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UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 

FACULTY OF NATURAL AND ENVIRONMENTAL SCIENCES 

School of Ocean and Earth Sciences   

Doctor of Philosophy 

DETECTION AND ATTRIBUTION OF CLIMATE CHANGE IN SATELLITE 

RECORDS OF OCEAN PRODUCTIVITY 

By Gayatri  Dudeja  

Phytoplankton make up approximately half of the global biosphere production. Climate 

change is predicted to affect phytoplankton productivity. Detecting the climate change signal 

in satellite records of productivity would imply that ocean primary production has been 

affected by anthropogenic influences. Long-term trends in chlorophyll (chl) concentration in 

the ocean have been observed by several studies. However, the effect of internal variability in 

chl was not taken into account in these observed trends. This thesis aims to perform a formal 

detection and attribution analysis on observed chl concentration using the optimal fingerprint 

(OF) method. The methodology has been applied to detect and attribute greenhouse gas 

induced climate change in sea-surface temperature records, ocean heat content, atmospheric 

air temperature etc., but this is the first attempt to apply it to ocean productivity records. 

The OF method was applied to monthly observations of chl data (1999-2005) from 

NASA’s Ocean Biogeochemical Model (NOBM) which assimilates satellite-derived chl. 

Control run and forced simulations from four Earth System Models were used to derive the 

internal variability of chl and response of chl to climate forcings (anthropogenic and natural), 

respectively. Three metrics were defined to describe the climate change signal in chl - spatial 

linear trend of chl; linear trend of zonal average; and time series of the size of the 

oligotrophic gyres. The OF technique of detection and attribution was implemented on the 

observational datasets for each of the three metrics. The amplitude of the responses provide 

an indication of whether a climate forcing signal is present in the observations. 

Out of the three metrics, the study demonstrated that the second metric (linear trend of zonal 

average in chl) is the best, and the third metric (size of the oligotrophic gyres) is the worst, 

'direction' to look for a climate change signal in chl. Thus, metrics should be defined such 

that they capture the relevant change in chl and at the same time do not contain too much 

small scale variability which leads to noise. It was also illustrated that climate models do not 

necessarily simulate the internal variability of chl well, or the response of chl to climate 

forcings, indicating the need to improve the performance of climate models.  

A greenhouse gas signal was detected in observations in some regions of the ocean indicating 

that chl concentration is likely being affected by climate change. The canonical model of chl 

response to global warming, i.e. decrease in chl in lower latitudes and increase in chl in 

higher latitudes, was not consistently observed in all the regions of the ocean. This signifies 

that changing climate is affecting chl in a way which is not yet completely understood and in 

future the effects of climate change on chl may be surprisingly different from our current 

conceptual model.  
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1. Introduction 

Single-celled algae and other plant -like organisms known as  

'phytoplankton' are the primary producers in the food chain of the ocean. 

More than two-thirds of the Earth's surface is covered by Oceans and 

phytoplankton make up approximately half of the globa l biosphere production 

(Field et al.,  1998).  Phytoplankton become food for tiny creatures called 

zooplankton. Zooplankton are food for large animals like small fish and 

jellyfish which in turn are food for larger animals like squids, sharks, marine 

mammals, birds and people. More than 2.6 billion people rely on fish for 20% 

of their average annual per capita protein intake (FAO, 2007). Every year 

approximately 80 Mt of marine fish is consu med as food or to produce 

fishmeal and oils for aquaculture and agriculture (FAO, 2010).  Hence, 

phytoplankton being the primary elements of the food chain,  affect the 

abundance and diversity of marine organisms throughout the food -chain and 

play a major role in marine ecosystem functioning and fishery yields. Ocean 

warming due to climate change will affect the distribution of phytoplankton 

in the ocean and thereby change the productivity and diversity of species 

higher up in the food chain.   

Phytoplankton contain a pigment called 'chlorophyll ' which initiates 

photosynthesis in the ocean i.e.  it  absorbs atmospheric carbon dioxide and 

nutrients in the water in  the presence of sunlight to produce carbohydrates 

and releases oxygen. Phytoplankton play a crucial role in the global carbon 

cycle. Phytoplankton biomass in the ocean is approximately 1 -2% of the 

global plant carbon. In spite of the low biomass, phytopla nkton fix  

approximately 40% of the global atmosphe ric carbon dioxide per annum 

(Falkowski and Woodhead, 1992, Berger et al .,  1989). Some of this carbon is 

transferred from the surface layers of the ocean to the deep ocean when 

phytoplankton die and the detri tus sinks. Some carbon is transferred to 

different layers of the ocean by other animals higher in the food chain which 

feed on phytoplankton and themselves reproduce, generate waste and die. 

Some of the sinking material gets buried at the sea floor potentially for 

millennia while some gets remineralised back to the surface ocean and 
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atmosphere. This component of the cycle of carbon from atmosphere to the 

deep ocean is known as the biological pump. Climate change warms the ocean 

and hence stratification increases. In low latitudes of the ocean, increased 

stratification will decrease mixing and reduces the supply of nutrients to the 

surface ocean. This decreases the phytoplankton productivity in the ocean 

and the amount of atmospheric  carbon fixed by phytoplankton will decrease.  

This will  further promote climate change as carbon dioxide is a greenhouse 

gas and it increases the atmospheric temperature by increasing the radiative 

forcing of Earth.   

As phytoplankton are so vital to ecosys tem and climate, it  is  necessary 

to study their location and distribution in the water and how climate change 

is affecting them. Phytoplankton concentration can be measured by taking 

water samples from the ocean. Another way to determine phytoplankton 

concentration is by studying the ocean color. Chlorophyll  (chl) and other 

pigments in the water change the way i t reflects and absorbs sunlight. For 

example chl absorbs wavelengths in red and blue regions of the visible 

spectrum, but not in green. Hence, as ph ytoplankton increases in the ocean, 

the color of the ocean appears green. This proper ty of the water constituents 

to absorb certain wavelengths and reflect  others is used in remote sensing to 

derive the concentration of these constituents (McClain et al .,  2000).  

Satellites measure the light reflected by the surface ocean, known as the 

water leaving radiance. This quantity is  converted to chl concentrations by 

empirical ocean color algorithms (Gordon et al. ,  1988).  Hence, chl 

concentrations are a way to map and locate the amount of phytoplankton in 

the ocean. Chl concentration in the ocean varies from location to location, 

seasonally,  annually and also on decadal time scales.  Thus, there is a natural  

cycle of variability of chlorophyll.  Any change observed in chl over a certain 

time period is a combination of natur al variability and change caused by 

external factors such as climate change due to anthropogenic activities. In 

order to detect  the climate change signal in chlorophyll, a distinction needs 

to be made between variabili ty of chlorophyll which occurs natural ly and 

which occurs due to anthropogenic activit ies.   
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The focus of this thesis is firstly, to determine change in chl 

concentration in the ocean above its natural  cycle and secondly, to determine 

if the observed change is due to anthropogenic activities. T he results will 

help in fully understanding the impacts of climate change on phytoplankton 

by detecting and attributing potential chl  changes to global warming .  

1.1. Aims and Objectives 

The main aim of the thesis is to detect a cl imate change signal in 

chlorophyll concentration of the ocean. Once the signal is detected, it  is then 

attributed to climate forcings and the contribution of the forcings towards the 

observed change is determined. This is achieved by using an optimal 

fingerprint  method of detection and  attribution.  The key objectives of the 

study are - 

 To define and compute various suitable climate change signals for 

detecting and attributing anthropogenic climate change in chlorophyll 

concentration in the ocean.  

 To implement the optimal fingerprint me thod of detection and 

attribution using a spatial pattern of linear trend in chlorophyll.  

 To detect and attribute a climate change signal for the linear trend of 

the zonal average of chlorophyll in all the regions of the ocean.  

 To implement the optimal fi ngerprint  method using size of the 

subtropical gyres as the climate change signal.  

It  is assumed here that changes in chl due to climate change will be 

linear and therefore,  linear trend of chl is chosen in this study. However,  

climate change may cause non-linear changes in chl concentration. In that  

case, climate change will  not be detected in the signals chosen in this study.  

1.2. Climate Change 

Climate is defined as the average pattern of weather in a certain region 

over long periods of time (approximately 30 years), as defined by the World 
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Meteorological Organization (WMO) (Strahler, 1960). For example, weather 

in a particular place may be cold today, but climate of that place is hot most 

of the time. Climate varies with latitude, with distance from the sea, 

proximity of mountains and other geographical factors. Climate over a given 

period of time may deviate from the long-term statist ics of climate over that  

corresponding calendar period. For example, springtime at  a certain place 

coming earlier than i t did 30 years ago is an indication of climate variabili ty.  

Statist ically significant vari ations occurring over long periods of t ime, 

typically decades or longer are termed as climate change (IPCC, 2007b, 

SYR). In order to understand climate change, we first need to know what 

climate is  and what factors cause it  to change.  

The climate system is an interacting system cons isting of various 

components such as the atmosphere, the ocean, ice and snow cover, the land 

and the various physical, chemical and biological processes that take place in 

and among these components. Interaction among these components causes the 

climate, as reflected in variables such as temperature,  wind, clouds and 

precipitation, to vary. Figure 1-1 shows a schematic of the climate system. 

Components of the system (shown in bold) are atmosphere, hydrosphere,  

cryosphere and biosphere. Interaction processes of the system (represented by 

thin arrows) are atmosphere -ice interaction, heat exchange, wind stress and 

so on. Any change in the components or the i nteraction processes,  caused 

naturally or by anthropogenic activities results in variations in some aspects 

of the climate system (shown by bold arrows). For example, changes in solar 

inputs, changes in atmosphere composition and circulation, changes in th e 

ocean circulation, sea level and so on.  
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Figure 1-1. Schematic view of components of the global cl imate system (bold),  

their  processes and interactions (thin arrows) and some aspects that  may change 

(bold arrows) ( IPCC, C. C. 2007 :  Chapter 1 ).  

Several  factors shape the climate,  known as forcings. These can be 

internal or external forcings. Internal forcing mechanisms act within the 

climate system itself, whereas external forcing mechanisms act from outside 

the climate system. Forcings can also be radiative or non -radiative.  

The Sun is the ultimate source of energy that drives the climate system. 

The radiative balance i.e. the balance between the incoming solar radiation 

and outgoing in  a ed  adiation cont ols the  a th’s su  ace tempe atu e.  

Disturbance in this radiative balance, caused naturally or by anthropogenic 

activities, results in pushing the climate system away from its normal state. 

For example, an increase in the incoming solar input will cause an increase in 

the Earth's temperature. A climate forcing may affect the radi ative balance in 

a posit ive or negative way. If the forcing affects the balance positively then 

it leads to warming of the climate system, and vice -versa. An estimate of the 

value of different forcings in 2005 relative to the start of the industrial era 
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(about 1750) is shown in Figure 1-2. From the Figure it can be seen that 

human activities have a large positive effect, solar irradiance has a small  

positive effect  and aerosols have a negative effect on the radiative balance.  

 

Figure  1-2.  Summary of the principal components of radiative forcing of climate 

change. The values represent the forcings in 2005 relative to the start  of the 

industrial  era (about 1750) ( IPCC, 2007b, SYR).  

Forcing mechanisms that do not directly affect the radiative balance of 

the Earth are known as non-radiative forcings. These forcings affect the 

climate system by changing the  a th’s su  ace geomet y.    amples o  these 

forcing mechanisms are the tectonic process of mountain buil ding and 

tectonic movement of land masses. These occur on the time scale of 10
7
 to 

10
9
 years, and so are outside the scope of this thesis.  
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1.2.1 External forcing 

The term "solar cycle" refers to the amount of radiation emitted by the 

sun. In recent decades, sate llites have allowed measurement of solar 

irradiance fluctuations. Before satellites,  measurement of solar activity was 

made by proxy variables. Hence, confidence in the solar radiation on century 

time scales is low (Harrison et al.,  1999). Recent reconstructions have 

estimated that solar irradiance has increased gradually  since the industrial  era 

(Figure 1-2). This is in addition to periodic fluctuations in solar radiation 

with the main one being the 11 -year sun spot cycle.  

Other external forcings relating to galactic or orbital variations occur 

on much longer timescales than anthropogenic climate change (~10
3
 – 10

4
 

years) and so are ignored here.  

1.2.2 Internal forcing 

Interaction processes among the components of the climate system 

occur over a large spatial  and temporal span. These processes may vary 

naturally and cause variations in the climate system. Examples of internal 

forcing mechanisms are volcanic activity,  changes in ocean currents and 

anthropogenic activit ies.   

Volcanic eruptions inject large amounts of aerosols into the 

stratosphere, increasing the Earth's albedo (reflectivity) and cooling the 

climate. The aerosols spread laterally before they start to decay.  These 

eruptions create a short -lived (2-3 years) negative forcing. There can be very 

low aerosols between volcanic eruptions.  The stratosphere is currently free of 

large quantities of volcanic aerosol, since the last major eruption was in 1991 

(Mt. Pinatubo) (IPCC, 2007b, SYR).  

Another internal forcing mechanism is ocean currents. Oceans store 

and distribute large amounts of heat  energy around the planet via global 

ocean currents and hence they play an important role in the regulation of the 

climate system. For example, the Gulf str eam, which is a warm current 
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flowing from the Car ibbean and Florida towards Northwestern Europe, causes 

the temperature in these regions to be relatively mild compared to regions at  

the same latitude in Canada and Northwestern US. The ocean currents system , 

also known as the global thermohaline circulation system, is driven by winds,  

tides, Earth's rotation, solar energy and water density differences. The 

currents originate in North Atlantic Ocean where cold,  dense water sinks to 

the deep ocean. These water s flow towards the tropics where they warm and 

upwell to the surface. The warm and less dense waters of the tropics flow 

towards the higher latitudes to replace the cold sinking water. These waters 

transfer the heat to the atmosphere and become cold and de nse and thus sink 

to the deep ocean and renew the circulation system. Melting of polar ice due 

to global warming will reduce the salinity and density of the polar waters.  

This less dense water, sits on the surface of oceans and prevents sinking. 

Thus, melting would affect  the thermohaline circulation system and 

distribution of heat around the globe i.e. higher lati tudes will become more 

cold as there would be no warm surface waters brought to the poles and the 

lower latitudes will become more warm as there would be no upwelling of 

cold waters. Cooler sea-surface temperatures in high latitudes will  reduce 

evaporation which reduces salinity of the waters,  thus further reducing the 

sinking and slowing the thermohaline circulation..   

Anthropogenic forcing refers  to human activities rather than natural  

factors. Since the beginning of the industrial era the impact of human 

activities on the climate system has extended to a much larger scale. Human 

activities include increases in greenhouse gases associated with com bustion 

of fossil fuels, sulphate aerosols produced as an industrial by -product, land-

use change due to urbanization, forestry and agricultural practices. These all 

a  ect the physical  and biological p ope ties o  the  a th’s su  ace that 

changes the radiative forcing and hence results in climate change.  

The Earth's radiative balance is the balance between the incoming solar 

radiation and outgoing infrared radiation  (Shine et al. ,  1990). If  all the 

incoming energy from the sun were to be reflected from the Earth's surface in 

the form of outgoing infrared radiation, then the average surface temperature  
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of the Earth would be -18
o
C, which is 32

o
C colder than it would be if some of 

the incoming radiation is absorbed by Earth's atmosphere. Several gases 

present in the Earth's atmosphere, known as the greenhouse gases (GHGs),  

absorb some of the outgoing infrared radiation before it escapes to outer 

space, which makes the Earth's atmosphere warmer. Without this effect  life 

would not be possible on Earth. Greenhouse gases that are naturally present 

in the atmosphere are water vapour, carbon dioxide, methane, nitrous oxide 

and ozone. Human activities such as burning of fossil fuel and clearing of 

forests enhance the concentration of most of the G HGs in the atmosphere.  

This leads to an increased greenhouse gas effect, causing more heat energy to 

be trapped in the atmosphere which results in global warming. Figure 1-3 

shows concentrations of GHGs in the atmosphere for the last 2000 years. An 

increase in the concentrations is observed since 1750, which is due to human 

activities in the industrial era. Some anthropogenic activit ies such as air 

conditioning and refrigeration emit greenhouse gases such as 

chlorofluorocarbons (CFCs), hydrofluorocarbons (HFCs) and 

perfluorocarbons (PFCs). These GHGs do not occur naturally in the 

atmosphere but are the result of anthropogenic activities.   

 

Figure 1-3. Atmospheric concentrations of important long -lived greenhouse gases  

over the last  2000 years.  Concentration units are parts per mill ion (ppm) or parts 

per bil l ion (ppb) ( IPCC, 2007a).   
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Another human activity that causes climate change is emission of 

aerosols into the atmosphere by industrial pollution. The effect of an 

increasing amount of aerosols on radiative forcing is complex and is a source 

of uncertainty in interpretation of climat e change. Some aerosols affect the 

radiative balance in a posit ive way, while others affect the radiative balance 

in a negative way. Overall the effect of increasing aerosols is  negative, i .e. it  

results in radiative cooling. .   

Human activities such as de forestation, urbanization and changes in 

agriculture result in changing the physical and biological properties of the 

land surface which in turn cause change in the climate system. These changes 

generally result in more radiation being reflected from the E a th’s su  ace 

and hence affect  the radiative balance negatively.  

Increase in the concentration of greenhouse gases is a dominant cause 

of cl imate change i.e. GHGs contribution towards increasing the radiative 

forcing is much more than the contribution by other factors such as aerosols  

and solar irradiance. This means that any change observed in the climate 

system apart from the natural  variability,  would be mainly due to greenhouse 

gases. Therefore, climate change detection studies distinguish between 

natural variability and greenhouse gas variability as the contribution towards 

climate change by other variabil ities is very less and hence difficult to 

detect. In this thesis too, detection of climate change in chlorophyll is made 

by distinguishing between natural variability of chl and variability due to 

greenhouse gases.  

The Climate system is in a state of dynamic balance as the components 

of the climate system are coupled to one another. This balance is disturbed by 

change in any component of the climate s ystem. To restore equilibrium 

requires a cascade of effects in all the coupled components of the system. 

When this cascading effect in any of the coupled components of the system 

influences the init ial  cause of change, it  is known as a feedback mechanism 

on the climate system. The effect of the response of the components on the 

initial cause may vary from one component to another i.e. the effect might be 

amplified (positive feedback) or it  might be reduced (negative feedback) 
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(Cess and Potter,  1988). For example, increased concentration of GHGs in the 

atmosphere causes global warming by increasing the radiative forcing. As the 

Earth's surface temperature rises, some of the ice at high lati tudes begins to 

melt.  This exposes either bare ground or ocean, both of which have lower 

reflectivity than ice. Reduced reflectivity of incoming solar radiation 

increases the radiative forcing. This further heats up  the Earth resulting in 

more ice melt and exposure of less reflective terrain. Thus a cycle of cause 

and effect is established, where each effect acts as the cause for the next 

step. This cycle is known as the ice -albedo feedback (Cubasch and Cess,  

1990) and is a posit ive feedback. Similarly, there are many other feedback 

mechanisms in the climate system which influence the climate in response to 

some init ial  radiative forcing.   

1.3 Ocean Primary Production 

As discussed previously,  marine primary production (PP) makes up 

approximately half of the global biosphere production (Field et al .,  1998).  

Marine PP affects the abundance and diversity of marine organisms and 

drives marine ecosystem functioning and fishery yields  (Iverson, 1990, 

Chavez et al.,  2003, Ware and Thomson, 2005, Cheung et al. ,  2009 , Cheung 

et al .,  2010). It is also a major sink of carbon dioxide from the atmosphere 

and plays an important role in the global carbon cycle. Primary production is 

defined as the rate of grams of carbon fixed per unit volume per unit time. In 

other words it is the rate at which phytoplankton fix carbon by the process of 

photosynthesis. Photosynthesis i s initiated by a pigment in phytoplankton 

named 'chlorophyll ' .  Thus, PP is dependent on the amount of phytoplankton 

present in the water.  Total weight of all  the phytoplankton in a given volume 

of water,  also known as phytoplankton biomass,  is expressed a s mass of 

carbon per unit volume. Biomass can be estimated by measuring the amount 

of chlorophyll pigment present in the water and then applying a conversion 

factor to that value to obtain mass of carbon. Thus, PP can be estimated from 

chlorophyll concentration if estimates of other parameters such as 

photosynthetically active radiation (PAR), mixed layer depth and incident  

solar radiation are available. This is mainly helpful when estimating primary 
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production by remote sensing. It can be concluded that ch lorophyll  

concentration allows an estimation of PP, as it  describes the first order  

changes in the phytoplankton biomass and also reflects the photoacclimation 

state of phytoplankton (Ryther and Yentsch, 1957). Phytoplankton biomass 

can be derived from chlorophyll concentration but it  does not give us any 

knowledge about the community structure of phytoplankton. Chlorophyll  

concentration in the ocean is mainly regulat ed by solar energy and nutrients.  

Physical processes such as winds, wind stress,  ocean circulation, mixing,  

upwelling, mesoscale eddies etc. affect  the nutrient supply to the euphotic 

zone of the ocean. These processes occur on seasonal, inter -annual and 

decadal time scales and hence, they alter the chlorophyll concentration in the 

ocean on local , regional and global scale.   

It  has been predicted that with the increase in temperature of ocean 

surface waters, chl concentration in tropical and mid latitudes will decrease,  

whereas it  will  increase in higher lat i tudes (Doney, 2006) (Figure 1-4). 

Tropical and mid-latitudes are nutrient l imited regions of the ocean i.e. chl  

concentration in these regions is limited by the amount of nutrients in the 

water.  An Increase in surface water temperatures would increase 

stratification that causes reduction in mixing which in turn decreases the 

supply of nutrients to the upper ocean and hence results in a decrease in chl. 

Productivity in high lati tude regions of the ocean are light limited. Water 

column in these regions is  less stratified compared to the tropical regions.  

Reduced stratification in the high latitude regions leads to a deep mixed layer 

depth in winter which results in reduced availabil ity of light to 

phytoplankton. Increase in surface water temperatures increases 

stratification, which reduces mixing and leads to a shallower mixed layer 

depth.  This increases the l ight available to phytoplankton which results in an 

increase in chl concentration in the water.  This conceptual model of change 

in chl is based on changes in stratification however, changes in other factors 

such as position and strength of winds due to climate change (Swart and 

Fyfe, 2012) may also cause changes in the supply of nutrients to  

phytoplankton by altering the mixing and in turn resulting in change in chl 

concentration.  
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Figure  1-4.  Increased surface temperature increases stratif ication that  has varied 

effects on chlorophyl l  concentration in different regions of the global ocean 

(Doney, 2006).  

As discussed in section 1.2, various natural and anthropogenic 

processes affect the climate system. To proceed with detection and 

attribution of climate change signal in chlorophyll, distinction between 

natural and anthropogenic variability in chlorophyll concentration needs to  

be made. In order to make this distinction, it  is first necessary to understand 

the naturally occurring var iability in chlorophyll .  

1.3.1 Seasonal variability 

Seasonal variability describes the increase and decrease of chlorophyll  

with respect to the seasons. Although it is  relatively short time -scale 

variability in chlorophyll, i t  forms the basis of understanding as  to how 

chlorophyll varies.  A latitudinal shift  in the timing of the spring bloom has 

been observed, i.e.  i t  starts in winter in subtropical waters and in spring in 

sub polar waters (Follows and Dutkiewicz, 2002). Subtropical  waters (20-40
o
 

North or South) have approximately twice the chlorophyll concentration (chl) 

in winter than in summer. These waters have high levels of solar irradiance, 
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but are nutrient limited. Winter mixing entrains nutrients into the euphotic 

zone, which leads to phytoplankton growth and therefore high chlorophyll 

(Yoder et al. ,  1993, Yoder, 2003, Riley, 1947). Sub-polar waters typically 

have two peaks in chlorophyll concentration, one in spring and the other in 

fall. This region is abundant in nutrients but is  light limited; therefore during 

winter, deep mixing ensures that phytoplankton biomass does not increase.  

As spring approaches and the mixed layer shoals above the cri tical depth, a 

phytoplankton bloom can start and chlorophyll increases (Sverdrup, 1953, 

Behrenfeld, 2010). Some of the important drivers of phytoplankton blooms 

are solar irradiance, nutrient supply, grazing wind speed  (Kahru et al. ,  2010),  

stratification (Behrenfeld et al. ,  2006) and sea surface temperature (SST) 

(Martinez et  al.,  2009, Boyce et al.,  2010). Variabili ty in these parameters  

causes variability in timing and magnitude of phytoplankton bloom. For 

example, melting of sea-ice in polar regions forms a layer of less dense water 

on the surface of the ocean. This increases the stratification in the water 

column and its effect have been observed to affect the timing of the spring 

bloom (Platt et al. ,  2010). Platt et al . (2010) observed satellite chlorophyll  

for northwest Atlantic and found that spring bloom occurred on average 33 

days earlier at 61.5
o
N than at 59.5

o
N. This is  in contradiction to the norm 

where spring blooms occur later further north due to later occurrence of  

spring warming. Change in the timing and magnitude of the phytoplankton 

seasonal cycle affects the higher trophic level because phytoplankton form 

the base of the marine food web. This is based on the Cushing match -

mismatch hypothesis (Cushing, 1975). It  states that if there is mismatch in  

the timing of availability of food and critical life stages of higher trophic 

levels then the survival rate of higher trophic levels is reduced. For example, 

Kristiansen et al. (2011)  studied the cod larvae development on George's 

Bank, north-western Atlantic. It was observed that there is an overlap in the 

coexistence of phytoplankton and cod larvae for warmer years which have 

earlier bloom onset and longer growing season. This results in higher 

survival rates of cod larvae as their food is available in abundance for longer 

time periods. If  due to change in cer tain parameters such as SST, wind speed 

etc, phytoplankton bloom occurs earlier (or later) than normal in George's 

Bank, then food availabil ity to cod larvae may decrease (or increase).      
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1.3.2 Inter-annual variability 

Chlorophyll concentration in the ocean varies inter -annually due to 

changes in local physical forcings such as strengthening of the thermocline or 

deepening of the mixed layer depth. These changes in the physical forcings 

can be due to certain climate patt erns occurring in a region such as the El  

Niño Southern Oscil lation (ENSO) and North Atlantic Oscil lation (NAO) or  

it  may be due to mesoscale activities, changes in circulation patterns or may 

be due to warming of the surface temperature due to climate cha nge.  

The El Niño Southern Oscillation (ENSO) is a climate pattern 

consisting of two parts. The first part is the El Niño occurring in the tropical  

Pacific and the second part is the Southern Oscillation which describes the 

atmospheric changes associated with ENSO (Trenberth, 2001). On average 

ENSO occurs every five years and lasts for nine months to two years. During 

the cold phase of the ENSO known as the La Niña, the equatorial Pacific is  

characterized by a shallow thermocline and surface mixed layer depth and 

strong trade winds, which results in upwelling of cold -nutrient rich water to 

the surface and hence increased chl concentration. During the warm phase of 

ENSO known as the El Niño, trade winds weaken resulting in reduced 

upwelling and nutrient poor waters and hence, chl concentration decreases 

(Chavez et al. ,  1999, McClain et al. ,  2002 , Wilson and Adamec, 2001).  

The North Atlantic Oscillation (NAO) is a dominant contributor to 

winter climate variability over the Atlantic basin and is mainly driven by 

atmospheric circulation variability.  It  is defined as the difference in 

atmospheric pressure at sea level between Icelandic (low) and the Azores 

(high). This pressure difference controls the climate in the Atlantic basin and 

also influences the direction of storms.  During the positive phase of the NAO 

i.e. when the pressure difference between Icelandic and Azores is large, the 

westerlies are stronger and the storms are directed towards northern Europe. 

This causes warm winters and cool summers in northern Europe whereas 

southern Europe has warm and dry weather.  The Northwest Atlantic 

experiences cold and dry weather and the US east coast has mild and wet 
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winters (Hurrell, 1995). During the negative phase of the NAO i.e. when the 

pressure difference between Icelandic and Azores is not large, the storm 

direction shifts southward and brings rainfall to Southern Europe and North 

Africa. Northern Europe and the US east coast experience very cold winters.  

Storms cause deeper mixing in the subpolar region during positive phases of 

NAO. This leads to delayed spring bloom as it takes longer for the mixed 

layer to shoal above the critical depth. This bloom is  weaker in magnitude as 

the solar irradiance availability time window decreases due to delayed bloom, 

which shortens the growing season for phytoplankton (Barton et al.,  2003 , 

Henson et al .,  2006, Henson et al. ,  2009a, Henson et al .,  2009b). During the 

negative phase of NAO, deeper mixing in subtropical latitudes increases the 

supply of nutrients to the surface ocean which increases phytoplankton 

growth (Follows and Dutkiewicz, 2002).  

Variabili ty in the timing and magnitude of phytoplankton blooms is  

also caused by meteorological conditions such as wind speed and n et heat 

flux. For example,  in eastern North Pacific,  1 -3 months of interannual 

variation was observed by (Henson and Thomas, 2007). The variation in  

phytoplankton bloom start  date coincided with the coastal upwelling caused 

by winds of the California current system.    

1.3.3 Oligotrophic gyre Variability  

Oligotrophic gyres are large systems of rotating ocean currents driven 

by winds. Earth's rotation deflects these currents in  clockwise pattern in 

northern hemisphere and in  anticlockwise pattern in southern hemisphere.  

Westerly winds on northern side and easterly winds on the southern side 

create a high pressure zone at the center and also cause downwelling at the 

center of the gyres due to which the supply of nutrients to the euphotic zone 

is low in these regions. Also, gyres are generally formed in open ocean areas 

therefore there is no supply of nutrients by river run off. Low supply of 

nutrients in the gyres causes low biomass and productivity.  Oligotrophic 

gyres are generally defined in satellite -based studies as the regions where 

surface chlorophyll is below 0.07 mg m
-3

 (McClain et al. ,  2004). They are 
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located at subt opical latitudes and occupy app o imately 40% o  the  a th’s 

surface. Due to their large size, gyres sti ll  contribute more than 30% of the 

total  marine primary production (Longhurst , 1995), even though the 

biological activity within the gyres is  low (Hayward, 1987b, Karl et al .,  

1996). Thus, gyres are an important part of the ecosystem and play an 

important role in the global marine carbon fixation. Variation in the size of 

these gyres has been observed in various studies. For example,  Polovina et al.  

(2008) observed monthly mean area of surface chlorophyll in oligotrophic 

gyres by using satellite ocean color data from SeaWiFS (1998 to 2006) 

(Figure 1-5).  In the South Atlantic, South Pacific, North Pacific and North 

Atlantic, the area of low surface chl waters have expanded at  average annual 

rates of 0.8, 1.4, 2.2 and 4.3% per year respectiv ely. Increase in the size of 

the gyres indicates an increase in low chlorophyll regions of the ocean. This 

lowers the overall  phytoplankton productivity in the ocean which reduces the 

amount of carbon fixed from the atmosphere. Thus, increase in the size o f the 

gyres will affect the global carbon cycle which will have cascading effects on 

the climate system. The increase observed in the size of gyres is may be 

caused by natural forcings such as solar and orbital forcing or it  may be due 

to the effect of ocean surface warming as an effect of cl imate change by 

anthropogenic activit ies.   
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Figure  1-5.  Time series of the monthly mean area of  surface chl in subtropical  

gyres. (a) the North Pacific,  (b) the South Pacific,  (c) the North Atlantic,  and (d) 

the South Atlantic  (Polovina et  al . ,  2008).   

1.3.4 Decadal Variability 

Chlorophyll has been observed to vary on decadal time scales. These 

variations may be caused due to certain climate phenomenon such as Pacific 

Decadal Oscillation (PDO) or it  may be due to natural forcings or due to 

global warming.  

PDO is described as a long-lived ENSO. The two main differences 

between the two are : firstly,  the time -period of oscillations i .e.  PDO persists 
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for 20-30 years while ENSO persists for 6 -18 months and secondly, the 

strongest PDO signal is located in the North Western Pacific as opposed to El 

Niño whose strongest signal is located in equatorial regions of the Pacific 

(Mantua and Hare,  2002). Warm phase of the PDO is characterized by an area 

of warmer SST in eastern equatorial Pacific and a horseshoe pattern of cooler 

SST connecting the north, west and south Pacific. Lower SST in the North 

Pacific are accompanied by low sea-level pressure (SLP) and intensified 

westerlies in the storm track. Increase in winds coming from the west towards 

the coast, suppress upwelling in the northwest and west coast  of North 

America. This causes decrease in the supply of nutri ents and hence PP 

decreases.  On the other hand, cold phase of the PDO is characterized by an 

area of colder SST in eastern equatorial  Pacific and a horseshoe pattern of 

warmer SST connecting the north, west and south Pacific.  Higher SST in the 

North Pacific are accompanied by high sea-level pressure (SLP) and 

weakened westerlies in the storm track. Weakening of the westerlies, 

strengthens the north wind along the coast . This enhances the upwelling 

along the north west coast of North America and cold nutrien t rich waters are 

brought to the surface ocean and therefore, PP increases. The effect of PDO 

on chl variability was investigated by (Martinez et al.,  2009).  Martinez et al .  

(2009) observed that  on decadal time scales,  chl variability follows PDO as 

shown in Figure 1-6. These spatial  patterns were derived by d oing 

Multivariate Empirical Orthogonal Function analyses (MEOFs), on the 

combined dataset of ten years from Coastal Zone Color Scanner (CZCS) and 

Sea-viewing Wide Field-of-view Sensor (SeaWiFS) . In the Pacific, the time 

series of the first  principal  compon ent shifts  from positive to negative from 

1979-1983 to 1998-2002, in correspondence with the shift  in PDO from 

negative to posit ive phase. The same pattern is observed in Indian Ocean chl  

variability and PDO because of the connectivity of Pacific Ocean and  Indian 

Ocean.  
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Figure 1-6. Chl-sst  common time variabil i ty corresponding to MOEF patterns for the 

Pacific,  Indian and Arctic oceans (black thick curve and scale on the left  axes).  

PDO and Atlantic Multi -decadal Oscil lat ion (AMO) are superimposed (red curves 

and scales on the right axes)  from (Martinez et  al . ,  2009).  

Studies have been made to observe long-term variability in chl by 

observing the trends in in-situ measurements made at Bermuda Atlantic Time 

Series (BATS) station, Hawaii Ocean Time-Series (HOT) station (Saba et al. ,  

2010a) and Cooperative Oceanic Fisheries Investigations (CalCOFI)  (Kahru 

et al. ,  2009).  The results from these studies indicate an increased biomass 

over the last 20-50 years . Contradictory results were obtained by Boyce et al . 

(2010). He blended in-situ chlorophyll data i.e. shipboard measurements of 

chl made since ea ly  900’s and ocean t anspa ency measu ements made 

since 1899 to establish long t ime-series records (1899-2008) of chl in order  

to detect long-term trends (Figure 1-7). It was observed that the global rate 

of decline of chl is approximately 1% of the global median per year and that  

inter-annual to decadal fluctuations in chl strongly correlates with basin-
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scale climate indices, such as Pacific Decadal Oscillation and North Atlantic 

Oscillation.  

 

Figure  1-7. Regional  and global trends in chl over 1899 - 2008. Mean of the 

instantaneous rates of chl were estimated for each region, with 95% confidence 

l imits.  Diamonds indicate the global mean of the instantaneous rate of chl.  Trends 

were estimated using all  available data (red symbols) and data  since 1950 only 

(blue symbols).   

Due to the lack of long-term chl data from a single ocean colour 

sensor, efforts have been made to blend the data from different sensors,  

particularly the CZCS which operated from 1979 -1983 and SeaWiFS 

operating from 1998-2010 (Signorini and McClain, 2012, Irwin and Oliver,  

2009). In some cases these datasets have also been blended with in si tu 

chlorophyll estimates (Gregg and Conkright, 2002). It is difficult to blend 

datasets from different ocean colour sensors as sensors differ in the 

instruments used for measurements, calibration techniques used, the spatial  

and temporal scales of the sensors and also the time period of operation. 

These dissimilarities between sensors make it difficult to produce algorithms 

that are compatible for both the sensors. However, an attempt made by Gregg 

and Conkright (2002) to observe long term changes in chl concentrations by 
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blending the data from CZCS and SeaWiFS, showed that global mean average 

chl decreased by 1% from the CZCS to SeaWiFS era.   

Thus, it  is observed that chloro phyll varies spatially and temporally.  

Response of chlorophyll  to climate oscillators indicates a strong natural  

variability in chl.  This makes it difficult  to distinguish between natural  

variability and anthropogenic variability in chl.  Therefore, a forma l detection 

and attribution study is required in order to make this dist inction 

statistically.    

1.4 Impacts of climate change 

The surface temperature of Earth has increased as a result of increased 

radiative forcing (also known as the global warming).  According to the 

temperature analysis conducted by scientists at National Oceanic and 

Atmospheric Administration (NOAA), the average global temperature on 

Earth has increased by about 0.85
o
C from 1880 to 2012. The increase in 

temperature will  result in a number of impacts on the climate system such as 

increase in evaporation, melting of snow and ice, increase in sea -level and 

increased precipitation. Figure 1-8 shows the consequences of the increase in 

temperature of the Earth, various cascading effects and the feedback cycles.  

Some of the indirect effects of global warming are an increase in extreme 

events such as floods, drought and wildfires, biodiver sity loss and threat to 

human health.  
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Figure 1-8. Impacts of temperature increase to the climate system 

(http:/ /www.epa.gov/climatestudents/basics/concepts.html).  

Rising atmospheric temperatures cause the sea -surface temperatures 

also to rise (Barnett et al. ,  2001 , Levitus et al. ,  2001).  Changes in SST varies 

regionally as shown in  Figure 1-9. The Figure shows how average SST 

changed globally between 1901 and 2012. An increase in SST is observed in 

most of the global ocean except in a few areas where temperatures have 

decreased, for example in the North Atlantic Ocean.  
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Figure  1-9.  Change in Sea Surface Temperature, 1901 -2012 (IPCC, 2013).  The 

Figure is based on in -situ measurements and satell i te measurements.  The "+" 

symbol shows statist ically significant trends.   

Rising temperature of the surface ocean has several effects on 

phytoplankton. Phytoplankton contain chlorophyll  which initiates 

photosynthesis i.e. in the presence of sunlight chl produces energy by 

absorbing atmospheric carbon dioxide and nutrients in the water. Thus, light 

and nutrients are two main ingredients for photosynthesis. Change in the 

availabili ty of these two ingredients affects  the concentration of chl in the 

water. An increase in surface water temperature due to climate change will  

increase stratification in the ocean which decreases the mixed layer depth and 

also decreases the entrainment of nutrients from deep waters to surfa ce 

waters (Doney, 2006). This change in the mixing and availability of nutrients 

will affect the seasonal cycle of chl concentration. For example, it  might 

affect the timing of the start , peak or end of phytoplankton bloom (Platt et  

al. ,  2010, Henson et  al. ,  2006); it  might alter the highest chl concentration 

obtained during the bloom i.e. the amplitude at  the peak (Barton et al. ,  2003 , 

Henson et al. ,  2009a, Henson et al .,  2009b).   
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Increasing surface temperature, will also affect the species distribution 

in the ocean as different phytoplankton species have different optimum 

temperature range at which they prosper. Species having higher optimum 

growth temperature will thrive in higher  SSTs and the growth rate of their 

community will also increase (Eppley, 1972). Spatial distribution of species 

have also been observed to change. For example, Hays et al. (2005) observed 

that dinoflagellate ceratium trichoceros which was usually found south of UK 

before 1970 is now found off the coast of Scotland. This indicates that warm 

water species have a tendency to shift poleward with rising S ST (Hegseth and 

Sundfjord, 2008).  

Climate change may strengthen or weaken the effect of the climate 

oscillations by altering the atmospheric and oceanic vari ables such as sea-

level pressure, surface wind vector, sea surface temperature,  surface air 

temperature, and total cloudiness fraction. As it has been described in the 

sections on interannual and decadal variabili ty, climate oscillations such as 

ENSO, NAO and PDO affect  the phytoplankton in the ocean. Therefore, any 

change in these climate oscillations will affect phytoplankton concentration 

in the ocean.    

Ocean circulation influences the concentration of chl in the water by 

influencing the supply of nutr ients to the surface ocean. Areas of the ocean 

where ocean currents cause upwelling, cold nutrient -rich water entrains from 

deep layers to the surface ocean. Increased nutrients in the sunlit  layers of 

the ocean enhances the process of photosynthesis and h ence, phytoplankton 

biomass increases, which is quantified by measuring the concentration of chl 

in the water. For example, wind -driven gyre circulation causes downwelling 

in the gyres which decreases the supply of nutrients and results in low chl 

concentration in the gyres (McClain, 2009, Siegel et al .,  2013). Upwelling 

caused by eastern boundary current systems such as the California curren t off 

the west coast of North America and the Benguela current of the west coast  

of South Africa increases the supply of nutrients in these regions and hence 

the chl concentration increases (Thomas et  al .,  2001). Small-scale events 

such as the mesoscale eddies also affect  the chl concentration by changing 
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the supply of nutrients in the surface ocean by mechanisms such as vertical 

and horizontal advection, trapping of water and u pwelling and downwelling 

(Gaube et al. ,  2013, Capone and Hutchins, 2013). Ocean currents are mainly 

driven by winds, Earth's  rotation and water density differences.  Increased 

atmospheric temperature due to increased radiative fo rcing, changes the 

atmospheric pressure which in turn affects the direction and intensity of 

winds in the climate system. Changes in the direction and intensity of winds 

would alter ocean circulation which will  affect the chl concentration in the 

ocean. Water density is dependent on temperature and salinity of the oceans.  

Oceans are getting warmer due to increased radiative forcings. Global 

warming is also causing polar ice caps to melt , which decreases the salinity 

of the oceans. Thus, both temperature and  salinity of the oceans are changing 

due to climate change, resulting in changes in ocean circulation which in turn 

affects the chl concentration in the ocean.  

1.5 Detection and Attribution 

Detection of climate change is the method of identifying a change in 

the climate system in a defined statistical sense. Identifying a change does 

not  specify cause of the change. Attribution is the process of estimating the 

relative contributions of multiple factors or forcings to a change with some 

statistical  confidence. In general, a detected change is attributed to a specific  

forcing if the change is consistent with the projected responses to that  

specific forcing or combination of forcings and is inco nsistent with the 

responses that  exclude this specific forcing or combination of forcings. In 

both the evaluations,  internal variability is taken into account.  Thus, we need 

to compute how many different factors have contributed to recent observed 

climate change, with associated estimates of uncertainty. Figure 1-10 

demonstrates the process of detection and attribution in a simple way. A 

change is first identified above noise. Response of the climate to various 

forcings such as volcanic, solar and carbon dioxide emissions is then 

determined. Contribution of these forcings to the identified change is then 

estimated and the cause of the detected change is d etermined. Detection is 

thus one component of the more complex and challenging process of 
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attribution. It is important to note here that  attribution is an open -ended 

process as there is a possibility of an alternate explanation for the detected 

climate change, which may seem reasonable in future. Section 1.5.1 describes 

the components needed for detection and attribution study.  

 

Figure  1-10.  Detection and attr ibution of climate change in a climate variable 

(NOAA NCDC /CICS-NC).  

1.5.1 Elements of Detection and Attribution 

1.5.1.1  Observations  

Detection and attribution studies require long records of observed data 

for the climate parameter being studied. The observations should have 

sufficient spatial coverage to ensure that the main features of variability 

whether natural or climate changes can be identified and monitored. Another 

vital  factor is  to have high-quality data for example, observations made wi th 

minimum instrumental errors, with correct computation algorithms, 

implementation of corrections such as atmospheric corrections in case of 

satellite ocean color data . This refers to the uncertainties such as due to 

instrumental errors.  Also, homogeneous  data series are required which 

account for changes in observing system technologies and observing 
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practices. For example,  satellite ocean colour measurements began in October 

1978 with the CZCS. Since then, many sensors have been launched and 

measurements of ocean colour have been made. To get a longer time series of  

any ocean colour derived variable, in our case chlorophyll , we would need to 

blend datasets from different sensors. In order to do so we would have to take 

into account the fact that  sensors d iffer in the instruments used for 

measurements, calibration techniques used, the spatial and temporal scales of 

the sensors and also the time period of operation. These dissimilarities affect 

the homogeneity,  coverage and quality of the data.  

1.5.1.2  Internal Climate Variability  

It has been discussed that detection and attribution is a statistical  

“signal-in-noise” p oblem. Accu ate knowledge o  "noise" is   equi ed which 

is termed as the internal climate variabili ty. Ideally, long records of observed 

data provide internal variability,  but there are certain problems associated 

with i t.  Firstly,  instrumental  records of observed data can be short relative to 

the longer time-scales that are needed for detection and attribution of climate 

change (Barnett et al. ,  1999). Secondly, the instrumental  record contains 

influences of external anthropogenic and natural forcing  in addition to the 

naturally occurring change in the internal cycle . Paleo-reconstructions do not 

provide information on chl concentration as they do for past temperatures. 

