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Abstract: For Bayesian D-optimal design, we define a singular prior distribution to be a prior
distribution such that the determinant of the Fisher information matrix has a prior geometric
mean of zero for all designs. For such a prior distribution, the Bayesian D-optimality criterion
fails to select a design. For the exponential decay model, we characterize singularity of the
prior distribution in terms of the expectations of a few elementary transformations of the
parameter. For a compartmental model and multi-parameter logistic regression we establish
sufficient conditions for singularity of a prior distribution. For logistic regression we also
obtain sufficient conditions for non-singularity. The results are applied to show that the
weakly informative prior distribution proposed as a default for inference by Gelman, Jakulin,
Pittau and Su (2008) should not be used for Bayesian D-optimal design. Additionally, we
develop methods to derive and assess Bayesian D-efficient designs for logistic regression when
numerical evaluation of the objective function fails due to ill-conditioning.
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1 Introduction

In recent years, much effort has been devoted to developing D-optimal design methods for

nonlinear problems; for example, nonlinear models (e.g. Yang (2010)), generalized linear models

(Khuri, Mukherjee, Sinha and Ghosh (2006); Woods, Lewis, Eccleston and Russell (2006); Yang,

Zhang and Huang (2011)), and linear models with mixed effects (Jones and Goos (2009)). In

all of these areas, the set of D-optimal designs depends on the unknown values of the model

parameters, θ ∈ Θ ⊆ Rp.
One approach is to assume a particular best guess for the parameter values, and calculate a

corresponding locally D-optimal design, ξ∗θ ∈ arg maxξ∈Ξ |M(ξ; θ)|, where M(ξ; θ) is the Fisher

information matrix for design ξ ∈ Ξ. However, the performance of a locally optimal design may

be highly sensitive to misspecification of the value of θ. Then a Bayesian approach is often used

to derive designs that are efficient for a variety of plausible values for θ. This approach requires

the adoption of a prior distribution, P, on the parameters, and maximization of the value of

an objective function that quantifies the expected information contained in the experiment.

Throughout, we assume that P is a probability measure on the measure space (Θ,Σ), with Σ

the Borel σ-algebra over Θ. A widely used objective function is the logarithm of the geometric

mean of |M(ξ; θ)|,
φ(ξ;P) =

∫
Θ

log |M(ξ; θ)|dP(θ) , (1)

for example, see Chaloner and Larntz (1989) and Gotwalt, Jones and Steinberg (2009). We

adopt the measure-theoretic formulation of integration, under which the notation
∫

Θ g(θ)dP(θ) =

1



−∞ is standard and has a well-defined meaning for a Σ-measurable function, g, mapping Θ to

the extended real line.

A design that maximizes (1) is said to be (pseudo-)Bayesian D-optimal, and may be used

whether or not a Bayesian analysis will be performed (e.g. Woods, Lewis, Eccleston and Russell

(2006)). Maximization of (1) is equivalent to maximization of an asymptotic approximation to

the Shannon information gain from prior to posterior (Chaloner and Verdinelli (1995)).

In nonlinear problems, for certain singular parameter vectors, θ, the Fisher information

matrix, M(ξ; θ), has determinant zero for any design ξ. For these θ, it is difficult to estimate

the parameters no matter which design is used, often because of a lack of model identifiability

(see Section 2.3). In this situation, the local D-optimality criterion fails to select a design. We

now define the analogue of a singular parameter vector for Bayesian D-optimality.

Definition 1. (a) Given ξ ∈ Ξ, and a prior distribution, P, we say that ξ is a Bayesian

singular design with respect to P if φ(ξ;P) = −∞.

(b) Given a prior distribution, P, we say that P is a singular prior distribution if all ξ ∈ Ξ

are Bayesian singular with respect to P.

Equivalently, P is a singular prior distribution if the geometric mean of |M(ξ; θ)| under P is

zero for all ξ ∈ Ξ. In many models, such as the exponential decay model and logistic regression,

it is straightforward to detect singular parameter vectors, θ, by inspection of the information

matrix. However, as we will show, it is more difficult to detect whether P is a singular prior

distribution, except in the case of point priors.

A different, but related, problem is the presence of ill-conditioned information matrices in

a quadrature approximation to (1). This causes failure of numerical selection of Bayesian D-

optimal designs, and can occur even for theoretically non-singular prior distributions.

In this paper, we clarify and extend the set of priors for which Bayesian D-optimal design

is feasible for three important classes of models. In Sections 2.1, 2.2, and 2.3, respectively,

we give examples of singular prior distributions for the one-factor exponential decay model,

a three-parameter compartmental model, and the multi-factor logistic regression model. In

Section 2.3 the default weakly informative prior proposed for logistic regression by Gelman,

Jakulin, Pittau and Su (2008) is shown to be singular. For the exponential and logistic models,

sufficient conditions for a prior distribution to be non-singular are established. These conditions

are easily checked to ensure that the Bayesian D-optimality criterion can be used to select

designs under P. In Section 3, we develop novel methods that enable the selection of highly

Bayesian D-efficient designs for logistic regression when the quadrature approximation to (1)

is ill-conditioned. Finally, in Section 4 we discuss possible alternative approaches to finding

efficient designs when P is a singular prior distribution.

