and the control systems must keep up with the advances in technology. 

Moriarty and Honnery (2008) stated that “an examination of the history of transport technology 

shows that although genuine breakthroughs do occasionally occur, they are not as common as 

thought”. This is remark highlights the difficulty in predicting with any level of certainty when 

specific technologies will be fully implemented, but it is probable that crowd-sourced data will be 

used in near future as trials have already been carried out (PR Newswire, 2009, CVIS, 2010a). 
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2.4.3 PHASE 6 - Automated Urban Traffic Management & Control  

As technology advances and policy drives toward continually reducing the need for human input 

into UTC systems, the likeliness of a future where UTC is based around more intuitive systems 

which run without human assistance become ever more probable. However the system will need 

to be able to highlight any issues within the network to the control centre. These automated 

systems should be able to manage the UTC system and ITS technologies efficiently to reduce 

human error during operation. An advantage of having a fully automated system would be the 

reduced costs, both labour costs and maintenance costs would be lower with less hardware in the 

road (inductive loops, infrared sensors) as network operators could use detection technologies 

such as floating vehicle data, smartphone and satellite navigation systems. 

With an intelligent automated system, the system could learn over time how best to control the 

traffic signals if it were to monitor the average delay per vehicle. This type of control system has 

been developed and is based on logistic regression and neural networks. This automated method 

proved to outperform MOVA in simulation modelling but is yet to be tested on a real network 

(Box and Waterson, 2012). 

While fully automated systems clearly have advantages, it is not anticipated that humans will be 

completely removed in the near future. As described previously, current UTC systems are unable 

to take a holistic view and pre-empt large traffic flows. Large city events, such as sporting events, 

can cause considerable trouble for the surrounding traffic control systems if strategies are not 

created to deal with the impending large flows. Due to the nature of sudden increases in traffic 

flow, UTC systems will require some human input to update the time of these events, unless a 

vehicle’s route choice is shared with the control system. 

When a holistic view of traffic management is taken, individual junction efficiencies can suffer to 

improve the state of the network as a whole. This occurs within SCOOT regions so that a regional 

net benefit can be achieved. This is also used in the concept of gating, where minor roads are 

intentionally delayed to maintain higher flow rates and more reliable journey times on the major 

route; for example, gating was used at the 2012 London Olympics to improve journey time 

reliability along key corridor routes (SCOOT, 2008). 

If the control system was automated then it may recognise flow breakdown much quicker than a 

human, so it could prioritise major roads to potentially reduce overall lost time. When road 

conditions are approaching saturated flow then it would most likely be beneficial to prioritise the 

major roads at junctions to maintain free flowing traffic for as long as possible. This could cause 

significant delays to a small number of motorists though (potential rat-running traffic), which 
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might be perceived as unfair, even though it could improve the state of the road for the 

remainder of their journey. 

 

2.4.4 Information Abundance 

If new technologies, such as floating vehicle data and vehicle to vehicle communications, are used 

in the near future to help coordinate traffic control, then there will be a paradigm shift from an 

era where there was a lack of information available to the UTC operator, to an era with an 

abundance of data. Currently there is a limited amount of data available through traditional 

sensors (inductive loops, infra-red, radar) and operators would like to know more information 

about the network, whether it be journey time data through automatic number plate recognition 

cameras or more CCTV cameras. However, if all of the potential new technologies are utilised 

then an increase in operational resources would need to be allocated to interpret the data, or else 

the extra information could become a wasted, and expensive, resource. A big challenge is being 

able to filter the many new data sources into a result which is relevant and useful for the network 

operator. 

The transport industry is beginning to consider how it could use technologies which were not 

specifically designed for it (ITS, 2011a); for example Wi-Fi has a dedicated bandwidth in Europe 

for transport but Wi-Fi was not designed with UTC in mind. Cellular data is now available for 

estimating journey times, and ‘apps’ have been developed, based on the very high infiltration 

rates of smartphones, which can display the current state of the network through crowd-sourced 

data. Also, satellite navigation systems were not developed with the intention of providing crowd-

sourced data for traffic control. However, the fact that UTC is moving in the direction of using 

technology which was not specifically developed for it can be seen as a result of financial-style 

policies. By using existing technologies which do not require any additional infrastructure on the 

road, then perhaps policy could more strongly enforce these potentially cost effective methods. 

Before new policies can be implemented, the technologies must be assessed using a cost benefit 

analysis tool (DfT, 2011c). Benefits are typically measured in the form of vehicle hours saved, 

willingness to pay and the reduced maintenance costs (if any), whereas some of the costs will be 

the initial outlay and operational costs. Throughout this chapter, policy has been shown to reduce 

costs through implementing new technology but money is not the only influencing factor. There is 

a real challenge involved with trying to quantify other benefits, for example, the ‘willingness to 

pay’ value is widely accepted within the industry (SafetyNet, 2009). However, as monetary 
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valuations on issues such as road safety are subjective, then a sensitivity analysis needs to be 

carried out before deciding on whether a project is beneficial. 

The dissemination of information is also changing within the transport industry; it’s not only local 

authorities who have to collect and disseminate information now. Social networking is having an 

impact on the way in which people travel, and it is an easy way to share traffic information with 

the general public. Many local authorities have Twitter and Facebook accounts so that they can 

pass on useful information to the local residents and visitors. Also with the increase of smart 

phones, there are ‘apps’ available to update the user of congestion so that they can use other 

routes (ITS, 2011b). Although it is still in its infancy as an industry, commercial travel information 

dissemination (i.e. not directly from local authorities) is also increasing, especially through 

increasing development and use of real-time data feeds for in-vehicle navigation systems. 
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2.5 Conclusion 

Urban traffic control has evolved significantly due to continually facilitating technological 

improvements which has been encouraged by the policies implemented. The current coordinated 

UTC systems however are still limited by the availability of data and there are many technologies 

which are likely to be introduced in the near future which could improve detection and 

communication techniques to shift the balance to an abundance of data. At present, UTC systems 

do not generate sufficient feedback from the data they have and therefore minimal attempts are 

made to continually improve the configuration (operator’s discretion). A strategic view of the 

entire urban network, with improved detection and communication technologies, is required to 

enter the next evolution of urban traffic control. 

The detection and communication technologies required (Wi-Fi, smartphone, Bluetooth, cellular 

data, vehicle to vehicle communications) to support this next phase are readily available now, but 

the infrastructure and architecture required to support them is not in place. Large investments 

are required to implement such systems (especially a move from infrastructure based to vehicle 

based detection) and this is the key block to achieving the next generation of UTC systems. 

Transport policy therefore needs to be changed to accommodate these new technologies into the 

transport network, but unfortunately there may be very long lead times (years or even decades) 

before the changes come into full effect (Eddington Report, 2006). This is the first time in UTC 

history where policy has not been the driver for the next stage; and until the environmental 

implications of the EU White paper are incorporated into policy, it will continue to be new 

technologies, which were not specifically designed for UTC, that is driving policy.  

The challenge will then be how to create a more integrated, intuitive control system which 

requires minimal human input. New technologies will help to develop a better understanding of 

where vehicles are, and where they are going, however, the current UTC systems have no way of 

using or collating this new information. Innovative control algorithms will need to be developed to 

utilise new data sources and help us to take the next step of the UTC evolutionary chain. 
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2.6 Chapter 2 Key Points 

1. Urban traffic control has changed significantly over the past century as policy has often 

led to advances in technology. 

2. Current UTC systems are heavily reliant on infrastructure based detection but there are 

many opportunities to shift this to a vehicle based detection (Wi-Fi, Satellite navigation 

systems, Bluetooth, smartphones, cellular data). 

3. However this will require significant investment as a system architecture change is 

required to decipher relevant data from these large data sources. 

4. This information is likely to provide the operator with a much richer data set containing 

vehicle speed, location, origin, destination and potential route choice through the 

network. 

5. Future systems are likely to use more integrated, automated processes in order to reduce 

human errors, both in network operation and vehicle control. 

6. Need to understand how any new traffic control systems should be evaluated and 

therefore need to investigate key performance indicators. 
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Chapter 3: Key Performance Indicators 

Key Performance Indicators (KPI’s) are essential within UTC to understand what effect the traffic 

control system is having on the network. There are local, regional and entire network KPI’s, all of 

which are required to develop a full understanding of how traffic is behaving and how people are 

moving across the city. Therefore this chapter will investigate what role KPI’s have in traffic 

control and what are the most suitable indicators for evaluating any novel traffic control 

algorithms which are going to be developed during this research project. 

A number of interviews were carried out to understand the priorities of different stakeholders 

within the traffic control industry. The interviews were carried out with people from three 

different roles and from three different cities so that different work cultures could be observed 

and each of them could share what factors they perceive as affecting overall network 

performance. This chapter will display the results of the interviews and a thorough literature 

review, which provides a good understanding of what metrics are most useful for UTC systems. 
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3.1 Interviews with Key Stakeholders 

Interviews were carried out in 2012, with a UTC network operator in Bristol, a UTC signals 

engineer in Southampton and the Chief Transport Analyst at TfL. This section will highlight some 

of the key points made regarding network performance. Appendix 1 shows the interview 

questions which were asked to each of the interviewees. 

 

3.1.1 Network Operator - Bristol 

One of the network operator’s main roles is ‘firefighting’ everyday problems within the network; 

to achieve this, network operators need to have good communication links with the local radio 

stations, bus companies, road works contractors and police services so that up to date 

information regarding the network can be disseminated. 

One difficulty faced by Bristol control centre is that there are different councils controlling various 

parts of the network. There are some roads which are out of their control, which have a 

significant impact on the performance of their network. Therefore very good communication links 

are essential; however the preferred solution would be to have one control centre controlling the 

entire network. 

Network operators will frequently override SCOOT to force stage skipping in rush hour periods to 

alleviate some of the traffic on major routes. This demonstrates the need for suitable training of 

network operators because they are making decisions based on observations from the network 

and are significantly affecting the performance (either positively or negatively, and it is hard to tell 

as the performance gains are humanly perceived by the operator). The KPI for network operators 

is therefore queue length as they will prioritise major roads if the queue length is too high. 

The network operators are not involved in the annual reports which document the performance 

metrics, and they believe that the manager holds the holistic view of the network. However 

performance targets are discussed at daily and weekly team meetings, where there is an effort to 

create synergy within the control centre between the traffic signals, maintenance and ITS teams. 

The network operator stated that there are key junctions within the network which can signpost if 

the entire network is operating well or is congested. The challenge for the network operator is to 

ensure that these key junctions are flowing smoothly. This emphasises the importance of 

understanding the network, and how difficulties could arise in automating the process as humans 

currently identify the critical junctions within the network. 
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The network operator believed that accurate journey time data from Automatic Number Plate 

Recognition (ANPR) cameras would be the best way to measure performance benefits from new 

schemes, because currently it is very difficult to justify any changes they make. Much of the 

justification is through observations in the network and witnessing a perceived improvement, 

which is not deemed as satisfactory rationalisation for annual reports. They believe that a way of 

improving the performance of the network is to have better VMS infrastructure in place, more 

ANPR cameras to observe the network and more methods of communicating with drivers through 

social media. This highlights the need for network operators to be able to communicate with 

drivers to observe a performance gain throughout the network. 

 

3.1.2 Transport for London (TfL) Chief Transport Analyst - London 

London is the largest city in the UK and provides a very different viewpoint to Bristol on the role 

of traffic control. TfL control the largest network in the UK where they manage 5% of London’s 

roads but 30% of London’s traffic volume. There are approximately 6000 signals and 

approximately 2000 of them are SCOOT controlled. After using a number of different 

performance metrics, it was determined that journey time reliability was the most suitable KPI for 

TfL to use, where a target of 89% of journeys must be considered as reliable. TfL stated that they 

discovered when journey time reliability improved then journey time was reduced, emphasising 

that there is a strong relationship between the two. Another reason for choosing journey time 

reliability is because the KPI must be public facing and easily understandable by Londoners. 

Reliability of journey time is defined by TfL as: 

“The percentage of journeys completed within an ‘allowable’ excess of 5 minutes for a 

standard 30-minute journey during the weekday morning peak period” (TfL, 2011). 

TfL also believe that more ANPR cameras throughout the network would help them gain a better 

understanding of how the network operates. They receive over 14 million vehicle snapshots on 

ANPR cameras every day, of which approximately 1 – 1.25 million are considered as useful 

journeys. Therefore there is an abundance of data to manage within TfL and the perception is that 

there is excellent temporal data but very weak spatial data; hence why more ANPR cameras 

would help with understanding the network. TfL are investigating the possibility of using O2 

cellular data to improve spatial awareness throughout the network and they are trialling 

Bluetooth data to improve granularity of data sources. 
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TfL try to optimise people movement as opposed to traffic movement, especially as they control 

the tube network as well as the traffic signals. Performance targets are carefully chosen so that 

one mode of transport will not negatively affect another; for example, when driver targets are set 

there is a corresponding pedestrian target to ensure that any improvements made for drivers are 

not at the expense of pedestrians. 

TfL stated that there are core links in every corridor and they typically determine the performance 

of the whole corridor. This corresponds with what was described by the network operator at 

Bristol, and therefore gives further support to the validity of this statement. 

TfL have a much larger team dedicated to traffic control than anywhere else in the UK, and there 

are many more resources available to investigate relationships in the data collected. Some 

research carried out by TfL investigated all of the causal effects on journey time reliability, where 

a list of over 200 variables was created. It was concluded that only 4% of the network can be 

controlled or influenced by them. Traffic volume has the biggest influence on network 

performance, of which there is no real control over. TfL expect large scale schemes to only have a 

reduction of approximately 1% in delay. This expectation seems to be substantially lower than the 

improvements described by many UTC systems in Section ‎2.3, and therefore should not be relied 

upon as an indication of potential gains from any new algorithms developed during this research. 

 

3.1.3 UTC Signals Engineer – Southampton 

Southampton was the smallest of the cities investigated with the fewest number of staff working 

at the traffic control centre. The UTC signals engineer considers the most important performance 

metric for controlling the network as the ‘maintenance of assets’, by attending all faults quickly, 

tracking the fix times and continuously assessing how the department is dealing with faults. This 

approach is vastly different to the other two control centres; the signals engineer stated that 

SCOOT is the best system available and that they do not challenge the ‘proven technology’. 

Their biggest concern was budget constraints and how the budgets were allocated for transport. 

The issue is that the performance targets were set by ‘laymen’ and they had no knowledge of how 

the network would be affected by the targets, yet if the department did not meet them then they 

would lose funding. This problem emphasises how performance is not necessarily the ‘top priority’ 

of the traffic control centre, but maintaining the funding is obviously more important. 

The signals engineer also emphasised the importance of good communication with bus operators, 

police, radio and contractors. They suggested that the state of the network would improve by 
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moving towards mobile detector data as it is cheaper and provides better coverage of the 

network.  

A holistic view of the city was taken as they wanted to ensure that a good experience occurs for 

every driver coming into and going out of the city. For example shoppers should have a smooth 

experience entering and leaving the city to ensure that they will return and boost the local 

economy. It was suggested that the traffic signals should be manipulated more in favour of 

improving the commuter and retail experiences in the city, which would improve its connectivity. 

They stated that network operators make a lot of day to day decisions throughout the network 

and this has significant impacts on the performance, therefore training is essential for the staff. 

However there is no performance based, daily targets set for the operators, as they have 

confidence in SCOOT, and try to ensure that the variables are validated. 

Section ‎2.3 demonstrated the considerable benefits of using vehicle actuated control systems 

over fixed time controllers; however TRB (NCHRP, 2010) suggested that UTC operators did not 

believe that they received enough training. After carrying out the interviews it became obvious 

that much of the network is operated by people who make decisions based on a perceived 

benefit. Therefore it is incredibly important that these people are trained sufficiently to ensure 

the maximum possible benefits are achieved. 

 

3.1.4 Summary of Interviews 

The three interviews provided an invaluable insight into how different stakeholders value 

different performance metrics for optimising their system. However, there were some common 

themes throughout all of the interviews: 

 Excellent communication is essential for increasing the performance of the network, 

where it is important to communicate through a number of mediums, such as Twitter, 

radio and the police. 

 All interviewees highlighted the importance of recognising ‘critical’ junctions within the 

network, so that they can be optimising to minimise the negative impacts on surrounding 

junctions. 

When developing suitable key performance indicators for a whole network, these holistic views 

must be considered. 
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3.2 Key Performance Indicators for Individual Junctions or Regions 

There are two types of performance targets which are of interest to traffic operators: local KPI’s 

which can be used to assess a single junction, and holistic, network based KPI’s. From the 

interviews described in Section ‎3.1, the network KPI’s are the targets which must be met to 

secure funding from the government; however when considering their use in traffic control 

algorithms it becomes more difficult. This section will discuss the individual junction (or small 

region) KPI’s and how they need to be managed. 

 

3.2.1 Delay 

Gradinescu et al. (2007) developed a signal control technique and emphasised how the 

performance metric needs to be considered before developing the model. Possibilities included 

minimising the average delay of vehicles, increasing progression of vehicles between 

neighbouring junctions by coordinating platoon travel, reducing the queue length of all 

approaches to a junction, reducing overall fuel consumption and reducing pollution emissions. 

They concluded that the most useful metric for signal control was minimising average delay to 

vehicles. 

The implication of minimising delay at junction is that a cycle length should be as short as possible 

to produce less wasted time and dispersed queues. However there is a critical point where the 

percentage of inter green time is too high and causes additional delay (Gradinescu et al., 2007). At 

this point, the cycle length should be increased and can be slowly increased up to the junction 

constraint which is set by the governing body; for example, the DfT recommend that cycle times 

should not regularly exceed 120 seconds (DfT, 2007). 

SCOOT aims to maintain the saturation level of junctions around 90 - 95% in order to minimise 

delay in the region (Chaudbury et al. (2002) also suggests the use of 95% saturation). SCOOT 

controls regions which typically contain six to eight junctions, and there is a critical junction which 

dictates the common cycle time for all of the other junctions within the region. However the 

problem is that not all of the junctions will be running under the same flow conditions and 

therefore the critical junction could be much more saturated than the others. This results in a 

much lower saturation level at non critical junctions, which inevitably results in longer delays to 

vehicles at those junctions. Gradinescu et al. (2007) states the selection of a cycle time needs to 

be as short as possible to minimise delays, but by forcing all junctions to run under the same cycle 

time in a region, it will reduce individual junction efficiency, but more importantly, by 

coordinating the junctions then the efficiency of the whole region can be improved. 
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When calculating delay manually (i.e. not using a simulation software package) then the typical 

free flow speeds are useful to determine what the journey time would be if there was free flowing 

traffic travelling through the network. These speeds, determined by DfT, can be seen in Table 3. 

Table 3: Free flow speeds according to DfT (2013) 

Speed 
Limit 
(mph) 

Trunk 'A' Road, 
Single 

Carriageway 

Trunk 'A' Road,   
Dual Carriageway 

Motorway 

30 22 25 - 

40 32 30 - 

50 40 37 50 

60 45 57 60 

70 - 62 67 

 

Webster (1958) derived a formula which calculated average delay per vehicle: 

𝑑 =
𝑐(1 −

𝑔
𝑐)2

2(1 −
𝑞
𝑠)

+
𝑥2

2𝑞(1 − 𝑥)
− 0.65 (

𝑐

𝑞2
)

1/3

𝑥2+5𝑔/𝑐 

Where: 

d = average delay per vehicle 

c = cycle length 

g = length of effective green phase 

q = arrival rate of vehicles 

s = saturation flow 

x = the traffic intensity (qc/sg) 

 

Webster’s equation has been accepted and used by many other authors (Udoh and Ekpenyong, 

2012). One of the key assumptions regarding this method of calculating delay is that the signal 

control method is fixed time, which means that a cycle length will inherently exist. This 

assumption will be investigated further later in this research. 

 

3.2.2 Safety 

There is often a trade-off when deciding upon a performance metric. Salter and Hounsell (1996) 

highlight a common trade off in UTC systems which are trying to minimise delay over the network, 

as they prioritise major routes at the expense of the minor road users. Also there are allowances 

made to improve the safety of a junction, for example, there is a concession made for safety 

against junction efficiency when determining an appropriate inter-green time. The inter-green 

time is calculated depending on the size of the junction and there is a short amount of time where 

no vehicles are moving to ensure the junction will operate safely. Safety is used as a constraint on 

junction set-up and operation to meet KPI targets as opposed to a measurable value which 
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influences signal timings (for example, queue length can be measured every second, whereas 

safety is measured over a much longer period of time). 

Safety is the priority when designing a traffic control system for a junction, and sometimes the 

efficiency of the junction must suffer to improve the safety standard. Traffic lights were installed 

at a roundabout in Poole in 2011, and as a result the accident rate dropped from an average of 7 

accidents per year to 2.68 accidents per year, however many local people complained about this 

as the delay was perceived to be larger (BBC, 2011). The traffic lights were estimated to save the 

local economy £300,000 each year and potentially lives of the local people, yet there were still 

requests to remove the traffic lights to improve flow. This example highlights that even with 

public opposition local authorities will try to prioritise safety over traffic flow. 

 

3.2.3 Reliability of Journey Time 

Some KPI’s are not considered as public facing, for example, motorists may not appreciate seeing 

the average speed travelling through a city because it is much lower than what could be expected. 

The average Greater London traffic speed in 2010/11 was 28.6 kph (17.9 mph), which is 

considerably lower than the speed limit, however the journey times were very reliable 

(approximately 88 – 90% were deemed as reliable) (TfL, 2011). As can be seen in Section ‎3.1.2, TfL 

have concluded that reliability is what people want and when a journey becomes reliable then the 

journey times can drop; however a counter argument to this point is that a journey could be very 

reliable but also be very slow which is not what a commuter would want either. 

In the UK, the Department for Transport (2013b) sets out guidelines for how journey time 

reliability should be calculated. The Highways Agency use 70,000 GPS equipped probe vehicles 

with data every 15 minutes to help them understand the delay caused to the network. This 

process is very specific to their situation and therefore it is not particularly relevant for the 

purpose of this research (see Table 4). A simple way of determining reliability is by investigating 

the average journey time, along with the standard deviation, maximum journey time and median 

values to determine how variable a scenario is. This technique will help to determine how 

equitable a control strategy has been to all arms of a junction. 
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The DfT define reliability of journey time through the percentage of ‘journeys’ on the specified 

roads which are ‘on time’ (DfT, 2013b), where: 

 A ‘journey represents travel between adjacent junctions on the network 

 An ‘on time journey’ is defined as one which is completed within a set reference time, 

drawn from historic data on that particular section of the road 

 

Table 4: The DfT method of determining reliability (After: DfT, 2013b) 

1. For calculating the on time reliability measure, average journey times are estimated for 

each 15 minute time period throughout the day for each junction to junction link on the 

network. These journey time estimates are made using real data with a good temporal 

match.  

2. Journey time estimates are based on a minimum of two (real) vehicle observations per 15 

minute period where available.  

3. Where two vehicles are not observed in a specified 15 minute period, vehicle observations 

from adjacent 15 minute periods (i.e. 15 minutes either side) are used (together with an 

observed vehicle in the central period if it exists) to estimate the average journey time for 

that central 15 minute period. Again, a minimum of two vehicles is required across the 

three time periods. 

4. Where less than two vehicles (in total) are observed within the specified 15 minute time 

period or 15 minutes either side, vehicle observations from two 15 time periods (i.e. 30 

minutes) either side are used to estimate the average journey time for that central 15 

minute period. As before, a minimum of two vehicles are required across the five time 

periods.  

5. Where less than two vehicles (in total) are observed within the specified 15 minute time 

period or 30 minutes either side for a particular section of road or time period, reliability 

performance is calculated using other methods.  
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3.2.4 Summary of common KPI’s for Local Junctions or Regions 

There are a number of possible local KPI’s which could be used: 

1. Average delay to vehicles – this metric is used by many systems, including MOVA and 

SCOOT (which is the most used UTC system in the world). Delay can be used to explain 

the state of the current road against free flowing traffic journey time. This metric is useful 

for both individual junctions and to explain the current state of the entire network. Delay 

is not affected by driver behaviour as the delay is measured against free flowing traffic. 

2. Average stop time – This metric can be difficult to measure, and also it can be easily 

skewed by driver behaviour, depending on how quickly the driver approaches a junction. 

3. Number of stops – This metric is used to demonstrate the progression of vehicles 

between junctions, however like average stop time it can be strongly affected by driver 

behaviour (which is difficult to predict or quantify). 

4. Journey time – This information can be especially useful to local drivers, familiar 

motorway drivers and network operators to determine how congested the network is. 

5. Reliability of journey time – TfL uses this metric and it provides an excellent illustration of 

the ‘fairness’ of the control system (one vehicle isn’t benefitting at the detriment of 

another). 

6. Emissions – This is especially important in places where there is an Air Quality 

Management Area (AQMA). There can be restrictions on vehicle types passing through 

AQMAs. 

7. Cost function - UTOPIA tries to minimise a custom made cost function to prioritise public 

transport.  

8. Safety – this is commonly used worldwide to describe how dangerous a junction is. Safety 

is a key priority in KPI targets as the public typically take a very strong interest in safety. 

Many countries use seat belt use, blood alcohol levels, speed management, road safety 

audits and vehicle crashworthiness as important KPI’s (Meyer et al., 2004). 
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3.3 Wider Issues when Considering Key Performance Indicators 

3.3.1 Funding 

The use of performance targets is increasingly common within the public sector in recent years, 

however the transport sector has not been the department which led this change, it has merely 

followed suit with other sectors in the UK. The private sector has long used performance targets 

and is an integral part of the management philosophy (Marsden & Bonsall, 2005). Studies have 

shown that companies which use performance based targets consistently outperform companies 

which do not (Gates, 2001). The UK government recognised this and have tried to run the 

government more like a business (Marsden & Bonsall, 2005). 

Funding for councils is only made available when targets are met and this has caused some 

concern within local councils, as discussed during the interview process with engineers in 

Southampton. In the UK, local authorities have to set performance targets for the next five years 

and the funding will depend on how they meet the targets (Marsden & Bonsall, 2005). The 

concern is that targets may be set to improve one mode of transport but it could negatively affect 

another; hence why TfL suggest that they always have multi modal targets to ensure the benefit 

in one mode is not at the detriment of another. These targets are usually focused on a higher 

level than individual junction efficiencies and are targeted towards improvements throughout the 

network. 

 

3.3.2 Gating 

Network efficiency can often be prioritised over individual junction efficiency (Gradinescu et al. 

2007). For example, gating is used in many places to hold back traffic in areas where congestion 

does not block other roads, which enables free flowing traffic in more sensitive areas, such as city 

centres where congestion can block many junctions and bring the city to a standstill. However, 

gating policies could affect the emission targets set for the city as queuing cars will cause localised 

air pollution problems. As with some level crossings, there could be warning signs to turn off the 

engine to reduce air pollution as the vehicle could be waiting for a few minutes. 

 

3.3.3 Communication 

During a ‘UTC and SCOOT for managers’ course run by Siemens, a common problem was raised 

stating that there should only be one person dealing with the strategic vision in traffic control 

centres. The justification was: if a number of people set up the UTC timetables then others are 
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less likely to challenge what is currently used as they presume someone else has set it up for a 

reason, which could result in sub-optimal or outdated timetables. This is a great example of how a 

lack of communication within a team and a lack of clear goals can strongly affect the performance 

of a network if systems are not regularly checked, updated and documented. Also during the 

training course, a number of reasons for poor performance at a junction were highlighted: 

1. Poor validation 

2. Incorrect Offsets 

3. Too many vehicles 

4. Road works 

5. Vulnerable pedestrians and buses 

6. Exit blocking 

 

3.3.4 Stakeholders 

There are a number of different areas within major cities, such as the Central Business District 

(CBD), arterial routes, suburban areas and motorways. Each of these regions will have different 

priorities, for example, the commuter and freight drivers will want to enter and leave the city with 

minimum delays on motorways and arterial roads. Whereas suburban areas may prioritise safety, 

and the CBD could strive for lowest carbon emissions due to the EU White Paper 2011 target of 

zero carbon city centres by 2050 (European Commission, 2011). Therefore it may be beneficial to 

select different KPI’s depending on what zone of the city road users are in. 

Varying priorities makes performance target setting very challenging, for example, New Zealand 

set a target of reducing road usage by 20% but this had significant impacts on the mobility and 

sustainability targets which had been set. Hence it can be very difficult to decide on meaningful 

targets. Public consultation and integration should be an important part of developing KPI targets 

for a local area (Meyer et al., 2004). 

 

3.3.5 KPI Target Pairs 

Network performance metrics can be manipulated and therefore any KPI target needs to be 

carefully selected, and often a ‘paired target’ needs to be set to ensure that the benefit is 

occurring for the intended purpose. For example, the 2000 Ten Year Plan (for the UK) had a target 

of increasing bus patronage by 10%, which has been achieved. However this target was only 

reached because London considerably outperformed the target and due to size of London, the 
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statistics has been skewed. Most of the country has seen nowhere near this scale of increase and 

therefore the intended purpose of the KPI has not been achieved (Marsden & Bonsall, 2005). The 

target should have been split into two regions because London’s public transport is very different 

to the rest of the UK, and therefore two separate targets should have been set. It is very 

challenging to understand all of the causal links when making these KPI targets, but as mentioned 

in Section ‎3.1.2, any benefit to the road network should not be at the cost of another more 

sustainable mode of transport.  
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3.4 KPI Conclusion 

The results of interviewing three different stakeholders within the UTC industry proved an 

invaluable insight into how each stakeholder has different priorities. The network operator had to 

manage individual junctions to ensure that queue lengths did not get too long, whereas the 

signals engineer prioritised the maintenance of assets. The chief analyst at TfL stated that 

reliability of journey time is the most important KPI. However, all of the interviewees emphasised 

the importance of having good communication (with radio stations, social media, and police). The 

network operators have a significant influence on the performance of both the individual junction 

and entire network (as there are usually key junctions within the network which can define how 

the network is operating). 

A problem with setting specific modal KPI targets is that one mode of transport may be 

disadvantaged as a result of it. For example, a target to reduce delay to all motorists could be 

achieved through reducing the number of pedestrian stages at traffic lights, but this would be an 

unsustainable consequence. Therefore network based KPI targets need to be carefully considered 

for cause and effect on all modes of transport. 