Hence, internal variabili ty of chl concentration cannot be estimated from 

paleo data. Long-run control simulations of coupled climate models provide 

the best estimate for the internal climate variability in chlorophyll , but we 

must always bear in mind that models are not the same as reality. However,  

there is no possibility to validate the model output against  real observations 

as there are no long-term records of chl concentration  in which we can detect  

climate change. There is  a method for checking the consistency between 

natural internal variabili ty constructed by removing the simulated estimates 

of the response to external forcing from observations and natural internal 

variability estimated from control  simulations  (Allen and Tett , 1999).  

Uncertainty in the consistency check is introduced by incomplete knowledge 
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of the forcings and by the accuracy of the climate model used to estimate the 

response to the forcings.  

1.5.1.3  Response to the Forcings  

Since the pre-industrial era, there has been a change in the global mean 

radiative forcing. This has increased the significance of the relative impacts 

of different forcings on the climate. To detect  the influence of thes e forcings 

on the climate we require estimates of the anticipated pattern of the response 

of the observed climate. For example, the projected pattern of the response of  

chl concentration due to various forcings needs to be estimated. Variations in 

the observations of the climate parameter being studied due to different 

external forcings are superimposed on each other and on internal climate 

variability.  Hence, to estimate the contribution from each forcing to the 

change in the climate variable, climate mode ls are used. Climate models 

provide estimates of natural internal variability and variability due to climate 

forcings separately i .e. as separate simulations. Climate models range from 

simple energy balance models to complex coupled models that simulate th e 

spatial  and temporal  variations of many climate parameters.  With the rapid 

development of computer technology, processing power has increased which 

has led to the development of models from simple energy balance models to 

coupled complex general circulat ion models (Manabe and Stouffer, 1980). 

Most of the detection and attribution studies use coupled atmosphere ocean 

general circulation models (AOGCMs) or atmospheric general circulation 

models (GCMs) coupled to mixed layer ocean models. The response pattern 

estimated for a specific forcing from different models may be different  

therefore, for consistent results of signal detection for a climate forcing, 

output from several climate models is used in the analysis.  On the other hand, 

response patterns estimated from a specific model may be similar for 

different forcings ( (Hegerl  and North, 1997);  (North and Stevens, 1998);  

(Allen and Tett, 1999)). This makes it difficult to separate the signa l patterns 

for different forcings i.e. greenhouse gas, sulphate, volcanic and solar 

forcings.  
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1.5.1.4  Uncertainties  

Detection and attribution studies are affected by uncertainties in  

observations and models. Uncertainty in observations may arise due to  

several factors such as -  

 Autocorrelation;  

 Bias in space, time, instrument,  sampling and reporting;  

 Measurement errors;  

 Limited number of observations.  

Uncertainties in models arise due to a number of factors. These can be 

due to fundamental  errors in the model i tself, such as the inability to generate 

a reliable ENSO cycle (Capotondi, 2013) or to parameterize ocean mixing,  

clouds, etc. Some errors arise due to forcings that are included such as 

sulphate aerosol direct effects, or from inadequate specification of poorly 

known anthropogenic or natural forcings. Another source o f uncertainty 

arises due to internal model variability,  for example nonlinear interactions 

within the models that produce large variability even when run in control  

mode (Gupta et al.,  2013). Sea-ice plays an important role in the global 

biogeochemical cycle, however, currently models repres ent sea ice as 

biologically and chemically static which may lead to increased uncertainty in 

models (Vancoppenolle et al.,  2013). These uncertainties affect the climate 

change signal that we hope to find in the observations. Careful assessment of 

all potential  error sources in both observations and models needs to be made 

and their influence should be included in the detection study.  Thus, there are 

two stages to detection and attribution: First , we need to know if we can 

detect a climate change signal, given all the uncertainties in model and 

observations. Second, if we can detect the change then we need to know if 

the change can be attributed to specific forcing, given all t he level of 

uncertainty.   
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1.6 Summary 

This introduction has demonstrated the following - 

 Ocean primary production is an important element of the marine food 

web and global carbon cycle. It strongly influences marine ecosystem 

functioning and fishery yields.  As i t is also part  of the biological  

pump, i t is critical for transfer of carbon from atmosphere into the 

deep ocean.  

 The Earth system is made up of various components and interacting 

processes. Changes in the climate system are caused by internal or 

external forcing mechanisms. Greenhouse gas emissions by 

anthropogenic activities is one of the internal forcings and is a major 

cause of increased radiative forcing on Earth.  

 Climate change evidence is found by studying the changes in the 

climate variables such as temperature of the Earth's atmosphere and 

the oceans, atmospheric and oceanic circulation patterns and ocean 

acidification. These have cascading effects on the climate system such 

as increased evaporation, increased precipitation, increased sea -level,  

melting of sea-ice, change in the marine biogeochemical cycles and 

change in the chl concentration in the ocean.   

 Chl concentration in the ocean has a strong natural variabil i ty which 

makes detection of climate change signal in chl concentration ver y 

difficult.   

 A formal detection and attribution study needs to be done in order to 

detect climate change signal in chlorophyll.  

  Elements needed for a detection and attribution study are obtained 

from observed data and the output from Earth system models.   

1.7 Thesis Outline 

Chapter 2 describes the optimal fingerprint (OF) method used for 

detection and attribution (D&A) of climate change signal in chlorophyll  

concentration in the ocean. The procedure to estimate the elements needed 
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for the OF method is also described in detail. Pre-processing of the datasets 

before they are implemented in the OF method are also explained. Details of 

the datasets i.e. the observed data and the output from the climate models are 

given along with a discussion of the sources of limi tations and errors 

associated with it .    

Chapter 3 illustrates the results of OF method implementation using a 

two dimensional cl imate change pattern. The Climate change signal is  

defined as the spatial pattern of linear trend of chlorophyll in the ocean. 

Discussion of the results of the D&A of this two dimensional pattern for the 

global and other regions of the ocean is presented. Interpretation and 

implementation of the results are described at the end of the chapter.   

The Climate change signal is defined  as the linear trend of zonal 

average of chlorophyll  in the ocean. OF method is implemented using this 

climate change signal and the results for the global and other regions of the 

ocean are shown in chapter 4. Comparison of the climate change signal 

pattern for all the regions of the ocean from all the datasets is made. Results 

of the OF method, its interpretation and the implications are described as 

well.  

The OF method is implemented to detect and attribute a climate change 

signal in the time series of the size of the subtropical gyres. Results of the 

D&A for all the gyres of the ocean are i llustrated in Chapter 5. Comparison 

of the trend in the gyre size from all the datasets is shown and the amplitude 

of the contribution of the response of the forcings is demonstrated as well.  

Interpretation of the results and its implications are described at the end of 

the chapter.  

Chapter 6 summarizes the results from chapter 3, 4 and 5. Conclusions 

regarding the D&A of climate change signal in chlorophyll are made. 

Discussion of the future work and the possible implications of the study are 

presented as well .  
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2 Data, Methods and model evaluation 

The chapter mainly describes the various datasets that have been used 

in the analysis and the detection and attribution method. The data section 

(section 2.1) contains details of the dataset that has been chosen to represent 

observations and the climate models used in the analysis. Details  such as the 

components, spatial and temporal resolution, t ime period of availabili ty and 

limitations and advantages of the data and model are discussed.  

The second section of the chapter is the 'method' part (section 2.2 ). A 

brief description of the various methods of detection and attribution is 

followed by the description of the optimal fingerprint method and the various 

steps used to compute the components needed for the detection and 

attribution analysis.  

Several pre-processing steps are applied to the datasets prior to 

implementing the optimal fingerprint method. These steps are described in  

the third section of the chapter (section 2.3).  

2.1 Data  

Phytoplankton contain chlorophyll  which initiates photosynthesis i .e.  

in the presence of sunlight chl produces energy by absorbing atmospheric 

carbon dioxide and nutrients in the water. Chlorophyll  (chl) concentration 

describes the first order changes in t he phytoplankton biomass and also 

reflects the photo acclimation state of phytoplankton (Ryther and Yentsch, 

1957) therefore, it  is used as an indicator of phytoplankton biomass and 

primary production (PP). Measurement of chl is much simpler and 

instantaneous. Chl is also available on a much wider spatial and temporal  

resolution than PP. Therefore, in this study, dete ction and attribution of 

climate change in chlorophyll is studied. Climate change detected in 

chlorophyll would suggest climate change in primary production as well.  

More than two-thirds of the Earth's surface is covered by Oceans. The 

physical and biological variabili ty in the oceans occurs over a wide range of 
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space and time scales (Steele, 1978).  Measurement of chl is made using 

various platforms depending on the space, time scale and the accuracy of the 

estimation required. Shipboard measurements provide an accurate point  

measurement but they have limited spatial coverage. Estimation of chl by 

moored buoys has even less spatial coverage than ships but they can provide 

a long time-series of data. Aircrafts and satelli tes provide large spatial  

coverage impossible to obtain from ships and buoys, but  the measurements 

are l imited to the upper few meters of the surface ocean. Sampling platforms 

have been developed to cover intermediate space/time scales such as 

autonomous underwater vehicles (AUVs),  drifters and floats (Dickey, 2003). 

Optical sensors are deployed on these platforms to measure optical properties 

of the water from which chl is  derived.  

2.1.1 Observations 

Detection of a climate change signal requires accurate, detailed and 

good quali ty observations of the climate  parameter.  Data should also be 

corrected for biases and gaps. There are many ways biases are introduced in 

the data, one of them being 'inhomogeneity'.  Changes in observing system 

technologies and measurement techniques cause inhomogeneity in the data. 

For example, to study long-term changes in chl, Boyce et al.  (2010) blended 

in-situ chl data obtained from two different measurement techniques. One of 

the data series was obtained by deriving chlorophyll values from ocean 

transparency data, which is measured by a Secchi disk. Secchi  depth 

measurements are available since 1899. Another data series was the 

shipboard measurements of chl made since 1950s, using spectrophotometry,  

high performance liquid chromatography (HPLC), and fluorometry. As the 

techniques used to obtain the two chl data series are different, they are not 

homogeneous. Blending the two data series would require to account for this 

inhomogeneity and correction of the bias introduced by it (Mackas, 2011, 

Rykaczewski and Dunne, 2011, McQuatters-Gollop et al .,  2011).  Spatial 

coverage is another important aspect of the observations.  In -situ 

measurements of chl have in -homogeneous spatial coverage, with many 

observing stations near the coast and few in the open ocean.  Remote sensing 
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observations overcome this drawback by providing chl data through ocean 

color sensors for the global ocean. Gaps in the data sti ll  occur due to clouds,  

but this gap in the coverage is still  small compared to the gap in spatial 

coverage of in-situ data. Satellite data also needs correction for orbital and 

atmospheric transmission effects and for instrumental biases.  Satellite ocean 

colour measurements began in October 1978 with the Coastal Zone Color 

Scanner (CZCS). Since then, many sensors h ave been launched and 

measurements of ocean colour have been made. To get a longer time series of  

chlorophyll, we need to blend datasets from different sensors. In order to do 

so we have to take into account the fact that  sensors differ in the instruments 

used for measurements, calibration techniques used, the spatial and temporal  

scales of the sensors and also the time period of operation. These 

dissimilarities affect  the homogeneity,  coverage and quality of the data.  

Another way to obtain homogeneous and coherent data for the global 

ocean is by combining observations and their temporal  and spatial  statistics 

with model information. This is known as the data assimilation system. 

Output of this assimilative model has good spatial and temporal coverage and 

it also produces a dataset consistent with the physics and biology of the 

model. One such assimilation system has been developed by Global Modeling 

and Assimilation Office (GMAO). In this assimilation system, chlorophyll 

data from Sea-viewing Wide Field-of-view Sensor (SeaWiFS) is assimilated 

with coupled general circulation, biogeochemical and radiative model of the 

global oceans using the method of Nerger and Gregg (2007) . This three 

dimensional model is known as NASA Ocean Biogeochemic al Model 

(NOBM). 

Components of the model and the pathways and interactions among 

those components are shown in Figure 2-1. The ocean general circulation 

model (OGCM), shown in blue box in the Figure, is the Poseidon version 2.  

The model is  global and has a latitude span from -84° to 72° in increments of  

1.25° longitude by 2/3° latitude, including only open ocean areas where 

bottom depth is deeper than 200 meters (Schopf and Loughe, 1995). This 

model is forced with wind stress, sea -surface temperature and shortwave 
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radiation. The biogeochemical model, shown in green box in the Figure, has 

four phytoplankton groups - diatoms, chlorophytes, cynobacteria and 

cocolithophores; four nutrient groups - si lica, nitrate, ammonia and iron; one 

grazing group and three detri tal pools - nitrogen/carbon detritus, sil ica 

detritus and iron detritus (Gregg et al.,  2003b).  This model is forced with 

aerosol composition and sea-ice. The Ocean Atmosphere Spectral Irradiance 

Model (OASIM) provides underwater light fields that drive photosynthesis.  

The model includes spectral and directional properties o f light transfer in the 

ocean and also accounts for clouds (Gregg, 2002). The forcing fields for this 

model are winds, precipitable water, surface pressure, humidity, ozone, cloud 

cover and cloud liquid water path.  Outputs of the NOBM model are 

chlorophyll, nutrients, phytoplankton groups, primary production and spectral 

radiance.  

 

Figure 2-1. Pathways and interactions among the components of the NASA Ocean 

Biogeochemical Model (NOBM) (Nerger and Gregg,  2007).  
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Monthly chlorophyl l data from NOBM were downloaded from the 

Ocean's Portal of the Giovanni application run by NASA's Goddard Earth 

Sciences Data and Information Services Center (GES DISC) 

(http://disc.sci.gsfc.nasa.gov/giovanni).  The chl files downloaded are in 

netCDF (Network Common Data Form) format and chl values are in mg  m
-3

.  

Chl data is available from January 1997 to Decem ber 2007.  Missing data is  

identified by a floating point  value of 9.99x10
1 1

.   

Model performance is evaluated by comparing the time series of global 

mean chl from NOBM model with the SeaWiFS data.  Figure 2-2a below 

shows the monthly t ime series of global mean chl from NOBM (blue) and 

SeaWiFS (red). From the graph it can be seen that chl concentration increases 

in winter and decreases in summer whereas, i n SeaWiFS chl concentration 

decreases in winter and increases in summer. This difference in phase is also 

indicated by the negative correlation coefficient between the two time series 

(-0.5834). The reason of this might be the patchiness in SeaWiFS data in  the 

southern hemisphere due to clouds which makes the seasonal cycle of the 

southern hemisphere as the dominant signal globally  when assimilated by 

NOBM. However, comparison of monthly time series of regional chl for 

example,  comparison of North Atlantic (NA) (Figure 2-2b) and South Pacific 

(SP) region (Figure 2-2c) of the ocean shows that chl from NOBM m odel and 

SeaWiFS are in phase with each other. Correlation coefficient between the 

two is 0.965 and 0.915 for NA and SP regions of the ocean respectively.  

These results show that  chl from NOBM model should not be used on a global 

scale however, regional chl can be used as it  is in phase with the SeaWiFS 

data.  In this study, NOBM data would be referred to as observations even 

though it  is a combination of satelli te data and model output.  



 

38 
 

a).   

b).   

c) .   

Figure  2-2. Monthly t ime series (1999 -2005) of a).  Global,  b).  North Atlantic and 

c).  South Pacific mean chl from NOBM model (blue) and SeaWiFS data (red).  
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2.1.2 Climate Models 

Climate models simulate the interactions between the components of 

the climate system. The objective of climate models is  to understand the 

important physical , chemical and biological processes of the climate system. 

Understanding the climate system helps in better understanding of the past  

climate by comparison with t he observations. Climate models also help in 

predicting future climate i .e. how the climate system will  behave in the 

future. Climate models range from simple Energy Balance Models (EBMs), to 

complex General Circulation Models (GCMs) and to Earth System Mo dels 

(ESMs). When the GCMs are coupled to the biogeochemical components that 

account for the carbon fluxes in the atmosphere, ocean and land, they are 

known as the ESMs. Earth System Models represent global biogeochemical 

cycles of elements within and between the components of the climate system 

i.e atmosphere, ocean and land. Sensit ivity and feedback of these components 

to climate and human activities is also included in these models. In this 

study, chl output from ESMs is used to determine the internal cl imate 

variability and climate parameter response to external forcing.  

In climate change detection and attribution studies, apart  from the 

observations of the climate parameter,  internal variability of the climate 

parameter and the response of the climate parameter to climate forcings is  

also needed. Internal climate variability or noise is the record of the climate 

parameter without the influence of external climate forcings,  mainly 

greenhouse gases. Noise can be obtained from long records of observations of 

the climate parameter before the industrial revolution (before 1750) i.e.  

before the emission of anthropogenic greenhouse gases in the atmosphere. In 

the previous sections it has been pointed out that there is lack of 

homogeneous long-term records of chlorophyll. Due to this, output from 

control run simulations of climate models are used to compute the internal 

variability of chlorophyll . Control run simulation of a climate model is the 

simulation in which there is  no change in the forcing parameters  i.e.  the 

climate forcings are held at constant levels which represent a time period 

before anthropogenic climate change for example, 1850 or 1860. For 
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example, in a control simulation there would be no change in the solar 

irradiation, greenhouse gas concentration and aerosols concentration in the 

atmosphere. No change in the climate forcings ensures that  all the climate 

parameters are following their  natural  cycles and there is no external 

influence on them.      

To detect the climate change signal, we also need estimates of the 

space-time pattern of the response of the climate parameter to the climate 

forcings. This can be obtained if the response of  the observed climate to each 

climate forcing (natural and anthropogenic) can be separated i.e. spatial and 

temporal variations caused due to each forcing can be distinguished. These 

patterns of response cannot be determined from the observations as the 

variations caused due to different climate forcings are superimposed on each 

other and also on internal variabil ity of the climate parameter. Therefore, we 

need climate models to estimate the pattern of response of chlorophyll to 

each climate forcing. In thi s study, five climate models have been used to 

obtain internal climate variability and climate forcing response of 

chlorophyll (see section 2.1.2.3 to 2.1.2.5).  

Many climate models have been developed by various modelling groups 

all over the world to study and understand the past, present and future 

climate. In order to study the climate in a multi -model context, the Coupled 

Model Intercomparison Project (CMIP) was started in 1995 under the auspice 

of Working Group on Coupled Modelling (WGCM). The objective of CMIP is  

to study the internal variabili ty of the climate system and response of the 

climate to natural and anthropogenic forcings in various space and time 

scales in a multi -model framework. Another important objective of CMIP is 

to standardize the output from va rious models and make them available to the 

public.  CMIP experiments involve simulating models using different 

scenarios such as increase in carbon dioxide by 1% per year, increase in 

greenhouse gas only,  changes in aerosol concentration only,  changes in s olar 

and volcanic forcings and projections of climate response in future. On the 

basis of the time period of simulations these experiments are divided into two 

types. These are long-term integrations with time periods of century scale 

http://www.wcrp-climate.org/index.php/wgcm-cmip/about-cmip/54-unifying-themes/modelling-wgcm/219-modelling-wgcm-overview
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and near-term integrations with time periods of 10 -30 years.  Various phases 

of CMIP have been developed since it started in 1995.  

In this study, climate model output for chl concentration from several 

models from the latest phase of the CMIP i.e. CMIP5 have been used. Apart  

from studying the climate system in a multi -model framework and 

standardizing the output from various models, objective of CMIP5 was to  

inform and support Intergovernmental Panel on Climate Change ( IPCC) Fifth 

Assessment Report (AR5) . CMIP5 was started in 2008, with 20 modelling 

groups from around the world performing CMIP5 simulations using more than 

50 models (Taylor et al .,  2012). Due to large number of simulations in the 

CMIP5 framework, integrations are divided into a "core" set and one or two 

"tiers" (Figure 2-3).  The core integrations located in the innermost circle in 

both the Figures are the set of simulations to be completed for any model 

performing experiments on any time-scale chosen by the modelling group. As 

we move up the tier i .e. the circle shaded yellow and green in the Figures,  

simulations become more specialized.  
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a).  

 

b).  

 

Figure 2-3. a).  Schematic of the CMIP5 long-term experiments divided into 3 sets 

with t ier 1 and t ier 2 set  of experiments  organized around a central  core. b).  

Schematic summary of  CMIP5 decadal prediction integrations (Taylor et  al . ,  2012).   
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2.1.2.1  Climate simulations  

From Figure 2-3, it  can be seen that there are many scenarios for which 

climate models have been simulated to study the climate system and its 

variability.  For detection and attribution study, only few of these simulations 

are used. These are -  

Preindustrial Control run  

This is a long-term simulation of models (500 years) forced with pre -

industrial  conditions. In pre -industrial conditions atmospheric concentrations 

of well-mixed gases (including CO 2) and natural aerosols are fixed. Also, the 

land use is undisturbed for the t ime period of simulations. In this simulation, 

there are no changes in the climate parameters due to anthropogenic 

activities, such as increase in greenhouse gases. Output from this simul ation 

is therefore used to obtain the internal variabil ity of cl imate parameters.   

Historical  

These simulations have a time period of more than 150 years (1850 to 

2005). This simulation is forced with changing climate conditions which are 

obtained from observations. For example, observed change in the atmospheric 

concentration of gases due to both anthropogenic and volcanic activities,  

observed change in the solar forcing and observed change in land use is 

included in the simulations. Thus, the output of the model is consistent with 

the observations.   

Historical Natural Only  

These simulations are similar to preindustrial control run simulations 

but are forced with only natural forcings i.e.  changes in the climate system 

due to volcanic and solar forcings. For example,  the simulation is forced with 

observed change in the concentration of aerosols due to volcanic activity.    

Historical Greenhouse gas only  
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These simulations are imposed with the same conditions as the 

preindustrial control  run simulations but they are forced with greenhouse gas 

forcing i .e. changes in the climate parameters caused due to change in the 

concentration of greenhouse gases in the atmosphere. For example, observed 

changes in the greenhouse gas concentration in the atmosphere acts as a 

forcing field in the model simulation.  

Historical Miscellaneous  

These are simulations which are  again similar to the control run 

simulations but are forced with other individual forcings or a combination of 

forcings. For example, land-use changes only, or anthropogenic aerosols 

concentration changes only,  or volcanic aerosols only and so on.    

Future projection 

These simulations are model experiments that predict the future 

conditions of the climate. The simulations are forced with emission scenarios 

such that the approximate target radiative forcing at year 2100 would be 4.5 

or 8.5 W m
-2

.  These simulations are known as "representative concentration 

pathways" (RCPs). They are simulated from 2006 to 2100 and sometimes 

extended to the year 2300. In this study RCP8.5 simulation has been used  as 

it  is  the "business as usual" highest  level of forcing s cenario which would 

give a high signal -to-noise ratio and hence has an increased possibili ty of 

signal detection.  

2.1.2.2  Obtaining CMIP5 model output  

CMIP5 involves models and experiments run by 20 modelling groups 

located all over the world. Model output from different groups is converted 

to a standard format and this process of data standardization is known as 

CMORization (Climate Model Output Rewriter) . Users can download CMIP5 

model output according to their specific interest through any Earth System 

Grid (ESG) federated data portals (for example http://pcmdi9.llnl .gov/esgf -

web-fe/).   
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For this study monthly chl data from five climate models have been 

downloaded. The CMIP5 variable name is 

"mass_concentration_of_phytoplankton_expressed_as_chlorophyll_in_sea_wa

ter" and it is described as the Total Chlorophyll Mass Concentration at  

Surface. Data from CMIP5 is available in netCDF -3 format and conforms to 

the net-CDF "classic" data model. Chlorophyll data is in kg/m3 units which 

was later converted to mg m
-3

 for the analysis. Five models from CMIP5 

archive have been simulated for historical_greenhouse gas and historical  

natural scenarios. These models are GFDL-ESM2G, GFDL-ESM2M, IPSL,  

CanESM2 and HadGEM2. Control run simulation from these climate models 

was checked for drift.  Mean of chl was computed for the time period of the 

control run and the trend was checked for its  significance. It  was found that  

except chl in NP region from CanESM2 model, all  the models showed no drift  

in any region of the ocean (NA, SA, NP, SP and IO). Details of the model 

output downloaded for this study are given in Table 2-1 and summary of the 

main characteristics of the models is given in table 2-2.As can be seen from 

table 2-2 there are several differences between the models. One of the 

differences is in the determination of chl  by models i.e. the constant or 

variable redfield ratios. These differences between the models may lead to 

varying output (chl) from the models.  

Table 2-1. Model simulations and their t ime periods  

Simulation/Model  GFDL 

ESM2G 

GFDL 

ESM2M 

IPSL CanESM2 

Preindustrial  

Control  

500 

years 

500 

years 

1800-

2099 

(300 

years)  

2015-

3010 (995 

years)  

Historical  1861-

2005 

1861-

2005 

1850-

2005 

1850-

2005 

Historical 

Greenhouse gas 

only 

 1861-

2005 

1850-

2005 

1850-

2012 

Historical 

Miscellaneous 

 1861-

2005 

  

Historical Natural  

only 

 1861-

2005 

1850-

2012 

1850-

2012 

Representative 

Concentration 

Pathway (RCP) 

8.5 

 2006-

2100 

2006-

2100 

2006-

2100 
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Table 2-2. Table below gives a summary of the main characteristics of the 

models. Fixed redfield and variable ratios are represented by R and V 

respectively.     

Models Atmosphere  Ocean  Marine 

Biogeo-

chemical 

component  

Redfield No. of 

phytoplankton 

groups 

No. of 

zooplankton 

groups 

Limiting 

nutrients 

GFDL-

ESM2G 

24 levels, 

2.5
o
/2.0

o
 

63 

levels, 

0.3–1
o
 

TOPAZ2 R (C : N) 

and V (P, 

Si, Chl, 

Fe) 

3 (large 

separated into 

diatoms and 

other 

eukaryotes, 

small, 

diazotrophs) 

implicit 

calcification in 

small 

1 5 (NO3, NH4, 

PO4, SiO4, Fe) 

GFDL-

ESM2M 

24 levels, 

2.5
o
/2.0

o
 

50 

levels, 

0.3–1
o
 

IPSL 39 levels, 

1.2
o
/2.5

o
 

31 

levels, 

0.5–2
o
 

PISCES R (C :N: 

P) and V 

(Si, Chl, 

Fe) 

2 (diatoms and 

nanophyto-); 

implicit 

calcification in 

nanophyto- 

2 (micro- and 

mesozooplan

kton) 

5 (NO3, NH4, 

PO4, SiO4, Fe) 

CanESM

2 

35 levels, 

2.81
o
/2.81

o
 

40 

levels, 

0.94
 o

 

/1.41
o
 

NPZD R (C:N) 1 1 1 (N) 

 

2.1.2.3  GFDL-ESM 

NOAA’s (National Oceanic and Atmosphe ic Administ ation)  i st  

Earth System Models (ESMs) were developed by the Geophysical  Fluid 

Dynamics Laboratory (GFDL) (Dunne et al. ,  2012a, Dunne et al.,  2012b). 

GFDL’s  SMs a e simila  to GFDL’s p evious climate model  M . .  he 

atmospheric component of GFDL-ESM is Atmospheric Model, version 2 

(AM2.0). The horizontal resolution of the AM2 is 2
o
 latitude by 2.5

o
 

longitude and it has 24 vertical level.  It uses a 0.5 hour time step for 

atmospheric physics and 3 hour time step for atmospheric radiation (Lin, 

2004).  The land component of GFDL-ESM is the Land Model, version 3 

(LM3.0) (Dunne et al.,  2012a, Dunne et al.,  2012b, Shevliakova et al.,  2009). 

The horizontal resolution of the LM3.0 is the same as that of the AM2.0. The 
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sea-ice component of the GFDL-ESM is the GFDL Sea Ice Simulator (SIS) 

(Winton, 2000). The model has three vertical layers of which one is for snow 

and two are for ice and it has five different ice thickness categories. To 

reduce the uncertainty in ocean biogeochemical response to increased CO 2  

and climate change coming from the ocean physical representation, G FDL 

developed two earth system models ESM2G and ESM2M. ESM2M uses 

Modular Ocean Model version 4.1 (MOM4) (Murray, 1996, Griffies, 2009) in  

which vertical coordinates are based on depth, whereas ESM2G uses 

Generalized Ocean Layer Dynamics (GOLD) in which vertical coordinates are 

based on density (Hallberg, 1995). Ocean model resolution is 1° in latitude 

and longitude, with meridional resolution becoming progressively finer 

towards the equator i.e. start ing with 1
o
 resolution at 30° lat itude; it  gets to 

1/3° at the equator (Delworth et al .,  2006). Both the ocean models have 50 

vertical levels. The ocean component uses a tripolar grid with poles over 

Eurasia, North America, and Antarctica to avoid polar filtering over the 

Arctic (Murray, 1996).  The ocean biogeochemical and ecological  compone nt 

of the GFDL ESMs is Tracers of Ocean Phytoplankton with Allometric 

Zooplankton code version 2.0 (TOPAZ2). TOPAZ2 includes 3 explicit  

phytoplankton classes; small , large,  and diazotrophs comprising 4 

phytoplankton functional types; small , nitrogen fixers , large non-diatom, and 

large diatom (Dunne et al. ,  2005, Dunne et al. ,  2007, Dunne et al. ,  2012a, 

Dunne et al. ,  2012b). Figure 2-4 shows the schematic of the biogeochemical 

and carbon cycle in the ocean as represented by TOPAZ2 model.   
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Figure 2-4. Schematic of the biogeochemical and carbon cycle in the ocean as 

represented by TOPAZ2 model (Dunne et  al . ,  2005, Dunne et  al . ,  2007).  

2.1.2.4  IPSL 

For the 5th phase of the Coupled Model Intercomparison Project  

(CMIP5), Institut Pierre Simon Laplace (IPSL) developed a full Earth System 

Model (ESM) known as IPSL-CM5. As an ESM, IPSL-CM5 has a basic 

physical core that includes atmosphere, land, ocean an d sea-ice. Apart from 

this, it  also includes biogeochemical processes through different models:  

stratospheric and tropospheric chemistry,  aerosols, terrestrial and oceanic 

carbon cycle (Dufresne et  al.,  2013). Various components of the model are 

shown in Figure 2-5.  
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Figure  2-5.  Various components of the IPSL model for CMIP5. Figure downloaded 

from http:/ / icmc.ipsl .f r/ index.php/icmc -models/icmc-ipsl -cm5.  

The atmospheric general circulation model is LMDZ developed by 

Laboratoire de Me´te´orologie Dynamique (Hourdin et al. ,  2006). The 

atmospheric model LMDZ of IPSL-CM5 has two standard resolutions. The 

low resolution is 1.9° in latitude and 3.75° in longitude. The mid -resolution 

is 1.25° in latitude and 2.5° in longitude. In this study, simulations from 

IPSL-CM5 with medium resolution atmospheric model have been used for the 

analysis. The land-surface model is ORganizing Carbon and Hydrology In 

Dynamic EcosystEms (ORCHIDEE) that simulates the energy and water 

cycles of soil and vegetation, the terrestrial carbon cycle, and the vege tation 

composition and distribution (Krinner et al. ,  2005). Distribution of aerosols 

and gaseous reactive species in the troposphere is simulated by the 

INteraction with Chemistry and Aerosol (INCA) model (Schulz, 2007, Szopa 

et al.,  2013). Global distribution of trace gases, aerosols, and clouds within 

the stratosphere are computed by a part of the LMDZ model which is known 

as Reactive Processes Ruling the Ozone Budget in the Stratosphere 

(REPROBUS) (Lefevre et al. ,  1994, Lefevre et al. ,  1998). The ocean model is  
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the Nucleus for European Modelling of the Ocean (NEMO) version 3.2 which 

also includes sea ice and mar ine biogeochemistry (Madec, 2008). Sea-ice 

model is Louvain-la-Neuve (LIM) (Fichefet and Maqueda, 1997). Resolution 

of the Ocean model NEMO is 2° in lati tude and lo ngitude, with a meridional 

increased resolution of 0.5° near the equator.  A tripolar grid is used in this 

model to avoid polar filtering over the Arctic. Pelagic Interaction Scheme for 

Carbon and Ecosystem Studies (PISCES) is the ocean biogeochemical model  

(Aumont and Bopp, 2006) (Figure 2-6). Phytoplankton are represented by two 

functional groups - nano-phytoplankton and diatoms; zooplankton is 

distinguished into two size classes - meso- and micro-zooplankton. 

Phytoplankton growth is limited by five nutrients - ammonium, nitrate,  

phosphate, iron and silicate.  In the Figure, DOM is the dissolved organic 

matter and POM is the particulate organic matter.  

 

 

Figure 2-6. Schematic of the PISCES biogeochemical model (Aumont and Bopp,  

2006).  
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2.1.2.5  CanESM2 

Developed by Canadian Centre for Climate Modelling and Analysis 

(CCCma) Canadian Earth System Model 2 (CanESM2) is similar to the first  

generation of Canadian Earth System Model (CanESM1) (Arora and 

Matthews, 2009).  It  is a fully carbon-climate model based on third version of 

the CCCma Coupled Global Climate Model (CGCM3). The atmospheric 

component of the CanESM2 model is the fourth generation of the CCCma 

atmospheric general  circulation model (CanAM4) (Scinocca et al .,  2008). It  

has horizontal resolution of approximately 2.81
o
 in both latitude and 

longitude. The terrestrial carbon component of the model is provided by 

Canadian Terrestrial  Ecosystem Model (CTEM) (Arora and Matthews, 2009 , 

Arora and Boer,  2010) and the ocean carbon component of the model is  

provided by Canadian Model of Ocean Carbon (CMOC)  (Christian et  al .,  

2010). The ocean component of the CanESM2 model is the National Centre 

for Atmospheric Research Community Ocean Model (NCOM1.3) (Gent,  

1998). Horizontal ocean resolution i s approximately 0.94
o
 latitude by 1.41

o
 

longitude (Arora and Boer et  al.  2014). The ecosystem component of CMOC 

is based on the Nutrient, Phytoplankton, Zooplankton and Detritus (NPZD) 

model of Denman and Pena (Denman and Pena, 1999) as shown in Figure 2-7.  

 

Figure  2-7. NPZD model by (Denman and Pena, 1999).   
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Figure 2-7 shows a simple representation of the components of the 

ocean biogeochemical cycle and the various interactions between the 

components such as grazing of phytoplankton by zooplankton and 

remineralization of detritus to nutrients which are taken up by phytoplankton 

for photosynthesis.  

Hadley Centre Global Environment Model version 2 - Earth System 

(HadGEM2-ES) was also considered to be used in this study but i t  was 

observed that HadGEM2 data had  negative chlorophyll values for certain 

regions of the ocean. Therefore, blank spaces were observed in map of linear 

trend of global chl from HadGEM2 dataset (1859 -2005) (Figure 2-8) as trend 

was computed after replacing negative values with NaN. Apart  from this 

problem, HadGEM2 also had negative chlorophyll values at different grid 

points for different t ime steps. This causes problems in the implement ation of 

the detection and attribution analysis. Hence, HadGEM2 dataset was not used 

in this study.  

 

Figure 2-8. Linear t rend of global chl (mg m
- 3

)  from HadGEM2 Historical  

greenhouse gas simulation from 1859-2005.  

2.1.2.6  Limitations of NOBM 

Comparison of NOBM output with SeaWiFS in section 2.1.1 showed 

that seasonal cycle of global mean chl from NOBM is not in phase with 

SeaWiFS data. On the other hand, regional mean of chl from NOBM is in  

phase with SeaWiFS data. Thus, global chl from NOBM data cannot be used 
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in the analysis. Also, even though seasonal cycle  from NOBM for regional 

chl is represented well with respect to timing but absolute values differ from 

the SeaWiFS chl.  

2.1.2.7  Limitations of Climate Models  

Climate models are mathematical representations of the interactions 

between the components of the climate  system. They help us understand the 

current and past climate and also help to predict the future climate. But  

models are limited in several ways. It is  important to know these l imitations 

before using model output in the analysis.   

Incomplete understanding of  the climate system  

The climate system is very complex and involves many processes and 

interactions among the components of the system which are not completely 

understood. Even if scientists understand these complex processes it is  

difficult to express them mathematically.  For example, precipitation and 

passage of weather fronts are difficult to represent; complex weather events 

such as hurricanes, thunderstorms and tornadoes are not properly represented 

and climate patterns such as El Niño,  La Niña, Pacific Decadal Oscillation 

(PDO) and North Atlantic Oscillat ion (NAO) are not efficiently reproduced 

i.e. the frequency of the oscil lations, the magnitude of the climate parameters  

associated with it  for example,  SST or the spatial pattern of th e oscil lation 

may not be reproduced by the model correctly (Landsea and Knaff, 2000, 

Walsh and Pittock, 1998, Fedorov and Philander,  2000, Lienert et al .,  2011).  

Climate oscillations play a major part in chlorophyll variabili ty in the ocean, 

hence incorrect representation of the climate oscillations may result in 

inaccurate chl concentration in the ocean.   

Limited power of computers  

Climate processes and interactions occur over broad range of spatial  

and temporal scales i .e. climate variations occur over molecular, regional and 

global spatial scale and these variations can occur instantaneously or they 
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can take weeks, months,  year, decades or millennia to develop. Computers 

and programs that run the models are limited in their computing power and 

therefore the spatial  and temporal resolution of models is  l imited. Many of 

the important climate phenomenon are not included in the models d ue to low 

resolution or these phenomenon are represented in the model equations by 

parameterizations. In some models if the resolution is increased, there is  

error introduced in the model output due to contamination caused by 

boundary interactions.  

Failure when compared to observations  

To test climate model predictions of the future climate it is not 

possible to wait  20-30 years to see if  the model prediction is correct.  

Therefore, models are tested against the past observations. This is known as 

'Hindcasting'. If  the models predict the trends in the past correctly then it  

gives us some confidence that they can be used to predict the future trends 

correctly as well. Imperfections are introduced in the models due to various 

reasons such as distortion of the Earth's topography in the model,  

approximation of the effect of clouds or simplified representation of a certain 

complex climate processes. Due to imperfections in the model, large 

differences can sometimes be observed when model outputs are compared 

with past climate observations (Pincus et  al.,  2008, Reichler and Kim, 2008, 

Zhang et  al.,  2005, Zhou et al. ,  2007, Henson et al. ,  2009a, Henson et  al.,  

2009b, Kim et  al.,  2012).  

Thus, we can see that models have several limitations. In spite of these 

limitations they provide the most detailed projections o f cl imate parameters 

which help us in understanding of the climate.  

2.1.2.8  Comparison of model output with NOBM  

Output from climate models was compared with observations i .e.  

NOBM. This comparison was made using three statistical terms. These are -  

correlation coefficient, root mean square (RMS) difference and standard 

deviation. For example, consider observations i s 'f ' and a model output is 'r ' ,  
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both having N independent discrete points in space or in time. Correlation 

coefficient between f and r is   

Eq 2-1.      

 

N
   -      -    

    
 

where,    and    are the mean values and    and    are the standard 

deviations of f and r respectively. Standard deviation of f and r is computed 

as follows -  

Eq 2-2      
 

 
          &        

 

 
         

RMS difference E is  

Eq 2-3.       
 

N
   -  

 N
n   

   

 

RMS difference is a measure of the difference between model output 'r '  

and observations 'f ' . .  Lower the RMS difference, closer the model output to 

observations and vice-versa. To know whether the error is due  to amplitude 

difference or phase difference between patterns, four statist ical terms R, E, 

           are needed. Using these four statistical  terms, a diagram is made 

which quantifies the similarity between f and r. The diagram was developed 

by Taylor (2001). Taylor diagram is a way of graphically representing how 

closely patterns match with observations. Figure 2-9 shows comparison of 

monthly time series of mean chl for NA region (1999 to 2005) from four 

climate models with observations (NOBM). Table 2-3 shows the values for 

the statistical terms used in the Figure.  

Table 2-3. Statistical  terms computed for Taylor diagram  

Model/statistical 

term 

Standard 

Deviation 

RMS difference Correlation 

Coefficient 

IPSL 0.289 0.244 0.648 

GFDL-ESM2G 0.060 0.063 0.649 

GFDL-ESM2M 0.126 0.071 0.852 

CanESM2 0.101 0.154 -0.396 
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Figure 2-9. a).  Pattern statist ics describing the monthly t ime series of mean chl  

(mg m
- 3

)  for NA region (1999-2005) simulated by 4 models compared with the 

observed.  

In Figure 2-9, data from NOBM, IPSL, GFDL-ESM2G, GFDL-ESM2M 

and CanESM2 is represented by A, B, C, D and E points. X -axis is the 

standard deviation, Y-axis is the RMS difference and Z-axis is the correlation 

coefficient. Model outputs that agree well with the observations will lie 

closer to the point  'A' on the x -axis.  From the Figure,  it  can be seen that the 

correlation coefficient between NOBM and all the models is moderate (0.648 

to 0.852) except for CanESM2 model it  is negative ( -0.396). This indicates 

that the phase of the all the models except CanESM2 is same as the 

observations. From the Figure, it  can also be seen that the standard deviation 

of GFDL-ESM2G is less than NOBM, whereas, standard deviatio n of other 

models is larger than NOBM. This indicates that  GFDL -ESM2G 

underestimates the amplitude of the chl values and the other models 

exaggerate the amplitude of chl values. The RMS difference between models 

GFDL-ESM2G and GFDL-ESM2M and NOBM is between 0 and 0.1 whereas,  

RMS difference is more than 0.1 for models IPSL and CanESM2. Lower RMS 

difference for GFDL-ESM2G and GFDL-ESM2M climate models is due to 

lower difference in amplitudes of the models and observations. Lower RMS 

difference indicates that  these models perform well in simulating the chl. On 
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the other hand, IPSL and CanESM2 models performs poorly as the RMS 

difference is higher which is due to larger difference in the amplitude of 

patterns.  

A similar comparison for the other regions of the ocean i .e.,  South 

Atlantic (SA), North Pacific (NP), South Pacific (SP) and Indian Ocean (IO) 

is also made. The Table of statist ical  terms for all the models and the 

diagrams associated with them are shown in Appendix I.  In summary it can 

be said that GFDL-ESM2G and GFDL-ESM2M models perform well in 

simulation the chl in the ocean.  

2.2 Method 

2.2.1 Detection and attribution methods  

Several techniques have been used to detect the climate change signal 

such as simple indices and t ime-series methods, pattern correlation  method 

and optimal detection technique. A brief discussion of these techniques is  

presented in the following sections.  

2.2.1.1  Simple Indices and Time-series methods 

This technique uses an index of climate change that is obtained from 

the climate system variable used for detection. For example, to find a climate 

change signal in surface temperature, linear trend in surface temperature can 

be used as an index. The spati al pattern of the index is obtained in observed 

trends and compared with that obtained from long control model simulations 

and simulations that  incorporate greenhouse gases, sulphate aerosol forcing 

and natural forcings. The level of agreement between thes e trends will  

indicate whether the trend in observations can be explained by internal 

variability,  by anthropogenic variability, by a combination of internal and 

anthropogenic, by natural forcing variability or a combination of all three 

variabilities. Studies have incorporated this technique to detect climate 

change signal in surface temperature records (Knutson, 2000, Boer et  al .,  
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2000). The studies observe an increased agreement between observed and 

simulated trends when trends are obtained from simulations that include 

greenhouse gases and aerosols forcings.  An extension of this technique is to 

examine the differences in the correlation structures of observed and 

simulated climate variable. Wigley et  al. (1998) compared correlation 

structures of observed and model hemispheric mean temperature and found 

that the differences between the structures can be explained by combined 

influences of anthropogenic and solar forcing and internal variabili ty. 

Another extension to the technique is to use statistical models. Global mean 

near-surface temperature was obtained from time series model and a strong 

statistical  relationship was found between atmospheric CO 2  and observed 

global mean temperature (Tol and De Vos, 1998).  

2.2.1.2  Pattern Correlation Methods  

This technique correlates the large-scale patterns of response due to 

different forcings obtained from model simulations, with the pattern of 

climate change in observations to distinguish between different causes of 

climate change. The statist ic of this technique can be either centered or 

uncentered. Centered statistic correlates observed and signal anomalies after 

removal of their global means whereas the uncentered statistic correlates 

these fields without removing global mean (Barnett and Schlesinger, 1987).  

In a study by Tett et al . (1996) to observe changes in atmospheric 

temperature, simulations from climate models were obtained for increased 

CO2  and sulphate aerosols, and reduction in stratospheri c ozone and 

compared with observations. They found that when all three factors were 

included, the agreement between observations and models was the highest.  