2 Singularity of priors for three standard models

2.1 Exponential decay model

In this section, we derive necessary and sufficient conditions for a prior distribution to be

singular for the exponential decay model. We consider two parameterizations: by rate, β > 0,

and by ‘lifetime’, θ = 1/β > 0. The response y is the concentration of a compound, and the

explanatory variable is time, x ∈ X = [0,∞). The model in terms of β is

yi = e−βxi + εi , εi ∼ N(0, σ2) , (2)

where i = 1, . . . , n, xi ≥ 0, and σ > 0.
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We assume the set of competing designs is Ξ = X n. For a design ξ = (x1, . . . , xn) ∈ Ξ, the

information matrix is

Mβ(ξ;β) =

n∑
i=1

x2
i e
−2βxi .

Suppose that at least one xi > 0 and let Sxx =
∑n

i=1 x
2
i . Then

− 2β max
i=1,...,n

{xi} ≤ log |Mβ(ξ;β)| − logSxx ≤ −2β min
i :xi>0

{xi} . (3)

By taking expectations, the following result is obtained.

Proposition 1. Assume that at least one xi > 0. For the β-parameterization, φ(ξ;P) > −∞
if and only if EP(β) <∞.

Thus, here the prior, P, is non-singular provided the rate parameter has finite expectation

but, for example, is singular if β distributed a priori as the absolute value of a Cauchy random

variable.

For the θ-parameterization, we have by a standard argument that

log |Mθ(ξ; θ)| = log |Mβ(ξ;β)| − 4 log θ . (4)

This enables derivation of the following result; for proof see the appendix.

Proposition 2. For the θ-parameterization, the prior distribution P is singular if and only if

either EP(1/θ) =∞ or EP(log θ) =∞.

In the context of designs maximizing φ(ξ;P) for nonlinear models, Chaloner and Verdinelli

(1995) refer to potential ‘technical problems using prior distributions with unbounded support

where [. . . ] M(ξ; θ) may be arbitrarily close to being singular’. Corollary 1 below shows that,

even with bounded support, seemingly innocuous prior distributions can cause Bayesian D-

optimality to fail as a design selection criterion.

Corollary 1. For the θ-parameterization, the prior distribution P = U(0, a), a > 0, is singular.

2.2 Compartmental model

In this section, we derive sufficient conditions for a prior distribution to be singular for a three-

parameter compartmental model. The model is:

yi = θ3{e−θ1xi − e−θ2xi}+ εi , εi ∼ N(0, σ2) , (5)

where xi ≥ 0, i = 1, . . . , n, θ2 > θ1 > 0, θ3 > 0 and σ > 0. The set of competing designs

is Ξ = [0,∞)n. In applications, often the response yi is a concentration of a compound in a

system, and the xi are the observation times.

The information matrix for the ith time point is

M(xi; θ) =

 x2
i θ

2
3e
−2θ1xi −x2

i θ
2
3e
−(θ1+θ2)xi −fixie−θ1xi

−x2
i θ

2
3e
−(θ1+θ2)xi x2

i θ
2
3e
−2θ2xi fixie

−θ2xi

−fixie−θ1xi fixie
−θ2xi f2

i /θ
2
3

 ,

where fi = θ3{e−θ1xi−e−θ2xi}. We have |M(ξ; θ)| = 0 when θ1 = θ2 or θ3 = 0, and |M(ξ; θ)| → 0

when θ1 → ∞. Thus it is clear that for P to be a non-singular prior distribution it must not

be too likely that θ2 and θ1 are very close, θ3 is small, or θ1 is large. This is formalized by

Proposition 3. Let δ = θ2 − θ1 > 0.
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Lemma 1. We have the following bounds on log |M(ξ; θ)|,

− 6θ1xmax ≤ log |M(ξ; θ)| − 4 log θ3 − log |M̃δ,1| ≤ −6θ1xmin , (6)

where above:

M̃
(i)
δ,θ3

=

 x2
i θ

2
3 −x2

i θ
2
3e
−δxi −xiθ3(1− e−δxi)

−x2
i θ

2
3e
−δxi x2

i θ
2
3e
−2δxi xiθ3e

−δxi(1− e−δxi)
−xiθ3(1− e−δxi) xiθ3e

−δxi(1− e−δxi) (1− e−δxi)2

 ,

xmin = min
i :xi>0

{xi} , xmax = max
i=1,...,n

xi , M̃δ,θ3 =

n∑
i=1

M̃
(i)
δ,θ3

.

Lemma 2. If
∫
δ<1 log δ dP(θ) = −∞, then EP(log |M̃δ,1|) = −∞.