The literature review suggested that the most important KPIs are average delay of vehicles and 

reliability of journey time to ensure fairness amongst road users. A number of existing UTC 

systems minimises delay (MOVA and SCOOT) and TfL strongly stated how beneficial reliability of 

journey time is. Therefore, for any experiments carried out in this research project, both metrics 

will be used to ensure that delay is minimised at the junction but also that reliable journey times 

are observed. 
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3.5 Chapter 3 Key Points 

1. Network operators perceive queue length as an important KPI as it influences their 

decision making. 

2. TfL use reliability of journey time as the KPI for London transport. 

3. Southampton’s traffic control centre perceives SCOOT to be the leading industry software 

and therefore their aim is to simply ‘maintain the assets’ and manage all faults. 

4. Minimising delay is a very common KPI and often described as the most useful. 

5. Reliability of journey time is highly desirable for road users. 

6. Network KPI targets must have an understanding of both the cause and effects so that 

statistics cannot be manipulated. For example, a reduction in delay for motorists could be 

caused by the dis-benefit to sustainable forms of transport (walking, cycling). 
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Chapter 4: Can turning intention data be detected? 

Chapter 2 has demonstrated the state of the art UTC systems and new data sources which could 

be used in the near future. This information has been essential in developing a good 

understanding of what data is available for controlling signalised junctions. This chapter will 

investigate some of the new data sources in greater detail with the intention of designing a novel 

traffic control algorithm which incorporates this data. Chapter 3 has justified which key 

performance indicators are most appropriate to evaluate any new traffic control algorithms. 

With new data sources slowly filtering into the transport industry, three key pieces of data are 

becoming more available for traffic control: speed, location and vehicle routing. Smartphones can 

provide substantial amounts of this data (depending on the surrounding infrastructure) via 

Bluetooth, V2X communication through Wi-Fi, cellular location and satellite navigation 

communication. This information provides spatial and temporal data which has not been 

incorporated into major UTC systems yet. This is a substantial gap in knowledge and therefore 

needs to be investigated further to determine what can be done with this data (Foell et al., 2013). 

As speed and location data are relatively easy to glean from new data sources, the prospect of 

knowing a vehicle’s intended route through a network (or individual junction) is a new area of 

research. There have been very few studies carried out to determine a live update of a vehicle’s 

turning intention at an upcoming junction. Previously, the idea of knowing a vehicle’s route would 

have been a ‘post event’ exercise, for example, calculating the turning proportions for a junction 

(which does not require live data for each vehicle). Siemens expressed an interest in knowing 

what the possible benefits are of knowing a vehicle’s route throughout a network. 

Therefore as discussed in Chapter 1, when a new data source becomes available there are three 

key questions must be answered: 

1. How can the data be detected? 

2. How can the data be used? 

3. Is there a benefit to using the data? 

Each of these questions must be answered before any conclusion can be drawn regarding the 

quality and possible benefits of using the new data source. Hence, this chapter will investigate the 

first of the three questions: can a vehicle’s turning intention (route choice through each junction) 

can be detected? Much of this chapter has been published in the TRB conference and 

Transportation Research Record (TRR) journal proceedings (Hamilton et al., 2015). 
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4.1 Introduction 

4.1.1 Predicting Turning Intention 

‘Turning intention’ is defined as how a driver is planning to travel through an upcoming junction, 

for example, are they intending to turn left, right or travel straight on at a typical crossroads. This 

section examines what previous research has been carried out on detecting live turning intention 

data. 

Different technologies have been used in an attempt to predict turning movements due to their 

importance in: traffic signal control systems (improved turning proportion accuracy enables more 

efficient stage determination and calibration of junction signal timings), highway safety and 

design (designing roads to help pedestrians cross the road safely and to make it easier for merging 

traffic), and in-vehicle driver support systems (emergency breaking and crash avoidance). In 

general, turning intention can currently be determined through two key methods: 

 Real time detection within vehicles (in-vehicle sensors) 

 Pre-defined route choices (satellite navigation systems) 

This section investigates both of these methods to develop a thorough understanding of existing 

research regarding prediction of turning intention. Also this literature review will be used to 

identify factors which could influence humans who are considering the same situation. 

There have been a number of studies carried out to predict a driver’s turning intention for the 

benefit of advanced driver assistance systems to improve safety on the road. This has primarily 

been for lane departure warning systems to determine if a driver’s behaviour can help the system 

to predict which way they are intending to turn. Investigations have been carried out into the 

relationship between turning movements and the driver’s eye movement, accelerator and brake 

usage, indicator activation, steering wheel angle, lane position and many other variables (Henning 

et al., 2007).  The most obvious way for a driver to share their turning intention would be to use 

the indicators (a flashing amber/red light on the exterior of the vehicle), and a sensor could be 

placed in the vehicle to alert the surrounding infrastructure of the driver’s intentions. However an 

issue with this technique is that it does not enable the system to know where the vehicle is 

intending to travel until a very short time (or distance) before the junction. 

Lidstrom and Larsson (2008) investigated proactive vehicle alert systems which warn the driver 

about hazardous situations in the near future. The conclusion from this study was that passengers 

are often able to predict what drivers are intending to do because of their surrounding 

environment and how drivers follow a common set of conventions on the road. For example, the 
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speed of a vehicle when approaching a junction, the gaze of the driver towards other roads and 

the positioning of the vehicle within the lane will help to indicate a driver’s turning intention. 

Therefore by monitoring both in-vehicle movements, such as indicator usage, a driver turning 

their head, use of brakes and accelerator, and by observing a vehicle’s speed and position within 

the lane, then it is possible to predict what a driver intends to do at the next junction. 

Similar to Lidstrom and Larsson (2008), Liu and Pentland (1997) stated that most passengers in a 

car would be able to infer what a driver intends to do simply by watching them. The passenger 

would be able to determine what the driver intends to do through eye movements, posture 

change, speed of the vehicle and lane position; therefore it is not inconceivable that sensors in a 

car would also be able to make the same conclusions from the movements. They carried out an 

experiment to test if driver intention could be determined in real time, and the results showed 

that left turns could be recognized 60 - 70% of the time and right turns were recognized over 60% 

of the time; it should be noted that this was within three seconds of being given a command to 

turn left or right, which may not represent reality as drivers could take longer than three seconds 

to change their driving behaviour. However, Hidden Markov models were developed (Liu and 

Pentland, 1997, and Oliver and Pentland, 2000) to predict when a vehicle was going to change 

lane to the left based on in-vehicle data and driver gaze information, with varying degrees of 

success. However the problem was that the manoeuvre was predicted only a very short period of 

time before the event (Naito et al., 2008), and the accuracy was 50% at best. Also, these 

predictive algorithms were all based on small sample sizes and were carried out in simulators 

(Henning et al., 2007). 

An instrumented vehicle was used in an experiment to recognize any patterns of when drivers are 

about to change lanes (Henning et al., 2007). This research identified a very strong correlation to 

when drivers look at the left mirror and indicate; which is understandable as this is the driving 

procedure taught in driving lessons. However, the problem is that during the experiment people 

tended to indicate more frequently than what other research has suggested. Olsen stated that 

only 64% of people actually use their turning signals and this has a significant effect on prediction 

accuracy (Olsen, 2003). 

Alternatively, a study carried out by Ito et al. (2004) (aimed at developing a new navigation 

system which interacts with the driver and attempts to determine turning intention), showed that 

turning intention could be predicted up to 94% of the time by using in-vehicle data; this was also 

based on a driving simulator (Ito et al., 2004). The study attempted to determine a distance from 

the junction when turning intention could be predicted, stating that it could recognise a driver’s 
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intention at 80 metres away from the junction at 60 kilometres per hour (37 mph). While this 

prediction may be specific to the particular junction that was investigated, it suggests that there 

may be a cut-off threshold on approach to the junction before which turning intention may not be 

predictable.  

Naito et al. (2008) highlights that there is a crucial stage in the driver’s preparations on approach 

to a junction, when all the participants carried out very similar actions with the brakes, 

accelerator and velocity for a turning manoeuvre, which was around three seconds away from the 

junction (Naito et al., 2008). One important difference between Naito’s experiment and the 

research in this chapter is that ‘left’ and ‘right’ movements need to be distinguished here. 

Prediction models do not solely have to rely on in-vehicle data sources. Ziebart et al. (2008) states 

that future satellite navigation systems will likely learn drivers’ preferences, habits and will be 

able to provide the driver with up to date information on the traffic network. With this additional 

data source, it could be fed into an algorithm which is attempting to predict the turning intention 

of an approaching vehicle with a relatively high confidence value for repeated journeys. 

While most of the existing research for predicting a vehicle’s turning intention has utilized direct 

vehicle or driver data such as accelerator and brake usage, steering angle and eye movements. It 

is clear that very little research has been completed on externally observing a vehicle when it is 

approaching a junction. It does however provide some insight into how external observers may 

perceive an approaching vehicle, especially the possible existence of an approach threshold 

(distance or time) before which predictions may be little more than an educated guess (for 

example, using overall turning proportions at the junction to make a prediction). 

The overall high performance of these prediction algorithms is confirmation that the approach of 

vehicles to junctions is not merely a random process, instead that different turning intentions do 

lead to different approach characteristics. Critical for this chapter is that all the existing research 

relies on detailed monitoring of the driver to make predictions (e.g. head movements or eye 

glances) from inside the vehicle. This type of information would generally not be available to an 

external observer or network operator and is therefore of limited wider application. Further 

research needs to be carried out to determine if a vehicle’s turning intention could be predicted 

from outside of a vehicle, for example, using a camera to detect intended movements. 

 



Chapter 4 

69 
 

4.1.2 Privacy 

A significant concern regarding the detection of turning intention from in-vehicle or on-person 

technologies is the potential invasion of privacy. Some people may feel uncomfortable sharing 

location data or intended journeys through a network because they would feel ‘tracked’ (see 

accusations of living in a ‘big brother’ state (The Guardian, 2009)). According to The Guardian 

(2009), the UK is already subjected to the closest surveillance of any country in the world. This 

topic does divide opinion though, and if the benefits of using systems which require location data 

could be disseminated amongst more people then perhaps more of the population would be 

interested in using such a system.  

There is a real benefit of investigating the possibility of being able to anonymously detect turning 

intention at junctions because this will reduce the need for people to willingly share information. 

If turning intention data could be externally detected then this helps to reduce any privacy 

concerns that the public may have about sharing their data. 

 

4.1.3 Safety Improvements 

Section ‎2.4.1 describes V2V and V2I technology which could enable the sharing of additional data, 

such as turning intention, from in-vehicle systems. By using V2X, it is possible to move from a 

reactive traffic control system to a pre-emptive system which could potentially provide many 

benefits to road efficiency but also safety. If vehicles were capable of sharing their intended 

turning movements then fewer collisions may take place because V2V communications would 

alert drivers of impending accidents (Green Car Congress, 2011). 
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4.1.4 Conclusion 

This section has demonstrated that it is possible to predict a vehicle’s turning intention using in-

vehicle sensors on the accelerator, steering wheel and indicator. However, sharing such data 

could prove to be a privacy concern for drivers. Therefore, due to the lack of research in 

predicting turning intention without the use of in-vehicle technology and the existing privacy 

concerns, this chapter will investigate how accurately turning intention can be predicted from 

outside of the vehicle.  

To do this, a number of areas need to be explored regarding the quality of data from observations 

outside of the vehicle: 

 What level of accuracy can be predicted by external observations? 

 How far away from the junction can a vehicle’s turning intention be predicted? 

 What are the explanatory variables which help make accurate predictions of turning 

intention? 

Before any external observations could automatically predict turning intention, it is important to 

consider how capable humans are at predicting turning intention. Therefore the previous three 

questions can be applied to people: 

 What level of accuracy can people predict turning intention from outside of the vehicle? 

 How far away from the junction can a person predict a vehicle’s turning intention? 

 What are the explanatory variables which help people make accurate predictions of 

turning intention? 

These questions will be investigated throughout the following sections. 
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4.2 Proof of Concept – Can humans determine turning intention? 

Crossing the road safely is a part of most pedestrians’ everyday routine which doesn’t require too 

much conscious thought. Drivers also are (usually) able to safely merge into traffic through their 

perception of what other vehicles are intending to do. However while both crossing and merging 

behaviour are frequently studied, the idea of predicting a vehicle’s turning intention (which is 

central to both these situations) is relatively un-researched as described in Section ‎4.1. 

New technologies are still in the early stages of development and implementation for predicting a 

driver’s intentions from within the vehicle (Henning et al. 2007), but these usually rely on accurate 

sensors being installed in the vehicle. For people to be able to perceive where vehicles are going 

when they are driving or crossing the road then they must be able to equivalently ‘sense’ what 

the vehicle is doing and extrapolate (or pattern match) this into an expected future behaviour. An 

understanding of the overall correctness of these predictions and the factors which influence the 

correctness will enable a better understanding of the impacts on signal control. 

 

4.2.1 Introduction 

As most people make predictions of traffic movements almost every day, the hypothesis for this 

section is that people have an inherent ability to ‘predict’ what an incoming vehicle is intending to 

do. A method of investigating this hypothesis is to film a number of vehicles approaching a 

junction and ask people to predict which way they believe the vehicle is intending to travel before 

the vehicle makes the movement. Therefore a proof of concept experiment has been developed 

to determine if there would be any benefit to creating a larger experiment with greater control 

measures and repeatability. If the proof of concept experiment demonstrates that people are 

reasonably good at predicting turning intention then a more thorough investigation will be 

executed. 

 

4.2.2 Methodology 

This section will explain the proof of concept experiment which was carried out to determine if 

people could reasonably predict a vehicle’s turning intention. To do this a number of videos of 

incoming vehicles were displayed to the Transportation Research Group (TRG), who was provided 

with audience participation devices. The videos were paused when the highlighted vehicle was at 

a key decision point (stop line or split in the road) so that the audience could make a prediction 

based upon all of the information they had observed up until this point. By pausing the video, this 
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ensured that all participants would have the same information and be able to make the decision 

at the same time. This was trialled on two different types of junction in this experiment, see 

Figure 4:  

 A two lane approach T-junction where there is a dedicated lane for each turning 

movement (Burgess Road – labelled ‘BR’ in the Figures) 

 A one lane approach crossroad where all three movements were possible from the single  

lane (Shirley High Street - labelled ‘S’ in the Figures) 

There were a total of 30 videos shown to 15 people who took part in the experiment. Every 

answer was anonymous but it was possible to review individual scores from each device at the 

end of the test. To encourage active participation, everyone was informed that the best result 

would win a prize.  

 

 

Figure 4: Burgess Road T-junction (Left), Shirley High Street (Right) 
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4.2.3 Results 

Figure 5 is a histogram which shows how turning intention was correctly predicted by over 80% of 

the audience in the majority of videos (i.e. 19 vehicles - 63% were correctly predicted by over 80% 

of the audience). This histogram demonstrates how successful people were at predicting 

individual vehicle turning movements, where only 13% of vehicles failed to be correctly predicted 

by less than 50% of the audience. 

 

Figure 5: A histogram showing percentage results for each video 

 

Figure 6 and Figure 7 demonstrates that participants were able to make a reasonable prediction 

regardless of whether the vehicle used an indicator or not. This can be observed as reasonable 

predictions of turning intention are still made when vehicles did not indicate when they should 

have (Figure 7). Therefore there must be additional explanatory variables other than indicator 

usage which provides observers with obvious information for predicting turning intention. 

Participants did suggest explanatory variables which helped them to predict a vehicle’s turning 

intention, such as a vehicle’s position in the road and their speed of approach. It should also be 

noted that the video quality was not particularly high and therefore visibility of the vehicle’s 

indicator was not always clear, which further emphasises that other factors are useful for 

predicting turning intention. 
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Figure 6: Results of videos when indicator had been used by the driver (in order of question) 

 

 

 

Figure 7: Results of videos where the vehicle did not indicate but should have (in order of question)  
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Figure 8 and Figure 9 show the complete results from both junctions. These figures are 

particularly useful to observe any learning effects, of which there does not appear to be any from 

observational analysis. Also it should be noted that Burgess Road only had two possible choices 

(left or straight) whereas Shirley High Street had three possibilities (left, straight or right) which 

was expected to be considerably harder to predict.  

Some videos were particularly challenging for everyone, such as video ‘BR4B’ which no-one 

correctly predicted. This highlights that prediction of turning intention is unlikely to ever achieve 

100% accuracy for all vehicles as some drivers will change the manoeuvre at the last moment. 

Therefore reliance on accurate predictions for traffic control needs to be flexible as the correct 

movements cannot always be predicted. Figure 8 also displays the result of the ‘warm up’ 

question which was named ‘BR-Easy’; however this result was not included in the analysis. 

 

 

Figure 8: Burgess Road results (left or straight were available to choose) 

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

BR -
Easy

BR1 A BR1 B BR2 A BR2 B BR3 A BR3 B BR4 A BR4 B BR5 A BR6 A BR6 B BR7 A BR7 B

P
e

rc
e

n
ta

ge
 o

f 
P

e
o

p
le

 w
h

o
 P

re
d

ic
te

d
 C

o
rr

e
ct

ly
 

Video Identifier 



Chapter 4 

76 
 

 

Figure 9: Shirley High Street results (left, straight or right were available to choose) 

 

Figure 10 and Figure 11 highlights that most of the participants found the Burgess Road 

experiment easier to predict than the Shirley Road experiments, as most participants achieved a 

higher score in the Burgess Road experiment. However there was a vehicle on Burgess Road 

where no-one correctly predicted the movement (in this video, the vehicle had very poor road 

positioning on the approach to the junction and a changed their direction after the decision point 

– when the video was paused). Only one participant achieved a higher percentage of correct 

predictions in Shirley High Street; it should be noted that they achieved the average score on 

Burgess Road then they did exceptionally well at correctly predicting turning intention. 
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Figure 10: Comparing each participant's result with Burgess Road test and Shirley Test, Note Participant 15 did not 
take part in the BR experiment 

 

Figure 11: Percentage difference between Burgess Road and Shirley High Street tests, where a positive value 
indicates that the participant scored higher on the Burgess Road experiment. Note participant 15 has been excluded 
from this graph because they did not take part in Burgess Road experiments 
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Table 5 shows descriptive statistics for each junction and how successful the participants were at 

predicting turning intention. A random guess would have averaged 50% and 33% correct for 

Burgess Road and Shirley High Street respectively, but it is clear that the participants were not 

simply guessing but able to draw sufficient information from the videos to make an educated 

prediction. In the Burgess Road experiment, the participants achieved a 35.7% improvement over 

a random guess and a 33.3% improvement in the Shirley High Street experiment. 

Table 5: Statistics from Experiment 

 Burgess Road 
Shirley High 

Street 
Difference between Burgess 

Road and Shirley (BR – S) 

Mean 85.7% 66.7% 18.5% 

Median 85.7% 64.7% 21.0% 

Standard Deviation 5.6% 11.5% 11.7% 

 

4.2.4 Conclusion 

This proof of concept experiment has shown that people can predict turning movements 

substantially better than a random prediction. The next stages of this experiment are: 

 How accurately can people predict turning intention? 

 What is the relationship between distance from the junction and correctness of 

predictions? 

 What explanatory variables are useful for making the predictions? 

Predictably, participants achieved a higher success rate in the T-junction compared with the single 

lane crossroads. A potential justification for this is that number of lanes and number of possible 

turning movements makes a difference in the correctness of people’s predictions. Therefore 

further investigations need to be carried out to determine how different junction types will affect 

the prediction accuracy. 
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4.3 Experiment 

4.3.1 Introduction 

Continuing the research from the proof of concept experiment, this section aims to rigorously 

investigate how good people are at predicting turning intention of oncoming vehicles and the 

contextual variables which influence the correctness of those predictions. Key questions that 

need to be answered to advance research in this area include: 

1. How well can people predict a vehicle’s turning intention as it approaches a junction? 

2. Is there a relationship between the distance the vehicle is from the junction and the 

predictions made about turning intention? 

3. What are the most influential variables in predicting turning intention?  

4. What role do demographic variables play in predicting turning intention? 

5. What do people perceive as the most important variables which help them to predict a 

vehicle’s turning intention? 

 

4.3.2 Methodology  

Section ‎4.1.1 makes it clear that there is little existing evidence on how well people can predict 

turning intention or on how contextual factors such as use of indicators influence these 

perceptions. To answer these challenging questions, an interactive touch screen experiment was 

developed to provide a dataset which can be used to determine how well a person can predict a 

vehicle’s turning intention as it approaches a junction. 

The experiment was designed to act in a standalone manner, i.e. making it self-contained without 

the need for anybody present to guide the participant through the experiment. This was done to 

remove the possibility of experimenter bias or influencing the participants’ answers, and also this 

maximized both the number and variety of participants. Therefore the experiment was placed at 

various locations around the main campus of the University of Southampton, over a period of two 

weeks so that any passers-by (both staff and students of all subject areas, representing a wide 

demographic of people) could be reached. 

In the experiment, participants were shown videos of ten different vehicles approaching a 

junction and they had to predict which way they thought the vehicle was intending to turn. Each 

video would pause when the vehicle was at different distances from the junction and then the 

participant could decide which direction they thought the vehicle was intending to turn; they had 

the option of ‘Left’, ‘Straight’, ‘Right’ or ‘Don’t Know’. As identified in Section ‎4.3.1, a key aspect 
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of the research is how far away from the junction a vehicle’s turning intention can be accurately 

predicted. Therefore during the design of the experiment, the videos were paused at specific 

locations (unknown to the participant) which were 0, 10, 20, 30, 40 or 50 metres from the 

junction. For usability purposes, it was decided to only pause the video twice each time so that 

the participant could make an initial guess when the vehicle was further away and then they 

would get the chance to make a second prediction when the vehicle was closer. Naito et al. (2008) 

stated that turning intention could be accurately predicted when a vehicle was approximately 

three seconds away from the junction (see Section ‎4.1.1). Therefore all of the videos were created 

with at least three seconds of viewing before the junction to ensure that participants could have 

sufficient time to observe the vehicle before making a decision. 

Although the ‘pause’ approach is in some ways unrealistic as vehicles approaching a junction 

rarely stop in this way, this method was used to ensure that the participant (a) could only 

consider information up to that point in time and (b) did not miss visual information between the 

first and second pauses in each video while they made their selection for the first pause. However 

this does mean that the second decision will have been influenced by data from the first decision. 

In reality decision-making of turning intention is a continual process, with people prepared to 

reassess their prediction at any point if the vehicle appears to not be behaving as expected by 

their current prediction. 

There were three different types of crossroad (Figure 12) used in the experiment to determine 

whether junction layout had any effect on a person’s ability to predict turning intention. It was 

decided to only consider crossroads to reduce the chances of participants simply guessing the 

correct answer at a T-junction. The proof of concept experiment demonstrated that people were 

much better at predicting the correct turning movement for a T-junction over a crossroad.  

1. Junction 1 was un-signalised with a single lane approach, very low traffic flow and clear 

visibility.  

2. Junction 2 was signalised with high traffic flow, clear visibility and a two lane approach, 

where one was a dedicated right turn lane and the other lane was only for straight and 

left turning traffic.  

3. Junction 3 was signalised with a two lane approach where the right lane was for right and 

straight turning traffic and the left lane was for left and straight turning traffic; there was 

a high traffic flow and only ground level visibility (see Figure 12).  

For the signalised junctions, all the vehicles were approaching when the lights were green. All of 

the videos were filmed at 1080p quality, in the United Kingdom where vehicles drive on the left. 
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Figure 12: The three junction options 

 

The selection of ten videos for each junction was chosen because they were representative 

examples of the observed traffic; however each turning movement was chosen at least three 

times for each junction. This ensured that all turning movements would have an equal 

opportunity of being predicted. 

The participant was able to complete as many videos as they wanted to, however to improve the 

quality of the dataset being generated, all of the results which have been analysed only show 

completed junctions to reduce any potential bias of learning effects which may occur. For each 

junction selected by the participant, the videos were shown in a random order so that learning 

effects would be minimised over the entire dataset. Participants would potentially become better 

at the experiment as they attempted more videos; hence the video order was randomised to 

remove this effect.  

At the end of each junction (a set of ten videos), the participant was then asked to select what 

they thought the most influential variables were that helped them determine a vehicle’s turning 

intention. The participant was given 12 options and was able to choose as many (or as few) as 

they thought were applicable. Some of the possible answers were unlikely to be helpful, but these 

Junction 1 Junction 2 

Junction 3 
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were included to (a) ensure that people would take the experiment seriously (i.e. if they chose 

‘vehicle colour’ as a useful variable then it would be unlikely that their answers were serious) and 

(b) to prevent participants simply ticking all the options (in the mistaken impression that it was a 

list of things that the researchers thought was useful and therefore they would have been wrong 

if they had considered all of the options to be important). The 12 options that were available 

were:  

1. Indicators 

2. Speed 

3. Position in the road 

4. Lane choice 

5. Trajectory 

6. Vehicle type 

7. Distance to other vehicles 

8. Braking distance 

9. Vehicle colour 

10. Driver age 

11. Size of engine 

12. Don’t know 

The definitions for each of the potentially ambiguous terms are: 

 Position in the road – the lateral positioning of the vehicle 

 Trajectory – how the lateral positioning of the vehicle has changed over the previous few 

seconds 

 Lane choice – which approach lane the vehicle is located in 

In order to create a small competitive element to the experiment, a score screen was presented 

at the end of each junction (after ten videos). This displayed the participant’s result, the overall 

average score for that junction and the highest score achieved by all participants. As each video 

paused twice, a point was awarded if the participant predicted the movement correctly, and 

therefore the maximum possible score was 20 for each junction. No prize or other incentive was 

offered to participants, either to participate at all or to reward a high score.  

Although all participation in the experiment was anonymous, some basic demographic data was 

collected at the beginning of each experiment to enable demographic impacts on correctness of 
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prediction to be investigated. The following questions were asked (all of which had an opt-out 

option for participants who did not want to give the information): 

 Gender 

 Age Range (17-22, 23-30, 31-50, 50+) 

 Did they drive or cycle in a typical week (or both)? 

 Were they a car passenger in a typical week? 

While not directly considering turning intention, significant amounts of research have been 

carried out in the wider field of pedestrian safety when crossing a road. It is evident from this 

research that different age groups can have very different perceptions of a vehicle’s speed of 

approach, which could correlate with predictions of vehicle turning intention. Child safety had 

been of particular interest for a number of decades, where studies have found that young 

children (5-9 years old) struggle with determining a vehicle’s speed (Connelly, 1998). However 

there also are studies (Scialfa et al., 1987) on adults and elderly people which suggest that age 

and gender continue to have a significant impact on a pedestrian’s perception of approaching 

vehicles. 

The questions about driving/cycling and being a passenger were included to understand whether 

higher levels of experience relate to improved correctness of prediction. While it is expected that 

all participants would have experience of crossing roads and predicting turning intentions as a 

pedestrian, a larger amount of experience of predicting turning movements at a greater closing 

speeds, either as a driver or cyclist, may mean a higher level of accuracy in their predictions. As it 

is very difficult to quantify quickly and simply how much experience a participant has, these 

questions, along with age group are included as a possible proxy for an overall experience 

measure. 

 

4.3.3 Results and Discussion 

A total of 128 participants over a two week period at the University started the experiment, with 

the results presented here being from 106 participants who completed at least one junction. The 

demographics of participants is shown in Figure 13 and this confirms that a broad range of 

participants were included in the dataset. 

As there were three junctions to choose from, and participants could attempt more than one 

junction (in any order), then there were varying numbers of participants for each junction. 

Junction 1 and 2 each had 65 participants and Junction 3 had 54 participants. Figure 14 shows the 



Chapter 4 

84 
 

overall scores achieved by all participants for each junction, suggesting a high level of correctness 

in predictions (overall mean score 14.4/20 is substantially higher than the 6.7/20 which would 

have been achieved by a random guess – ignoring the effect of lane choice). There appears to be a 

negative skew (especially with Junction 2 and 3) and Shapiro-Wilk tests confirm that all three 

junctions deviate from normality (p= 0.037, 0.002 and 0.014 for junctions 1, 2 and 3 respectively).  

The scores achieved in this experiment compare very similarly to the results of the proof of 

concept experiment (Section ‎4.2). The single approach lane crossroad in the proof of concept 

experiment achieved a 66.6% success rate of predictions, and Junction 1 (which is also a single 

approach lane crossroads) achieved a 64.5% success rate of predictions. Junctions 2 and 3 were 

higher with 77.5% and 74.5% respectively.  

 

Figure 13: Summary demographic data (numbers of participants in each category are displayed) 

 

Figure 14 clearly displays that Junction 1 was the most difficult junction to predict as it had a 

lower mean score and the distribution is considerably to the left of Junctions 2 and 3. However 

the scores for Junction 2 and 3 were very similar. One possible reason for this is that Junction 1 

only has a single approach lane, and the vehicles started in the middle of the lane due to parked 
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cars at either side of the road (see Figure 12). At Junction 1, all three manoeuvre choices were 

always possible, whereas in the other two junctions, a lane choice would mean that the vehicle 

would only have two turning options available (assuming rules of the road were obeyed). 

 

 

Figure 14: Correct predictions for each junction 

 

4.3.4 Impact of Physical and Demographic Factors 

The videos were paused when the highlighted vehicle was at a specific distance from the junction 

and Figure 15 displays a box plot of how accurately people predicted turning intention at different 

distances from all three junctions combined. The box plot shows a substantial step change 

between 20 - 30 metres with around a 20% reduction in prediction accuracy. At 0 metres from the 

junction, the median percentage of people that predicted correctly was 91.7% (falling slightly to 

90% by 20m), whereas at 30m only 70% of people were able to predict correctly (falling slightly to 

69.2% when distance is increased to 50 metres.  
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Figure 15: Percentage of people predicting correctly for varying distances 

 

The speed limit for each junction is 30 miles per hour (mph) and using the free flow speed on an A 

road (from Table 3 in Section ‎3.2.1) then 22mph average speed can be assumed. However, the 

vehicles could be travelling slower than free flow conditions due to upcoming junction. This 

equates to approximately 9m/s and therefore the vehicle is roughly 27 metres away at three 

seconds before the junction. This agrees strongly with the findings of Naito et al. (2008) who 

concluded three seconds before a junction is when a vehicle’s turning intention can be accurately 

predicted from in-vehicle monitoring. However, this is less than the value identified by Ito et al. 