2.2.1.3  Optimal Fingerprint (OF) Methods  

Optimal Fingerprint  technique of detection and attribution was 

developed by Hasselmann (1979). The technique is a regression based 

approach to increase the  signal -to-noise ratio by looking at  the component of 

the response away from the direction of highest internal variabili ty. Since its 
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development in 1979 several authors have developed new approaches to the 

technique. It  has been applied to detect cl imate change signal in surface 

temperatures (Hegerl et al. ,  1996, Barnett et al.,  1999). Studies have used 

data other than surface air temperature,  such as vertical profiles of zonal 

mean temperature (Allen and Tett, 1999) and lower tropospheric mean 

temperature (Paeth and Hense, 2001). Signals from simulation with 

greenhouse gas plus sulphate plus stratospheric ozone was consistent with the 

observations of zonal mean temperature whereas,  greenhouse gas only 

fingerprint was detected for lower tropospheric mean temperature. These 

studies used a single-pattern approach i.e. detection of one signal at a time. 

Hegerl et al. (1997) developed a two signal approach using a greenhouse gas 

signal and the sulphate aerosol signal. The two s ignals are made spatially 

independent of each other and are regressed with observations. Influence of 

both the signals was detected in the 50 -year trends in northern summer 

temperatures Some studies have applied this technique to detect  a cl imate 

change signal in land precipitation trends (Zhang et al. ,  2007), meridional 

overturning circulation (Stuart et al .,  2007, Baehr et al.,  2008), ocean wind 

waves (Dobrynin et al. ,  2014),  surface salinity of the oceans (Terray et al. ,  

2012) and oceanic oxygen (Andrews et  al.,  2012). All these studies have 

detected the anthropogenic signal in the observations i.e.  anthropogenic 

forcing has contributed significantly to the changes in land precipitation 

trends, surface salinity of the oceans and oceanic oxygen; and the observed 

changes could not be explained by internal variability or natural forcings.  

Advantages of OF method  

 The OF method analyses the datasets in a reduced dimension 

which increases the strength of the  climate change signal in the observed 

data stream. Dimension of the dataset can be reduced in several ways such 

as reducing the spatial resolution of the data, computing the weighted 

average of the data and selecting a l imited number of empirical orthogon al 

functions to represent the data.      
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 The OF technique suppresses noise or internal variabili ty and 

this again increases the strength of the climate change signal which 

enhances the possibility of i ts detection.  

 The OF method provides a quantitative esti mate of the detected 

climate change signal and it  also provides a technique to detect  and 

quantify more than one signal simultaneously.   

Considering the advantages of OF method over conventional detection 

techniques, OF technique of detection and attribution has been implemented 

in this study to detect climate change signal in chl concentration in the 

ocean.   

2.2.2 Optimal Fingerprint Method 

The principle of this technique is to increase the signal -to-noise ratio 

by looking at the component of the response of the climate parameter due to 

climate forcings away from the direction of the highest internal variability 

(Hasselmann, 1979, Hasselmann, 1993, Hasselmann, 1997). The component  

of the response of the climate parameter due to climate forcings is defined as 

the climate change signal or the fingerprint which we need to detect. Figure  

2-10 illustrates the principle of OF method. In the Figure,  i t  is assumed that 

the climate parameter has two modes for example a spatial pattern. The 

amplitude of the two modes of the climate parameter vary in time along OX 

and OY. The shaded area in the Figure represents the natural variability of 

the climate parameter. The climate change signal or the fingerprint lies along 

OB. This is the fingerprint that is to be detected. OBn represents the pa rt of 

the signal that is overlapped by noise i .e. natural variability. Thus, OB/OBn 

is the signal-to-noise ratio. As the signal is in the direction of the main 

component of the noise, the overlapping by noise on signal is large. Due to 

this the signal -to-noise ratio OB/OBn is small. To get a higher signal -to-

noise ratio, OB is projected in the direction of OD which has less overlap by 

the main component of the natural variabili ty. Even though the new signal 

OD is smaller than the full signal OB, the new signal-to-noise ratio OD/ODn 

is higher than OB/OBn. Thus, there are two main components of the optimal 

detection technique. First , is  to have a good estimate of the noise or the 
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natural variability.  Second, is to choose the direction of the projected signal 

(OD) such that i t  maximizes the signal -to-noise ratio.  

 

Figure 2-10. Representation of the principle of Optimal Detection technique 

(Mitchell  et  al . ,  2001) .  

Statist ically,  the optimal fingerprint approach is a multiple regression 

problem with respect to generalised least  squares. The data is  expressed as a 

linear combination of signal patterns.  

Eq 2-4.       i i
m
i    n       n  

Whe e   is a  ield o  ‘N’ data elements obse vations, in which it is 

assumed that  m signals are present, the ith signal is  expected to have a 

pattern of x i ,  as seen in the data, the unknown amplitude of the i
t h

 signal is  i  

(beta) and n is the noise. Equation 2-3 represents the Ordinary Least Squares 

(OLS) approach which does not account for errors in X. The procedure 

consists of effectively estimating the unknown amplitudes beta. In matrix  

form, estimates of the signal amplitude (beta) is give by -  

Eq 2-5.                  
- 
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Where C is the NxN covariance matrix of the noise and N is the 

number of observations (Berliner et al. ,  2000 , Allen and Tett, 1999, 

Hasselmann, 1997).  Positive value o   i  would indicate detection of the 

signal x i .  If  beta value is approximately 1 (      ,  then i t would mean that the 

model output is representing the observations perfectly.  If  beta value is more 

than 1 (    ,  it  indicates that the model output is underestimating the 

climate change response in observations. If  beta value is  less than 1 (     ,  

it  indicates that the model output is  overestimating the climate change 

response in observations.  The optimal fingerprint  technique has three 

approaches depending on the time evolution of the signal amplitude and 

structure:  

Fixed pattern approach  

In this approach i t is assumed that the spatial structure of the climate 

change signals does not change during the t ime period of  observations 

(Hegerl et al. ,  1996, Hegerl  et al.,  2000, Berliner et al. ,  2000, Barnett et al. ,  

2001). Hegerl et al.  (1996) computed spatial pattern of 50 -year trends in 

northern summer temperatures from observations and model simulations. This  

spatial  pattern does not evolve with time but the amplitude of this spatial  

pattern may change i.e. increase or decrease. Increasing amplitude of the 

fixed anthropogenic signal pattern with tim e would be the evidence of 

climate change due to anthropogenic forcings in the climate parameter being 

studied.  

Space-time approach 

In this approach the signal patterns evolve within the time period of 

observations. For example,  Tett computed spatial pattern of decadal mean for 

five-decades and formed signal vectors. This five -decade window is then 

moved one decade at a time and the ev olution of the signal amplitudes is  

obtained (Tett  et al.,  1999).  

Space-frequency approach 
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In this approach annual or monthly mean  signal patterns are used. 

These patterns evolve throughout the analysis period (North and Wu, 2001).  

Signal vector is formed by first  converting the temporal variation of each 

signal to frequency domain by Fourier transformation and then se lecting the 

low-frequency Fourier coefficients. Selecting the low -frequencies is a way to 

reduce the dimension of the signal in time domain. Dimension of the signal is  

also reduced in spatial domain by reducing the resolution. Dimension of the 

dataset can be reduced in space and time by Empirical Orthogonal Function 

(EOF) analysis and Truncation (Appendix II).  

2.2.2.1  Components of the OF method  

2.2.2.1.1  Guess Signal  

In order to detect the influence of cl imate forcings on chl 

concentration, space-time pattern of the response of chl in the ocean due to 

climate forcings needs to be estimated. Observations of chl are a combination 

of internal variabili ty of chl and response of chl due to climate forcings. 

Measurement of response of chl to each climate forcing separately is not  

possible, therefore simulations for specific climate forcing in climate models 

is used. Having chl data from model simulations alone is not sufficie nt for 

detection of climate change signal. In order to detect a signal in a climate 

parameter, search for the climate change should be in the right direction. For 

this,  a guess signal (Hegerl et  al.,  1996) is defined and estimated from model 

simulations. This guess signal is assumed to be  representing signal of cl imate 

change (Hegerl et al .,  1996). For example, a guess signal can be defined as 

(1) a difference between chl concentration in the beginning of the industrial  

era from the chl concentration in some arbitrary time in the future, (2) a 

trend increase in the amount  of chl from the beginning of industrial era to 

some arbitrary t ime in the future, (3) a trend increase in the size of the 

subtropical gyre, (4) spatial pattern of the mean of chl, (5) time series of the 

peak of chl bloom in spring or (6) time series of th e average chl in a certain 

region for a particular month and so on. It might happen that we define the 

guess signal as time series of the peak of chl bloom in spring and not detect  
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any climate change whereas,  if  we define the guess signal as spatial patter n 

of the mean of chl we might detect a cl imate change signal.  This means that  

looking in the right direction is important but knowing which direction is the 

right one is not possible. Hence, defining a guess signal is  a trial and error 

method. Thus, even though defining a guess signal is an important element 

for a detection study it is still  a subjective choice with the possibility of it  

being a wrong one.  

In this study the first guess signal was chosen as the first Empirical  

Orthogonal Function (EOF) of the model output.  EOF analysis is a technique 

to decompose the data into different modes of variabili ty (Venegas and 

Bjornsson, 1997). Apart from getting different modes of variability of the 

data, another purpose of EOF analysis is to reduce the dimension of the data,  

so that it  becomes easier to get the climate change signal and it also makes 

data handling easier.  The procedure to com pute EOFs of a dataset is  given in 

Appendix II.  Output of the EOF analysis are eigenvectors (spatial structure of 

the variability/mode), eigenvalues (amount of variance explained by each 

mode), time-series of each mode and new time-series of data. The new time-

series of data can be obtained with reduced dimensions by truncating the 

eigenvectors matrix at some number N, where N is less than the number of 

eigenvectors. Various methods to determine the truncation level are discussed 

in Appendix II.   

For a detection and attribution study, the first EOF of model output 

from climate forcing simulations was regressed using the optimal fingerprint  

method with first EOF of observations.  Noise was computed from long -run 

control simulations.  All the datasets were regridded to 5x5
o
 resolution as has 

been explained later in section 2.2.3.1 which describes the pre -processing of  

the datasets.  Figure 2-11 and Figure 2-12 show the spatial pattern and time 

series of the first EOF from greenhouse gas (GHG) simulation of GFDL -

ESM2M model output and observations fr om monthly chl time series for the 

North Atlantic Ocean.   
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a).  

b).  

Figure  2-11. First  EOF spatial  pattern from time series of monthly chl (1999 -2005)  

for North Atlantic from a).  GFDL -ESM2M historical  greenhouse gas simulation 

and b).  NOBM. Spatial  resolution of both the datasets is 5
o
 x 5

o
.  
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a).  

b).  

Figure 2-12. Time series of f irst EOF from t ime series of monthly chl (1999 -2005) 

for North Atlantic from a).  GFDL-ESM2M historical  greenhouse gas simulation 

and b).  NOBM.  

From the Figure 2-11, it  can be seen that  increase in chl  is observed in 

lower lati tudes (26
o
 N to 36

o
 N in GFDL-ESM2M model and 26

o
 N to 42

o
 N 

in NOBM) and decrease in chl  is observed in latitudes higher to 36
o
 N in 
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GFDL-ESM2M and 42
o
 N in NOBM. Time series of the two EOFs (Figure 2-

12) show a seasonal cycle of the pattern of variability.  Hence, the first EOF 

is a seasonal cycle of chl in North Atlantic and forms part  of the internal 

variability of chl . Similarly,  to get the climate change signal, 2nd EOF or any 

other EOF can be the representation of climate change signal. It cannot be 

confirmed as to which EOF represents the variability in chl due to climate 

change, therefore taking EOFs as the climate change signal is not the right 

direction to look for climate change. Also, in the case when the selected EOF 

pattern from NOBM does represent the climate change signal (as is 

expected), the same number of EOF pattern from the model may n ot represent 

the climate change signal. It might represent variabili ty in chl due to NAO 

index or variability in chl due to change in spring bloom period. Therefore,  

comparing the EOF from greenhouse gas simulation with EOF from 

observations for climate change detection in chl would be like comparing 

apples with oranges and then determining the similarity between the two. 

Hence, it  was concluded that defining first EOF as the guess signal is not the 

right direction to look for cl imate change in chl concentr ation in the ocean.  

There were three more definitions of guess signals for which detection 

and attribution study was done. These are -  

 Spatial pattern of the Linear Trend of Chlorophyll.  

 Linear trend of the zonal average of chlorophyll.  

 Time series of the size of subtropical gyres.   

It  is assumed here that changes in chl due to climate change will be 

linear and therefore,  linear trend of chl is chosen in this study. However,  

climate change may cause non-linear changes in chl concentration. In that  

case, climate change will not be detected in the signals chosen in this study.  

Details of the computation and the results of detection and attribution for 

these three guess signals is presented in Chapter 3, 4 and 5.   

The time period chosen for computation of the guess signal from the 

model historical simulations is the same as the time period of the 

observations. For example if observations have the time period from 1997 to 



 

68 
 

2007, output from the model simulations will  be chosen for the same time 

period. In matrix form, the guess signal is pre sented as a vector g (Nx1) and 

it becomes a column of matrix X in  Eq 2-3. The number of columns of matrix  

X depends on the number of climate forcing simulations for which the 

attribution analysis is being done. In this study guess signals have been 

computed for the historical simulation, the historical -greenhouse gas 

simulation, the historical  natural simulation and the historical miscellaneous 

simulation (section 2.1.2.2). The guess signals for each climate forcing 

simulation represents the influence of the respective climate forcing on chl 

concentration in the ocean for that  time period and for that  region.  

2.2.2.1.2  Observations  

Chl data from NOBM have been taken as the observations in this study.  

NOBM data for the global ocean is available from 1997 to 2007. This gives 

us 132 months of data. Figure 2-13 shows the map of global chl averaged 

over the years 1997 to 2007 and the time series of global chl from 1997 to 

2007. For data analysis purpose, when the size of the subtropical gyre was 

computed (section 5.2) , it  was observed that there was a spike in the first 

year (or year and a half for some gyres) ( Figure 2-14). This spike may be due 

to the El Niño event in 1997-1998 or i t  may be because of the time taken for 

NOBM model to stabilize from the initial point . Therefore, the first two years 

of the NOBM data were removed from the analysis.   
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a).   

b).  

Figure  2-13.  a).  Map of global chl obtained by averaging monthly chl over  1997 -

2007 from NOBM and b).  Time series (1997 -2007) of monthly chl from NOBM, 

averaged globally. Chl  values are in mg  m
- 3

.  
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a).  

b).  

c) .  
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d).  

e).  

Figure 2-14. Monthly t ime series of gyre area (km
2
)  from 1997-2007 for a).  North 

Atlantic,  b).  South Atlantic,  c) .  North Pacific,  d).  South Pacific and e).  Indian  

Ocean 

Most of the models used in the analysis have historical and historical 

greenhouse gas simulations  starting at 1850 and ending in 2005 (Table 2-1).  

To match this time period, the last two years of NOBM were removed from 

the analysis. Therefore, the time period of NOBM used for the study is 1999 

to 2005. This gives us 84 months of data.  

Vector Y of Eq 2-3 is computed in a similar way as vector X i .e. as the 

guess signal is defined. For example if  the guess signal is  defined as the 
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spatial  linear trend of chl then the same function is computed from the 

observations as well.  Thus, matrix Y is also a vector wi th N rows i .e. Nx1.  

2.2.2.1.3  Internal climate variability/noise  

Noise is another important element of optimal fingerprint method. As it  

has been discussed previously,  internal cl imate variability is the natural  

variability of the climate system. It is this natural  variability which is termed 

as noise 'n ' in Eq 2-3. Variability in chl occurs on seasonal, annual and 

decadal time scales.  Chl concentration in the ocean varies with latitude as 

well. These changes observed in chl concentration are superimposed on the 

natural cycle of chl and the influence of climate forcings on chl. To obtain 

the natural cycle of chl, long-term records of chl prior to industrial  

revolution are needed i.e. those records which have not been influenced by 

climate forcings. Since there are no long -term chl observations, the control 

runs of climate models are used to obtain the natural variability of chl. There 

is no reference to which this estimate of natural variabili ty of chl can be 

compared with, as there are no long-term records of chl prior to industrial 

revolution. Therefore, the record obtai ned from the model control run is 

divided into two parts. One part is used to obtain the noise covariance matrix 

i.e. 'n '  of Eq 2-3 and is used in optimization and the other is  used for 

comparison with the residuals obtained after the removal of the optimi zed 

climate forcing signals. This process is  known as the residual consistency 

test (Allen and Tett,  1999). Apart from verifying that the noise is correct, i t  

is necessary to reduce the dimensions of the noise covariance matrix. The 

process to reduce the dimensions is known as truncation and the various 

methods to determine the truncation level are explained i n Appendix II.  In  

this study, the method developed by Hegerl et al.  (1996)  is  used to determine 

the truncation level of the noise covariance matrix.   

The step-by-step process of computing the noise covariance matrix is 

described below. Assume that chl from control run is in matrix C with M 

rows and T columns, where M represents the number of grid points and T 

represents the number of t ime steps. Matrix C is then divided into two parts 
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C1 and C2 with M rows and T/2 columns. Matrix C1 is used for computing 

the noise covariance matrix and C2 for the residual consistency test.  

Computing the noise covariance matrix  

1.  Divide C1 into chunks of length equal to the time period of observations. 

For example, if time period of observations is 84 and C1 has 1000 time 

steps then C1 is divided into chunks of length 84. This gives 11 chunks of 

C1 with length 84. In matrix form each chunk will have dimensions as 

Mx84.  

2.  For each chunk, a vector of dimension Nx1 is computed in the same way 

as the guess signal was computed. As we have 11 chunks, there will be 11 

vectors of length Nx1. One single matrix 'C1_chunks' is made with these 

vectors i.e.  a matrix with dimensions Nx11. The spatial and temporal  

dimensions of this matrix are reduced by EOF analysis and the Hegerl et  

al.  (1996) method of truncation (Appendix II).  

3.  Twice the standard deviation of matrix C1_chunks gives us the noise 

matrix 'noise_1' which has Nx1 dimensions.  

4.  The same process is  repeated for matrix C2 without the truncation step 

and the noise matrix obtained is 'noise_2'.  

5.  Noise covariance matrix 'C' in Eq 2-4 is computed as C = 

noise_1*noise_1T where noise_1T is the transpose of the noise_1 matrix.  

Thus, C has dimensions NxN.  

6.  The noise covariance matrix is used to solve for   values using Eq 2-5. 

This gives the amplitude of the climate forcing signal in observations. It  

is a scalar quantity.  

7.  The   value is implemented in Eq 2-6 and residual is  computed as follows:  

Eq 2-6.   R = Y-   

R is a vector with dimensions Nx1.  

8.  The residual is compared with noise_2 computed with the second matrix 

of control simulation C2. Comparison of these two vectors is made using 

an F-test. The F-test tests the null hypothesis that the data in the two 

vectors (residual and noise_2) come from normal distributions with the 
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same variance. If the result  of the test  is 1, then it  means that  the null  

hypothesis is rejected at  5% significance level. If  the result of the test is  

0, then it would indicate that the two vectors come from normal 

distribut ions with the same variance. Residual consistency test can also be 

performed to compare residual with noise_2 as described in point 8, 

section 8.1.2 of Appendix II -  Allen & Tett method of truncation.  

The process chart associated with steps to compute noise covariance 

method is given in section 9.2 of Appendix III.  

2.2.2.1.4  Implementing Optimal Fingerprint method  

After computing all the elements needed for OF method amplitudes of 

the climate forcing signals i.e.  beta is computed using Eq 2-5. Two sided 

Confidence interval (CI) for the beta values is also estimated. Equation used 

to estimate CI is   

Eq 2-7.   CI=tα  ,n -p*   

Whe e   is va iance o  beta and t -sco e  o  the c i tical value α   is  

computed with n-p degrees of freedom.  

Eq 2-8.   Alpha (α )     - (percent confidence interval/100)  

Fo  e ample,  o  95% con idence inte val α     - (95/100) = 0.05.  

'n ' is the number of independent observations. In this study n will be 

equal to N i.e.  the length of the guess signal. 'p ' is the number of response 

patterns for which beta is  to be estimat ed. Equation to estimate Variance of 

beta is  

Eq 2-9.       ( 
T
 C1

-1
 X)

-1
 

The process chart for implementing  OF method is given in section 9 .4 

of Appendix III.  
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2.2.3 Pre-processing of the datasets  

All the data from NOBM and the five climate models is provided in 

netCDF format. Chl values and latitude and longitude values are extracted 

from this file using Matlab. Prior to estimating the elements of OF method 

i.e. estimating guess signal, internal va riability and observations as described 

in section 2.2.2.1, there are some pre-processing steps that need to be 

implemented for all  the datasets. A brief description of these steps is as 

presented below:  

2.2.3.1  Gridding & Regridding 

The data files from the different models are not all gridded in the same 

way. For example, longitudes can be in 0 to 360 or -180 to 180 degrees 

format. To make the computation simple every file was arranged with respect 

to the 0 to 360 degrees grid orientation. Furthermore, all datasets were re -

gridded or interpolated to the regular traditional longitude -latitude Cartesian 

grid where necessary by keeping the resolution of the grid in accordance to 

the number of latitudes and longitudes in the ori ginal grid. For example, if  

the model output from IPSL is in tripolar grid with 211 number of latitudes 

and 360 number of longitudes then, the re -gridded Cartesian grid would have 

the same number of latitudes and longitudes. All the datasets were regridded  

to 5x5
o
 resolution. This resolution was also used by Hegerl  et al. (1997) to 

detect climate change in near -surface temperature. This resolution was 

chosen in this study as it  is big enough to elim inate small-scale varaibilit ies 

which add to the noise and make the detection of climate change signal 

difficult ,  and it is small enough to not remove or neglect  relevant changes  in 

chl  due to climate change.  

2.2.3.2  Compute Anomalies  

Climate change studies are interested in long-term changes in the 

climate parameter under study. Since seasonal variability is on short time 

scales and forms part of the internal variability,  seasonal cycle is removed 

from the datasets. Procedure to remove the seasonal mean is as fo llows: take 
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the mean of all  the Januarys for all the years;  subtract  this mean from all  the 

January data; repeat this process for al l the other months.  This removes 

seasonal mean from the whole time-series.  

2.2.3.3  Handling missing values  

The grid of the model data and the data from observations (NOBM) 

should be same for further analysis. Observations grid is usually not changed.  

Therefore, the model data is re -gridded to match the observations grid. The 

dataset used here consists of firstly, the data itself, in th is case chl values for 

the ocean; secondly, the land component, which may be represented as a  

negative value, or null value or some arbitrary large value in the dataset;  and 

thirdly,  during some months,  in some regions the data will be missing, the 

missing data may be represented as a negative value,  or null  value or some 

arbitrary large value. Negative or large values would skew the mean or 

calculation of any metrics and are also not useful for our analysis.  Therefore 

these values (other than the chl values) need to be represented as one 

standard value, which in this study is NaN. The model data and observations 

should have NaNs at the same position. This is to make the computation 

easier because missing values are normally removed from the data for any 

statistical  analysis.  Therefore, when missing values are removed from 

observations and model data, the resulting matrices should be the same size.  

For this, the position of missing values is made similar in both the datasets 

before removing them. Missing values are made similar in two matrices by 

cross-multiplication.  

The process chart for the pre -processing of the datasets is  given in 

section 9.1 of Appendix III.   

  



 

77 
 

3. Climate Change Detection and Attribution for 

Spatial Linear Trend in Chlorophyll  

One of the key constraints on detecting a climate change signal in a 

climate parameter is the time period of availability of observations. 

Industrial revolution has lead to emission of greenhouse gases in the 

atmosphere and this is causing global warming which is the  cause of climate 

change. If the observations are available since the pre -industrial era (~1750) 

then it would be easier to distinguish between variability before climate 

change (internal variabil ity) and variability due to climate change. Another 

important factor is the homogeneity of the observations i.e. the method used 

to measure the parameter should be same and the measurement techniques 

used should also be the same so that the observations have similar space and 

time resolution and their computation i s also same. Also, the errors and 

uncertainties due to different measurement techniques are also same and 

would give homogenous datasets which would make it easier to use them in 

any analysis. Otherwise, datasets will have different errors and uncertaintie s 

and might not be similar enough to be used together in the analysis. In the 

case of chlorophyll, there is no homogenous long -term (~100 year) 

observations which make the detection of climate change in chl difficult.  An 

attempt was made by Boyce et al . (2010) to study long-term (~100 year) trend 

in chl by blending in-situ chl data obtained from two different shipboard 

measurement techniques. The study observed a declining trend in global 

median chl of 1% per year. The res ults of the study were questioned by 

several authors as the detected trend was observed in datasets obtained from 

different measurement techniques (Mackas,  2011, Rykaczewski and Dunne, 

2011, McQuatters-Gollop et al .,  2011).  Studies made on shorter t ime scales 

of data (20-50 years) with limited spatial coverage have observed an increase 

in chl by observing the trends in in -si tu measurements made at Bermuda 

Atlantic Time Series (BATS) station, Hawaii Ocean Time -Series (HOT) 

station (Saba et al .,  2010b) and Cooperative Oceanic Fisheries Investigations 

(CalCOFI) (Kahru et al. ,  2009). Studies have also been made to observe 

trends in global ocean chl from satellite ocean c olor sensors (Gregg, 2005, 

Behrenfeld et al .,  2006, Vantrepotte and Mélin, 2011, Siegel et al.,  2013).  
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However, none of these studies take into account or remove the effect of 

internal variabil ity (noise) of chl on the observed trends. Thus, the observed 

trend in these studies may be due to climate change or may be due to internal 

variability.   

In order to detect a climate change signal in chl using short data 

records a formal detection and attribution study needs to be implemented. 

This study focuses on implementing the optimal fingerprint (OF) method of 

detection and attribution on satellite records of chlorophyll. The method 

optimizes the observations and the response of chl to climate forcings from 

model simulations, with the noise obtained from the control simulations. 

Thus, by increasing the signal -to-noise ratio and even though the time period 

of availability of observations is less,  there is a possibil ity of a climate 

change signal to be detected.  

An important element of the optimal detection method is to determine 

the metric of climate parameter or the definit ion of guess signa l in which 

climate change is likely to be detected. In this chapter, the guess signal is  

defined as the spatial linear trend of chl in a region. This gives a fixed 

spatial  pattern of cl imate change signal i.e. we assume that the observed 

trend in chl in a certain time period is representative of the climate change. 

Spatial structures have been used before in detection of climate change in 

near surface temperatures (Hegerl  et  al.,  1996, Hegerl  et  al.,  2000 , Berliner et 

al. ,  2000, Barnett  et  al. ,  2001 , Antoine et al .,  2005). For example, Hegerl et  

al. (1996) defined the climate signal as the spatial pattern of near -surface 

trends defined for time intervals of 15 -30 years; Hegerl  et al . (2000)  

computed the climate change signal as the first EOF of the summertime near 

surface temperature and Hegerl  et al.  (1997) defined the climate change 

signal as the difference between the average of two time periods.  

Linear trend of chl over a certain time period is related to the change 

in chl in that region. This change may happen due to internal variability or 

due to climate forcings such as increase in greenhouse gases, change in solar 

radiation and change in aerosols in the atmosphere. To detect whether 

greenhouse gases contribute towards the observed change or not, opt imal 
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fingerprint method is used. In this, spatial pattern of change is computed 

from observations and the model forced simulations. Noise is  computed from 

the control simulations of the model and is removed from the observations 

and the model forced simulations.  

The first section of the chapter gives the details  of the dataset  used and 

the regions of the ocean where the signal is to be detected. For the purpose of 

presentation of results, the North Atlantic region is used here as a case study.  

Previous studies have found decadal variabili ty in the timing and magnitude 

of the phytoplankton bloom in North Atlantic (Barton et al. ,  2003, Henson et  

al. ,  2006, Henson et  al .,  2009a). Long-term declining trend in chl in North 

Atlantic has also been observed by Boyce et al. (2010). Decline of 1.3% per 

year was also observed in anomalies of chl concentration in North Atlantic 

ocean from SeaWiFS ocean color data (1998 -2007) (Beaulieu et al .,  2013).  

These studies are indicative of a climate change trend in chl in North Atlantic 

and hence, OF analysis is  implemented in this region with the possibility of 

detecting a climate change signal. The second section of the chapter 

describes some of the basic statistics performed on the datasets for different 

regions of the ocean. Comparison of the results is made for different datasets 

and for different time periods. Methodology used to implement the OF 

method on the spatial linear trend in the data is describ ed in the third section. 

Results from comparison of datasets, consistency checks on noise covariance 

matrix and estimation of scaling factors are presented in the fourth section of 

the chapter. Interpretation of the results takes place in the discussion se ction 

which is the fifth section and chapter is completed with summary and 

conclusions of the analysis in the sixth section.  

3.1. Data  

The datasets used for the analysis are as mentioned in chapter 2 ( Table 

2.1). As observations, chl from NOBM is used in the analysis and simulations 

from GFDL-ESM2G, GFDL-ESM2M, IPSL and CanESM2 models are used to 

compute the signal and the noise.  
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Regions of the ocean for which spatial l inear trend of chl is computed 

are listed in Table 3-1 along with their latitude and longitude limits.  These 

latitude and longitude limits were chosen with reference to the division of 

ocean regions made by Boyce et al. (2010) although in this study, the 

equatorial region is not included for the analysis and there is no separate 

division for Southern Ocean instead the latitude l imits of the South Atlantic,  

South Pacific and Indian Ocean are extended further south than those in  

Boyce et  al . (2010).  Figure 3-1, shows the regions of the ocean (red boxes) 

chosen for OF analysis.  

Table 3-1. Latitude and longitude limits of the regions of the ocean chosen  

for the analysis  

Region North 

Atlantic 

(NA) 

South 

Atlantic 

(SA) 

North 

Pacific 

(NP) 

South 

Pacific 

(SP) 

Indian 

Ocean 

(IO) 

Latitude 20
o
 to 

80
o
 

-85
o
 to -

15
o
 

20
o
 to 

80
o
 

-80
o
 to 

-20
o
 

-80
o
 to 

-20
o
 

Longitude 260
o
 to 

352
o
 

295o to 

25o 

120
o
 to 

280
o
 

150
o
 to 

300
o
 

30
o
 to 

120
o
 

 

 

Figure  3-1. Regions of the ocean chosen for analysis.  Each region is represented by 

a box in red.  

For ease of presentation, each of the model simulations used in the 

analysis is represented as a letter of the alphabet in the Figures and tables in 
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the chapter. The letter associated with each model simulation is as in Table 

3-2.  

Table 3-2. Model simulations and letter of the alphabet designated to each 

simulation 

Model Simulation Alphabet 

NOBM  A 

GFDL-ESM2G Historical  B 

GFDL-ESM2M Historical  C 

 Historical Greenhouse gas  D 

 Historical Natural  F 

 RCP85 G 

IPSL Historical  H 

 Historical Greenhouse gas  I 

 Historical Natural  J 

 RCP8.5 K 

CanESM2 Historical  L 

 Historical Greenhouse gas  M 

 Historical Natural  N 

 RCP8.5 O 

3.2. Pre-processing of the datasets   

Prior to estimating the elements of OF method i .e. estimating guess 

signal, internal variability and observations as described in section 2.2.2.1 of 

chapter 2 and implementing the OF method, there are some pre -processing 

steps that need to be implemented for all simulations of the model and the 

observations (NOBM).  

1.  A summary of some of the steps is provided here, see section 2.2.3 of 

chapter 2 or section 9.1 of Appendix III for details . Chl values are 

extracted from the netcdf files, rearranged and regridd ed, invalid values in 

the data are replaced by NaNs, values are converted to mg  m
-3

 and 

seasonal mean is removed from the dataset.  

2.  Remove NaNs from the data and regress data with time. This gives several  

statistical  terms of importance. These are -  

 Slope at each grid point for the time period of the dataset. This gives 

the spatial linear trend of chl in a region of the ocean. Spatial linear 
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trend is also the guess signal for the analysis, hence this step gives 

us the guess signal for each model simul ation.  

 r
2
 statist ic, i .e.  coefficient of determination gives an indication as to 

how well the regression line fits the real data points. The value of r
2  

varies between 0 and 1 with 0 being 'no fit '  and 1 being 'perfect  fi t '  

to the data.  

 F-statistic and it s p-value - F-statistic tel ls whether the linear fit ,  i .e.  

the linear trend, is significant or not. If  p -value is less than 0.05 then 

the linear trend is significant at the 95% level and if i t  is more than 

0.05 then the linear trend is not significant at t he 95% level.   

3.  Perform Lill iefors test on the residuals obtained by regressing the chl 

values against  time. Lilliefors test is used to test  the null hypothesis that  

the residuals come from a normally distributed population. The result of 

the test is  1 if the null hypothesis is rejected at 5% significance level,  

otherwise it  is 0.  

4.  For forced run of the model,  steps 2 and 3 are computed for two time 

periods. One is the 'whole time period' i .e. the time period for which the 

data is available as given in Table 2.1. For example, if model output is  

available from 1861-2005, spatial linear trend is computed for this time 

period. Longer t ime period used for computing linear trend may give a 

significant trend of chl, which may increase the possibility of climate 

change signal detection. Another time period is the 'reduced time period' 

i .e. 1999-2005. This time period is chosen to match the time period of 

models with that of observations (NOBM). As an example of the signal,  

global map of linear trend computed for 1999 -2005 from NOBM dataset  is  

shown in Figure 3-2.   
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Figure  3-2. Linear trend of global chl  ( mg m
- 3

 per month)  from NOBM (1999-2005)  

5.  Linear trend from all the forced model simulations is compared with the 

NOBM and presented in a Taylor Diagram. The statistics needed for the 

diagram are correlation coefficient  (R) between observations and model 

output, root mean square difference  (E), standard deviation of 

observations and standard deviation of model output.  

3.3. Implement OF method  

Steps to implement OF method are as follows - 

1.  Guess signal for the forced model simulations has already been obtained 

in the pre-processing step 2.  

2.  Noise covariance matrix needs to be computed from the control run of 

models. Steps used are as described in section 2.2.2.1.3 or as in section 

9.2 of Appendix III. In brief, the data from the control simulation is 

divided into two parts, one part is used to optimize the observations and 

the signals from the model forced simulations and the other part is used to 

check the consistency of the noise matrix com puted from the first part .  

Each part of the control simulation is divided into chunks of length (t ime 

period) equal to the length of observations and for each chunk signal 

(spatial linear trend) is computed. These chunks are also known as pseudo 

observations as they are masked to imitate the pattern of missing values 

found in the observations. Twice the standard deviation of the matrix 

obtained from the signal of the chunks is the noise covariance matrix.    
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3.  Dimension of the noise covariance matrix needs to  be reduced so as to  

make the computation easier to handle and also to increase the strength of 

the climate change signal in the observations. One way to reduce the 

dimension of a dataset is to reconstruct the dataset using a selective 

number of empirical  orthogonal functions of the data  Hence, for every 

region of the ocean using forced model simulations, noise covariance 

matrix is truncated. The method is described in detail in section  1.2.2 of 

Appendix II or as in 9 .3 of Appendix III using Method 1. In  th is method 

correlation coefficient is computed between optimal fingerprint (O F = C
-

1
*g, where C is the noise covariance matrix and g is the signal from the 

model forced simulation)  and the guess signal (g). This is plotted against  

the level of truncation used to reconstruct the noise covariance matrix.  

The point in the graph where there is a drop in the correlation coefficient, 

is chosen as the level of truncation. This point is chosen because this 

number of EOFs give maximum correlation and beyond this corr elation 

coefficient is either decreasing or stabilizing. Figure 3-3 shows the graph 

for determining the truncation level when the guess signal is spati al linear 

trend of North Atlantic (NA) region of the ocean computed from the 

greenhouse gas simulation of GFDL-ESM2M model.  Level of truncation 

determined from the graph is 28 (shown by the red line).   
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Figure 3-3. Example of a graph to determine the level of truncation of the noise 

covariance matrix. The chosen truncation level is 28 as at  values greater than this,  

the correlation coefficient is invariant.  

4.  At this step, all the elements needed for OF method implementation have 

been obtained i.e. the guess signal from the forced run, signal as in 

observations and the noise covariance matrix.  

5.  These three elements are input to the regression equation  

Eq 3-1.         n 

 where Y is signal from NOBM, X is signal from model forced simulation 

and n is the noise covariance matrix. Output of the OF method is the beta 

value with 5-95% confidence interval and residual of Eq 3-1. The method 

is described in detail in section 9 .4 of Appendix III. Beta values are 

obtained for all the model forced simulations in all the regions of the 

ocean. If a positive beta value with confidence interval that exceeds zero 

is estimated, it  is an indication of detection of the signal in the 

observations.  
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6.  Residuals obtained in step 5 are compared with the noise matrix computed 

from the second part of the control simulation. This is to  verify the 

consistency of the noise covariance matrices computed from the first  and 

second part of the control simulation. This comparison is made using an 

F-test, the result of which is 0 when the vectors being compared come 

from normal distributions with the same variance and is 1 otherwise. The 

method is described in step 8 of section 2.2.2.1.3  of Chapter 2 or as in 

section 9.4 of Appendix III.  

3.4. Results  

3.4.1. Trend in chlorophyll 

Linear trend at each grid point  is computed for global chl from NOBM 

(1999-2005) and all the model simulations. Significance of these trends was 

determined by p-value of F-statistic (step2 of section 2.2). Figure 3-4a below 

shows the linear trend in global chl from NOBM (1999 -2005).  Negative trend 

in chl is presented by blue shades and positive trend in chl by yellow-red 

shades. Grid points with grey co lor are regions where trend was not 

significant (p>0.05) at 95% significant level. Figure 3-4b below shows the 

mean of chl at each grid point from NOBM (1999 -2005).  Percent of grid 

points where trend is significant is 21.47% of the total grid points for wh ich 

linear trend is available. A small number of significant grid points is an 

indication that the strength of the signal is weak and that  climate change 

signal will be difficult to detect . Out of the significant grid points, 70.54% of 

grid points have negative trend. Thus, regions of the global ocean where chl 

is declining are more numerous than the regions where trend is increasing. A 

strong negative trend is also observed in the Northeast region of North 

Atlantic and North Pacific oceans. These trends ob served in global chl may 

be due to climate indices such as Pacific Decadal Oscillat ion and North 

Atlantic Oscillation (PDO and NAO) as observed by (Boyce et al .,  2010), or 

to some other internal climate forcing or to external forcings such as  

greenhouse gas and natural or, they are just part of the natural variability of 
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chl. The results of the OF method implementation will clarify the reasons 

behind the observed trends .  

a).  

 

b).  

 

Figure  3-4.  a).  Linear trend at  each grid point  in global chl  ( mg m
- 3

 per month)  

from NOBM (1999-2005).  Grey areas represent grid points where trend is not 

significant (p>0.05).  b).  Mean of chl at  each grid point  from NOBM (1999 -2005).   

Spatial linear trend was computed for all  the regions of the ocean from 

model forced simulations. Linear trend at each grid point was computed for 

two time periods i.e.  whole and reduced. Reduced time period is from 1999-

2005 which is the same as NOBM. Signal from model forced simulations is  

the response of chl to climate forcings,  detection of which in observations 
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would indicate the influence of forcings in chl concentration in the ocean. A 

shorter t ime period of linear trend computation may not give a strong signal  

i.e. the signal-to-noise ratio may not be high enough to be detected. 

Therefore, linear trend was also computed for the whole time period of model 

forced simulations. Linear trend from whole time period of simulations was 

much smaller (10
-2

 to 10
-3

) than the trends from reduced time period of 

simulations (10
0
 to 10

-1
). Figure 3-5 below shows the percent of grid points 

where trend is significant for NA region of the ocean from all the model 

forced simulations. Percent of grid points for significant trend from whole 

time period of model simulations are represented by blue bars and perce nt of 

grid points for significant trend from reduced time period of model 

simulations are represented by red bars. From Figure 3-5, it  can be seen that  

the percent of  grid points where trend is significant is higher from whole 

time period than the reduced time period for most of the model simulations 

except for F (ESM2M historical natural simulation) and N (CanESM2 

historical  natural simulation).  Thus, except for these simulations the 

possibility of climate change detection from whole time period of simulations 

will be higher than the reduced time period of simulations,  suggesting that  

long time period of data capture the climate change more distinctly t han short  

time period of data as short time series has a strong natural variability.  

 

Figure  3-5. Percent of grid points in NA region where trend in chl is significant .  
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Similar comparison of percent of grid points from whole and reduced 

time period of model forced simulations has been made for other regions of 

the ocean as well (section 10.1 of Appendix IV).   For most of the simulations 

percent of grid points from whole time period was higher than percent of grid 

points from reduced time period except IPSL historical natural simulation in 

SA, NP, SP and IO, CanESM2 historical natural in NP and ESM2M historica l  

natural in IO. The results indicate that in some of the regions of the ocean 

historical natural simulations give a higher percent of significant grid points 

for reduced time period. This may be because the short t ime series happens to  

coincide with a per iod of strong monotonic natural variability,  eg, El Niño to 

La Niña transition. Therefore, except for these simulations, the possibility of 

climate change detection from whole time period of simulations will be 

higher than the reduced time period of simula tions.  

3.4.2. Comparison of linear trend from model simulations 

with NOBM data 

Spatial linear trend i.e. linear trend at each grid point was computed 

from the model forced simulations and from NOBM. Before implementing the 

OF method using these datasets, it  is important to know how these modelled 

signals relate to observations.   

Results for North Atlantic Region  

Spatial  linear trend for NA region from NOBM and greenhouse gas 

simulations of the reduced time period of model simulations is shown in 

Figure 3-6. Spatial l inear trend from greenhouse gas simulations is chosen as 

an example for visual comparison because this is the signal that  is of int erest 

in this detection study. White spaces in the maps indicate grid points where 

there was no data from the model  output. Location of these white spaces is  

different for each model as the maps were made before cross -multiplication 

of output from climate models with NOBM model output , for implementing 

the optimal fingerprint method. Visual comparison of the spatial trends from 

model simulations (Figure 3-6 b, c & d) indicates that there is partial  
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consistency in the signals obtained from the same model forcing simulation 

from different models. For example, increasing trend observed in north -

eastern part of NA from CanESM2 (Figure 3-6 d) is also observed partially in 

spatial linear trend from ESM2M (Figure 3-6 b) and IPSL (Figure 3-6 c).  

Also, comparison of signals from model simulations ( Figure 3-6 b, c & d) 

with NOBM (Figure 3-6 a) indicates that for some simulations patterns are 

similar to NOBM at some grid points but are completely opposite at other 

grid points.  For example, declining trend observed in north -eastern part  of 

NA from NOBM (Figure 3-6 a) is also observed in spatial linear trend from 

IPSL-Hist-GHG (Figure 3-6 c), but from CanESM2-Hist-GHG (Figure 3-6d) 

shows an increasing trend in north -eastern part  of NA.  

  a).       b).   

 

  c).       d).   
 

 

Figure 3-6. Spatial  l inear trend in chl (mg m
- 3

 per month) for NA region from a).  

NOBM and reduced t ime period of b).  GFDL -ESM2M Historical  GHG c).  IPSL 

Historical  GHG and d).  CanESM2 Historical  GHG simulations.  White spaces 

indicate gap in the data.  
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Statist ical terms of comparison between spatial line ar trend from model 

simulations and NOBM that were computed are correlation coefficient,  

centered root mean square difference and amplitude of the variation i.e. 

standard deviation The results are presented in the form of a Taylor Diagram 

(Taylor, 2001) (Figure 3-7). Table of values associated with the Figure are 

presented in (Table 10.1 in Appendix IV). Figure 3-7a shows statistical terms 

of comparisons when spatial linear trend was computed from whole tim e 

period of simulations. Figure 3-7b shows statistical terms of comparisons 

when spatial linear trend was computed from reduced t ime period of 

simulations.  

a).   

b).   

Figure  3-7.  Taylor  diagrams associated with the comparisons of  spatial  l inear trend 

for NA region computed from a).  whole t ime period of simulations b).  reduced t ime 
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period of simulations with spatial  l inear trend for NA region computed from 

NOBM.  

From Figure 3-7, it  can be seen that  the correlation coefficient for al l 

the model simulations is low (-0.2547 to 0.3477 in this study).  Low 

correlation coefficient indicates that the spatial linear trend from model 

simulations is not correctly phased with NOBM. For most of the simulations 

correlation coefficient changes sign and magnitude for  the two time periods 

for which linear trend is computed. This indicates that signal from whole 

time period of data is not the same as the reduced time period of data and 

they should be treated as two different metrics of signal computation. It  

should also be noted from Figure 3-7 that there is only partial consistency in 

the sign of correlation coefficient obtained from same forcing simulation 

from different models. For example, correlation coefficient obtained for 

whole time period of historical greenhouse gas simulation from ESM2M and 

IPSL model is negative but for CanESM2 model correlation coefficient is  

positive.  