Proposition 3. Suppose we have
∫
θ3>1 log θ3 dP(θ) < ∞. For the compartmental model (5),

the prior P is singular if EP(θ1) =∞,
∫
θ3<1 log θ3 dP(θ) = −∞, or

∫
δ<1 log δ dP(θ) = −∞.

Heavy-tailed priors such as the half-Cauchy are increasingly recommended as weakly infor-

mative priors in various models (Gelman et al. (2008); Polson and Scott (2012)). Here, P is

singular if θ1 is half-Cauchy distributed, though for physiological compartmental models often

more specific prior information is used (Gelman et al. (1996)). Establishment of sufficient con-

ditions for non-singularity of P for this model is highly involved and beyond the scope of this

paper.

2.3 Logistic regression

Suppose there are n experimental units, with associated design points xi = (xi1, . . . , xin)T ∈ X ,

and responses Yi ∼ Bernoulli(πi), 0 ≤ πi ≤ 1, i = 1, . . . , n. We assume a generalized linear

model formulation (McCullagh and Nelder (1989)), with linear predictor

ηi = fT(x)β , (7)

and h(πi) = ηi, where h(π) = log{π/(1 − π)}. Above, f(x) = (f0(x), . . . , fp−1(x))T is a vector

of regression functions fj(x) : X → R, j = 0, . . . , p − 1, and β = (β0, β1, . . . , βp−1)T is a vector

of regression parameters. We assume that X = [−1, 1]q, and Ξ = X n.

For design ξ = (x1, . . . , xn) and model (7) we have

M(ξ;β) =

n∑
i=1

wi f(xi)f
T(xi) (8)

w(ηi) = exp(−|ηi|) expit(|ηi|)2 , (9)

with wi = w(ηi), i = 1, . . . , n, and expit(η) = 1/{1 + e−η}.
The following lemma enables results on singular prior distributions to be derived, and facil-

itates the development of numerical methods to overcome ill-conditioning in Section 3. Let F

be the model matrix with rows fT(xi), noting that
∑n

i=1 f(xi)f
T(xi) = FTF is the information

matrix of ξ under a linear model with regressors specified by f .

Lemma 3. For logistic regression, the information matrix satisfies

min
i=1,...,n

{wi}FTF �M(ξ;β) � max
i=1,...,n

{wi}FTF .
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The inequality above is with respect to the Loewner partial ordering on real symmetric
matrices, in which M1 �M2 if and only if M2 −M1 is non-negative definite. Lemma 3 can be
used to establish sufficient conditions for the prior distribution to be non-singular for logistic
regression.

Theorem 1. Suppose that P is such that EP(|βj |) < ∞, for j = 0, . . . , p − 1. If ξ is non-
singular for the linear model with regressors given by f , that is

∣∣FTF
∣∣ > 0, then φ(ξ;P) > −∞,

i.e. ξ is also Bayesian non-singular with respect to P for the logistic model.

Note that there is no requirement for P to have bounded support. In particular, this result
provides theoretical reassurance that Bayesian D-optimality can be used to select a design with
a normal or log-normal prior on the parameters.

Other important prior distributions do not satisfy the conditions of Theorem 1; for example
that proposed by Gelman, Jakulin, Pittau and Su (2008), which we refer to as PG. Those
authors recommend applying a scaling before fitting the model. For observational studies, each
explanatory variable is transformed to have mean zero and a standard deviation of 1/2. This
ensures that the method reflects the widely-held default prior belief that higher order interac-
tions are likely to have a smaller contribution to the linear predictor. The combination of PG
with this scaling was shown to have improved predictive performance relative to both maximum
likelihood and penalized logistic regression. A reasonable analogue of the above method for de-
signed experiments would be to combine PG with a standardization of the design variables to
have range [−1/2, 1/2]. This achieves a similar penalization on higher order interactions.

It is possible to obtain a partial converse to Theorem 1.

Proposition 4. Given j ∈ {0, . . . , p− 1}, suppose that:

(i) P is such that Pr(βj > 1) > 0
(ii) P is such that, for any δ > 0, and any k = 0, . . . , p − 1 with k 6= j, we have that

Pr(|βk| < δ) > 0
(iii) P is such that β0, . . . , βp−1 are independent
(iv) P is such that EP [βj |βj > 1] =∞
(v) ξ is such that mini=1,...,n |fj(xi)| > 0.

Then φ(ξ;P) = −∞, i.e. ξ is Bayesian singular with respect to P.

The Gelman prior distribution, PG, is such that

β0 = 10C0 , βj = (5/2)Cj , j = 1, . . . , p− 1 ,

where C0, . . . Cp−1 are independent standard Cauchy random variables, which have undefined
mean. For a model with an intercept term, f0(x) = 1, and we may apply Proposition 4 with
j = 0 to find the following:

Corollary 2. For a logistic model with an intercept term, the prior distribution PG is singular.