(2004) who stated that they could predict a driver’s turning intention, from inside the vehicle, 

when they were 4.8 seconds away from the junction.  

This experiment did not consider further than 50 metres from the junction as the proximity of 

other junctions would have become an issue or visibility of approaching vehicles would have been 

too occluded. Nevertheless it does not appear that people are able to predict turning intention 

from outside of the vehicle as accurately as Ito achieved through in-vehicle technology. Ito 

managed to correctly predict 80 - 94% of vehicles during the experiment, whereas the median 

percentage of people predicting correctly at 50 metres here was only 69.2%. This implies that it is 

more challenging to predict turning intention without the help of in-vehicle data sources. 
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Figure 15 clearly demonstrates that people find it harder to predict turning intention when the 

vehicle is further away, but not included in Figure 15 are a small number of videos which people 

appeared to find very difficult to predict regardless of distance. These ‘challenging’ vehicles were 

included as part of a representative sample of vehicles from the video footage and included 

vehicles which straddled two lanes on approach and others which had poor observer visibility due 

to the presence of surrounding vehicles. Predicting turning intention is never going to be a perfect 

science and there will always be challenging drivers who change direction at the last moment. 

One of the intentions of this experiment was to determine what variables help people most in 

predicting turning intention, and the videos which people achieved the lowest scores were when 

the vehicles did not perform a ‘text book’ turn at the junction. 

While distance has a clear impact on correctness of prediction, a logistic regression analysis was 

undertaken to assess how all the physical variables interact to impact the predictive capabilities of 

people. Variables (and two-factor interactions) were added sequentially in order of greatest 

improvement in log-likelihood, with the resulting sequence of models and their corresponding 

Nagelkerke R2 values given in Table 6 (Appendix 2 gives further reasoning for focusing on the 

Predictive Accuracy in the analysis). Although the R2 values may appear low in comparison to the 

overall level of correct predictions in Figure 14, it should be noted that this analysis is attempting 

to identify the important factors in variation in correctness, not the overall level of correct 

predictions. Therefore the analysis is attempting to model if the participant will make a correct 

prediction, if they have access to the variables used in the analysis. The following physical factors 

were considered in the logistic regression analysis: 

 Indicator – whether the vehicle indicated before the video paused 

 Turning_Direction – did the vehicle turn left, right or travel straight on 

 Distance_Threshold – the vehicle is more than 25m from the junction 

 Junction_Type – to allow for the variations in lane layouts  

Unsurprisingly, the most important physical factor is the presence of an indicator. This was closely 

followed by the turning direction and junction type, which together can be seen as a partial proxy 

for lane choice. The clear non-linear relationship with distance in Figure 15 is then represented by 

the Distance_Threshold factor being included in the model rather than a linear effect of the actual 

distance (all effects of which are insignificant once the threshold factor has been included). This 

means that distance can be considered as a binary variable: either the vehicle was closer than 

25m or further than 25m. Although the three physical factor interactions denoted # in Table 6 are 

formally significant due to the amount of data available, their inclusion in the model does not 
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increase the predictive accuracy beyond the 79.5% of correct/incorrect predictions forecast (by 

the including Indicator, Turning_Direction, Junction_Type, Distance_Threshold and the 

Turning_Direction ˟ Junction_Type interaction). 

Table 6: Logistic Regression Analysis 

Factor Type Factor/Interaction R2 Predictive 
Accuracy 

None No Variable 0.000 71.4 

Physical Indicator 0.147 71.4 

Physical Turning_Direction 0.270 78.9 

Physical Junction_Type 0.307 78.9 

Physical Distance_Threshold 0.327 78.9 

Physical Turning_Direction * Junction_Type 0.348 79.5 

Physical Indicator * Junction_Type 0.359 # 79.5 

Physical Distance_Threshold * Turning_Direction 0.362 # 79.5 

Physical Distance_Threshold * Junction_Type 0.364 # 79.5 

Demographic Age 0.371 80.3 

Demographic Driver_Cyclist 0.373 # 80.3 

Demographic Age * Driver_Cyclist 0.377 # 80.3 

 

The demographic data collected was also investigated in this analysis, by adding it to the final 

physical factors model, to determine if the characteristics of the participant had any additional 

influence on their ability to predict correctly. The following demographic factors were considered 

in the logistic regression analysis: 

 Age – the age group 

 Gender – the gender group 

 Driver_Cyclist – Did they drive or cycle in a typical week? 

 Passenger – Were they a car passenger in a typical week? 

The inclusion of age group in the model in addition to the physical factors (Table 6) seems to be 

sufficient to represent a level of experience effect, increasing the predictive accuracy of the model 

slightly to 80.3% of correct/incorrect responses. Although the effect of regular driving/cycling did 

have additional significant effect on the fit of the model, as with the later interactions of the 

physical factors it does not contribute to an increase in the predictive ability. The impact of the 

age factor, while small, suggests that correctness of prediction may rise from the 17-22 group to 

the 23-30 group, before falling back slightly in the groups over 30 years of age. 

Table 6 demonstrates that if no variables were provided to the logistic regression analysis, then 

the accuracy of predictions would be 71.4% (this is because 71.4% of all answers were correct). 
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Therefore if a model predicted that all participants would always get the answer correct, then the 

model would be correct 71.4% of the time. However, by providing additional information to the 

analysis then the model can correctly predict when 80.3% of the total participants will select a 

correct answer. This shows an improvement of 8.9% in predictive accuracy from providing the 

model with fairly basic variables. 

Allowing for all two-way interactions within the physical and demographic factors produces an 

overall logistic regression model with a Nagelkerke R2 value of around 0.4 (which is typical for a 

human behaviour experiment), already sufficient to predict the correctness of participants’ 

decisions in over 80% of the data (see Appendix 2 for further explanation). This suggests that 

while more subtle explanatory factors such as approach speed profiles and precise lane 

positioning may be having an impact on perceptions in borderline cases (and may also be the 

reason why the overall correct rate of predictions by participants was 71.4%), the correctness of 

external observer predictions of turning intention can usually be forecast by the limited range of 

explanatory factors considered in this section. 

An interesting finding from this study was that right turning traffic was easier to predict than 

straight on and left turning traffic. On average, 87% of participants predicted right turning 

movements correctly, whereas only 72% and 55% of straight and left turning traffic respectively 

were predicted correctly. One reason for this could be that Junction 2 had a dedicated right 

turning lane which would make right turning predictions somewhat easier than straight and left 

turning traffic because of lane choice and road positioning of vehicles. 

 

4.3.5 Perceived Important Variables 

While the preceding section investigated which physical and demographic variables were 

significant in determining the correctness of turning intention predictions, the counterpoint to 

this is to consider which variables were perceived to be useful by the participants. Figure 16 

highlights the perceived important variables which influenced participants to predict turning 

intention at each junction. As expected given the actual result above, almost everybody selected 

‘indicators’ for each of the three junctions, with lane choice, trajectory and position in the road 

also highly rated variables. It should be noted that nobody selected vehicle colour or size of 

engine which helps to demonstrate that even though no experimenter was present, participants 

were still selecting realistic answers. 
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Figure 16: Participants perceptions of important factors 

 

Figure 16 shows a strong degree of agreement between the junctions, even though in many cases 

different participants attempted different junctions. The exception to this is Junction 3 where 

speed of approach and distance to other vehicles was considered as comparatively more 

beneficial, with fewer participants suggesting they felt they used the vehicle’s position in the 

road. This could be because the position in the road was much harder to see in Junction 3 due to 

the lower viewing angle and therefore participants were much more dependent on other 

variables.  

A number of participants wanted to discuss the experiment further after they had completed it 

(contact details for the researchers were provided at the end of the experiment to facilitate this). 

A key aspect of participants’ feedback was that they did not trust ‘white van’ drivers whereas they 

expected emergency service vehicles to obey the rules of the road. Even with this response, the 

vehicle type variable was seldom selected and this suggests that different participants may have 

been interpreting the ‘vehicle type’ option in different ways. This vehicle specific effect may also 

be represented by participants feeding back that local knowledge may have played some part in 
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their decision making, especially when a local bus was included in the video, as participants may 

have been able to use the known trajectories as a guide to predicting the turning intention. If this 

experiment was to be repeated then a brief explanation of what each variable means would need 

to be included for the participants to read before selecting variables (as highlighted in 

Section ‎4.3.2). This may help to eliminate the ‘vehicle type’ problem but also ‘lane choice’ would 

possibly be selected less for Junction 1, where there is only one approach lane. 

As mentioned in Section ‎4.3.3, there is a noticeable difference in participants scores between 

Junction 1 and Junctions 2 and 3. The logistic regression analysis has demonstrated that there is a 

statistically significant difference between the different types of junction. Participants also 

perceived different variables more useful depending on the type of junction, as demonstrated in 

Figure 16. Therefore junction layout is an important factor in considering the success rate of 

predicting turning intention. 

 

4.3.6 Conclusions 

Overall, it appears that people are very good at predicting turning intention of a vehicle as the 

average score overall was 14.4 out of 20. Previous research has considered the problem of 

predicting turning intention from within the vehicle, but this research shows that high levels of 

correctness can also be achieved when turning intention is being predicted from outside of the 

vehicle (which would be a ‘passive’, infrastructure based, approach as opposed to an ‘active’, 

vehicle based approach which relies on having specific technologies installed in vehicles). 

Considering that there were, effectively, three possible options for users to select (although 

“don’t know” was included as an option, it was rarely selected), this demonstrates how good 

people really are at predicting turning intention and how they were significantly better than 

random guessing. 

When considering how distance influences people’s ability to predict turning intention, it was 

found that a substantial step change occurs between 20 - 30 metres away from the junction. 

There was a median value of approximately 90% success when the vehicle was between 0 - 20 

metres; and 70% success when between 30 and 50 metres upstream. The sudden step change can 

be compared to research carried out by Naito et al. (2008), where people were able to predict the 

turning intention very accurately (over 90%) when the vehicle was only three seconds away from 

the junction (when observing variables from inside the vehicle); therefore the threshold value 

appears to be temporally fixed as opposed to spatially constrained. 
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Section ‎4.3.4 investigated the most influential variables in the correctness of predicted turning 

intentions through a logistic regression analysis. While physical factors dominate the 

relationships, demographics of the participant also appear to be affecting the prediction, with age 

group providing a significant and important effect. When asked to indicate the variables that 

participants perceived to be most useful for making their decisions, they were generally in 

agreement with the physical factors identified in the logistic model, but also perceived a number 

of other variables such as the position in the road and trajectory to be useful. The problem with 

including these into the model is that it is difficult to quantify what aspects of position and 

trajectory are being used and how these might vary between participants. One key aspect of this 

research is that unlike a computer algorithm, human brains cannot be interrogated to understand 

precisely how all the factors are combined to produce the end result, nor are participants likely to 

be able to consistently explain exactly what it is about each variable that is important to them. 

While these additional variables are potentially important in borderline cases, the overall success 

rate of participants was 72% correct predictions and success rate of 80% for the logistic regression 

model in forecasting whether the participants would predict correctly; which suggests that their 

effect is less important than simpler factors such as overall lane choice and indicator use. 

Very little previous work has been carried out on the correctness of predicted turning intention 

from outside of the vehicle. Therefore this research shows for the first time that while external 

predictions by people are generally correct, the physical variables related to the junction design 

and vehicle operation can influence how well turning intention can be predicted. Understanding 

these influences is the first step to accurately predicting turning intention data for use within 

signal control algorithms. 
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4.4 Conclusion 

Many new data sources, which were described in Section ‎2.4, can provide additional information 

for signal control algorithms, such as vehicle location, speed and routing data for individual road 

users. Smartphones are capable of easily transmitting vehicle location and speed, however, little 

research has been carried out on how routing information could be used by network operators. 

As described at the start of Chapter 4, new data sources must be investigated in three ways: 

1. How can the data be detected? 

2. How can the data be used? 

3. Is there a benefit to using the data? 

This chapter has demonstrated the availability of turning intention as a new data source, which is 

a novel area of research. This topic was published in a TRB conference and TRR journal paper 

which investigated how well a person could predict a vehicle’s turning intention as the vehicle 

approached a junction.  

The key findings of this study are that people are very good at predicting turning intention with 

approximately a 90% median success rate when vehicles are between 0 and 20 metres away from 

the junction, but with a substantial fall to approximately a 70% median success rate when the 

vehicle is between 30 and 50 metres away. Other key explanatory variables include vehicle 

specific factors (use of indicators), junction layout and which direction the vehicle is intending to 

turn (right turns were predicted more accurately). 

The experiment carried out in Section ‎4.3 has shown that a vehicle’s turning intention could be 

detected with a high success rate up to 50 metres away on a 30 mph road (the experiment did not 

test further distances due to camera visibility and proximity of other junctions). This research 

could form the foundations of machine vision technology which could use the explanatory 

variables discovered in this research to predict turning intention. However, an investigation into if 

50 metres from the junction is far enough for controlling the traffic lights needs to be considered 

before any further work is completed. 

Also, previous research (see Section ‎4.1) suggested a number of methods from inside the vehicle 

which could detect turning intention. If available, and there are no privacy concerns, then the 

simplest technique would be sharing a satellite navigation system’s data with the surrounding 

infrastructure so that route choice throughout the network could be known. This would enable 

turning intention data to be shared much sooner than detecting it at the junction. 
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However it is very unlikely that all road users will suddenly use a technology which uploads route 

choice, unless there is a significant change in manufacturing guidelines or political influences. 

Therefore this research could provide an intermediate stage on detection which can be carried 

out until infiltration is at a higher rate (if required). Therefore two key questions remain, what can 

turning intention data be used for and what are the benefits?  
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4.5 Chapter 4 Key Points 

1. Many new data sources could provide live routing information for vehicles travelling 

through a network, and potentially their intended route through individual junctions (i.e. 

their turning intention). 

2. Any new data source must be investigated in three different ways: can the data be 

detected, what can it be used for and what are the benefits of using it? This chapter has 

focused on how the data can be detected. 

3. Previous research on turning intention has been carried out using in-vehicle technology to 

monitor the driver’s accelerator, brake, and indicator usage and eye movements. No 

research has studied the detection of turning intention from outside of the vehicle. 

4. This section describes two experiments which were carried out to determine if turning 

intention could be detected through a passive, infrastructure based technique rather than 

requiring detector equipped vehicles. Therefore experiments focused on the ability of 

humans to predict turning intention, how far from the junction that it could be predicted 

and what influencing variables were used to make a prediction (for example, indicator, 

position in road). 

5. The main experiment had over 100 participants and the average correctness of 

predictions was 72% for all junction types. 

6. There was a significant drop in median values when the vehicles were more than 25 

metres away from the junction (which is approximately 3 seconds away), which strongly 

correlates with experiments carried out by Naito et al. (2008) which used in vehicle 

technology to predict turning intentions. 

7. Statistically significant variables for predicting the correctness of turning intention 

predictions were use of indicators, which turning movement was being carried out, the 

junction layout, distance from the junction and participant’s age. 

8. An investigation into how turning intention data can be used and if there are any benefits 

now needs to be carried out. 
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Chapter 5: Turning intention data – what can it be used for? 

As described in Chapter 4, turning intention data could be detected externally or transmitted 

using in-vehicle technologies as vehicles approach a junction. However, as described in 

Section ‎1.2.4, if turning intention data is available then what can a traffic control system use it for 

and what are the potential benefits of using such data (given the detection constraints described 

in Chapter 4)? This chapter will consider these key questions relating to turning intention data. 

Other traffic control algorithms which use additional data sources will be considered in this 

chapter alongside how micro-simulation modelling can be used to represent the effects of having 

a new data source. Micro-simulation models are frequently used to demonstrate the effects of 

using new algorithms before carrying out expensive real world trials. 

A methodology for using turning intention data for traffic control is developed and explained 

throughout this chapter along with some preliminary results for a theoretical junction. The new 

algorithm is adapted from the Highbid algorithm which was developed at the University of 

Southampton (Box and Waterson, 2010). Any results from the adapted Highbid algorithm are 

compared against its predecessor using the key performance indicators of average delay and 

reliability of journey time. 
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5.1 Introduction 

5.1.1 How is turning intention data currently used? 

As Section ‎2.3 described, current UTC systems use sensors in the road (inductive loops, infra-red, 

and radar) to detect the presence of vehicles. When a signalised junction has a dedicated turning 

lane then these sensors can be strategically placed to detect vehicles which are intending to travel 

in that specified direction. For example, MOVA stipulates the requirement of ‘OUT’ loops and a 

stop-line detector for dedicated right turning traffic. This is stated to ensure that a vehicle will not 

become trapped at a junction if the stage is not compulsory within the cycle (Highways Agency, 

2005). This method of garnering turning intention data is not infallible and only works for specific 

junction layouts, but the prediction of turning intention (or anticipation using satellite navigation 

systems) is not perfect either. Therefore using inductive loops in dedicated turning lanes provides 

a good estimate of turning intention without requiring additional information. 

It is important to define the terminology used within this thesis and therefore the following 

definitions have been adapted from the British Standard descriptions (DfT, 2006): 

 A phase is a single turning movement on one approach arm to a junction (for example, 

there would be 12 phases at a crossroads with left, straight or right as a movement on 

each arm of the junction).  

 A stage is a collection of phases which are allowed to be released simultaneously. 

 A cycle is a predetermined, sequential ordering of stages such that all phases are released 

at least once. 

 

5.1.2 How can it be used? 

The definition of turning intention (see Section ‎4.1.1) is the knowledge of how drivers are 

planning to travel through an upcoming junction, for example, are they intending to turn left, 

right or travel straight on at a typical crossroads? Therefore raw turning intention data would be a 

series of turning directions as vehicles approach a junction, these movements are representative 

of the junction’s phases. 

If every vehicle’s intended route throughout the network was known then this would enable UTC 

systems to move from the reactive systems which they currently are (see Section ‎2.3) to pre-

emptive systems which have a much better understanding of where vehicles are going within the 

network. This would ensure that optimal stage selections can be made to guide traffic through the 

network (since the required turning movements are known). 
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There are two key methods in which turning intention could be used for traffic control: 

1. Stage manipulation – vehicles can be categorised into individual phases. This gives greater 

resolution of the traffic at the junction and phase control could be used instead of 

traditional stage control methods. 

2. Co-ordination of neighbouring junctions – as the route through the network is known, 

downstream junctions can be informed sooner of the impending traffic. 

For the purpose of this research, stage manipulation will be considered first as this requires the 

comparison of isolated junctions which removes additional variables in the analysis (for example, 

ensuring that the offset times are correct). Siemens were more interested in comparing the 

isolated junction control systems (e.g. MOVA) than the regional UTC systems (e.g. PC SCOOT – 

which is Siemens version of the SCOOT algorithm). 

The next section will consider novel traffic control algorithms which include additional data 

sources such as vehicle location and speed. By investigating how other algorithms use new data 

sources, then possible ways of incorporating turning intention data through stage manipulation 

can be explored as well. 
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5.2 Signal Control Algorithms 

This section will investigate a number of other UTC algorithms which have been developed to 

include additional data sources. Many different signal control algorithms have been hypothesised 

but only a select few have ever become widely commercially available as discussed in Section ‎2.3. 

As the major UTC systems (see Table 1, in Section ‎2.3.1) use traditional data sources such as 

inductive loops, infra-red and radar, then this section will consider some ‘theoretical’ control 

systems which were found during a literature review. 

TRG have developed some unique control algorithms in the past few years (Box and Waterson 

2010, Box and Waterson 2012, Box et al. in press). The Highbid algorithm is based on a bidding 

process which uses the incoming vehicles’ speed and distance from the junction, and the signal 

control assumes a fixed time auctioning rate which assesses the road state every ten seconds. This 

is a relatively straight forward signal control algorithm and therefore it can be used as the 

foundation level for this research by incorporating turning intention into the bidding process. Box 

and Waterson (2010) demonstrated that the Highbid algorithm could outperform MOVA in 

simulation studies; and therefore with additional information, it is possible that by adding turning 

intention data it can be improved further. 

Box, Snell and Waterson (in press) developed two UTC algorithms that were based on machine 

learning: one was trained by a human expert and the other was trained by temporal difference 

learning. These algorithms were able to outperform SCOOT by 49% and 41% respectively. These 

significant improvements in performance demonstrate the potential benefits of using additional 

data sources for traffic control. 

A study carried out by Gradinescu et al. (2007) highlights the advantages of using VANET systems 

over fixed location detectors to improve the understanding of where vehicles are within the 

network. The study developed a signal control algorithm to utilise this additional information 

which resulted in a reduction in delay of 28%, shorter congested periods and a 6.5% reduction in 

fuel consumption. 

Blip Systems (2013) are a company which develop sensors on the road to detect Bluetooth and 

Wi-Fi devices so that historical data can be generated for use in signal control strategies, this 

system is used in more than 30 cities worldwide (Blip Systems, 2014). This method is based on 

average journey times for the monitored section of road and is able to provide real time feedback 

of vehicle location data. The system optimises signals using traffic volumes but there are 

limitations of using this as volume counts do not reflect actual demand due to penetration rates 
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(Olesen, 2014). One of the issues surrounding this method of signal control is that 95% 

penetration is required and currently only 20 - 30% of vehicles are being detected (Olesen, 2014).  

These signal control algorithms demonstrate the potential benefits of using probe data (Bluetooth, 

Wi-Fi, Smart phones) against static sensors (inductive loops, infra-red, radar). This additional data 

provides greater data resolution for use within signal control algorithms and enables the system 

to pre-empt impending traffic flow sooner than traditional methods. These new technologies are 

slowly filtering into the transport industry as the sensors become more commonplace. Therefore 

further research is required to understand what the benefits are of using turning intention 

knowledge within traffic control algorithms. 
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5.3 Simulation Modelling 

Micro-simulation software is incredibly useful for imitating real world scenarios without the 

expense of carrying out physical experiments. It provides researchers with an opportunity to 

experiment with real world situations by manipulating the junction layout, drivers’ route choice 

and traffic signal control methods to optimise the junction. 

SIAS Paramics (Paramics) software has been frequently used within TRG for simulating new signal 

control techniques (Box and Waterson, 2010, Box and Waterson, 2012) and it is also used within 

Siemens for customer network models. Siemens and the University of Southampton have a long 

history of working together and they each often develop models using Paramics, hence why 

Paramics is the software choice for this research project. However, it is imperative that turning 

intention data can be extracted from the software or else it would not be suitable for use within 

this project. 

Paramics software outputs snapshot files, at user specified time intervals, which display many 

vehicle characteristics such as speed, link location and the next two link turning intentions. 

Appendix 3 explains how the snapshot file provides every vehicle’s next two link turning 

movements. By extracting the required information it is possible to know exactly where every 

vehicle intends to go, which makes using turning intention data possible in simulations. This 

information can be stored in a database (such as MySQL) so that it is readily available for any 

control algorithms which require it. 

Paramics is therefore suitable for use within this research as it can simulate turning intention 

knowledge and it is currently used by Siemens.  
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5.4 Methodology 

5.4.1 Introduction 

This section will explain how an existing algorithm which was developed by TRG can be adapted to 

incorporate turning intention. The Highbid algorithm already uses speed and location data to 

calculate a bid for a stage at the junction, and therefore this algorithm can be altered to include 

turning intention through stage manipulation, as described in Section ‎5.1.2. This new algorithm 

will be compared against the existing Highbid algorithm which was shown to outperform MOVA 

(Box and Waterson, 2010). 

 

5.4.2 Highbid 

Box and Waterson (2010) developed a simple signal control algorithm called ‘Highbid’ which is a 

bidding algorithm based on the number of vehicles in each arm, the average speed and average 

distance from the junction’s stop-line: 

𝐵𝑖𝑑 = 𝑉𝑒ℎ𝑖𝑐𝑙𝑒 𝐶𝑜𝑢𝑛𝑡 × [1 − 0.01 × (𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑝𝑒𝑒𝑑) − 0.001 

× (𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑆𝑡𝑜𝑝𝑙𝑖𝑛𝑒)] 

Every stage associated with a junction would have a bid calculated using the above formula. Each 

bid is calculated every ten simulated seconds and the highest bid would ‘win’ control of the 

junction and therefore the stage would receive a green light (see Figure 17). Ten seconds is used 

to represent a simplistic version of real world constraints such as minimum green time and the 

inter-green period. This algorithm is not constrained by a cyclic order or stage length (the same 

stage could be continually selected if the same bid continued to be the highest). The coefficients 

determined for Highbid simply provide the relationship between speed and distance (speed is ten 

times more important than distance in the calculation (Box and Waterson, 2010)). 

 

Paramics Snapshot 
Files Generated

Speed and Location 
Data Gathered

Bid for Best Stage
Paramics Simulation 

for 10 Seconds
Implement Highest 

Bid Stage

 

Figure 17: Flow diagram of Highbid controller logic 
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A limitation of the Highbid algorithm is that it provides no override feature to stop a vehicle being 

stuck on a minor road while the major road continually receives a green light. This means that the 

control system is very unfair against low flow traffic arms, however this is inherent from what is 

essentially a greedy algorithm (i.e. it takes the best option at that moment without any 

consideration of the long term effect). 

The Highbid algorithm was trialled using Paramics which provided the control algorithm with 

perfect data of every vehicle’s location and speed. Experiments were carried out using degraded 

data but this still proved to be better than MOVA (for up to 8 metres standard deviation in 

distance) (Waterson and Box, 2010).  

 

5.4.3 Turning Intention Algorithm (TIA) 

Highbid was based on a freedom of stage selection. However it is restricted to a very limited 

number of stages because all vehicles on the same approach road would be considered as part of 

the same stage. This means that there could not be any distinction in turning movements which 

restricts stages to either: releasing each road individually or opposite roads simultaneously.  

As Appendix 3 describes, Paramics can also inform the user of each vehicle’s turning intention for 

the next two links, and therefore Highbid can be adapted to include turning intention as well. By 

incorporating turning intention, vehicles would no longer bid for a stage but they would bid for 

their specific turning movement (phase) which shifts the control strategy from stage based to 

phase based. This enables the system to select the best combination of phases rather than 

selecting a stage from limited options (there will be many more combinations of possible phases 

as opposed to pre-defined ‘whole arm’ stages). 

The turning intention algorithm will follow the same logic as the Highbid algorithm except that a 

bid will be made for an individual phase as opposed to the overall stage: 

𝐵𝑖𝑑 𝑓𝑜𝑟 𝑝ℎ𝑎𝑠𝑒 = 𝑉𝑒ℎ𝑖𝑐𝑙𝑒 𝑐𝑜𝑢𝑛𝑡 𝑟𝑒𝑞𝑢𝑖𝑟𝑖𝑛𝑔 𝑡ℎ𝑖𝑠 𝑝ℎ𝑎𝑠𝑒 × 

[1 −  0.01 × (𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑟𝑒𝑞𝑢𝑖𝑟𝑖𝑛𝑔 𝑡ℎ𝑖𝑠 𝑝ℎ𝑎𝑠𝑒) 

− 0.001 × (𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑆𝑡𝑜𝑝𝑙𝑖𝑛𝑒 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑟𝑒𝑞𝑢𝑖𝑟𝑖𝑛𝑔 𝑡ℎ𝑖𝑠 𝑝ℎ𝑎𝑠𝑒)] 

Figure 18 displays the logical sequence of decisions for the Turning Intention Algorithm. This 

highlights the need for an additional step where the bids for each phase are determined, followed 

by a stage selection step. 
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Figure 18: Flow diagram for Turning Intention Algorithm 

 

Stage Options 

This section will consider how stages are selected using the Turning Intention Algorithm. There 

are two parts to the stage selection process: 

1. Generating all possible stage combinations (pre-determined) 

2. Choosing the ‘optimal’ stage (real time) 

A conflict matrix must be developed for the junction to understand what phase combinations are 

allowed to occur on the grounds of safety. A computer program was developed to generate every 

possible stage which could legally be released at the junction to ensure that: conflicted 

movements were never released in the same stage and if additional phases could be released at 

the same time then they were also included. 

Once all of the possible stages were determined (prior to running any simulations), then a 

decision had to be made to determine which stage was ‘optimal’. When selecting the ‘optimal’ 

stage there were a number of options which needed to be considered: 

1. Highest combination of allowable phases (highest bid wins) 

2. ‘X’ percent better than the current stage (for example, the new stage must be at least 

10% better than the current stage) 

The easiest solution to this problem is to release the stage with the highest possible bid (a sum of 

each phase within the stage). However, if the highest combination was used, then the algorithm 

completely negates the lost time during any inter-green period. Whereas by incorporating 

‘percentage improvement’ logic then the new stage would need to be at least an improvement on 

the current stage before winning the bid. This solution has been used so that a fixed decision 

point (i.e. every 10 seconds) can be used as opposed to calculating stage duration as well, which 

would significantly increase the complexity of the algorithm. 
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5.5 Case Study – Theoretical Three Lane Approach Crossroads 

5.5.1 Junction Layout 

A theoretical junction was developed to evaluate Highbid against the Turning Intention Algorithm 

(TIA). In order to provide maximum flexibility with the stage options, each arm of the crossroads 

has three approach lanes, each with a dedicated turning movement (left, straight and right). This 

ensured that the turning movements had minimal interference with one another and would 

provide an optimal scenario to demonstrate the effects of using turning intention data. All of the 

approach roads are straight with 500 metres of storage capacity for the junction. It is very unlikely 

that there are many junctions (if any) similar to this design; however the freedom of movement 

enables complete control of all turning movements at the junction. 

Figure 19 displays the junction layout with all approach roads stretching back 500 metres. There 

are also three lane exit arms so that vehicles have a dedicated approach and exit lane to use. By 

doing this, the junction is inherently simple as all vehicles will move to a specific lane for a unique 

turning movement and can exit into a dedicated lane to reduce as many environmental influences 

as possible. By having an approach road of 500 metres, then the default ‘detection distance’ of 

vehicles is 500 metres for this experiment. The speed limit on this junction is 30 mph from all 

directions. 