From Figure 3-7, it  can also be seen that the standard deviation of all 

the model simulations is lower than NOBM for the 'whole t ime period'. On 

the other hand, for the reduced time period, standard deviation for some 

model simulations is  larger than NOBM. The difference between the standard 

deviations of NOBM and model simulations for the whole time period (10
-4

) 

is higher compared to the difference between the standard deviations of  

NOBM and the model simulations for the reduced time period (10
-5

).  From 

this it  can be concluded that the amplitude of the spatial l inear trend from the 

'whole time period' of model simulations underestimates the amplitude of the 

spatial linear trend of chl and the 'reduced time period' of model simulations 

gives a much closer estimate to the amplitude of the spatial linear trend from 

NOBM.  

Similar comparison of data has been made for other regions of the 

ocean as well and the result  of the comparisons ar e presented in section 10.2 

of Appendix IV. In summary it can be said that  
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 Signals (spatial linear trend) from model forcing simulations are not 

consistent with each other. This is indicated in the visual comparison of 

signals where increasing/decreasing trends observed in a part of an ocean 

region from one model simulation are not observed in another model 

simulation. Also, increasing/decreasing trends observed in a part of an 

ocean region from NOBM are not seen in all model  simulations. Thus, 

there is  lack of consistency in the signals from different models.  

 Correlation coefficient between signal from NOBM and signals from both 

the time periods of model simulations is low for all the regions of the 

ocean. This indicates that model simulations are not cor rectly phased with 

observations. Low values of the correlation coefficient also indicate that it  

might be difficult  to detect the signal from forcing simulations in the 

observations.  

 For most of the model simulations correlation coefficient changes sign 

from whole to reduced time period of simulations. This indicates that  

signals from whole and reduced time period of simulations are not the 

same and are to be treated as different metrics of signal computation.  

 For all the regions of the ocean, standard dev iation of all the signals from 

model simulations for both the time periods is lower than standard 

deviation of signal from NOBM. This indicates that model simulations 

underestimate the amplitude of the spatial  linear trend of chl.  

3.4.3. Dimension reduction of noise component 

One of the keys to detection of a signal is to reduce the dimensions of 

the elements of the OF method i .e. observations,  model forcing simulations 

and noise from model control simulation. Reduced dimension of the datasets 

increases the signal-to-noise ratio and hence the possibility of signal 

detection increases.  Dimension is reduced in several ways such as by 

reducing the spatial  and temporal resolution of the datasets and selecting a 

limited number of empirical orthogonal functions to represent the data. 

Reduction of dimension needs to be done in a balanced way so as to not lose 

the relevant information and also to not increase the complexity by keeping 

more dimensions than necessary in the data. Out of the three elements of OF 
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method, noise/internal variability is the most complex element and its  

accurate estimation is significant in signal detection. For chl, internal 

variability cannot be derived from observations due to lack of long -term chl 

data and therefore it is computed from model control simulatio ns. EOF 

analysis is used to reduce the dimension of the noise matrix. The 

methodology is described in step 3 of section 2.3 of this chapter.  In this 

method, the noise matrix is reconstructed using a reduced number of 

eigenvectors known as the level of trun cation.   

Percent of EOFs chosen to reconstruct the noise covariance matrix for 

all the regions using model forced simulations for the 'whole time period' and 

the 'reduced t ime period' ranges from 4.9 to 48.91 ( Table 10.6 of Appendix 

IV) and the variance represented by the chosen number of EOFs ranges from 

96.14 to 100. This shows that more than 50% of the eigenvectors can be 

removed from the noise covariance matrices which reduces the dimension of 

the noise matrix considerably.   

3.4.4. Consistency of internal variability 

Due to lack of long-term homogeneous chl data,  internal 

variability/noise is  computed from the model control simulations.  Accurate 

estimation of the noise is a crucial element to detection of a signal. If noise 

from the model simulations is underestimated or overestimated, significance 

of the estimated values of the scaling factors of the forcing signals in the 

observations would be questionable. Therefore, consistency check on the 

noise covariance matrix computed in step 2 of section 2.3 is perfor med. If the 

test fai ls then it indicates that the noise term is not accurate. If the test  

passes it indicates that the noise term has been estimated properly.  Table 3-3 

below shows result of the F-test for each OF method implementation i.e.  

signal detection for each region of the ocean using the forced model 

simulations. In the Table, passing of the test is represented as 'P ' and failing 

of the test  is represented as 'F'.  Simulations for which the consistency test  

passes, are highlighted by green color.  
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Table 3-3. F-test result for each OF implementation. 'P ' indicates Pass and 'F' 

indicates Fail. Green box indicates simulations where consistency test passes.  

Model 

Simulation  

NA SA NP SP IO 

W R W R W R W R W R 

B F F F F F F F F F F 

C F F F F F F F F F F 

D F F F F F F F F F F 

F F F F F F F F F F F 

G F F F F F F F F F F 

H F F P P F F F F F F 

I P F P P F F P F F F 

J F F F F F F P F F P 

K F F P F P F P F F F 

L F F F F F F F F F F 

M F P F F F F F F P P 

N F F F F F F F F P P 

O P F F F F F F F P F 

From Table 3-3 above it is seen that the internal variabili ty is not 

consistent for most of the model simulations. This may be due to several  

reasons : inaccurate representation of noise from the control ru n; the control  

run itself may not represent the internal variability of the chl accurately and 

residuals may contain influence of the external forcing. Inaccurate internal 

variability affects the detection results as removal of noise is an important 

aspect of the OF method. It might lead to the failure of signal detection by 

the OF method as the signal -to-noise ratio may not be high enough to be 

detected. Therefore, possibility of a posit ive scaling factor i.e. detection of a 

signal would be high for the model forcing simulations for which the 

consistency test of the noise covariance matrix passes (highlighted in green 

above). Positive scaling factor may also be determined for the simulations for 

which the consistency test fails. However, inaccurate estimati on of internal 

variability would tend to underestimation of the uncertainties in the 

estimated scaling factors.  Therefore, only those model simulations for which 
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both the consistency test is passed (Table 3-3) and a positive and statistically 

significant beta is obtained should be considered to have detected a signal.  

3.4.5. Detection of signals 

Optimal fingerprint  method described in section 2.3 is applied to  

evaluate the detection of observed changes in response to external forcings. 

Statist ically significant scaling factors (  ) determined as a result of the 

fingerprint analysis are indicative of the detection of an external signal in 

observations. Scaling factors are considered to be significant when their 

values are positive and their confidence intervals are different from 0. In the 

case where the scaling factor is negative it indicates that the signal is not 

detected. There may be several reasons for a neg ative scaling factor. First ,  

there is no climate change signal present in the observations. Second, the 

signal-to-noise ratio is not strong enough to be detected. This may be due to  

misrepresentation of the noise from the control run. Third, there may be t oo 

much small -scale variability in observations for them to be compared to the 

smoothed model fields.  

Scaling factors obtained as a result  of the implementation of the OF 

method in spatial linear trend of chl in NA region of the ocean (using spatial  

linear trend from model forced simulations as the signal) is shown in Figure 

3-8.  
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a).   

 

b).   

Figure  3-8.  Graph of  signal amplitude along with the Confidence Interval  (CI),  

obtained for OF implementation in NA region using signals from whole and 
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reduced t ime period of model simulations.  a).  result  for  both whole (blue)  and 

reduced (red) t ime period of model s imulations used to compute the signal.  b).  

result  for only reduced t ime period of model simulations.  

Table associated with Figure 3-8 is given in (Table 10.7,  Appendix 

IV). Figure 3-8 above shows the beta values obtained in NA region for 

signals obtained from model forced simulations along with the confidence 

interval (CI) associated with each beta value. For the whole tim e period of 

model simulations,  i t  can be seen from the Figure 3-8a (blue dots and CI 

lines) that positive beta values are obtained for signals from who le time 

period of GFDL-ESM2G historical, GFDL-ESM2M historical GHG, GFDL-

ESM2M RCP8.5, IPSL historical , IPSL historical  GHG, IPSL RCP8 .5, 

CanESM2 historical GHG and CanESM2 RCP8 .5 simulations.  This indicates 

that  signals from these model simulations are de tected in the observations.  

For the reduced time period of model simulations, it  can be seen from Figure 

3-8b (red dots and CI lines) that positive be ta values are obtained for signals 

from reduced time period of GFDL-ESM2M historical GHG, IPSL historical,  

IPSL historical GHG, IPSL historical natural,  IPSL RCP8 .5 and CanESM2 

historical  simulations. As there is no consistency in the estimation of scaling  

factor values from the four models, it  is difficult to judge the result of the 

detection of a signal from particular model simulation in the observations. 

For example, for the signals from the whole time period of model 

simulations,  positive scaling facto rs are obtained for historical  simulation 

from GFDL-ESM2G and IPSL models. For the other two models (GFDL -

ESM2M and CanESM2) scaling factors are negative. Thus, it  is difficult to 

conclude the detection result of the signal from historical forcing simulati on 

in the observations.  

Significance of the scaling factors for the simulations for which the 

consistency test failed (Table 3-3) is questionable and therefore, only those 

results are considered significant where the consistency test passed. Thus, the 

graph below (Figure 3-9) shows results for the OF implementation using the 

signals from the model simulations where the consistency test passed. 



 

99 
 

Simulations from whole and reduced time period of model simulations is 

represented with a 'W' and 'R' respectively.   

 

Figure  3-9. Scaling factor and their  5 -95% CI for signals from model forced 

simulations for which consistency test  passes in NA region.   

As it can be seen from the Figure 3-9 above, scaling factors for whole 

time period of greenhouse gas simulation from IPSL model and RCP8.5 

simulation from CanESM2 model is 24.516 and 5.253 which are significantly 

different from 0 with 5-95% confidence interval. This indicates that the 

effect of greenhouse gas forcing is detected in the observations and the effect  

of future emissions too is large enough to be detected. Since, the beta values 

are greater than unity,  it  can be inferred that  the model si mulated response of 

chl to external forcings is significantly underestimated and it needs to be 

amplified (by a factor of ~24 and ~5) to be consistent with observations.  

Trends from observations and model simulations for which signal is detected 

are shown in Figure 3-10. The difference in the scale of trends from 

observations and models is (10
-1

). It  can be observed that in the observations 

(Figure 3-10a) there is a declining trend in northeast region of NA which is 

also observed in RCP8.5 simulation from CanESM2 model ( Figure 3-10c). On 

the other hand, in the greenhouse gas simulation from IPSL model ( Figure 
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3-10b) there is a region of increasing trend in chl in northeast region 

surrounded by a region of decreasing trend.  

  a).           b).  

 

c).  

Figure  3-10.  Spatial  l inear trend of chl  ( mg m
- 3

 per month)  in NA region of  the 

ocean from a).  NOBM, b).  whole t ime period of greenhouse gas simulation from 

IPSL model and c).  whole t ime period of RCP8.5 simulation from CanESM2 model.  

b and c maps are from model simulations for which a signal is  detecte d. 

Results of the OF method of detection and attribution in other regions 

of the ocean are presented in section 10.4 of Appendix IV. The global  map 

below (Figure 3-11) shows the model simulations for which the signal was 

detected in the regions of the ocean. Signals from whole and reduced time 
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period of model simulations are represented with a 'W' and 'R' at the end of 

their name.  

 

 

Figure  3-11. Global map showing the model simulations for which the signal was  

detected in the regions of the ocean  

 Summarizing the results of the OF analysis it  is found that in SA 

region of the ocean signal from reduced time period of greenhouse gas 

simulation from IPSL model is detected. Scaling factor determined is 1.218 

which is significantly different from 0 with  5-95% confidence interval. This  

indicates that the effect of greenhouse gas forcing is detectable in the 

observations. As the beta value is ~1, it  can be inferred that model simulated 

response of chl to external forcing is consistent with observations. Tr ends 

from observations and model simulations for which signal is detected are 

shown in Figure 3-12. It can be observed that in the observations ( Figure 

3-12a) there is a declining trend in the lower latitudes and an increasing 

trend in upper lat itudes. This pattern of spatial trends is also observed  in 

greenhouse gas simulation from IPSL model ( Figure 3-12b).  
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Figure  3-12.  Spatial  l inear trend of chl (mg m
- 3

 per  month)  in SA region of the  

ocean from a).  NOBM and b).  reduced t ime period of greenhouse gas simulation 

from IPSL model.  b  is map from model simulation for which signal  is detected.  

In NP region of the ocean, signal from whole time period of RCP8.5 

simulation from IPSL model is detected. Scaling factor determined is 6.924 

which is significantly different from 0 with 5 -95% confidence interval. This  

indicates that the effect of future emissions is large enough to be detectable.  

Since, the beta value is greater than unity,  it  can be inferred that the model 

simulated response of chl to external forcings is significantly underestimated 

and it needs to be amplified (by a factor of ~6) to be consistent with 

observations. Trends from observations and model simulations for which 

signal is detected are shown in Figure 3-13. The difference in the scale of 

trends from observations and models is (10
-1

). It  can be observed that in the 

observations (Figure 3-13a) there is a declining trend in the higher latitudes 

and increasing trend in lower latitudes.  On the other hand, in the RCP8.5 

simulation from IPSL model (Figure 3-13b) the whole region has declining 

trend except for a small patch of increasing trend in chl.  
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a).  

b).  

Figure  3-13.  Spatial  l inear trend of chl ( mg m
- 3

 per  month)  in NP region of the  

ocean from a).  NOBM and b).  whole t ime period of RCP8.5 simulation from IPSL 

model.  b  is map from model simulation for which a signal is  detected.  

In SP region of the ocean, signal from whole time period of greenhouse 

gas, natural and RCP8.5 simulation from IPSL is 5.679, 19.524 and 3.129 

respectively. As can be seen that the confidence intervals of the scaling 

factors are not different from 0 theref ore it indicates that changes in the chl 

observations in SP region are also caused by internal variability. Trends from 

observations and model simulations for which signal is detected are shown in 

Figure 3-14. The difference in the scale of trends from observations and 

models is (10
-1

). It  can be observed that in the observations ( Figure 3-14a) 

there is a increasing trend in most of the regions in SP except for a small  

region in higher lat itudes where declining trend is observed. On the other 

hand, in model simulations (Figure 3-14b, c& d) a declining trend is observed 

in lower lat itudes and an increasing trend is observed in higher latitudes.  

     a).       b).   
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     c).       d).   

 

Figure  3-14.  Spatial  l inear trend of chl ( mg m
- 3

 per  month) in SP region of the  

ocean from a).  NOBM, whole t ime period of b).  greenhouse gas simulation c).  

natural  forcing simulation and d).  RCP8.5 simulation from IPSL model.  b,  c and d 

maps are from model s imulations for which a  signal is  detected.  

In IO region of the ocean, signals from whole time period of 

greenhouse gas and RCP8.5 simulation from CanESM2 model and reduced 

time period of greenhouse gas from CanES M2 model are 5.534, 1.524 and 

0.352. As can be seen (Figure 10-15 in Appendix IV) that  the confidence 

intervals of the scaling factors is not different from 0 therefore it indicates 

that  changes in the chl observations in IO region are also caused by natural  

internal variabili ty.  Trends from observations and model simul ations for 

which signal is detected are shown in Figure 3-15. From the Figure 3-15a & b 

it is observed that the pattern of increasing or decreasing trend is patchy in 

both NOBM and model.  
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a).  

b).  

Figure  3-15.  Spatial  l inear trend of chl ( mg m
- 3  

per month) in IO region of the 

ocean from a).  NOBM and whole t ime period of b).  greenhouse gas simulation from 

CanESM2 model.  b is map from model simulation for which signal is detected.  

3.5. Discussion 

This study presents,  for the first time, an optimal fingerprint analysis  

detecting statistically significant changes in chl in the regions of the ocean, 

in response to external forcing, as different from internal variability.  Chl 

concentration in the ocean is regulated by solar energy and nutrients 

available to phytoplankton for photosynthesis. Availability of solar energy 

and nutrients to phytoplankton is driven by mixing and water column 

stratification which are in turn driven by ocean circulation, wind p atterns and 

surface ocean temperatures (Sarmiento et al . 2004). Impact of climate 



 

106 
 

forcings (natural or anthropogenic) on any of these parameters leads to an 

impact on chl in the water as well.   

Several studies have investigated global trends in chl concent ration 

(Gregg et  al .,  2003b, Gregg, 2005, Behrenfeld et al. ,  2006, Boyce et al .,  

2010). Boyce observed long-term trends in chl (1899 to 2008) by blending 

chl derived from transparency and direct in -situ optical  measurements. 

Declining trend in chl was observed in eight out of ten ocean regions,  and 

global rate of decline was estimated at 0.006 mg m
-3

 yr
-1

,  which is 

approximately 1% of the global median per year. The changes observed by 

Boyce were questioned (Mackas, 2011, Rykaczewski and Dunne, 2011,  

McQuatters-Gollop et al. ,  2011) but most other studies have also concluded 

that a decline in global average chl is occurring (Gregg et al. ,  2003b, 

Behrenfeld et  al .,  2006 , Sommer and Lengfellner,  2008 , Mackas, 2011).  

However none of the studies have distinguished between changes observed in 

chl due to internal variability and climate forcings. This study attempted to 

make this distinction by implementing optimal fingerprint method of 

detection and attribution in chl concentration in different regions of the 

ocean.     

Spatial linear trend computed from whole time period of model 

simulations had more grid points where trend was significant than the spatial  

linear trend from reduced time period of model simulations.  Thi s indicates 

that the signal from the whole time period is stronger and hence the 

possibility of i ts detection in observations increases. This is  reflected in the 

significant scaling factors estimated for the signals from model simulations.  

Only SA and IO (Figure 10-11 and 10-16 in Appendix IV) had signals  

detected from reduced time period of model simulations. Other regions of the 

ocean (Figure 10-14 in Appendix IV and Figure 3-9) had signals detected 

from the whole time period of model simulations. This indicates that the 

longer the time period from which signals are computed, the higher the 

signal-to-noise ratio and hence, the higher the possibility of signal detection. 

Also, longer time periods capture the change more accurately than shorter 

time periods.  



 

107 
 

Comparison of observations with model forcing simulations show that  

trend in chl from observations ranges globally from -0.0060 to 0.0041 (10
-3

) 

mg m
-3

 per month which is much higher compared to the linear trend from 

model simulations which typically ranges from 10
-4

 to 10
-5

 mg m
-3

 per month. 

This shows that model simulations underestimate the trend in chl which is 

also reflected in the value of the scaling factors estimated for the trend in chl 

from model simulations. The reason for the underestimation of trends in chl 

may be that  chl observations have too much small  t ime-scale variability to be 

compared with smoother model fields or it  may be due to m odel errors which 

cause weak signals from model forced simulations. The result of the 

comparison in all the chosen regions of the ocean show that correlation 

coefficient between trend obtained from model simulations and observations 

is very low (-0.5433 to 0.4206 in this study).  Low correlation coefficient 

indicates that  the strength of the signal from model simulations is  very low 

signifying that the models don't do a good job of reproducing trends in data 

and hence it is challenging to detect the signal i n observations. Also, there 

was no or partial consistency in the correlation coefficient obtained for same 

forcing simulation from different models or for signals from whole and 

reduced time period of model simulations indicating the uncertainties and 

unreliability of the spatial pattern of trends in chl obtained from climate 

models. Uncertainties in climate models can be removed to an extent by 

taking model ensemble mean. This may also improve the representation of 

noise from model control simulation.  

Consistency check test of the internal variability/noise computed from 

the control simulations of GFDL-ESM2G and GFDL-ESM2M models failed 

for al l the regions of the ocean and for all the signals from model forced 

simulations. However, consistency test of n oise from control  simulations of 

IPSL and CanESM2 model passed for some regions of the ocean and for some 

signals from model forced simulations.  There are a number of potential  

explanations for failing of the consistency check. One possibility and the 

most probable cause is that there are elements of the observed chl variability 

which are not well captured by the model in the region of study. This is  

reflected in the results: for the same model simulation, the consistency check 
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of noise covariance passes in  one region of the ocean but fails in another  

region. For example,  for signal from whole time period of IPSL greenhouse 

gas simulation, consistency test for noise from IPSL control simulation 

passes in NA, SA and SP regions of the ocean but it  fails  in NP and IO 

regions (Table 3-3). This is indicative of the presence of external forcing in 

the residuals obtained from the linear regression i.e. the signal  from model  

simulations does not capture the response of chl to external forcings 

accurately or response is not linear, or there isn't  really a big trend. It is also 

concluded from here that representation of the noise matrix is accurate and 

the methodological choice made to compute the noise/internal variability is  

not the cause of biased results in different regions of the ocean from the same 

model simulation. Another possibility is  that  internal variabil ity is  not being 

estimated by the models accurately due to model errors or uncertainties. Due 

to failure of the consistency check, significance of the scaling factors  

estimated for the signals from model forced simulations is dubious.  

Therefore, results for only those simulations were considered significan t 

where consistency check for noise covariance matrix passes.   

Detection of the signal from model forced simulations is indicative of 

the patterns of change observed in the signal being present in observations as 

well. The magnitude of the pattern of chang e is represented by the deviation 

of the scaling factor from unity. In NA region, patterns of spatial linear trend 

from whole time period of greenhouse gas and RCP8.5 simulation from IPSL 

model are detected in the observations ( Figure 3-10b). From Figure 3-10 it is  

observed that in NA region, there i s a patch in the northeast region of 

subtropical and mid-latitudes (40-50
o
N & 13-45

o
W) where there is an 

increasing trend surrounded by region of decreasing trend. Also, decreasing 

trend in chl is observed in sub -tropical  latitudes in NA (25-40
o
N). These 

observed trends due to greenhouse gases were predicted by Doney (2006) 

(Figure 1.4). Increase in water surface temperature due to greenhouse gases 

would increase stratification and  reduce mixing and hence the supply of 

nutrients to the upper ocean waters decreases, leading to a decrease in chl 

concentration. On the other hand, incr eased water surface temperature in 

higher lat itudes results in shallowing of the mixed layer, which increases the 
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light availability to phytoplankton and hence chl concentration increases.  

This relationship of water column stratification to chl concentrati on in the 

water has also been observed in other studies (Behrenfeld et  al.,  2006).   

In SA region, pattern of spatial linear trend from reduced time period 

of greenhouse gas simulation from IPSL model is detected in the observations 

(Figure 3-12b). From the Figure 3-12b it is observed that  in SA region, a 

declining trend in chl occurs in sub -polar and mid-latitudes (40-60
o
S) and an 

increasing trend is observed in sub-tropical (25-30
o
S) and sub-polar to polar 

latitudes (60-75
o
S). Declining trends in mid to high latitudes again may 

relate to the changes in stratification of the water column due to increased 

water temperature. However,  increasing trends observed in low lati tudes are 

not as expected in relation to the increas ed stratification due to increase in 

water temperature. This may be due to increase in the nitrogen fixing 

phytoplankton in these regions which may lead to increased chl concentration 

(Capone et al .,  1997, Carpenter and McCarthy, 1975, Turk et  al .,  2011) 

however the models used here don't include these parameters (except GFDL) 

so the particular mechanism at work in the model is unclear.  Another reason  

may be due to influx of nutrients in the upper ocean from some external  

source such as saharan dust or river input (Gallisai et al.,  2014, Hamza et al.,  

2011, Ye et  al.,  2011, Resing and Barrett,  2014, Subramaniam et al. ,  2008).   

In NP region, pattern of spatial linear trend from whole time period of 

RCP8.5 simulation from IPSL model is detected in the observations ( Figure 

3-13b). Since signals from historical  simulations are not detected in the 

observations, it  indicates that either chl concentration in NP is not affected 

by external forcings or the signal is not strong enough to be detected. As 

signal from future emission scenario is  being detected i t indicates that the 

enhanced level of emissions in the future may impact chl concentration in the 

NP ocean. In conclusion, as of the present time, chl concentration is not 

being affected by external forcings in NP region of the ocean.  

In SP region, pattern of spatial  linear trend from whole time period of 

greenhouse gas, natural  and RCP8.5 simulation from IPSL is detected in the 

observations (Figure 3-14). From Figure 3-14 it is observed that in SP region, 
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declining trend is observed in eastern sub -tropical  and mid-latitude region 

(25-60
o
S and 85-165

o
W). Increasing trend in chl is  observed in western 

region of sub-polar and mid-latitudes (45-75
o
S). Since the signal from natural  

forcing simulation is also detected in the observations,  it  indicates that 

greenhouse gases alone are not responsible for the observed change and 

natural forcings (solar and volcanic) are  also impacting chl concentration in 

SP region. Declining trends in lower latitudes and increasing trends in higher 

latitudes are again related to the change in stratification due to increased 

water temperature as predicted by Doney (2006).  

In IO region, pattern of spatial linear trend from whole and reduced 

time period of greenhouse gas and RCP8.5 simulation from CanESM2 model 

is detected in the observations (Figure 3-15). From Figure 3-15 it is observed 

that the pattern of increasing or decreasing trend is patchy. For example,  

there is a patch of increasing trend in eastern mid -latitudes,  then there is a 

patch of decreasing trend in north -western lat itudes and south -eastern 

latitudes. This patchiness makes it difficult to judge the probable cause of the 

trends in chl. Figure 10-16 in Appendix IV, shows that confidence interval 

for the scaling factors is not different than 0. This indicates that changes 

observed in chl are caused due to internal variability too i.e. internal 

variability was not removed completely from the signals or observ ations.   

The magnitude of the scaling factors where the signal from model 

forced simulations is detected is greater than unity for most of the 

simulations except for reduced time period of greenhouse gas simulation from 

CanESM2 model (Table 10-11 of Appendix IV). Scaling factors less than 

unity indicate that  the response of chl to external forcings is being 

overestimated by models and scaling factors greater than unity indicate that  

the response of chl to external forcings is being underestimated by models 

(Saba et al.,  2011, Seferian et al .,  2013).  Climate system is a complex system 

and models attempt to represent this system simply, therefore there may be 

some variability in chl which may be difficult  to simulate and hence the 

trends in chl concentration are being underestimated by the climate models.   
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3.6. Summary and conclusions 

The spatial linear trend of chl in different regions of the ocean was 

taken as the guess signal to detect climate change in chl.  Linear trend was 

computed for two time periods i.e.  'whole' and 'reduced' of model  

simulations. Internal climate variabili ty was computed from the control run 

of the models. Optimal fingerprint method was then used to suppress the 

noise in observations and the forced simulations of the models.  This 

enhanced the signal-to-noise ratio and the possibili ty of the climate change 

signal to be detected increased. Conclusions made by the study are - 

1.  Longer time periods used for computing the spatial linear trend f rom 

model forced simulations capture the change in chl more accurately than 

trends computed from shorter time period.   

2.  Models perform poorly in simulating the response of chl to external 

forcings and the internal variabili ty of chl.  

3.  Distinct  patterns of change are not observed in the signals from the 

models simulations.   

4.  Changes observed in the detected signals in the regions of the ocean 

mostly indicate decline in chl trends in lower latitudes and an increasing 

trend in higher lati tudes which follows the  predicted trend in chl by 

Doney (2006).  

5.  Natural forcing signal from IPSL model is detected in SP region of the 

ocean indicating that  natural forcings are contributing towards the change 

in chl observed in this region.  

6.  No forcing signal from any model is detected in NP region of the ocean 

but detection of the signal from RCP8.5 simulation of IPSL model shows 

the possibil ity of the signal being detected in the future.  

7.  Greenhouse gas forcing signal from IPSL model is  detected in North 

Atlantic,  South Atlantic and South Pacific and from CanESM2 is detected 

in Indian Ocean region. This indicates that anthropogenic forcings are 

contributing towards the change in chl observed in these regions.  
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4. Climate Change Detection and Attribution for 

Linear Trend of Zonal Average of Chlorophyll  

In the previous chapter, the metric of climate change detection was 

taken as the spatial linear trend of chl. The results of detection and 

attribution from two of the four models were considered insignificant as  the 

consistency test failed for those models.  A consistency test  can fail due to 

several reasons; one is that the residuals may contain the influence of the 

external forcing; second is inaccurate estimation of the internal variability;  

third is that there are elements of the observed chl variability which are not 

well captured by the model. Another reason for failing to detect a signal or 

failing the consistency test for noise can be that the metric defined in chapter 

3 (spatial linear trend) may not provi de a distinct  fingerprint  of climate 

change in chl. Failure of a metric to capture climate change might be due to 

the small-scale variabili ty present in the signal. This can be removed by 

reducing the dimension of the dataset  spatially and temporally.  Cons idering 

this, another metric was defined as the l inear trend of the zonal average of 

chl in a region. Zonal average reduces the two -dimensional spatial chl values 

to one-dimensional values and linear trend reduces the time dimension; the 

signal produced is  thus a one-dimensional vector. Zonal mean has been used 

before by studies in successfully detecting climate change in salinity (Terray 

et al. ,  2012) and oxygen (Andrews et al. ,  2012) fields.  

This chapter mainly describes the results of the implementation of  

Optimal Fingerprint method when the guess signal is the linear trend of the 

zonal average of chl in a region. The first section of the chapter gives the 

details of the dataset  used and the regions of the ocean where the signal is to 

be detected. For the purpose of presentation of results with clarity,  North 

Atlantic region is used here as a case study. Results for other regions of the 

ocean are presented in the Appendix and the summary of those results is 

presented in the main chapter text. Second section of the chapter describes 

some of the basic statistics performed on the  datasets for different regions of  

the ocean. Comparison of the results is  made for different datasets and for 

different time periods. The third section of the chapter describes the 

methodology used to implement OF method on linear trend of zonal average 
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of data. Fourth section of the chapter is the results section along with the 

interpretation of the results. Fifth section summarizes the conclusions of the 

analysis.  

4.1. Data  

The datasets used for the analysis are as mentioned in chapter 2. As 

observations, chl from NOBM is used in the analysis and simulations from 

GFDL-ESM2G, GFDL-ESM2M, IPSL and CanESM2 models are used to 

compute the signal and the noise (Table 2.1). Regions of the ocean for which 

linear trend of zonal average of chl is computed are the same that were used 

in chapter 3 (see Table 3.1 and Figure 3.1). Also, as in chapter 3, each 

dataset i .e. observations and model simulations are represented by a  letter of 

the alphabet (see Table 3.2).   

The pre-processing steps in this chapter are the same as in chapter 3 

(section 2.2) with the difference in the signal computation. Instead of  

computing the spatial linear trend as in chapter 3, linear trend of zon al 

average is computed in this chapter. Steps to compute linear trend of zonal 

average are as follows- 

 Compute zonal average for each time step of the dataset.   

 Compute linear trend at each grid point .  This gives the linear trend 

of zonal average of chl from every dataset for each region of the 

ocean. Thus, the guess signal is obtained for the analysis from each 

model simulation.  

For the forced run of the model, the linear trend of the zonal average is 

computed for two time periods. These are the same as d escribed in chapter 3  

i.e. the 'whole' and 'reduced' time period. Comparison of signals from all the 

forced model simulations is done with NOBM in a similar manner as in 

chapter 3.  

After pre-processing of the datasets,  OF method is implemented 

following the same steps as described in chapter 3 (see section 3) i .e. signal 

from observations and model simulations and noise from control run is 
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computed and input to the regression equation (eq 3.1) to solve for scaling 

factors i.e.  . Scaling factor values are obtained for all the model forced 

simulations in all  the regions of the ocean. If positive beta value with 

confidence interval that exceeds zero is estimated, it  is an indication of 

detection of the signal in the observations.  

4.2. Results  

4.2.1. Comparison of linear trend of zonal average from 

model simulations with NOBM data 

Linear trend of zonal average i.e.  linear trend at each grid point  was 

computed from the model forced simulations and from NOBM. Before 

implementing the OF method using these datasets i.e. to detect the signals 

from model simulations in observations,  it  is  important to know how these 

signals relate to observations. A comparison of linear trend of zonal average 

from the model simulations with linear trend of zonal average from NOBM 

was done.  

Results for North Atlantic Region  

Linear Trend of zonal average for NA region from NOBM and 

greenhouse gas simulations of the whole and reduced time period of model 

simulations is shown in Figure 4-1. Linear trend of zonal average from 

greenhouse gas simulations is chosen as an example for visual comparison 

because this is the signal that is  of interest  in this detection study. Trends 

from NOBM and reduced time period of simulations were  10 times higher 

than the trends from whole time period of simulations,  therefore for clarity in 

presentation; trends from NOBM were plotted after dividing them by 10. 

From Figure 4-1 it can be seen that in observations (blue line in graph), the 

linear trend of zonal chl decreases in the mid -latitudes (35
o
 to 55

o
 N) in NA 

region. This decrease in trend is also observed in all the model forced 

simulations from whole t ime period ( Figure 4-1a) and reduced time period 

(Figure 4-1b) but with a slight shift  toward the south compared to the 
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observations. For example, the declining trend from whole and reduced time  

period of greenhouse gas simulation from IPSL is from 25
o
 to 50

o
 N which is 

shifted southward compared to the declining trend in NOBM (35
o
 to 55

o
 N).  

From Figure 4-1 it can also be seen that the pattern of trends from ESM2M -

Hist-GHG and CanESM2-Hist-GHG follow each other closely in all the 

latitudinal zones. The pattern of trend from IPSL-Hist-GHG also follows the 

other two models except in northern la titudes (55
o
 to 65

o
N) where the pattern 

is much more similar to the observations (NOBM). Thus, visual comparisons 

of the trends from model simulations indicate consistency between signals 

obtained from the same model forcing simulation from different model s. 

Also, pattern of trends from model simulations are similar to patterns from 

NOBM. Statistical terms of comparison such as correlation coefficient are 

also computed and presented in the form of Taylor diagram ( Figure 4-2).  
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a).  

b).   

Figure  4-1. Linear Trend of zonal average ( mg m
- 3  

per month) for NA region from 

NOBM (data x 10
- 1

)  and greenhouse gas  simulations from models.  a) .  Linear trend 

computed for  whole t ime period and b).  Linear trend computed for reduced t ime 

period.  

Statist ical terms of comparison between linear trend of zonal average 

from model simulations and NOBM that were computed are c orrelation 

coefficient, centered root mean square difference and amplitude of the 

variation i.e. standard deviation. Linear trend of zonal average for model 
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simulations was computed for two time periods i.e.  whole and reduced. The 

results are presented in the form of a Taylor Diagram (Taylor, 2001) (Figure 

4-2).  Table of values associated with the Figure are presented in Table 1 of 

section 11.1 in Appendix V. Figure 4-2a shows statist ical  terms of 

comparison when linear trend of zonal average was computed from whole 

time period of simulations. Figure 4-2b shows statistical terms of comparison 

when linear trend of zonal average was computed from reduced time period 

of simulations.  

a).   

b).   

Figure 4-2. Taylor diagrams associated with the comparisons of  l inear trend of 

zonal average for NA region computed from a).  whole t ime period of simulations 

and b).  reduced t ime period of simulations,  with l inear trend of zonal average for  

NA region computed from NOBM.  
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From Figure 4-2, it  can be seen that  the correlation coefficient for al l 

the model simulations is moderate ( -0.74059 to 0.72513 in this study). This 

indicates that linear trend of zonal average from some model simulations is  

partially phased with NOBM. For most of the simulations correlation 

coefficient changes sign and magnitude for the two time periods for which 

linear trend is computed. This  indicates that signal from whole time period of 

data is not the same as the reduced time period of data and they should be 

treated as two different metrics of signal computation. It should also be noted 

from Figure 4-2 that the sign of the correlation coe fficient from same forcing 

simulation for different models is consistent for whole time period of 

simulations. For example, correlation coefficient obtained for whole time 

period of historical  greenhouse gas simulation from ESM2M, IPSL and 

CanESM2 is posit ive but for reduced time period correlation coefficient is  

positive for greenhouse gas simulation from IPSL and is negative for 

greenhouse gas simulation from ESM2M and CanESM2.  

From Figure 4-2, it  can also be seen that the standard deviation of all 

the model simulations is lower than NOBM for the 'whole t ime period'. On 

the other hand, for the reduced time period, standard deviation for some 

model simulations is  larger than NOBM. The difference between the standard 

deviations of NOBM and model simulations  for the whole time period (10
-3

) 

is higher compared to the difference between the standard deviations of  

NOBM and the model simulations for the reduced time period (10
-5

-10
-3

). 

From this it  can be concluded that the amplitude of the l inear trend of zonal 

average from the 'whole time period' of model simulations underestimates the 

amplitude of the linear trend of zonal average of chl from NOBM and the 

'reduced time period' of model simulations gives a much closer estimate to 

the amplitude of the linear trend of zonal average from NOBM.  

Similar comparison of data has been made for other regions of the 

ocean as well and the result  of the comparisons are presented in section 11.1 

of Appendix V. In conclusion it can be said that  
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 Signals (linear trend of zonal average) from model forcing simulations are 

consistent with each other. This is indicated in the visual comparison of 

signals where increasing/decreasing trends observed in a lati tudinal zone 

from one model simulation are also observed in the pattern of tr ends from 

another model simulation. Also, increasing/decreasing trends observed in  

a latitudinal zone from NOBM are sometimes observed in pattern of trend 

from model forcing simulation from one model but are not observed in  

another model i.e. not all  model s agree with the observations.  

 Correlation coefficient between signal from NOBM and signals from both 

the time periods of model simulations is high for all the regions of the 

ocean. This indicates that  model simulations are correctly phased with 

observations. High value of correlation coefficient indicates increased 

possibility of the signal from forcing simulation to be detected in the 

observations.  

 For most of the model simulations correlation coefficient changes sign 

from whole to reduced time period of  simulations. This indicates that  

signals from whole and reduced time period of simulations are not the 

same and are to be treated as different metrics of signal computation.  

 For all the regions of the ocean, standard deviation of all the signals from 

model simulations for both the time periods is lower than standard 

deviation of signal from NOBM. This indicates that model simulations 

underestimate the amplitude of the spatial  linear trend of chl.  

4.2.2. Dimension reduction of noise component  

Dimension reduction of the noise covariance matrix is an important 

part of the OF method as noise or internal variability is the most complex 

element and its accurate estimation is significant in signal detection. The 

method to reduce the dimensions is  described in chapter 3 (see section 2.3).  

In this method, the noise matrix is reconstructed using a selective number of 

eigenvectors known as the level of truncation. Percent of EOFs chosen to 

reconstruct the noise covariance matrix for all the regions using model forced 

simulations for the 'whole time period' and the 'reduced time period' ranges 

from 33.33 to 81.82 (Table 11-6 of Appendix V) and the variance represented 
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by the chosen number of EOFs ranges from 91.24 to 100. This shows that  

more than 20% of the eigenvectors can b e removed from the noise covariance 

matrices.  

4.2.3. Consistency of internal variability  

Consistency test is done on the noise covariance matrix to determine if  

the internal variabili ty estimated from model control simulations is accurate 

or not. Significance of the estimated values of the scaling factors of the 

forcing signals would be questionable if the consistency test fai ls for the 

noise computed from that model.  The method to conduct the consistency test  

is described in chapter 3 (step 6 of section 2.3).   Table 4-1 below shows 

result of the F-test for each OF method implementation i.e. signal detection 

for each region of the ocean using the forced model si mulations. In the Table,  

passing of the test is represented as 'P ' and failing of the test is represented 

as 'F'.  Simulations, for which the consistency test passes, are highlighted in 

green.  

Table 4-1.  F-test  result for each OF implementation  

Model 

Simulation  

NA SA NP SP IO 

W R W R W R W R W R 

B F F P F P P F F F F 

C F F F F P P F F F F 

D F F F F P P F F F F 

F F F F F P P F F F F 

G F F F F P P F F F F 

H P P P P P P F P F P 

I P P P P P P P P F P 

J F P P F P P P F P F 

K F P P F P P P P P P 

L P P F F F F P P P P 

M P P F F F F P P P P 

N F P F F P F P P P P 

O P F F F F F P P P P 
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From Table 4-1 above it is seen that the internal variabili ty is  

consistent for most of the model simulations except for ESM2G and ESM2M 

in NA, SA, SP and IO region of the ocean and CanESM2 in SA and NP region 

of the ocean. This may be due to several reasons: inaccurate  representation of 

noise from the control  run; the control run i tself may not represent the 

internal variabili ty of the chl accurately and residuals may contain influence 

of the external forcing. Inaccurate internal variability affects the detection 

results as removal of noise is an important aspect of the OF method. It might 

lead to the failure of signal detection by the OF method as the signal -to-noise 

ratio may not be high enough to be detected. Therefore, possibility of a 

positive scaling factor would be high for the model forcing simulations for 

which the consistency test of the noise covariance matrix passes (highlighted 

in green above). Positive scaling factor may also be determined for the 

simulations for which the consistency test fails . However, in accurate 

estimation of internal variability would tend to underestimate the 

uncertainties in the estimated scaling factors. Therefore, only those estimated 

values of scaling factors would be significant for which the consistency test  

passes.   

4.2.4. Detection of signals 

Optimal fingerprint  method described in section 2.3 is applied to 

evaluate the detection of observed changes in response to external forcings. 

Statist ically significant scaling factors (  ) determined as a result of the 

fingerprint analysis are ind icative of the detection of an external signal in 

observations. Scaling factors are considered to be significant when their 

values are positive and their confidence intervals are different from 0. In the 

case where the scaling factor is negative it indicat es that the signal is not 

detected. There may be several reasons for a negative scaling factor. First ,  

there is no climate change signal present in the observations. Second, the 

signal-to-noise ratio is not strong enough to be detected. This may be due to  

misrepresentation of the noise from the control run. Third, there may be too 

much small -scale variability in observations for them to be compared to the 

smoothed model fields.  
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Scaling factors obtained as a result  of the implementation of the OF 

method on linear trend of zonal average of chl in NA region of the ocean 

using l inear trend of zonal average from model forced simulations as the 

signal are shown in Figure 4-3.  

a).  
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b). 

 

Figure 4-3. Graph of signal amplitude along with the confidence interval (CI)  

obtained for OF implementation in NA region using signals from whole and 

reduced t ime period of model simulations.  a).  Result  for both whole (blue) and 

reduced (red) t ime period of model simulations used to compute the signal.  b).  

Result  for only reduced t ime period of model simulations. Green circles indicate 

scaling factors which are posit ive and are obtained for the simulations for which 

consistency test  passed. Red circles indicate  scaling factors  which are posit ive and 

are obtained for the simulations for which consistency test  fai led.  Circles in a) are  

drawn only for whole t ime period of simulations.  

The Table of   values associated with Figure 4-3 is  given in Table 7 of 

section 11-3 of Appendix V. Figure 4-3 shows the beta values obtained in NA 

region for signals obtained from model forced simulations along with the 

confidence interval (CI) associated with each beta value. For the whole time 

period of model simulations, it  can be seen from Figure 4-3a (blue dots and 

CI lines) that positive beta values are obtained for signals from whole time 

period of GFDL-ESM2G historical , GFDL-ESM2M historical GHG and 

RCP8.5, IPSL historical , historical  GHG and RCP8.5, CanESM2 historical 

GHG and RCP8.5 simulations. This indicates that signals from these model 

simulations are detected in the observations.  For the reduced time period of 
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model simulations,  i t  can be seen from Figure 4-3b (red dots and CI lines) 

that positive beta values are obtained fo r signals from reduced time period of 

GFDL-ESM2M historical GHG and RCP8.5, IPSL historical, historical GHG, 

historical  natural and RCP8.5 simulations and CanESM2 historical. As there 

is no consistency in the estimation of scaling factor values from the fo ur 

models, it  is difficult to determine the result of the detection of a signal from 

a particular model simulation in the observations. For example, for the 

signals from the whole time period of model simulations,  positive scaling 

factor is obtained for hi storical simulation from GFDL-ESM2G and IPSL 

model. For the other two models (ESM2M and CanESM2) scaling factors are 

negative. Thus, it  is difficult to conclude that  a historical GHG forcing signal 

has been detected in the observations.   