For logistic models with a single controllable variable, scalar x, Bayesian D-optimal design
has also been studied for a different parameterization (for example, Chaloner and Larntz (1989)):

h(πi) = β1(x− µ) , (10)

which can be obtained from (7) via β0 = −β1µ. The following result, which is straightforward
to prove, provides sufficient conditions for a prior distribution to be non-singular for this form
of the model.

Proposition 5. For the (µ, β1)-parameterization in (10), if (i) EP(|µβ1|) <∞, (ii) EP(|β1|) <
∞ and (iii) EP(log |β1|) > −∞, then any design with two or more support points is Bayesian
non-singular with respect to P. Hence (i)–(iii) are sufficient for P to be non-singular. In this
case, ξ is Bayesian D-optimal for (β0, β1) if and only if it is Bayesian D-optimal for (µ, β1).
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3 Numerical methods to overcome ill-conditioning

3.1 Objective function bounds for logistic regression

When performing a numerical search for Bayesian D-optimal designs it is necessary to approx-

imate the objective function, usually via a weighted sum,

φ(ξ;P) ≈ φ(ξ;Q) =

NQ∑
l=1

vl log |M(ξ;β(l))| , (11)

over a weighted sample,

Q =

{
β(1) . . . β(NQ)

v1 . . . vNQ

}
,

of parameter vectors, β(l), l = 1, . . . , NQ, with corresponding integration weights vl, satisfying∑NQ
l=1 vl = 1.

The sample Q may be obtained, for example, by space-filling criteria, as used by Woods,

Lewis, Eccleston and Russell (2006), Latin hypercube sampling, or a quadrature scheme, such

as that applied by Gotwalt, Jones and Steinberg (2009). Quadrature methods, and in particular

the Gotwalt method, can often yield highly accurate approximations.

A problem with approximation (11), that occurs even for non-singular P, is that for multi-

parameter models numerical evaluation of φ(ξ;Q) can fail due to ill-conditioning in one or more

of the matrices M(ξ;β(l)). When this happens for all ξ ∈ Ξ, we say that Q is an ill-conditioned

quadrature scheme. For logistic regression, ill-conditioning of M(ξ;β) often occurs when some of

the parameters are large. Thus, for prior distributions with unbounded support, ill-conditioning

of Q is made more likely by: (i) choice of a large NQ, needed for φ(ξ;Q) to be an accurate

approximation to φ(ξ;P); and (ii) choice of a quadrature method, e.g. the Gotwalt method,

that oversamples the tails of the distribution for β.

For some important models, it is possible to obtain bounds that allow approximation of

φ(ξ;Q) when Q is ill-conditioned. We focus on the case of logistic regression, but the results of

Lemma 1 can be used in a similar way for the compartmental model. Using Lemma 3 and (9),

we see that φ(ξ;β) = log |M(ξ;β)| lies in the interval [φL(ξ;β), φU (ξ;β)], where

φL(ξ;β) = log |FTF |+ p min
i=1,...,n

{−|ηi|+ 2 log expit |ηi|}

φU (ξ;β) = log |FTF |+ p max
i=1,...,n

{−|ηi|+ 2 log expit |ηi|} .

Let S be the set of l in {1, . . . , NQ} for which M(ξ;β(l)) is ill-conditioned, then:

φL(ξ;Q) ≤ φ(ξ;Q) ≤ φU (ξ;Q) , (12)

where

φL(ξ;Q) =
∑

l∈{1,...,NQ}\S

vl log |M(ξ;β(l))|+
∑
l∈S

vl log |FTF |

+
∑
l∈S

vl p min
i=1,...,n

{−|fT(xi)β
(l)|+ 2 log expit |fT(xi)β

(l)|}

φU (ξ;Q) =
∑

l∈{1,...,NQ}\S

vl log |M(ξ;β(l))|+
∑
l∈S

vl log |FTF |

+
∑
l∈S

vl p max
i=1,...,n

{−|fT(xi)β
(l)|+ 2 log expit |fT(xi)β

(l)|} .
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The bounds φL(ξ;Q), φU (ξ;Q) are much better conditioned than φ(ξ;Q). The bounds for

log |M(ξ;β(l))|, l ∈ S, are often wide. However, as the corresponding vl is often very small,

we may nonetheless obtain from (12) a relatively narrow interval for φ(ξ;Q). Note that (12)

specifies an interval that contains the approximation φ(ξ;Q), and not necessarily the value of

φ(ξ;P).

In the remainder of Section 3, we use the following example to show how the bounds enable

an extension of the set of prior distributions for which Bayesian D-efficient designs can be

obtained. We begin by illustrating the use of bounds for the objective function.

Example 1. Potato-packing experiment (Woods, Lewis, Eccleston and Russell (2006)). We

use one of the models, defined by

f(x) = (1, x1, x2, x3, x1x2, x1x3, x2x3)T

β = (β0, β1, β2, β3, β12, β13, β23)T ,

where q = 3, x = (x1, x2, x3)T. We adopt a different prior distribution, namely log β0 ∼
N(−1, 2), β1 ∼ N(2, 2), β2 ∼ N(1, 2), β3 ∼ N(−1, 2), and β12, β13, β23 ∼ N(0.5, 2) indepen-

dently. From Theorem 1, this prior distribution is non-singular.