 

 

Figure 19: Theoretical crossroads with three dedicated turning lanes on each arm 
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5.5.2 Demand Scenarios 

A number of demand scenarios were set up to compare control algorithms under different 

demand levels. Two demand profiles were used, a flat demand profile (uniform) and a ‘typical 

day’ profile which was developed as seen in Figure 20. Three demand scenarios were created to 

evaluate the algorithms under a low, medium and high level of demand: 

1. A flat demand profile of 200 vehicles in every direction (total demand level of 2400 

vehicles for the entire simulation) 

2. A typical day profile of 10,000 vehicles split evenly between each turning movement (834 

vehicles for each movement for the entire simulation) 

3. A typical day profile but the flow was unevenly distributed, with the North arm carrying 

significantly more traffic, see Table 7 (total demand level was 8500 vehicles for the entire 

simulation). 

Table 7: Demand for Scenario 3 for the entire simulation 

 North East South West 

North - 1000 2000 1000 

East 500 - 500 500 

South 500 500 - 500 

West 500 500 500 - 

 

For this case study, a typical day demand profile was generated by having two surges in demand 

to represent morning and lunchtime or evening rush hours. However the time period was reduced 

from a whole day profile to a four hour test so that the simulations would not take too long 

(which helps with repeatability validations). This was because the simulation would take 

approximately a quarter of the simulated time to complete if the junction could run in free flow 

conditions, whereas if it was congested then the actual time was close to the simulated time. 

Therefore a number of tests were carried out to determine how long the simulation should last to 

provide sufficient information to make a conclusion. Four hour simulated tests provided enough 

information instead of simulating an entire day as was concluded by Box and Waterson (2010), 

also see Appendix 4. The ‘typical day’ profile can be seen in Figure 20; there was a low demand 

period introduced in the ‘typical day’ profile to ensure that any congestion which had built up 

from the morning rush hour would have a chance to be dissipated before the lunchtime or 

evening rush hour began. 
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Figure 20: The demand profile used to represent a typical day – two rush hour scenarios 

 

In order to calculate the average delay for the theoretical three lane approach crossroads then 

the free flow journey times must be determined for each of the origin destination pairs. The zone 

numbers are numbered from the Northern arm in a clockwise direction. The free flow journey 

times in Table 8 are determined from when each traffic movement receives a green light prior to 

arrival at the junction with no opposing traffic. As the demand scenario can be observed in Table 

7, then an overall average free flow journey time can be calculated through a weighting method; 

by multiplying the demand for each movement by the corresponding free flow journey time and 

dividing by the total demand. Therefore the average free flow journey time for: 

 Demand scenario 1 is 72 seconds 

 Demand scenario 2 is 72 seconds 

 Demand scenario 3 is 72 seconds 

These values will be subtracted from the mean journey time to represent the mean delay for each 

simulated scenario. The reason that the weighted average free flow journey times are the same in 

each of the three scenarios is because all approach arms are the exact same length and only the 

right turn movements require a marginally longer journey time; therefore even with the three 

different demand profiles, the weighted average remains the same. 
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Table 8: Free flow journey time for each origin destination pair (from simulated values) 

Free Flow Journey 
Time (seconds) 

Destination Zone 

1 2 3 4 

O
ri

gi
n

 Z
o

n
e 1 - 71 71 73 

2 73 - 71 71 

3 71 73 - 71 

4 71 71 73 - 

 

 

5.5.3 Stage Manipulation 

Highbid 

Under Highbid control, the stage diagrams can be one of two main options, see Figure 21 and 

Figure 22. The algorithm can only release an entire arm and therefore these two options have 

been considered: a four stage solution or a two stage solution. A three stage solution (one stage 

releases two arms, and the other two arms are released separately) could be used but the way in 

which the algorithm bids for control, then the individual arms would struggle to outbid two arms 

combined.  

 

 

Figure 21: Highbid - 4 Stage Control 

 

 

Figure 22: Highbid - 2 Stage Control 
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Turning Intention Algorithm 

Note that the hypothesis for this part of the research is that there are potential benefits by 

selecting the most suitable, allowable phase combination (i.e. a stage) so that delay can be 

reduced. Therefore all allowable phase combinations need to be determined and this section will 

explain how this process was carried out. 

Initially each phase was assigned a number (as observed in Figure 23) to quickly identify each 

phase and to make a simple naming system for coding the problem in C#. Each phase can be 

separately controlled due to the junction layout and therefore no phases need to be released in 

the same stage as any other. 

 

Figure 23: Numbering system for phase identifier 

 

Then a matrix diagram was developed, as seen in Figure 24, to demonstrate if a turning 

movement was allowable along with another turning movement. For example, a vehicle travelling 

from North to South is not in conflict with a vehicle travelling from South to North, therefore 

check matrix (2, 8) in Figure 24 to see that the turning movements are allowed to take place 

simultaneously. However if a vehicle is travelling North to South and another vehicle is travelling 

South to East (2, 7), then this is an allowable conflict because the vehicles can see each other 

straight ahead and the South to East vehicle would wait for an appropriate gap to turn right 

across the traffic. For the purposes of this research, an unallowable conflict was where a vehicle 

would cross the path of a vehicle travelling on a perpendicular road. For example, a vehicle 

travelling from East to West would not be allowed to cross the junction at the same time as a 

vehicle travelling from North to South (5, 2). 
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Phase Movement 
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-  
S 
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- 
E 

W 
- 
N 

1 2 3 4 5 6 7 8 9 10 11 12 

N  - W 1   2 2 0 0 2 2 1 1 0 0 2 

N - S 2 2   2 0 0 0 1 2 2 0 0 2 

N - E 3 2 2   2 2 2 1 2 2 2 0 2 

E - N 4 0 0 2   2 2 0 0 2 2 1 1 

E - W 5 0 0 2 2   2 0 0 0 1 2 2 

E - S 6 2 0 2 2 2   2 2 2 1 2 2 

S - E 7 2 1 1 0 0 2   2 2 0 0 2 

S - N 8 1 2 2 0 0 2 2   2 0 0 0 

S - W 9 1 2 2 2 0 2 2 2   2 2 2 

W - S 10 0 0 2 2 1 1 0 0 2   2 2 

W - E 11 0 0 0 1 2 2 0 0 2 2   2 

W - N 12 2 2 2 1 2 2 2 0 2 2 2   

  

Figure 24: Matrix diagram showing if a turning movement is permissible 

 

Using this matrix, all possible stages could be determined through some simple computer coding 

which considered every allowable phase combination and attempted to add an additional, 

allowable phase. If adding an additional phase was not possible, then the current combination 

would represent a final stage. This iterative process was carried out through two scenarios: 

1. Managed conflicts were allowed 

2. Managed conflicts were not allowed 

This generated two sets of stages: when managed conflicts were allowed then there were 8 

possible stages and when they were not allowed then there were 17 possible stages (see Figure 

25 and Figure 26 respectively). The limitation of the 8 stage solution is that right turning traffic 

would never be released unopposed (as a no conflict) and therefore would be unlikely to work 

effectively under heavy right turn conditions. 

0 Conflict

1 Managed Conflict

2 No Conflict

Key
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Figure 25: An 8 stage solution where managed conflicts are allowed 
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Figure 26: A 17 stage solution where all movements are unopposed 
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5.5.4 Example Calculation 

The stage diagram shown in Figure 25 will be used for this illustrative example. As described in 

Section ‎5.4.3, the following equation was used to calculate the bid for each phase (see Table 9 – 

Left): 

𝐵𝑖𝑑 𝑓𝑜𝑟 𝑝ℎ𝑎𝑠𝑒 = 𝑉𝑒ℎ𝑖𝑐𝑙𝑒 𝑐𝑜𝑢𝑛𝑡 𝑟𝑒𝑞𝑢𝑖𝑟𝑖𝑛𝑔 𝑡ℎ𝑖𝑠 𝑝ℎ𝑎𝑠𝑒 × [1 − 0.01 

× (𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑟𝑒𝑞𝑢𝑖𝑟𝑖𝑛𝑔 𝑡ℎ𝑖𝑠 𝑝ℎ𝑎𝑠𝑒) − 0.001 

× (𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑖𝑛𝑔 𝑡ℎ𝑖𝑠 𝑝ℎ𝑎𝑠𝑒)] 

Therefore 12 bids were created to accommodate each of the 12 turning movements. Then the 

total stage bid was generated from the sum of each of the phases in that stage (see Figure 25 for 

a reminder of what phases are in each stage). If the method of the ‘highest bid wins’ then – in this 

example, stage 5 would be selected regardless of the current stage.  

However if the other method of ‘X percent better than the current stage’ was used, where if the 

current stage was stage 7 and the next stage had to be 10% better than the current stage, then 

stage 7 would remain as the best available stage because no stage was 10% higher than it. This 

ensures that lost time through inter-green time is factored into the decision process. 

Table 9: Example Calculation of Turning Intention Algorithm (Left = Phase Bids, Right = Stage Total) 

Phase Bid 
 

Stage 
Total 
Bid 

1 50 
 

1 405 

2 50 
 

2 485 

3 150 
 

3 370 

4 40 
 

4 450 

5 123 
 

5 568 

6 15 
 

6 495 

7 55 
 

7 538 

8 50 
 

8 465 

9 50 
 10 110 
 11 120 
 12 130 
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5.6 Results 

This section will present results from the case study experiment as described in Section ‎5.5. A 

number of comparisons were carried out: 

 2 stage Highbid against 8 stage TIA 

 Stage selection comparison – ‘highest bid’ against ‘X percent better’ method 

 What effect does the detection distance have on the performance of the algorithm? 

 2 Stage vs 4 Stage Highbid and 8 Stage vs 17 Stage TIA 

The TIA is inherently very similar to the Highbid algorithm where the only significant difference is 

turning intention data and therefore this section will help to demonstrate how turning intention 

data can be used as a new source. 

The 2 stage Highbid and 8 stage TIA are most similar in terms of stage configuration, each of the 

stages have six phases released with two ‘managed conflicting’ right turns. Whereas the 4 stage 

Highbid and 17 stage TIA are more similar as no managed conflicts are allowed and only three 

phases or four phases are released per stage respectively. Therefore the results section will show 

comparisons of the two solutions for each algorithm in this manner. 

 

5.6.1 2 Stage Highbid vs 8 Stage TIA 

This experiment was carried out to determine which algorithm provided the lowest delay and 

reliability of journey times. Table 10 and Figure 27 display how TIA outperforms Highbid under all 

three demand scenarios, especially in the higher demand scenarios where TIA has a lower mean 

delay than Highbid algorithm. During the low flow scenario (200 Flow), the Highbid algorithm and 

TIA are very similar in terms of journey time, except that the TIA has more variability than Highbid 

(which is undesirable). TIA has a higher standard deviation and maximum journey time which 

suggests the higher variability in journey time, for the low flow scenario but this is not the case in 

the other two scenarios.  

The TIA sees a reduction of 5% in mean delay (200 Flow) but it should be noted that there is 

minimal delay and therefore the absolute values are very similar. However in the other two 

scenarios, TIA outperforms Highbid by 24% and 5% for average delay and 15% and 3% for average 

journey time (for 10000 Flow and North Weighted scenarios respectively). In both scenarios, the 

TIA has a lower standard deviation and maximum journey time than Highbid and therefore has 

less variation in journey time. This demonstrates that turning intention data could prove to be 

beneficial in reducing average delay and improving reliability of journey time. 
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Table 10: 2 stage Highbid against 8 stage TIA under the three demand scenarios 

Demand and 
Control 
Method 

Delay Journey Time (seconds) 

Mean 
Delay 
(sec) 

Mean 
Speed 
(mph) 

Mean 
Queue 
Time 
(sec) 

Maximum Mean 
Standard 

Dev. 
Median 

200 Flow - 
Highbid 

10.9 27.4 4.7 139 82.9 8 81 

200 Flow - TIA 10.3 27.6 4.3 153 82.3 10 79 

10000 Flow - 
Highbid 

116.5 14.8 80.7 902 188.5 145 111 

10000 Flow - 
TIA 

88.1 16.0 64.0 643 160.1 116 104 

North 
Weighted Flow 

- Highbid 
59.0 18.6 41.9 1243 131.0 125 91 

North 
Weighted Flow 

- TIA 
56.1 19.5 36.1 1044 128.1 112 90 

 

 

Figure 27: A bar chart comparing the mean delay for each of the control algorithms under the three demand 
scenarios 
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5.6.2 North Weighted – X Percent Stage selection 

This section details the difference in how stages are chosen once the bids have been generated. 

Both the ‘highest combination of allowable phases’ and ‘X percent better than the current stage’ 

techniques were tested to determine if there was any difference between the selection methods. 

The North Weighted demand scenario was used. 

It became clear that a reduction in delay could be achieved by changing the current stage when 

the new stage could generate a bid which was greater than ‘X’ percent of the current stage. Table 

11 and Figure 28 demonstrate that the lowest average delay and journey time were when the 

new stage’s bid was 25% higher than the current stage. This resulted in a reduction of 31% and 

14% in average delay and journey time respectively, where the standard deviation in journey time 

was significantly reduced along with the maximum journey time. This means that the ‘25% better’ 

approach was fairer to traffic than the ‘highest bid’ approach and improved the flow of traffic. 

This approach was considered because of the ten second decision-making constraint which has 

been imposed on the system. This constraint was used because it reduced the complexity of the 

algorithm as a stage length (which could require additional data or potentially a different 

approach) did not have to be calculated.  

Table 11: A comparison of various values for the 'X' percent better than previous stage method 

 

X Percent 
Better 

Approach 

Delay Journey Time (seconds) 

Mean 
Delay 
(sec) 

Mean 
Speed 
(mph) 

Mean 
Queue 
Time 
(sec) 

Maximum Mean 
Standard 

Dev. 
Median 

0% 55.6 19.3 36.4 831 127.6 105 91 

5% 45.6 20.3 30.4 684 117.6 89 88 

10% 45.9 20.2 31.2 896 117.9 93 89 

15% 41.7 21.1 25.9 745 113.7 80 88 

20% 39.5 21.1 26.2 733 111.5 73 89 

25% 38.3 21.4 23.4 534 110.3 62 89 

30% 40.2 20.8 27.0 692 112.2 72 89 
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Figure 28: Comparison of how mean journey time evolved throughout the experiment for the 'X percent better than 
previous stage’ method 

 

5.6.3 Length of Approach for Detection 

As described in Section ‎5.5.1, the default detection distance is 500 metres as this is the length of 

the approach road to the junction. However, it would be beneficial to determine what effect the 

detection distance has on the performance of the algorithm. Table 12 and Figure 29 display how 

the detection distance has little effect until the vehicles are within 200 metres, where the 

performance of TIA improves to approximately 150 metres after which the performance 

decreases.  

The considerable drop in performance under 100 metres could be attributed to the fact that the 

control algorithm does not have sufficient time to change the signals by the time the vehicles 

arrive and therefore vehicles inevitably queue longer. This constraint is because of the ten second 

decision making variable which means that a decision could be made just before vehicles enter 

the detection zone, and by the time the next decision occurs then the vehicles could be queuing. 

This highlights the need to remove the ten second constraint for any future control algorithms 

developed in this research. 
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Figure 29: A bar chart showing the mean delay from variation of detection distance from the junction 

 

Table 12: A table showing the variation of detection distance from the junction 

Distance 
from 
the 

Junction 

Delay Journey Time (seconds) 

Mean 
Delay 
(sec) 

Mean 
Speed 
(mph) 

Mean 
Queue 
Time 
(sec) 

Maximum Mean 
Standard 

Dev. 
Median 

25m 111.2 14.3 76.3 1770 183.2 181 98 

50m 67.0 17.7 47.6 1108 139.0 132 93 

75m 84.5 16.1 65.6 2005 156.5 207 92 

100m 52.7 19.6 34.6 1211 124.7 114 89 

125m 46.5 20.7 27.6 976 118.5 97 88 

150m 44.3 20.7 28.0 800 116.3 90 88 

175m 49.4 19.9 33.1 794 121.4 97 88 

200m 53.5 19.7 35.1 1228 125.5 117 88 

300m 57.1 19.1 38.7 978 129.1 119 89 

400m 56.5 19.0 39.3 1230 128.5 121 89 

500m 54.7 19.3 37.4 978 126.7 108 90 
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5.6.4 2 Stage vs 4 Stage Highbid and 8 Stage vs 17 Stage TIA 

This section describes the experiment of how different stage configurations affect the 

performance of either Highbid or TIA. There are advantages and disadvantages of using either 

stage configuration (allowing managed conflicts or not); vehicles will either be opposed and more 

streams of traffic can be released at the same time, or all streams of traffic will have unopposed 

movements and obviously less phases can be released at the same time. Table 13 and Figure 30 

demonstrate how the 2 stage Highbid significantly outperforms the 4 stage Highbid approach, and 

how 8 stage TIA significantly outperforms the 17 stage approach. It should be noted that the TIA 

approach outperforms Highbid under either opposed or unopposed scenarios. 

The problem with the 17 stage TIA approach is that there are so many options during congested 

periods. As a decision is being made every ten seconds then only a small amount of cars are being 

released before the stage is changed (enough cars are being released so that the bid is reduced 

sufficiently so that a different stage wins the next bid). This results in large amounts of time being 

lost through inter-green periods. The 17 stage solution is not viable when there is a ten second 

constraint on the decision making time. During congested periods, this algorithm could be 

improved to forcibly select the same stage for a longer period of time so that lost time is reduced. 

However, further research is required to determine how a suitable stage length can be calculated 

and therefore remove the ten second decision making problem. 

It should be noted that this experiment demonstrates how the TIA consistently reduces mean 

delay compared to the Highbid algorithm. This emphasises how turning intention data can be 

used in signal control algorithms and there is potential to see a benefit from using this additional 

data source. 

 

Table 13: Comparison of different control strategies on north weighted demand scenario 

Control Method 

Delay Journey Time (seconds) 

Mean 
Delay 
(sec) 

Mean 
Speed 
(mph) 

Mean 
Queue 
Time 
(sec) 

Maximum Mean 
Standard 

Dev. 
Median 

2 Stage Highbid 60.5 18.4 43.3 1291 132.5 123 91 

4 Stage Highbid 225.5 10.5 166.4 1374 297.5 237 198 

8 Stage TIA 56.6 19.2 38.4 1218 128.6 118 89 

17 Stage TIA 174.8 11.9 137.7 1866 246.8 265 137 
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Figure 30: Comparison of different control methods 
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5.7 Limitations 

The assumption was made that the right turning traffic could always be released as a managed 

conflict when generating the 8 stage diagram; therefore it means that right turning traffic never 

has an unopposed turn in this solution. This needs to be considered in future work to ensure that 

right turning traffic would be able to gap accept sufficiently and safely. 

As mentioned throughout Section ‎5.6, the decision making frequency of ten seconds is a big 

constraint on the system as a large amount of time is lost through inter-green time if a new stage 

is selected at every decision point. Any future algorithms which will be developed during this 

research needs to consider a method of ensuring that a stage duration is calculated as well as 

considering the most appropriate stage. 

Chapter 3 emphasised the importance of average delay and reliability of journey time for 

evaluating any signal control algorithms. Although both of these KPI’s have been used in this 

chapter, a potential problem with this algorithm is the concept of fairness to low flow traffic. 

Using Highbid or TIA, a single car waiting on a side road would never be able to ‘outbid’ the major 

roads if there were always vehicles on the major road and therefore a ‘maximum waiting time’ 

needs to be considered within the signal control logic or else vehicles could wait indefinitely. 

Pedestrians have not been included in this chapter and need to be considered during stage 

generation. In real junctions, stage diagrams often have a pedestrian phase (if the junction layout 

allows it) where the pedestrian crossing can be manipulated around the vehicle phases so that 

pedestrians can cross safely during a vehicle stage as well. For example pedestrians could cross to 

a pedestrian refuge during one stage and then cross the other half during the next stage. 

There is an inherent assumption in this simple network model that every turning movement has a 

dedicated lane and filter light associated with it. This may not be case for many junctions and 

therefore more complex, real world scenarios need to be modelled where turning movements are 

perhaps shared in a lane (for example, straight and left in the left lane and right only in the right). 

If there is simply a one lane approach to the junction then there would be no potential benefits 

from knowing the turning intention data for that junction, but the information could still be useful 

for neighbouring junctions for estimating arrival times. 

Due to the TIA and Highbid algorithms’ simplicity, they could not be used on real junctions 

because they do not consider real junction constraints (such as minimum green time, maximum 

cycle time, inter-green time, etc.). Therefore any future work must consider how these real world 

constraints would affect the traffic control algorithm. 
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5.8 Conclusion 

This chapter has provided an invaluable insight on how turning intention data can be used in a 

control algorithm. This has been shown using a theoretical junction as the TIA was compared 

against a theoretical control algorithm (Highbid), which was developed by the University of 

Southampton, and TIA outperformed Highbid across three demand scenarios by up to 24% and 

15% in average delay and average journey time respectively. Both Highbid and TIA use additional 

data sources which include vehicle location and speed and the algorithms operate in very similar 

ways, the only difference was the inclusion of turning intention data in TIA. 

The Turning Intention Algorithm is a theoretical algorithm which was used to highlight how 

turning intention data could be used in signal control. However, both the TIA and Highbid 

algorithms could not be used in reality (in their current forms) due to their many limitations. The 

next stage of this research will be to develop an algorithm which considers more real world 

constraints and could potentially be used as a control system. Elements of this system must 

calculate how long a stage should be selected for as opposed to using a fixed time period to 

reassess the road conditions (i.e. Highbid and TIA made a decision every ten simulated seconds). 

To make definitive comments on the benefits of using turning intention data, any new algorithm 

must be compared to an existing UTC system (see Sections ‎2.2 and ‎2.3 for examples) and 

preferably on real world junctions with actual demand profiles. 

Taking a holistic view of what has been learnt from this research so far is that turning intention 

data can be detected/transmitted using in-vehicle technology but also can be fairly accurately 

predicted from outside of the vehicle, as observed in Chapter 4. Turning intention data can be 

used to manipulate current stage diagrams through novel methods by including every possible 

phase combination into the stage list and selecting the most beneficial stage at any given time. 

However the question of what are the real benefits of using turning intention data needs to be 

answered before a conclusion can be properly drawn on the usefulness of turning intention data. 
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5.9 Chapter 5 Key Points 

1. Turning intention data can be used to manipulate stage diagrams by considering all 

possible phase combinations. 

2. This enables the control algorithm to select the best phase combination at any decision 

point which provides additional flexibility over existing control algorithms.  

3. There were up to 24% and 15% reductions in average delay and journey times 

respectively by including turning intention data into the control algorithm, on a 

theoretical junction. 

4. The TIA uses a fixed decision point of every 10 seconds due to the complexity of 

calculating stage duration, but this significantly constrains the algorithm and the next part 

of the research must calculate suitable stage durations. 

5. Real world constraints must be incorporated into any novel control algorithms, such as 

inter-green time, maximum cycle time, minimum green time and a stage configuration 

which enables unopposed right turns if required. 

6. Now the question of ‘what are the benefits of using turning intention data’ must be 

answered by comparing turning intention algorithms against real world systems as 

opposed to theoretical systems. 
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Chapter 6: Novel signal control algorithms using new data sources 

This chapter will seek to answer the question of ‘what are the benefits of using turning intention 

data’. To do this, a novel control algorithm must be developed which considers real world 

constraints so that it can be compared against state of the art control systems such as MOVA (for 

isolated junctions). A list of constraints will be developed within this chapter so that any new 

algorithm could be used in a real world scenario, unlike the Turning Intention Algorithm (TIA) as 

described in Chapter 5. The TIA did demonstrate how turning intention data can be used and 

therefore the stage manipulation concept will be used within the development of new algorithms 

in this chapter. 

A key problem which was highlighted in Chapter 5 was that stage duration needs to be calculated 

to potentially provide improved results. The TIA was constrained by a ten second decision making 

time which did not consider lost time during the inter-green period. A method of determining the 

best stage duration must be developed and to do that, the TIA case study will be used as it is well 

understood. This will enable a novel algorithm to have the best possible way of calculating stage 

duration. 
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6.1 Real World Junction Constraints 

The Department for Transport provides a range of useful documents to develop an understanding 

of what constraints are needed for signal controlled junctions to ensure that safety standards are 

met. This section will investigate what junction constraints need to be adhered to and also 

describe any impact that they might have on the design of a novel control algorithm. 

 

Minimum Green Time 

A minimum green time is set to ensure that vehicles are able to have sufficient time to clear the 

junction and is typically set at seven seconds (DfT, 2006). This value would be extended if there 

are a high proportion of heavy goods vehicles or a steep gradient at the junction. 

 

Inter-green Time 

The British Standard definition of Inter-green time is: 

“The period between the end of the green signal giving right of way for one phase, and the 

beginning of the green signal giving right of way for the next phase”. (DfT, 2006) 

Inter-green time plays an important safety role in a signalised junction where there is a period of 

amber for the stopping traffic, followed by a period of red and amber for the starting traffic. The 

minimum time for an inter-green period is five seconds (three seconds for stopping traffic and 

two seconds for starting traffic) (DfT, 2006). This time is essential for minimising the possibility of 

having a conflict at the junction. Unfortunately drivers occasionally pass through a red light which 

is when a conflict could occur, but the inter-green period should provide sufficient time to 

account for the aggressive drivers who drive through red lights and the drivers who are starting 

their green period. The distance between starting and stopping phases is critical for calculation of 

this time as can be seen in Table 14. The distance ‘x’ can be determined by measuring the 

distance travelled to the probable collision points by vehicles losing right of way compared with 

those gaining right of way (DfT, 2006) – i.e. subtract the shorter distance to the collision point 

from the longer distance to the collision point. 

Table 14: Determining inter-green time (DfT, 2006) 

Distance ‘x’ metres 9 10-18 19-27 28-37 38-46 47-55 56-64 65-73 

Inter-green (seconds) 5 6 7 8 9 10 11 12 
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Filter Lights 

Department for Transport (2006) stated that a filter light should not be used unless the 

movement has unopposed or non-conflicting movements. This coincides with the practical 

inability to release isolated, opposed turning movements through the normal traffic light system. 

For example, an opposed right turn could not be given a green light or a green filter light without 

releasing the straight and or left turning traffic from the same road at the same time. In order to 

do this, a new type of signal head would be required to release the movement into an opposed 

traffic stream. 

This constraint is critically important for this research because some of the stage diagrams shown 

in Figure 25 (in Section ‎5.5.3) would not be possible with this constraint. Right turning traffic 

cannot be released by itself without having complete priority. It is possible to simulate this 

scenario as demonstrated in Chapter 5 but it is not possible to implement this solution in reality, 

without a change to highway policy. 

 

Gap Acceptance 

There are constraints on allowing gap acceptance to take place when the 85th percentile approach 

speed is greater than 45 mph. Under these circumstances, right turning traffic must be separately 

signal controlled (unopposed) because there is a higher risk of accidents between right turning 

vehicles seeking gaps and on-coming vehicles (DMRB, 2004). Therefore any case study involving 

high speed roads must include a stage which provides an unopposed right turning stage. 

 

Safety for High Speed Junction 

MOVA controlled junctions monitor the arrival profile of vehicles as they cross the detection loops 

to ensure that there is a sufficient amount of inter-green time between stages. MOVA is able to 

add one or two seconds to the inter-green period so that high speed vehicles will be able to pass 

through the junction without an accident (Crabtree and Kennedy, 2005). For example (illustrative 

purposes only), if a vehicle is detected rapidly across sensors when they are close to the junction 

and the signals have turned amber then the inter-green period will be extended. This process will 

add more red time to the junction but has the potential to improve the safety record if there are a 

large number of drivers who run the red light. This concept could be incorporated into any novel 

control algorithms to ensure that there is a high safety standard to the junction. 
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Vehicle Type Impact 

The discharge rate at a junction is heavily affected by the vehicle types using the junction. 

Kockelman and Shabih (2000) demonstrated that vehicle types have an impact on the capacity of 

the junction and therefore the discharge rate from it. For example, a van could be considered as 

1.34 passenger car equivalents when determining junction capacity. Therefore if this data 

becomes available then it could be incorporated into signal control algorithms through a 

weighting method. 

 

Maximum Cycle Time 

For UK junctions, it is recommended that the maximum cycle time should be no longer than 120 

seconds (DfT, 2006). This is a safety constraint to ensure that drivers do not become frustrated by 

waiting too long at the lights and potentially run a red light. This constraint has been re-

interpreted as “all phases which have a demand must receive a green light within a 120 second 

period”. 

As mentioned in Chapter 5, phase control is required (as opposed to stage control) to use turning 

intention in signal control algorithms. Hence why this real world constraint has been re-

interpreted to consider individual phases rather than assume that there is a sequential stage 

order which will release each stage that has a demand. Both the TIA and Highbid algorithms were 

unconstrained by a cycle order or cycle time and this impact needs to be explored further to 

understand what effect it could have on performance or safety at junctions. 
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6.2 Cycle Order 

Historically, traffic signal control algorithms have been constrained by the limited granularity of 

real time data availability. However as the industry is moving into an era of an abundance of data 

sources (see Section ‎2.4.1 – smartphones, Wi-Fi, satellite navigation and Bluetooth) then control 

systems may require more flexibility to take advantage of significantly higher granularity. This 

section will investigate the possibility of having no pre-defined stage order but will instead select 

the most beneficial stage at any given time. Existing control algorithms such as MOVA operate on 

a predefined order of green signals, often referred to as the ‘cycle’.  

Typically cycle based controllers consider phase based demands (Further and Muller, 1999) and 

adjust the durations of the predefined stages to release phases in an optimum manner (DfT, 

2006). As control systems are heavily constrained by the cyclic order, then more focus is placed on 

the stages than the phases as there is minimal flexibility (Butler, 2010). However, if the system is 

not constrained by stage order, then phases become the priority because the best combination of 

phases can be released instead of being restricted to those that form part of the next stage in the 

cycle order. 

Simulation packages such as LinSig are often used to determine the best stage configuration and 

cycle order for isolated junctions (TfL, 2010). Through discussions with experts in the industry, it 

was apparent that these configurations are rarely challenged after initial setup due to the cost 

and time required to update them. Traffic flow is constantly evolving and hence why reactive 

systems such as SCOOT are used to manage these changes (Papageorgiou et al., 2006), but what if 

more flexibility could be given to the system so that junction calibration and validation does not 

need to occur quite so often? The Traffic Advisory Leaflet 1/06 suggests that stages should follow 

a cyclic order and only omit stages (known as ‘stage skipping’) when there is no demand for the 

stage (DfT, 2006 and Furth and Muller, 1999). Could additional stages be programmed into the 

control systems which are only used when needed, without the need for network operators to set 

up complex plans or strategies? 