Significance of the scaling factors for the simulations for which the 

consistency test failed (Table 4-1) is questionable and therefore, only those 

results are considered significant where the consistency test passed. Green 

circles in Figure 4-3 indicate scaling factors which are positive and are 

obtained for the simulations for which consistency test  passed. Red circles in 

Figure 4-3 indicate scaling factors which are positive and are obtained for the 

simulations for which consistency test failed. As can be seen from Figure 4-3 

above, scaling factors for whole time period of historical and historical  

greenhouse gas simulation from IPSL model and historical  greenhouse gas 

and RCP8.5 simulation from CanESM2 model are 79.47, 10.75, 55.18 and 

5.36 respectively, which are significantly different from 0 with 95% 

confidence. Also, scaling factors for reduced time period of historical,  

historical  greenhouse gas,  natural and RCP8.5 simulation from IPSL model 

and historical simulation from CanESM2 model are 0.77, 0.39, 0.91, 1.08 and 

0.67 respectively, which are significantly different from 0 with 95% 

confidence. Thus, signal detection is not cons istent between models for same 

forcing simulations but it  is consistent between whole and reduced time 

period of simulations from all models.  For example,  historical simulation 

from whole time period and reduced time period of IPSL model is detected in 

observations but historical simulation from whole time period of CanESM2 

model is not detected. Beta values are greater than unity for the whole time 



 

126 
 

period of model simulations, which implies that the model simulated response 

of chl to external forcings is s ignificantly underestimated and it needs to be 

amplified (by a factor of ~79 to ~5) to be consistent with observations. Beta 

values are ~1 or less than unity for reduced time period of model simulations,  

which implies that the model simulated response of c hl to external forcings is  

being overestimated and i t needs to be decreased to be consistent with 

observations. Trends from observations and model simulations for which 

signal is detected are shown in Figure 4-4. Signals from whole and reduced 

time period of model simulations are represented as (W) and (R) respectively.  

Trends from whole time period of simulations are 10 times smaller than 

trends from NOBM and reduced time period of simulations. Therefore for 

observing the pattern of trends clearly,  linear trend of zonal average from 

NOBM and reduced time period of model simulations is  divided by 10 for 

plotting. From Figure 4-4, it  can be seen that there is  a declining trend in 

observations from 35-55
o
N. This pattern is also observed in signals from 

model simulations except that for some simulations there is  a sl ight shift in 

the declining trend zone either towards the north (eg. as in CanESM2 -RCP8.5 

in Figure 4-4c) or towards the south (eg. as in IPSL-Hist-GHG in Figure 4-

4a). The scaling factor for signal from reduced time period of IPSL-RCP8.5 

simulation is ~1 which is also seen in Figure 4-4c as the linear trend of zonal 

average from IPSL-RCP8.5 follows linear trend of zonal average from NOBM 

closely in pattern and magnitude. Thus, the pattern of the tren ds from model 

simulations is similar to that from NOBM with a sl ight lati tudinal shift and 

difference in amplitude for some simulations. This was also observed by 

computing the correlation coefficient between NOBM and model simulations,  

which was found to be in the range of -0.7406 to 0.7251.  
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a).    

b).   

c) .   

Figure 4-4. Linear trend of zonal average of chl ( mg m
- 3

 per month) in NA region 

of the ocean from NOBM and b).  greenhouse gas simulation, b).  historical  and 

historical  natural  simulation and c).  RCP8.5 simulation.  
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Results of the OF method of detection and attribution in other regions 

of the ocean are presented in section 11-3 of Appendix V. The global map 

below (Figure 4-5) shows the model simulations for which the signal was 

detected in the regions of the ocean. Signals from whole and reduced time 

period of model simulations are represented with a 'W' and 'R'  at the end of 

their name.  

a).   

b).   
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c).   

d).   

Figure 4-5. Global map showing the regions of the ocean where signals from a).  

historical ,  b).  historical  greenhouse gas, c).  historical  natural  and d)RCP8.5  

simulation of the models is detected. If  a  signal is blank,  then no signals were 

detected in that  from any model.  

Summarizing the results of the OF analysis it  is found that in SA 

region of the ocean signal from whole time period of historical  simulation 

from GFDL-ESM2G model and historical natural simulation from IPSL model 

and reduced time period of historical greenhouse gas simulation from IPSL 

model are detected. Signal detection is not consistent between the models for 

any forcing simulation and is al so not consistent between whole and reduced 

time period of simulations from the models. Beta values are greater than 

unity for whole time period of model simulations, which implies that the 

model simulated response of chl to external forcings is significan tly 
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underestimated and i t needs to be amplified (by a factor of ~30 and ~75) to 

be consistent with observations. Beta value is less than unity for reduced 

time period of model simulation, which implies that the model simulated 

response of chl to external forcings is  overestimated and it needs to be 

decreased to be consistent with observations.   

Trends from observations and model simulations for which signal is  

detected in the SA region is shown in Figure 4-6. Signals from whole and 

reduced time period of model simulations are represented as (W) and (R) 

respectively.  Trends from whole time period of simulations are 100 times 

smaller than trends from NOBM and reduced time period of simulations.  

Therefore for observing the pattern of trends clearly, l inear trend of zonal 

average from NOBM and reduced time period of model simulations is divided 

by 100 for plotting. From the Figure, it  can be seen that  there is an increasing 

trend in observations from -70 to -50
o
S. This pattern is  also observed in 

signals from model simulations except that for some simulations (ESM2G -

hist (W) and IPSL-hist-NAT (W) there is  a sl ight shift in the increasing trend 

zone towards the north. It is also observed that there is a declining trend in 

observations from -50 to -25
o
S. This pattern is also observed in signals from 

model simulations from ESM2G-hist (W) and IPSL-hist-NAT (R). Thus, the 

pattern of the trends from model simulations is similar to that from NOBM 

with a slight latitudinal shift and difference in amplitude for some 

simulations. This was also observed by computing the correlation coefficient 

between NOBM and model simulations, which was found to be in the range o f 

-0.6722 to 0.8370. 
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Figure 4-6. Linear trend of zonal average of chl ( mg m
- 3

 per month) in SA region 

of the ocean from NOBM and model forced simulations.  

In NP region of the ocean, signal from the whole time period of all the 

forcing simulations from ESM2G, ESM2M and IPSL model and only 

historical  natural simulation from CanESM2 model and reduced time period 

of ESM2G historical, ESM2M historical  natural, IPSL historical , historical  

GHG and RCP8.5 simulations is detected. Detection of signal is consistent 

between the models from whole time period of forcing simulations but are not 

consistent from reduced time period of forcing simulations. Trends from 

observations and model simulations for which s ignal is detected is shown in 

Figure 4-7. From Figure 4-7, it  can be seen that there is a declining trend 

from 35-60
o
N. This pattern is clearly observed in signals from whole time 

period of historical  simulation from ESM2G and ESM2M ( Figure 4-7a), 

historical natural simulation from ESM2M and IPSL ( Figure 4-7c), RCP8.5 

simulation from IPSL (Figure 4-7d) and also from reduced time period of 

historical simulation from ESM2G (Figure 4-7a) and historical natural  

simulation from ESM2M (Figure 4-7c). From other model forcing simulation 

the declining pattern is  not clearly evident but if the signal from model 

simulation is shifted either north or south, the declining trend may become 

evident. For example, if signal from whole time period of IPSL -GHG 
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simulation (Figure 4-7b) is shifted towards north, then the declining trend 

will be in the same latitudes as that in observations (NOBM) ( Figure 4-7b).  

Thus, the pattern of the trends from model simulations are similar to that 

from NOBM but in some there is  a slight latitudinal shift  in the pattern and 

also there is a difference in amplitude of the trend from some model 

simulations. This was also observed by computing the correlation coefficient 

between NOBM and model simulations, which was found to be in the range of 

-0.7958 to 0.5220.  

       a).       b).  

  

       c).       d).  

  

Figure 4-7. Linear trend of zonal average of chl ( mg m
- 3

 per month) in NP region 

of the ocean from NOBM and a).  historical ,  b).  historical  greenhouse gas, c).  

historical  natural and d).  RCP8.5 simulations from the model.  Signals from NOBM 

and reduced t ime period of model simulations are divided by 100 before pl ott ing.  
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In the SP region of the ocean, signal from reduced time period of IPSL 

RCP8.5 and CanESM2 historical natural and RCP8 .5 simulations is detected. 

Detection of signal is consistent between the models from reduced time 

period of forcing simulations. Trends from observations and model 

simulations for which signal is  detected are shown in Figure 4-8. From Figure 

4-8, it  can be seen that there is a declining trend from -70 to -52
o
N and an 

increasing trend from -52 to -25
o
S in observations. An increasing trend 

pattern is observed in trends from model simulations as well (Figure 4-8) but 

the declining trend pattern is observed only in IPSL-RCP8.5 simulation with 

a decline from -52 to -40
o
S. Thus, the pattern of the trends from model 

simulations is similar for some latitudinal zones to the pattern of trends from 

NOBM but is dissimilar for other latitudinal zones.  This was also observed 

by computing the correlation coefficient between NOBM and mod el 

simulations,  which was found to be in the range of -0.8140 to 0.5350.  

 

Figure 4-8. Linear trend of zonal average of  chl ( mg m
- 3

 per month) in SP region of  

the ocean from NOBM and model forced simulations.   
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In IO region of the ocean, signal from whole time period of CanESM2 

historical , historical  GHG and RCP8.5 simulations and reduced time period 

of IPSL historical and RCP8.5 and CanESM2 historical GHG simulations is 

detected. Detection of signal is not consistent between the models from 

whole and reduced time period of forcing simulations. Trends from 

observations and model simulations for which signal is detected are shown in 

Figure 4-9. Trends from whole time period of simulations are 100 times 

smaller (except for CanESM2-RCP8.5 simulation) than trends from NOBM 

and reduced t ime period of simulations. Therefore for observing the pattern 

of trends clearly,  linear trend of zonal average from NOBM and reduced time 

period of model simulations is divided by 100 and then plotted in Figure 4-9. 

From Figure 4-9, it  can be seen that there is a declining trend in observations  

from -70 to -42
o
S and an increasing trend from -42 to -30

o
S. This pattern is  

clearly observed in signals from reduced time period of historical and 

RCP8.5 simulations from IPSL model ( Figure 4-9). Thus, the pattern of the 

trends from model simulations is similar to that from NOBM. This was also 

observed by computing the correlation coefficient between NOBM and model 

simulations,  which was found to be in  the range of -0.9357 to 0.8747.  
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Figure 4-9. Linear trend of zonal average of  chl ( mg m
- 3  

per month) in IO region of 

the ocean from NOBM and model forced simulations.  

4.3. Discussion 

In the previous chapter optimal fingerprint method of detection and 

attribution was implemented to detect  climate change influence on chl  

concentration in the ocean, using spatial  linear trend of chl in the region of 

study as the metric of signal computation. The Principle of the  OF method is 

to increase the signal to noise ratio by changing the direction of the signal to 

a direction where the overlap with internal variability is less compared to the 

previous direction. One of the ways to reduced the overlap of the internal 

variability is by reducing the spatial and temporal variability in the signal.  

Presence of small scale variability in the signal would reduce the possibil ity 

of its detection and might also result in failure of the consistency check of 

the noise matrix. Spatial linear trend is a 2-dimensional metric which may 

contain small scale spatial variability due to which the climate change signal 
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may not be represented distinctly. This may cause a low signal -to-noise ratio 

which might have been the cause of failure of cons istency test of the noise 

matrix computed for several forcing simulations in different regions of the 

ocean (Table 3.3). It  might also have been the cause of failure of detection of 

a signal in a region of the ocean even when the consistency test passed (f or 

eg, reduced time period of CanESM2 -GHG simulation). Thus, a new metric 

was defined as the linear trend of the zonal average which has reduced spatial  

variability and is a 1-dimensional metric. OF method was implemented to  

detect and attribute statistica lly significant changes in chl in the regions of 

the ocean, in response to external forcing, as different from internal  

variability using linear trend of zonal average as the metric of signal 

computation.  

Linear trend in zonal average was computed from NO BM for different 

regions of the ocean. Declining trends in subtropical to mid -latitudes was 

observed in NA, SA and NP regions of the ocean. On the other hand,  

increasing trend in chl was observed in subtropical to mid -latitudes in SP and 

IO regions. However, in these regions (SP and IO), decreasing trends in chl 

were observed in sub-polar to mid-latitudes. Increasing trends in chl were 

also observed in sub-polar to mid-lati tudes in SA region. These trends in the 

regions of the ocean were observed by some ot her studies too although the 

methods used to compute trends is not similar to the method used in this 

study. For example, Boyce et al . (2010) estimated chl trends (1899-2010) as 

continuous log-linear functions of time from the blended chl data (ocean 

transparency and in-situ chl measurements). He observed a declining trend in  

chl in NA, SA and NP regions of the ocean. Wernand et al . (2013)  derived chl  

from Forel-Ule (FU) scale record and found a declining trend in mean chl 

concentration per year in NP region. FU scale is the colour comparator 

method used since 1889 to establish the colour of the sea.  Beaulieu et al.  

(2013) observed a declining trend in average chl from SeaWiFS data (1998 -

2007) in NA region. Trends were estimated from generalized least  squares  

regression (GLS) model.  
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Water temperature and stratification of the water column affect the 

nutrient supply to phytoplankton and therefore, changes in water temperature 

and stratification result in changes in chl concentration (Behrenfeld et  al .,  

2006, Doney, 2006).  Declining trends in chl observed in lower lat itudes of 

NA, SA and NP regions of the ocean follow the expected trend due to global 

warming. It has been predicted that at lower latitudes (nutrient limited 

waters), as the water temperature increases due to global warming, 

stratification increases, which hinders the nutrient entrainment to the 

euphotic zone resulting in decline of production and hence low chl 

concentrations (Doney, 2006).  Increasing trend in chl observed in higher 

latitudes of SA region also fo llows the expected trend due to global 

warmingi.e. as water temperature increases due to global warming, 

stratification increases, which reduces the mixed layer depth and hence the 

light availabili ty to phytoplankton increases which results in higher chl 

concentrations (Doney, 2006, Bopp et  al .,  2001).  However, this phenomenon 

of decreasing and increasing trend in chl in lower and higher latitudes 

respectively,  is  not followed in SP and IO regions. This may be due to an 

increase in the nitrogen fixing phytoplankton in lower latitudes which may 

lead to increased chl concen tration (Capone et al.,  1997 , Carpenter and 

McCarthy, 1975, Turk et al. ,  2011) however the models used here don't 

include the nitrogen fixing phytoplankto n (except GFDL) so the particular 

mechanism at work in the model is unclear . Another reason may be due to 

influx of nutrients in the upper surface of the ocean from some external 

source such as saharan dust or river input (Gallisai et al.,  2014, Hamza et al.,  

2011, Ye et al.,  2011, Resing and Barrett ,  2014, Subramaniam et al .,  2008) or 

changes in direction and strength of winds (Swart and Fyfe, 2012).  A study 

by Behrenfeld et al . (2008a)  suggested that primary production decreases 

with increasing sea surface temperature. Phytoplankton growth and metabolic 

rate are influenced by water temperature therefore, as temperature increases,  

primary production (PP) increases until a threshold is re ached, beyond which 

PP decreases (Eppley, 1972). The threshold of maximum PP is species 

dependent. This decline in PP beyond a threshold temperature might be the 

reason for observed decline in chl in higher latitudes in some regions of the 

ocean. Another reason for decline in chl in higher latitudes may be due to the 
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expansion of warm water phytoplankton species (small picoplankton) from 

low to high latitudes (Hegseth and Sundfjord, 2008) and migration of cold 

water phytoplankton species (large phytoplankton) towards the pole 

(Michaels and Silver, 1988).   

  In this study, it  was found that correlation coefficient between linear 

trend in zonal average in all  the chosen regions of the ocean from NOBM and 

several model forced simulations is high with maximum value as 0.8747. This 

indicates that these model simulations are correctly phased with observations 

and they do a good job of reproducing the observations.  High value of 

correlation coefficient indicates increased possibility of detection of the 

signal from forcing simulations in the observations.  

Consistency check test of the internal variability/noise computed from 

the control simulations of GFDL-ESM2G and GFDL-ESM2M models fai led 

for NA, SA, SP and IO region of the global ocean and for all  the signals from 

model forced simulations except for historical  simulation from GFDL -

ESM2G in SA region. Also, consistency check test of the noise computed 

from the control simulations of CanESM2 model failed for SA and NP region 

of the global ocean and for al l the signals from model forced simulations 

except for historical  natural  simulation in NP region. However, consistency 

test  of noise from control simulations of IPSL and CanESM2 model pa ssed 

for some regions of the ocean and for some signals from model forced 

simulations. There are a number of potential explanations for failing of the 

consistency check. One possibil ity and the most probable cause is that there 

are elements of the observed  chl variability which are not well captured by 

the model in the region of study. This is reflected in the results as for the 

same model simulation the consistency check of noise covariance passes in 

one region of the ocean but fails in another region. For  example, for signal 

from whole time period of IPSL greenhouse gas simulation, consistency test  

for noise from IPSL control simulation passes in NA, SA, NP and SP regions 

of the ocean but it  fails in the IO region ( Table 4-1).  This is  indicative of the 

presence of external forcing in the residuals obtained from the linear 

regression i.e.  the signal from model simulations does not capture the 
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response of chl to external forcings accurately. It is also concluded from here 

that representation of the noise matrix  is accurate and the methodological  

choice made to compute the noise/internal variabili ty is not the cause of 

biased results in different regions of the ocean from the same model 

simulation. Another possibility is  that  int ernal variability is not being 

estimated by the models accurately due to model errors or uncertainties. Due 

to failure of the consistency check, significance of the scaling factors  

estimated for the signals from model forced simulations is dubious.  

Therefore, results for only those simulations were considered significant 

where consistency check for noise covariance matrix passed.  

Detection of the signal from model forced simulations indicates that  

the patterns of change observed in the signal are present i n observations as 

well. The magnitude of the patterns of change is represented by the deviation 

of the scaling factor from unity.  If  the value of scaling factor is greater than 

unity then it indicates that the signal is underestimating the change in chl an d 

if the value is  less than unity then it indicates that  the signal is  

overestimating the change in chl. Greenhouse gas and natural  forcing signals 

were detected in NA, SA and NP regions. In SP region, only natural forcing 

signal is detected and in IO regi on, only greenhouse gas forcing signal is  

detected. Patterns of change observed in these regions are due to the forcing 

signals detected in these regions. The pattern of change observed in model 

forcing simulations are not always the same as the change obs erved in 

observations. For some model simulations the increasing or decreasing trend 

is shifted towards the north or south relative to the observations. Trends from 

observations are the response of chl to a combination of forcings but trends 

from a specific forcing simulation portray changes in chl only due to that  

particular forcing and therefore,  the patterns of change do not match the 

observations completely.  For example,  in SA region, a declining trend is 

observed from NOBM in subtropical  to mid -latitudes. This pattern of 

declining trend is observed in greenhouse gas simulation from IPSL model 

but it  is shifted by 10 degrees towards to south. However, patterns of change 

from historical  simulation which are expected to be the same as observations ,  

also do not follow the pattern of change in chl from NOBM completely 
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(Figure 4.7, 4.8 and 4.9). Climate models in their representation of the 

climate system simplify the complex phenomenon of the climate system. 

Therefore even though they help understand the clim ate system and the 

interactions between the components better they stil l  might not capture some 

biological processes thoroughly such as the complete range of phytoplankton 

species, dynamics of higher trophic levels and adaption of primary producers 

to climate change, and hence the pattern of trends in chl concentration is not 

captured by the models.     

The findings of this study indicate that greenhouse gas forcing is 

affecting chl concentration in most of the regions of the ocean  (NA, SA, NP 

and IO). As chl is  an indicator of phytoplankton biomass (Steele, 1978, 

Cullen, 1982), changes in the chl concentration in the ocean would suggest  

changes in the phytoplankton biomass and hence alterations in primary 

production in the ocean (Blanchard et  al .,  2012). This would affect  the 

carbon cycle of the ecosystem as the quantity of carbon fixed by the 

phytoplankton and the carbon exported to the bottom of the ocean will change 

(Falkowski et al.,  1998, Passow and Carlson, 2012). Shift in the composition 

of the phytoplankton species would alter the carbon export  for example, if  

large phytoplankton (diatoms and coccolithophores) which contribute to the 

majority of carbon export (Michaels and Silver, 1988, Brzezinski et al . ,  

1998) are replaced by small phytoplankton then the magnitude of the carbon 

export  would decrease. Change in marine primary production and 

composition of phytoplankton species indicates change in the food 

availabili ty to the higher trophic levels i.e. zooplankto n and fish, and 

therefore affecting the marine ecosystem, primarily the food chain and 

fishery yields (Iverson, 1990, Chavez et al. ,  2003, Ware and Thomson,  2005, 

Cheung et  al .,  2009, Cheung et  al .,  2010).    

4.4. Summary and conclusions 

Linear trend of zonal average of chl in different regions of the ocean 

were taken as the guess signal to detect  climate change in chl. Linear trend 

was computed for  two time periods i .e. 'whole' and 'reduced' of model 
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simulations. Internal climate variabili ty was computed from the control run 

of the models. Optimal fingerprint method was then used to suppress the 

noise in observations and the forced simulations of th e models.  This 

enhanced the signal-to-noise ratio and the possibili ty of the climate change 

signal to be detected increased. Conclusions made by the study are - 

1.  Models underestimate the trend in chl when compared to the observations.  

2.  Consistency of noise from the control simulation of the model improved 

from the noise consistency that  was observed in the previous chapter when 

signal was take as the spatial linear trend of chl. This shows that  

dimension reduction removes the small -scale variability and improves the 

signal-to-noise ratio and hence, the estimation of the noise/internal 

variability improves as well.   

3.  Greenhouse gas and natural forcing signal from climate models is detected 

in North Atlantic, South Atlantic and North Pacific regions. This indica tes 

that anthropogenic and natural forcings are contributing towards the 

change in chl observed in these regions.  

4.  Natural forcing signal is detected in SP region of the ocean indicating that  

natural forcings are contributing towards the change in chl obse rved in 

this region.  

5.  Greenhouse gas forcing signal is detected in IO region of the ocean 

indicating that anthropogenic forcings are contributing towards the change 

in chl observed in this region.  

6.  Changes observed in the detected signals in the regions of  the ocean 

mostly indicate decline in chl trends in lower latitudes and an increasing 

trend in higher lati tudes which follows the predicted trend in chl by 

Doney (2006). This norm is not followed in some latitudinal zones in SP 

and IO region of the ocean. This might be due to changes in these regions 

which are caused by phenomena not yet completely understood.    
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5. Climate Change Detection and Attribution for 

size of the gyres. 

In chapter 3 and 4, the signal of climate change in chl is defined as the 

spatial l inear trend in chl and linear trend of zonal average of chl 

respectively. Linear trend in chl is a direct representation of change in chl.  

However, climate change in chl can  also be studied using indirect metrices 

such as,  change in the size of the subtropical gyres and change in the timing 

of the annual bloom. In this chapter, climate change detection and attribution 

is carried out for the metric of the size of the gyres. Gyres are formed due to 

wind-driven currents which are deflected due to Coriolis effect in clockwise 

and anticlockwise pattern in northern and southern hemispheres respectively 

(Huang and Russell ,  1994). Westerly winds on northern side and easterly 

winds on the southern side cause downwelling at the center of the gyres and 

supply of nutrients to the euphotic zone decreases. This redu ces productivity 

in the water and results in low chl concentration in the gyres. Increase in sea 

surface temperature due to climate change would increase stratification in the 

gyres and would further reduce the supply of nutrients to the surface ocean. 

This would reduce the chl concentration in the gyres. In satellite -based 

studies the gyre area has been determined by the region where surface chl is  

below 0.07 mg m
-3

 (McClain et al. ,  2004). In this study, the same threshold is 

assumed to be true in computation of gyre area from observations and climate 

model simulations. Gy es occupy app o imately 40% o  the  a th’s su  ace 

and therefore, even though productivity within the gyres is low (Hayward, 

1987a, Hayward, 1991, Jenkins and Goldman, 1985 , Jones et al. ,  1996, Karl  

and Lukas, 1996) they likely contribute more than 30% of the total marine 

primary production (Longhurst,  1995).  Thus, they form a significant part  of 

the marine ecosystem and also of the carbon cycle. Change in the size of the 

gyres, i .e. change in the regions of low chl concentration in the ocean due to 

climate change would affect  the carbon cycle as the quantity of carbon fixed 

by the phytoplankton and the carbon exported to the bottom of the ocean will  

change (Falkowski et al. ,  1998 , Passow and Carlson, 2012). Variability in the 

size of the gyres has been observed by several studies (McClain et al.,  2004 , 

Gregg, 2005, Polovina et al.,  2008). For example, Polovina et al . 
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(2008)_ENREF_133 observed monthly mean area of surface chlorophyll in 

oligotrophic gyres by using satellite ocean color data from SeaWiFS (1998 to 

2006).  The North Atlantic Gyre (NAG), South Atlantic Gyre (SAG), North 

Pacific Gyre (NPG) and South Pacific Gyre (SPG) were o bserved to have an 

increase in size by 4.3, 0.8, 2.2 and 1.4% per year respectively. Increase in 

the size of the gyres indicates that low chlorophyll concentration regions of 

the ocean are increasing and therefore concluding that there is a decline in 

productivity in the ocean. However,  none of the studies take into account or 

remove the effect of internal variabili ty (noise) of chl on the observed trends. 

Thus, the observed trend in gyre size observed in these studies may be due to 

climate change or may be due to internal variability.  In this study the optimal 

fingerprint  technique is implemented to detect and attribute climate change 

signal in the size of the gyres.   

The climate change signal is defined as the time series of the gyre area.  

This is a one-dimensional signal in which climate change is to be determined. 

The first section of the chapter gives the details of the dataset used and the 

regions of the ocean where the signal is  to be detected. For the purpose of 

presentation of results with clarity,  the North Atlantic region is used here as 

a case study. Results for other regions of the ocean are presented in the 

Appendix V and the summary of those results is presented in the main 

chapter text. The second section of the chapter describes some of the b asic 

statistics performed on the datasets for different regions of the ocean. A 

comparison of the results is made for different datasets. The third section of 

the chapter describes the methodology used to implement OF method on the 

size of the gyres. The fourth section of the chapter is the results section 

along with the interpretation of the results. The fifth section discusses the 

results and summarizes the conclusions of the analysis.  

5.1. Data  

The datasets used for the analysis are as mentioned in chapter 2 . As 

observations, gyre area from NOBM is used in the analysis and simulations 



 

145 
 

from GFDL-ESM2G, GFDL-ESM2M, IPSL and CanESM2 models are used to 

compute the signal and the noise (Table 2.1).  

Regions of the ocean from which size of the gyres is  computed are 

listed in Table 5-1 along with their lati tude and longitude limits and are also 

shown in Figure 5-1. As it can be seen from the lati tude limits of the regions,  

equatorial belt of -5
o
S to 5

o
N is not included in the analysis as chl 

concentration in this region is strongly influenced by El Niño and La Niña 

events. Therefore, any changes in chl observed in this region would be 

difficult to detect  as there have been several El Niño and La Niña events 

during the time period of study. Also, the equatorial region is not a part of 

the oligotrophic gyre region.    

Table 5-1. Latitude and longitude limits of the regions of the ocean chosen 

for the analysis  

Region North 

Atlantic 

(NA) 

South 

Atlantic 

(SA) 

North 

Pacific 

(NP) 

South 

Pacific 

(SP) 

Indian 

Ocean 

(IO) 

Latitude 5
o
 to 50

o
 -50

o
 to -5

o
 5

o
 to 50

o
 -50

o
 to -5

o
 -50

o
 to -5

o
 

Longitude 260
o
 to 352

o
 -60

o
 W to 

20
o 

E 

120
o
 to 

280
o
 

150
o
 to 

300
o
 

30
o
 to 

120
o
 

 

 

Figure  5-1. Regions of the ocean chosen for analysis.  Each region is represented by 

a box with red boundary.   
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As in chapter 3, each dataset i .e. observations and model simulations 

are represented by a letter of the alphabet (see Table 3.2).  

5.2. Processing of the Datasets   

Prior to estimating the elements of OF method i .e. estimating guess 

signal, internal variability and observations as described in section 2.2.2.1 of 

chapter 2 and implementing the OF method, there are some pre -processing 

steps that need to be implemented for all simulations of the model and the 

observations (NOBM).  

1.  Implement the pre-processing steps mentioned in chapter 2,  section 2.2.3 

or as in flowchart in section 9.1 of Appendix III except the step to remove 

seasonal mean. In these steps, chl  values are  extracted from the netcdf 

files, chl data is rearranged and regridded, invalid values in the data are 

replaced by NaNs and values are converted to mg m
-3

.  

2.  Compute gyre area for every region from each dataset. Steps to do that are 

as follows -  

 Extract the grid points where chl values are less than 0.07 mg m
-3

.   

 Compute the area (in km
2
) for each time step using the extracted 

grid points. This gives the time series of the size of the gyre from 

every dataset for each region of the ocean. Thus, the  guess signal is  

obtained for the analysis from each model simulation.  

 Remove seasonal cycle from the datasets as described in section  

2.2.3 of chapter 2 or section 9 .1 of Appendix III.  

3.  For forced run of the model, size of the gyres is computed for the sa me 

time period as the observations (NOBM) i .e.  1999 -2005.  

4.  Guess signal from all the forced model simulations is compared with the 

signal from the observations. This comparison is done by computing the 

correlation coefficient between the observations and m odel output, root 

mean square difference, standard deviation of observations and standard 

deviation of model output and is presented in a taylor diagram.   

5.  After pre-processing of the datasets, OF method is implemented following 

the same steps as described  in chapter 3 (see section 3) i.e. signal from 
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observations and model simulations and noise from control run is 

computed and input to the regression equation ( Eq 3.1) to solve for 

scaling factors i.e.   . Scaling factor values are obtained for al l the model  

forced simulations in all  the regions of the ocean. If positive beta value 

with confidence interval that exceeds zero is estimated, it  is an indication 

of detection of the signal in the observations.  

5.3. Results  

5.3.1. Comparison of size of the gyres from model 

simulations with NOBM data  

The size of the gyres in the time period of the dataset  was computed 

from the model forced simulations and from NOBM. Before implementing the 

OF method using these datasets i .e. to detect the signals from model 

simulations in observations, it  is important to know how these signals relate 

to observations. A comparison of time series of gyre area from model 

simulations with gyre area from NOBM was done.  

Results for North Atlantic Region  

Time series of the NA Gyre area from NOBM and  greenhouse gas 

simulations of the models is shown in  Figure 5-2. Size of the gyres from 

greenhouse gas simulations is chosen as an example for visual  comparison 

because this is the signal that  is of interest  in this detection study. From  

Figure 5-2, i t  can be seen in observations (NOBM) that there i s a peak in the 

size of the gyres in mid 1999 after which there is a decline in the size from 

1999 to mid 2002 with occasional peaks. There is then an increase in the size 

of the gyre from mid 2002 to 2004 which is followed by a decrease.  This 

pattern of change in the gyre area is  may be due to the North Atlantic 

Oscillation (NAO) (Curry and McCartney, 2001). This pattern of increase and 

decrease in size of the gyre is followed partially by greenhouse gas 

simulations of the model. Linear trend in the gyre size is computed for all the 

datasets and the values are presented in (Table 12-1 of Appendix VI). It is 
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observed that  there is an increasing trend (6576.80 km
2
 per month) from 

NOBM, which is also observed in greenhouse gas simulations from ESM2M 

(6772.59 km
2
 per month) and IPSL (5663.54 km

2
 per month). However, 

greenhouse gas simulation f rom CanESM2 model shows a declining trend ( -

10852.44 km
2
 per month) in the size of the gyres. Trend in gyre size from 

NOBM and greenhouse gas simulations are significant at  95% level but trends 

from several other model forced simulations are not significan t (Table 12-1 

of Appendix VI). This shows that  models are not always consistent with the 

outputs from the same forcing simulations and also, model outputs are not 

always consistent with observations in pattern and trend.  

 

Figure  5-2.  Monthly t ime series of  anomalies in the size of the NA gyre i .e .  gyre 

area in km
2
.   

Statist ical terms of comparison between size of the gyres from model 

simulations and NOBM that were computed are correlation coefficient,  

centered root mean square difference and amplitude of the variation i.e. 

standard deviation. The results are presented in the form of a taylor diagram 

(Taylor, 2001) (Figure 5-3). The Table of values associated with the Figure is 

presented in (Table 12-2 in Appendix VI).   



 

149 
 

 

 

Figure 5-3. Taylor diagram associated with the comparisons of t ime series of gyre 

area for NA gyre computed from model simulations with t ime ser ies of gyre area 

from NOBM. 

From Figure 3-7, it  can be seen that  the correlation coefficient for al l 

the model simulations is low ( -0.2264 to 0.2181 in this study). This indicates 

that time series of the size of the gyre from model simulations is not 

correctly phased with NOBM. It should be noted from Figure 3-7 that sign of 

the correlation coefficient from same forcing simulation from different 

models is  not consistent. For example, correlation coefficient obtained for 

historical greenhouse gas simulation from ESM2M and CanESM2 is negative 

but is positive for greenhouse gas simulation from IPSL.  

From Figure 3-7, it  can also be seen that the standard deviation of 

some model simulations is lower than NOBM and f or some it is higher than 

NOBM. This shows that some simulations overestimate the gyre area and 

some under estimate the gyre area when compared to the gyre area from 

observations. Variation in the estimation of the gyre area from different 

models may be due to dissimilarity between the models in representation of 

some physical or biological  phenomena in the ocean such as stratification of 

the water column, mixed layer depth and classification of phytoplankton and 

zooplankton species  or it  may be due to the assumed common threshold of chl 

(0.07 mg m
-3

) for determining the gyre size in all the models .  The difference 
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in the estimation of gyre area from models would affect the scaling factors 

obtained for model forced simulations from the implementation of OF 

method. Simulations which underestimate the gyre area give high scaling 

factor (>1) and simulations which overestimate the gyre area give lower 

scaling factor (<1).  

Similar comparison of data has been made for other gyres of the ocean 

as well and the result  of the comparisons are presented in section 12.1 of 

Appendix VI. In summary -  

 Trend in gyre size from NOBM is positive and significant at 95% level in 

NA, NP, SP and IO gyre. Trend is positive but not significant in SA gyre.   

 Signals (time series of the size of the gyre) from model forcing 

simulations are not always consistent with each other. This is  indicated in  

the comparison of the trend of gyre area during the time period of study 

(1999-2005).  

 Correlation coefficient between signal from NOBM and signals from 

model simulations is  low for all the regions of the ocean. This indicates 

that model simulations are not correctly phased with observations. Low 

value of correlation coefficient indicates re duced possibil ity of the signal 

from forcing simulation to be detected in the observations.   

 For all the regions of the ocean, standard deviation of all the signals from 

model simulations is  lower than standard deviation of signal from NOBM 

except for some model simulations. This indicates that model simulations 

underestimate the amplitude of the size of the gyres except for some 

model simulations which may be due to difference in threshold of  chl used 

for computation of gyre area .  

5.3.2. Dimension reduction of noise component 

Dimension reduction of the noise covariance matrix is an important 

part of the OF method as noise or internal variability is the most complex 

element and its accurate estimation is significant in signal detection. The 

method to reduce the dimensions is  described in chapter 3 (see section 2.3).  



 

151 
 

In this method, the noise matrix is reconstructed using a selective number of 

eigenvectors known as the level of truncation. Percent of EOFs chosen to 

reconstruct the noise covariance matrix for all the regions using model forced 

simulations ranges from 17.86 to 50% ( Table 12-11 of Appendix VI) and the 

variance represented by the chosen number of EOFs ranges from 98.02 to 

100%. This shows that approximately 50% of the eigenvectors can be 

removed from the noise covariance matrices.  

5.3.3. Consistency of internal variability  

To determine the accuracy of the internal variabil ity estimated from 

model control simulations, the consistency test is implemented on the noise 

covariance matrix. Significance of the estimated  values of the scaling factors 

of the forcing signals would be questionable if the consistency test fails for 

the noise computed from that model. The method to conduct the consistency 

test  is described in chapter 3 (step 6 of section 2.3).  Table 5-2 below shows 

result of the F-test for each OF method implementation i.e. signal detection 

for each region of the ocean using the forced model simulations. In the Table,  

passing of the test is represented as 'P ' and failing of the test is represented 

as 'F'.  Simulations, for which the consistency test passes, are highlighted in 

green.  
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Table 5-2.  F-test  result for each OF implementation  

Model Simulation  NA SA NP SP IO 

B F F F F F 

C F F F F P 

D F F F F P 

F F F F F F 

G F F F F F 

H P F F F F 

I P F F F F 

J P F F F F 

K P F F F F 

L F F F F F 

M F F F F F 

N F F F F F 

O F F F F F 

From Table 5-2above it is seen that the consistency test fails for most 

of the model forced simulations in all the regions of the ocean except for all  

the simulations from IPSL model in NA region and for historical and 

historical  greenhouse gas simulation from ESM2M model in IO region. This 

may be due to several reasons : inaccurate representation of noise from the 

control run; the control run itself may not represent the internal variability of 

the chl accurately and residuals may contain influence of the external 

forcing. In this study, second and third reason are more likely to be the cause 

of failure of consistency test as correlation coefficient between gyre area 

from NOBM and model simulations is low. Inaccurate internal variability 

affects the detection results as removal of noise is an important aspect of the 

OF method. It might lead to the failure of signal detection by  the OF method 

as the signal-to-noise ratio may not be high enough to be detected. Thus, 

results of the detection and attribution for the size of the gyres will be 

dubious for all  the regions of the ocean.  



 

153 
 

5.3.4. Detection of signals 

The optimal fingerprint method described in section 2.3 is applied to 

evaluate the detection of observed changes in response to external forcings. 

Statist ically significant scaling factors (  ) determined as a result of the 

fingerprint analysis are indicative of the detection of a n external signal in 

observations. Scaling factors are considered to be important when their 

values are significantly different from 0. In the case where the scaling factor 

is negative it indicates that the signal is not detected. There may be several  

reasons for a negative scaling factor. First, there is no climate change signal  

present in the observations. Second, the signal -to-noise ratio is not strong 

enough to be detected. This may be due to misrepresentation of the noise 

from the control run. The second reason is the most probable cause of failure 

of signal detection as correlation coefficient between gyre area from NOBM 

and model simulations is low which cause both the signal and the noise to be 

misrepresented by the models.   

Scaling factors obtained as a result  of the implementation of the OF 

method on time series of the gyre area in NA region of the ocean is shown in 

Figure 3-8.  
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Figure 5-4. Graph of signal amplitude along with the CI, obtained for OF 

implementation in NA gyre using signals  from model  forced s imulations. Green 

circles indicate scaling factors which are posit ive and are obtai ned for the 

simulations for which consistency test  passed. Red circles indicate scaling factors  

which are posit ive and are obtained for the simulations for which consistency test  

fai led.  

The Table associated with Figure 5-4 is given in Table 12-12 of 

Appendix VI. Figure 5-4 above shows the beta values obtained in NA region 

for signals obtained from model forced simulations along with the confidence 

interval (CI) associated with each beta value. From the Figure 5-4a it can be 

seen that even though there are some model simulations for which scaling 

factors are positive,  none of the scaling factors are significantly different  

from 0 with 95% confidence interval.  This indicates that the effect of 

external forcings is  not being detected in the NA gyre an d the null  hypothesis 

that changes in size of the gyres is caused by internal variability cannot be 

rejected.  

The OF method was implemented for other gyres as well and the results 

are presented in section 12.3 of Appendix VI. Summarizing the results of th e 

OF analysis i t  is found that for all the gyres, scaling factors estimated for 

some of the signals from model forced simulations are positive but none of 

them are significantly different from 0 with 95% confidence interval. This 
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indicates that changes observed in the size of the gyres from NOBM are most 

likely due to internal variabil ity in gyre size.  

5.4. Discussion  

In this chapter optimal fingerprint method of detection and attribution 

is implemented to detect climate change influence on chl concentration i n the 

ocean, using time series of the size of the gyres as the metric of signal 

computation. Seasonal anomalies of the gyre area were estimated for each 

month from 1999-2005 for all  the datasets. As monthly data of gyre area for 

the years 1999-2005 is used in the analysis, the signal (time series of the 

gyre size) contains small time-scale variabil ity which makes it difficult to 

identify any distinct patterns of change in the gyre area over the years 1999 -

2005. Linear trend in the size of the gyres was esti mated from NOBM and 

model forced simulations. Increasing trend in size of all  the gyres was 

observed from NOBM where SA gyre had the slowest trend ( 1408.74 km
2
 per 

month) and NP gyre had the fastest trend (29324.35 km
2
 per month) in size. 

However, percent increase in gyre area of NA, SA, NP, SP and IO gyres 

computed with reference to the yearly mean of gyre area in 1999 is faily 

consistent and is 1.98, 1.9, 1.71, 1.75 and 1.8 percent per year respectively.  

This indicates that NP gyre has the slowest increasing rate and NA gyre has 

the fastest rate. Positive linear trends in gyre area (NA, SA, NP and SP 

gyres) were also obtained by Polovina et al. (2008)  where gyre size was 

computed from a 9-year time series (1998-2006) of SeaWiFS ocean color data 

and the trends were estimated by fitting a generalized additive model (GAM) 

(Hastie and Tibshirani, 1990). Percent increase in gyre area observed by 

Polovina et  al . (2008)  of NA, SA, NP and SP gyres computed with yearly 

mean of gyre area in 1998 is 4.3,  0.8,  2.2 and 1.4  percent per year 

respectively.  The percent increase in gyre size obtained by  Polovina et al.  

(2008) _ENREF_133was lowest in SA region and highest in NA region. This 

difference in increase in gyre size between this study and  (Polovina et al .,  

2008) _ENREF_133may be due to different length of the dataset used and also 

due to the different approach used to compute linear trend in the gyre size.  

McClain et al . (2004) also observed increasing trends in size of the NA, SA, 
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NP and SP gyres where values were derived from OCTS (November, 1996 to 

June, 1997) and SeaWiFS (September, 1997 to October,  2003) ocean color 

data. However, a decreasing trend in the IO gyr e size was observed by 

McClain et al.  (2004)  which is in contradiction to the increasing trend 

estimated in IO gyre size in this study from NOBM data. These contradicting 

trends in IO gyre area are may be due to the different time period used by 

McClain et al. (2004)  to compute the trend. Also, McClain et  al. (2004)  used 

data from two different satellite sensors which differ in the instruments used 

for measurements, calibration techniques, the spatial and temporal scales of 

the sensors and also the time period of operation. These differences in  

sensors may give rise to uncertainties when datasets from these sensors are 

blended in an analysis.    

Increase in the size of the gyres is an indication of decline in the chl 

concentration in the oligotrophic region of the ocean. Simultaneous increase 

in the sea surface temperature (SST) has been observed by some studies 

(Gregg, 2005, Polovina et  al.,  2008) which suggests that  decrease in chl may 

be due to increase in SST. A study by Gregg (2005)_ENREF_61,  observing chl 

concentration anomalies from SeaWiFS (1998 -2008) found a declining trend 

in chl concentration in all the regions of the ocean. Gregg (2005) also 

simultaneously observed SST anomalies and found an increasing trend in SST 

in all the gyres except in NA gyre.  However,  Polovina et al . (2008)  

_ENREF_133observed an increasing trend in SST in all the gyres. Contradicting 

trends in SST in NA gyre from the two studies may be due to different time 

periods of study.  Polovina et al. (2008)_ENREF_133studied 9 years of SeaWiFS 

data (1998-2006) whereas, Gregg (2005) studied 6 years of SeaWiFS data 

(1998-2003). Another reason for dissimilar SST trends may be that SST data 

used by Polovina et al . (2008)_ENREF_133is the NCEP Reynolds Optimally 

Interpolated SST product which incorporates both in -si tu SSTs and satellite 

derived SSTs from NOAA Advanced Very High Resolution Radiometer 

(AVHRR) whereas, Gregg (2005) uses SST data from NOAA AVHRR only. 

Increasing SST results in increasing stratification in subtropical regions of 

the ocean (Barnett et al .,  2001) which decreases net primary productivity in 

these regions (Behrenfeld et al. ,  2006). Thus, increasing in the size of the 
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gyres indicates the effect of global warming on chl concentration in the 

ocean.  

Linear trend in gyre size from NOBM for all the gyres is significant at  

95% level except for SA gyre , where trend is not significant. Also, there are 

several model simulations for which the trend in gyre size is not significant.  

Insignificant trends reduce the likelihood of signal detection. The possibility 

of signal detection is further reduced when the  signals from NOBM and 

model simulations are not in phase i .e. correlation coefficient between time 

series of gyre size from model forced simulations and time series of gyre size 

from NOBM is low ( -0.355 to 0.3778 in this study). Low correlation 

coefficient indicates that models don't do a good job of reproducing the size 

of gyres which makes it challenging to detect the signal in observations.  

Also, there was no or partial consistency in the correlation coefficient 

obtained for the same forcing simulation from different models indicating the 

uncertainties and unreliability of the size of the gyres estimated from climate 

models. Models also underestimate the amplitude of the size of the gyres 

which was indicated by the lower standard deviation obtained from all model 

forced simulations (but for some exceptions) when compared to the standard 

deviation from NOBM. The reason for the underestimation of size of the 

gyres by the models may be that there are probably some processes or 

parameters which have not been properly represented or are completely 

missing from the models. For example, models may be over simplifying the 

classification of phytoplankton and zooplankton species which might affect 

the phytoplakton growth and grazing rates and in -turn would affect the chl 

concentration or climate processes such as the decadal oscillations (NAO, 

PDO) may not be represented properly.   