For a double-replicate of the 23 full factorial design, the value of φ(ξ;P) was approximated us-

ing the Gotwalt quadrature scheme, with 5 radial points and 4 random rotations. Direct numer-

ical evaluation of φ(ξ;Q) failed, since |S| = 39. However, we have that φ(ξ;Q) ∈ [−6.85,−6.78]

using (12).

3.2 Use of bounds in design optimization and assessment

We can also use the bounds from (12) within an optimization algorithm to help find Bayesian

D-efficient designs. The Bayesian D-efficiency is

Bayes-eff(ξ;P) = exp{[φ(ξ;P)− φ(ξ∗P ;P)]/p} × 100% ,

where ξ∗P ∈ arg maxξ φ(ξ;P) is a Bayesian D-optimal design. Bayesian D-efficiencies near 100%

indicate that ξ achieves a near-optimal trade-off in performance for different β.

When Q is well-conditioned, the Bayesian D-efficiency may be approximated by numeri-

cally searching for ξ∗Q ∈ arg maxξ φ(ξ;Q) maximizing the quadrature approximated objective

function, and substituting the design found into

Bayes-eff(ξ;Q) = exp{[φ(ξ;Q)− φ(ξ∗Q;Q)]/p} × 100% .

However, if Q is ill-conditioned then this method fails since (i) φ(ξ;Q) cannot be evaluated di-

rectly, and (ii) ξ∗Q cannot be found using a numerical search. We may nonetheless use numerical

methods to find designs ξ∗Q,L and ξ∗Q,U maximizing the lower and upper bounds respectively, i.e.

ξ∗Q,L ∈ arg maxξ φL(ξ;Q) and ξ∗Q,U ∈ arg maxξ φU (ξ;Q). Then a lower bound for the Bayesian

efficiency of ξ∗Q,L can be approximated, via substitution of the designs found into the inequality,

Bayes-eff(ξ∗Q,L;Q) ≥ exp{[φL(ξ∗Q,L;Q)− φU (ξ∗Q,U ;Q)]/p} × 100% . (13)

To find exact designs maximizing the bounds we use a continuous co-ordinate exchange algo-

rithm similar to that of Gotwalt, Jones and Steinberg (2009).

Example 1 (continued). A co-ordinate exchange algorithm was used, with 100 random starts,

to search for ξ∗Q,L, ξ∗Q,U among exact designs with n = 16 runs. The quadrature scheme Q was

generated using the Gotwalt method, with 3 radial points, and one random rotation, yielding

a total of 217 support points for Q. The design ξ∗Q,L, given in Table 1, was found to have

Bayes-eff(ξ∗Q,L;Q) & 99.4%.
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Run x1 x2 x3 Run x1 x2 x3
1 0.456 1.000 1.000 9 -1.000 -1.000 1.000
2 -1.000 -1.000 -1.000 10 -0.269 1.000 1.000
3 -1.000 0.512 -1.000 11 1.000 -1.000 -1.000
4 -0.137 -1.000 -1.000 12 1.000 -1.000 0.045
5 1.000 -1.000 1.000 13 -1.000 -1.000 -0.124
6 1.000 1.000 -1.000 14 0.085 -1.000 1.000
7 1.000 -0.038 1.000 15 -1.000 1.000 -0.213
8 -1.000 1.000 1.000 16 -0.149 1.000 -1.000

Table 1: Example 1, Bayesian design, ξ∗Q,L, maximizing the lower bound φL(ξ;Q).
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Figure 1: Kriging-approximated conditional mean efficiencies, EP{eff(ξ∗Q,L;β) |βj}, for all parameters,
of the Bayesian design, ξ∗Q,L, maximizing the lower bound (13). The lower and upper limits of the β-axes
correspond to the 2.5% and 97.5% prior quantiles, respectively. The histogram shows an approximate
sample from the local efficiency distribution for ξ∗Q,L induced by the prior distribution on β.
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Note that the computation of the lower bound is approximate since we cannot be certain

to have found the global optimum ξ∗Q,U , although in the above example an assessment of the

objective function values from the different random initializations of the algorithm suggests that

the number of starts is adequate.