There is often a safety argument against stage skipping which suggests that local road users will 

not expect the perceived change in sequence order and could potentially cross the junction 

without due care and attention (whether pedestrian or motorist). However, from worldwide trials 

of stage skipping, there has been no evidence to suggest that stage skipping increases accident 

rates (Bretherton, 2003). However there have been more complaints of excessive waiting where 

traffic has not received a green light within five minutes (Bretherton, 2003), which exceeds the 
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advice of DfT (2006) and therefore should not be used in any new control algorithm (i.e. 120 

seconds should be the maximum cycle time).  

The Transport Research Laboratory (TRL) trialled stage skipping logic in an attempt to improve bus 

priority systems and they observed no increase in accident rates (Bretherton, 2003). However 

there were some heavy constraints on the system, including that the main road stage was never 

skipped and pedestrian stages were never skipped unless there were multiple pedestrian stages in 

the cycle. 

A number of European countries use phase based control to ensure safety performance targets 

are achieved (Furth and Muller, 1999). However even though the Netherlands use phase based 

control, it still has a fixed stage to ensure a definitive start of the cycle, regardless of the demand, 

which somewhat negates the benefits of using phase based control. The Netherlands uses a first 

in – first out logic for phase control which works well in light demand scenarios, however when 

there is high demand, then the system becomes locked into a cyclic order which may not be 

optimal (Furth and Muller, 1999). 

This chapter is focused on developing a novel control algorithm which has more flexibility due to 

additional data sources and therefore any new algorithms will be able to select any allowable 

stage at any given time depending on the road conditions. This will create a more flexible system 

which can respond faster to the arrival of incoming vehicles. However the constraints mentioned 

in Section ‎6.1 must be adhered to as well and then a comparison can be made against a state of 

the art control algorithm (such as MOVA if considering an isolated junction) to ensure that there is 

a benefit to using additional data.  
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6.3 Methodology for Delay Minimisation Algorithm (DEMA) 

Considering the KPI’s described in Chapter 3, then the novel signal control algorithm must aim to 

minimise average delay across the junction while incorporating the real world constraints that are 

described in Section ‎6.1. To do that, a method of calculating delay based on the current road state 

must be developed; this section will describe how DEMA (a novel traffic control algorithm) has 

been created. 

 

6.3.1 Quantifying Delay 

When calculating mean delay, the traditional methods tend to use the cycle time of the system in 

the formula (for example Webster, 1958) but this does not work when stages can be selected in 

any order. To calculate delay for a phase based system, delay has been defined from first 

principles as the summation of queue lengths per second (so for every second that a vehicle is 

stopped in a queue then this would represent one second of delay). By using this method, the free 

flow journey time through the network does not need to be determined for the algorithm to 

calculate delay. This results in less set-up time for any traffic control algorithms which use this 

technique of calculating delay. 

The disadvantage of calculating delay in this manner however is that it ignores the acceleration 

and deceleration part of delay (see Figure 31), but this is typically much smaller than the 

stationary period. The equations for calculating queue length per second are based on arithmetic 

sequences as it has been assumed here that the junction has a constant discharge and arrival rate 

for the period which is being investigated. 
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Figure 31: Graphical representation of vehicle delay as it passes through a junction (after Dion et al., 2004) 

 

As this research can manipulate stages in any order, then the individual phase delay needs to be 

calculated. The following logic describes which equations should be used to calculate the sum of 

the queue lengths per second for phases which are currently active (receiving a green light) 

dependent on the duration of the specified stage (‘t’ seconds), initial queue length at the start of 

the stage (‘n’ vehicles) and arrival and discharge rates (‘A’ and ‘D’ vehicles per second 

respectively) (see Figure 32 for an illustrative diagram).  

The delay depends on whether the initial queue can be fully discharged or not; and if it can, then 

the delay depends on whether the additional ‘arrivals’ queue, which builds up during the 

discharge of the initial queue, can also be cleared. This is also presented graphically in Figure 33 

and a detailed explanation of the development of these equations can be seen in Appendix 5. 
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Figure 32: An illustrative diagram showing how each phase would have its own queue length, arrival rate and 
discharge rate 

 
If the initial queue cannot be fully discharged: 

If
n

D
> t: UseEquation� 

If the initial queue can be fully discharged: 

If
n

D
≤ t: UseEquation� 

However if Equation 2 is used, then additional constraints apply: 

If the arrivals queue can be fully discharged and the arrival rate is less than discharge rate: 

IfA < DandIf (
n

D
-

An

D(A-D)
) ≤ t: AddEquation� 

If the arrivals queue cannot be fully discharged and the arrival rate is less than discharge rate: 

IfA < DandIf (
n

D
-

An

D(A-D)
) > t: AddEquation(4) 

If the arrival rate is greater than or equal to the discharge rate: 

𝐼𝑓   𝐴 ≥ 𝐷 ∶      Add Equation 4 

Equation 5 can be used to determine the delay caused to a phase which has not been selected in 

the current stage. 

 

  

 

  

  

  

  



Chapter 6 

134 
 

IF:
n / D > t

Use Equation 
(1)

IF:
A < D

True

False

IF:
[n - A(A - D)] / D ≤ 

t 

True Add Equation 
(3)

True

False

Use Equation 
(2)

AND
THEN

Add Equation 
(4)

False

Add Equation 
(4)

 

Figure 33: Flow diagram for equation selection 
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6.3.2 The DEMA Algorithm 

With Equations 1 – 5 enabling calculation of the phase delays, then the basic operation of the 

proposed Delay Minimisation Algorithm (DEMA) is simply to determine the minimum delay from 

the list of possible stages. DEMA incorporates minimum and maximum stage durations, and the 

algorithm uses the current road state in the form of current queue length, arrival rate and 

discharge rate for each phase, see Figure 34 for an illustrative flow chart.  

In relation to the current road state, it is worth considering what the difference in data resolution 

is between MOVA and DEMA. MOVA typically uses three inductance loops on each approach arm 

and therefore is able to estimate the queue length and arrival times (DfT, 2003). The furthest loop 

which could be used is 205 metres from the stop line, but 30mph to 40mph roads would typically 

be 80 – 120 metres (DfT, 2005). A MOVA loop should never be further than ten seconds from the 

stop line when a vehicle is at cruise speed (DfT, 2005).  

DEMA uses additional information over MOVA; the algorithm considers if the vehicle is within 50 

metres of the junction (equivalent of an inductance loop), and what speed the vehicle is doing. If 

the vehicle is travelling less than or equal to three miles per hour then it is considered to be part 

of the queue. The default setting for DEMA is if the vehicle is within 500 metres of the junction 

(similar to Highbid and TIA in Chapter 5) then it will be considered as part of the queue or as an 

arrival vehicle, depending on the speed of the vehicle, but this value will be thoroughly tested in 

the sensitivity analysis in Section ‎6.7.  

The 500m vehicle location sensor is equivalent to either an inductance loop (which would be 

challenging and expensive for communication cabling) or more likely a Bluetooth detector or 

Vehicle to Infrastructure sensor. This additional information helps the algorithm to pre-empt a 

vehicle’s arrival time more accurately than MOVA and therefore has more time to respond to 

approaching vehicles. 

DEMA calculates the delay for all possible stages and their allowed durations (one second 

resolution); and the stage with the least delay (per second of stage duration) is selected. The 

approach taken is therefore equivalent to a ‘Greedy Algorithm’ which always selects the best 

stage at that decision point (Russell and Norvig, 2010). The problem with this approach is that it 

does not consider the long term effect on the junction. For example, releasing stage one followed 

by stage two may not be better overall compared with releasing stage two followed by stage one 

if there is a sudden increase in vehicles requiring stage one. However the alternative to this 

method is selecting a number of stages at each decision point and evaluating many more stage 

combinations (increasing exponentially). To be able to do this requires much more processing 
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power and a more accurate prediction of arrival rate; therefore needing an even higher resolution 

of data. A detailed analysis of a greedy algorithm versus a multiple stage selecting algorithm is 

required and therefore will be carried out in Section ‎6.4 to determine which solution provides the 

better performance. 

Beyond the core issue of determining the theoretically best stage, there are many constraints on 

real traffic control systems and a key part of DEMA is to ensure that all guidelines and best 

practice techniques (for example, safety constraints, inter-green, minimum greens) are adhered 

to. This enables the algorithm to be used in real junctions and not simply be a theoretical study.  

A constraint which is very challenging for a flexible control algorithm such as DEMA to meet is the 

maximum cycle time of 120 seconds (DfT, 2006). As there is no cycle time within DEMA then a 

method of forcing the algorithm to select an unreleased phase needs to be implemented or else 

DEMA may never select the phase (because it does not have the lowest impact on delay). To do 

this a weighting factor was introduced to ensure that any phase, which had not received a green 

light within the previous 120 seconds and had vehicles waiting to be released, would have its 

delay value artificially reduced. This forcibly makes the phase more desirable and therefore would 

be selected at the next decision point. There remains is a risk with this method that even with the 

weighting factor, the phase would struggle to get released; but a lower weighting factor can be 

used if the junction has an arm with very low demand. The reason for not setting the weighting 

factor to zero is because the stage duration would then not be calculated properly and hence the 

weighting factor needs to be calibrated for the junction. 
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Figure 34: DEMA algorithm data flow 
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6.3.3 Determining Stages 

Similar to the stage generation process described in Section ‎5.5.3, a matrix of allowable 

movements must be created so that a list of all possible stages can be determined. The 

constraints mentioned in Section ‎6.1 need to be considered during stage creation; this will ensure 

that right turning traffic has an unopposed turning movement if a filter light is used and that gap 

acceptance constraints can be applied depending on the speed profile of the vehicles. 

If a case study uses a real world junction, then the current set up of the signal heads and junction 

layout must be considered to develop the stages. This process was split into two areas: 

1. What stages would work under the current signal head arrangement? 

2. What stages could work if the signal heads and minor junction alterations were allowed? 

6.3.4 Discharge Rates 

The discharge rate at the intersection was dependent on whether the phase was opposed or 

unopposed (see Table 15). The Traffic Advisory Leaflet suggests values of 1900pcu/hour 

(passenger car units) for straight ahead traffic and 1650pcu/hour for turning unopposed traffic 

(DfT, 2006). Opposed turning traffic will vary from as low as 120pcu/hour (two vehicles released 

at the end of each stage for a two minute cycle time) up to the unopposed flow rate, dependent 

on opposing flow. 

Table 15: Discharge Rates 

Turning Movement Pcu per hour Pcu per second 

Unopposed Straight 1900 0.528 

Unopposed Turning 1650 0.458 

Opposed Turning 120 0.033 

 

6.3.5 Determining Queue Length and Arrival Rate (Road State) 

As Paramics provides the turning movements for the next two links, then all vehicles within two 

links can be classified into a phase road state using the following logic sequence. 

1. If the vehicle is within 50m of the junction then it is considered as part of the stationary 

queue 

2. Else if, the vehicle is travelling less than or equal to 3 mph AND if the vehicle has a 

tracking device fitted (i.e. was it randomly given a device which can transmit location and 

speed – this is controlled through an ‘infiltration’ variable) then it is added to the 

stationary queue 
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3. Else, 

a. If the vehicle is fitted with a tracking device, then it is added to the arrivals queue. 

b. Else if, the vehicle is within 100m then it is detected via the inductive loop at 

100m then it is added to the arrivals queue. 

c. Else, the vehicle will not be detected (i.e. if there is no tracking device fitted and it 

is not within 100m of the junction then it will not be added to stationary or 

arrivals queue. 

This logic sequence will classify every vehicle on the approach links and represents a scenario 

where additional data (more than inductive loops or equivalent) can be used to provide a richer 

picture of the road state. The infiltration variable enables the experimenter to vary how many 

vehicles are ‘equipped’ with devices that can transmit location and speed data. 

To calculate an arrival rate then the number of observed vehicles must be divided by the duration 

of the observations. Traditional arrival rates have been calculated using the cycle time (Udoh and 

Ekpenyoug, 2012), however this will not work for this research as there are no cycle times. This 

means that average journey time from the ‘detection distance’ to the junction is the most 

appropriate value to use for calculating the arrival rate. 

Therefore after every vehicle was categorised using the aforementioned logic, the ‘arrival queue’ 

was divided by the average journey time from the specified distance. The average journey time 

was calculated based on an examination of arrival time graphs, for example, the average journey 

time for a vehicle travelling from 500m away was 45 seconds for the three lane approach junction 

(in Section ‎5.5)  and therefore the arrival rate would be calculated using the following equation: 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝐴𝑟𝑟𝑖𝑣𝑖𝑛𝑔

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 𝑡𝑜 𝑇𝑟𝑎𝑣𝑒𝑙 500𝑚
= ′𝑋′ 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑 

The average time taken will be junction specific dependent on what the average speed of vehicles 

is through the junction. 
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6.4 Stage Selection – Hill Climber vs Single Stage 

As mentioned in Section ‎6.3.2, a comparison of a greedy algorithm which selects a single ‘best’ 

stage against a multiple stage selection algorithm will be carried out in this section. A multiple 

stage selection algorithm is in response to the 120 second maximum cycle time constraint, which 

a greedy algorithm could never guarantee. There are advantages and disadvantages to using 

either approach as the following section demonstrates. 

 

6.4.1 Single Stage Selector 

A single stage selector algorithm is a greedy algorithm which selects the lowest possible delay per 

second out of all the possible stages and durations. The following list highlights the positive and 

negative aspects of using a single stage selector: 

 Makes a decision which will only affect the junction for a maximum duration of one stage 

 Requires less data for understanding the future arrival of vehicles 

 Does not consider the knock on effects on other stages 

 Cannot guarantee that all stages are released within a 120 second period (but it can 

make it very probable by using a weighting factor) 

A weighting factor must be included after a phase has waited for ‘X’ seconds without being 

released (‘X’ can be set by the network operator). If this was not the case, then a low demand 

phase may never be released as the other phases provide a lower amount of delay. 

Figure 35 demonstrates the logical order of how a single stage selector algorithm would operate 

when controlling a Paramics model. The reason that the KPI of minimum delay per second must 

be considered instead of minimum delay is that all the stage durations are being compared 

against one another. Therefore it would not be fair to compare a stage which only had duration of 

15 seconds against a stage of 30 seconds, but looking for the lowest delay per second provides a 

fair comparison. 
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Figure 35: Single stage selector algorithm flow diagram 
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6.4.2 Multiple Stage Selector 

A multiple stage selector would calculate a suitable cycle plan for the next 120 seconds and aims 

to minimise the total delay throughout that period. A cycle plan is defined as a series of stages of 

various durations for a specified amount of time (i.e. 120 seconds). The following list highlights 

the positive and negative aspects of using a multiple stage selector: 

 Ensures that every phase will be selected within a 120 second period 

 Considers the effects of selecting a stage on other streams of traffic by calculating a total 

delay for a specified period of time (i.e. not a greedy approach but considers the knock 

on effects of a decision) 

 Requires much more detailed knowledge on the arrival rate of vehicles for the next 120 

seconds which could be more challenging to obtain accurate data 

 Much more processing time required which means that the road state will be more 

outdated by the time that the stages are selected 

In an ideal situation, perfect knowledge of arrival rates would be known and therefore a cycle 

plan for the next 120 seconds could be developed which would minimise delay and release all 

phases which have a demand. However, unless there is a very long approach road then the arrival 

rate can typically be estimated for perhaps one minute away (500 metre approach for 30mph 

road), but this situation is unlikely as there could be other entry or exit roads before the signalised 

junction. Therefore if an arrival rate can only be predicted for up to one minute in advance, then 

the algorithm must forecast the arrival rate to predict arrival rate over the next 120 seconds. 

In order to determine the best possible cycle plan for the next 120 seconds, then an excellent 

understanding of the current road state is required because any decision made will impact the 

junction for 120 seconds. Therefore all possible cycle plans should be considered with the 

appropriate constraints (minimum green, inter-green, etc.) applied. For a four stage model with a 

maximum green time (for each stage) of 25 seconds, then this would result in 33.5 trillion 

plausible combinations when considering a second by second approach. This is computationally 

not possible (for a typical desktop) every 120 seconds and therefore heuristic approaches are 

required. To put this number into perspective, a reasonably good specification of desktop could 

calculate delay for approximately 40,000 cycle plans every second (therefore requiring over 26 

years to complete the entire combination list). 

It should be noted that the single stage selector does not require a heuristic approach because it 

is able to calculate the delay for all stage configurations very quickly as it is only considering one 
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stage in advance. For example, if there are four stages to choose from and each stage could run 

for up to 50 seconds then this is a quick calculation of less than 200 cycle plans.  

The main priority of a heuristic algorithm for this research is the speed of calculation to 

consistently achieve a cycle plan with an acceptable performance level. The maximum amount of 

time the algorithm will have to find an acceptable solution is 120 seconds; however, if it requires 

this length of time then it will need to rely on road data which is 120 seconds old. Therefore, the 

algorithm will have more reliable data if it can perform quicker. Ideally the algorithm would be 

able to find a solution in less than the inter-green time so that old data does not need to be used 

for determining the road state. 

 

6.4.3 Hill Climber Algorithm 

Selecting a heuristic method is a complex task and large volumes of research are carried out on 

this topic. Therefore, this section will seek to select a heuristic method which can provide an 

acceptable solution in a short amount of time; the performance of the algorithm will be compared 

against the single stage selector. A simple heuristic algorithm which iterates over a problem until 

it finds a local optimum is a hill climber algorithm (Russell and Norvig, 2010). The idea is that 

sufficient search time is given so that the local optimum is as close as possible to the global 

optimum. A hill climber algorithm continually moves in the direction of increasing value (i.e. 

lowest delay for this problem), and can become ‘stuck’ in the search-space as it finds a local 

optimum. To counter this, a random starting point is selected and the process is repeated and 

compared against the previous best solution, this can be repeated as many times as the time 

constraint allows (Russell and Norvig, 2010). 

Figure 36 demonstrates how a hill climber algorithm could be used to output a possible cycle plan 

for use in this research. It is clear that the hill climber process is very iterative and requires a large 

amount of processing power (compared to a single stage selector), to find a suitable solution in 

the large search space. Some definitions are needed: 

 A seed is the initial starting point for a cycle plan which is randomly generated  

 A mutation is a small change to the cycle plan by altering one second in stage length or by 

changing the stage number 

 A step is the number of times the algorithm will repeat the whole mutation process and 

therefore ‘climbing the hill’ 
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The following logic described how the hill climber algorithm operates: 

1. Initially a random cycle plan is generated with constraints such as the minimum and 

maximum green time along with inter-green time between stages. 

2. The cycle plan would be mutated by adding or subtracting one second from a random 

stage and adding it to another stage (provided that the constraints were not exceeded). 

Or the stage number could be changed to any of the other stage numbers available. 

3. This would be repeated by the number of mutations selected, and then the best 

performing cycle plan would be chosen. 

4. With the mutated cycle plan, stages 2 and 3 would be repeated by the number of ‘steps’ 

selected, with the best performing cycle plan selected as the best cycle plan for that seed. 

5. Stages 1 – 4 would be repeated by the number of seeds selected. 

6. The best cycle plan from all seeds would be selected as the chosen cycle plan to be 

implemented in the simulation. 

 

Hill Climber Algorithm

Paramics snapshot 
files generated

Speed and Location 
data gathered

Road State 
determined for each 

phase

Paramics simulation 
for specified stages 

and durations

A ‘dummy’ cycle 
plan is randomly 

generated for next 
120 seconds

This cycle plan is 
mutated by changing 
the stage numbers or 

stage length

New mutated cycle 
plans are tested for 

total delay

Best cycle plan 
replaces old cycle 
plan if lower delay

Repeat by Number 
of Mutations

Repeat by Number 
of Steps

Repeat by Number 
of Seeds

Best Cycle Plan is selected 
for use after all seeds, 

steps and mutations have 
been carried out

Best Cycle Plan for 
current seed

Best Cycle Plan from 
all seeds

 

Figure 36: Hill climber algorithm flow diagram 
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6.4.4 Case Study 

In order to compare the Hill Climber algorithm against the Single Stage selector algorithm then 

the case study junction from Section ‎5.5 was used (the three lane approach, theoretical junction). 

This also enables a brief comparison between the Highbid, Turning Intention Algorithm and the 

new algorithms since the same demand scenarios can be used. The North weighted demand 

scenario (see Section ‎5.5.2 for more detail) was selected for use and previously the 8 stage TIA 

algorithm proved to be the best solution to the problem. Now some further constraints are 

needed for the Hill Climber and Single Stage selector to operate: 

 The maximum green time for each stage is 25 seconds (previously unconstrained) 

 The inter-green time is inputted into the model at 7 seconds (same as before but 

previously not considered in the algorithm) 

 The minimum green time is set at 7 seconds (previously a decision was made every 10 

seconds, which meant that the minimum green could be as short as 3 seconds as the 

inter-green was 7 seconds) 

Trials were carried out to determine how long the PC would take to calculate a cycle plan which 

could be reasonably adapted from the random cycle plan. As mentioned previously, a PC could 

calculate approximately 40,000 cycle plans per second, and therefore two scenarios were run 

where a short time plan would complete in approximately 2.5 seconds and a longer plan which 

would take approximately 25 seconds to calculate. However in this experiment, the longer plan 

was not provided with 25 second old data but it also received ‘perfect’ data in terms of vehicle 

location, speed and turning intention. The two Hill Climber plans were: 

 20 seeds, 50 steps and 100 mutations 

 100 seeds, 100 steps and 100 mutations 

These values were determined from theoretical scenarios developed during the construction of 

the Hill Climber algorithm and cannot be considered as optimal. However, this research is not 

focused on optimising heuristic algorithms and therefore these solutions provide a reasonable 

representation of the Hill Climber algorithm. 

Table 16, Table 17 and Figure 37 displays the results of this simple case study. The Hill Climber 

algorithm has a worse performance against the Single Stage selector, ranging from 12 - 20% 

reduction in average delay and a reduction of 4 - 8% in average journey time depending on the 

number of stages used in the solution. Based on these results, the Single Stage selector algorithm 

has a better performance than the Hill Climber as it reduces average delay and provides a more 
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reliable journey times for vehicles. Therefore the Single Stage selector will be used for future 

experiments carried out in this research. 

It should be noted that there is a significant improvement of using either the Hill Climber 

algorithm or Single Stage selector over the Turning Intention Algorithm or Highbid as shown in 

Table 13 (in Section ‎5.6.4). This observation would begin to suggest that DEMA’s approach is 

considerably better than TIA as real world constraints are imposed and delay can be calculated for 

each phase of traffic. There is a large improvement of how the 4 stage or 17 stage solutions 

perform (82% and 77% reduction in mean delay for 4 stage and 17 stage solution respectively); 

this is because DEMA considers the effects of lost inter-green time, whereas the simplistic 

approaches of Highbid and TIA simply make a decision every ten seconds, regardless of lost time. 

 

Table 16: Hill climber results 

Stage 
Configuration 

and Hill Climber 

Delay Journey Time (seconds) 

Mean 
Delay 
(sec) 

Mean 
Speed 
(mph) 

Mean 
Queue 
Time 
(sec) 

Maximum Mean 
Standard 

Dev. 
Median 

4 Stage - 20 
Seeds, 50 Steps, 
100 Mutations 

45.45 19.62 27.78 311 117.45 36.93 109 

4 Stage - 100 
Seeds, 100 Steps, 

100 Mutations 
44.95 20.02 26.04 356 116.95 38.27 108 

8 Stage - 20 
Seeds, 50 Steps, 
100 Mutations 

44.03 20.07 30.94 979 116.03 90.97 91 

8 Stage - 100 
Seeds, 100 Steps, 

100 Mutations 
41.17 20.83 26.70 1125 113.17 87.63 90 

17 Stage - 20 
Seeds, 50 Steps, 
100 Mutations 

51.01 18.84 33.83 713 123.01 62.42 106 

17 Stage - 100 
Seeds, 100 Steps, 

100 Mutations 
51.00 19.08 32.09 704 123.00 58.94 108 
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Table 17: Single stage selector results 

Number of 
Stages in 
Solution 

Delay Journey Time (seconds) 

Mean 
Delay 
(sec) 

Mean 
Speed 
(mph) 

Mean 
Queue 
Time 
(sec) 

Maximum Mean 
Standard 

Dev. 
Median 

2 Stage 63.63 18.08 44.84 1699 135.63 149.60 92 

4 Stage 39.81 20.68 23.89 317 111.81 35.50 100 

8 Stage 34.84 21.86 21.60 783 106.84 64.77 88 

17 Stage 40.65 21.25 22.38 673 112.65 49.90 96 

 

 

 

Figure 37: A comparison of the Hill Climber control logic against the Single Stage selector 
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6.4.5 Conclusion 

The Hill Climber algorithm guarantees that all phases, which have a demand, will be released 

within a 120 second period. The Single Stage selector does force DEMA to meet this constraint by 

applying a weighting factor, but some vehicles may inevitably wait longer than 120 seconds by 

using this technique if the weighting factor is not applied soon enough. The performance of the 

Single Stage approach is up to a 20% reduction in average delay and 8% reduction in journey time 

against the Hill Climber algorithm. As the Hill Climber algorithm requires much longer processing 

time, then the algorithm would make use of older data in order to calculate the best cycle plan by 

the time it is needed. The problem with this is that at a low demand scenario then it would be 

difficult for the Hill Climber to accurately predict arrival rates. Therefore the Single Stage selector 

will be used to determine the most appropriate stage using the DEMA algorithm. 
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6.5 Case Study – Sopers Lane (T-Junction) 

Siemens were able to provide data for two junctions which are located in Poole (United Kingdom). 

The first of these is a T-junction on Sopers Lane which is currently controlled by MOVA (see 

Section ‎2.2.3 for more information). The reason why a T-junction is being considered first is 

because stage manipulation is severely limited as there are only six possible phases at a T-

junction. This will provide a suitable comparison for how DEMA compares with MOVA on a real 

junction, under the same constraints. Then in Section ‎6.6 a comparison can be made at a 

crossroads in Poole which will allow some stage manipulation to take place. 

 

6.5.1 Junction Layout 

Sopers Lane junction consists of a three lane approach from the North where there is a dedicated 

right turn lane, a two lane approach from the South where the left lane allows both straight and 

left turning movements, and a Western single lane road which allows both left and right 

movements (see Figure 38). Figure 39 displays the current stage diagram for the junction, where 

stage 2 is only selected when there is a pedestrian demand (which is not required in this 

experiment). The maximum stage lengths of Stages 1, 3 and 4 are 60 seconds, 22 seconds and 40 

seconds respectively and the minimum green times are all 7 seconds. The speed limit is 40 mph 

on the dual carriageway section and 30 mph on the minor road.  

 

Figure 38: Sopers Lane junction layout (Paramics junction on right) (Image from: Google Maps, 2014a) 

 

N 
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Figure 39: Stage diagram Sopers Lane junction 

 

6.5.2 Demand Scenario 

The demand scenario for Sopers Lane was determined from actual loop data for a typical weekday 

morning at the junction. Siemens provided the data shown in Table 18 and Figure 40. The 

experiments in this case study will only run for one hour as this is the volume of data given. To 

provide further insight into how the two algorithms will perform, then the demand scenarios will 

be varied from 20% up to 150% of the current typical weekday flow levels. 

Table 18: Demand matrix for Sopers Lane for a one hour period 

 North South West 

North - 980 76 

South 793 - 244 

West 122 122 - 

 

 

Figure 40: Demand profile for Sopers Lane 
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In order to calculate the average delay for Sopers Lane junction then the free flow journey times 

must be determined for each of the origin destination pairs. The zone numbers are numbered 

from the Northern arm in a clockwise direction. The free flow journey times in Table 19 are 

determined from when each traffic movement receives a green light prior to arrival at the 

junction with no opposing traffic. As the demand matrix can be observed in Table 18, then an 

overall average free flow journey time can be calculated through a weighting method; by 

multiplying the demand for each movement by the corresponding free flow journey time and 

dividing by the total demand. Therefore the average free flow journey time for Sopers Lane 

junction is 41 seconds; this value will be subtracted from the mean journey time to represent the 

mean delay for each simulated scenario. 

Table 19: Free flow journey time for each origin destination pair 

Free Flow Journey 
Time (seconds) 

Destination Zone 

1 2 3 

O
ri

gi
n

 
Zo

n
e 

1 - 39 50 

2 37 - 52 

3 47 50 - 

 

6.5.3 Results 

This section shows a comparison of MOVA control against DEMA control (using Single Stage 

selection – see Section ‎6.4 for more information) under the typical weekday morning rush hour 

period. Table 20, Figure 41 and Figure 42 displays the reduction in average delay and journey time 

when under DEMA control compared to MOVA. DEMA is much fairer to vehicles in terms of 

distribution of journey times as the standard deviation is much lower than MOVA control. MOVA 

has a much higher maximum journey time which could potentially be attributed to a ‘settling in’ 

period before MOVA is able to optimise the junction. 

The exception to this is at 150% demand scenario, this is where MOVA and DEMA are very 

comparable in terms of mean delay and journey time. Upon analysis of the journey time 

distribution at 150%, the average journey for vehicles travelling from the North was 57 seconds, 

from the South 61 seconds and from the West 280 seconds. This demonstrates how DEMA should 

be calibrated differently in congested scenarios because vehicles travelling on the minor road 

from the West will be forced to wait considerably longer than the main road (unless this is what 

network operators want). This is a consequence of the single stage choice which was decided in 

Section ‎6.4; however the weighting factor could be adjusted if the waiting time becomes 

unacceptable. 
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Table 20: Important statistics from the comparison of MOVA aganst DEMA 

Control Method 
and 

Demand 

Delay Journey Time (seconds) 

Mean 
Delay 
(sec) 

Mean 
Speed 
(mph) 

Mean 
Queue 
Time 
(sec) 

Maximum Mean 
Standard 

Dev. 
Median 

MOVA 
20% 

8.44 22.9 29.4 491 49.44 37.8 40 

DEMA 5.12 32.7 1.6 119 46.12 10.1 41 

MOVA 
40% 

9.29 23.1 24.4 527 50.29 33.3 42 

DEMA 6.33 32.1 2.0 139 47.33 11.7 42 

MOVA 
60% 

11.01 22.1 26.9 554 52.01 36.1 44 

DEMA 7.41 31.6 2.3 144 48.41 12.9 43 

MOVA 
80% 

13.45 21.4 28.1 557 54.45 37.2 47 

DEMA 9.60 30.5 3.2 169 50.60 16.4 45 

MOVA 
100% 

15.53 21.0 27.5 555 56.53 36.0 49 

DEMA 12.98 29.6 4.5 227 53.98 23.9 46 

MOVA 
150% 

43.79 16.7 37.7 566 84.79 58.0 63 

DEMA 43.26 25.1 13.3 640 84.26 97.5 54 

 

 

 

Figure 41: Comparison of average delay for MOVA and DEMA control at Sopers Lane 
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Figure 42: Comparison of average journey time for MOVA and DEMA control at Sopers Lane 

 

Table 21 shows how much DEMA outperforms MOVA by for average delay and journey times. 