Consistency check test of the internal variability/noise computed from 

the control simulations of the models failed for all the gyres of the ocean and 

for all the signals from model forced simulations except for all the 

simulations from IPSL model in NA gyre and for historical  and historical 

greenhouse gas simulation from ESM2M model in IO gyre ( Table 5-3).  The 

cause of the failure of the consistency test may be that  signals do not 
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represent the change accurately and residuals may contain influence of the 

external forcing or noise may not be represented accurately from the control  

simulation or the control run itself may not represent the internal variability 

of gyres accurately.  Improvement in the representation of climate processes 

by models may enhance the performance of the models.  Failure of the 

consistency of the noise matrix makes the reliabil ity and significance of the 

detection results questionable. Nonetheless, OF method was implemented to 

detect and attribute climate change in size of the gyres.  

Detection of the signal from model forced simulations is indicative of 

the patterns of change observed in the signal being present in observations as 

well. The magnitude of the pattern of change is represented by the deviation 

of the scaling factor from unity.  For all  the gyres, there were some 

simulations in some of the gyres for which estimated scaling fa ctors were 

positive but none of them were significantly different from 0 with 95% 

confidence interval. This indicates the presence of internal variability in the 

datasets i .e. the noise is not removed accurately from the datasets. This is  

indicated earl ier  as well in the failure of the consistency test for the noise 

covariance matrix. The reason of this may be that the metric defined to 

compute the signal (time series of the gyre) does not represent climate 

change and therefore, the OF method has failed to increase the signal-to-

noise ratio and has also been unsuccessful in removing the internal 

variability from the datasets which led to the failure of detection and 

attribution. It can be argued that there is no climate change signal i.e. the 

changes observed in the size of the gyres are not due to climate forcings 

(external and natural) because of which the method has failed. In case of no 

climate change signal, scaling factors would be negative. In the detection 

results of this chapter, there are some simul ations, for example greenhouse 

gas simulation in NA gyre, for which the scaling factor is estimated to be 

negative (Figure 5-4). It  can be said for these simulations that  there is  no 

climate change signal, but since the detection results do have several  

simulations for which scaling factors is positive ( Figure 5-4) but they are not 

significantly different from 0 with 95% confidence interval, it  can be 

concluded that the method failed to remove internal variability from the 



 

159 
 

observations and model forced simu lations. The results of this chapter leave 

the question of whether the increase in the size of the gyres is due to climate 

change or not, unanswered. Therefore,  trends in the size of the gyres 

observed in this study and other studies (McClain et al. ,  2004, Polovina et  

al. ,  2008) might be due to climate change effect on chl or i t  may b e due to 

internal variability of chl. In future, OF method can be implemented on a 

different metric for example, spatial pattern of the change in the gyre area 

which may be the representation of climate change and would be able to 

answer the question above .  

5.5. Summary and conclusions  

The time series of the gyre in different regions of the ocean was taken 

as the guess signal to detect climate change in chl. Monthly series of gyre 

area were computed for t ime period 1999-2005 of NOBM and model 

simulations. Internal climate variabili ty was computed from the control run 

of the models. Optimal fingerprint method was then used to suppress the 

noise in observations and the forced simulations of the models.  This 

enhanced the signal-to-noise ratio and the possibili ty of the climate change 

signal to be detected increased. Conclusions made by the study are - 

1.  Models underestimate the size of the gyres  which may be due to the 

assumed threshold of 0.07 mg m
-3

 chl while computation of gyre size .  

2.  Increasing trend in size i s observed in all the gyres (NA, SA, NP, SP and 

IO). NP gyre has the slowest percent of increase in size per year and NA 

has the fastest percent of increase in size per year.  

3.  Noise is not consistent for most of the signal detections performed using 

model forced simulations for the gyres except for some simulations in NA 

and IO gyres. This affects the signal -to-noise ratio and hence the detection 

of a signal may fail  due to a lack of consistency of noise matrix. It also 

indicates the presence of external fo rcing in the residuals obtained from 

the regression of signals with observations.  

4.  Scaling factors for some of the model forced simulations are estimated to 

be positive but they are not significantly different from 0 with 95% 
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confidence interval. This indicates the presence of internal variability in 

the signals. Thus, the metric defined to detect the climate change signal in  

size of the gyres is incorrect .  
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6. Summary and Conclusions 

This thesis aimed to perform a formal detection and attribution analysis 

on observed chl concentration using the optimal fingerprint method. The 

method projects response of chl to external forcings such as greenhouse gas 

forcing and solar forcing on the chl concentration from observations 

(assimilated satelli te ocean colour dat a from three dimensional global ocean 

model i.e. NOBM). The amplitude of the responses are indicators of detection 

of a climate forcing signal in the observations. All the datasets, i .e. the 

observations and responses from model simulations, are optimized using the 

noise covariance matrix obtained from the control simulation of the models.  

6.1. Assessment of signal metrics  

One of the keys to detecting a climate change signal in a climate 

parameter is the 'direction' in which to look for the change. In the thesis  this 

was represented by the metric defined for signal computation. The metric 

should be chosen such that it  doesn't contain too much small scale variabil ity 

which increases the noise in the signal and makes the detection of climate 

change signal difficult . At the same time the metric chosen should be able to 

capture the relevant change, i.e. the change due to climate forcings in the 

parameter. Three metrics defined in the thesis were: spatial linear trend of 

chl; linear trend of zonal average; and time ser ies of the size of the 

oligotrophic gyres.  

The first  metric is a two-dimensional spatial pattern of change in chl. 

The second metric is also a spatial pattern of change in chl but is one -

dimensional. The third metric is a one-dimensional time series representing 

change in chl. Out of the three metrics, this work demonstrated that the 

second metric is the best , and the third metric is the worst, 'direction' to look 

for a climate change signal in chl. This was indicated by the result of the 

consistency test for noise covariance matrix for these three metrics ( Table 3-

3, 4-1 and 5-2). The results show that for the first metric the test passed in 

some of the regions of the ocean, for some of the simulations; for the second 
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metric the test passed in more regions  for more model simulations; and for 

the third metric the test failed in all  the regions of the ocean for all  the model 

forced simulations. Failure of the consistency test indicates that the noise 

was not removed completely from the datasets and the residu als may contain 

influence of the external forcing . One of the reasons for this failure would be 

the wrong definition of the metric, i .e. the wrong 'direction'  to look for the 

climate change response.  

The results also demonstrated that  it  is difficult to distinguish a 

temporal pattern of trend in the datasets (Figure 5-2) from the third metric. 

This might be because of high temporal variability introduced by using a 

monthly time series.  In future, annual t ime series or a 3 -year or a 5-year  

smoothed time series might be used as a metric to detect climate change. This 

would require a substantially longer time period of availabili ty of 

observations. In the fi rst metric,  the spatial pattern of trend was obvious in 

some regions for some simulations but was not v ery apparent in other 

regions.  This indicates that in some regions there is  may be no distinguishing 

spatial pattern of trend or the 5° by 5° grid is stil l  not large enough to 

provide a distinct pattern of trend. In the case of the second metric, the 

patterns of change were apparent in most of the regions for most of the 

simulations.  This indicates that the reduction of the spatial resolution by 

computing the zonal average and the reduction of the temporal resolution by 

taking the linear trend gives a signa l which captures the relevant trend in chl 

above the noise.     

6.2. Evaluation of models 

As mentioned in section 6.1 the consistency test failed for most of the 

simulations in most of the regions for the first and third metric. A possible 

reason for failure of the consistency test is that the models are not simulating 

the response of chl to external forcings correctly or the models are not 

simulating the noise properly. Incorrect representation of the response of chl 

or internal variability of chl might also lea d to the failure of signal detection. 

Poor performance of models in simulating chl was observed in the values of 
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correlation coefficient between signals from observations and model 

simulations. Correlation coefficient was low for the signal in the first an d 

third metric; it  was higher for the signal in second metric.  For some of the 

model simulations, correlation coefficient was even negative.  Apart from the 

models being inconsistent with the observations, models are also inconsistent 

among themselves. For example, signal from the greenhouse gas forcing from 

one model is not consistent with the signal from greenhouse gas forcing from 

other models.  This indicates uncertainty and unreliability of the signals from 

the model simulations. In future work, uncertainties in climate models can be 

removed to an extent by taking mean of the ensemble of runs of a climate 

model for a particular forcing scenario.  

Out of the four models,  consistency test fai led for the first and second 

metric for most of the simulations from GFDL-ESM2G and GFDL-ESM2M 

model and passed for most of the simulations from IPSL and CanESM2 model 

in most of the regions of the ocean. One of the difference between the models 

that  passed from those that  failed is in their classification of phytoplankt on. 

In GFDL models, phytoplankton are classified in three groups - small,  large 

and diazotrophs. In IPSL model,  phytoplankton are classified in two groups - 

nano phytoplankton and diatoms. In CanESM2 model,  there is no 

classification of phytoplankton and a  single component is used to represent 

phytoplankton. Another difference between the models is in their 

representation of grazing of phytoplankton. In the two models from GFDL, 

grazing of phytoplankton is specified through a size -based relationship 

(Dunne et al.,  2005), i .e. grazing and in turn phytoplankton growth rate is  

dependent on the size of the phytoplankton. In IPSL and CanESM2 models,  

grazing of phytoplankton is controlled by the zooplankton.  Models also differ  

in their representation of Redfield ratio and the variable ratios for organic 

matter production (table 2-2). This affects the derivation of chl in the model 

and hence models differ in their performance. These differences in the 

biological  and carbon components might be one of the reasons why the model 

performance is poorer for GFDL. There may be other dissimilarities such as 

difference in representation of nutrient flux or in illustration of mixed layer  

depth or stratification of the water column.  
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Climate models simplify the complex phenomenon of the climate 

system therefore,  even though they help understand the climate system and 

the interactions between the components better, they still  might not 

accurately represent some the climate processes such as decadal oscillations 

(North Atlantic Oscillation and Pacific Decadal Oscillation). Alternatively,  

they may not capture some biological processes thoroughly such as dynamics 

of higher trophic levels and adaption of primary producers to climate change,  

and therefore the pattern of trends in chl concentration may not be captured 

by the models properly.    

6.3. The need for longer term observations  

Detection of a climate change signal in a particular parameter is easier 

if there are long records of the parameter available. This is because it  

becomes easier to remove the small -scale spatial and temporal variabili ty.  

For example, if 30-50 years of chl observations were available then for the 

third metric, i .e.  the size of the gyres, annual time series or a smoothed 5 -

year time series could be used to compute the signal. This would reduce the 

small-scale variabili ty and might also give a more distinct pattern of change. 

In case of chl, global, multi -year data is available from satell ite ocean color 

sensors. Satellite ocean colour measurements began in October 1978 with the 

Coastal Zone Color Scanner (CZCS)  (1978-1986). Since then, many sensors 

have been launched such as SeaWiFS (1998-2010) and MODIS-Aqua (since 

2002), and measurements of ocean colour have been made. To get a longer 

time series of ocean colour, observations from different sensors need to be 

blended, which is challenging as sensors differ in the instruments used for 

measurements, calibration techniques used, the spatial and temporal scales of 

the sensors and also the time period of operation. These dissimilarities affect 

the homogeneity, coverage and quality of the data.  However,  there are some 

merged ocean colour datasets available such as European Space Agency's 

(ESA) Climate Change Initiative (CCI) (1997 -2013) and ESA's GlobColour 

(1997-present). Long-term in-situ measurements of chl are also available 

such as observations at Bermuda Atlantic Time Series (BATS) station  and 

Hawaii Ocean Time-Series (HOT) station  although they lack spatial coverage. 
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Formal detection and attribution can be implemented on these datasets to 

detect climate change signal in chl.  

6.4. Detection results 

A signal is  considered to be detected if  the value of the scaling factors 

for the climate forcing simulations is positive and significa ntly different  

from 0 with 95% confidence. For the third metric, i .e. the time series of the 

size of the gyres, there were some simulations where the scaling factor values  

were posit ive but al l of these were not significantly different from 0 with 

95% confidence. This indicates the presence of internal variability in the 

detected signal i.e. the internal variabil ity/noise is not removed from the 

signals.  This was also indicated by the failure of the consistency test for all  

the simulations for all the regions of the ocean. Thus, as has been mentioned 

before the reasons for this might be that the internal variability of chl and the 

response of chl to external forcings are not simulated by the models 

correctly;  or the metric defined is not the correct 'directi on' to look for the 

climate change response; or there is  no climate change signal.  

For the first metric i.e. spatial linear trend in chl, greenhouse gas 

forcing signal was detected in NA, SA, SP and IO regions and natural forcing 

signal was detected in SP region of the ocean. In NP region, no forcing signal 

was detected. Predicted patterns of change in chl with climate change 

(Doney, 2006), i .e. decline in chl in lower latitudes and increase in chl in 

higher latitudes, was observed in NA and SP regions. On the other hand, 

patterns of change in chl in the SA region were observed to be opposite to 

those expected, i .e. the trends in chl were i ncreasing in lower latitudes and 

decreasing in higher latitudes.  This might be due to the change in the species 

composition of phytoplankton with warming ocean i .e. expansion of warm 

water phytoplankton species (small picoplankton) from low to high latitud es 

and migration of cold water phytoplankton species (large phytoplankton) 

towards the pole (Michaels and Silver, 1988). Alternatively, it  might be due 

to influx of nutrients in these regions from some external source such as 

saharan dust or river input (Gallisai  et al. ,  2014, Hamza et al. ,  2011, Ye et  
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al. , 2011, Resing and Barrett , 2014 , Subramaniam et al .,  2008). In IO region, 

there was no distinct pattern of change in chl. These results from the first  

metric indicate that  chl in the ocean is being affected by greenhouse gas 

forcings and in some regions it is also affected by natural forcings but the 

pattern of change that was observed did not follow the predicted pattern of 

change in chl in all the regions i.e. Doney (2006) 's conceptual model is not 

universally correct for the future  ocean. This signifies that changing climate 

is affecting chl in a way which is not yet  completely underst ood and in future 

the effects of climate change to chl may be surprisingly different.  

For the second metric i.e.  linear trend of zonal average of chl , 

greenhouse gas and natural forcing signals were detected in NA, SA and NP 

regions of the ocean. In these regions the pattern of trends in chl followed 

the expected pattern of trend in chl i.e. decline in chl in lower lat itudes and 

increase in trend in higher lat itudes. On the other hand, SP and IO regions 

showed the opposite pattern i.e. there was an increase in chl in lower 

latitudes and decline in chl in higher latitudes. This might be because in 

these regions only one of the forcing signals was detecte d i.e. natural forcing 

signal was detected in SP region and greenhouse gas forcing signal was 

detected in IO region. These results indicate that  the predicted pattern of 

change in chl is the change due to combination of two forcing signals i.e.  

greenhouse gas and natural forcings.  

The detection results indicate that chl concentration in some regions of 

the ocean is already being affected by greenhouse gases. The results can 

further be verified by using more climate models or by applying the formal 

detection and attribution to another metric of climate change in chl, for 

example change in the timing of the phytoplankton bloom.  

6.5. Future Work 

This study focused on implementing a formal detection and attribution 

of climate change signal in chl by using the optim al fingerprint (OF) 

technique on three metrics of chl trend. Out of the three only one metric,  i .e.  
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the linear trend of zonal average of chl, gave reliable results. The OF 

technique can be implemented using different metrics such as change in the 

timing of phytoplankton bloom or spatial representation of the change in the 

gyre area. The technique can also be applied on metrics with reduced spatial  

and temporal resolution. The OF technique can also be implemented on the 

primary production observations.  

In this study, output from the NOBM model was used which assimilates 

SeaWiFS satelli te chl observations.  The time period of the data used was 7 

years (1999-2005). Blended satelli te ocean colour datasets such as ESA's CCI 

and GlobColour which provide long-term records could be used in detection 

and attribution analysis. The OF technique could also be implemented using 

long-term in-situ records of chl, such as records from BATS and HOTS 

stations. The temporal resolution of metrics is easier to reduce in long -term 

records of chl which would help in removal of small -scale temporal 

variability,  which results in reduction of noise in the signal and hence, the 

possibility of signal detection increases.  

As has been seen in this study, the fidelity of climate models pla y a 

major role in the detection and attribution method. Four models were used in 

this study and the correlation coefficient between model simulated chl and 

chl from NOBM was low for all the models.  Taking mean of the ensemble of 

runs of a climate model for  a particular forcing scenario might improve the 

model output. Also, output from more climate models with higher spatial  

resolution could be used in the detection and attribution as it  may help in 

evaluating and improving model performance in simulating ch l, as there may 

be certain meso and sub-meso scale processes affecting chl which may not be 

represented accurately in the models and there might be certain  parameters 

which may not be simulated properly such as classification of phytoplankton 

functional groups or dynamics of higher trophic levels and adaption of 

primary producers to climate change.  

Finally,  I conclude that greenhouse gases have affected the chl 

concentration in some regions of the ocean and the signal is being detected in 

the observations.  This indicates the need to act upon the prevention of further 
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effects by reducing the emission of greenhouse gases in the atmosphere, as 

changes in chl would affect the whole marine ecosystem and would also 

affect the biological pump and the carbon cycle.   
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7. Appendix I- Comparison of monthly mean 

chlorophyll time series from NOBM with climate 

models 

7.1. Results for South Atlantic 

Table 7-1.  Statistical terms computed for Taylor diagram.  

Model/statistical 

term 

Standard 

Deviation 

RMS difference Correlation 

Coefficient 

IPSL 0.109 0.111 0.386 

GFDL-ESM2G 0.045 0.081 0.442 

GFDL-ESM2M 0.061 0.087 0.383 

CanESM2 0.037 0.124 -0.898 

 

 

Figure 7-1. a).  Pattern statist ics describing the monthly time series of mean chl 

for SA region (1999-2005) simulated by 4 models compared with the observed.   

From the Figure 7-1, it  can be seen that the correlation coefficient 

between NOBM and IPSL, GFDL-ESM2G and GFDL-ESM2M is moderate 

(0.383 to 0.442) and for CanESM2 model it  is  negative ( -0.898).  This 

indicates that the phase of the all the models except CanESM2 is same as the 

observations. From the Figure 7-1, it  can also be seen that the standard 
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deviation of  all the models except IPSL model is less than NOBM. This 

indicates that all the models underestimate the amplitude of the chl values 

except for IPSL model which exaggerates the amplitude of chl values. The 

RMS difference between models GFDL-ESM2G and GFDL-ESM2M and 

NOBM is between 0 and 0.1 whereas, RMS difference is more than 0.1 for 

models IPSL and CanESM2. Lower RMS difference for GFDL -ESM2G and 

GFDL-ESM2M climate models is due to lower difference in amplitudes of the 

models and observations. Lower RMS difference indicates that these models 

perform well  in simulating the chl. On the other hand, IPSL and CanESM2 

models performs poorly as the RMS difference is higher which is due to 

larger difference in the amplitude of patterns.  

7.2. Results for North Pacific 

Table 7-2. Statistical  terms computed for Taylor diagram.  

Model/statistical 

term 

Standard 

Deviation 

RMS difference Correlation 

Coefficient 

IPSL 0.170 0.131 0.785 

GFDL-ESM2G 0.056 0.051 0.587 

GFDL-ESM2M 0.078 0.044 0.829 

CanESM2 0.063 0.105 -0.556 
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Figure 7-2. a).  Pattern statist ics describing the monthly time series of mean chl 

for NP region (1999-2005) simulated by 4 models compared with the observed.  

From the Figure 7-2, it  can be seen that the correlation coefficient 

between NOBM and IPSL, GFDL-ESM2G and GFDL-ESM2M is high (0.587 

to 0.829 in this study) and for CanESM2 model it  is negative ( -0.556). This 

indicates that the phase of the all the models except CanESM2 is same as the 

observations. From the Figure 7-2, it  can also be seen that the standard 

deviation of all the models except GFDL_ESM2G model is more than NOBM. 

This indicates that all the models exaggerate the amplitude of the chl values  

except for GFDL_ESM2G model which underestimates the amplitude of chl 

values. The RMS difference between models GFDL-ESM2G and GFDL-

ESM2M and NOBM is between 0 and 0.1 whereas, RMS difference is more 

than 0.1 for models IPSL and CanESM2. Lower RMS difference for GFDL -

ESM2G and GFDL-ESM2M climate models is due to lower difference in 

amplitudes of the models and observations. Lower RMS difference indicates  

that  these models perform well in simulating the chl. On the other hand, IPSL 

and CanESM2 models performs poorly as the RMS difference is higher which 

is due to larger difference in the amplitude of patter ns.  

7.3. Results for South Pacific 
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Table 7-3. Statistical  terms computed for Taylor diagram  

Model/statistical 

term 

Standard 

Deviation 

RMS difference Correlation 

Coefficient 

IPSL 0.108 0.108 0.310 

GFDL-ESM2G 0.048 0.057 0.549 

GFDL-ESM2M 0.066 0.061 0.572 

CanESM2 0.032 0.095 -0.850 

 

 

Figure 7-3. a).  Pattern statist ics describing the monthly time series of mean chl 

for NP region (1999-2005) simulated by 4 models compared with the observed.  

From the Figure 7-3, it  can be seen that the correlation coefficient 

between NOBM and IPSL, GFDL-ESM2G and GFDL-ESM2M is moderate 

(0.310 to 0.572 in this study) and for CanESM2 model it  is negative ( -0.850).  

This indicates that the phase of the all the models except CanESM2 is same 

as the observations. From the Figure 7-3, it  can also be seen that the standard 

deviation of all the models except IPSL model is less than NOBM. This 

indicates that all the models underestimate the amplitude of the chl values 

except for IPSL model which exaggerates the amplitude of chl values. The 

RMS difference between models GFDL-ESM2G, GFDL-ESM2M and 

CanESM2 and NOBM is between 0 and 0.1 whereas, RMS difference is more 

than 0.1 for IPSL model. Lower RMS difference for GFDL -ESM2G, GFDL-
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ESM2M and CanESM2 climate models is due to lower difference in 

amplitudes of the models and observations. Lower RMS difference indicates  

that  these models perform well in simulating the chl. On the other hand, IPSL 

model performs poorly as the RMS difference is higher which is due to larger 

difference in the amplitude of patterns.   

7.4. Results for Indian Ocean 

Table 7-4. Statistical  terms computed for Taylor diagram  

Model/statistical 

term 

Standard 

Deviation 

RMS difference Correlation 

Coefficient 

IPSL 0.092 0.065 0.710 

GFDL-ESM2G 0.0372 0.059 0.534 

GFDL-ESM2M 0.056 0.045 0.764 

CanESM2 0.029 0.074 0.070 

 

 

Figure 7-4. a).  Pattern statist ics describing the monthly time series of mean chl 

for IO region (1999-2005) simulated by 4 models compared with the observed.  
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From the Figure 7-4, it  can be seen that the correlation coefficient 

between NOBM and all the models is  moderate (0.534 to 0.764  in this study).  

This indicates that  the phase of the all the models is same as the 

observations. From the Figure 7-4, it  can also be seen that the standard 

deviation of all the models except IPSL model is less than NOBM. This 

indicates that all the models underestimate the amplitude of the chl values 

except for IPSL model which exaggerates the amplitude of chl values. The 

RMS difference between climate models and NOBM is between 0 and 0.1.  

Lower RMS difference for climate models is due to lower difference in 

amplitudes of the models and observations. Lower R MS difference indicates  

that  these models perform well in simulating the chl.  
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8. Appendix II- EOF analysis and Truncation 

8.1. Empirical Orthogonal Function (EOF) analysis  

Statist ically,  EOF analysis is known as Principal Component Analysis 

(PCA). EOF analysis sepa ates the data into ‘modes’ that a e o thogonal to 

each other. These are not physical modes, but rather primarily data modes,  

i .e. data partitioned into orthogonal structures. EOFs are found by computing 

eigenvalues and eigenvectors of a spatially weighted anomaly covariance 

matrix. Eigenvalues represent the percent of variance explained by each 

mode. Projecting the eigenvector of each mode onto the spatially weighted 

covariance matrix derives the time  series of each mode. EOF analysis can be 

applied in time domain and frequency domain. The procedure to perform EOF 

analysis on a dataset  is presented as follows:  

The data matrix F has n rows and p columns, where n is the number of 

time steps for which data is available and p is the number of locations for 

which measurements are taken at each time step. This way of arranging the 

data into a matrix is referred to as S -mode analysis. The covariance matrix of 

the data matrix F, is computed using the equation  

Eq 8-1  R = F
T
* F 

Then solve the eigenvalue equation  

Eq 8-2  RC = C*A 

Where A (p by p) is a diagonal matrix, containing the eigenvalues E i  of 

R. The column vectors c i  of C (p by p) are the eigenvectors of R 

corresponding to the eigenvalues E i .  The percentage of variance explained by 

each mode can be found by dividing E i  by the sum of all the other 

eigenvalues. The eigenvector matrix C has the property C
T
*C = C*C

T
 = I 

(where I is identity matrix). This means that the eigenvectors or EOFs are 

orthogonal to each other. When EOF is plotted as a map, it  represents a 

standing oscillation. To see how an EOF evolves in time, Eq 8-3 needs to be 

solved.  



 

176 
 

Eq 8-3             

Where i represent the EOF.     is a vector of length n. These are the 

principal component (PC) time series or the expansion coefficients of the 

EOFs. EOFs are uncorrelated in space; expansion coefficients are 

uncorrelated in time. As an example, Figure 2.12 and 2.13 shows map and 

time series of first EOF of GFDL-ESM2M historical greenhouse gas 

simulation and NOBM.  

A new time-series of data can be created, by solving the Eq 8-4.  

Eq 8-4                
 
    

   has dimension of n x p. In order to obtain the new time-series data 

with reduced dimension space, the EOF matrix is truncated at some number 

N, where i = N <<p i .e.  first few EOFs are used, as they represent the largest  

variance in the original data. There are techniques to determine the val ue of 

N, which are discussed in the next section.  

8.2. Truncation 

In order to reduce the dimension of the noise covariance matrix, EOFs 

are computed for the matrix C1_chunks (section 2.2.2.1.3 of chapter 2). Steps 

to compute EOFs have been discussed in the prev ious section. The result of 

the EOF analysis gives us a diagonal matrix (NxN) with eigenvalues and the 

matrix for eigenvectors (NxN). Time series of EOF can be obtained by 

solving Eq 8.3. A new data matrix can be created by using Eq 8.4, but to do 

that the matrix with eigenvectors needs to be truncated. The choice of the 

number of EOFs represents a compromise between a stable estimate of the 

noise covariance matrix and the need for a sufficiently large space for 

optimizing the fingerprin t . There are several ways to decide the truncation 

level.   

Random Choice 

Randomly choosing a truncation level. It  is not a very reliable way to 

choose the truncation level as there is no statistical basis to the choice.  
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Hegerl et  al . (1996) Method 

A simple method to choose the truncation level was developed by 

Hegerl et al. (1996). The steps to determine the truncation level are as 

follows:  

1.  Decompose C1_chunk matrix using EOF analysis and reconstruct matrix  

C1_chunk using various numbers of EOFs i.e. truncatio n levels.  For 

example,  if number of eigenvectors obtained after computing EOF analysis 

of C1_chunk matrix are 50, then choice of truncation level may be made 

by choosing multiples of 5. This will give us 10 truncation levels as 5, 10, 

15 . . . . . ,  50. Choosing these truncation levels and for each level C1_chunk 

is reconstructed. This provides with 10 C1_chunk matrices.  

2.  For each of these C1_chunk matrices,  noise covariance matrix C is 

computed. This provides with 10 noise covariance matrices.   

3.  Utilizing these noise covariance matrices,  optimal fingerprint 'OF' is  

computed. Hegerl defined the optimal fingerprint  as  

 Eq 8-5   OF = C
-1

*g  

 Where, g is the guess signal as obtained in section 2.2.2.1.1. 10 noise 

 covariance matrices give us 10 number of fingerprints.   

4.  Compute correlation between the guess pattern g and the fingerprint OF.  

5.  Plot the correlation coefficient against  the number of EOFs chosen as 

truncation level.  

6.  The EOF number where there is a more dramatic decrease in the value of 

correlation coefficient indicates the number of EOFs chosen as truncation 

level.   

 

Allen and Tett (1999)_ENREF_2 Method 

Another method to determine the level of truncation was developed by  

Allen and Tett  (1999) .  

1.  Decompose C1_chunk matrix using EOF analysis and reconstruct matrix  

C1_chunk using various numbers of EOFs i.e. truncation levels.  For 

example,  if number of eigenvectors obtained after computing EOF analysis 
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of C1_chunk matrix are 50, then choice of trunca tion level may be made 

by choosing multiples of 5. This will give us 10 truncation levels as 5, 10, 

15 . . . . . ,  50. Choosing these truncation levels and for each level C1_chunk 

is reconstructed. This provides with 10 C1_chunk matrices.  

2.  For each of these C1_chunk matrices,  noise covariance matrix C is 

computed. This provides with 10 noise covariance matrices.   

3.  Utilizing these noise covariance matrices, beta is computed using equation 

2. 10 noise covariance matrices give us 10 number of beta values.  

4.  Using these 10 beta values, 10 residuals are computed using Eq 2-5.  

5.  Using these 10 residual numbers, Eq 8-6 is solved  

Eq 8-6   r
2
 = R'*(noise_2*noise_2')

-1
*R  

This gives us 10 values of r
2
.  These values should be distributed as the 

sum of the square of k-m normally distributed random variables i.e. it  can 

be chi-squa e (χ
2
) or F distribution with k-m degrees of freedom. Here k 

is the level of truncation (in this case - 5,10... . ,50) and m is the number 

of response patterns for which beta is to be computed. For example, if OF 

is being implemented using only greenhouse gas signal then, m=1.  

6.  Plot (k-m)/r
2
 against  the level of truncation with lines of 5 -95% range of 

(k-m) χ
2
 and (1/F) distribution.  

7.  The EOF number where there is a more dramatic decrease in the value of 

correlation coefficient indicates the number of EOFs chosen as truncation 

level.  

8.  The line of (k-m)/r
2
 should not cross the 5-95% range of (k-m) χ

2
 and 

(1/F) distribution. This is  the 'residual consistency c heck' for the noise 

matrix. If  the line does not move outside the range it indicates that the 

control simulation does not include patterns which contain unrealistically 

low or high variance i.e. noise is represented correctly by the model.   

The process chart for the truncation of a matrix by Hegerl et al.  

(1996) and Allen and Tett (1999)  method is given in Appendix III.  
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9. Appendix III- Process Flowchart 

9.1. Pre-processing 
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9.2. Compute noise covariance matrix  
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9.3. Truncation 
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9.4. Optimal Fingerprint Method 
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10. Appendix IV-Results for Chapter 3 

10.1. Trend in chlorophyll  

   a) .               b).  

 

 

   c) .               d).  

 

Figure  10-1. Percent of grid points where trend is significant from whole and 

reduced t ime period of  simulations in a).  SA region,  b).  NP region, c).  SP region, 

d).  IO region.  
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10.2. Results of comparison of linear trend from 

model simulations with NOBM data 

Table 10-1. Statist ical terms of comparison for North Atlantic region.  

Model 

Simulation 

Correlation 

Coefficient 

RMS difference Standard 

Deviation 

W R W R R R 

B 0.04934 -0.01691 0.00081 0.00089 0.00002 0.00037 

C -0.06979 0.04906 0.00081 0.00095 0.00001 0.00055 

D -0.03241 0.06536 0.00081 0.00091 0.00001 0.00049 

F -0.05828 0.34773 0.00081 0.00078 0.00001 0.00047 

G 0.12233 -0.11966 0.00080 0.00099 0.00004 0.00049 

H -0.16797 0.18849 0.00081 0.00112 0.00002 0.00094 

I -0.25468 0.009230 0.00082 0.00132 0.00004 0.00105 

J -0.15500 -0.11450 0.00081 0.00117 0.00001 0.00076 

K 0.14964 0.19955 0.00080 0.00101 0.00014 0.00079 

L 0.17773 0.06787 0.00080 0.00116 0.00001 0.00089 

M 0.21221 -0.14225 0.00080 0.00132 0.00001 0.00094 

N 0.09627 -0.10528 0.00081 0.00134 0.00001 0.00099 

O 0.11607 -0.06839 0.00080 0.00117 0.00012 0.00079 

 

10.2.1. Results for South Atlantic Region 

Spatial linear trend for SA region from NOBM and greenhouse gas 

simulations of the reduced time period of model simulations is shown in 

Figure 10-2. Visual comparison of the spatial trends from model simulations 

(Figure 10-2b, c & d) indicates that models show some consistency in the 

patterns of linear trend in SA. For example, increasing trend observed in 

north-western part of SA from ESM2M historical greenhouse gas simulation 

(Figure 10-2b) is also observed in historical greenhouse gas simulation from 

IPSL (Figure 10-2c) and partially in CanESM2 (Figure 10-2d). On the other 

hand, there is a declining trend observed in north -western part  of SA from 
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NOBM (Figure 10-2a) which is not consistent to that observed in spatial linear 

trend from model simulations. However, an increasing trend observed in 

south-western part of SA from NOBM (Figure 10-2a) is also observed in spatial 

linear trend from IPSL historical greenhouse gas simulation ( Figure 10-2c). 

Thus, it  can be concluded that there is  part ial consistency be tween signal 

from NOBM and model simulations and also among the signals from model  

simulations.   

  a).        b).  

 
   c).        d).

  
Figure  10-2. Spatial  l inear trend for SA region from a) .  NOBM and reduced t ime 

period of b).  GFDL-ESM2M Historical  GHG c).  IPSL Historical  GHG and d).  

CanESM2 Historical  GHG simulations.  

Table 10-2 below shows the value of the statistical  terms of 

comparison i .e. the correlation coefficient, root mean square difference and 

standard deviation when spatial linear trend for SA region of the ocean 
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computed from different model simulations for two time periods (whole and 

reduced) was compared with linear trend from NOBM.  

Table 10-2. Statist ical terms of comparison for South Atlantic region.  

Model 

Simulation 

Correlation 

Coefficient 

RMS difference Standard Deviation  

W R W R W R 

A   0.00060484 

B -0.007740 -0.100784 0.000605 0.00088 0.00000598 0.000586 

C 0.033665 0.005380 0.000605 0.00070 0.00000728 0.000366 

D 0.071567 -0.116257 0.000604 0.00068 0.00000992 0.000237 

F 0.140550 -0.026715 0.000604 0.00069 0.00000444 0.000307 

G -0.029908 0.170485 0.000608 0.00061 0.00000415 0.000245 

H 0.350438 -0.201214 0.000603 0.00075 0.00000685 0.000344 

I 0.235165 0.140842 0.000602 0.00067 0.00000120 0.000376 

J -0.002439 0.331355 0.000605 0.00060 0.00000423 0.000380 

K 0.231753 0.232088 0.000595 0.00060 0.00005280 0.000053 

L 0.023729 -0.036349 0.000605 0.00066 0.00000885 0.000241 

M 0.054832 -0.062557 0.000605 0.00067 0.00000722 0.000260 

N -0.118415 0.063899 0.000605 0.00064 0.00000400 0.000264 

O 0.103137 -0.000576 0.000602 0.00070 0.00004580 0.000351 

 

Taylor diagrams associated with the comparisons are shown in  Figure 

10-3. Figure 10-3a shows statistical terms of comparisons when spatial linear 

trend was computed from whole time period of simulations.  Figure 10-3b 

shows statistical terms of comparisons when spatial l inear trend was 

computed from reduced time period of simulations.  
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a).   

b).   

Figure  10-3. Taylor diagrams associated with the comparisons of spatial  l inear 

trend for SA region computed from a).  whole t ime period of  simulations b).  

reduced t ime period of  simulations with spatial  l inear trend for SA region 

computed from NOBM.  

From Figure 10-3, it  can be seen that the correlation coefficient  for all  

the model simulations is very low ( -0.2012 to 0.3504 in this study). Low 

correlation coefficient indicates that the spatial linear trend from model 

simulations is not correctly phased with NOBM. For  most of the simulations 

correlation coefficient changes sign and magnitude for the two time periods 

for which linear trend is computed. This indicates that signal from whole 

time period of data is not the same as the reduced time period of data and 

they should be treated as two different metrics of signal computation. It  

should also be noted from Figure 10-3 that  there is only partial  consistency in 

the sign of correlation coefficient obtained from same forcing simulation 

from different models. For example , correlation coefficient obtained for 
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whole time period of historical greenhouse gas simulation from ESM2M and 

IPSL model is posit ive but for CanESM2 model correlation coefficient is  

negative.  

It can also be seen from Figure 10-3 that the standard deviat ion of all the 

model simulations for both the time periods is lower than NOBM. The 

difference between the standard deviations of NOBM and model simulations 

for the whole t ime period (10
-4

) is higher compared to the difference between 

the standard deviations of NOBM and the model simulations for the reduced 

time period (10
-5

). From this it  can be concluded that  the amplitude of the 

spatial l inear trend from both the time period of model simulations 

underestimate the amplitude of the spatial l inear t rend of chl and the 'reduced 

time period' of model simulations gives a much closer estimate to the 

amplitude of the spatial l inear trend from NOBM.  

10.2.2. Results for North Pacific Region 

Spatial linear trend for NP region from NOBM and greenhouse gas 

simulations of the reduced time period of model simulations is shown in 

Figure 10-4. Visual comparison of the spatial trends from model simulations 

(Figure 10-4b, c & d) indicates that models show some consistency in the 

patterns of linear trend in NP. For example, increasing trend observed in 

north-eastern part of NP from ESM2M historical greenhouse gas simulation 

(Figure 10-4b) is also partially observed in historical  greenhouse gas 

simulation from IPSL (Figure 10-4c) and CanESM2 (Figure 10-4d). On the other 

hand, there is a declining trend observed in north -eastern part of NP from 

NOBM (Figure 10-4a) which is not consistent to that observed in spatial linear 

trend from model simulations. However, an increasing trend observed in 

south-western part of NP from NOBM (Figure 10-4a) is  also observed partially 

in spatial linear trend from historical greenhouse gas simulation of ESM2M 

(Figure 10-4b) and IPSL (Figure 10-4c). Thus, it  can be concluded that there is  

partial consistency between signal from NOBM and model simula tions and 

also among the signal from model simulations.   
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   a).       b).  

   c).        d).  

 
Figure  10-4. Spatial  l inear trend for NP region from a) .  NOBM and reduced t ime 

period of b).  GFDL-ESM2M Historical  GHG c).  IPSL Historical  GHG and d).  

CanESM2 Historical  GHG simulations.  

Table 10-3 below shows the value of the statistical  terms of 

comparison i .e. the correlation coefficient, root mean square difference and 

standard deviation when spatial linear trend for NP region of the ocean 

computed from different model simulations for two time periods (whole and 

reduced) was compared with linear trend from NOBM. 
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Table 10-3. Statist ical terms of comparison for North Pacific region.  

Model 

Simulation 

Correlation 

Coefficient 

RMS difference Standard 

Deviation 

W R W R R R 

A   0.00083 

B 0.00807 0.06381 0.00082 0.00088 0.00000 0.00035 

C 0.18908 0.05393 0.00082 0.00091 0.00001 0.00044 

D -0.11494 -0.02909 0.00083 0.00099 0.00001 0.00052 

F 0.21524 0.28005 0.00082 0.00083 0.00001 0.00049 

G -0.08146 -0.13764 0.00083 0.00100 0.00003 0.00047 

H -0.28003 0.23434 0.00083 0.00086 0.00001 0.00049 

I -0.33647 -0.32976 0.00083 0.00115 0.00001 0.00058 

J 0.12503 -0.25102 0.00082 0.00121 0.00001 0.00071 

K -0.01911 -0.03487 0.00083 0.00092 0.00004 0.00038 

L 0.02224 0.02224 0.00082 0.00082 0.00001 0.00001 

M 0.27757 0.27757 0.00082 0.00082 0.00001 0.00001 

N 0.04087 0.04087 0.00082 0.00082 0.00001 0.00001 

O 0.18145 0.18145 0.00082 0.00082 0.00004 0.00004 

 

Taylor diagrams associated with the comparisons are shown in Figure 

10-5. Figure 10-5a shows statistical terms of comparisons when spatial  linear 

trend was computed from whole time period of simulations. Figure 10-5b shows 

statistical terms of comparisons when spatial linear trend was computed from 

reduced time period of simulations.  
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a).   

b).  

 
Figure  10-5. Taylor diagrams associated with the comparisons of spatial  l inear 

trend for NP region computed from a).  whole t ime period of  simulations b).  

reduced t ime period of  simulations with spatial  l inear trend for NP region 

computed from NOBM.  

From Figure 10-5, it  can be seen that the correlation coefficient for all  

the model simulations is low ( -0.3365 to 0.2801 in this study).  Low 

correlation coefficient indicates that the spatial linear trend from model 

simulations is not correctly phased with NOBM. For most of the simulations,  

correlation coefficient does not change sign for whole time period to reduced 

time period of model  simulations but the magnitude of correlation coefficient 

changes. This indicates that signal from whole time period of data has same 

phase as the signal from the reduced time period of data but due to difference 

in magnitude of correlation coefficient the se two signals cannot be 

considered as same, therefore they should be treated as two different metrics 
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of signal computation. It  should also be noted from Figure 10-5 that there is 

only partial  consistency in the sign of correlation coefficient obtained fr om 

same forcing simulation from different models. For example, correlation 

coefficient obtained for whole time period of historical greenhouse gas 

simulation from ESM2M and IPSL model is negative but for CanESM2 model 

correlation coefficient is  positive.   

It can also be seen from Figure 10-5 that the standard deviation of all the 

model simulations for both the time periods is lower than NOBM. The 

difference between the standard deviations of NOBM and model simulations 

for the whole t ime period (10
-4

) is higher compared to the difference between 

the standard deviations of NOBM and the model simulations for the reduced 

time period (10
-5

). From this it  can be concluded that  the amplitude of the 

spatial l inear trend from both the time period of model simulations  

underestimate the amplitude of the spatial l inear trend of chl and the 'reduced 

time period' of model simulations gives a much closer estimate to the 

amplitude of the spatial l inear trend from NOBM.  

10.2.3. Results for South Pacific Region 

Spatial linear trend for SP region from NOBM and greenhouse gas 

simulations of the reduced time period of model simulations is shown in 

Figure 10-6. Spatial linear trend from greenhouse gas simulations is chosen as  

an example for visual comparison because this is the signal that  is of interest 

in this detection study. Visual comparison of the spatial trends from model 

simulations (Figure 10-6b, c & d) indicates that there is partial consistency in 

the signals obtained from the same model forcing simulation from different 

models. For example, a decreasing trend observed in mid -eastern part of SP 

from IPSL (Figure 10-6c) is also observed partially in spatial linear trend from 

ESM2M (Figure 10-6b) and CanESM2 (Figure 10-6d). Also, comparison of  

signals from model simulations (Figure 10-6b, c & d) with NOBM (Figure 10-6a) 

indicates that for some simulations patterns are similar to NOBM at some 

grid points but are completely opposite at other grid points. For example, 

declining trend observed in mid-eastern part of SP from NOBM is also 
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observed in spatial linear trend from IPSL-Hist-GHG, but CanESM2-Hist-

GHG (Figure 10-6d) shows a partially increasing and partial ly decreasing trend 

in mid-eastern part of NOBM.  

   a).            b). 

  
   c).          d).  

  
Figure  10-6. Spatial  l inear trend for SP region from a) .  NOBM and reduced t ime 

period of b).  GFDL-ESM2M Historical  GHG c).  IPSL Historical  GHG and d).  

CanESM2 Historical  GHG simulations.  

 

 

Table 10-4 below shows the value of the statistical  terms of 

comparison i .e. the correlation coefficient, root mean square difference and 

standard deviation when spatial linear trend for SP region of the ocean 

computed from different model simulations for two time periods (whol e and 

reduced) was compared with linear trend from NOBM.  
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Table 10-4. Statist ical terms of comparison for South Pacific region.  

Model 

Simulation 

Correlation 

Coefficient 

RMS difference Standard 

Deviation 

W R W R R R 

A   0.00051 

B 0.03721 0.08205 0.00051 0.00056 0.00001 0.00028 

C -0.05226 0.17997 0.00051 0.00052 0.00001 0.00023 

D -0.00808 -0.05678 0.00051 0.00059 0.00001 0.00028 

F -0.06027 0.14966 0.00051 0.00056 0.00001 0.00032 

G -0.00805 -0.03273 0.00051 0.00058 0.00003 0.00027 

H 0.08920 -0.00490 0.00051 0.00070 0.00001 0.00048 

I -0.02951 -0.18956 0.00051 0.00070 0.00002 0.00039 

J -0.18843 0.20451 0.00051 0.00069 0.00000 0.00058 

K -0.16051 0.21961 0.00052 0.00063 0.00004 0.00051 

L 0.08771 0.15587 0.00051 0.00057 0.00001 0.00035 

M 0.05905 -0.08477 0.00051 0.00059 0.00001 0.00027 

N 0.07870 -0.12158 0.00051 0.00064 0.00001 0.00034 

O 0.01656 -0.00410 0.00051 0.00076 0.00004 0.00056 

Taylor diagrams associated with the comparisons are shown in Figure 

10-7. Part a of  Figure 10-7 shows statistical  terms of comparisons when 

spatial l inear trend was computed from whole time period of simulations.  