To assess the performance of a given design, ξ, for different β, we use the local D-efficiency,

eff(ξ;β) = {|M(ξ;β)|/|M(ξ∗β;β)|}1/p . (14)

For some β, M(ξ;β) is well-conditioned for most ξ ∈ Ξ. In this case, the local D-efficiency

can be approximated by searching numerically for the locally D-optimal design, ξ∗β, and substi-

tuting the design found into (14). For other β, M(ξ;β) is ill-conditioned for all ξ ∈ Ξ. Then,

approximate bounds on the efficiency can be derived by numerically searching for the designs

ξ∗U,β ∈ arg maxξ φU (ξ;β) and ξ∗L,β ∈ arg maxξ φL(ξ;β), and using the fact that

exp
1

p
[φL(ξ;β)− φU (ξ∗U,β ;β)] ≤ eff(ξ;β) ≤ exp

1

p
[φU (ξ;β)− φL(ξ∗L,β;β)] . (15)

To visualize the dependence of the local efficiency on the individual parameters, we plot

approximations to the conditional means, EP{eff(ξ;β) |βj}, as univariate functions of each of

the regression coefficients, βj . Owing to the need to search for a locally D-optimal design, eval-

uation of eff(ξ;β) is computationally intensive. Thus, before computing conditional means it is

advantageous to first build a statistical emulator of eff(ξ;β) as a function of β, using Gaussian

process interpolation. This is analogous to the approach followed in the computer experiments

literature when visualizing the main effects of a computationally expensive simulator (e.g. Sant-

ner, Williams and Notz (2003, Ch.7)). A similar method was used by Waite and Woods (2015)

to visualize the efficiency profile of Bayesian designs for logistic models with random effects.

Example 1 (continued). We consider further the performance of the design, ξ∗Q,L, maximizing

the lower bound for φ(ξ;Q). We use the support points of the quadrature scheme to train

our emulator of eff(ξ∗Q,L;β). In our example, only three out of the 217 β vectors in Q led to

M(ξ;β) being ill-conditioned for all ξ ∈ Ξ. For these vectors, the efficiency bounds in (15) gave

no additional information beyond eff(ξ∗Q,L;β) ∈ [0%, 100%]. Thus we decided to omit these

β vectors from the training set, as including the bounds [0%, 100%] would not substantively

reduce our uncertainty about the efficiency at these β. Figure 1 shows the approximations to the

conditional means, EP{eff(ξ∗Q,L;β) |βj}, resulting from application of the Gotwalt integration

method in p − 1 dimensions (with 5 radial abscissae and one random rotation) to integrate

the mean of the Kriging emulator with respect to all parameters except βj . Also shown is

a histogram giving an approximation to the distribution of local efficiencies of ξ∗Q,L induced

by the prior distribution on β. This is derived by computing the Kriging-based estimates of

eff(ξ∗Q,L;β) for a Monte Carlo sample of 10,000 β vectors from the prior distribution. From

Figure 1 it appears that the modal efficiency is in the range 55-60%. The lower and upper

quartiles of the efficiency distribution are approximately 46% and 62%. Overall, the design

appears moderately robust to likely β, despite the possibility of very large β0.

4 Discussion

One of the best possible situations for (pseudo-)Bayesian design is when P is non-singular. In

this case we may proceed to find Bayesian D-optimal designs using standard methods, or if the

quadrature scheme is ill-conditioned, using bounds such as those developed for logistic regression

in Section 3. We may also apply these methods in the case where P is singular, but can be

9



replaced with an alternative non-singular P ′ that plausibly represents our prior uncertainty.

However, we should in general avoid selecting prior distributions for analytical convenience if

they do not accurately represent our prior beliefs, and so if no such P ′ exists, neither φ(ξ;P) nor

φ(ξ;P ′) can be used to help guide the choice of design. In this case, we must consider different

criteria for design selection.

One alternative approach is to select ξ to maximize the mean local efficiency,

Ψ(ξ;P) = EP{eff(ξ; θ)} ,

which is much less sensitive to the presence of θ with |M(ξ; θ)| ≈ 0. This is a special case (Φ1

in their notation) of the optimality criterion discussed by Dette and Wong (1996). The above

criterion does not have the interpretation of being approximately equivalent to maximizing

Shannon information gain. As an example of the use of this criterion, consider the exponential

decay model from Section 2.1. From Corollary 1, when P = U(0, a), a > 0, all designs are

Bayesian singular with respect to φ(ξ;P) for θ-parameterization. By contrast, it is shown triv-

ially that the design with a single support point x = a/2 is Ψ-optimal with a mean efficiency

of approximately 67%. This design is locally D-optimal when θ is equal to its prior mean, but

highly inefficient when θ is very small. Thus, Ψ-optimal designs are much less strongly driven

by their worst-case behaviour.
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A Appendix. Proofs of analytical results

Proof of Proposition 2. Assume that at least one xi > 0. For the θ parameterization, we demon-

strate two implications. Namely (i) if EP(1/θ) < ∞ and EP(log θ) < ∞, then φ(ξ;P) >

−∞; and (ii) if EP(log θ) = ∞ or EP(1/θ) = ∞, then φ(ξ;P) = −∞. Here, φ(ξ;P) =

E{log |Mθ(ξ; θ)|}, where log |Mθ(ξ; θ)| is given by (4).

For (i), observe that −∞ ≤ EP {(2/θ) maxi=1,...,n{xi}+ 4 log θ} < ∞, and so considering

the left hand side of (3), and the reparameterization (4), we have

−∞ < log

n∑
i=1

x2
i − EP

{
(2/θ) max

i=1,...,n
{xi}+ 4 log θ

}
≤ φ(ξ;P) ,

as required.