DEMA reduces average delay by a considerable margin over MOVA, ranging from 16% in the 

current demand scenario (100%) to as much as 39% in the lowest demand scenario. Whereas, the 

average journey time achieves a more modest reduction throughout the demand scenarios of 

approximately 4 - 7% (except 150% demand scenario).  In the 150% demand scenario, MOVA and 

DEMA are virtually identical as the junction becomes oversaturated. In this situation, it is very 

difficult to achieve a reduction in delay or journey time as all stages are demanding the green light 

at all times (Shepherd, 1994). 

Table 21: Percentage reduction of DEMA over MOVA 

Demand 
Percentage Reduction over MOVA (%) 

Mean Delay Mean Journey Time 

20% 39.4 6.7 

40% 31.9 5.9 

60% 32.7 6.9 

80% 28.7 7.1 

100% 16.4 4.5 

150% 1.2 0.6 
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Table 22 shows that there is a statistically significant difference of means for both average delay 

and journey time (except for the 150% demand scenario). It is important to highlight that there is 

no possibility of the means being equal to one another as the p-values are less than 0.05 which 

shows a 95% confidence value. Whereas in the 150% demand scenario, the null hypothesis (the 

means are equal to one another) must not be rejected. 

Table 22: Independent sample T-test results of comparing means of delay and journey time 

Demand 
p Value 

Mean Delay Mean Journey Time 

20% 0.000 0.000 

40% 0.000 0.000 

60% 0.000 0.000 

80% 0.000 0.000 

100% 0.000 0.000 

150% 0.899 0.899 

 

6.5.4 Conclusion 

The Sopers Lane case study demonstrates that the DEMA algorithm can outperform MOVA by a 

statistically significant amount; however there are concerns of its fairness at excessive demand 

levels. This case study does not require the use of turning intention as there is no possible stage 

manipulation with only six phases and therefore provides a good foundation for testing DEMA 

against a state of the art control algorithm. However the next part of this research will investigate 

DEMA on a junction where turning intention can be used which may provide additional benefits. 

The absolute average journey time reduction is approximately three to four seconds per vehicle at 

the junction. Over an entire network, this reduction can become fairly sizeable. To put this value 

in perspective, SCOOT bus priority systems achieve approximately 3 - 5 second reductions in 

journey times but this is only for buses (Bowen, 1997); i.e. there is a disadvantage to other road 

users. This demonstrates how desirable this system would be if it can deliver a 3 – 4 second 

reduction in journey time for all vehicles and therefore more scenarios need to be tested using 

the DEMA algorithm to determine its suitability in a real world test. 
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6.6 Case Study – Cabot Lane (Crossroads)  

As Section ‎6.5 has demonstrated the benefits of using DEMA over MOVA at a T-junction, this 

section will investigate how DEMA performs when controlling a more complex junction. One of 

the benefits of using this junction for a case study is that Siemens use it as their ‘test site’ and 

therefore the junction is regularly updated and any comparisons of DEMA will be against an 

expertly configured MOVA junction. MOVA junctions have been selected because MOVA is also a 

delay minimisation algorithm for isolated junctions (DfT, 2006) and therefore it is a fair 

comparison against DEMA. 

 

6.6.1 Junction Layout 

Figure 43 and Figure 44 show the junction layout for Cabot Lane, where the speed limit is 50 mph 

and therefore it is a high speed signalised junction. There are two approach lanes from the North, 

both of which can travel straight ahead and vehicles can turn left or right from their respective 

lanes. From the East there are three approach lanes, all of which have an individual turning 

movement. From the South there are two approach lanes, with an additional left turn lane near 

the junction (it is a give way movement and is not controlled by the traffic signals); the other two 

lanes are dedicated straight and right lanes respectively. From the West there are two approach 

lanes, one is a dedicated right turn lane and the other is a straight and left lane.  

The stages which MOVA currently use will also be used by DEMA in this section and can be seen in 

Figure 45. MOVA is allowed to skip any stages which do not have any demand and DEMA will be 

allowed to select any stage at any time provided that the 120 second release constraint has not 

been breached. The storage capacity on each approach lane is relatively low (approximately five 

vehicles) and therefore the phases on each arm are currently released as a stage to ensure that 

vehicle blocking is not an issue and that safety standards are met on a high speed junction (DfT, 

2003). There is an all pedestrian stage (stage 5) but it has been omitted and is never selected in 

the simulation due to the focus on vehicular movements in this study, so there is no pedestrian 

demand. 

Section ‎6.3.5 described how an arrival rate should be calculated; the average travel time for a 

vehicle travelling from 500m away in the Sopers Lane junction was 30 seconds due to the higher 

approach speeds. This was determined by adding a zone in the Paramics model which covered the 

junction itself and then observed the average journey time from all input zones. 
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Figure 43: Cabot Lane junction layout and stage diagram, Poole (UK) 

 

 

Figure 44: Cabot Lane junction layout (Paramics junction on the right) (Image from: Google Maps, 2014b) 

 

 

 

Figure 45: Cabot Lane current stage diagram for MOVA control 
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6.6.2 Paramics 

As the Southern approach has three links before the junction, then Paramics could only see 

turning intention for less than 100m away (i.e. the nearest two links to the junction). Therefore an 

assumption was made for all vehicles that were on the third link at that moment in time - any 

vehicle which could be detected would be split evenly into the three possible turning movements 

(i.e. one third of a vehicle was assigned to the left, straight and right turning movements). This 

assumption was made because the junction would have been heavily weighted towards the other 

three approach roads as they could see turning intention over 500m away and the Southern 

approach would only be able to see 100m away.  

A simulated environment enables a fair comparison of the two control algorithms because the 

demand profile can be accurately replicated. However, as there are stochastic variations in the 

release of vehicles, all demand scenarios will be simulated five times so that the average statistics 

can be fairly compared.  

 

6.6.3 Demand Scenario 

The demand scenario for Cabot Lane was provided by Siemens and represented a typical 

weekday, morning rush hour demand rate; the data is shown in Table 23 and Figure 46. Similar to 

the case study in Section ‎6.5, the demand rate will be varied from 20% to 100% as observations 

from the junction already suggest that it is oversaturated. 

 

Table 23: Demand matrix for Cabot Lane for the two hour period 

  
Destination 

West South East North 

O
ri

gi
n

 

West - 150 300 100 

South 50 - 100 800 

East 300 100 - 100 

North 75 800 75 - 
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Figure 46: Demand profile for Cabot Lane 

 

In order to calculate the average delay for Cabot Lane junction then the free flow journey times 

must be determined for each of the origin destination pairs. The zone numbers are numbered 

from the Western arm in an anticlockwise direction. The free flow journey times in Table 24 are 

determined from when each traffic movement receives a green light prior to arrival at the 

junction with no opposing traffic. As the demand matrix can be observed in Table 23, then an 

overall average free flow journey time can be calculated through a weighting method; by 

multiplying the demand for each movement by the corresponding free flow journey time and 

dividing by the total demand. Therefore the average free flow journey time for Cabot Lane 

junction is 56 seconds; this value will be subtracted from the mean journey time to represent the 

mean delay for each simulated scenario. 

 

Table 24: Free flow journey time for each origin destination pair 

Free Flow 
Journey Time 

(seconds) 

Destination Zone 

1 2 3 4 

O
ri

gi
n

 Z
o

n
e 1 - 68 81 68 

2 64 - 61 44 

3 80 65 - 65 

4 61 41 61 - 
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6.6.4 Constraints 

All of the constraints placed on MOVA were also placed on DEMA control apart from stage order. 

The minimum green time was set to seven seconds per stage, and the minimum inter-green 

period was set at five seconds (three seconds of amber after a stage and two seconds before the 

next). The maximum stage lengths used in DEMA were taken directly from the MOVA 

configuration as seen in Table 25. The discharge rate at the junction was dependent on whether 

the phase was opposed or unopposed, using recommended values of 1900 pcu/hour for straight 

ahead traffic and 1650 pcu/hour for turning unopposed traffic (DfT, 2006). 

Table 25: Maximum stage lengths for Cabot Lane 

 

Max Length (Minutes : Seconds) 

Stage 1 Stage 2 Stage 3 Stage 4 

Morning 1:13 1:11 0:37 0:32 

Afternoon 0:47 0:35 0:22 0:32 

Evening 0:52 0:24 0:25 0:24 

 

6.6.5 Results 

Figure 47, Figure 48, Figure 49 and Table 26 compares the performance of DEMA against the 

existing control strategy of MOVA. Under every demand scenario there is a considerable 

reduction in delay by using DEMA over MOVA. There is a substantial reduction in mean delay 

from 20% demand to 80%; during which, there were not large queues of traffic on every approach 

arm of the junction. However from observations during the experiments at 100% demand, all 

arms of the junction were completely congested under both control algorithms. This means that it 

is very difficult to achieve a sizeable performance improvement within the system because the 

demand is so high. At 100% demand, there is less opportunity to skip stages because all stages 

need to be released. This is demonstrated in the substantial drop of performance difference 

between 80% demand and 100% demand, as can be observed in Table 27. 

DEMA produces a lower mean journey time through the junction but also provides a more reliable 

journey time as the standard deviation and maximum journey times are lower than MOVA 

simulations. This means that DEMA is fairer to vehicles and does not constrict the minor arms of 

the junction in an attempt to reduce the mean delay (i.e. the minor roads are given equal priority 

over the major roads, but this could be altered if desirable by the network operator). This can also 

be confirmed by lower maximum journey times across all levels of demand, hence minor roads 

are not being held back. If the network operator’s aim was to reduce ‘rat runs’ through a network, 
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then these results suggest that the minor roads could be held back even more using DEMA (this is 

true if the maximum journey time during MOVA control is acceptable). 

An independent sample T-test was carried out for each demand scenario to determine if there is a 

statistical significance between the means of the two control algorithms, with a confidence 

interval of 95%. For demand values 40 - 80%, the p-value was less than 0.01 which suggests a very 

significant difference in mean delay and journey time of each control algorithm. However the p-

value in the 20% and 100% demand scenario were 0.27 and 0.06 respectively; which means that 

they are not statistically significant. 

 

 

Figure 47: Mean journey time for the morning peak under varying demand scenarios (from 60% demand to 100% 
demand) 

 

0

50

100

150

200

250

300

350

400

06:59:02 07:27:50 07:56:38 08:25:26 08:54:14

M
e

an
 J

o
u

rn
e

y 
Ti

m
e

 (
Se

co
n

d
s)

 

Experiment Time (Morning Peak) 

MOVA 100%

DEMA 100%

MOVA 80%

DEMA 80%

MOVA 60%

DEMA 60%



Chapter 6 

160 
 

 

Figure 48: Comparison of average delay for MOVA and DEMA control at Cabot Lane 

 

 

Figure 49: Comparison of average journey time for MOVA and DEMA control at Cabot Lane 
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Table 26: Results of different demand levels and method of controlling the junction 

Control 
Method and 

Demand 

Delay Journey Time (seconds) 

Mean 
Delay 
(sec) 

Mean 
Speed 
(mph) 

Mean 
Queue 
Time 
(sec) 

Maximum Mean 
Standard 

Dev. 
Median 

MOVA 
20% 

15.9 35.4 10.6 268 71.9 25 67 

DEMA 12.9 38.5 5.5 174 68.9 20 65 

MOVA 
40% 

20.8 32.9 13.2 254 76.8 23 73 

DEMA 18.1 35.9 8.4 190 74.1 23 69 

MOVA 
60% 

34.8 29.1 20.8 295 90.8 36 83 

DEMA 28.4 32.9 12.7 233 84.4 30 78 

MOVA 
80% 

132.7 21.1 58.2 616 188.7 145 121 

DEMA 87.4 26.9 35.5 489 143.4 100 104 

MOVA 
100% 

293.3 19.8 78.2 1183 349.3 318 210 

DEMA 267.4 20.9 72.3 1145 323.4 301 203 

 

Table 27: Percentage improvement of DEMA over MOVA for various demand levels 

Demand 
(%) 

Percentage Reduction over 
MOVA (%) 

Mean 
Delay 

Mean Journey 
Time 

20 18.4 4.1 

40 13.1 3.5 

60 18.5 7.1 

80 34.1 24.0 

100 8.8 7.4 

 

6.6.6 Discussion 

As noted in Section ‎6.4, a problem with greedy algorithms are that DEMA may never calculate a 

benefit in releasing the minor stages. Therefore a weighting factor is essential to ensuring that all 

stages would eventually become desirable. Occasionally during peak traffic the cycle time could 

exceed 120 seconds and last up to 175 seconds, whereas MOVA did not typically exceed 160 

seconds waiting time in peak traffic. The reason for DEMA exceeding MOVA’s maximum cycle 

time is because the weighting factor was only applied if the phase had not been released for more 
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than 120 seconds. For example, if the decision point was at time 119 seconds since a particular 

phase was released, then the weighting factor would not yet be applied until the next stage was 

completed (which could be up to 73 seconds as explained in Section ‎6.6.4). If the network 

operator determined that the maximum waiting time needed to be less than 175 seconds, then 

the weighting factor could be applied sooner (for example at 100 seconds) and therefore the 

phase would be selected sooner.  

Under low flow conditions, there is a greater benefit in knowing that vehicles are approaching 

from far away as the junction can ‘prepare’ for their arrival by setting the traffic light to green. 

However when the junction is totally congested and all stages need to be released, then it is 

unlikely that there will be much benefit in knowing that there are incoming vehicles 500 metres 

away from the junction. Hence this is one of the potential explanations for the considerable drop 

in performance at 100% demand. As a result of this, the 8.8% reduction in mean delay is more 

likely to be influenced by the flexibility in stage selection as opposed to the combined benefits of 

stage selection and improved data resolution in lower demand scenarios. 

 

6.6.7 Oversaturation Observation 

When the results of both Sopers Lane (T-junction) and Cabot Lane (crossroads) were analysed, it 

appeared that Cabot Lane was frequently oversaturated with queue lengths approaching the 

model boundaries; whereas Sopers Lane rarely was oversaturated. Both junctions were able to 

observe significant improvements over MOVA but Cabot Lane struggled to achieve as large a 

reduction in delay across all demand scenarios.  

One interpretation of why this could be is that Cabot Lane was oversaturated at the 100% 

demand scenario whereas Sopers Lane was not. Oversaturation for a phase can be defined as: 

“When the traffic demand exceeds the green time capacity such that a queue that exists at 

the beginning of the green time is not fully dissipated at the end of the green time for that 

movement” (NCHRP, 2012) 

In order to classify a junction as being oversaturated then two or more opposing phases must be 

classified as oversaturated (NCHRP, 2012). By this definition, Cabot Lane was oversaturated on 

the 100% demand scenario typically between 7:45am and 8:25am, whereas Sopers Lane rarely 

could be classified as oversaturated, only occasionally on the minor road. As both DEMA and 

MOVA have the same maximum stage lengths, then during oversaturated periods (when the 

maximum cycle time is used) the only difference between the two algorithms is DEMA’s ability to 
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freely choose the next stage. This highlights the benefits of using a flexible stage selection process 

over a predefined stage order. 

 

6.6.8 Conclusion for the Case Study 

This section has demonstrated that there are significant benefits to using additional data sources 

but it is also important to allow control systems to select any possible next stage. The results 

show that the novel Delay Minimisation Algorithm (DEMA) outperformed MOVA in every demand 

scenario at Cabot Lane (which has been expertly configured for MOVA control). The maximum 

reduction in mean delay was 34.1% and the minimum reduction was 8.8% under more congested 

scenarios. It should be noted that the 100% demand scenario did not achieve a statistically 

significant result, where one of the contributing factors is that the junction was oversaturated. 

This study has shown the potential for improvement when using DEMA over MOVA, however all 

studies so far have used ‘perfect data’ and therefore the next section will investigate how DEMA 

is affected when imperfect data is provided to the control algorithm. Also this study has equipped 

all vehicles as data providers (this is unlikely to be the case in reality) and hence why a sensitivity 

analysis will compare MOVA against DEMA when there are various infiltration rates for vehicles 

that can provide additional data. 
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6.7 Sensitivity Analysis for Cabot Lane 

Prior to this section, all of the results displayed for Cabot Lane, Sopers Lane and the three lane 

crossroads have used ‘perfect data’ to determine the best cycle plans. This is inherent of micro-

simulation and therefore some variation of perfect data should be investigated because real data 

is rarely perfect. This also applies to the simulated results for MOVA but inductance loops are very 

reliable and hence the results for MOVA shall remain unaltered. This section will simulate 

different scenarios in order to understand how DEMA would operate using imperfect data sources 

and some variation in the ‘default’ parameters assumed in DEMA. The key areas which will be 

investigated in this section are: 

1. Variation in the length of the detection zone (default was 500 metres) 

2. Infiltration rate of vehicles which are equipped to provide additional data (speed and 

location) 

3. Accuracy of location and speed data (through variation of the standard deviation) 

4. Future scenarios which provide an insight to a combination of these variables 

These four areas will be tested in the Cabot Lane case study as described in Section ‎6.6 and each 

scenario will be simulated at least ten times to ensure that the average results display a true 

reflection of the situation. 

 

6.7.1 Length of Detection Zone 

This section will investigate how detection distance affects the performance of DEMA. In order to 

do that, the simulation was altered so that vehicles were not detected until they were within a 

specified distance of the junction (in 50 metres increments). In a real junction, the cost of 

installing cabling to 500 metres away from the junction would be high and therefore it would be 

ideal to determine the shortest distance possible which can deliver the best performance. The 

demand level was set at 100% for Cabot Lane junction and MOVA was tested again (hence the 

subtle difference to MOVA results in Section ‎6.6.5). 

Figure 50, Figure 51 and Table 28 display how the length of detection zone varies with distance. 

There is not a statistically significant difference in distances between any of the simulations for 

200 to 500 metres even though the mean delay varies from 254 seconds to 268 seconds. The 

critical distance is at 150 metres when the average journey time becomes equivalent to MOVA 

and also the reliability of journey time decreases. Since the median and standard deviation of 



Chapter 6 

165 
 

journey time increases when there is less data, then a fair conclusion is that DEMA struggles to 

know which stage to prioritise as it does not know how long the queue lengths are. 

DEMA has been designed with the assumption that it will know the stationary queue length; but 

during the 50 metres detection distance experiment, the calculation will begin to break down in 

congested scenarios as all arms are likely to be queued in excess of 50 metres (and often much 

further than that). In congested scenarios with very short detection lengths, DEMA will not be 

able to determine any benefit to releasing one stage over another and therefore DEMA will 

inevitably act like a fixed time controller using the maximum stage lengths. The important factor 

in this situation is the weighting factor to ensure that DEMA will forcibly release all phases within 

the specified limit (120 seconds). 

 

 

Figure 50: Comparison of mean delay for a range of detection distances against MOVA 
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Figure 51: Comparison of mean journey times for a range of detection distance against MOVA 

 

Table 28: Results of different detection distances compared against MOVA 

Detection 
Distance for 

DEMA 

Delay Journey Time (seconds) 

Mean 
Delay 
(sec) 

Mean 
Speed 
(mph) 

Mean 
Queue 
Time 
(sec) 

Maximum Mean 
Standard 

Dev. 
Median 

MOVA 285.6 19.5 75.7 1189 341.6 299.8 196.8 

500m 268.2 21.1 72.8 1209 324.2 309.0 194.6 

450m 263.8 21.0 73.3 1155 319.8 299.7 190.9 

400m 254.7 20.9 75.0 1025 310.7 269.6 198.3 

350m 259.2 21.0 70.2 1036 315.2 276.2 200.6 

300m 254.5 20.9 72.8 1030 310.5 270.1 202.4 

250m 265.1 20.3 72.7 1050 321.1 281.7 199.3 

200m 258.9 20.2 71.7 1081 314.9 285.6 182.6 

150m 284.1 19.6 71.9 1152 340.1 304.0 209.8 

100m 282.0 18.9 74.3 1125 338.0 301.4 211.7 

50m 325.5 18.4 64.5 1493 381.5 405.6 169.8 
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Figure 52 displays a box plot of the range in mean delay values for all ten simulations for each of 

the distances. An interesting point to observe from this graph is how little MOVA varies in 

comparison with all of the DEMA scenarios, however the mean delay is statistically, significantly 

lower in DEMA for all scenarios between 200 and 500 metres detection distance (see Table 29). At 

50 metres, DEMA does not operate favourably and has wide ranging effects on mean delay.  

In conclusion for the results presented in this section, a minimum detection distance of 200 

metres would be required as this scenario has a statistically significant reduction in mean delay 

and journey time. Importantly, there is no additional improvement in providing a detection 

distance greater than 200 metres as the greater detection distance scenarios present similar 

results to 200 metres. Therefore if there is an additional cost to detecting vehicles further away 

then it should not be installed as there is no performance benefit from the expenditure. 

 

 

Figure 52: Box plot showing the range in results for a range of detection distances 
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Table 29: P-values in comparison for MOVA and DEMA at various detection distances 

 

P-values 

Mean Delay Mean Journey Time 

500m 0.024 0.024 

450m 0.004 0.004 

400m 0.008 0.008 

350m 0.001 0.001 

300m 0.003 0.003 

250m 0.040 0.040 

200m 0.002 0.002 

150m 0.110 0.110 

100m 0.501 0.501 

50m 0.007 0.007 

 

6.7.2 Infiltration Rate 

It is important to recognise that all vehicles cannot currently provide additional data sources and 

therefore an infiltration rate needs to be considered before evaluating if DEMA can outperform 

MOVA on a real junction. This section will vary the percentage of vehicles which can transmit 

additional data sources (location and speed), which helps to develop an understanding of when it 

is feasible to introduce DEMA in place of MOVA. Without knowing the effects of a low infiltration 

rate, then it is not possible to carry out a real world trial of DEMA. 

As this research is focused on additional data sources, inductive loops are still used in the 

simulation to ensure that DEMA has some data available to it (as described in Section ‎6.3.5). The 

inductive loops are located at 50 and 100 metres from the junction on all arms (same as MOVA). 

This means that it is possible to simulate no additional data to compare DEMA against MOVA 

(otherwise DEMA would represent a fixed time system with no live data). 

Figure 53, Figure 54 and Table 30 can be used to observe that DEMA outperforms MOVA when 

there are 30% to 100% of vehicles transmitting their location and speed. However in terms of a 

statistically significant difference in the two means, then the required infiltration rate is 100% to 

ensure it outperforms MOVA (see Table 31). The maximum journey time for DEMA outputs are 

worse than MOVA for every scenario which suggests that DEMA is less fair to all drivers and this is 

supported by the fact that the standard deviation is typically higher than MOVA’s (which means 

that there are more drivers being held back for the benefit of others). 
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Figure 53: Comparison of mean delay for a range of infiltration rates against MOVA 

 

 

Figure 54: Comparison of mean journey times for a range of infiltration rates against MOVA 
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Table 30: Results of different infiltration rates compared against MOVA 

Infiltration 
Rate for 
DEMA 

Detection 

Delay Journey Time (seconds) 

Mean 
Delay 
(sec) 

Mean 
Speed 
(mph) 

Mean 
Queue 
Time 
(sec) 

Maximum Mean 
Standard 

Dev. 
Median 

MOVA 285.6 19.5 75.7 1189 341.6 299.8 196.8 

100% 271.8 20.6 75.6 1208 327.8 303.1 205.1 

90% 268.8 21.0 73.2 1194 324.8 311.0 187.4 

80% 274.2 20.8 73.0 1237 330.2 327.5 191.5 

70% 267.9 20.8 71.2 1262 323.9 317.0 199.2 

60% 266.5 20.9 71.0 1234 322.5 312.3 195.7 

50% 271.6 20.4 71.7 1224 327.6 317.3 199.1 

40% 277.0 20.2 69.8 1302 333.0 334.8 198.7 

30% 274.6 19.9 71.9 1271 330.6 316.2 209.7 

20% 305.4 19.4 72.4 1265 361.4 336.2 233.7 

10% 311.4 19.1 73.5 1263 367.4 345.8 210.5 

0% 317.1 18.9 65.1 1363 373.1 386.7 172.2 

 

 
Figure 55: Box plot showing the mean delay for various infiltration rates 
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Table 31: P-values of each infiltration rate compared against MOVA 

 

P-values 

Mean Delay Mean Journey Time 

100% 0.024 0.024 

90% 0.095 0.095 

80% 0.203 0.203 

70% 0.146 0.146 

60% 0.168 0.168 

50% 0.134 0.134 

40% 0.282 0.282 

30% 0.205 0.205 

20% 0.227 0.227 

10% 0.060 0.060 

0% 0.007 0.007 

 
The results shown in Figure 55 and Table 31 demonstrate that when the infiltration rate is 

reduced then the reliability of the performance of DEMA reduces. The box plot highlights that the 

mean delay is considerably lower than MOVA from 30% to 100% infiltration, but there is a lot 

more variation in the potential performance. 

These results show that it is important to achieve a high infiltration rate to attain the full benefits 

of DEMA or else the reliability of journey time and fairness for drivers appears to deteriorate. It 

should be noted that within the next 10 – 15 years, vehicles are expected to become much more 

connected to the internet and their surrounding environment. As stated in Section ‎2.4.1, it is 

anticipated that 70% of vehicles will be connected to the internet by 2027 (ABI research, 2013b) 

which provides an invaluable method of sharing information with other road users and the 

network operators. Also over 50% of the UK’s population have smartphones now (NewMedia, 

2013) which are capable of sharing a road user’s location and speed. Hence why this research 

provides a valuable insight to how data can be used in the near future for traffic control purposes. 

Further investigations are required to determine the real world potential of DEMA compared to 

MOVA as this section has demonstrated how a reduction of mean delay can occur with only 30% 

infiltration, but with considerably more unreliable journey times. The accuracy of data received 

needs to be considered but also one potential reason for DEMA’s unreliable journey time in this 

experiment is that DEMA obtains too much irrelevant information as the detection distance is 500 

metres. Section ‎6.7.1 has highlighted that only a 200m detection distance can achieve the same 

performance level as a 500m detection zone. Therefore further studies are required to determine 

how accurate the data needs to be but also how a combination of variables will affect DEMA 

compared to MOVA. 
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6.7.3 Accuracy of Location and Speed Data 

This section will investigate what effect the accuracy of location and speed data has on the 

performance on DEMA on the Cabot Lane junction. As previously explained, this study is carried 

out in a simulated environment which provides perfect data whereas in the real world, it would 

be very unlikely to achieve perfect location and speed data through GPS or V2X communication 

devices. Waterson and Box (2010) investigated what effect location accuracy had on their traffic 

control algorithm, where they assumed a normal distribution with a pre-defined standard 

deviation to reduce the accuracy of the input data before using it in the control algorithm. 

Waterson and Box (2010) defined the following standard deviations: 

 1 - 2m  is representative of very good differential GPS in open areas 

 4 - 8m  is representative of accuracies from current standard GPS units 

 16 - 32m is representative of GPS systems operating in urban canyon environments 

However, as speed is also an important factor for calculating delay in the DEMA algorithm (it is 

used to classify vehicles as part of the queue) then this section will also vary the speed by 

standard deviations of 1, 2, 3 and 4 miles per hour. 

In order to alter the perfect data by a standard deviation, an equation is required to randomly 

generate a new location and speed. The Box-Muller Transform (Box and Muller, 1958) can be 

used to randomly select a value between zero and one which would represent a normal 

distribution: 

𝑋 =  √−2 ln (𝑈) . cos(2𝜋𝑉) 

𝑌 =  √−2 ln (𝑈) . sin(2𝜋𝑉) 

Where U and V are uniformly distributed between zero and one (i.e. they are random numbers 

between zero and one). Then to get the random Gaussian values (A, B) which fits on the normal 

distribution with mean (μ) and standard deviation (σ). Where A and B are independent variables: 

𝐴 =  𝜇 +  𝜎𝑋 

𝐵 =  𝜇 +  𝜎𝑌 

The perfect data which is generated from Paramics can be used as the mean value (μ) and the 

standard deviation will be constant throughout each experiment scenario. 
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Figure 56, Figure 57 and Table 33 show the results of various standard deviation experiments 

compared against MOVA. It is clear that an accurate speed reading is very important for DEMA to 

operate correctly because a standard deviation of 1 mph increases the average delay by 33 

seconds (approximately a 9% increase in total delay). This highlights that speed data has a big 

impact on determining the length of the stationary queue and when there is less than perfect 

data then DEMA cannot estimate the queue length sufficiently. It should be noted that the speed 

limit on the approach roads are 50 mph but the overall average speed is only 20 mph. When there 

are low speeds involved then this large standard deviation has a significant impact on the range of 

potential speeds, see Figure 58.  

The following example demonstrates the variation: 

Mean speed = 10 mph and Standard deviation = 4 mph 

 38.2% of values will vary from 8 – 12 mph 

 30% of values will vary from 6 – 8 and 12 - 14 mph 

 18.4% of values will vary from 4 – 6 and 14 – 16 mph 

 8.8% of values will vary from 2 – 4 and 16 - 18 mph 

 3.4% of values will vary from 0 – 2 and 18 – 20 mph 

This variation highlights how much the speed varies when using a standard deviation as high as 4 

mph. A vehicle travelling 5 mph has approximately a 30% chance of being classified as part of the 

queue when it should not be. 
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Figure 56: A comparison of mean delay for MOVA against varying standard deviations of both vehicle location and 
speed 

 

Figure 57: A comparison of mean journey time for MOVA against varying standard deviations of both vehicle location 
and speed 
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Table 32: Results of different standard deviations for location and speed data compared against MOVA 

Standard Deviation 
(metres, miles per hour) 

Delay Journey Time (seconds) 

Mean 
Delay 
(sec) 

Mean 
Speed 
(mph) 

Mean 
Queue 
Time 
(sec) 

Max. Mean 
Standar
d Dev. 