Part b of Figure 10-7 is the zoomed in graph of part a to show the points 

more clearly.  Part c of  Figure 10-7 shows statistical terms of comparisons 

when spatial linear trend was computed from reduced t ime period of 

simulations.  
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a).   

b).  

 
Figure  10-7. Taylor diagrams associated with the comparisons of spatial  l inear 

trend for SP region computed from a).  whole t ime period of  simulations b).  reduced 

t ime period of simulat ions with spatial  l inear trend for SP region computed from 

NOBM.  

From Figure 10-7, it  can be seen that the correlation coefficient for all  

the model simulations is low ( -0.1896 to 0.2196 in this study).  Low 

correlation coefficient indicates that the spatial linear trend from model 

simulations is not correctly phased with NOBM. For most of the simulations 

correlation coefficient changes sign and magnitude for the two time periods 

for which linear trend is computed. This indicates that signal from whole 

time period of data is not the same as the reduced time period of data and 

they should be treated as two different metrics of signal computation. It  

should also be noted from Figure 10-7 that there is  part ial  consistency in the 

sign of correlation coefficient obtained from same forcing simulation from 
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different models. For example, correlati on coefficient obtained for whole 

time period of historical  greenhouse gas simulation from ESM2M and IPSL 

model is  negative but for CanESM2 model correlation coefficient is posit ive.  

It  can also be seen that the standard deviation of all the model 

simulations for both the time periods is  lower than NOBM except for IPSL 

historical natural and CanESM2 RCP8.5 reduced time period simulation. The 

difference between the standard deviations of NOBM and model simulations 

for the whole t ime period (10
-4

) is higher compared to the difference between 

the standard deviations of NOBM and the model simulations for the reduced 

time period (10
-5

). From this it  can be concluded that  the amplitude of the 

spatial l inear trend from both the time period of model simulations 

underestimate the amplitude of the spatial l inear trend of chl and the 'reduced 

time period' of model simulations gives a much closer estimate to the 

amplitude of the spatial l inear trend from NOBM.  

10.2.4. Results for Indian Ocean Region 

Spatial linear trend for IO  region from NOBM and greenhouse gas 

simulations of the reduced time period of model simulations is shown in  

Figure 10-8. Spatial  linear trend from greenhouse gas simulations is chosen 

as an example for visual comparison because this is the signal that  is  of 

interest in this detection study. Visual comparison of the spatial trends from 

model simulations (Figure 10-8b, c & d) indicates that  there is  partial  

consistency in the signals obtained from the same model forcing simulation 

from different models. For example, decreasing trend observed in eastern part  

of IO from ESM2M (Figure 10-8b) is also observed partially in spatial linear 

trend from IPSL (Figure 10-8c) and CanESM2 (Figure 10-8d). Also, 

comparison of signals from model simulations ( Figure 10-8b, c & d) with 

NOBM (Figure 10-8a) indicates that  for some simulations patterns are similar 

to NOBM at some grid points but are completely opposite at other grid 

points. For example, declining trend observed in southern part of IO from 

NOBM (Figure 10-8a) is also observed in spatial linear trend from CanESM2 -
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Hist-GHG (Figure 10-8d), but IPSL-Hist-GHG (Figure 10-8c) show an 

increasing trend in southern part of IO.  

   a).       b).  

  
  c).       d).  

  
Figure  10-8. Spatial  l inear trend for NA region from a) .  NOBM and reduced t ime 

period of b).  GFDL-ESM2M Historical  GHG c).  IPSL Historical  GHG and d).  

CanESM2 Historical  GHG simulations.  

Table 10-5 below shows the value of the statistical  terms of 

comparison i .e. the correlation coefficient, root mean square difference and 

standard deviation when spatial linear trend for IO region of th e ocean 

computed from different model simulations for two time periods (whole and 

reduced) was compared with linear trend from NOBM.  
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Table 10-5. Statist ical terms of comparison for Indian Ocean region.  

Model 

Simulation 

Correlation 

Coefficient 

RMS difference Standard 

Deviation 

W R W R R R 

A   0.00083 

B -0.39066 -0.02283 0.00053 0.00058 0.00001 0.00024 

C -0.32367 -0.06851 0.00053 0.00060 0.00001 0.00025 

D -0.18018 -0.15957 0.00052 0.00060 0.00001 0.00022 

F -0.02698 0.01947 0.00052 0.00060 0.00000 0.00031 

G -0.24593 -0.14413 0.00053 0.00064 0.00002 0.00030 

H -0.39887 0.42056 0.00053 0.00048 0.00001 0.00029 

I -0.42442 -0.37192 0.00053 0.00066 0.00001 0.00026 

J -0.39057 -0.54332 0.00053 0.00089 0.00001 0.00049 

K -0.42525 0.39949 0.00055 0.00050 0.00005 0.00034 

L -0.19045 0.11175 0.00053 0.00060 0.00001 0.00036 

M -0.22337 -0.12222 0.00053 0.00065 0.00001 0.00033 

N 0.20844 0.16994 0.00052 0.00056 0.00001 0.00031 

O -0.18186 0.13673 0.00054 0.00057 0.00007 0.00031 

Taylor diagrams associated with the comparisons are shown in  Figure 

10-9. Figure 10-9a shows statistical terms of comparisons when spatial linear 

trend was computed from whole time period of simulations. Figure 10-9b 

shows statistical terms of comparisons when spatial l inear trend was 

computed from reduced time period of simulations.  
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a).   

b).  

 

Figure  10-9. Taylor diagrams associated with the comparisons of spatial  l inear 

trend for IO region computed from a).  whole t ime period of  simulations b).  reduced 

t ime period of simulat ions with spatial  l inear trend for IO region computed from 

NOBM.  

From Figure 10-9, it  can be seen that the correlation coefficient for all  

the model simulations is low ( -0.5433 to 0.4206 in this study).  Low 

correlation coefficient indicates that the spatial linear trend from model 

simulations is not correctly phased with NOBM. For most of the simulations 

correlation coefficient changes sign and magnitude for the two time periods 

for which linear trend is computed. This indicates that signal from whole 

time period of data is not the same as the reduced time period of data and 

they should be treated as two different metrics of signal computation. It  

should also be noted from Figure 10-9 that there is consistency in the sign of 
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correlation coefficient obtained from same forcing simulation from different 

models. For example, correlation coeff icient obtained for whole time period 

of historical greenhouse gas simulation from all the three models is  negative 

(ESM2M, IPSL and CanESM2).  

From Figure 10-9, it  can also be seen that the standard deviation of all  

the model simulations for both the time  periods is lower than NOBM. The 

difference between the standard deviations of NOBM and model simulations 

for the whole t ime period (10
-4

) is higher compared to the difference between 

the standard deviations of NOBM and the model simulations for the reduced 

time period (10
-5

). From this it  can be concluded that  the amplitude of the 

spatial  linear trend from the 'whole t ime period' of model simulations 

underestimates the amplitude of the spatial linear trend of chl and the 

'reduced time period' of model simulations gives a much closer estimate to 

the amplitude of the spatial  linear trend from NOBM.   

10.3. Level of truncation 

Table 10-6. Level of truncation chosen for the noise covariance matrix  

Model 

Simulation 

Alphabet 

NA SA NP SP IO 

W R W R W R W R W R 

B 22.56 22.56 18.80 18.80 18.80 11.28 26.32 22.56 22.56 22.56 

C 14.71 22.06 14.71 18.38 22.06 14.71 22.06 14.71 11.03 18.38 

D 18.38 22.06 7.35 22.06 18.38 18.38 14.71 22.06 14.71 14.71 

F 22.06 25.74 14.71 11.03 18.38 7.35 25.74 25.74 14.71 14.71 

G 18.38 14.71 14.71 22.06 18.38 18.38 25.74 25.74 18.38 22.06 

H 10.20 10.20 13.61 10.20 10.20 6.80 13.61 13.61 17.01 17.01 

I 13.61 13.61 10.20 13.61 13.61 10.20 13.61 10.20 17.01 17.01 

J 10.20 10.20 13.61 13.61 10.20 10.20 13.61 13.61 17.01 17.01 

K 13.61 10.20 13.61 10.20 6.80 10.20 17.01 17.01 17.01 17.01 

L 6.85 10.27 13.70 20.55 13.70 17.12 13.70 10.27 20.55 20.55 

M 23.97 30.82 17.12 17.12 13.70 10.27 17.12 23.97 17.12 17.12 

N 17.12 17.12 17.12 17.12 13.70 13.70 17.12 23.97 17.12 17.12 

O 23.97 10.27 20.55 23.97 10.27 20.55 17.12 17.12 17.12 17.12 
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10.4. Detection Results 

Beta values obtained after the implementation of the OF method 

indicate whether the signal has been detected in the observations or not.   

Table 10-7. Beta values for NA region  

Model Simulation  BETA 

WHOLE REDUCED 

B 35.824 -5.148 

C -234.160 -1.781 

D 64.732 1.251 

E 659.350 -4.840 

F -597.030 -11.396 

G 6.398 -4.391 

H 201.484 0.842 

I 24.516 0.683 

J -42.256 0.637 

K 1.954 0.835 

L -2184.865 0.636 

M 43.069 -1.097 

N -296.623 -0.6774 

O 5.253 -1.894 

10.4.1. Results for South Atlantic Region 

Scaling factors obtained as a result  of the implementation of the OF 

method in spatial linear trend of chl in SA region of the ocean (using spatial  

linear trend from model forced simulations as the signal) is shown in  Figure 

10-10 and given in Table 10-8.  
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a).   

 

b).   

Figure  10-10.  Graph of signal amplitude along with the Confidence Interval (CI) ,  

obtained for OF implementation in SA region using signals from whole and reduced 

t ime period of model s imulations. a).  result  for both whole (blue) and reduced (red) 

t ime period of model s imulations used to compute the signal .  b).  result  for only 

reduced t ime period of  model simulations.  
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Figure 10-10 above shows the beta values obtained in SA region for 

signals obtained from model forced simulations along with the confidence 

interval (CI) associated with each beta value. Figure 10-10 part (a) shows 

beta values for both whole (blue) and reduced (red) time period of model 

simulations and part  (b) shows beta values for only reduced time period of 

model simulations used to compute the signal.  

Table 10-8. Beta values for SA region  

Model Simulation  BETA 

WHOLE REDUCED 

B 58.535 -0.863 

C -47.563 -0.411 

D -50.226 -0.776 

E -160.166 3.682 

F -89.072 -1.841 

G -15.487 -3.893 

H -41.162 -1.014 

I -22.794 1.218 

J 135.679 -19.521 

K -5.785 -5.746 

L -145.430 -10.492 

M -76.654 4.6118 

N -136.442 1.388 

O -12.135 -12.031 

For the whole time period of model simulations, it  can be seen from the 

Figure (blue dots and CI lines) that positive beta values are obtained for 

signals from whole time period of GFDL-ESM2G historical and IPSL 

historical natural simulations. This indicates that signals from these model 

simulations are detected in the observations.  For the reduced time period of 

model simulations, it  can be seen from the Figure (red dots and CI lines) that  

positive beta values are obtained for signals from reduced time period of 

IPSL historical GHG, CanESM2 historical GHG and CanESM2 Historical  

Natural  simulations.  
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The graph below shows results for the OF implementation using the 

signals from the model simulations where the consistency test passed ( Table 

3.3). Simulations from whole and reduced time period of model simulations 

is represented with a 'W' and 'R' respectively.   

 

Figure  10-11.  Scaling factor and their  5 -95% CI for signals from model forced 

simulations for which consistency test  passes in SA region  

As it can be seen from the Figure above, scaling factors for reduced 

time period of greenhouse gas simulation from IPSL model is  1.218 which is 

significantly different from 0 with 95% confidence interval. This indicates 

that the effect of greenhouse gas forcing is detectable in the observ ations. As 

the beta value is ~1, it  can be inferred that model simulated response of chl  

to external forcing is consistent with observations.   

10.4.2. Results for North Pacific Region 

Scaling factors obtained as a result  of the implementation of the OF 

method in spatial linear trend of chl in NP region of the ocean (using spatial  

linear trend from model forced simulations as the signal) is shown in Figure 

10-12 and Table 10.9.  
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a).  

 

b).  

Figure  10-12.  Graph of signal amplitude along with the CI, obtained for OF 

implementation in NP region using signals from whole and reduced t ime period of  
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model simulations. a).  result  for both whole (blue) and reduced (red) t ime period of  

model simulations used to compute the s ignal.  

Figure 10-12 above shows the beta values obtained in NP region for 

signals obtained from model forced simulations along with the confidence 

interval (CI) associated with each beta value. Figure 10-12 part (a) shows 

beta values for both whole (blue) and reduced (red) time period of model 

simulations and part  (b) shows beta values for only reduced time period of 

model simulations used to compute the signal.  

Table 10-9. Beta values for NP region  

Model Simulation  BETA 

WHOLE REDUCED 

B 188.954 1.1894 

C 1.217 -1.123 

D 192.195 -1.263 

E 56.693 -1302.689 

F 159.299 2.292 

G 17.173 -3.309 

H 142.353 131.174 

I 141.673 2.659 

J 150.578 -0.5 

K 6.924 -4.168 

L -69.901 2.848 

M -903.862 2.662 

N 104.888 -4.472 

O 32.954 2.477 

For the whole time period of model simulations, it  can be seen from the 

Figure (blue dots and CI lines) that posit ive beta values are obtained for most 

of the signals except for CanESM2 Historical and Historical GHG 

simulations.  For the reduced time period of model simulations, it  can be seen 

from the Figure (red dots and CI lines) that positive beta values are obtained 

for signals from reduced t ime period of GFDL-ESM2G Historical, GFDL-
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ESM2M historical  Natural, IPSL historical,  IPSL historical GHG, CanESM2 

historical  and CanESM2 Historical GHG simulations.  

Consistency test  for the internal variabil ity passes for the signal from 

whole time period of RCP8.5 simulation from IPSL model.  Scaling factor 

determined is 6.924 which is significantly different from 0 with 95% 

confidence interval. This indicates that the effect  of future emissio ns is large 

enough to be detectable. Since, the beta value is greater than unity,  it  can be 

inferred that the model simulated response of chl to external forcings is 

significantly underestimated and it needs to be amplified (by a factor of ~6) 

to be consistent with observations.  

10.4.3. Results for South Pacific Region 

Scaling factors obtained as a result  of the implementation of the OF 

method in spatial linear trend of chl in SP region of the ocean (using spatial  

linear trend from model forced simulations as the signal) is shown in Figure 

10-13 and Table 10-10.  

a).  
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b).  

Figure  10-13.  Graph of signal amplitude along with the CI, obtained for OF 

implementation in SP region using signals from whole and reduced t ime period of  

model simulations. a).  result  for both whole (blue) and reduced (red) t ime period of  

model simulations used to compute the signal.  

Figure 10-13 above shows the beta values obtained in SP region for 

signals obtained from model forced simulations along with the confidence 

interval (CI) associated with each beta value. Figure 10-13 part (a) shows 

beta values for both whole (blue) and reduced (red) t ime period of model 

simulations and part  (b) shows beta values for only reduced time period of 

model simulations used to compute the signal.  
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Table 10-10. Beta values for SP region  

Model Simulation  BETA 

WHOLE REDUCED 

B -15.597 0.275 

C -23.119 3.294 

D 3.294 -1.971 

E 243.150 0.997 

F -17.000 1.082 

G -146.16 11.203 

H -45.297 0.195 

I 5.679 -20.301 

J 19.524 0.424 

K 3.129 -0.097 

L -14.941 9.74 

M -8.773 -2.014 

N -180.202 0.565 

O -9.088 0.121 

For the whole time period of model simulations, it  can be seen from the 

Figure (blue dots and CI lines) that positive beta values are obtained for 

signals from whole time period of GFDL-ESM2M Historical GHG and 

Historical Miscellaneous, IPSL Historical GHG, Historical Natural and 

RCP8.5 simulations. For the reduced time period of mo del simulations, it  can 

be seen from the Figure (red dots and CI lines) that positive beta values are 

obtained for signals from reduced time period of GFDL-ESM2G Historical , 

GFDL-ESM2M historical, historical Miscellaneous, historical Natural and 

RCP8.5, IPSL historical and historical Natural , CanESM2 historical, 

historical  Natural and RCP8.5 simulations.  

Significance of the scaling factors for the simulations for which the 

consistency test failed (Table 3.3) is questionable and therefore, only those 

results would be considered significant where the consistency test passed. 

Thus, the graph below shows results for the OF implementation using the 

signals from the model simulations where the consistency test passed. 

Simulations from whole and reduced time period  of model simulations is 

represented with a 'W' and 'R' respectively.   
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Figure  10-14.  Scaling factor and their  5 -95% CI for signals from model forced 

simulations for which consistency test  passes in SP region.  

As it  can be seen from the Figure 10-14 above, scaling factors for 

whole time period of greenhouse gas, natural and RCP8.5 simulation from 

IPSL is 5.679, 19.524 and 3.129 respectively.  As can be seen that  the 

confidence intervals of the scaling fac tors is not different from 0 therefore,  

these scaling factors are not significant. Thus, effect of external forcings is  

not being detected in the observations.  

10.4.4. Results for Indian Ocean Region 

Scaling factors obtained as a result  of the implementation of the OF 

method in spatial linear trend of chl in IO region of the ocean (using spatial  

linear trend from model forced simulations as the signal) is shown in Figure 

10-15 and Table 10-11.  



 

213 
 

a).  

 

b).  

Figure  10-15.  Graph of signal amplitude along with the CI, obtained for OF 

implementation in IO region using signals from whole and reduced t ime period of  

model simulations. a).  result  for both whole (blue) and reduced (red) t ime period of  

model simulations used to compute the signal.   
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Figure 10-15 above shows the beta values obtained in IO region for 

signals obtained from model forced simulations along with the c onfidence 

interval (CI) associated with each beta value. Figure 10-15 part (a) shows 

beta values for both whole (blue) and reduced (red) time period of model 

simulations and part  (b) shows beta values for only reduced time period of 

model simulations used to compute the signal.  

Table 10-11. Beta values for IO region  

Model Simulation  BETA 

W R 

B -514.088 31.113 

C -1806.551 -2.200 

D -639.988 4.160 

E 499.253 16.142 

F -216.431 2.1474 

G -62.031 8.399 

H -96.462 1.626 

I -144.190 -4.18 

J -128.272 -0.792 

K -13.110 1.657 

L 12.333 -0.351 

M 5.534 0.352 

N -15.843 -0.196 

O 1.524 -1.022 

For the whole time period of model simulations, it  can be seen from the 

Figure (blue dots and CI lines) that positive beta values are obtained for 

signals from whole time period of GFDL-ESM2M Historical  Miscellaneous, 

CanESM2 Historical, Historical GHG and RCP8 .5 simulations. For the 

reduced time period of model simulations, it  can be seen from the Figure (red 

dots and CI lines) that positive beta values are obtained for signals from 

reduced time period of GFDL-ESM2G Historical, GFDL-ESM2M historical  

GHG, historical Miscellaneous, historical Natural and RCP8 .5, IPSL 

historical  and RCP8.5, CanESM2 historical GHG simulations.  

Significance of the scaling factors for the simulations for which the 

consistency test failed (Table 3.3) is questionable and therefore, only those 

results would be considered significant where the consistency test passed. 
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Thus, the graph below shows results for the OF implementation using the 

signals from the model simulations where the consistency test passed. 

Simulations from whole and reduced time period of model simulations is 

represented with a 'W' and 'R' respectively.   

 

Figure  10-16.  Scaling factor and their  5 -95% CI for signals from model forced 

simulations for which consistency test  passes in IO region.  

As it  can be seen from the Figure 10-16 above, scaling factors for 

whole time period of greenhouse gas and RCP8.5 simulation from CanESM2 

model and reduced t ime period of greenhouse gas from CanESM2 model is 

5.534, 1.524 and 0.352. As  can be seen that the confidence intervals of the 

scaling factors is not different from 0 therefore, these scaling factors are not 

significant. Thus, effect of external forcings is not being detected in the 

observations.   
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11. Appendix V-Results for Chapter 4 

11.1. Results of comparison of linear trend from model 

simulations with NOBM data  

11.1.1. Results for North Atlantic Region 

Table 11-1 below shows the value of the statistical  terms of 

comparison i .e. the correlation coefficient, root mean square difference and 

standard deviation when linear trend of zonal average for NA region of the 

ocean computed from different model simulations for two time periods 

(whole and reduced) was compared with linear trend of zonal average from 

NOBM.  

Table 11-1. Statist ical terms of comparison for North Atlantic region.  

Model 

Simulation 

Correlation 

Coefficient  

RMS difference Standard Deviation  

W R W R W R 

B 0.72513 -0.31136 0.00374 0.00458 0.00005 0.00167 

C 0.15607 -0.09853 0.00377 0.00479 0.00006 0.00259 

D 0.20251 -0.10208 0.00376 0.00480 0.00008 0.00261 

F -0.08046 0.35366 0.00378 0.00374 0.00003 0.00256 

G 0.01358 -0.20330 0.00378 0.00501 0.00023 0.00264 

H 0.10502 0.43895 0.00376 0.00499 0.00014 0.00531 

I 0.34122 0.42234 0.00370 0.00688 0.00023 0.00757 

J -0.74059 -0.12672 0.00386 0.00654 0.00011 0.00488 

K 0.53857 0.45742 0.00332 0.00403 0.00107 0.00396 

L 0.31289 0.28604 0.00376 0.00457 0.00006 0.00387 

M 0.56541 -0.43436 0.00373 0.00720 0.00008 0.00471 

N 0.25408 -0.69149 0.00376 0.00899 0.00006 0.00596 

O 0.45543 -0.48180 0.00351 0.00680 0.00072 0.00412 
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11.1.2. Results for South Atlantic Region 

Linear Trend of zonal average for SA region from NOBM and 

greenhouse gas simulations of the whole and reduced time period of model 

simulations is  shown in Figure 11.1. Linear trend of zonal average from 

greenhouse gas simulations is chosen as an example for visual comparison 

because this is the signal that is  of interest  in this detection study. Trends 

from NOBM were 10 times higher than the trends from whole time peri od of 

simulations,  therefore for clarity in presentation; trends from NOBM were 

plotted after dividing them by 10. From Figure 11.1 it can be seen that in 

observations (blue line in graph) that there is a declining trend of zonal chl 

in sub-tropical and mid-latitudes (-25
o
 to -50

o
N) and there is an increasing 

trend from (-50
o
 to -70

o
N) in SA region. This pattern in trend of zonal 

average is also observed in all the model forced simulations from whole time 

period (Figure 11.1a) but with a shift towards the positive trend and the 

pattern in trend is also observed in model forced simulations from reduced 

time period (Figure 11.1b) but with a slight shift toward the south compared 

to the observations. For example, the declining trend from whole and reduced 

time period of greenhouse gas simulation from IPSL is from -35
o
 to -60

o
 N 

which is shifted southward compared to the declining trend in NOBM ( -25
o
 to 

-50
o
N). From the Figure 11.1 it can also be seen that  the pattern of trends 

from reduced t ime period of ESM2M-Hist-GHG, IPSL-Hist-GHG and 

CanESM2-Hist-GHG follow each other closely in all the latitudinal zones but 

the amplitude of trend is different in IPSL-Hist-GHG than ESM2M-Hist-GHG 

and CanESM2-Hist-GHG. Thus, visual comparison of the trends from model  

simulations indicates consistency between signals obtained from the same 

model forcing simulation from different models.  Also, pattern of trends from 

model simulations are similar to patterns from NOBM. Statistical terms of 

comparison such as correlation coefficien t is also computed and presented in 

the form of Taylor diagram (Figure 11.2). 

   a).       b).   
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Figure  11-1. Linear Trend of zonal average for SA region from NOBM (data x 10

- 1
)  

and greenhouse gas simulations from models.  a) .  Linear trend computed for whole 

t ime period and b).  Linear trend computed for reduced t ime period.  

Statist ical terms of comparison between linear trend of zonal average 

from model simulations and NOBM that were computed are cor relation 

coefficient, centered root mean square difference and amplitude of the 

variation i.e. standard deviation. Linear trend of zonal average for model 

simulations was computed for two time periods i.e.  whole and reduced. The 

results are presented in the form of a Taylor Diagram (Taylor, 2001) (Figure 

11.2). Table of values associated with the Figure are presented in Table 11-2.  

Figure 11.2a shows statist ical terms of comparison when linear trend of zonal 

average was computed from whole time period of simulations. Figure 11.2c 

shows statistical terms of comparison  when linear trend of zonal average was 

computed from reduced time period of simulations.  

Table 11-2 below shows the value of the statistical  terms of  

comparison i .e. the correlation coefficient, root mean square difference and 

standard deviation when linear trend of zonal average for SA region of the 

ocean computed from different model simulations for two time periods 

(whole and reduced) was compared w ith linear trend of zonal average from 

NOBM. 
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Table 11-2. Statist ical terms of comparison for South Atlantic region.  

Model 

Simulation 

Correlation 

Coefficient 

RMS difference Standard Deviation  

W R W R W R 

B 0.34672 0.09993 0.00475 0.00664 0.00005 0.00512 

C 0.41049 0.01705 0.00475 0.00567 0.00005 0.00315 

D 0.67061 0.07529 0.00474 0.00496 0.00005 0.00177 

F 0.45787 -0.02291 0.00475 0.00521 0.00004 0.00199 

G 0.48405 0.56070 0.00471 0.00398 0.00013 0.00221 

H 0.73420 -0.44657 0.00470 0.00679 0.00009 0.00316 

I 0.65765 -0.11582 0.00466 0.00625 0.00016 0.00352 

J 0.15434 0.83703 0.00476 0.00263 0.00004 0.00431 

K 0.46250 -0.67216 0.00447 0.00874 0.00076 0.00479 

L 0.06804 0.00422 0.00477 0.00497 0.00005 0.00142 

M 0.00712 0.10384 0.00477 0.00479 0.00004 0.00113 

N 0.02187 -0.30770 0.00477 0.00501 0.00002 0.00065 

O 0.15997 -0.31971 0.00472 0.00654 0.00044 0.00321 

 

 

 

 

 



 

221 
 

  a).             

   

b).  

 

Figure  11-2. Taylor diagrams associated with the comparisons of  l inear trend of 

zonal average for SA region computed from a).  whole t ime period of simulations 

b).  reduced t ime period of simulations with l inear trend of zonal average for SA 

region computed from NOBM.  

From Figure 11.2,  it  can be seen that the correlation coefficient for all  

the model simulations is moderate ( -0.6722 to 0.8370 in this study). This 

indicates that linear trend of zonal average from model simulations is 

partially phased with NOBM. For most of the simulations correlation 

coefficient changes sign and magnitude for the two time periods for which 

linear trend is computed. This indi cates that signal from whole time period of 

data is not the same as the reduced time period of data and they should be 
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treated as two different metrics of signal computation. It should also be noted 

from Figure 11.2 that the sign of the correlation coeffic ient from the same 

forcing simulation for different models is consistent for whole time period of 

simulations. For example, correlation coefficient obtained for whole time 

period of historical  greenhouse gas simulation from ESM2M, IPSL and 

CanESM2 is posit ive but for reduced time period correlation coefficient is  

negative for greenhouse gas simulation from IPSL and is positive for 

greenhouse gas simulation from ESM2M and CanESM2.  

From Figure 11.2,  it  can also be seen that the standard deviation of all  

the model simulations is lower than NOBM for the 'whole t ime period'. On 

the other hand, for the reduced time period, standard deviation for some 

model simulations is  larger than NOBM. The difference between the standard 

deviations of NOBM and model simulations for the whole time period (10
-3

) 

is higher compared to the difference between the standard deviations of  

NOBM and the model simulations for the reduced time period ( 10
-5

-10
-3

). 

From this it  can be concluded that the amplitude of the l inear trend of zonal 

average from the 'whole time period' of model simulations underestimates the  

amplitude of the linear trend of zonal average of chl from NOBM and the 

'reduced time period' of model simulations gives a much closer estimate to 

the amplitude of the linear trend of zonal average from NOBM.  

11.1.3. Results for North Pacific Region 

Linear Trend of zonal average for NP region from NOBM and 

greenhouse gas simulations of the whole and reduced time period of model 

simulations is  shown in Figure 11.3. Linear trend of zonal average from 

greenhouse gas simulations is chosen as an example for visual comparison 

because this is the signal that is  of interest  in this detection study. Trends 

from NOBM were 10 times higher than the trends from whole time period o f 

simulations, therefore for clarity in presentation, trends from NOBM were 

plotted after dividing them by 10. From Figure 11.3 it can be seen that in 

observations (blue line in graph), the linear trend of zonal chl decreases in 

sub-polar and mid-latitudes (35
o
 to 60

o
 N) in NP region. This decrease in 



 

223 
 

trend is observed partially in forced simulations from whole and reduced time 

period of CanESM2 model (Figure 11.3a & b).  From the Figure 11.3 it can 

also be seen that pattern of trends from ESM2M -Hist-GHG and IPSL-Hist-

GHG follow each other closely in all the latitudinal zones.  Pattern of trend 

from CanESM2-Hist-GHG is slight different than the other two models in 

whole time period (Figure 11.3a). Thus, visual comparison of the trends from 

model simulations indicate consistency between signals obtained from the 

same model forcing simulation from different models. Also, pattern of trends 

from CanESM2 model simulation are similar to patterns from NOBM.  

    a).      b).   

 
 

Figure  11-3. Linear Trend of zonal average for NP region from NOBM (data x 10
- 1

)  

and greenhouse gas simulations from models.  a) .  Linear trend computed for whole 

t ime period and b).  Linear trend computed for reduced t ime period.   

Statist ical terms of comparison between linear trend of zonal average 

from model simulations and NOBM that were computed are correlation 

coefficient, centered root mean square difference and amplitude of the 

variation i.e. standard deviation. Linear trend of zonal average for model 

simulations was computed for two time periods i.e.  whole and reduced. The 

results are presented in the form of a Taylor Diagram ( Figure 11.4).  Table of 

values associated with the Figure are presented in Table 11-3. Figure 11.4a 
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shows statistical terms of comparisons when linear trend of zonal average 

was computed from whole time period of simulations. Figure 11.4b shows 

statistical terms of comparisons when linear trend of zonal average was 

computed from reduced time period of simulations.  

Table 11-3 below shows the value of the statistical  terms of 

comparison i .e. the correlation coefficient, root mean square difference and 

standard deviation when linear trend of zonal average for NP region of the 

ocean computed from different model simulations for t wo time periods 

(whole and reduced) was compared with linear trend of zonal average from 

NOBM. 

Table 11-311-3. Statistical  terms of comparison for North Pacific region.  

Model 

Simulation 

Correlation 

Coefficient 

RMS difference Standard Deviation  

W R W R W R 

B -0.16168 0.40567 0.00558 0.00521 0.00008 0.00336 

C -0.03607 -0.46232 0.00558 0.00797 0.00021 0.00368 

D -0.21701 -0.63700 0.00562 0.00811 0.00023 0.00334 

F -0.21702 0.26834 0.00562 0.00598 0.00023 0.00414 

G -0.24138 -0.07395 0.00571 0.00671 0.00050 0.00336 

H -0.51606 0.29843 0.00563 0.00546 0.00011 0.00292 

I -0.38509 -0.269826 0.00578 0.00866 0.00049 0.00529 

J -0.13719 -0.79578 0.00560 0.01351 0.00022 0.00865 

K -0.11402 -0.45989 0.00579 0.00864 0.00107 0.00452 

L 0.07027 0.49767 0.00556 0.00492 0.00012 0.00368 

M 0.30661 0.00163 0.00554 0.00708 0.00010 0.00438 

N 0.29137 0.25019 0.00556 0.00581 0.00004 0.00357 

O 0.52198 0.28525 0.00534 0.00687 0.00047 0.00599 
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a).   

b).   

c) .   

Figure  11-4. Taylor diagrams associated with the comparisons of  l inear trend of 

zonal average for NP region computed from a).  whole t ime period of simulations 

and b).  reduced t ime period of simulations,  with l inear trend of zonal average for  

NA region computed from NOBM.  
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From Figure 11.4,  it  can be seen that the correlation coefficient for all  

the model simulations is moderate i.e. not very low or very high ( -0.7958 to 

0.5220 in this study). This indicates that linear trend of zonal average from 

model simulations is partially phased with NOBM. For most of the 

simulations correlation coefficient does not change sign but the magnitude 

for the two time periods for which linear tre nd is computed is different. This 

indicates that the phase of signal from whole time period of data is the same 

as the reduced time period of data but the amplitudes are different and the 

signals from these two time periods should be treated as two differe nt metrics 

of signal computation. It should also be noted from Figure that  sign of the 

correlation coefficient from same forcing simulation from different models is 

not consistent for both whole and reduced time period. For example,  

correlation coefficient  obtained for whole and reduced time period of 

historical  greenhouse gas simulation from ESM2M and IPSL is negative but it  

is positive for CanESM2.  

From Figure 11.4,  i t  can also be seen that the standard deviation of all  

the model simulations is lower than NOBM for the 'whole t ime period'. On 

the other hand, for the reduced time period, standard deviation for some 

model simulations is  larger than NOBM. The difference between the standard 

deviations of NOBM and model simulations for the whole time period (1 0
-3

) 

is higher compared to the difference between the standard deviations of  

NOBM and the model simulations for the reduced time period ( 10
-4

-10
-3

). 

From this it  can be concluded that the amplitude of the l inear trend of zonal 

average from the 'whole time period' of model simulations underestimates the  

amplitude of the linear trend of zonal average of chl from NOBM and the 

'reduced time period' of model simulations gives a much closer estimate to 

the amplitude of the linear trend of zonal average from NOBM.  

11.1.4. Results for South Pacific Region 

Linear Trend of zonal average for SP region from NOBM and 

greenhouse gas simulations of the whole and reduced time period of model 

simulations is  shown in Figure 11.5. Linear trend of zonal average from 
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greenhouse gas simulations is chosen as an example for visual comparison 

because this is the signal that is  of interest  in this detection study. Trends 

from NOBM were 10 times higher than the trends from whole time peri od of 

simulations, therefore for clarity in presentation, trends from NOBM were 

plotted after dividing them by 10. From Figure 11.5 it can be seen that in 

observations (blue line in graph), the linear trend of zonal chl increases in 

subtropical latitudes ( -25 to -30oS) and decreases in subpolar and mid -

latitudes (-50 to -70oS) in SP region. This pattern of trend is not observed in 

greenhouse gas simulations from the models (Figure 11.5). However, pattern 

of trends are consistent between the models. Thus, vi sual comparison of the 

trends from model simulations indicate consistency between signals obtained 

from the same model forcing simulation from different models but the trends 

from signals are not similar to those from NOBM.   

   a).       b).   

 
Figure 11-5. Linear Trend of zonal average for SP region from NOBM (data x 

10
- 1

)  and greenhouse gas simulations from models.  a) .  Linear trend computed 

for whole t ime period and b).  Linear trend computed for  reduced t ime period.   

Statist ical terms of comparison between linear trend of zonal average 

from model simulations and NOBM that were computed are correlation 

coefficient, centered root mean square difference and amplitude of the 

variation i.e. standard deviation.  Linear trend of zonal average for model 
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simulations was computed for two time periods i.e.  whole and reduced. The 

results are presented in the form of a Taylor Diagram ( Figure 11.6).  Table of 

values associated with the Figure are presented in Table 11-4. Figure 11.6a 

shows statistical terms of comparisons when linear trend of zonal average 

was computed from whole time period of simulations. Figure 11.6b shows 

statistical terms of comparisons when linear trend of zonal average was 

computed from reduced time period of simulations.  

Table 11-4 below shows the value of the statistical  terms of 

comparison i .e. the correlation coefficient, root mean square difference and 

standard deviation when linear trend of zonal average for SP region of the 

ocean computed from different model simulations for t wo time periods 

(whole and reduced) was compared with linear trend of zonal average from 

NOBM. 
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Table 11-4. Statist ical terms of comparison for South Pacific region.  

Model 

Simulation 

Correlation 

Coefficient  

RMS difference Standard Deviation  

W R W R W R 

B -0.24991 0.22732 0.00598 0.00583 0.00005 0.00187 

C -0.40679 -0.33082 0.00601 0.00681 0.00011 0.00185 

D -0.26068 -0.41574 0.00601 0.00847 0.00017 0.00402 

F -0.11905 0.30333 0.00597 0.00638 0.00005 0.00471 

G -0.38337 -0.13854 0.00616 0.00667 0.00047 0.00227 

H -0.37731 0.26491 0.00602 0.00699 0.00015 0.00555 

I -0.59607 -0.81401 0.00622 0.01058 0.00041 0.00514 

J -0.67895 0.08427 0.00602 0.00917 0.00008 0.00749 

K -0.70064 0.53496 0.00653 0.00737 0.00077 0.00857 

L -0.19224 0.10861 0.00599 0.00606 0.00014 0.00191 

M -0.22480 -0.32037 0.00601 0.00699 0.00018 0.00221 

N -0.08822 -0.14957 0.00597 0.00710 0.00003 0.00306 

O -0.18344 0.20864 0.00615 0.00737 0.00077 0.00575 

 

 

 

 

 

 

 



 

230 
 

a).   

b).  

 

Figure  11-6. Taylor diagrams associated with the comparisons of  l inear trend of 

zonal average for SP region computed from a).  whole t ime period of simulations 

and b).  reduced t ime period of simulations,  with l inear trend of zonal average for  

SP region computed from NOBM.  

From Figure 11.6,  it  can be seen that the correlation coefficient for all  

the model simulations is moderate i.e. not very low or very high ( -0.8140 to 

0.5350 in this study). This indicates that linear trend of zonal average from 

model simulations is partially phased with NOBM. For most of the 

simulations correlation coefficient changes sign and magnitude for the two 

time periods for which linear trend is computed . This indicates that  signal 

from whole time period of data is not the same as the reduced time period of 

data and they should be treated as two different metrics of signal 

computation. It should also be noted from Figure that sign of the correlation 
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coefficient from same forcing simulation from different models is consistent 

for whole time period than for reduced time period. For example, correlation 

coefficient obtained for whole time period of historical simulation from 

ESM2M, IPSL and CanESM2 is negative but for reduced time period 

correlation coefficient is negative for historical simulation from ESM2M but 

is positive for historical simulation from IPSL and CanESM2.  

From Figure 11.6,  it  can also be seen that the standard deviation of al l  

the model simulations is lower than NOBM for the 'whole t ime period'. On 

the other hand, for the reduced time period, standard deviation for some 

model simulations is  larger than NOBM. The difference between the standard 

deviations of NOBM and model simulations for the whole time period (10
-3

) 

is higher compared to the difference between the standard deviations of  

NOBM and the model simulations for the reduced time period ( 10
-4

-10
-3

). 

From this it  can be concluded that the amplitude of the l inear trend of zonal 

average from the 'whole time period' of model simulations underestimates the  

amplitude of the linear trend of zonal average of chl from NOBM and the 

'reduced time period' of model simulations gives a much closer estimate to 

the amplitude of the linear trend of zonal average from NOBM.  

11.1.5.  Results for Indian Ocean Region 

Linear Trend of zonal average for IO region from NOBM and 

greenhouse gas simulations of the whole and reduced time period of model 

simulations is  shown in Figure 11.7. Linear trend of zonal average from 

greenhouse gas simulations is chosen as an example for visual comparison 

because this is the signal that is  of interest  in this detection study. Trends 

from NOBM were 10 times higher than the trends from whole time peri od of 

simulations, therefore for clarity in presentation, trends from NOBM were 

plotted after dividing them by 10. From Figure 11.7 it can be seen that in 

observations (blue line in graph), the linear trend of zonal chl is increasing in 

mid-latitudes (-37
o
 to -42

o
N) and it is  decreasing in sub -polar and mid-

latitude (-70
o
 to -42

o
 N) in IO region. This pattern in trend of zonal average 

is not observed in model simulations ( Figure 11.7). From the Figure 11.7 it  
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can also be seen that pattern of trends from ESM 2M-Hist-GHG, IPSL-Hist-

GHG and CanESM2-Hist-GHG follow each other closely in all the lati tudinal 

zones. Thus, visual comparison of the trends from model simulations indicate 

consistency between signals obtained from the same model forcing simulation 

from different models. Also, pattern of trends from model simulations are not 

similar to patterns from NOBM.  

   a).       b).  

 
 

Figure 11-7. Linear Trend of zonal average for IO region from NOBM (data x 10
- 1

)  

and greenhouse gas simulations from models.  a) .  Linear trend computed for whole 

t ime period and b).  Linear trend computed for reduced t ime period.  

Statist ical terms of comparison between linear trend of zonal average 

from model simulations and NOBM that were computed are correlation 

coefficient, centered root mean square difference and amplitude of the 

variation i.e. standard deviation . Linear trend of zonal average for model 

simulations was computed for two time periods i.e.  whole and reduced. The 

results are presented in the form of a Taylor Diagram ( Figure 11.8).  Table of 

values associated with the Figure are presented in Table 11-5. Figure 11.8a 

shows statistical terms of comparisons when linear trend of zonal average  

was computed from whole time period of simulations. Figure 11.8b shows 

statistical terms of comparisons when linear trend of zonal average  was 

computed from reduced time period of simulations.  
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Table 11-5 below shows the value of the statistical  terms of 

comparison i .e. the correlation coefficient, root mean square difference and 

standard deviation when linear trend of zonal average for IO region of the 

ocean computed from different model simulations for two time periods 

(whole and reduced) was compared with linear trend of zonal average from 

NOBM. 

Table 11-5. Statist ical terms of comparison for Indian Ocean region.  

Model 

Simulation 

Correlation 

Coefficient  

RMS difference Standard Deviation  

W R W R W R 

B -0.69455 0.28697 0.00515 0.00493 0.00005 0.00092 

C -0.82346 -0.00392 0.00517 0.00543 0.00008 0.00181 

D -0.38960 -0.23733 0.00514 0.00547 0.00006 0.00109 

F -0.05952 0.04720 0.00511 0.00550 0.00002 0.00228 

G -0.63861 -0.41424 0.00525 0.00658 0.00021 0.00253 

H -0.78795 0.87466 0.00520 0.00294 0.00012 0.00290 

I -0.65153 -0.67394 0.00522 0.00664 0.00016 0.00202 

J -0.85902 -0.93568 0.00515 0.01141 0.00005 0.00648 

K -0.73322 0.84735 0.00573 0.00283 0.00081 0.00353 

L -0.29123 0.31035 0.00514 0.00498 0.00010 0.00270 

M -0.32110 -0.19276 0.00516 0.00642 0.00015 0.00302 

N 0.32063 0.41072 0.00510 0.00468 0.00004 0.00258 

O -0.27832 0.28411 0.00541 0.00508 0.00086 0.00277 
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a).   

b).   

c) .   

Figure  11-8. Taylor diagrams associated with the comparisons of  l inear trend of 

zonal average for IO region computed from a).  whole t ime period of simulations 

and b).  reduced t ime period of simulations,  with l inear trend of zonal average for  

IO region computed from NOBM.  
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From Figure 11.8,  it  can be seen that the correlation coefficient for all  

the model simulations is moderate i.e. not very low or very high ( -0.9357 to 

0.8747 in this study). This indicates that linear trend of zonal average from 

model simulations is  highly phased with NOBM. For most of the simulations 

correlation coefficient changes sign and magnitude for the two time periods 

for which linear trend is computed . This indicates that signal from whole 

time period of data is not the same as the reduced time period of data and 

they should be treated as two different metrics of signal computation. It  

should also be noted from Figure that sign of the correlation coefficient from 

same forcing simulation from different models is consistent for whole time 

period than for reduced time period. For example, correlation coefficient 

obtained for whole t ime period of historical simulation from ESM2M, IPSL 

and CanESM2 is negative but for reduced time period correlation coefficient 

is negative for historical simulation from ESM2M and is posit ive for 

greenhouse gas simulation from IPSL and CanESM2.  