For (ii), note that in addition to (3), the following weaker inequality holds:

φ(ξ;P) ≤ log

n∑
i=1

x2
i − 4 log θ .

Taking expectations of both sides, if EP(log θ) =∞ then φ(ξ;P) = −∞.

For the other case, first let

b(θ) =
1

θ

{
2 min
i=1,...,n

{xi : xi > 0}+ 4θ log θ

}
.

10



Note that θ log θ → 0 as θ → 0, and so there is some δ > 0 such that, for θ < δ,

b(θ) ≥ (1/θ) min
i=1,...,n

{xi : xi > 0} .

The expectation of b(θ) therefore satisfies

EP{b(θ)} ≥ EP{b(θ)I(θ < δ) + inf
θ>δ

b(θ) I(θ > δ)}

≥ min
i=1,...,n

{xi : xi > 0}EP{(1/θ)I(θ < δ)}+ (4 log δ) Pr(θ > δ) (16)

If EP(1/θ) = ∞, then EP{(1/θ)I(θ < δ)} = ∞, and so by (16), EP{b(θ)} = ∞, regardless of

whether EP(log θ) = −∞. Recall from (3) that

φ(ξ;P) ≤ log

n∑
i=1

x2
i − EP{b(θ)} .

Hence if EP(1/θ) = ∞, we have φ(ξ;P) = −∞. This is sufficient to establish the proposition.

Proof of Lemma 1. Observe that M(xi; θ) = e−2θ1xiM
(i)
δ,θ3

. Moreover, for i = 1, . . . , n, either (i)

xi = 0 or (ii) xi ≥ xmin. In case (ii), we have

e−2θ1xmaxM̃
(i)
δ,θ3
�M(xi; θ) � e−2θ1xminM̃

(i)
δ,θ3

. (17)

Moreover, the above holds also in case (i) since then M(xi; θ) and M
(i)
δ,θ3

are matrices of zeroes.

Summing (17) over i = 1, . . . , n, we obtain:

e−2θ1xmaxM̃δ,θ3 �M(ξ; θ) � e−2θ1xminM̃δ,θ3 . (18)

Taking log-determinants of all sides of (18) yields the result, when combined with the fact that

|M̃δ,θ3 | = θ4
3|M̃δ,1|.

Define gξ(δ) = |M̃δ,1|. The following is needed to establish Lemma 2.

Lemma 4. Suppose that ξ contains at least three distinct xi > 0. Then the derivatives of gξ(δ)

satisfy: (i) g
(k)
ξ (0) = 0, k = 1, . . . , 7, (ii) g

(8)
ξ (0) > 0.

Proof of Lemma 4. Part (i) can be verified using symbolic computation, e.g. using Mathemat-

ica. It can also be shown that

g
(8)
ξ (0) = 280{S2S4S6 − S2S

2
5 − S2

3S6 + S3S4S5 + S3S4S5 − S3
4} ,

where Sl =
∑n

i=1 x
l
i. Define the following,

K =

S2 S3 S4

S3 S4 S5

S4 S5 S6

 , K ′ =
∑
i:xi>0

 1 xi x2
i

xi x2
i x3

i

x2
i x3

i x4
i

 ,

and xmin = min{xi : xi > 0}. Note

K � x2
minK

′ .

We have

g
(8)
ξ (0) = 280|K| ≥ 280x6

min|K ′| .
Observe also that K ′ is the information matrix of the design ξ′ = (xi : xi > 0) under the linear

model with regressors 1, x, x2. By the assumption that there are at least three distinct xi > 0,

the above linear model is estimable and so |K ′| > 0. This establishes part (ii).
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Proof of Lemma 2. In the case that ξ contains fewer than three distinct xi > 0, then Mδ,1

has rank at most two, and so EP(log |Mδ,1|) = −∞ for any prior P. Thus we may assume
that ξ has at least three distinct xi > 0. From Lemma 4 is is clear that, for small δ, we
have gξ(δ) ≈ (κ/2)δ8, where κ > 0. We show that the approximation is sufficiently close that
EP(log |M̃δ,1|) = −∞ if

∫
δ<1 log δ dP(θ) = −∞. By Taylor’s theorem, there is ε1 > 0 and λ > 0

such that, for δ ∈ (0, ε1),
|g(δ)− (κ/2)δ8| ≤ λδ9 .

Hence, for δ ∈ (0, ε1),
|2g(δ)/(δ8κ)− 1| ≤ (2λ/κ)δ9 .

As the logarithm function has derivative 1 at argument 1, there exists 0 < ε2 ≤ ε1 such that for
δ ∈ (0, ε2), ∣∣∣∣log

2g(δ)

δ8κ
− log 1

∣∣∣∣ ≤ 2|2g(δ)/(δ8κ)− 1| ≤ (4λ/κ)δ9 .