Median 

MOVA 285.6 19.5 75.7 1189 341.6 299.8 196.8 

Location 4m 270.0 20.9 75.8 1161 326.0 300.1 202.5 

Location 8m 268.2 21.1 73.7 1193 324.2 313.1 190.7 

Location 16m 275.0 20.8 76.3 1130 331.0 301.3 206.0 

Location 32m 270.7 20.9 73.1 1207 326.7 322.2 181.6 

Speed 1mph 290.4 20.6 72.6 1353 346.4 364.3 178.4 

Speed 2mph 293.1 20.8 74.8 1301 349.1 354.3 180.4 

Speed 3mph 318.9 20.4 80.8 1341 374.9 385.0 173.1 

Speed 4mph 357.2 20.2 85.4 1529 413.2 423.7 225.3 

Location 4m, Speed 1mph 283.0 20.6 71.5 1290 339.0 347.6 189.3 

Location 8m, Speed 2mph 296.4 20.6 75.8 1286 352.4 358.4 175.7 

Location 16m, Speed 3mph 325.4 20.5 80.5 1424 381.4 396.5 181.3 

Location 32m, Speed 4mph 371.0 19.9 90.2 1714 427.0 449.5 244.6 

 

 

 

Figure 58: Percentage of variation through standard deviation (after Pierce, 2014) 
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Location data is significantly less affected by imperfect data in comparison to speed data. The 

standard deviations of 4 – 32 metres have little effect on how DEMA performs. Table 33 and 

Figure 59 highlight how none of the permutations are statistically significantly better than MOVA 

(however some of the scenarios are statistically significantly worse than MOVA). 

Table 33: P-values in comparison against MOVA for various standard deviations 

Standard Deviation  
(metres, miles per hour) 

P-values 

Mean Delay Mean Journey Time 

Location 4m 0.127 0.127 

Location 8m 0.078 0.078 

Location 16m 0.435 0.435 

Location 32m 0.214 0.214 

Speed 1mph 0.700 0.700 

Speed 2mph 0.363 0.363 

Speed 3mph 0.005 0.005 

Speed 4mph 0.000 0.000 

Location 0m, Speed 0m 0.060 0.060 

Location 4m, Speed 1mph 0.711 0.711 

Location 8m, Speed 2mph 0.253 0.253 

Location 16m, Speed 3mph 0.071 0.071 

Location 32m, Speed 4mph 0.000 0.000 

 

 
Figure 59: Box plot showing the variation in standard deviations compared against MOVA 
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This experiment has highlighted the importance of having fairly accurate speed data or else the 

classification of queue length cannot operate efficiently within DEMA. Whereas, imperfect 

location has little impact on the performance of the DEMA algorithm, which strongly suggests it is 

not used as much for classifying vehicles as part of the ‘stationary’ queue. The sensitivity analysis 

so far has shown that reducing the quality of data does have an impact on DEMA’s performance 

but it is important to gain an understanding of how DEMA can operate under a combination of 

detection distances, infiltration rates and accuracy of data. 

  

6.7.4 Combination of Variables 

This section will investigate how DEMA performs in a number of scenarios which range in 

detection distances, infiltration rates and accuracy of location and speed data. It is not possible to 

simulate all of the possible combinations and therefore this section will demonstrate a small 

sample of plausible future scenarios where some vehicles are equipped to provide additional 

data, of varying quality and detection distances. 

There are three scenarios tested in this section: 

1. 200 metre detection distance (DD), varying infiltration (I) 

2. 400 metre detection distance, varying infiltration 

3. 200 metre detection distance, 4 metres location (L) and 1 miles per hour speed (S) 

standard deviation, varying infiltration 

Figure 60, Figure 61 and Table 34 display the results from the three difference scenarios. Scenario 

one produces surprising results where 50% infiltration produces worse results than 20% 

infiltration (it should be noted that all of these simulations were run ten times). However, Figure 

62 shows how there are more variance in the 20% scenario even though it achieves a lower mean 

delay and journey time (the results do not have statistically significant differences in means). 

Scenario two produces anticipated results when comparing the 20% and 50% infiltration rates, 

but it should be noted that both the 20% and 50% scenarios are worse than when the detection 

distance is only 200m. 

The third scenario (where variation of location and speed accuracy were introduced) produced 

expected results that show a loss in performance as infiltration rate is reduced. However, it is 

important to highlight the significant improvement in performance compared to Section ‎6.7.3 

where varying the speed accuracy had large reductions in performance. When imperfect data is 

used over a shorter detection distance of 200m (compared to 500m previously), then DEMA 
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appears to be able to outperform MOVA. Also, unlike any of the P-values produced in Table 33 

(where various accuracies were tested), there are statistically significant differences in means 

between DEMA and MOVA, as can be observed in Table 35. When only 50% of vehicles provide 

additional data, a detection distance of 200m and imperfect location and speed data, DEMA can 

still extract a significant improvement in average delay, with a reduction of 5.2%; and if 75% of 

vehicles provide additional data then a reduction of 8.0% can be achieved. 

 

Figure 60: A comparison of mean delay for MOVA against combinations of variables 

 

 

Figure 61: A comparison of mean journey time for MOVA against combinations of variables 
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Table 34: Results of combinations of variables compared against MOVA 

Combinations 

Delay Journey Time (seconds) 

Mean 
Delay 
(sec) 

Mean 
Speed 
(mph) 

Mean 
Queue 
Time 
(sec) 

Max. Mean 
Standard 

Dev. 
Median 

MOVA 285.6 19.5 75.7 1189 341.6 299.8 196.8 

20% Infiltration, 200m 
Detection Distance 

265.7 19.7 58.7 1133 321.7 317.7 163.5 

50% Infiltration, 200m 
Detection Distance 

272.4 19.6 67.5 1070 328.4 298.4 193.1 

20% Infiltration, 400m 
Detection Distance 

308.0 19.6 72.5 1246 364.0 337.9 221.1 

50% Infiltration, 400m 
Detection Distance 

278.9 20.5 72.9 1236 334.9 309.9 212.5 

25% Infiltration, 200m 
Detection Distance, 4m 
Location, 1mph Speed 

288.0 19.3 63.0 1149 344.0 327.9 181.9 

50% Infiltration, 200m 
Detection Distance, 4m 
Location, 1mph Speed 

270.6 19.8 64.8 1119 326.6 304.1 189.4 

75% Infiltration, 200m 
Detection Distance,  4m 
Location, 1mph Speed 

262.8 19.9 69.9 1097 318.8 284.0 198.9 

 

 
Table 35: P-values in comparison against MOVA for combinations of variables 

Combinations 
P-values 

Mean Delay Mean Journey Time 

20% Infiltration, 200m Detection 
Distance 

0.042 0.042 

50% Infiltration, 200m Detection 
Distance 

0.179 0.179 

20% Infiltration, 400m Detection 
Distance 

0.113 0.113 

50% Infiltration, 400m Detection 
Distance 

0.561 0.561 

25% Infiltration, 200m Detection 
Distance, 4m Location, 1mph Speed 

0.758 0.758 

50% Infiltration, 200m Detection 
Distance, 4m Location, 1mph Speed 

0.044 0.044 

75% Infiltration, 200m Detection 
Distance,  4m Location, 1mph Speed 

0.026 0.026 
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Figure 62: Box plot showing the combination of variables compared against MOVA 

 

Although this section only provided a sample of the possible combinations, some interesting 

results were produced. For example, Section ‎6.7.1 suggested that there was little difference 

between detection distances of 200 – 500m, but when the infiltration rate is also varied then a 

shorter detection distance appears to be very important. This can be observed through the results 

in Section ‎6.7.2 where the detection distance is 500m, but none of the infiltration rates were 

statistically significantly better than MOVA. However when the detection distance was reduced to 

200m then infiltrations of 20%, 50% and 75%, produced results which statistically outperformed 

MOVA. 
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6.7.5 Conclusion 

The sensitivity analysis provided a valuable insight into how DEMA can perform when perfect data 

is degraded and detection distances are varied. The detection distance can be anywhere from 200 

metres to 500 metres when perfect data is provided to DEMA, however through combination 

trials, the 200 metre detection zone appears to outperform the 500 metre zone (it achieves 

statistically significant reductions in mean delay). This has a positive impact on reducing any 

infrastructure costs that would be required at the roadside as the detection zone would only be 

200 metres as opposed to 500 metres. 

The infiltration rate is important so that DEMA is able to detect queue lengths accurately and it 

requires at least 30% of vehicles to provide additional data (for a 500 metres detection zone). 

However this will result in less reliable journey times, even if the average journey time is reduced, 

therefore DEMA becomes unfair to minor roads at this infiltration level. Interestingly, when the 

detection distance is reduced, then the infiltration rate required to statistically outperform MOVA 

is also reduced. DEMA was able to statistically outperform MOVA with only 20% of vehicles 

providing additional data with a detection distance of 200 metres. 

One of the key conclusions from this section is that the detection distance should be reduced to 

only 200 metres from the junction. Also, by having a higher infiltration of data providers, then the 

journey time becomes more reliable and can generate a statistically significant difference in the 

means between DEMA and MOVA. When imperfect data is provided to DEMA, speed data has a 

much more significant impact on performance compared to location data and therefore accurate 

speed detection should be focused on when implementing DEMA in reality. However speed data 

is only used in DEMA for determining the queue length, consequentially, if there is an alternative 

method which can accurately measure the queue length without using speed, then it could be 

used instead.  
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6.8 Case Study – Cabot Lane (Crossroads) – With Alterations 

Sections ‎6.5 and ‎6.6 both investigated how DEMA performed against MOVA control when DEMA 

used the existing stage diagrams. These experiments demonstrated how DEMA is able to 

outperform MOVA without the use of turning intention data. This thesis has investigated how 

turning intention data could be used and why it could be beneficial (through Chapter 5). 

Therefore this section will consider if turning intention data provides any additional benefits for 

DEMA in the Cabot Lane junction. The hypothesis is that with turning intention data, there will be 

more freedom in stage selection and therefore improved performance as DEMA is not 

constrained to MOVA’s stage choices. 

In Chapter 5, a method was proposed for using turning intention data by manipulating the current 

stage diagram. Cabot Lane is significantly more constrained than the theoretical three lane 

approach crossroads, however there are additional stages which could be created if turning 

intention data was known. The constraints placed upon real world junctions still apply 

(Section ‎6.1), but the current signal heads need to be considered when generating the stage 

diagram for Cabot Lane (as Section ‎6.3.3 explained). By analysing the current signal heads, it is 

then possible to determine what changes would need to be made for a junction to use turning 

intention data.  

 

6.8.1 Current Signal Heads 

Figure 63 and Figure 64 show the existing location and configuration of Cabot Lane’s signal heads. 

If the signal head is represented by a blank circle then all traffic movements are allowed from that 

arm, and if there is a directional arrow then only that traffic movement is allowed to move. The 

current signal head configuration is: 

 North: an all travel green light and a right turn filter (right turning traffic cannot be 

controlled separately) 

 East: filter lights for all movements, each can be controlled separately 

 South: both straight and right turns have dedicated filter lights (left turn is give way 

priority) 

 West: an all travel green light 
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Figure 63: Location of signal heads 

 

 

Figure 64: Configuration of current of signal heads 
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6.8.2 Stage Configuration 

With turning intention knowledge, there are additional stages which could be used with minor 

changes to the signal head configuration. One of the most influential constraints on the new stage 

configuration is that right turning traffic cannot choose to gap accept when the 85th percentile 

approach speed is greater than 45 mph (which is true at Cabot Lane) and therefore all right 

turning traffic must have unopposed turning movements for safety improvements. 

With the additional three stages (stages 5, 6 and 7 in Figure 65) included then the signal head 

configuration must be altered on the Northern and Western approaches, as can be observed in 

Figure 66. These changes would incur a one off additional expenditure but this section will 

investigate if there would be any performance benefits from the alteration. It should be noted 

that the two lane approach from the Northern arm can no longer allow both lanes to serve 

straight ahead traffic and been changed to have a dedicated right turn lane with a straight and left 

turn lane. This will result in a loss of capacity for the straight ahead movements but enables stage 

7 to be used and ensures that safety constraints are adhered to. 

 

 

Figure 65: Stage configuration for Cabot Lane when turning intention data is used 

 



Chapter 6 

185 
 

 

Figure 66: New configuration of signal heads when turning intention is used 

 

6.8.3 Variation in Demand 

This section will investigate the effect of changing demand levels compared to the base flow 

(100%), where all the demand profiles still apply from Section ‎6.6. Again five scenarios will be 

compared against MOVA control at 20%, 40%, 60%, 80% and 100% demand. 

Figure 67, Figure 68 and Table 36 shows the very significant reduction in mean delay and journey 

time when turning intention data is used within DEMA. Turning intention data enables the use of 

additional stages which would not be possible under normal circumstances and therefore 

provides a significant benefit to the road users at Cabot Lane. The variation in journey time 

significantly reduces as well with DEMA able to be much fairer to all road users compared with 

MOVA control. The improvement has such a large effect that the junction only suffers with 

oversaturation for approximately 15 minutes from 8:00 to 8:15, which is when 30% of the two 

hour demand level is trying to pass through the junction. 



Chapter 6 

186 
 

 

Figure 67: Comparison of average delay for MOVA and DEMA control at various demand levels 

 

 

Figure 68: Comparison of average journey time for MOVA and DEMA control at various demand levels 
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Table 36: Results of various demand levels at Cabot Lane 

Control Method 
and Demand 

Delay Journey Time (seconds) 

Mean 
Delay 
(sec) 

Mean 
Speed 
(mph) 

Mean 
Queue 
Time 
(sec) 

Maximum Mean 
Standard 

Dev. 
Median 

MOVA 
20% 

15.9 35.4 10.6 268 71.9 25 67 

DEMA 11.0 39.4 4.8 158 67.0 19 64 

MOVA 
40% 

20.8 32.9 13.2 254 76.8 23 73 

DEMA 15.9 37.0 7.1 198 71.9 22 67 

MOVA 
60% 

34.8 29.1 20.8 295 90.8 36 83 

DEMA 21.4 34.9 9.5 214 77.4 27 71 

MOVA 
80% 

132.7 21.1 58.2 616 188.7 145 121 

DEMA 32.2 32.5 14.2 335 88.2 38 79 

MOVA 
100% 

293.3 19.8 78.2 1183 349.3 318 210 

DEMA 94.3 26.2 36.0 605 150.3 112 103 

 

Table 37 highlights the considerable improvements which DEMA can make over MOVA when 

turning intention data is used; DEMA is able to reduce delay by up to 75%. One of the major 

reasons for this is DEMA’s ability to allow simultaneous straight on movement (i.e. stages 5 and 7) 

but constraining the right turning traffic until there is a demand for it. This would not be possible 

without the use of turning intention data. 

Table 37: Percentage improvement of DEMA over MOVA for various demand levels 

Demand 
Percentage Reduction over MOVA (%) 

Mean Delay Mean Journey Time 

20% 30.6 6.8 

40% 23.6 6.4 

60% 38.5 14.8 

80% 75.7 53.3 

100% 67.8 57.0 

 

Table 38 and Figure 69 show that DEMA has a statistically significant difference in means from 

MOVA control where the p-values are all below 0.05 (95% confidence). The box plot is heavily 

influenced by the 80% and 100% demand levels where MOVA has a considerably larger average 

delay compared with DEMA. Not only does DEMA (with turning intention data) outperform 

MOVA, but it also considerably outperforms the DEMA algorithm which is constrained to use 

MOVA’s stage configuration. 
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Table 38: P-values in comparison against MOVA for various demand levels 

Demand 
P-values 

Mean Delay Mean Journey Time 

100% 0.000 0.000 

80% 0.000 0.000 

60% 0.000 0.000 

40% 0.000 0.000 

20% 0.013 0.013 

 

 
Figure 69: Box plot showing the variation in demand compared against MOVA 

 

This section has demonstrated how DEMA is able to use additional data effectively to significantly 

reduce the average delay and improve reliability of journey time. However, this section has 

assumed that all vehicles are providing data and therefore an investigation into how many 

vehicles need to be equipped to achieve an acceptable performance will be carried out in the next 

section. 
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6.8.4 Infiltration Rate 

This experiment will investigate how DEMA performs when it does not receive data from all of the 

vehicles in the network. The same principles have been applied which were used in Section ‎6.7.2 

so that vehicles can still be detected using inductive loops if they do not provide additional data 

from further afield. 

Figure 70, Figure 71 and Table 39 show that under every infiltration rate, DEMA still outperforms 

MOVA. The interesting conclusion which can be drawn from these results is that even at 0% 

infiltration, the new stage configuration can statistically outperform MOVA. This implies that 

stage flexibility and importantly, a different stage configuration would help to improve the 

current performance at Cabot Lane. However, it is clear from the results that there is a significant 

reduction in performance when no data is provided to DEMA. At 20% infiltration and below, the 

journey times become much more variable as the standard deviation and median journey times 

increase considerably compared to results with greater than 20% infiltration. 

 

 

Figure 70: Comparison of average delay for DEMA control at various infiltration rates 
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Figure 71: Comparison of average journey time for DEMA control at various infiltration rates 

 

Table 39: Results of various infiltration rates at Cabot Lane 

Infiltration 
Rate for 
DEMA 

Detection 

Delay Journey Time (seconds) 

Mean 
Delay 
(sec) 

Mean 
Speed 
(mph) 

Mean 
Queue 
Time 
(sec) 

Maximum Mean 
Standard 

Dev. 
Median 

MOVA 285.6 19.5 75.7 1189 341.6 299.8 196.8 

100% 96.1 26.1 36.4 612 152.1 113.0 103.9 

90% 96.0 26.2 36.7 602 152.0 111.3 104.6 

80% 101.9 25.7 38.0 606 157.9 120.5 107.0 

70% 91.1 26.2 36.2 568 147.1 103.5 105.5 

60% 102.0 25.4 38.0 595 158.0 114.3 111.5 

50% 87.7 26.0 33.6 532 143.7 96.2 105.7 

40% 91.8 25.8 35.2 540 147.8 101.9 106.9 

30% 98.6 25.2 36.6 576 154.6 108.3 109.4 

20% 109.0 24.3 39.9 612 165.0 119.6 116.6 

10% 108.1 24.0 37.4 592 164.1 116.5 118.8 

0% 159.0 22.1 43.9 820 215.0 188.0 124.3 
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Table 40 and Figure 72 show that there is a statistically significant difference in the means 

between MOVA and DEMA for all infiltration levels. The box plot shows that there is a similar 

amount of variation between DEMA and MOVA except at the 20% infiltration level where there is 

step change in performance. There are no statistical differences in means between each of the 

infiltration rates (except for the 0% scenario where all of the remaining scenarios are statistically 

different from it). 

 

Table 40: P-values in comparison against MOVA for various infiltration rates 

 

P-values 

Mean Delay Mean Journey Time 

100% 0.000 0.000 

90% 0.000 0.000 

80% 0.000 0.000 

70% 0.000 0.000 

60% 0.000 0.000 

50% 0.000 0.000 

40% 0.000 0.000 

30% 0.000 0.000 

20% 0.000 0.000 

10% 0.000 0.000 

0% 0.000 0.000 
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Figure 72: Box plot showing the various infiltration rates compared against MOVA 

 

6.8.5 ‎Chapter 4: Comparison 

Chapter 4 investigated how accurately turning intention data could be detected and the results 

demonstrated that humans could predict turning intention from 50 metres away, with a success 

rate of approximately 70%. Section ‎6.7 has demonstrated that 200 metres is the ideal detection 

distance when using DEMA, but this section will investigate if the accuracy levels described in 

Chapter 4 are sufficient to outperform MOVA. Therefore an experiment was carried out where 

DEMA received turning intention data at 50 metres and from only 70% of vehicles. 

Table 41 shows the results of the experiment where DEMA reduces average delay by 21.6% 

compared to MOVA. It should be noted that this is far from the ideal conditions for DEMA to 

operate as can be observed in Section ‎6.8.4, where DEMA achieves a mean delay of 

approximately 100 seconds. The performance of DEMA under these conditions is greatly reduced 

and therefore the results shown in Chapter 4 would not be practical for use in reality as the 

detection distance should be further afield. However it is not yet known how well humans can 

predict turning intention at 200 metres from the junction. 
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Table 41: Results of 50m detection distance and 70% infiltration at Cabot Lane 

  

Delay Journey Time (seconds) 

Mean 
Delay 
(sec) 

Mean 
Speed 
(mph) 

Mean 
Queue 

Time (sec) 
Max. Mean 

Standard 
Dev. 

Median 

MOVA 285.6 19.5 75.7 1189 341.6 299.8 196.8 

70% Infiltration, 
50m Detection 

Distance 
223.7 20.1 49.3 1057 279.7 278.1 133.0 

 

6.8.6 Conclusion 

This case study has demonstrated the substantial benefits of using turning intention data for 

traffic control as the mean delay can be reduced by up to 75% over the existing control strategy. 

To achieve this reduction and a more reliable journey time then an infiltration rate of at least 30% 

was required and a few changes were made to the junction configuration. These changes included 

more stage options for DEMA to use and the reduction of the northern arm to only one lane 

travelling straight on as opposed to two in the base example. 
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6.9 Conclusion 

This chapter has presented clear results to show the benefits of using additional data sources to 

control traffic lights. A novel traffic control algorithm called the Delay Minimisation Algorithm 

(DEMA) was developed using real world constraints, for example, minimum green time and 

maximum cycle time. This algorithm was developed with the objective of using additional data 

sources such as vehicle location, speed and turning intention information. An important outcome 

from the development of DEMA was that it is difficult to guarantee that every phase will be 

released within the maximum cycle time if there is no pre-defined stage order. However after 

trials of using a hill climber algorithm versus a weighting factor method, the weighting factor 

method proved to achieve a higher performance because less accurate predictions of the arrival 

rate were required for controlling the traffic lights. Therefore DEMA has been allowed the 

freedom of selecting any stage in any order, provided that minor phases are not held back for an 

indefinite period of time. 

A number of case studies were used in this chapter to test DEMA against the existing traffic 

controller, which was MOVA for both Sopers Lane and Cabot Lane. DEMA was able to reduce 

average delay by approximately 20 – 30% over MOVA in under-saturated scenarios, by using the 

same stage configuration. Whereas, DEMA could reduce average delay approximately 8% in over-

saturated scenarios compared with MOVA. These values were based on perfect input data for 

DEMA and therefore a sensitivity analysis was carried out to determine what effect the detection 

distance, infiltration rate and accuracy of data had on DEMA.  

A scenario where vehicles were detected 200 metres from the junction, 50% of vehicles provided 

additional data, and vehicles provided data similar to GPS devices (4m location standard deviation 

and 1 mph speed data), resulted in a statistically lower average delay compared to MOVA (a 

reduction of 5%). This scenario was not using turning intention but only vehicle location and 

speed information and yet a reduction in delay was still achieved.  

When turning intention data was used along with location and speed information then DEMA was 

able to drastically reduce the mean delay and provide a much more reliable journey time. The 

additional data enabled a different stage configuration and more freedom in stage selection. This 

case study reduced mean delay by a minimum of 23% and maximum of 75% because of the new 

stages added to the junction. Therefore this chapter has demonstrated how valuable additional 

data sources are to the future of traffic control because significant reductions in delay and 

improvements in journey time reliability can be achieved. 
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6.10 Chapter 6 Key Points 

1. Real world constraints were used in the development of a novel control algorithm called 

DEMA (Delay Minimisation Algorithm), for example, minimum green time, maximum cycle 

time and inter-green time. 

2. DEMA is not constrained to a pre-defined cycle order but has the complete flexibility to 

choose the next stage. 

3. DEMA calculates the anticipated delay for every possible stage combination through 

estimating the queue length, discharge rate and predicted arrival rate. 

4. To ensure that DEMA would adhere to the maximum cycle time, two methods were 

tested – a hill climber algorithm (which guaranteed every stage would be selected within 

the maximum cycle time and was very computationally heavy) and a single stage selector 

which used a weighting factor to make the less frequently selected phases more desirable 

when they approached the maximum cycle time. The weighting factor method proved to 

achieve a higher performance over the hill climber method. 

5. A T-junction case study was carried out where no turning intention data could be used to 

determine how DEMA would perform against the existing controller (MOVA). The results 

showed that DEMA consistently reduced average delay by 3 – 4 seconds per vehicle. This 

reduction demonstrated that additional data (vehicle location and speed) could provide 

improvements in traffic control. 

6. An over-saturated crossroads case study provided more depth into how DEMA performed 

against MOVA by reducing average delay by approximately 8% in real world conditions. 

When there were lower demand levels then DEMA was able to reduce average delay by a 

larger proportion, up to 34%. 

7. A sensitivity analysis was carried out to determine how DEMA would perform with 

imperfect data and a variation of detection distances. The outcome was that DEMA 

performed best when vehicles were detected from 200 metres away and approximately 

50% of vehicles should provide additional data to achieve a statistically significant 

reduced delay and more reliable journey times. 

8. Turning intention data was then included for the over-saturated crossroads which made a 

major reduction in average delay and journey time because of improved stage 

configurations. With the knowledge of vehicle’s turning intention, then new stages could 

be utilised which reduced delay by as much as 75% over the existing MOVA control 

method. 

9. This chapter has strongly demonstrated the potential benefits of using additional data to 

reduce average delay and improve reliability of journey time. 
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Chapter 7: Contributions of the Research and Conclusions 

The transport industry is constantly evolving, both pre-empting and reacting to the arrival of new 

technologies and control techniques. When new generations of traffic control occur, there are 

some fundamental shifts in the way of thinking, for example moving from fixed time systems to 

vehicle actuated added a new dimension as traffic lights could respond to vehicle demand. 

Consequentially, when developing novel control methods some of the previous principles will 

inevitably be challenged, such as moving from static sensors (inductive loops, infra-red, radar) to 

multi-mobile data sources (Wi-Fi, smart phone, Bluetooth, GPS). 

This research has sought to incorporate additional data sources into a new traffic control system 

by determining what data is available, how it can be used and what the potential benefits are. It is 

essential to recognise what impact this research will have within the transport industry and 

therefore this chapter will seek to investigate what the limitations are but also what opportunities 

have been created from this work (this is in response to Objective 5). Also, the key conclusions 

from all facets of this thesis will be summarised to emphasise how additional data sources can 

help to improve the performance of UTC systems in the near future. 

The thesis has focused on additional data in three key areas: 

1. How can the data be detected? 

2. How can the data be used? 

3. Is there a benefit to using the data? 

Chapter 4 investigated how turning intention can be detected, where the results demonstrated 

that turning intention information can be detected from outside of the vehicle with a median 

success of 70% when a vehicle is 50 metres from the junction, rising to 90% when less than 30 

metres. Chapter 5 investigated how turning intention can be used by adapting an existing 

(theoretical) control algorithm called Highbid. The adapted algorithm (Turning Intention 

Algorithm) was able to outperform Highbid by reducing average delay by 24% and overall journey 

time by 15%. This chapter successfully demonstrated how turning intention data could be used. 

Chapter 6 developed a novel control algorithm (DEMA) which incorporated real world constraints 

to ensure that it could be used in reality. Two case studies were carried out to determine if DEMA 

could outperform MOVA (current state of the art system) using additional information. The 

results showed that DEMA could reduce average delay by up to 34% and potentially much greater 

savings if minor alterations are allowed to the junction. 
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7.1 Points to Consider before Commercialisation 

7.1.1 Stage Flexibility 

A key aspect of this research is the fundamental change from using a fixed stage order and cycle 

time, to a more flexible control system which can choose the most beneficial stage order. The 

results from Sections ‎6.5 and ‎6.6 highlight the substantial improvement in performance when 

DEMA controls the same stage configuration as MOVA, but has the flexibility to select any 

possible stage at the decision point.  

Bretherton (2003) stated that there were no observed safety implications from skipping stages, 

however this was under strict conditions of never skipping the major road stages or pedestrian 

stages (unless there were multiple stages within the cycle). Therefore further real-world trials 

need to be carried out to determine what impact there is on safety when a control system has 

complete flexibility over stage order. 

 

7.1.2 Privacy 

As the industry moves into an era of data abundance, then protocols will need to be developed to 

ensure that anonymous data is provided to the control algorithm so that personal data is not used 

for unintended purposes. With strict standards in place, then dissemination of the benefits needs 

to be promoted to the public so that a willingness and understanding can be developed between 

individuals and operators. If this was in place, then travellers may be more willing to share their 

data so that they can receive a potential improvement to their journey. 

  

7.1.3 Pedestrians and Cyclists 

This research has focused on how additional data sources could reduce average delay and journey 

time for vehicles, and therefore less focus has been on pedestrian or bicycle movements. With 

ever changing stage orders, then pedestrians would find it more challenging to cross the road 

unless a green man was displayed. Consequently, further research is required to determine what 

impact this would have on the safety of pedestrians who are willing to jaywalk. 

Cyclists are notoriously difficult to detect on the roads; however this research would encourage 

cyclists to share their data (through a smart phone or equivalent) to provide additional 

information on their location so that they can be included in the decision making process in 

DEMA. The research in Chapter 4 did not focus on cyclists who were mixed with other vehicles 
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and therefore cannot make a conclusion on the prediction of turning intention for bicycle 

movements. 

 

7.1.4 Safety 

One of the reasons for MOVA being promoted as the industry standard within the UK is because 

of its ability to increase the inter-green time when approaching vehicles are travelling quickly 

towards the end of a stage. As a vehicle travels across MOVA detection loops (the assumed 

journey time is used) and if the vehicle is likely to travel through an amber or red light then MOVA 

can increase the ‘all red’ time by one or two seconds if necessary to ensure that conflicting 

vehicles do not cross paths (DMRB, 2004). 