From Figure 11.8,  i t  can also be seen that the standard deviation of all  

the model simulations is lower than NOBM for the 'whole t ime period'. On 

the other hand, for the reduced time period, standar d deviation for some 

model simulations is  larger than NOBM. The difference between the standard 

deviations of NOBM and model simulations for the whole time period and 

reduced time period is not very small (10
-3

) and therefore it can be concluded 

that the amplitude of the linear trend of zonal average from the whole and 

reduced time period of model simulations underestimates the  amplitude of the 

linear trend of zonal average of chl from NOBM. 
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11.2. Level of truncation 
Table 11-6. Percent of eigenvectors chosen for the noise covariance matrix  

Model 

Simulation 

Alphabet 

NA SA NP SP IO 

W R W R W R W R W R 

B 36.36 63.64 58.33 50.00 54.55 45.45 45.45 45.45 63.64 45.45 

C 54.55 54.55 50.00 50.00 72.73 45.45 63.64 45.45 63.64 54.55 

D 54.55 54.55 50.00 58.33 63.64 54.55 63.64 45.45 63.64 72.73 

F 54.55 45.45 41.67 50.00 63.64 54.55 63.64 72.73 54.55 45.45 

G 45.45 54.55 50.00 41.67 63.64 54.55 63.64 45.45 54.55 45.45 

H 63.64 54.55 50.00 58.33 63.64 54.55 63.64 54.55 54.55 63.64 

I 54.55 63.64 50.00 58.33 45.45 63.64 81.82 54.55 54.55 45.45 

J 45.45 54.55 41.67 50.00 54.55 45.45 81.82 63.64 54.55 54.55 

K 45.45 54.55 58.33 50.00 54.55 63.64 81.82 63.64 54.55 54.55 

L 63.64 54.55 50.00 50.00 36.36 63.64 54.55 54.55 45.45 54.55 

M 54.55 72.73 33.33 33.33 45.45 45.45 45.45 54.55 54.55 54.55 

N 63.64 54.55 41.67 41.67 54.55 63.64 72.73 63.64 54.55 54.55 

O 54.55 54.55 50.00 41.67 54.55 54.55 54.55 54.55 45.45 72.73 

 

11.3. Detection Results  

Beta values obtained after the implementation of the OF method 

indicate whether the signal has been detected in the observations or not.   

Table 11-7. Beta values for NA region  

Model Simulation  BETA 

WHOLE REDUCED 

B 30.15 -8.63 

C -136.99 -1.93 

D 55.47 0.92 

F -625.51 -2.6 

G 3.44 12.77 

H 79.47 0.77 

I 10.75 0.39 

J -42.46 0.91 

K 1.66 1.08 

L -87.71 0.67 

M 55.18 -1.94 

N -260.9 -0.53 

O 5.364 -4.72 
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11.3.1. Results for South Atlantic Region 

Scaling factors obtained as a result  of the implementation of the OF 

method in linear trend of zonal average of chl in SA region of the ocean 

using l inear trend of zonal average from model forced simulations as the 

signal is shown in Figure 11.9 and given in Table 11-8.   

a).  
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b). 

 

Figure 11-9. Graph of signal amplitude along with the CI, obtained for OF 

implementation in SA region using signals from whole and reduced t ime period of  

model simulations. a).  result  for both whole (blue) and reduced (red) t ime period of 

model simulations used to compute the signal.  b).  result  for only reduced t ime 

period of model simulations. Green circles indicate scaling factors which are 

posit ive and are obtained for the simulations for which consistency test  passed.  

Red circles indicate scaling factors which are  posit ive and are obtained for the 

simulations for which consistency test  fai led. Circles in a) are  drawn only for  

whole t ime period of s imulations.  

Figure 11.9 above shows the beta values obtained in SA region for 

signals obtained from model forced simula tions along with the confidence 

interval (CI) associated with each beta value. Figure 11.9 part (a) shows beta 

values for both whole (blue) and reduced (red) time period of model 

simulations and part  (b) shows beta values for only reduced time period of 

model simulations used to compute the signal.   
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Table 11-8. Beta values for SA region 

Model Simulation  BETA 

WHOLE REDUCED 

B 30.65 -0.31 

C -33.98 -0.42 

D -30.13 -0.94 

F -143.62 11.24 

G -10.03 -42.92 

H -24.28 -0.64 

I -9.92 0.89 

J 75.49 -21.94 

K -2.63 2.21 

L -117.86 11.60 

M -72.11 -9.13 

N 3.15 2.98 

O -8.80 4.39 

For the whole time period of model simulations, it  can be seen from the 

Figure 11.9a (blue dots and CI lines) that positive beta values are obtained 

for signals from whole time period of GFDL-ESM2G historical,  GFDL-

ESM2M historical natural and CanESM2 historical natural .  This indicates 

that  signals from these model simulations are detected in the observations.  

For the reduced time period of model simulations, it  can be seen from the 

Figure 11.9b (red dots and CI l ines) that positive beta values are obtained for 

signals from reduced time period of GFDL-ESM2M historical natural , IPSL 

historical  GHG and RCP8.5 and CanESM2 historical, historical natural  and 

RCP8.5 simulations.  As there is  no consistency in the estimation of scaling 

factor values from the four models, it  is difficult to judge the result of the 

detection of a signal from particular model simulation in the obse rvations. 

For example, for the signals  from the whole time period of model 

simulations, positive scaling factor  is obtained for historical  simulation from 

GFDL-ESM2G model. For the other three models (ESM2M, IPSL and 

CanESM2) scaling factors are negative. Thus, it  is difficult to conclude the 
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detection result of the signal from historical  forcing simulation in the 

observations.   

Significance of the scaling factors for the simulations for which the 

consistency test failed (Table 4.3) is  questionable and therefore, only those 

results would be considered significant where the consistency test passed. 

Green circles in Figure 11.9 indicate scaling factors which are positive and 

are obtained for the simulations for which consistency test passed. Red 

circles in Figure 11.9 indicate scaling factors which are positive and are 

obtained for the simulations for which consistency test failed.  As it can be 

seen from the Figure 11.9 above, scaling factors for whole time period of 

historical simulation from GFDL-ESM2G model and historical natural  

simulation from IPSL model is 30.65 and 75.49 respectively,  which are 

significantly different from 0 with 5 -95% confidence interval. Also, scaling 

factors for reduced t ime period of historical greenhouse gas simulation from 

IPSL model is 0.89, which is significantly different from 0 with 5 -95% 

confidence interval.  As the signals from different model simulations are 

detected in the observations, it  implies that signal detection is not consistent 

between the models for any forcing simulation and is also not consistent 

between whole and reduced time period of simulations from the models. Beta 

values are greater than unity for whole t ime period of model simulations, i t  

can be inferred that the model simulated response of chl to external fo rcings 

is significantly underestimated and it needs to be amplified (by a factor of 

~30 and ~75) to be consistent with observations. Beta value is less than unity 

for reduced time period of model simulation, it  can be inferred that the model 

simulated response of chl to external forcings is being overestimated and it  

needs to be decreased to be consistent with observations.  

11.3.2. Results for North Pacific Region 

Scaling factors obtained as a result  of the implementation of the OF 

method in spatial l inear trend of chl in NP region of the ocean using linear 

trend of zonal average from model forced simulations as the signal  is shown 

in Figure 11.10 and given in Table 11-9.  
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a).  
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b). 

 

Figure 11-10. Graph of signal amplitude along with the CI,  obtained for OF 

implementation in NP region using signals from whole and reduced t ime period of  

model simulations. a).  result  for both whole (blue) and reduced (red) t ime period of 

model simulations used to compute the signal.  b).  result  for only reduced t ime 

period of model simulations. Green circles indicate scaling factors which are 

posit ive and are obtained for the simulations for which consistency test  passed.  

Red circles indicate scaling factors which are posit ive and are obtained for the 

simulations for which consistency test  fai led. C ircles in a) are  drawn only for  

whole t ime period of s imulations.  

Figure 11.10 above shows the beta values obtained in NP region for 

signals obtained from model forced simulations along with the confidence 

interval (CI) associated with each beta value. Figure 11.10 part (a) shows 

beta values for both whole (blue) and reduced (red) time period of model 

simulations and part  (b) shows beta values for only reduced time period of 

model simulations used to compute the signal.   
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Table 11-9. Beta values for NP region 

Model Simulation  BETA 

WHOLE REDUCED 

B 38.587 0.766 

C 30.753 -1.471 

D 23.665 -1.571 

F 24.072 1.195 

G 9.375 -3.194 

H 33.776 2.689 

I 7.722 0.854 

J 17.621 -1.617 

K 1.827 2.411 

L -114.351 5.002 

M 730.222 9.873 

N 124.312 -3.194 

O 71.916 3.303 

For the whole time period of model simulations, it  can be seen from the 

Figure 11.10a (blue dots and CI lines) that positive beta values are obtained 

for signals from all  the model simulations except for historical simulation 

from CanESM2 model . This indicates that signals from these model 

simulations are detected in the observations.  For the reduced time period of 

model simulations, it  can be seen from the Figure 11.10b (red dots and CI 

lines) that positive beta values are obtained for signals from GFDL -ESM2G 

historical , GFDL-ESM2M historical natural , IPSL historical , historical  GHG 

and RCP8.5 and CanESM2 historical , historical  GHG and RCP8.5 

simulations.  Thus, i t  can be seen that  there is consi stency in the detection 

results from whole time period of model simulations but detection results 

from reduced time period of simulations is not consistent. For example,  

positive scaling factor is obtained from whole t ime period of greenhouse gas 

simulation from ESM2M, IPSL and CanESM2 model. However, for reduced 

time period of simulations, positive scaling factor is obtained for greenhouse 

gas simulation from IPSL and CanESM2 model and negative scaling factor is 
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obtained for greenhouse gas simulation from ESM2M model. This 

inconsistency makes it difficult to judge the result of the detection of a signal 

from particular reduced time period of model simulations in the observations.   

Significance of the scaling factors for the simulations for which the 

consistency test failed (Table 4.3) is  questionable and therefore, only those 

results would be considered significant where the consistency test passed. 

Green circles in Figure 11.10 indicate scaling factors which are positive and 

are obtained for the simulations  for which consistency test passed. Red 

circles in Figure 11.10 indicate scaling factors which are positive and are 

obtained for the simulations for which consistency test failed.  As it can be 

seen from the Figure 11.10 above, scaling factors for whole t ime period of all  

the forcing simulations from ESM2G, ESM2M and IPSL model and only 

historical natural simulation from CanESM2 model are significantly different 

than 0 with 5-95% confidence interval. Values of the scaling factors ranges 

for signals from whole time period of simulation ranges from 1.8 to 124.3.  

This indicates that model simulated response of chl to external forcings is 

significantly underestimated and it needs to be amplified (by a factor of ~2 to 

~124) to be consistent with observations Scali ng factors for reduced time 

period of ESM2G historical , ESM2M historical natural , IPSL historical,  

historical GHG and RCP8.5 simulations are 0.77, 1.2, 2.69, 0.85 and 2.41 

respectively, which are significantly different from 0 with 5 -95% confidence 

interval.  As the value of the scaling factors are not very different from unity 

it indicates that though the model simulated response of chl to external 

forcings from reduced time period of simulations is being underestimated or 

overestimated, it  is a much closer  estimate to observations than the response 

from whole time period of model simulations.   

11.3.3. Results for South Pacific Region 

Scaling factors ( )/beta obtained as a result of the implementation of 

the OF method in spatial linear trend of chl in SP region of the ocean using 

linear trend of zonal average from model forced simulations as the signal  is  

shown in Figure 11.10 and given in Table 11-10.  
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a). 
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b). 

 

Figure 11-11. Graph of signal amplitude along with the CI,  obtained for OF 

implementation in SP region using signals from whole and reduced t ime period of  

model simulations. a).  result  for both whole (blue) and reduced (red) t ime period of 

model simulations used to compute the signal.  b).  result  for only reduced t ime 

period of model simulations. Green circles indicate scaling factors which are 

posit ive and are obtained for the simulations for which consistency test  passed.  

Red circles indicate scaling factors which are posit ive and are obtained for the 

simulations for which consistency test  fai led. C ircles in a) are  drawn only for  

whole t ime period of s imulations.  

Figure 11.11 above shows the beta values obtained in SP region for 

signals obtained from model forced simulations along with the confidence 

interval (CI) associated with each beta value. Figure 11.11 part (a) shows 

beta values for both whole (blue) and reduced (red) time period of model 

simulations and part  (b) shows beta values for only reduced time period of 

model simulations used to compute the signal.   
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Table 11-10. Beta values for SP region 

Model Simulation  BETA 

WHOLE REDUCED 

B -28.149 0.546 

C -17.18 -12.331 

D -12.083 -0.582 

F -15.541 0.528 

G -359.715 8.782 

H 123.25 -0.605 

I -15.151 -1.572 

J -1.578 3.574 

K -5.091 0.295 

L -11.572 -2.565 

M -8.153 -1.429 

N -82.714 0.549 

O -8.295 0.131 

 

For the whole time period of model simulations, it  can be seen from the 

Figure 11.11a (blue dots and CI lines) that positive beta values are obtained 

for signals from historical simulation from IPSL model . For the reduced time 

period of model simulations, it  can be seen from the Figure 11.11b (red dots 

and CI lines) that  positive beta values are obtained for signals from GFDL -

ESM2G historical ,  GFDL-ESM2M historical natural  and RCP8.5, IPSL 

historical  natural and RCP8.5 and CanESM2 historical  natural and RCP8.5 

simulations.  This indicates that signals from these model simulations are 

detected in the observations. Thus, it  can be seen that there is  consistency in 

the detection results from whole and reduced time period of model  

simulations. For example, positive scaling factor is obtained from reduced 

time period of historical natural simulation from ESM2M, IPSL and 

CanESM2 model. This consistency in signal detection makes it easy to judge 

the result of the detection of a signal from model simulations in the 

observations.  
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Significance of the scaling factors for the simulations for which the 

consistency test failed (Table 4.3) is  questionable and therefore, only those 

results would be considered significant where the consistency test passed. 

Green circles in Figure 11.11 indicate scaling factors which are positive and 

are obtained for the simulations for which consistency test passed. Red 

circles in Figure 11.11 indicate scaling factors which are positive and are 

obtained for the simulations for which consistency test failed.  As it can be 

seen from the Figure 11.11 above, scaling factors for whole t ime period of all  

the forcing simulations from the four models is  negative. This indicates that 

no signal is significantly detected for whole time period of model 

simulations. Scaling factors for reduced time period of IPSL RCP8 .5 and 

CanESM2 historical  natural and RCP8 .5 simulations are 0.295, 0.55 and 

0.131 respectively,  which are significantly differen t from 0 with 5-95% 

confidence interval. As the value of the scaling factors are less than unity i t 

indicates that the model simulated response of chl to external forcings from 

reduced time period of simulations is being overestimated and hence, the 

response needs to be subdued in order to be consistent with observations.   

11.3.4. Results for Indian Ocean Region 

Scaling factors ( )/beta obtained as a result of the implementation of 

the OF method in spatial linear trend of chl in IO region of the ocean using 

linear trend of zonal average from model forced simulations as the signal  is  

shown in Figure 11.12 and given in Table 11-11.  
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a).  
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b). 

 

Figure 11-12. Graph of signal amplitude along with the CI,  obtained for OF 

implementation in IO region using signals f rom whole and reduced t ime period of  

model simulations. a).  result  for both whole (blue) and reduced (red) t ime period of 

model simulations used to compute the signal.  b).  result  for only reduced t ime 

period of model simulations. Green circles indicate scaling factors which are 

posit ive and are obtained for the simulations for which consistency test  passed.  

Red circles indicate scaling factors which are posit ive and are obtained for the 

simulations for which consistency test  fai led. C ircles in a) are  drawn only for  

whole t ime period of s imulations.  

Figure 11.12 above shows the beta values obtained in IO region for 

signals obtained from model forced simulations along with the confidence 

interval (CI) associated with each beta value. Figure 11.12 part (a) shows 

beta values for both whole (blue) and reduced (red) time period of model 

simulations and part  (b) shows beta values for only reduced time period of 

model simulations used to compute the signal.   
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Table 11-11. Beta values for IO region 

Model Simulation  BETA 

WHOLE REDUCED 

B -460.182 14.751 

C -334.810 -3.704 

D -559.539 4.658 

F -200.013 4.0111 

G -66.131 15.396 

H -109.081 1.628 

I -183.333 -3.197 

J -126.025 -0.839 

K -14.334 1.917 

L 10.7 -0.367 

M 5.73 0.351 

N -19.295 -0.239 

O 1.39 -1.214 

 

For the whole time period of model simulations, it  can be seen from the 

Figure 11.12a (blue dots and CI lines) that positive beta values are obtained 

for signals from historical, historical GHG and RCP8.5 simulations from 

CanESM2 model. For the reduced time period of model simulations, i t  can be 

seen from the Figure 11.12b (red dots and CI lines) that positive beta values 

are obtained for signals from GFDL-ESM2G historical,  GFDL-ESM2M 

historical  GHG, historical natural and RCP8 .5, IPSL historical  and RCP8.5 

and CanESM2 historical  GHG simulations.  This indicates that signals from 

these model simulations are detected in the observations. Thus, it  can be seen 

that there is  no consistency in the detection results from whole and reduced 

time period of model simulations. For example,  positive scaling factor is  

obtained from reduced time period of greenhouse gas simulation from 

ESM2M and CanESM2 models but scaling factor is negative for IPS L model.  

This inconsistency makes it difficult  to judge the result of the detection of a 

signal from model simulations in the observations.  



 

252 
 

Significance of the scaling factors for the simulations for which the 

consistency test failed (Table 4.3) is  questionable and therefore, only those 

results would be considered significant where the consistency test passed. 

Green circles in Figure 11.12 indicate scaling factors which are positive and 

are obtained for the simulations for which consistency test passed. Re d 

circles in Figure 11.12 indicate scaling factors which are positive and are 

obtained for the simulations for which consistency test failed.  As it can be 

seen from the Figure 11.12 above, scaling factors for whole time period of 

CanESM2 historical,  histor ical GHG and RCP8.5 simulations are 10.7,  5.73 

and 1.39 respectively,  which are significantly different than 0 with 5 -95% 

confidence interval.  This indicates that model simulated response of chl to 

external forcings is  significantly underestimated and it n eeds to be amplified 

(by a factor of ~10, ~5 and ~1.4) to be consistent with observations Scaling 

factors for reduced t ime period of IPSL historical and RCP8 .5 and CanESM2 

historical GHG simulations are 1.63, 1.92 and 0.35 respectively, which are 

significantly different from 0 with 5-95% confidence interval. As the value of 

the scaling factors are not very different from unity except for CanESM2 

GHG simulation, i t  indicates that though the model simulated response of chl 

to external forcings from reduced ti me period of simulations is being 

underestimated or overestimated, it  is a much closer estimate to observations 

than the response from whole time period of model simulations.  
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12. Appendix VI-Results for Chapter 5 

12.1. Results of comparison of size of the gyres from 

model simulations with NOBM data 

12.1.1. Results for North Atlantic Gyre 

Table 12-1. Linear Trend (km
2
 per month) in size of the NA gyre  (1999-2005) 

and the column indicating whether the trend is significant or not by a 'Y' and 

a 'N' respectively.   

Model Simulation  Linear 

Trend 

Significant 

Trend 

A 6576.80 Y 

B 1140.00 N 

C 829.71 N 

D 6772.59 Y 

F 12849.85 Y 

G 5383.93 Y 

H -7763.03 Y 

I 5663.54 Y 

J -1317.40 N 

K 8542.20 Y 

L -997.10 N 

M -10852.44 Y 

N 353.82 N 

O -3104.93 Y 
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Table 12-2. Statistical terms of comparison for time series of North Atlantic 

gyre area.  

Model 

Simulation 

Correlation 

Coefficient  

RMS 

difference 

Standard Deviation  

B -0.1609 1241014.3 730191.5 

C -0.0812 1111353.2 593258.9 

D -0.1904 1159655.0 589284.9 

F -0.0691 1085954.2 559540.5 

G -0.0204 1054946.2 544004.9 

H -0.2264 1450567.0 958832.8 

I 0.0729 1271832.2 973172.4 

J 0.0127 1191504.5 800410.1 

K 0.2150 1816682.9 1785714.6 

L 0.2181 976590.3 635737.3 

M -0.0662 1293544.4 878784.3 

N 0.1342 1448916.8 1267223.6 

O -0.0153 1318640.5 956787.2 

12.1.2. Results for South Atlantic Gyre 

Time series of the SA Gyre area from NOBM and greenhouse gas 

simulations of the models is shown in Figure 12.1. Size of the gyres from 

greenhouse gas simulations is chosen as an example for visual comparison 

because this is the signal that  is of interest  in this detection study. From 

Figure 12.1 i t can be seen in observations (NOBM) that  there is a peak in the 

size of the gyres in mid 1999. After this the size of the gyres is decreasing 

till  end of 2000 and then it is increasing each year in all the seasons except  

in winter where the size is  decreasing. This pattern continues t ill  end of 2004 

after which the size of  the gyre decreases in 2005.   This pattern of increase 

and decrease in size of the gyre is followed partially by greenhouse gas 

simulations of the model. Observing the linear trend in the gyre size, it  can 

be seen that there is an increasing trend (1408.74 km
2
 per month) from 

NOBM, which is not observed in greenhouse gas simulations from the 
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models. Decreasing trend is observed in the size of the gyres from ESM2M ( -

7353.15 km
2
 per month),  IPSL (-5999.58 km

2
 per month) and CanESM2 -

3618.71 km
2
 per month) model.  However, trend in gyre size from NOBM and 

greenhouse gas simulation from CanESM2 are not significant.  Also, there are 

several other simulations for which the trend in gyre size is  not significant 

(Table 12-3). This  shows that models are consistent with the outputs from the 

same forcing simulations and also, model outputs are not consistent with 

observations in pattern and trend. Trend in the size of the gyre from other 

simulations is given in Table 12-3.   

 

Figure  12-1. Monthly t ime series of the size of the NA gyre i .e .  gyre area in km
2
.  
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Table 12-3. Linear Trend (km
2
 per month) in size of the SA gyre (1999-2005) 

and the column indicating whether the trend is significant or not by a 'Y' and 

a 'N' respectively.  

Model Simulation  Linear 

Trend 

Significant 

Trend 

A 1408.74 N 

B 8738.77 Y 

C -11209.48 Y 

D -7353.15 Y 

F -2372.82 N 

G 1215.93 N 

H 5853.88 Y 

I -5999.58 Y 

J -2229.49 N 

K -3226.59 N 

L 3998.31 N 

M -3618.71 N 

N 3149.19 N 

O -7242.87 Y 

Statist ical terms of comparison between size of the gyres  from model 

simulations and NOBM that were computed are correlation coefficient,  

centered root mean square difference and amplitude of the variation i.e. 

standard deviation. The results are presented in the form of a Taylor Diagram 

(Taylor, 2001) (Figure 12-2) and Table of values associated with the Figure 

are presented in Table 12-4 below.  
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Figure  12-2.  Taylor diagram associated with the comparisons of  t ime series of  gyre 

area for SA gyre computed from model simulations  with t ime ser ies of gyre area  

from NOBM. 

Table 12-4. Statistical terms of comparison for time series of South Atlantic 

gyre area.  

Model 

Simulation 

Correlation 

Coefficient  

RMS difference Standard Deviation  

B -0.3168 984816.7 587582.4 

C -0.1918 943119.0 595663.8 

D 0.0999 748793.0 478393.0 

F 0.0980 745852.0 471742.4 

G -0.2180 807626.2 391984.6 

H 0.1844 750444.8 545297.7 

I 0.1081 747486.8 481951.5 

J -0.1912 801659.3 395443.1 

K -0.0818 781673.8 419996.5 

L -0.1382 886815.7 547793.1 

M 0.0777 733464.2 434257.5 

N 0.1296 907667.8 743546.5 

O 0.0654 711995.2 382930.8 

From Figure 12-2, it  can be seen that the correlation coefficient for all  

the model simulations is low ( -0.3168 to 0.1844 in this study). This indicates 
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that time series of the size of the gyres from model simulations is not 

correctly phased with NOBM. It should be noted from Figure 12-2 that sign 

of the correlation coefficient from same forcing simulation from different 

models is consistent. For example, correlation coefficient obtained for 

historical  greenhouse gas simulation from ESM 2M, IPSL and CanESM2 is 

positive.  

From Figure 12-2, i t  can also be seen that the standard deviation of 

model simulations is  lower than NOBM except for RCP8.5 simulation from 

CanESM2 model. This shows that model simulations underestimate the gyre 

area compared to the gyre area from observations.   

12.1.3. Results for North Pacific Gyre  

Time series of the NP Gyre area  from NOBM and greenhouse gas 

simulations of the models is shown in Figure 12-3.  Size of the gyres from 

greenhouse gas simulations is chosen as an example for visual comparison 

because this is the signal that  is of interest  in this detection study. From 

Figure 12-3 it can be seen in observations that there is  a peak in the gyre size 

in mid 1999 after which the pattern of variabili ty in the gyre size is not 

distinct and it  is difficult to see a distinct pattern in the time series. Similar  

pattern is observed in greenhouse gas simulation from CanESM2.  Greenhouse 

gas simulation from ESM2M show a decrease in size of the gyre from 199 9 to 

mid 2002 beyond which the pattern of trend is increasing till  2005. 

Greenhouse gas simulation from CanESM2 model show an increase in th e 

size of the gyres from 1999 to mid 2001 followed by a indistict  pattern of 

variability in the size of the gyre. Observing the linear trend in the gyre size,  

it  can be seen that there is  an increasing trend ( 29324.35 km
2
 per month) 

from NOBM, which is also observed in greenhouse gas simulations from 

ESM2M (44929.55 km
2
 per month) and CanESM2 (3620.98 km

2
 per month). 

However, greenhouse gas simulation from IPSL model shows a declining 

trend (-11805.40 km
2
 per month) in the size of the gyres.  Trend in gyre size 

from greenhouse gas simulation from CanESM2 model is  not significant.  

Also, there are several  other simulations for which the trend in gyre size is  
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not significant (Table 12-5). This shows that models are not always 

consistent with the outputs from the same forcing simulations and also,  

model outputs are not always consistent with observations in pattern and 

trend. Trend in the size of the gyre from other simulations is given in Table 1  

of Appendix VI. Trend in the size of the gyre from other simulations is given 

in Table 12-5.   

 

Figure  12-3. Monthly t ime series of the size of the NP gyre i .e.  gyre area in km
2
.   

 

 

 

 

 

 

 

 

Table 12-5. Linear Trend (km
2
 per month) in size of the NP gyre (1999-2005) 

and the column indicating whether the trend is significant or not by a 'Y' and 

a 'N' respectively.  
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Model Simulation  Linear 

Trend 

Significant 

Trend 

A 29324.35 Y 

B 4564.58 N 

C -23602.25 Y 

D 44929.55 Y 

F -5676.96 N 

G 392.30 N 

H 4058.78 N 

I -11805.40 Y 

J -14.72 N 

K 9255.72 Y 

L -5938.07 Y 

M 3620.98 N 

N 18336.70 Y 

O -16806.02 Y 

Statist ical terms of comparison between size of the gyres from model 

simulations and NOBM that were computed are correlation coefficient,  

centered root mean square difference and amplitude of the variation i.e. 

standard deviation. The results are presented in the form of a Taylor Diagram 

(Taylor, 2001) (Figure 12-4) and Table of values associated with the Figure 

are presented in Table 12-6 below.  
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Figure  12-4.  Taylor diagram associated with the comparisons of  t ime series of  gyre 

area for NP gyre computed from model simulations  with t ime ser ies of gyre area  

from NOBM. 

Table 12-6. Statistical terms of comparison for time series of North Pacific  

gyre area.  

Model 

Simulation 

Correlation 

Coefficient  

RMS difference Standard Deviation  

B -0.1128 2463226.4 1485318.7 

C -0.1525 2757642.2 1828160.5 

D 0.3667 2071676.8 1875553.4 

F -0.1705 2416189.5 1328240.8 

G 0.0105 2235943.6 1339364.9 

H 0.0290 2001812.8 920409.7 

I 0.0022 2014409.8 899227.3 

J 0.0451 1949673.9 823824.1 

K 0.3467 2166998.7 1978644.3 

L 0.0513 1895884.3 681233.3 

M -0.1085 2158484.1 1004625.0 

N -0.0426 2503629.3 1660241.9 

O 0.1020 2043006.3 1159317.3 

From Figure 12-4, it  can be seen that the correlation coefficient for all  

the model simulations is low ( -0.1705 to 0.3667 in this study). This indicates 

that time series of the size of the gyres from model simulations is not 

correctly phased with NOBM. It should be noted from Figure 12-4 that sign 

of the correlation coefficient from same forcing simulation from different 

models is  not consistent. For example, correlation coefficient obtained for 

historical  greenhouse gas simulation from ESM2M and IPSL is positive but is  

negative for greenhouse gas simulation from CanESM2.  

From Figure 12-4, i t  can also be seen that the standard deviation of 

model simulations is lower than NOBM except historical  and historical 

greenhouse gas simulation from ESM2M model and RCP8.5 simulation from 



 

263 
 

IPSL model. This shows that model simulations underestimate t he gyre area 

compared to the gyre area from observations.   

12.1.4. Results for South Pacific Gyre  

Time series of the SP Gyre area  from NOBM and greenhouse gas 

simulations of the models is shown in Figure 12-5.  Size of the gyres from 

greenhouse gas simulations is chosen as an example for visual comparison 

because this is the signal that  is of interest  in this detection study. From 

Figure 12-5 it can be seen in observations that there is  a peak in the gyre size 

in mid 1999 followed by a decrease in the gyre size t ill  mid 2000. There is an 

increasing trend in the gyre size till  mid 2002 after which the size decreases 

till  mid 2003 and then there is a increase in the gyre size t i ll  2005 with a 

sporadic decrease at  the end of 2004. This pattern in the size of the gyres is 

partially followed in the gyre size from greenhouse gas simulations from 

models. Observing the linear trend in the gyre size, it  can be seen that there 

is an increasing trend (20211.17 km
2
 per month) from NOBM, which is also 

observed in greenhouse gas simulations from ESM2M ( 3842.16 km
2
 per  

month) and IPSL (5716.43 km
2
 per month).  However, greenhouse gas 

simulation from CanESM2 model shows a declining trend (-18447.51 km
2
 per 

month) in the size of the gyres. Trend in gyre size from greenhouse gas 

simulation of ESM2M and IPSL model is not significant.  Also, there are 

several other simulations for which the trend in gyre size is  not significant 

(Table 12-7).  This shows that models are not always consistent with the 

outputs from the same forcing simulations and also, model outputs are not 

always consistent with observations in pattern and trend. Trend in the size of 

the gyre from other simulations is  given in Table 12-7.   
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Figure  12-5. Monthly t ime series of the size of the SP gyre i .e.  gyre area in km
2
.  
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Table 12-7.  Linear Trend (km
2
 per month) in size of the SP gyre (1999-2005) 

and the column indicating whether the trend is significant or not by a 'Y' and 

a 'N' respectively.  

Model Simulation  Linear 

Trend 

Significant 

Trend 

A 20211.17 Y 

B -14774.08 Y 

C 12749.96 N 

D 3842.16 N 

F -34326.57 Y 

G -2531.00 N 

H -13128.27 Y 

I 5716.43 N 

J -2955.22 N 

K 31395.75 Y 

L 9584.07 Y 

M -18447.51 Y 

N 1612.75 N 

O -16069.82 Y 

Statist ical terms of comparison between size of the gyres  from model 

simulations and NOBM that were computed are correlation coefficient,  

centered root mean square difference and amplitude of the variation i.e. 

standard deviation. The results are presented in the form of a Taylor Diagram 

(Taylor, 2001) (Figure 12-6) and Table of values associated with the Figure 

are presented in  Table 12-8.  
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Figure  12-6.  Taylor diagram associated with the comparisons of  t ime series of  gyre 

area for SP gyre computed from model simulations  with t ime ser ies of gyre area  

from NOBM. 

Table 12-8. Statistical terms of comparison for time series of South Pacific 

gyre area.  

Model 

Simulation 

Correlation 

Coefficient  

RMS difference Standard Deviation  

B -0.0417 1868790.6 1160661.4 

C -0.0725 2404949.0 1843132.4 

D -0.1219 2331855.2 1687175.7 

F -0.0301 2420456.2 1920028.1 

G -0.0183 1897306.2 1235989.5 

H -0.1478 1942699.7 1135900.6 

I -0.1473 1986487.5 1198934.5 

J 0.0751 1641869.6 942475.6 

K 0.3374 1544222.8 1255953.8 

L -0.1247 1838047.2 1007138.2 

M 0.1315 1590978.3 933168.6 

N -0.0964 1694891.2 803163.1 

O -0.3550 1868165.1 814124.1 
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From Figure 12-6, it  can be seen that the correlation coefficient for all  

the model simulations is low ( -0.355 to 0.3374 in this study). This indicates  

that time series of the size of the gyres from model simulations is not 

correctly phased with NOBM. It should be noted from Figure 12-6 that sign 

of the correlation coefficient from same forcing simulation from different 

models is  not consistent. For example, correlation coefficient obtained for 

historical greenhouse gas simulation from ESM2M and IPSL is negative but  

is positive for greenhouse gas simulation from CanESM2.  

From Figure 12-6, i t  can also be seen that the standard deviation of 

model simulations is lower than NOBM except for historical , historical  

greenhouse gas and historical natural simulation from ESM2M model. This 

shows that model simulations underestimate the gyre area c ompared to the 

gyre area from observations.  

12.1.5. Results for Indian Ocean Gyre 

Time series of the IO Gyre area  from NOBM and greenhouse gas 

simulations of the models is shown in Figure 12-7 .  Size of the gyres from 

greenhouse gas simulations is chosen as an example for visual comparison 

because this is the signal that  is of interest  in this detection study. From 

Figure 12-7 it can be seen in observations that the pattern of increase or 

decrease in gyre area is indistict  which is also the case for gyre area from 

greenhouse gas simulations.  Observing the linear trend in the gyre size,  it  can 

be seen that  there is an increasing trend ( 11464.79 km
2
 per month) from 

NOBM, which is also observed in greenhouse gas simulations from ESM2M 

(7271.09 km
2
 per month),  IPSL (4391.00 km

2
 per month) and CanESM2 

(3653.88 km
2
 per month) model. Trend in gyre size from greenhouse gas 

simulation from ESM2M and CanESM2M model is no t significant. Also, 

there are several other simulations for which the trend in gyre size is not 

significant (Table 12-10)This shows that models are consistent with the 

outputs from the same forcing simulations and als o, model outputs are 

consistent with observations. Trend in the size of the gyre from other 

simulations is given in Table 12-10.   



 

268 
 

 

Figure  12-7. Monthly t ime series of the size of the IO gyre i .e.  gyre area in km
2
.  

Table 12-9. Linear Trend (km
2
 per month) in size of the IO gyre (1999-2005) 

and the column indicating whether the trend is significant or not by a 'Y' and 

a 'N' respectively.  

Model Simulation  Linear 

Trend 

Significant 

Trend 

A 11464.79 Y 

B -8450.86 N 

C -5371.60 N 

D 7271.09 N 

F 43716.44 Y 

G 1157.57 N 

H 10909.77 Y 

I 4391.00 Y 

J 9931.58 Y 

K -436.01 N 

L -6438.85 Y 

M 3653.88 N 

N 6563.55 Y 

O -3085.45 Y 
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Statist ical terms of comparison between size of the gyres  from model 

simulations and NOBM that were computed are correlation coefficient,  

centered root mean square difference and amplitude of the variation i.e. 

standard deviation. The results are presented in the form of a Taylor Diagram 

(Taylor, 2001) (Figure 12-8) and Table of values associated with the Figure 

are presented in Table 12-10 below.  

 

Figure  12-8.  Taylor diagram associated with the comparisons of  t ime series of  gyre 

area for IO gyre computed from model simulations  with t ime ser ies of gyre area  

from NOBM. 
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Table 12-10. Statistical terms of comparison for time series of Indian Ocean  

gyre area.  

Model 

Simulation 

Correlation 

Coefficient  

RMS difference Standard Deviation  

B 0.14601 1728350 1442927 

C 0.072249 1522277 1044861 

D 0.377829 1304666 1153559 

F 0.153046 1819419 1573737 

G -0.13282 1746841 1135539 

H -0.07222 1353828 574452.7 

I -0.02333 1274212 441236.3 

J 0.082845 1360417 773348.3 

K -0.03334 1222189 261789.8 

L -0.19585 1373060 499088.7 

M 0.112075 1220880 454795.3 

N 0.118043 1285238 656503.3 

O -0.26015 1306085 321284.6 

From Figure 12-8, it  can be seen that the correlation coefficient for all  

the model simulations is low ( -0.2602 to 0.3778 in this study). This indicates 

that time series of the size of the gyres from model simulations is not 

correctly phased with NOBM. It should be noted from Figure 12-8 that sign 

of the correlation coefficient from same forcing simulation from different 

models is not always consistent. For example, correlation coefficient 

obtained for historical greenhouse gas simulation from ESM2M  and 

CanESM2 is posi tive but correlation coefficient for historical  greenhouse gas 

simulation from IPSL is negative.  

From Figure 12-8, i t  can also be seen that the standard deviation of 

model simulations is  lower than NOBM except for historical simulation from 

ESM2G and historical natural simulation from ESM2M model. This shows 

that model simulations underestimate the gyre area compare d to the gyre area 

from observations.  
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12.2. Level of truncation 

Table 12-11. Percent of eigenvectors chosen for the noise covariance 

matrix 

Model Simulation Alphabet  NA SA NP SP IO 

B 99.97 99.98 98.8 99.85 99.62 

C 99.99 99.89 99.98 99.95 99.96 

D 99.98 99.98 99.99 99.98 99.99 

F 100 99.99 99.99 99.95 99.99 

G 100 100 99.97 99.95 99.96 

H 99.65 100 99.98 99.99 99.96 

I 99.91 99.97 99.98 99.93 99.96 

J 99.91 99.42 99.98 99.77 99.96 

K 99.65 99.97 99.76 99.99 99.96 

L 98.02 99.85 100 99.74 99.9 

M 98.02 99.68 100 99.45 99.9 

N 99.91 98.38 100 99.74 99.77 

O 99.91 99.97 100 99.81 99.19 
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12.3. Detection Results 

Beta values obtained after the implementation of the OF method 

indicate whether the signal has been detected in the observations or not.   

Table 12-12. Beta values for NA gyre 

Model Simulation  Beta CI 

B -3.6987 -31.6561 

C -13.2169 -65.6266 

D 5.4285 -26.8686 

F 2.0217 -10.4447 

G 33.0348 -170.6697 

H -0.0187 -4.1290 

I 0.0746 -18.1807 

J 0.0665 -16.2047 

K 0.1868 -41.2596 

L 0.5839 -4.1698 

M -3.7127 -26.5139 

N 0.6365 -6.8658 

O -35.2181 -379.8650 

12.3.1. Results for South Atlantic Gyre 

Scaling factors obtained as a result  of the implementation of the OF 

method on time series of the gyre area in SA region of the ocean using time 

series of the gyre area from model forced simulations as the signal  is shown 

in Figure 3-8 and given in Table 12-13.  
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Figure 12-9. Graph of signal amplitude along with the CI, obtained for OF 

implementation in SA gyre using signals  from model forced simulations.  Red 

circles indicate scaling factors which are posit ive and are obtained for the 

simulations for which consistency test  fa i led.  
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Table 12-13. Beta values for SA gyre 

Model Simulation  Beta CI 

B -0.7097 -5.3706 

C 1.0792 -5.2788 

D -54.6373 -195.6932 

F -0.4526 -2.3756 

G -1.6285 -8.6669 

H 8.2008 -30.0647 

I 19.9813 -67.4106 

J -3.4713 -10.6860 

K -1.4507 -4.8943 

L 3.5399 -15.9978 

M -4.7174 -19.9708 

N 0.9369 -3.7711 

O -8.1369 -40.5686 

Figure 12-9 above shows the beta values obtained in SA gyre for 

signals obtained from model forced simulations along with the confidence 

interval (CI) associated with each beta value. From the Figure 12-9a it can be 

seen that even though there are some model simulations for which scaling 

factors are positive but none of the scaling factors are significantly different  

from 0 and with 95% confidence interval . This indicates that the effect of 

external forcings is not being detected in the SA gyre and the null hypothesis 

that changes in size of the gyres is caused by internal variability cannot be 

rejected.  

12.3.2. Results for North Pacific Gyre  

Scaling factors obtained as a result  of the implementation of the OF 

method on time series of the gyre area in NP region of the ocean using time 

series of the gyre area from model forced simulations as the signal  is shown 

in Figure 12-10 and given in Table 12-14.  
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Figure 12-10. Graph of signal amplitude along with the CI,  obtained for OF 

implementation in NP gyre using signals  from model forced simulations.  Red 

circles indicate scaling factors which are posit ive and are obtained for the 

simulations for which consistency test  fa i led.  
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Table 12-14. Beta values for NP gyre 

Model Simulation  Beta CI 

B -0.4118 -13.8347 

C 1.2551 -12.8816 

D 1.4671 -15.5231 

F -0.7516 -7.9520 

G 0.5213 -5.1919 

H -0.0966 -2.1211 

I 45.9869 -1010.0080 

J -0.0961 -2.1106 

K 0.2033 -2.8773 

L -4.4889 -26.4401 

M 2.6006 -13.6609 

N -2.8300 -18.3808 

O -4.7296 -24.8835 

 

Figure 12-10 above shows the beta values obtained in NP region for 

signals obtained from model forced simulations along with the confidence 

interval (CI) associated with each beta value. From the Figure 12-10a i t can 

be seen that even though there are some model simulation s for which scaling 

factors are positive but none of the scaling factors are significantly different  

from 0 and with 95% confidence interval . This indicates that the effect of 

external forcings is not being detected in the NP gyre and the null hypothesis 

that changes in size of the gyres is caused by internal variability cannot be 

rejected.  

12.3.3. Results for South Pacific Gyre  

Scaling factors obtained as a result  of the implementation of the OF 

method on time series of the gyre area in SP region of the ocean usin g time 

series of the gyre area from model forced simulations as the signal  is shown 

in Figure 12-11 and given in Table 12-15.  
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Figure 12-11. Graph of signal amplitude along with the CI,  obtained for OF 

implementation in SP gyre using signals  from model forced simulations.  Red 

circles indicate scaling factors which are posit ive and are obtained for the 

simulations for which consistency test  fai led.  
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Table 12-15. Beta values for SP gyre 

Model Simulation  Beta CI 

B 0.6860 -2.5597 

C 0.1809 -4.7968 

D 0.3795 -11.2892 

F -0.2854 -7.5678 

G 0.3470 -9.2011 

H 1.5268 -3.4269 

I -0.8967 -1.9604 

J -3.1858 -6.5035 

K 5.0468 -11.3272 

L 0.0344 -3.0137 

M 0.0323 -6.6262 

N 0.1287 -11.2724 

O -0.2723 -20.2485 

 

Figure 12-11 above shows the beta values obtained in SP region for 

signals obtained from model forced simulations along with the confidence 

interval (CI) associated with each beta value. From the Figure 12-11a i t can 

be seen that even though there are some model simulations for which scaling 

factors are positive but none of the scaling factors are significantly different  

from 0 and with 95% confidence interval . This indicates that the  effect of 

external forcings is not being detected in the SP gyre and the null hypothesis 

that changes in size of the gyres is caused by internal variability cannot be 

rejected.  

12.3.4. Results for Indian Ocean Gyre 

Scaling factors obtained as a result  of the impl ementation of the OF 

method on time series of the gyre area in IO region of the ocean using time 

series of the gyre area from model forced simulations as the signal  is shown 

in Figure 12-12 and given in Table 12-16.  
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Figure 12-12. Graph of signal amplitude along with the CI,  obtained for OF 

implementation in IO gyre using signals f rom model forced simulations.  Green 

circles indicate scaling factors which are posit ive and are obtained for the 

simulations for which consistency test  passed. Red circles indicate scaling factors  

which are posit ive and are obtained for the simulations for which consistency test  

fai led. 
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Table 12-16. Beta values for IO gyre 

Model Simulation  Beta CI 

B 0.6974 -3.8378 

C 0.4982 -2.5522 

D 0.4794 -2.5630 

F -0.3688 -1.9719 

G 0.4651 -2.3827 

H -5.6241 -11.1830 

I 6.1351 -12.1992 

J 2.4285 -4.8289 

K 5.0716 -10.0845 

L -2.7867 -21.6671 

M 0.5504 -4.2792 

N -6.7562 -55.3402 

O -1.6747 -12.5246 

 

Figure 12-12 above shows the beta values obtained in IO region for 

signals obtained from model forced simulations along with the confidence 

interval (CI) associated with each beta value. From the Figure 12-12a i t can 

be seen that even though there are some model simulation s for which scaling 

factors are positive but none of the scaling factors are significantly different  

from 0 and with 95% confidence interval . This indicates that the effect of 

external forcings is  not being detected in the IO gyre and the null hypothesis 

that changes in size of the gyres is caused by internal variability cannot be 

rejected.  
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