Thus, for δ ∈ (0, ε2), we have the following approximation of log g(δ),

| log g(δ)− log(κδ8/2)| ≤ (4λ/κ)δ9 ,

so that ∣∣∣∣∫
δ<ε2

log g(δ)dP(θ)−
∫
δ<ε2

{8 log δ + log(κ/2)}dP(θ)

∣∣∣∣ ≤ (4λ/κ)ε92 .

Hence it is clear that
∫
δ<ε2

log g(δ)dP(θ) = −∞ if and only if
∫
δ<ε2

log δ dP(θ) = −∞. Moreover
note that gξ(δ) is bounded above, and∫

log g(δ)dP =

∫
δ<ε2

log g(δ)dP +

∫
δ>ε2

log g(δ)dP .

Thus,
∫

log g(δ)dP = −∞ if
∫
δ<ε2

log δ dP(θ) = −∞. The result is finally established by
observing that

∫
δ<ε2

log δ dP(θ) = −∞ if
∫
δ<1 log δ dP(θ) = −∞.

Proof of Proposition 3. Suppose that ξ has at least three distinct xi > 0. From Lemmas 1
and 2 it is also clear that if

∫
θ3>1 log θ3 dP(θ) < ∞, and in addition

∫
θ3<1 log θ3 dP(θ) = −∞,∫

δ<1 log δ dP(θ) = −∞, or EP(θ1) = ∞, then also EP{log |M(ξ; θ)|} = −∞. This establishes
the result.

Proof of Theorem 1. Using the Loewner bounds on the information matrix, and the fact that
taking determinants respects the Loewner partial ordering (i.e. if M1 �M2 then |M1| ≤ |M2|),
we have from Lemma 3 that

log |M(ξ;β)| ≥ log |FTF |+ pmin
i

logwi .

From (9) it is clear that w(η) ≥ (1/4)e−|η|. Thus,

log |M(ξ;β)| ≥ log |FTF |+ p log
[
(1/4)e−maxi |ηi|

]
≥ log |FTF | − pmax

i
|ηi| − p log 4 .

Moreover, by the triangle inequality, maxi |ηi| ≤
∑

j maxi |fj(xi)||βj |, and so

log |M(ξ;β)| ≥ log |FTF | − p log 4− p
∑
j

max
i
|fj(xi)||βj | . (19)

The right hand side of (19) has expectation greater than −∞ due to the assumptions that
EP(|βj |) <∞, |FTF | > 0, therefore EP{log |M(ξ;β)|} > −∞.
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Proof of Proposition 4. From Lemma 3 we know that

log |M(ξ;β)| ≤ log |FTF |+ pmax
i

logwi

It can also be shown that w(η) is a decreasing function of |η|, and from (9) it is clear that

w(|η|) ≤ exp(−|η|), so

log |M(ξ;β)| ≤ log |FTF |+ p logw(min
i
|ηi|)

≤ log |FTF | − pmin
i
|ηi|

Now we need only prove EP(mini |ηi|) = ∞ to establish that EP{log |M(ξ;β)|} = −∞. To

show this, we condition on an event where the parameter βj dominates.

Given j ∈ {0, . . . , p−1}, let E ∈ Σ be an event such that (a) βj > 1, and (b)
∑

k 6=j |fk(xi)||βk| <
ε for all i, where ε > 0 is such that

||fj(xi)| − |fj(xi′)|| > 2ε for any i, i′ with |fj(xi)| 6= |fj(xi′)| .

We can guarantee (a) and (b), for example by taking

E = {β : βj > 1, |βk| < ε/[(p− 1) max
i
|fk(xi)|] , for k 6= j} ∈ Σ ,

which satisfies Pr(E) > 0, by assumptions (i)–(iii) of the proposition.

By standard properties of the modulus under addition, on event E,

||ηi| − |fj(xi)|βj | ≤
∑
k 6=j
|fk(xi)||βk| ≤ ε , by (b) (20)

Since on E the term from βj dominates, to find the minimum of |ηi| we just need to minimize

the βj term. To see this formally, observe that if |fj(xi)|βj > |fj(xi′)|βj then by (b)

|fj(xi)|βj − |fj(xi′)|βj > 2εβj > 2ε ,

and so, by (20),

|ηi′ | < |fj(xi′)|βj + ε < |fj(xi)|βj − ε < |ηi| .

Thus |fj(xi)|βj > |fj(xi′)|βj implies |ηi| > |ηi′ |. Hence

min
i
|ηi| = |ηi∗ | , i∗ ∈ arg mini |fj(xi)|

≥ |fj(xi∗)|βj − ε .

Consequently,

EP(min
i
|ηi| | E) ≥ |fj(xi∗)|EP(βj |E)− ε

≥ |fj(xi∗)|EP(βj |βj > 1)− ε , by assumption (iii) of the proposition

=∞ by assumptions (iv) and (v) of the proposition.

Considering the marginal expectation, note that Pr(E) > 0, and so,

EP(min
i
|ηi|) ≥ Pr(E)EP(min

i
|ηi| |E) =∞ .
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