If DEMA was incorporated into a real traffic controller, then this capability would need to be 

included in the design to alleviate the safety concern. As this research was carried out in a 

simulated environment then there was no need to include this control system into the algorithm 

because vehicles would never run a red light or collide in Paramics. 
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7.2 Benefits to Siemens 

MOVA is a multi-million pound, annual revenue stream to Siemens and therefore this novel 

algorithm provides Siemens with the opportunity to match and outperform MOVA in the future 

using additional data sources. If this research was incorporated into the isolated junction solution, 

then this would remove the licence costs of MOVA and potentially increase sales of roadside 

equipment which is required for some forms of the additional data sources being collected. 

One of the motivations for this research (see Section ‎1.2.5) was that Zhao and Tian (2012) 

highlighted how only 6% of all signalised junctions in the US are adaptive. Therefore there is a 

large potential for growth in this market as many benefits can be observed from using additional 

data sources. Key to growing this market is disseminating the large reductions in delay and 

journey times when using novel traffic control algorithms. 

As this research is ‘future focused’ then it has provided Siemens with an insight into how the 

market is likely to shift in the near future as more data sources become available. Therefore with 

Siemens’ large market share and influence, they are strategically placed to help shape the next 

generation of UTC systems. Siemens are currently in discussions with the University of 

Southampton into how this research could be trialled in a safe location where the potential 

benefits can be observed on a real junction. 
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7.3 Limitations 

7.3.1 Detection Distance 

If DEMA can only detect vehicles a short distance away from the junction then the delay 

calculation will make little or no distinction between the phases under congested conditions. For 

example, if DEMA can only detect vehicles that are 50 metres away and all four stages have 

vehicles queueing in excess of this detection distance, then DEMA will not be able to determine 

any benefit to releasing one stage over another. Therefore it would be beneficial for DEMA to be 

able to detect the maximum queue length, which will be junction specific, so that the delay 

calculations are based on representative data. However in reality this must be balanced against 

cost of detection as it will increase with a larger detection distance. 

 

7.3.2 Hardware 

As mentioned in Section ‎6.2, junction controllers are typically set up to recognise the stages 

within the junction. Stage based hardware and control systems dominate markets in the United 

States (Furth and Muller, 1999). This means that a limitation of this work could be that some 

current hardware cannot recognise individual phases and therefore would struggle with the 

concept of flexible stage selection. If there was no flexibility in stage selection then DEMA would 

not be able to perform as effectively as it could. 

 

7.3.3 Feedback to DEMA 

Currently there is no feedback mechanism into DEMA during a selected stage to determine if it 

has made a bad decision. If there is a low infiltration rate (which is impossible to know within 

DEMA) then DEMA may make a decision based on poor spatial awareness and potentially give 

longer/shorter green time than is necessary. It would be useful to develop a feedback process 

which could monitor the static detectors (assumed ‘ground truth’) to determine if the data being 

gathered during the stage represents what DEMA previously predicted. However this would 

require micro-simulation software to be paused even more frequently (as a C# external interface 

decides on the most suitable stage, not Paramics), which would make the experiments last longer; 

but with better computing power then this would be less of a problem, or a different software 

could be used. 
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7.3.4 Communication from Mobile Devices 

A limitation which could have a large impact on the viability of exploiting this research is the 

availability and accessibility of mobile data sources. Currently, smart phone, Bluetooth, Wi-Fi and 

satellite navigation devices do not communicate to a centralised location which stores all device 

data, and therefore trying to access this data source presents a political, commercial and privacy 

problem.  

Data is very valuable and trying to encourage mobile phone and satellite navigation operators to 

share their data would be an expensive process. There would need to be a guarantee of 

anonymity for the device users, but also a benefit to the operators themselves. Also, data 

provided from the operators would need to be processed in a standardised method to ensure 

consistency of data.  

Siemens have been working with Newcastle City Council and Newcastle University on the 

Compass4D project (Compass4D, 2013), which has ensured that suitable data protocols have 

been developed to communicate with equipped vehicles. By using a V2X approach, this can help 

to remove the commercial problems of using mobile phone or sat-nav data as there is a 

standardised, voluntary message being shared between the road user and the surrounding 

infrastructure.  

Another method of sharing data could be through smart phone applications. If road users choose 

to use the application then they could willingly share additional data if they could receive a 

benefit when travelling through the network. However, it would be important to suitably 

advertise the application so that sufficient numbers of road users would use it.  

 

7.3.5 Pedestrian Crossings 

Signalised pedestrian crossings can enable pedestrians to cross a road during a single stage or by 

using a central reserve so that they can cross during two separate stages. By splitting the 

pedestrian movement into two stages, this allows additional vehicular movements to occur during 

the pedestrian stage and can potentially have performance benefits for road users. However 

when turning intention data is used to manipulate stage diagrams, then more phases are often 

incorporated which reduces the opportunities for pedestrians to cross during a vehicular phase. 

This is a junction specific problem, but if one stage pedestrian crossings were difficult to achieve 

then more central reserves would be required to split the pedestrian movements. Further 

research is required to fully understand the impact that this would have on pedestrians. 
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7.3.6 Junction Layout 

If there is only one approach lane to a junction then there are no possible stage manipulations 

which could make use of turning intention data. Therefore if DEMA was used in its current form, 

then it could not derive an additional benefit of having turning intention knowledge. However, as 

described in Section ‎5.1.2, turning intention data could also be used for coordinating 

neighbouring junctions so that arrival rates could be more accurately predicted for the 

downstream junctions. However, further research is required to understand the benefits of 

coordinating neighbouring junctions using turning intention data. 

 

7.3.7 Signal Timings 

In order to better understand how DEMA made such significant savings over MOVA in the case 

study examples, then it would be very beneficial to record the signal timings during any 

simulations. This would enable the experimenter to directly compare how DEMA controlled the 

junction differently to MOVA so that a benefit was achieved, this should be considered in any 

future work. The difficulty in evaluating signal timing plans is that when there are large numbers 

of simulations being carried out then it can be challenging to determine a clear pattern between 

the control algorithms. 

Signal timing plans would have helped to explain the discrepancies between MOVA’s and TIA or 

DEMA’s maximum journey time under low flow conditions. MOVA can occasionally have 

maximum journey times of over 500 seconds, whereas DEMA (or TIA) only have maximum 

journey times of 100-200 seconds in low flow conditions. This could be attributed to a ‘settling in’ 

period for MOVA where the system takes slightly longer than DEMA to understand the current 

road state within Paramics. This can further highlight the advantages of having additional data for 

improving performance. 
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7.4 Future Work 

This research has answered the objectives set out in Section ‎1.3.2, but additional questions have 

arisen as a result of this work. Therefore this section will describe future areas of research which 

were deemed as out of scope for this thesis. 

 

7.4.1 Neighbouring Junctions 

Turning intention knowledge could be used to inform downstream junctions of impending arrival 

flows and potentially improve the predicted arrival rates. Further research is required to develop 

an understanding of how the data could be used for coordinating neighbouring junctions. An 

algorithm which could coordinate neighbouring junctions would need to be compared with a UTC 

system such as SCOOT because MOVA was not originally designed for coordinating nearby 

junctions. 

 

7.4.2 Feedback to DEMA 

As described in Section ‎7.3.3, DEMA does not receive any feedback of how the current stage is 

performing. Further research would help to understand if the predicted arrival rate was 

forecasted correctly in reality. Static detection methods which are closer to the junction (i.e. 

inductive loops, infra-red or radar) could be used to evaluate the forecasts. If the arrival rate was 

over or under predicted (especially when there is a low infiltration rate amongst vehicles), then 

providing feedback to DEMA could help to adjust the length of the selected stage accordingly. 

This proposal may require a different micro-simulation tool because Paramics does not allow the 

user to develop novel algorithms within the software and therefore it would require a long time 

to continuously re-evaluate how the predicted arrival rate was performing. This thesis used a C# 

interface to communicate with Paramics, and during any decision making calculations, then the 

Paramics simulation was paused until a decision was made. Therefore a micro-simulator which 

could run the code simultaneously would be much more suitable for providing feedback to DEMA 

(provided that the calculations do not take any significant amount to time to be computed). 

 

7.4.3 People Movement 

If additional data sources become widely available and vehicle occupancy is known, then DEMA 

could easily be adapted to incorporate the movement of people rather than vehicles. Or if a 
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network operator wanted to use vehicle type as a differentiator then this could also be included 

into DEMA by multiplying the detected vehicle by the corresponding pcu value. By considering 

vehicle occupancy or type then this could be used to provide public transport priority calls at 

traffic signals as the movement of people is prioritised through the network. This concept was 

deemed to be outside the scope of this thesis. 

 

7.4.4 Refining DEMA 

DEMA was developed in such a way that minimised the number of user inputs during the setup of 

the algorithm. This is a desirable trait so that less information needs to be pre-determined and 

calibrated by installation engineers, thereby reducing their workload. The limitation of this 

method is that the delay calculation only considered stationary delay (see Figure 31, in 

Section ‎6.3.1) and ignored both the acceleration and deceleration delay. This could be included 

into the delay calculation through observations of vehicle behaviour at the junction but it would 

be a time consuming process. Also the start lag and end lag could be incorporated into DEMA’s 

delay calculations but this would again increase the amount of time required to setup and 

calibrate the algorithm at every junction. 

 

7.4.5 Safety Considerations of Stage Skipping 

An investigation into the effect of having complete flexibility of stage choice needs to be 

considered so that the impacts can be properly understood. Bretherton (2003) suggested that 

there were no negative safety impacts from stage skipping (under strict conditions) but further 

trials and user feedback need to be carried out (with more flexibility than Bretherton’s trials). If 

stage skipping trials were carried out then DEMA could be used as the control algorithm to also 

determine what effect on safety and performance it has. 

 

7.4.6 Real World Trials of DEMA 

Micro-simulation can be an incredibly powerful tool to help understand what impacts could occur 

when using a new control algorithm. However there are always limitations to micro-simulation 

models as vehicles behave in a predictable and replicable manner, whereas if a real world test 

was carried out (with appropriate signage and legal implications managed), then the true 

performance benefits could be greater understood. Therefore this study recommends that DEMA 

is tested on a real junction, using probe vehicles to provide additional data within the vehicle mix. 
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7.5 Conclusion 

This section will demonstrate how this thesis has achieved the following objectives, which were 

stated in Chapter 1, and highlight the key conclusions which can be made as a result of this 

research: 

1. To understand ‘state of the art’ and future Urban Traffic Control systems, therefore 

highlighting any opportunities for improvement 

2. To better understand how and why new technologies would be used in future UTC 

systems 

3. Develop novel control algorithms which are able to incorporate modern data sources 

4. Evaluate novel control algorithms against existing UTC systems and carry out a sensitivity 

analysis. 

5. Provide recommendations based on the findings of any results from this research. 

In response to Objective 1, this thesis investigated the current capabilities of urban traffic control 

systems through a thorough literature review in Chapter 2, but importantly exploring what 

technologies are likely to be available in the near future (which helps to satisfy Objective 2). This 

research highlighted that there will be much richer data sets available for network operators but 

unfortunately existing control systems do not appear to make full use of the greater quantity and 

quality of data inputs.  

In order to investigate how a novel control algorithm could make use of the additional data 

sources, it was important to understand what key performance metrics would be used to evaluate 

existing and new control methods. Chapter 3 explains how stakeholders value different 

performance metrics depending on their role within the industry. These interviews, combined 

with a literature review, concluded that average delay and reliability of journey times were the 

most important KPI’s when developing a control algorithm. 

There were three key questions which then needed to be answered to fully understand how 

additional data sources could be used for urban traffic control systems: 

1. How can the data be detected? 

2. How can the data be used? 

3. Is there a benefit to using the data? 

Chapter 4 considered the first question by exploring how intended route choice can be currently 

detected through in-vehicle technologies and external methods. There appeared to be a lack of 

research and understanding of how turning intention data could be detected from outside of a 
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vehicle, which helps to avoid any privacy concerns of road users who do not want information 

being shared from in-vehicle devices. Therefore Chapter 4 describes two novel experiments which 

investigated how accurately humans can predict turning intention as a vehicle approaches a 

junction. These experiments presented very interesting results as people were very good at 

correctly predicting turning intention and they achieved an overall correct prediction rate of 

71.4%. However, there was a noticeable step change when predicting vehicles which were more 

than 25 metres from the junction. If a vehicle was closer than 25 metres then the median average 

success of predicting was over 90%, but if the vehicle was further than 25 metres then the 

accuracy fell to approximately 70%. 

Chapter 5 investigated how turning intention could practically be used within a traffic control 

algorithm, therefore focusing on Objective 2 and 3. This chapter adapted a theoretical control 

algorithm, which was created by Box and Waterson (2010), to include turning intention 

knowledge through a manipulation of the possible stages. Their algorithm used vehicle location 

and speed data to create a ‘bid’ for the most beneficial stage every ten simulated seconds. 

However the Turning Intention Algorithm incorporated turning intention data and was able to 

observe additional reductions in average delay and journey time of 25% and 15% respectively on 

a theoretical, three lane approach crossroads. Chapter 5 demonstrated that turning intention 

data could be used within a control algorithm and potentially provide additional benefits. 

Nevertheless, both the Highbid and TIA algorithms would not be suitable for controlling a real 

junction due to the assumptions made which ignored real world constraints such as inter-green 

time, maximum cycle times and gap acceptance rules. 

Consequently Chapter 6 developed a novel control algorithm which incorporated real junction 

constraints and was called the Delay Minimisation Algorithm, which satisfied Objective 4. One 

constraint which posed a particular problem was the maximum cycle time of 120 seconds, and 

therefore two methods were proposed to mitigate this issue: a single stage selector (which 

selected the best available stage at every decision point, i.e. end of each stage) and a heuristic 

approach that ensured all phases (with a demand) were released within a 120 second cycle. Upon 

comparison of both methods (on the test junction from Chapter 5), the single stage method had a 

greater reduction in average delay and improved reliability of junction time. However, a weighting 

factor was required to ensure that low flow phases would still be released within the given time 

constraint. 

Siemens provided data for two real junctions in Poole, along with an expertly configured MOVA 

algorithm for both junctions. One of the junctions was a T-junction which could not make use of 
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turning intention data; however this was a valuable case study that provided a comparison of how 

DEMA performed against MOVA without this data. DEMA was able to reduce average delay by 

approximately 3 – 4 seconds per vehicle (which represented up to a 39% reduction) and it 

improved the reliability of journey time.  

The second junction was a more complex crossroads which suffered from oversaturation. DEMA 

was able to reduce average delay by approximately 8% for the existing demand profile, but under 

lower demand scenarios, DEMA outperformed MOVA by up to 34%. When the junction was 

oversaturated, then it was very difficult to achieve any significant improvements as all phases 

required a green light and queues could not be dissipated during their green stage.  

Perfect data was used up to this point in the research and therefore it was essential to reduce the 

quality and quantity of data to develop a full understanding of how DEMA would perform in a real 

world scenario (in line with Objective 4). The conclusion of the sensitivity analysis was that 

vehicles should be detected when they are 200 metres from the junction, but also a 50% 

infiltration rate is required to ensure that there will be a reduction in average delay and 

improvement in the reliability of journey time. Accurate speed data had much more effect on the 

performance of DEMA as opposed to location data, which emphasises how important vehicle 

speed information is for classifying the queue length. 

When turning intention data was introduced to the second junction, there was a drastic 

improvement in the performance of DEMA. Turning intention data allowed additional stages and 

therefore more flexibility in selecting the most appropriate stage for controlling the junction. 

Average delay was reduced by as much as 75% and reliability of journey time was significantly 

improved. Turning intention data enabled the two highest demand phases to be released 

simultaneously (which was previously not possible), and hence why such a substantial drop was 

observed. 

In summary, this thesis has provided novel outputs for predicting turning intention from outside 

of a vehicle, which helps not only with improving signal control but has wide safety implications as 

well. A novel traffic control algorithm, which can utilise additional data sources, has been 

developed throughout this research. DEMA has consistently outperformed MOVA, which is the 

industry leader for isolated junctions. Therefore this research has demonstrated how turning 

intention data can be detected, how it can be used in a control algorithm and the substantial 

benefits that it brings when incorporated into a UTC system.  
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Appendix 1  

This appendix shows the questions which were asked during the KPI survey to Bristol, 

Southampton and London operators. 

Interview Questions: 

1. What performance metrics do you use to determine how the system is behaving? 

2. How do you differentiate between network wide performance and individual junctions? 

3. Do you publish ‘network’ performance? If so, how do you define the boundary of the 

network? 

4. Who do you prioritise: buses, cars, freight, pedestrians and or people? 

5. Who do you have to report to? And what information do you have to provide? 

6. Is there a ‘passenger user group’ where people can provide feedback on the network? 

7. What would you like to be able to do within the system to improve performance? 

8. How do you implement your performance targets? 

9. How do you integrate all of the different aspects within the traffic control centre? 

10. Do you believe that your communication methods have a significant impact on the 

network (VMS, website, Facebook, twitter, etc.)? Do you observe people altering their 

route choice? 

11. How do you use all the data you collect each day to improve the network? Is any research 

carried out to determine trends in the flow? 

12. Do you ever challenge the industry standard pieces of software? 

13. What environmental performance measures do you put in place and how do you 

implement them? 
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Appendix 2 

In Section ‎4.3.4, a logistic regression analysis is carried out to analyse which variables are most 

beneficial for anticipating whether a participant selected the correct answer or not? As this is a 

binary choice, the actual answer can either be represented by a zero (incorrect) or a one (correct). 

This appendix will provide an illustrative example of why predictive accuracy is more important 

than Nagelkerke’s R-squared value. This example shows the results of ten participants, five people 

selected the correct answer and five people selected the incorrect answer.  

If a logistic regression model calculates a participant’s result to be greater than 0.5, then it will be 

assumed to be that the participant made a ‘correct’ decision. Whereas, if the participant’s result is 

less than 0.5, then it will be assumed that the participant made an ‘incorrect’ decision.  

 

Actual Answer 

Figure 73 displays ten participants’ results, five were correct and five were incorrect. To visually 

display this, all of the incorrect values are in line with zero and all the correct values are in line 

with one. In the actual answer, there are no decimal point representations because the 

participants were either correct (1) or incorrect (0). This figure would represent a perfect logistic 

regression model where there is 100% predictive accuracy and a Nagelkerke R-squared value of 1. 
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Figure 73: Distribution of Actual Answers 

 

Poor Accuracy, Poor Nagelkerke R-Squared Value 

Figure 74 demonstrates the illustrative results from a logistic regression analysis where there is a 

low Nagelkerke R-squared value and a low predictive accuracy as half of the expected values from 

the model are wrong. There is a low Nagelkerke R-squared value because there is a large variation 

from the correct answer. 
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Figure 74: This represents a model where there is poor accuracy and a poor Nagelkerke R-squared value 

 

Perfect Accuracy, Poor Nagelkerke R-Squared Value 

Figure 75 represents a model where there is 100% accuracy, i.e. all of the expected values are on 

the sides which they should be on (all five correct answers are greater than 0.5 and all five 

incorrect answers are less than 0.5). However there is a poor Nagelkerke R-squared value for this 

result because many of the answers are significantly varied from where they should be (directly 

over zero and one). 

This model is very useful because it has perfect predictions, therefore given the variables provided 

to the model, the model will always make the right prediction of how a participant will do. So 

there would be no additional benefit from adding more variables into the model, which could be 

more time consuming and costly. 
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Figure 75: This represents a model where there is perfect accuracy but poor Nagelkerke R-squared value 

 

Perfect Accuracy, Good Nagelkerke R-Squared Value but No Improvement in Performance 

Figure 76 represents a model with perfect predictive accuracy (like Figure 75) but with a very high 

Nagelkerke R-squared value. Both of these models provide perfect predictive accuracy but Figure 

76 will require additional variables and potentially cost more to develop. 

Therefore, in Section ‎4.3.4, the important value is the predictive accuracy and not the Nagelkerke 

R-squared value. If the predictive accuracy is higher than the ‘no variable’ outcome, then the 

variables are beneficial in predicting the outcome of participants. 
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Figure 76: This represents a model with perfect predictive accuracy and high Nagelkerke R-squared value 

 

 

Nagelkerke R-Squared 

As a logistic regression R-squared value is distributed differently to a linear regression R-squared 

value (which many people are more familiar with), then a corrected R-squared can be used 

through Nagelkerke’s technique. This approach can typically be understood by more people as the 

values are more similar to a linear regression model. SPSS also provides the Cox and Snell method 

which has not been used because it has a skewed upper bound which is less than one 

(Nagelkerke, 1991). Nagelkerke’s method simply divides Cox and Snell’s approach by the upper 

bound value to distribute the R-squared value between zero and one. However, this can result in 

a misleadingly high value compared to a linear probability model (Allison, 2013). For the purposes 

of this research though, the predictive accuracy is the most important feature rather than the R-

squared value. 
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Appendix 3 

This section shows an example snapshot file from Paramics micro-simulation software which can 

be generated at a user specified time scale. Figure 77 shows a snapshot file from Paramics, and 

through email consultation with Paramics Support, the various characteristics of each vehicle 

were explained (Figure 78), however the support team emphasised that this file’s intended 

purpose was never for traffic control. Reference number 11 and 12 (in Figure 78) are the 

important values for determining turning intention, if the value is represented by a zero, then this 

means that the vehicle is intending to take the first available turn in a clockwise direction (i.e. if 

there is a left turn then the vehicle will turn left). If the value is a one, then the vehicle will take 

the second available turning movement in a clockwise direction (i.e. the vehicle will not turn left 

but take the second exit – straight on). 

 

 

Figure 77: Paramics snapshot file 

 

 

Figure 78: Reference numbers for each of the vehicle characteristics shown in Figure 77 

 

Reference Number - Vehicle Characteristic Key 

1 - Vehicle type index 

2 - From zone 

3 - Distance to end of link (metres) 

4 - Destination zone 

5 - Routeing table 

Vehicle 

on Link 

0:4 
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6 - Lane 

7 - Speed (metres per second) 

8 - From zone (internal index) 

9 - Destination zone (internal index) 

10 - Start time of journey 

11 - The index of the next link the vehicle intends to move to (clockwise turn index)  

12 - The index of the next, next link the vehicle intends to move to (clockwise turn index) 

13 - The vehicles aggression 

14 - The vehicles awareness 

15 - Has lane range been set next lane 

16 - Is next out set (validity of index of the next link above) 

17 - Highest lane range index 

18 - Lowest lane range index 

19 - Is the vehicle queued (not for signals) 

20 - Was the vehicle previously queues (not for signals) 

21 - Is the vehicle queued (for signals) 

22 - Was the vehicle previously queues (for signals) 
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Appendix 4 

For the case study in Section ‎5.5 it was desirable to determine what a ‘typical day’ flow profile 

would look like. Therefore an average weekday profile was calculated from inductive loop data 

from a major arterial route in Southampton throughout September 2010, this profile can be seen 

in Figure 79. This profile was from 5am to 10pm and shows a morning rush hour, followed by a 

period of lower demand and a small lunch-time peak, followed by a slow decline throughout the 

rest of the day. This demand scenario was simulated in Paramics but took a long time to complete 

as there was 17 hours of data to simulate; therefore a shorter demand scenario was proposed in 

line with research from Box and Waterson (2010) where a four hour simulation was carried out. 

 

Figure 79: Average flow from Inductive loop data in Southampton during weekdays in September 2010 
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Appendix 5 

This appendix provides the mathematical proof for the delay calculations shown in Section ‎6.3. All 

of these equations are based on the standard equation for calculating the sum of arithmetic 

series: 

𝑆𝑢𝑚 =  
𝑥

2
[2𝑎 + (𝑥 − 1)𝑑] 

Where: 

x = Number of terms in the series 

a = Initial term of the series 

d = Common difference between successive values in the series 

 

The following proofs will provide the starting values for each of the equations and a brief 

explanation.  The following notation and terminology are used as can be seen in Section ‎6.3: 

n = Stationary queue length (vehicles) 

A = Arrival rate (vehicles per second) 

D = Discharge rate (vehicles per second) 

t = Time period considered (seconds) 

Initial queue: is the number of vehicles which were stationary or very slow moving (less than 

3mph) at the beginning of the time period. 

Arrivals queue: is the number of vehicles which have arrived during the discharge of the initial 

queue from the beginning of the time period. 

Starting values are calculated from one second after the start of the time period so that delay is 

not calculated twice. For example, a queue length is ten vehicles long, with no arrivals and a 

discharge rate of two vehicles per second; at time step zero there has been zero seconds of delay. 

Therefore the starting value of delay would be eight seconds at time step one second. It should be 

noted that the definition of delay for this calculation is the sum of the queue length at the end of 

each time step, hence why the value at time step zero is ignored. 

When considering all of the starting values, the difference must be multiplied by ‘1 second’ (t1) to 

ensure that dimensionality is correct. However, when using the equations, then t1 equals one and 

therefore makes no difference to the numerical outcome. 
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The following pseudo-code logic is used to describe which equation should be used when a phase 

is being released: 

 If:  𝑛/𝐷 > 𝑡     Use Equation 1 

 Else:       Use Equation 2 

  → If: 𝐴 < 𝐷 

   → If: 𝑛/𝐷 −   𝐴𝑛/𝐷(𝐴 − 𝐷)    ≤ 𝑡 Add Equation 3 

   → Else:      Add Equation 4 

→ Else: 𝐴 ≥ 𝐷     Add Equation 4 

If the phase is not currently released then use Equation 5. 

 

Equation 1 

This equation is made up of two parts: the delay from the initial queue and the delay from the 

arrivals queue. This is used when the initial queue cannot be fully discharged within the time 

period specified. 

𝑎 = (𝑛 − 𝐷𝑡1)          𝑑 =  −𝐷          𝑥 =  𝑡 

𝐷𝑒𝑙𝑎𝑦 =  
𝑡

2
((2𝑛 − 2𝐷𝑡1) + (𝑡 − 1). −𝐷) 

=  
𝑡

2
(2𝑛 − 𝐷(𝑡 + 1)) 

 

𝑎 = 𝐴         𝑑 =  𝐴          𝑥 =  𝑡 

𝐷𝑒𝑙𝑎𝑦 =  
𝑡

2
(2𝐴 +  (𝑡 − 1). 𝐴) 

=  
𝐴𝑡

2
(1 + 𝑡) 

When these two parts are added together then equation 1 is formed: 
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𝐷𝑒𝑙𝑎𝑦 =  
𝑡

2
(2𝑛 − 𝐷(𝑡 + 1)) +  

𝐴𝑡

2
(1 + 𝑡) 

Equation 1: 

=  
𝒕

𝟐
(𝟐𝒏 + (𝑨 − 𝑫)(𝒕 + 𝟏)) 

Equation 2 

This equation is calculated in two parts: the delay from the initial queue and the delay from the 

arrivals queue (during the initial queue discharge period). This equation is used when the initial 

queue can be discharged within the available time period. 

𝑎 = (𝑛 − 𝐷𝑡1)          𝑑 =  −𝐷          𝑥 =  
𝑛

𝐷
 

𝐷𝑒𝑙𝑎𝑦 =  
𝑛

2𝐷
((2𝑛 − 2𝐷𝑡1) +  (

𝑛

𝐷
− 1) . −𝐷) 

=  
𝑛(𝑛 − 𝐷𝑡1)

2𝐷
 

𝑎 = 𝐴         𝑑 =  𝐴          𝑥 =  
𝑛

𝐷
 

𝐷𝑒𝑙𝑎𝑦 =  
𝑛

2𝐷
(2𝐴 + (

𝑛

𝐷
− 1) . 𝐴) 

=  
𝐴𝑛

2𝐷
(1 +

𝑛

𝐷
) 

When these two parts are added together then equation 2 is formed: 

𝐷𝑒𝑙𝑎𝑦 =  
𝑛(𝑛 − 𝐷𝑡1)

2𝐷
+  

𝐴𝑛

2𝐷
(1 +

𝑛

𝐷
) 

Equation 2: 

=  
𝒏

𝟐𝑫
((𝒏 − 𝑫𝒕𝟏) + 𝑨 (𝟏 +

𝒏

𝑫
)) 

 

Equation 3 

This equation deals with dispersing the arrivals queue which has built up during the release of the 

initial queue. Note that this equation is used when the arrival rate is smaller than the discharge 

rate. 
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𝑎 =
𝐴𝑛

𝐷
+ (𝐴 − 𝐷)𝑡1         𝑑 = (𝐴 − 𝐷)          𝑥 =  

𝐴𝑛

𝐷(𝐷 − 𝐴)
 

𝐷𝑒𝑙𝑎𝑦 =  
𝐴𝑛

2𝐷(𝐷 − 𝐴)
(

2𝐴𝑛

𝐷
+ 2(𝐴 − 𝐷)𝑡1 +  (

𝐴𝑛

𝐷(𝐷 − 𝐴)
− 1) . (𝐴 − 𝐷)) 

Equation 3: 

=  
𝑨𝒏

𝟐𝑫(𝑫 − 𝑨)
(

𝑨𝒏

𝑫
+ (𝑨 − 𝑫)𝒕𝟏) 

 

Equation 4 

This equation is used when the arrivals queue cannot be fully discharged within the specified time 

period.  

𝑎 =
𝐴𝑛

𝐷
+ (𝐴 − 𝐷)𝑡1        𝑑 = (𝐴 − 𝐷)         𝑥 =  𝑡 −  

𝑛

𝐷
 

𝐷𝑒𝑙𝑎𝑦 =  
𝑡𝐷 − 𝑛

2𝐷
(

2𝐴𝑛

𝐷
+ 2(𝐴 − 𝐷)𝑡1 +  (𝑡 −

𝑛

𝐷
− 1) . (𝐴 − 𝐷)) 

Equation 4: 

=  
𝒕𝑫 − 𝒏

𝟐𝑫
(

𝟐𝑨𝒏

𝑫
+ (𝑨 − 𝑫). (𝟏 + 𝒕 −

𝒏

𝑫
)) 

 

Equation 5 

Equation 5 can be used for calculating delay when a phase has not been released. Discharge value 

is not required for this solution as there is simply a queue steadily building behind the red traffic 

light. 

𝑎 = (𝑛 + 𝐴𝑡1)         𝑑 =  𝐴          𝑥 =  𝑡 

𝐷𝑒𝑙𝑎𝑦 =  
𝑡

2
(2𝑛 + 2𝐴𝑡1 + (𝑡 − 1). 𝐴) 

Equation 5: 

=  
𝒕

𝟐
(𝟐𝒏 + 𝑨(𝒕 + 𝟏)) 
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